THE EXPANSION OF THE CRAB NEBULA

M. F. BIETENHOLZ AND P. P. KRONBERG

Department of Astronomy, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S-1A7

D. E. HOGG

National Radio Astronomy Observatory, Edgemont Road, Charlottesville, VA 22901

AND

A. S. WILSON

Astronomy Program, University of Maryland, College Park, MD 20742

Received 1990 December 18; accepted 1991 March 13

ABSTRACT

Using high-resolution radio observations from 1982 and 1987 we have measured the expansion of the synchrotron component of the Crab Nebula, including a measurement of the expansion of the nebula’s outer edge. Our measurements show a rate of expansion similar to that obtained from optical data for the line-emitting filaments. We show that the synchrotron component of the Crab expands homologously and that its rate of expansion has accelerated since the supernova explosion. The data further suggest that the acceleration of the synchrotron component may be larger than that of the emission-line filaments which, if confirmed by future observations, implies that the relativistic gas is currently “bursting through” the net of filaments. The absence of deceleration allows the establishment of stringent upper limits on the density of gas into which the observed nebula is expanding.

Subject headings: interstellar: matter — magnetic fields — nebulae: Crab Nebula — nebulae: supernova remnants — radio sources: general

1. INTRODUCTION

Among the many noteworthy features of the Crab Nebula is the fact that the filaments can be shown to be currently moving faster than their average speed since the supernova explosion in A.D. 1054 (Trimble 1968). In other words they have been accelerated since the supernova event. The observed nebula consists of two main components: the aforementioned filaments, which are dense condensations of thermal gas, and a bubble consisting of a light, relativistic gas and an embedded magnetic field, both of which presumably have their origin in the pulsar. The agents for the post-SN acceleration of the filaments are presumably the magnetic field in the pulsar bubble and the relativistic particles. In this Letter, we report the first measurement of the current expansion rate of this synchrotron-emitting bubble.

Two of us (A. S. W. and D. E. H.) observed the Crab Nebula using the NRAO2 VLA in 1982 in both the 20 and 6 cm bands (see Wilson, Samarasinha, & Hogg 1985, hereafter referred to as WSH). The remaining two of us made similar observations in 1987 (see Bietenholz & Kronberg 1990, hereafter Paper I; Bietenholz 1990), using four frequencies, two each in the 20 cm (1410 and 1515 MHz) and 6 cm (4625 and 4885 MHz) bands. Both sets of observations used all four configurations of the VLA in the 20 cm band and the B, C, and D configurations in the 6 cm band. One of us (M. F. B.) has reduced and self-calibrated all the VLA data in a consistent way (as described in Bietenholz 1990 and Paper I). The raw images were cleaned using maximum entropy deconvolution to obtain images with a restored beam size of 1.8 × 2.0′. The final images had peak fluxes of 0.11 and 0.09 Jy beam−1 with noise levels of 0.2 and 0.3 mJy beam−1 at 1.5 and 5 GHz, respectively, except for the epoch 1982 image at 1.5 GHz which had a noise level of 0.4 mJy beam−1 (for further details, see Bietenholz 1990).

2. DETERMINING THE EXPANSION OF THE CRAB NEBULA

The Crab Nebula is expanding at roughly 1500 km s−1, or 0.15 per year at 2 kpc. This implies an angular change of about 1″, or about ½ resolution element over the interval between our two sets of observations. While it is difficult to determine the motion of individual features, especially in the faint exterior regions, an averaging over many features should provide a precise expansion of the nebula from the radio data since the area covered by the nebula represents about 2.5 × 10⁴ beam areas.

Previous determinations of the proper motions of different parts of the nebula (e.g., Trimble 1968) relied exclusively on the measurements of compact line-emitting optical filaments. Because the edge of the synchrotron nebula is more sharply defined in the radio than in the optical, our data allow a determination of the motion of the outer edge of the nebula, which also allows a determination of the expansion outside the region occupied by the filaments used in earlier proper motion studies.

At this point, we note that the optimal approach to determining the expansion from interferometric radio data might initially seem to be an analysis of the original Fourier transform plane (u-v) data and not the cleaned images. However, the two sets of u-v data consist of unevenly spaced samplings of the u-v plane, and interpolation would be required to compare them. The cleaning process uses information about physically plausible images to perform this interpolation—and thus is superior to a straightforward interpolation in the u-v plane.
The Crab shows relatively little radio structure on the smallest spatial scales (see WSH; Bietenholz & Kronberg 1991, hereafter Paper II). Furthermore the outermost intensity contours of the radio image are relatively smooth. Because of this lack of compact, discrete features, we chose to measure the expansion by determining the scaling parameters which make the image at the first epoch "look like" the image at the second epoch. Let the first image be \(X(x, y) \) and the second image be \(Y(x, y) \). Now let

\[
X'(x, y) = AX(ex + x_0, ey + y_0 + b).
\]

Here, \((A, b, e, x_0, y_0)\) represent the parameters of the transformation used to make image \(X \) "look like" image \(Y \). \(A \) and \(b \) are the flux scaling and offsets, \(e \) is the expansion factor, and \((x_0, y_0)\) are the translation. We want to determine the parameter \(e \), but because of the uncertain flux calibration and the positional offsets that can be caused by self-calibration, we also determine the parameters \((A, b, x_0, y_0)\). An obvious way to estimate these five parameters is to minimize the sum of the squared differences between \(X' \) and \(Y \). However, if noise is present in both \(X \) (and hence \(X' \)) and \(Y \), this method produces biased estimates, especially of \(A \).

Tan & Gull (1985) have developed a maximum entropy method of minimizing the differences between the two images, which produces unbiased estimates of the parameters. They fit a template \(F(x, y) \) to the data, as well as fitting the other parameters. The template represents the best estimate of the true image flux, and Tan & Gull's method simultaneously minimizes the sum of the squared differences both between \(X' \) and \(F \) and between \(Y \) and \(F \). We used the program IMDIFF, coded in R. Sault's WERONG set of programs, to perform this optimization of the parameters \((A, b, e, x_0, y_0)\) defined above.

The largest source of uncertainty in the expansion rate derived from our measurements will be the uncertainty in the epoch of the observations, since both the 1982 and 1987 measurements involved observations taken at several array configurations spaced over about one year. Unfortunately, the sequence of array configurations in 1981–1982 was different from that of 1987–1988, so that it is not simply a question of having two largely similar data sets each spaced over a year.

The obvious possibilities for weighting the \(u-v \) data to determine a representative epoch for the resulting image are (1) uniform weight, (2) weighting by flux, or (3) an assignment of higher weights to data at higher spatial frequencies (since the amount of expansion is small, and thus best resolved only on the longest baselines). If the emission consisted mostly of clearly distinguished, individual, compact features, then possibility (3) would be the optimum weighting for determining their motion. However, this is not the case (WSH; Paper I); it seems likely that the compