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ABSTRACT 
In this paper and a companion work, we show that a broad class of astrophysical accretion disk is dynam- 

mically unstable to axisymmetric disturbances in the presence of a weak magnetic field. Because of the 
ubiquity of magnetic fields, this result bears upon gaseous differentially rotating systems quite generally. This 
work presents a linear analysis of the instability. (The companion work presents the results of nonlinear 
numerical simulations.) The instability is local and extremely powerful. The maximal growth rate is of order 
the angular rotation velocity and is independent of the strength of the magnetic field, provided only that the 
energy density in the field is less than the thermal energy density. Unstable axisymmetric disturbances require 
the presence of a poloidal field component, and are indifferent to the presence of a toroidal component. The 
instability also requires that the angular velocity be decreasing outward. In the absence of a powerful dissi- 
pation process, there are no other requirements for instability. Fluid motions associated with the instability 
directly generate both poloidal and toroidal field components. We discuss the physical interpretation of the 
instability in detail. Conditions under which saturation occurs are suggested. The nonemergence of the classical 
Rayleigh criterion for shear instability in the limit of vanishing field strength is noted and explained. The 
instability is sensitive neither to disk boundary conditions nor to the constituative fluid properties. Its exis- 
tence precludes the possibility of internal (noncompressive) wave propagation in a disk. If present in astro- 
physical disks, the instability, which has the character of an interchange, is very likely to lead to generic and 
efficient angular momentum transport, thereby resolving an outstanding theoretical puzzle. 
Subject headings: accretion — hydrodynamics — hydromagnetics — instabilities 

1. INTRODUCTION 

A long-standing challenge to the theory of accretion disks has been to show from first principles a mechanism capable of 
generating a turbulent viscosity, since the angular momentum transport resulting from the action of ordinary molecular viscosity is 
extremely inefficient (Pringle 1981). In this work and a companion paper (Hawley & Balbus 1991, hereafter II), we show that 
accretion disks are subject to a very powerful shearing instability mediated by a weak magnetic field of any plausible astrophysical 
strength. We suggest that this instability is of some relevance to understanding the origin of turbulent viscosity in accretion disks. 

It is of course widely appreciated that magnetic fields can play an important role in accretion disk dynamics (e.g., Blandford 1989). 
In their seminal paper, Shakura & Sunyaev (1973) noted that magnetic turbulance could act as a viscous couple, but argued that 
nonlinear perturbations would be required to disrupt laminar flow. Magnetic fields have also been invoked, for example, as a source 
of coronal heating (Galeev, Rosner, & Vaiana 1979), and wind production (Blandford & Payne 1982). Despite the recognition of the 
importance of magnetic fields, stability analyses and wave propagation studies are nearly always gasdynamical in character. An 
important finding of this paper is that even an arbitrarily small magnetic field cannot be ignored when considering linear 
disturbances in accretion disks. Indeed, a weak magnetic field may be far more destabilizing than a strong one. The growth rate of 
the instability, which is of order the disk angular frequency, is considerably more rapid than any wave propagation time of interest. 
The nonlinear resolution of the instability is difficult to predict with any certainty, but a classical turbulent structure on scales from 
the disk scale height down to a dissipative reconnection length appears to be a viable and interesting possibility (II). 

The instability has some extraordinary properties. It is present if a disk (1) is differentially rotating with a rate decreasing with 
distance from the center; and (2) has a weak (subthermal Alfvén speed) poloidal component. Remarkably, neither the growth rate of 
the most rapidly growing wavenumbers nor the stability criterion itself formally depend upon the magnetic field strength. However, 
the critical wavelength, longward of which instability sets in, is directly proportional to the magnetic field. (The wavelength of 
maximum growth is of the same order but slightly larger than the critical wavelength.) Thus, dissipational forces would ultimately 
become important as the field goes to zero ; in the opposite limit, for a sufficiently large field, the critical wavelength will exceed the 
characteristic scale height of the disk. If nothing else intervenes, the latter will clearly be relevant to the nonlinear saturation of the 
instability. The essence of our results is that the Rayleigh instability criterion of a negative radial gradient in specific angular 
momentum is largely irrelevant to gaseous astrophysical disks. Instead, the combination of a negative angular velocity radial gradient 
with almost any small seed field will lead to dynamical instability. In the early stages of growth, the behavior of the evolving 
disturbances has the character of a classical interchange instability (II). 

While all this may seem surprising, a related process was studied long ago by Chandrasekhar (1960). He considered the global 
stability of a vertically magnetized column of incompressible fluid undergoing Couette flow, and for a vanishingly small field found 
precisely the same instability criterion described above. In his paper, Chandrasekhar (1960) noted explicitly, and with some 
surprise, the nonemergence of the Rayleigh criterion in the vanishing field limit. Later, Fricke (1969) studied the local stability of 
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stellar differential rotation in the presence of a magnetic field, emphasizing the incompatibility of stellar isorotational configurations 
(Ferraro 1937) with dynamical stability. Fricke realized fully the connection between his own work and Chandrasekhar’s (1960) 
investigation. The importance of these authors’ findings to accretion disk theory seems to have gone unappreciated. Some of our 
formal results were first obtained by Fricke, but they are derived here in a much different physical context. For reasons that will be 
made clear below, the derivation and final form of the fundamental dispersion formula presented here are simpler than those in 
Fricke (1969). 

At this point, it may be useful to emphasize what the instability is not. It is not a limiting form of a magnetic “ swing amplifier ” 
(Tagger et al. 1990), which involves the propagation of magnetoacoustic waves. It is not related to the magnetoacoustic instability 
discussed by Lynden-Bell (1966) and more recently by Elmegreen (1987) as a promoter of gravitational collapse in the spiral arm 
regions of disk galaxies. In this latter process, the disturbances are compressive, self-gravity is key, and although the magnetic field 
always destabilizes, growth rates depend directly on the strength of the field. The present instability is noncompressive, self-gravity is 
not involved, and the characteristic growth rate is (to reiterate) independent of the magnetic field strength. 

Since the destabilization mechanism involved is insensitive both to the boundary conditions at the disk edge and to the 
constituative relation for the gas, it is our belief that the instability constitutes the strongest evidence to date that accretion disks are 
in fact turbulent along the lines of the a-prescription (Shakura & Sunyaev 1973). The linear analysis gives an explicit picture of the 
underlying physics of the instability, and suggests the conditions under which it may saturate. In the absence of dissipation, this 
occurs when the Alfvén speed becomes of order the thermal velocity in the disk, at a critical wavelength on the order of the disk scale 
height. This is precisely the scale associated with angular momentum transport in an a < 1 accretion disk. The presence of 
dissipative reconnection would lower a. 

In this work, paper I of this series, our contributions are: (1) to show that the instability manifests itself locally under very general 
conditions; (2) to give a relatively simple derivation of the fundamental dispersion formula and stability criterion; (3) to provide a 
detailed explanation of the underlying physical cause; and (4) to present the limitations of the theory. In paper II, the nonlinear 
evolution is explored numerically using a two-dimensional magnetohydrodynamic simulation. The local analysis is presented in the 
next section, followed by an interpretation of the instability, a simple application, and finally some concluding remarks. 

2. A SHEARING INSTABILITY IN A MAGNETIZED DISK 

2.1. The Instability in Brief 
While we present a discussion of the physical nature of the instability in § 2.5, let us understand the basic destabilization 

mechanism before embarking on a detailed calculation. Consider an outwardly displaced fluid element in a differentially rotating 
disk threaded by a vertical magnetic field. The fundamental point is that the element is elastically tethered by a magnetic field which 
is trying simultaneously to enforce rigid rotation (by resisting shearing), and to return the element back to its starting point (by 
resisting stretching). The latter is clearly stabilizing, but the first is the heart of the instability: the field is trying to force the element 
to rotate too fast for its new radial location. The excess centrifugal force drives the element still farther outward. At long 
wavelengths, the return force is weak, and destabilization wins. The presence of a finite vertical wavenumber in the disturbance is 
essential; there can be no axisymmetric instability otherwise. This allows fingers of high and low angular momentum fluid to 
interpenetrate. The instability is basically simple. It is a particularly virulent kind of viscous couple. 

2.2 Axisymmetric Dispersion Relation: BR = 0 
Consider an axisymmetric accretion disk of finite vertical extent, not necessarily thin. Set up a standard cylindrical coordinate 

system (R, </>, z) with R being the perpendicular distance from the z-axis. We assume that the equilibrium angular velocity Q(R) is 
constant on cylinders, by tall other flow variables may depend upon R and z if permitted by the magneto-fluid equations. A 
magnetic field is presumed to be present in the disk, weak enough that in the initially unperturbed state its effect is quite negligible. 
Differential rotation will cause the equilibrium field to acquire a helical structure, and the presence of a radial component of the 
magnetic field together with shear will cause the azimuthal component to grow linearly with time. This leads to no great difficulties, 
but let us nevertheless begin our study with the special case of vanishing radial field component, BR = 0. We then return to treat the 
more general case by building on the results of this slightly artificial but highly illustrative example. 

We denote the azimuthal field component B^R, z)<^, and the vertical component Bz(R)z. (The notation <¡>, etc. is used to denote a 
unit vector.) The basic dynamical equations are 

d\np 
v •r = 0, (2.1a) 

dv 1 
h — 

dt p 
V| — f - (B • \)B + \<P = 0 , 

4np 
(2.1b) 

—-Vx(i;xR) = 0. (2.1c) 

The notation d/dt indicates the Lagrangian derivative and 0 is the external gravitational potential. Others symbols have their usual 
meanings. 

We consider axisymmetric large-wavenumber Eulerian perturbations with space-time dependence e
i(kRR+k^-(ot)t Subscripts refer 

to vector components. Fourier amplitudes of perturbed flow attributes are denoted as ôp, ôP, etc. We shall work in the Boussinesq 
approximation, which is appropriate for the noncompressive disturbances of interest. This eliminates magnetoacoustic waves from 
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consideration, and greatly simplifies the bookkeeping. When written out in component form and only the largest terms retained, the 
above set of seven equations becomes to linear order 

IcrÖVr + kzôvz = 0 , 

-iœôvR + l-^ÔP-2QÔVt-%^ + ^- (B^ÔB^ + B JB J - BJBR = 0 , 
p p oR 4np 4np 

— ico ôvz + 
ikzÔP ôp dP ik 

p2 dz 4np 
+ -^£*<52^ = 0, 

K2 ÔBu, 
-iœôv<l> + ôvR-~iKBz^ = 0, 

— ico ôBr — ikz Bz ôvR = 0 , 

— ico ôBz — ikz Bz ôvz = 0 , 

dCï 
— ico ôBa, — V _ jinR ^Br ~ BzSvj, - 0 . 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

(2.2f) 

(2.2g) 

In the above, £1 is the angular velocity, and k2 is the square of the epicyclic frequency, 

IQ d(R2Q) 
K = R dR ' 

Note that equations (2.2e), (2.2f), and (2.2a) guarantee V • = 0. To complete our set, we require the entropy for adiabatic 
perturbations in the Boussinesq approximation : 

5 ôp . dlnPp 5/3 ç dlnPp 5/3 

mi7 + i,°-—jr- + âv*—ëR 0 (2.2h) 

Our strategy is to eliminate ôvR everywhere by using equation (2.2a), use equations (2.2c)-{2.2h) to express all ¿-quantities in terms 
of ôvz, and construct the dispersion relation from equation (2.2b). En route we find 

ôp 

P 

ÔP Bcj) ôB# 
p 4np 

3 öv fdlnPp-5/3 _ K dlnPp-5'3 

5ico dz kR dR 

K L 

3 1 dP (dlnPp-5/3 kz dlnPp-5'3 

CD + ~ — I 
5 co p dz dz kR dR 

ÔVr — — ôvz , 
Kr 

s,, =^ik( h , 
* ico kR\ 2£2 co2 dlnRj 

SB,- - ^ j,. , 

kR co 

jkä 
ico2 kR 

ÔBb, = 2Sî^^[1-^^) ôvz, 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f) 

(2.3g) 

where 

v2az = 
Bl 

4np 
(2.4) 

Combining equations (2.3a)-(2.3f) into equations (2.2b) yields the desired dispersion relation after rearranging and simplification: 

3 (kRdP dP\/kR dlnPp-513 dlnPp' kl 
k2l5p\kzdz ôRJ\k, 

5/3 

dz dR 

where 

(2.5) 

(2.6a) 
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and 
k2 = k2

z+k2
R. (2.6b) 

In this form, equation (2.5) reduces to the inviscid dispersion relation of Fricke (1969). Note that in contrast to the derivation 
presented by Fricke, our calculation includes both a toroidal and a poloidal field together. While the toroidal field drops out of the 
final dispersion relationship, the simultaneous consideration of both components is of importance in justifying the validity of the 
Boussinesq approximation. The pure toroidal field case considered by Fricke was considerably more restrictive in this regard. 
Additionally, we may simplify things a bit further by noting that 

8P d\nPp~ 5/3 ÔP d\nPp~5/3 

Jr Jz = 77 Jr ’ (2-7) 

which follows from the assumption of rotation on cylinders, or equivalently that isobaric and isochoric surfaces coincide. Then, 
defining 

, 3 dPdlnPp-513 

N = —  z 5p dz dz 

with an analogous expression for N^, the final form of the dispersion relation becomes comparatively simple: 

^ Ü)4 - +(j^Nz- nr^ J®2 - 4ß2fcz v2
Az = 0 . 

(2.8) 

(2.9) 

The quantities N2 and NR are pieces of the Brunt-Väisälä frequency: 

JV2 = - (VP) • (V In Pp -5/3) = N2 + N2
r, (2.10) 

and should not be confused with vector components. Note that only the z-component of the magnetic field enters the dispersion 
relation, and that it is always multiplied by the wavenumber kz. Thus, the importance of arbitrarily small magnetic fields is readily 
understood : significant magnetic tension forces can be generated at sufficiently small wavelengths. Another particularly useful way 
to think of this is to observe that in the absence of magnetic fields, there is no wavenumber scale in the problem : internal waves 
propagate with a frequency that depends only on wavenumber direction. The presence of a field establishes an inverse length scale 
for the wavenumbers: Cl/vAz. By normalizing the components of k by this characteristic value, the field scales out of the problem. 
Only the value of the wavenumber relative to Q/^z matters, not the value of the field strength directly. 

There are two physical branches to the dispersion relation (2.9) : the internal wave branch (mentioned above) which is present in 
the absence of a magnetic field, and a torsional wave branch which becomes unstable at sufficiently long wavelengths when a field is 
present. Tightly wound internal waves have been suggested as a means of angular momentum transport and dynamo activity in 
accretion disks (Vishniac & Diamond 1989; Vishniac, Jin, & Diamond 1990). But these studies assume that the magnetic field has a 
negligible effect on wave propagation properties, at least if the magnetic pressure is small compared with the thermal pressure. If any 
weak magnetic field is present in the disk, equation (2.9) indicates this assumption is incorrect. Even if the presence of the field did 
not destabilize the disk in a rotation time, the radial range over which internal waves could propagate would be severely curtailed 
by Alfvénic couplings. But of course the main point of this study is the surprisingly unstable nature of weakly magnetized disks. 
Indeed, in light of our results, it is very difficult to justify much of what has been taken for granted in field-amplification schemes. To 
cite one example, the simple linear (in time) build-up of an azimuthal field from a small radial field must proceed much differently in 
the presence of the instability (see § 2.4). 

In what follows, we shall assume that both the epicyclic frequency and the Brunt-Väisälä frequency (and its “ pieces ”) are real; this 
is sufficient to ensure that the nonmagnetized disk is stable to inviscid adiabatic perturbations. 

2.3. Stability Criterion 
It is elementary to show that œ2 (and thus co2) must always be real and a continuous function of its parameters in the dispersion 

relation (2.9). Hence, we may investigate the stability of the weakly magnetized disk by considering conditions in the neighborhood 
of co2 = 0, or &>2 = — k2 v2

Az. In this limit, equation (2.9) may be written : 

k2
R(k

2
zv

2
Az + N2

z) 2kRkzNRNz + k / M2 

\dlnR 
+ N2+k2v2

Azj = 0 (2.11) 

Regarded as a quadratic equation for kR, equation (2.11) does not allow real solutions for kR (thereby assuring stability since co2 

could then not pass through zero), provided the discriminant is negative. This requirement may be expressed as 

kt «4 + k2 v2
Az(n

2 + + N2 ^ > 0 (STABILITY). (2.12) 

Recalling the assumption N2 > 0, it is immediately apparent that inequality (2.12) can be satisfied for all non vanishing fcz if and only 
if 
dQ2 

—->0 (STABILITY), (2.13) 
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which is the stability criterion of interest. It is generally violated in astrophysical disks and will lead to instability for values of less 
than the critical value obtained directly from equation (2.12) : 

= : uAz L _ 
N2 + 

an2 

dlnR 
ANt 

dQ2 l112 

dlnR] 
[^2+ -^111 
L dlnR]) 

(2.14a) 

If the disk is rotating supersonically (i.e., N2
R 4 N2, see § 2.8), or if the Brunt-Väisälä frequency N2 is negligible, the critical 

wavenumber becomes 

mcriA = vÁz
1\dÜ2/d\nR\l<2 . (2.14b) 

If N2 = 0, as in the disk midplane, then the stability criterion is 

, dd2 

Nr + dhU - 0 (STABILITY). (2.15) 

which for supersonic velocities differs little from the criterion (2.13). 

2.4. The General Case: BR 0 
The presence of a radial field component leads to a growing B# in the unperturbed disk. The relevant field freezing equation is 

dB¿ _ g 
dt R dlnR ' (2.16a) 

Since Br does not change with time, the solution to equation (2.15) is 

(2.16b) 

Thus Bj, grows linearly with time. As long as the azimuthal component is dynamically weak, it does not affect the disturbances of 
interest here. The azimuthal field is completely absent from the dispersion formula (2.9), and the inclusion of a radial field does not 
change this result. It is true that the analog of equation (2.3b) with a radial field would now involve explicitly time-dependent terms 
in the unperturbed flow variables, but the approximation made in assuming a time dependence e~ia” is still valid to leading 
exponential order. (This may be formalized with WKB expansions in the temporal domain, but we shall avoid this digression.) It is 
a straightforward, if slightly tedious excercise to show that the general dispersion formula, in an obvious notation, is 

where now, 

- 4fi2(* • vA)2 = 0 , (2.17) 

m2 = œ2 -{k ■ vA)2 . (2.18) 

We encounter no surprises here. As promised, to leading order B# is absent from equation (2.17), and (o is free of explicit time 
dependence. In an important sense, no generality is lost by considering only the special case BR = 0. For a given wavenumber k, 
equation (2.17) shows that any field geometry may be reduced to an equivalent pure z-field problem by choosing a new t>^z equal to 
k • vA/kz. 

The question of the stability of the disk may be approached by the methods of the previous section. One apparent complication is 
that the counterpart to equation (2.11) 

k2
R[(k • vA)2 + Vf] - 2kR kz NR Nz + fcf 

dlnR 
+ N2

R+(k rA)2 (2.19) 

no longer is a quadratic in kR, it becomes a quartic. But to show the necessity of dd2/dR > 0 as a stability criterion, it suffices to 
consider only long wavelengths. Retaining only the lowest-order terms quadratic in the wavenumber components in equation (2.19) 
leads to a problem nearly identical to the one analyzed in § 2.3: if the inequality (2.13) is violated, long wavelengths are easily shown 
to be unstable. To show the sufficiency of the criterion we reason as follows. “ Solve ” equation (2.19) as a quadratic for kR as though 
k • vA were simply a parameter. One obtains not, of course, a true solution, but a self-consistency requirement. Assume that a 
real-valued kR solution does exist, i.e., that the flow is unstable. Then the formal discriminant in the formal solution for kR must be 
positive. But if dil2/dR > 0, it is easily shown that the discriminant is always negative for any real-valued kR and kz. There is never a 
self-consistent solution for kR in this case, the flow is always stable. This proves the sufficiency of the stability requirement. The 
special case N2 — 0 poses no additional difficulties beyond those noted in § 2.3. 

The fact that d£i2/dR > 0 guarantees stability fits in rather neatly with the well-known result that a system attains its minimum 
energy configuration when in a state of uniform rotation (Lynden-Bell & Pringle 1974). A Keplerian disk does not have this state 
accessible to it, but other systems (e.g., stellar interiors) do, and the instability will in these cases simply redistribute angular 
momentum outwards until such time as the minimum energy state is attained. 

We conclude that the criteria (2.13) and (2.15) hold for arbitrary magnetic field geometry. Note that these criteria are not beholden 
to thin disk approximations, but are of relevance to any weakly magnetized differentially rotating system with Í2 = £l(R). 
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2.5. Another Look at the Physical Nature of the Instability 
The basic destabilizing mechanism was first discussed in § 2.1. It is appropriate at this point to reconsider the physical nature of 

the instability now that we have derived the dispersion relation. 
Lurking in the field-free disk is a latent instability. It corresponds to an axisymmetric azimuthal displacement, and co2 = 0 trivial 

disturbance. It is this mode that comes to life when a magnetic field, however, weak, is added to the disk. We return to the simple 
case of a vertical field. Consider two rings of disk material, half a wavelength apart along a field line. Without changing the velocity, 
a small azimuthal displacement is made in each of the rings. The first ring is displaced in the direction of the rotation, the second in 
the opposite direction. The sense of the resulting tension is to slow the first ring and speed up the second ring. The slowed ring will 
drop inward toward the axis to a location consistent with its reduced angular momentum. In doing so, radial field lines are created 
by the inward motion, and due to the presence of shear, these lines are azimuthally distorted. This in turn leads to azimuthal stresses, 
which in a normal disk (angular velocity decreasing outward) compete with restoring Alfénic torsional stresses over the fate of the 
ring. At long wavelengths, the torsional stresses lose, and the azimuthal stresses bleed the ring of angular momentum. This angular 
momentum is taken up by the second ring, which will continue to move out as the inner ring moves in. This is the essence of the 
instability. 

The instability may also be approached profitably from the point of view of altered fluid element epicycles. We look not at the 
formal dispersion analysis of the last section, but at the details of the perturbed velocity structure on the verge of instability, co2 -+ 0. 
In this limit, equations (2.3d) and (2.3c) yield 

ôvz kz dQ i d£l ^ 
ico kR dlnR co dlnR R ' 

(2.20) 

This value of ôv^ may also be obtained by balancing off the rightmost terms in equation (2.2g). A very simple interpretation of 
equation (2.20) follows from examining the Lagrangian perturbation of Q, as opposed to the Eulerian Sv^. Denote the radial 
displacement by £. Then —icoÇ = ôvR, and since ôv# = RôQ, equation (2.20) may be rewritten in terms of the Lagrangian pertur- 
bation AQ : 

RôQ + ÇR — = RAQ = 0 . (2.21) 
dR 

The content of equation (2.21) is obvious in hindsight. The Lagrangian perturbation of Q must vanish at the critical value co = 0 
since shear would otherwise use the generated ôBR to force an explicit time-dependence in ôB^. No such restriction applies in the 
field-free case; the co = 0 solution does not require ÄQ to vanish. In contrast to a magnetized displacement, there is no tether to 
couple a dislocated fluid element to its equilibrium position. Indeed, it is well-known that the Lagrangian perturbation in specific 
angular momentum, not angular velocity, is the relevant vanishing quantity in a marginally stable unmagnetized disk. This fact 
leads straight to the Rayleigh criterion for stability. In our case, we may note that the excess centrifugal force of the radially 
displaced element is given by —ÇdQ2/d\nR (using ÄQ = 0), and the return force of the magnetic tension is —(kzvAz)2Ç (taking 
Br = 0, as before). Comparing the two forces leads to equation (2.14b) for the critical wavenumber. 

2.6. Validity of the Boussinesq Approximation 
The derivations of the dispersion formulae (2.9) and (2.17) were considerably eased by the use of the Boussinesq approximation. It 

ought to be checked. 
The approximation consists of setting = 0 in all equations but the equation of motion. This zero compressibility requirement 

means that coôp/p is ignored in comparison with the velocity terms in the mass conservation equation. This is easily justified with 
the help of equation (2.3a). More interesting is the neglect of ÔP/P compared with ôp/p in the energy equation. The largest terms in 
equation (2.3b) imply 

ÔP B+ÔB* 
P 4npc2 (2.22) 

where c is the isothermal sound speed. At wavelengths of interest, k • vA ~ Q and a> ~ Q. Using these relations and equation (2.3g) 
for öB^, we find that the above gives 

ÔP 
P 

(2.23) 

where 

B 
VA(p = 4np 

Noting equation (2.3a) for ôp/p, we conclude that the Boussinesq approximation is satisfied for vA<p/c 1, with the apparent 
restriction that the ratio kz/kR not be too large. However, even in the limit kR -> 0, the Boussinesq approximation does not lead to 
difficulties. This is because while ÔP/P is now no longer negligible compared with ôp/p, the latter quantity itself becomes extremely 
small, and buoyant forces are altogether unimportant. Physically, this case corresponds to motion in z = constant planes, so 
buoyant forces are absent. These are in fact, the most unstable local modes. Thus, the only restriction required to satisfy the 
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Boussinesq approximation is a subthermal azimuthal field. Numerical simulations (II) show that the instability remains quite 
vigorous and insensitive to compressional effects well into the nonlinear regime. 

Fricke (1969) found a far more restrictive criterion for the validity of the Boussinesq approximation for a pure toroidal field (see 
his equation [24]). This is because the absence of a poloidal field component precludes the possibility of an Alfvénic response for an 
axisymmetric displacement. 

2.7. Validity of Ignoring Dissipation: Minimum Required Field Strengths 
How small can \B \ become before the critical wavelength is so small that dissipational processes are important? To answer this, 

we consider a generalized diffusion coefficient x (cm2 s“1). On dimensional grounds, the condition that damping be unimportant 
will typically be//c2/Q 1. Setting /c2 = 3íl2/v¿z, its critical value in a Keplerian disk, we may write the restriction as 

3Q*/i 

Consider first the effects of finite resistivity. Then x is given in cgs units by 

5.1 x 1012 /in A\ 
X - T3/2 10 / ’ 

(2.24) 

(2.25) 

where In A is the usual Coulomb logarithm (Spitzer 1962). In this case, the condition (2.24) may be expressed as a restriction of the 
plasma ß = 8npc2/B2 : 

/? « 1.6 x ( (2 26) 

where 7^ is the disk temperature in units of 104 K, Ri2 is the disk radius in units of 1012 cm, and M/M0 is the central mass in solar 
units. We have assumed a Keplerian value for Q. Clearly there is room to consider quite weak fields before finite resistivity effects are 
important in any astrophysical disk system. 

As another example, we consider thermal conductivity. (Both the wavenumber k and the effective conduction are coupled to the 
direction along the field line.) The equivalent diffusion coefficient x is of order kT/P, where k is the Spitzer (1962) conductivity, given 
in cgs units by 

k = 1.84 x IO"6 T5/2. (2.27) 

In this case, it is more convenient to directly calculate a lower limit to the magnetic field, since this quantity is independent of the 
disk density. Using the restriction (2.24), we find 

/ M V/4 ( 10 V/2 

« P-*» 

This represents a very small field indeed for most applications (see e.g., Blandford 1989). 

2.8. Isothermal Thin Keplerian Disk 
As a specific example, let us consider a thin, isothermal, Keplerian disk. The equations of vertical hydrostatic equilibrium is (e.g., 

Pringle 1981) 

7 d\np 
c ~dT 

GMz 
R3 = — Q2z , (2.29) 

where G is the gravitational constant and M is the central mass. Since c is assumed to be constant, 

p = p(R) exp ( —z2Q2/2c2) = p(R) exp ( — z2/H2), (2.30) 

which defines the scale height H. At z = H it follows from equations (2.8) and (2.29) that N2 = 0.8Q2. With the Keplerian law 
/c2 = Q2 and Nr rather arbitrarily set to 0.0UV2, the unstable root of the dispersion relation (2.9) is pictured in the three-dimensional 
plot shown in Figure la. We have made use of the natural scaling for this problem, with each grid mark corresponding to 0.1 
wavenumber units, &/vAz. For clarity, — co2 is plotted, so instabilities appear as upward projections. By way of contrast, we show in 
Figure lb the dispersion relation for a disk with k2 = 5Q2, corresponding to an outwardly increasing shear. In Figure 1c a cross 
section through the maximum of œ2 is plotted. The largest growth rates are approximately 0.75Q. This implies a millionfold 
increase in amplitudes in less than three rotation periods ! 

It is of interest to relate the ratio kcr-J2H (the critical wavelength over disk thickness) to the magnetic field strength. For a thin 
isothermal Keplerian disk we have 

VAz _ V6 ^crit 
c - n 2H 9 (2.31) 
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Fig. la Fig. lb 

Fig. 1.—(a) Three-dimensional plot of the unstable branch of the dispersion relation (2.9). Relative values of —co2 are plotted in the kRkz plane for a thin 
isothermal Keplerian disk, with Brunt-Väisälä frequencies N2 = 0.8Í)2 and iVj = 0.008Q2. Wavenumber values extend from —2 to 1.9 in units ofQ/vAz. Grid marks 
are 0.1 units apart. The mounds represent regions of instability, (b) Same as Fig. la, but with an epicyclic frequency taken to be 5Q2 to produce an increasing outward 
angular velocity curve. The disk is clearly stable, (c) Plot of œ2 through the region of maximum instability corresponding to kR = 0. 
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222 BALBUS & HAWLEY 

or in terms of an effective plasma/? = Snpc2/B^, 

(132) 

We thus expect the instability to cease if the value of ß drops below ~ 3. 

3. CONCLUSIONS 

We have shown that weakly magnetized accretion disks are subject to a powerful, axisymmetric shearing instability. The stability 
criteria (2.13) and (2.15) apply to any differentially rotating system with Q = The dispersion relation (2.9) indicates that the 
most rapidly growing wavenumbers in a thin disk have growth rates of about 0.75Q. This is very rapid indeed—a factor of 106 in less 
than three rotation periods. The growth rate is independent of the strength of the magnetic field, perhaps the most startling finding 
of this work. If this instability is as robust as it appears to be, its importance lies in the generality of its applicability as well as its 
strength. The criterion for instability is simply a decreasing outward angular velocity law and the presence of a weak poloidal field 
component. Small-scale structure in a weak field does not seem to suppress the instability, a point we address in Paper II. 

The most important consequence of the instability is that the mechanism behind a generic means of transport in accretion disks 
has been elucidated. The underlying cause of turbulent structure in accretion disks stems from the tendency of a weak magnetic field 
to try to enforce corotation on displaced fluid elements, a behavior which results in excess centrifugal force at larger radii, and a 
deficiency at smaller radii. When restoring forces are not able to compensate, displaced fluid elements are driven away from their 
equilibrium positions, leading to substantial angular momentum transport. 

In this paper, we have not addressed the nature of nonaxisymmetric disturbances, nor have we gone beyond linear theory. The 
former clearly must be addressed before one can be certain about the presence of self-sustaining dynamo activity. As regards the 
latter, paper II of this series presents some nonlinear two-dimensional results in some simple disk representations. But largely 
because the instability is so powerful and produces large radial displacements, it has not been possible to run the simulations long 
enough to see saturation effects. Thus the ultimate nonlinear resolution of the instability is presently a topic for speculation. We see 
two categories of outcomes. 

The first possibility is that the magnetic field will be built up to the point where the minimum critical wavelength exceeds the disk 
scale height. This occurs when the Alfvén and sound speeds are comparable, and leaves the magnetic field in a dynamically 
important and active state, but no longer prone to the shearing instability. The second possibility is that reconnection dissipates the 
growing field as structure cascades to ever smaller scales. The field never gets so large as to shut the instability off, but instead 
maintains a growth rate that counterbalances the dissipation at the smallest scales. This is of course the classical description of a 
turbulent cascade. In either case, a simple laminar disk is not a possibility. On the other hand, in both cases one would expect that 
the coherence length relevant to disk transport will be set by magnetically regulated turbulence, leading to the sort of picture put 
forward long ago by Shakura & Sunyaev (1973). 

It is a pleasure to acknowledge the advice and encouragement of J. Binney, R. Blandford, J. Goodman, J. Pringle, and F. Shu. This 
research was supported by NSF grants AST 88-20293 and PHY 88-02747, and NASA grants NAGW-1510 and NAGW-764. 
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ABSTRACT 
We consider the dynamical evolution of an accretion disk undergoing Keplerian shear flow in the presence 

of a weak magnetic field. A linear perturbation analysis presented in a companion paper shows that such a 
flow is dynamically unstable; here we consider some nonlinear consequences of this instability. We solve the 
equations of compressible magnetohydrodynamics using a two-dimensional finite-difference code. The 
Keplerian disk is threaded with a weak magnetic field that has a magnetic energy density much less than the 
thermal pressure. When perturbations are small, the numerical results are consistent with linear perturbation 
theory. We demonstrate the scaling relation between the instability’s wavenumber and the Alfvén velocity that 
was found in the companion paper, and confirm that the maximum growth rate is independent of magnetic 
field strength. Neither compressibility nor the presence of toroidal field have a significant effect on the evolu- 
tion of unstable modes. The most important dynamic effect is the redistribution of angular momentum leading 
to a strong interchange instability. The resulting radial motions produce field geometries that are conducive to 
reconnection, suggesting a possible mechanism for mode saturation. Even for very weak fields, whose most 
unstable wavelengths are small, nonlinear evolution results in the growth of structure on large scales. Total 
magnetic field energy increases by about one order of magnitude over the course of the simulations. 
Subject headings: hydromagnetics — instabilities — stars: accretion 

1. INTRODUCTION 
In paper I (Balbus & Hawley 1991) we present a linear sta- 

bility analysis for an accretion disk with magnetic field. We 
obtain the remarkable result that the presence of weak mag- 
netic fields leads to a powerful local shearing instability. This 
result suggests that the full magnetohydrodynamic (MHD) 
equations must be solved when studying accretion disks, even 
for field strengths traditionally considered to be negligible. It 
has long been thought that a weak field will grow by shearing 
in an accretion disk, and that moderate strength fields can 
transfer angular momentum between fluid elements, possibly 
serving as a viscosity. It is clear that strong fields, with an 
energy density on order the thermal energy density, can signifi- 
cantly affect the disk, notably through magnetic buoyancy 
instabilities. However it now appears that field-disk inter- 
actions are dominated by a dynamical instability that inevita- 
bly results in exponentially growing magnetic fields and rapid 
angular momentum transfer. While idealized unmagnetized 
disks are extremely stable, astrophysical disks must be violent- 
ly unstable, and the Rayleigh stability criterion is largely irrele- 
vant. The existence of this instability is strong evidence for the 
oft-made assumption that accretion disks are turbulent. 

In this paper we extend the linear analysis of paper I by 
carrying out numerical MHD simulations. Our goals are 
twofold. First, we wish to make the physical nature of the 
instability more palpable. Second, we seek some understanding 
of the nonlinear consequences of this instability through 
extended numerical stimulation. While there have been some 
recent MHD simulations of accretion disks, these have not 
explored the region of parameter space where this instability is 
operative. For example, the Parker instability has been studied 
by Matsumoto et al (1990), but the initial magnetic energy 
density was on order of the thermal energy density, and—more 

significantly—angular momentum was neglected. Shibata & 
Uchida (1989) and Norman & Stone (1990) have simulated 
magnetically driven winds from disks, but in these studies the 
initial disk was not in equilibrium (it was sub-Keplerian), and 
was threaded with a strong magnetic field with an energy 
density in excess of the thermal energy density. Studies such as 
these have shown some dynamical effects of strong magnetic 
fields in accretion disks. However, as we have emphasized, 
weak magnetic fields are themselves of great importance and 
cannot be neglected. 

In this work we concentrate on a simple section of a 
Keplerian disk threaded by a vertical magnetic field. The 
details of this model are described in § 2.1. The relation 
between the present work and the results of paper I is made 
explicit in § 2.2. The numerical techniques and diagnostics are 
outlined in § 2.3, and the results of the simulations are present- 
ed in § 3. These include a systematic investigation of the conse- 
quences of various initial field strengths, plus specific tests of 
other physical effects such as the effects of compressibility and 
a nonzero initial toroidal field. We present our conclusions in 
§4. 

2. PROBLEM CONFIGURATION AND NUMERICAL TECHNIQUE 

2.1. The Initial Model 
Since our aim in this paper is to provide a clear elucidation 

of the basic physics of the magnetic instability, we choose a 
particularly simple initial state. We consider a small region 
within a Keplerian flow in cylindrical coordinates, effectively 
reducing the accretion disk to a Keplerian cylindrical Couette 
flow. The grid is centered on R and extends in radius from 
R — a to R + a with a vertical thickness of a. We assume 
purely radial gravitational and centrifugal forces; there are no 
vertical pressure or density gradients. The assumption of 
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Keplerian flow means that gravitational and centrifugal forces 
are initially in radial balance. The angular velocity Q is the 
Keplerian value at R. Pressure and density are taken to be 
constant throughout the box. Most, but not all of the simula- 
tions use an ideal gas equation of state with y = 5/3. For sim- 
plicity, we use periodic boundary conditions on z and reflecting 
boundary conditions on the radial walls of the box. 

These initial conditions are an acceptable representation of 
an accretion disk so long as the numerical grid is a small region 
centered about the disk’s midplane. Self-consistency requires 
the grid scale a to be much less than R, the radial distance from 
the central gravitating mass, and H, the vertical scale-height of 
the disk at R. For comparison, an isothermal Keplerian disk 
has a vertical scale-height that is related to the sound speed c 
and the angular velocity Q by 

H2 - 2c2/Q2 . (2.1) 

The physics of this ideal MHD simulation is scale-free. In the 
absence of forces in the z direction, the physically important 
length and time scales are set by Q, the periodicity length in the 
z direction, here chosen to be equal to a, and the poloidal 
Alfvén speed vA. The essential parameters are the ratios c/Q 
and vJQ. For convenience we set GM = 1 and center the grid 
at Æ = 100; this makes the Keplerian angular velocity at that 
point equal to 10 "3. Again for convenience we take p = 1, and 
choose the gas pressure P = 10“5. Thus the ratio of the iso- 
thermal sound speed to the angular velocity at Æ is 10, giving a 
scale-height H ~ 14. For the simulation domain we choose a 
vertical thickness of a = 1 so that the simulation grid can be 
regarded self-consistently as a small region centered around R 
with a periodicity length in z that is a fraction of H. 

We investigate the evolution of the magnetic instability by 
placing weak magnetic fields onto this hydrodynamically 
stable initial model. For most of the simulations we begin with 
a uniform z-field of finite radial extent, placed in the center of 
the grid. The magnetic field is set by choosing ßz, the ratio of 
gas to poloidal magnetic pressure, 

ßz = 
P 

(B2/Sn) * 
(2.2) 

When desired, we add a uniform toroidal field, similarly 
parameterized by ß^. We have examined several initial field 
configurations. 

2.2. Connection with Linear Theory 
In paper I we show that the instability does not depend 

directly on the field strength, but only on the product of the 
poloidal Alfvén speed vA over the angular velocity times the 
physical wavenumber. It is useful to define a normalized vector 
wavenumber parameter q that makes this explicit, writing 

qi = kivJQ., (2.3) 

where i can be either R or z. 
In the numerical simulations we do not know a priori which 

wavevector k will emerge. The unstable modes that develop 
will be influenced by the grid size, the boundary conditions, 
and the initial field and perturbation. As a guideline, however, 
we can compute growth rates and wavelengths for a variety of 
wavenumbers scaled in terms of the periodicity length of the 
grid. Since we are considering the idealized case of a Keplerian 
distribution of angular velocity in a constant density and pres- 
sure background, the linear perturbation results of paper I can 

be written in a very simple form. The growth rate obtained 
from linear theory, after setting the Brunt-Väisälä frequency to 
zero, is found to be (eq. [2.9] of paper I) 

2Íj   8  
Q2 qz\ [k2/Q2 + (k4/Q4 + 16 q2)1/2] 

where q2 = q* + qi, and the term k is the epicyclic frequency; 
for a Keplerian disk k/Q, = 1. From equation (2.4) we see that 
the shortest unstable wavelength has q2 = 3. By setting this 
critical wavelength equal to the periodicity length in the 
numerical grid, ÀCTii = a = 1, we find that ßz = 266 corre- 
sponds to the maximum field strength for which the instability 
should be present. The mode with wavenumbers qz= l,qR = 0 
has the maximum linear growth rate ( = 0.75Q); this corre- 
sponds to ßz = 800 for a wavelength of a. Note that because we 
have artificially imposed a small scale height a, the instability is 
stabilized at much weaker field strengths than it would be in a 
completely self-consistent disk. For example, in a Keplerian 
disk with scale height if, the instability will be present so long 
as the minimum unstable wavelength is less than the disk 
thickness, a condition which is satisfied for ßz>\. 

2.3 Numerical Technique 
We solve the standard equations of compressible ideal 

MHD (paper I, eq. [2.1]) in cylindrical coordinates through 
the use of finite-diflerence techniques. We assume infinite con- 
ductivity (flux-freezing). The numerical techniques for the 
hydrodynamics are essentially the same as those employed in 
earlier simulations of disk instabilities (Hawley 1990), except 
that we substitute cylindrical coordinates for the pseudo- 
Cartesian coordinates used in that earlier study. The basic 
approach is time-explicit, staggered-mesh, operator-split finite- 
differencing (e.g., Norman & Winkler 1986). Field evolution is 
handled within the framework of the constrained transport 
method (Evans & Hawley 1988). The constrained electro- 
motive forces in the induction equation and the transverse 
J x B forces are constructed using information obtained along 
upwind Alfvén characteristics. The numerical techniques will 
be described in another paper (Norman et al. 1991). These 
MHD techniques have undergone extensive testing on a wide 
variety of problems (Stone et al. 1991). 

The numerical mesh is divided into equally spaced zones in 
R of width AR, and equally spaced zones in z of width Az. 
Several grid resolutions have been used ranging from the 
lowest resolution grid of 64 x 64 zones to the finer meshed 
[R, z) grid of 256 by 128 zones. We use the low resolution grid 
to carry out a survey of various field configurations and 
strengths while computing selected models at higher 
resolution. 

One of the key diagnostics used in these simulations is a 
measure of the power in various Fourier components obtained 
by integrating over the periodic interval in z 

f(R) = 
f 

Br(R, z)eik*zladz , (2.5) 

and then averaging over radius the log of the norm of this 
complex-valued function 

1 

(^out — ^in) 
ln I /1 dr ■ (2.6) 
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TABLE 1 
z-Field Simulations: Random Perturbation 

Model (R, z) Grid ßz Orbits £z = 1 /cz = 2 icz = 3 = 4 kz = S kz = 6 

la  64 x 64 100 2.2 
lb  64 x 64 100 2.9 0.69 0.36 
2a  64 x 64 1000 3.0 0.70 0.23 
2b  256 x 128 1000 3.3 0.61 0.20 
3a  64 x 64 4000 2.7 0.37 0.67 0.63 0.32 
3b  256 x 128 4000 3.5 0.42 0.65 0.59 0.26 
4a  64 x 64 16000 2.8 0.26 0.40 0.55 0.59 0.51 0.57 
4b  256 x 128 16000 3.7 0.20 0.44 0.53 0.63 0.61 0.60 
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The radial average is carried out over the middle quarter of the 
grid. One can then obtain growth rates for various wavenum- 
bers by means of a least-squares fit during the linear growth 
period for comparison with the linear perturbation theory of 
paper I. As a second diagnostic we monitor the total poloidal 
and toroidal magnetic energy densities on the grid as a func- 
tion of time. These are obtained by direct integration over the 
entire domain. 

As a numerical test we have run an unmagnetized, purely 
hydrodynamical simulation using this grid. We perturbed the 
initial disk by altering the angular momentum in a small 
region of circular cross section. As expected, the resulting ring 
executed characteristic epicyclic motion. Not a trace of insta- 
bility was seen. But, as we show below, a very small magnetic 
field makes for a much different story. 

3. SIMULATIONS 

3.1. Instabilities of Weak z-Fields 
We begin with a series of simulations designed to demon- 

strate most clearly the essential physics of the instability. Con- 
sider a pure z-field placed in a narrow region in the center of 
the grid, from R — a/5 to R F a/5. The intention in confining 
the field to a narrow radial band is to isolate the resulting 
dynamic evolution, and minimize the effect of the reflecting 

radial boundaries. As it turns out, this choice of initial field 
configuration has its own set of nonnegligible consequences, 
but these too can be isolated and understood. 

We perturb the initial conditions by varying the specific 
enthalpy by a small, random amount (between ± 1 %) in every 
grid zone. The resulting pressure perturbations create small 
random velocities. This means that all the wavenumbers 
available to the grid (i.e., from In/a down to tt/Az) are excited 
at very low amplitudes. Table 1 lists the results from a series of 
simulations with random initial perturbations, providing the 
model number, the grid resolution, the length of time to which 
the simulation was run, and the growth rate of the averaged 
Fourier component of the radial magnetic field in units of Q for 
the first six z wavenumbers (eq. [2.6]). 

Model la is a relatively strong z-field simulation with ßz = 
100. The minimum unstable wavelength for this field is 2min = 
1.62, larger than the periodicity length a = 1. Thus, there exist 
no unstable z wavelengths on this grid for this field strength. 
This model was run for 2.2 orbits. Figure la is a plot of time- 
dependence of the kz ( = 1cz/2n) = 1 and-^ = 6 Fourier com- 
ponents of the radial magnetic field. The plot shows no growth, 
as expected. 

As a control we increase the grid size by setting a = 3 while 
retaining the same initial field of ßz = 100. The larger physical 
extent of the grid is the only difference between Model lb and 

Fig. 1.—(a) Time-dependence of the kz = kz/2n = 1 and fez = 6 Fourier components of the radial magnetic field in the ßz = 100, a=\ simulation (Model la). This 
model shows no mode growth, (b) Time-dependence of fcz wavenumbers 1 through 6 for the/?z = 100, a = 3 simulation (Model lb). Increasing the periodicity-length 
of the grid over that of Model la allows unstable modes. Wavenumbers 1 and 2 show linear growth; higher wavenumbers are linearly stable. Growth due to 
nonlinear mode coupling begins at 2.2 orbits. 
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Fig. 2.—Time-dependence of kz wavenumbers 1 through 6 for the ßz = 
1000, u = 1 high-resolution simulation (Model 2b). As in Model lb, only 
kz = 1 and 2 are unstable. However, the periodicity-length of the grid is the 
smaller value corresponding to that used in Model la. In Model 2b, the 
instability is enabled by decreasing the magnetic field strength. 

Model la. In Model lb, both the'fc, = 1 and^z = 2 Fourier 
components are growing; higher wavenumbers are not (see 
Fig. lb). The growth rates are given in Table 1. Two things are 
apparent from the comparison with linear theory. First, the 

"£z = 1 growth rate is slightly smaller than the value obtained 
from linear theory for a gz = 1, ifa = 0 mode of wavelength 
a = 3. Because we have a rather restricted radial grid, it is not 
possible to have modes with qR = 0, so it is not surprising that 
the growth rate should be less than the maximum pure z value. 
Second, a pure^z = 2 mode should be stable according to the 
linear analysis of paper I. As discussed in § 3.2 below, the 
observed growth in the % = 2 mode is due to the choice for 
initial magnetic field configuration. 

In Model 2 the amplitude of the magnetic field is decreased 
to ßz = 1000. For this field strength the minium unstable wave- 
length is 0.513. Figure 2 is the plot showing BR Fourier mode 
amplitudes as a function of time for the high-resolution run 
(model 2b). The growth rate for the^z = 1 mode is 0.61. The 
1cz = 2 mode has a growth rate of 0.19 for the first two orbits 
and then a growth rate of 1.26 after. This latter growth rate, 
equal to twice that of the %= 1 mode, represents nonlinear 
mode coupling. Distinct nonlinear effects become apparent 
after six^z = 1 ^-folding times. All the higher wavenumbers are 
linearly stable, although they too grow from nonlinear coup- 
ling after only 2.5 orbits. 

Figure 3 consists of plots of the poloidal magnetic field lines, 
angular momentum, and toroidal field at the end of the simula- 
tion. It is immediately apparent that the presence of a weak 
magnetic field leads to a classic interchange instability. There 
are two regions where the angular momentum has been signifi- 
cantly modified. The upper blob has had its angular momen- 
tum reduced and it is moving inward (to the left) while the 
lower blob has had its angular momentum increased, resulting 
in an outward motion. Where the poloidal magnetic field has 
been stretched out radially, a toroidal field is generated. For 
these model parameters, the instability continues to grow until 
the field lines encounter the radial grid boundaries. 

The total poloidal field energy is obtained by integrating 
over the numerical grid. At the beginning of the simulation this 

is equal to 4 x 10 ~9. (Note that initially the total thermal 
energy Ethcrmal = 2 x 10 "5, and the field energy is smaller than 
ßz times this value because the field initially occupies only a 
portion of the grid.) The poloidal field energy increases by a 
factor of 5 (to 2 x 10-8) between orbits 2.8 and 3.3. Field 
energy generation proceeds during the linear growth phase 
through amplification of the perturbed field, and this becomes 
significant compared to the initial field energy only after large- 
scale motions in the fluid begin. For this model, the energy in 
the toroidal field is initially zero. The initial perturbations gen- 
erate a small component giving a total energy density 
~10-15 after one orbit. In the remaining 2.3 orbits of the 
simulation the total toroidal field energy grows to 2 x 10~8. 
Thus, although the field strength has grown due to the insta- 
bility, its total energy remains well below the thermal energy. 
Nevertheless, dramatic readjustment in the structure of the 
disk is occurring due to the transfer of angular momentum 
between fluid elements. 

The next two models are designed to investigate the effects of 
decreasing the strength of the magnetic field while holding the 
grid scales constant. As the magnetic field weakens the most 
unstable wavelengths decrease proportionally. For example, 
by increasing ßz to 4000 (Model 3) we reduce the minimum 
unstable wavelength by a factor of 2, 2min = 0.25, and the 
fastest growing wavelength is reduced to 0.45. Model 4 with 
ßz = 16000 decreases these wavelengths by a further factor of 2. 

Figure 4 shows the Fourier amplitudes as a function of time 
for Model 3b, the high-resolution, ßz = 4000 simulation. The 
fastest growing wavenumbers are"fcz = 2 and 3;"£z = 5 and 6 
are stable. The evolution becomes nonlinear at orbit 2, after 
which all modes grow at a very rapid rate. The longest wave- 
length model, ^ = 1, is unstable with a growth rate of 0.42Q, 
reduced from the value in Model 3. Nonlinear mode coupling 
comes into play after two orbits, after which the growth rate in 
the-^ = 1 mode increases to 1.32Q. 

In Figure 5 we plot the poloidal field lines, the toroidal field, 
and the angular momentum at orbit 3.3. As with Model 2, the 
instability produces regions of high and low angular momen- 
tum that are moving radially through the grid. As they do so, 
the poloidal field lines are stretched out. A further consequence 
can be seen in Figure 5; X-points form in the field. Although 
there is no explicit finite conductivity in the numerical code, 
the field can numerically reconnect when there is oppositely 
directed field within one grid zone. This is occurring here. The 
resulting field loops surround regions of reduced (or increased) 
angular momentum. The minimum and maximum values of 
angular momentum present on the grid at this time correspond 
to Kepler orbits at Æ = 97 and 103; recall that the grids runs 
from R = 99 to 101. 

Figure 6 shows the averaged Fourier amplitudes as a func- 
tion of time for Model 4b, the high-resolution, ßz = 16,000 
simulation. The slowest growing wavenumber is “£z = 1 ; the 
higher wavenumbers listed in Table 1 are all unstable with 
rapid growth rates. After two orbits, the long wavelength^ = 
1 mode grows much more rapidly due to nonlinear coupling. 
This is a point worth reemphasizing : although the wavelength 
of the most rapidly growing mode decreases with field strength, 
the long wavelengths remain unstable, albeit with lower 
growth rates. Furthermore, as seen in this simulation, nonlin- 
ear effects transfer power from short to long wavelengths as 
well as from long to short. Hence, even very weak fields, whose 
most unstable wavelengths are quite small, can create large- 
scale effects in the disk. 
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Fig. 3a 

Fig. 3b 

Fig. 3c 

Fig. 3. Contour plots of (a) the initial poloidal magnetic field lines, and (b) the poloidal magnetic field lines, (c) toroidal field, and (d) angular momentum at 3.3 
orbits in the ß2 = 1000, a = 1 high-resolution simulation (Model 2b). There are 20 linearly spaced contours. The angular momentum values run from 9.91 to 10.08; 
the Keplerian value of the angular momentum at the center of the grid is 10. The toroidal field has a maximum energy density of 2 x 10 ~ 7. 
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Orbits 
Fig. 4.—Time-dependence of kz wavenumbers 1 through 6 for the ßz = 

4000, a = 1 high-resolution simulation (Model 3b). The curves are labeled by 
their wavenumbers. Decreasing the field strength by a factor of 2 has made 
wavenumber 1 through 4 unstable; fcz = 5 and 6 stable. Each curve is labeled 
by number. 

Figure 7 shows the results of the instability at 3.2 orbits. The 
fastest growing pure z wavelength would be 0.222. On the 
simulation grid that wavelength is closest toHz = 4, and this is 
reflected in the number of large spikes and bubbles that have 
formed. The fastest growing wavelengths dominate through 
the course of the linear evolution and into the nonlinear phase. 
The angular momentum in the bubbles has a minimum value 
of 9.913, corresponding to a Kepler orbit RKep = 98, and a 
maximum of 10.09 corresponding to RKcp = 102. Note that 
these extreme specific angular momentum values are functions 
only of the mode growth time, not of the strength of the mag- 
netic field. The size of the bubbles depends on the wavelength 
of the unstable mode, but the specific angular momentum 
within that bubble, and hence the radius of its new Keplerian 
orbit, does not. The exchange of angular momentum between 
fluid elements will continue until some nonlinear effect ends it. 
One such effect is reconnection. As the simulations demon- 
strate, the radial fluid motions quickly lead to field configu- 
rations that favor such reconnection. 

The random perturbations create an initial toroidal field 
with a total energy density of 3 x 10 ~16. By the end of the 
simulation this has grown to 6 x 10 "9. The poloidal field 
begins with total energy 3 x 10-10 and peaks at 1.4 x 10-8 by 
orbit 3.2. The field energy then drops because of (numerical) 
field reconnection. The bubbles become isolated field loops 
and the field that defined the spikes leading to the bubbles 
becomes a length of (mostly) z-field near the center of the grid. 
At this location the angular velocity has become nearly con- 
stant with radius. Such a local angular velocity distribution 
can be sustained only because the grid’s radial reflecting 
boundaries permit compensating pressure gradients. 

Together, Models, 2, 3, and 4 provide a numerical demon- 
stration of the scaling relation between mode growth and the 
parameter q: the growth rates of the unstable modes are inde- 
pendent of the field strength alone, depending only on the 
product of wavenumber and Alfvén speed over angular veloc- 
ity. The data in Table 1 are summarized in Figure 8 where we 
plot growth rates as a function of qz. Also plotted are the linear 
growth rate curves corresponding to several radial wavenum- 

bers. The spread in values at a given wavenumber qz provides 
an estimate of the numerical error-bars associated with both 
the simulation and the procedure used to obtain a growth rate. 
It is clear that the radial wavenumbers are not zero. In fact the 
modes represented here are radial averages, and must contain 
power from several modes of various permissible radial wave- 
numbers. The anomalous growth at qz = 1.78 is discussed in 
the next section. 

3.2. The Critical Wavelength 
One obvious inconsistency between the linear stability 

results and the numerical simulations listed in Table 1 and 
plotted in Figure 8, is the observed growth for the wavenumber 
qz = 1.78. This wavenumber is greater than the critical wave- 
number qCTii = ^3, but in both Models 2 and 4 this mode is 
clearly unstable, albeit with a slow growth rate. In this section 
we describe experiments that investigate this phenomenon. 

The first question to ask is, could this be a numerical effect? 
After all, in Model 2a the difference between the critical wave- 
length and the wavelength of the^z = 2 mode, À = 0.5, is less 
than Az, and the higher resolution simulations in both Model 2 
and Model 3 have lower growth rates than the low resolution 
case. However, there is no good indication that this mode 
growth is simply numerical, given the range of resolutions and 
wavelengths tested. As one additional test of the “ numerical ” 
hypothesis we compute a 64 x 64 grid model with ßz = 250. 
For this magnetic field strength, the wavelength in question 
corresponds to the periodicity length of the grid, i.e.,1£z = 1. 
The results indicate that the mode grows with a rate 0.30Q. 

We consider next a physical, rather than numerical, cause. 
From paper I we know that the instability is due to the inabil- 
ity of stabilizing magnetic tension to overcome the destabi- 
lizing centrifugal force in a displacement. Any additional forces 
can either be stabilizing or destabilizing. In the set of simula- 
tions listed in Table 1 we consider an isolated region of mag- 
netic field at the center of the grid. This means there will be a 
small magnetic pressure force directed outward from this 
region. The hypothesis is that this pressure acts as an addi- 
tional destabilizing force and accounts for the observed 
growth. To test this idea, we use a new set of initial conditions 
with a uniform z-field throughout the grid. This will eliminate 
the magnetic pressure gradients due to the initial poloidal field. 
We run simulations on the 64 x 64 grid for ßz = 250, 1000, 
4000, and 16000. We apply the same initial random enthalpy 
perturbation as were used in the simulations of Table 1. The 
resulting growth rates are listed in Table 2. For these simula- 
tions, no linear mode growth occurs for the qz = 1.78 wave- 
lengths. This result is consistent with our hypothesis; the 
additional background magnetic pressure gradient, present 
because of our initial conditions, acts to destabilize wave- 
lengths near the critical value. The comparison between these 
two sets of simulations provides a satisfying demonstration of 
the balance of forces that is responsible for the critical wave- 
length. 

3.3 Effect of Compressibility 
The linear perturbation analysis of paper I was derived using 

the Boussinesq approximation, appropriate to an analysis of 
noncompressive waves. However, since the numerical code 
solves the fully compressible MHD equations, it is possible to 
investigate the effects of compressibility on the instability. To 
do this we repeat Model 2a for two different equations of state, 
y = 2 and y = 4/3. For all three equation-of-state gammas, the 
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Fig. 5b 

Fig. 5.—Contour plots of (a) the poloidal magnetic field lines, {b) toroidal field, and (c) angular momentum at 3.3 orbits in the ß2 = 4000, a = 1 high-resolution 
simulation (Model 3b). There are 20 linearly spaced contours. The angular momentum values run from 9.86 to 10.14; the Keplerian value of the angular momentum 
at the center of the grid is 10. The toroidal field has a maximum energy density of 2 x 10~ 7. At this time the z-length scale of the most prominent structures has been 
determined primarily by the wavelength of the fastest growing mode, fcz = 2. 

evolution of the instability is essentially the same, as are the 
derived growth rates for the unstable modes. We conclude that, 
as anticipated, the instability is not altered by compressibility, 
nor by the choice of equation of state, although, as demon- 
strated by the experiments of § 3.2, pressure forces can play a 
role in determining the critical wavelength for the onset of the 
instability. 

3.4 Effect of Toroidal Field 
So far, all the numerical models have assumed zero initial 

toroidal field. The linear analysis shows that the instability and 

its growth rates are independent of toroidal field strength if the 
Boussinesq approximation holds. This will be the case so long 
as the toroidal field energy density is less than the thermal 
energy density, ^ > 1. As a check, we do a simulation using 
the parameters of Model 2a, and add a relatively strong, con- 
stant toroidal field with ^ = 10. (A toroidal field that is much 
stronger would be interesting in its own right, as it would be 
prone to buoyancy instabilities in a vertically stratified accre- 
tion disk.) The instability proceeds as before with the same 
growth rates. The main difference is that the random pertur- 
bations work with the strong toroidal field to produce larger 
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Fig. 6.—Time-dependence of kz wavenumbers 1 through 6 for the ßz = 
16000, a = l high-resolution simulation (Model 4b). All wavenumbers 1 
through 6 are now unstable. The individual curves are indicated by number. 

initial poloidal field perturbations. These larger initial pertur- 
bations mean that instability reaches nonlinear saturation 
sooner than in the otherwise equivalent Model 2a. We con- 
clude that the instability can operate effectively even in the 
presence of relatively strong toroidal fields such as those 
expected in an accretion disk. 

3.5. Instabilities in Field Loops 
We have considered the evolution of the magnetic instability 

for initial configurations involving both toroidal and z-fields. 
Another general field topology to consider is the poloidal field 
loop. We observed in the earlier simulations that field loops are 
a likely consequence of the nonlinear evolution of a z-field. 
Further, one expects that field loops would be present ab initio 
in an accretion disk. We are therefore led to consider a vector 
potential of the form 

^ = 2 lnU - Rc)2 + (* - Zc)2 + l] ’ (31) 

for all l(R - Rc)
2 + (z - zc)

2] < r,2
im, and constant otherwise, 

to produce circular field lines centered on (Rc, zc) out to the 
limiting radius, rlim. The parameters /?, rlim, and the constant in 
the denominator can be adjusted as desired. Here we choose 
ß = 1000, and rlim = 1/12, and center the field loops on 
the 256 x 128 grid used in the high resolution simulations of 
Table 1. 

Figure 9 shows the time evolution of the field. The initial 
configuration was randomly perturbed, as before. The final 

frame pictured in Figure 9 for this simulation is at 2.0 orbits. 
After one orbit the field loop begins to stretch out radially. 
Fluid elements have exchanged enough angular momentum to 
bring the loop out of equilibrium with it surroundings. 
Between 1 and 2 orbits the total poloidal field energy increases 
by a factor of 10 from its initial value of 10”10. The toroidal 
field energy is zero initially, although the presence of a radial 
field assures linear toroidal field growth regardless of the effi- 
cacy of the instability. By two orbits the toroidal field energy 
has grown to 3 x 10-8. At two orbits the minimum and 
maximum angular momentum values in the “mushroom caps” 
are 9.94 and 10.06. This simulation demonstrates that loops of 
poloidal field are capable of efficiently transferring angular 
momentum and driving the instability. The radial stretching of 
field loop appears to lead to a field configuration that is con- 
ducive to true dissipative reconnection. 

4. CONCLUSIONS 

Before summarizing our conclusions, we reiterate the 
various experiments done as controls and tests of the numerics. 
Simulations performed without magnetic fields show that the 
disk is hydrodynamically stable; rings that are perturbed by 
altering their specific angular momentum merely execute epi- 
cyclic motion. We have examined both strong and weak field 
configurations, and the same field strength on two grids with 
different periodicity lengths. This procedure tests the scaling 
relation between field strength and wavenumber. During that 
portion of the simulations for which the perturbations are 
small, the results are consistent with the linear perturbation 
theory of paper I. As discussed in § 3.2, when a uniform field is 
used as an initial condition (as opposed to an isolated z-field) 
we observe no growth for wavelengths shorter than the critical 
value obtained from the linear analysis. Both low- and high- 
resolution simulations yield the same qualitative results. In 
addition we have been able to test some of the limits of the 
linear theory. In particular we confirm that neither compress- 
ibility nor toroidal field have a significant effect on the insta- 
bility. 

These simulations begin to explore new territory when the 
unstable mode amplitudes become large. Strong mode-mode 
coupling can be seen in the plots of mode amplitude versus 
time. Both longer and shorter wavelengths can feed off power 
in the fastest growing mode. Although the most unstable wave- 
lengths for very weak fields are quite small, larger wavelengths 
are still unstable, and the nonlinear evolution assures the 
growth of structure on large scales. 

The most important dynamic effect is the redistribution of 
angular momentum. In the simulations we find that significant 
angular momentum is transferred between fluid elements con- 
nected by the magnetic field. This occurs on the length scales of 
the unstable modes. This transfer results in a strong inter- 

TABLE 2 
Uniform z-Field Simulations 

(R, z) Grid ßz kz=\ kz = 2 nz = 3 tcz = 4 kz = 5 k2 = 6 

64 x 64  250 
64 x 64  1000 0.63 
64 x 64   4000 0.47 0.68 0.63 
64 x 64  16000 0.32 0.51 0.55 0.64 0.66 0.54 
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Fig. la 

Fig. lb 

Fig. 7. Contour plots of (u) the poloidal magnetic field lines, (b) toroidal field, and (c) angular momentum at 3.2 orbits in the ß2 = 16000, a = 1 high-resolution 
simulation (Model 4b). There are 20 linearly spaced contours. The angular momentum values run from 9.91 to 10.09. The toroidal field has a maximum energy 
density of 2 x 10“ 7. 

change instability as bubbles of low or high angular momen- 
tum form and find themeselves far out of equilibrium with the 
surrounding gas. In all cases the angular momentum in a 
bubble corresponds to a Kepler orbit at a radius whose dis- 
tance from the initial equilibrium location greatly exceeds the 
linear wavelength of the instability. Comparing simulations 
using field loops with those using pure z-fields indicate that the 
ability to transfer angular momentum is not strongly depen- 
dent on field topology. In addition, we observe that total mag- 
netic field energy increases over the initial value by about one 

order of magnitude during the nonlinear growth. 
How does the mode finally saturate, and how will it operate 

in an actual accretion disk? Because of the limited nature of 
the simulations presented here we can only offer suggestions. 
As discussed in paper I, there seem to be two possibilities: (1) 
the field may grow until the minimum unstable wavelength 
exceeds the thickness of the disk, or (2) reconnection may limit 
the field amplitude, leading to dissipative turbulence. The 
present simulations clearly favor the second possibility. The 
instability operates so vigorously to redistribute angular 
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Fig. 8.—Growth rates as a function of q2 for simulations listed in Table 1. Curves represent values obtained from linear theory forqR = 0., 0.44,0.89, and 1.33. The 
squares correspond to Model 4, the triangles to Model 3, and the circles to Model 2. Filled symbols represent the high-resolution simulations, open symbols 
represent the low. 

momentum that the disk is far from equilibrium long before 
the initial field strength is greatly increased. Furthermore, the 
large radial excursions in the fluid that result from the redistri- 
bution of angular momentum, stretch out the field, providing 
the opportunity for field reconnection to occur. The resulting 
loops of poloidal field can themselves drive the instability. 

Accepting that any arguments must necessarily be crude, if 
we adopt the turbulence picture, what is the functional depen- 
dence of the resulting viscosity? The length scale at which 
reconnection occurs should be roughly proportional to the 
most unstable wavelength, while typical mixing velo- 
cities should be of order this length times Q. This suggests that 

Fig. 9.—Poloidal magnetic field lines at (a) 0.4 orbits, (b) 0.8 orbits, (c) 1.2 orbits, (d) 1.6 orbits, and (e) 2.0 orbits for the evolution of a poloidal field loop. The 
extreme values of angular momentum in the mushroom caps at 2.0 orbits are 9.94 and 10.06, corresponding to Kepler orbits at Ä = 99 and 101. 
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Fig. 9c 

Fig. 9d 

Fig. 9e 

the viscosity should be v ~ i.e., viscosity is a function of 
magnetic pressure. At this point, however, we lack a self- 
consistent picture of what the average magnetic field strength 
in a turbulent disk will be. 

In both this paper and in paper I, we have shown that an 
initially turbulence-free Keplerian disk is dynamically unstable 
in the presence of a weak magnetic field. We feel that this is a 
very promising source of turbulence in accretion disks. In 
future work we will address the role of the instability in more 

complex initial disk models, as well as the important question 
of nonaxisymmetric instabilities. 
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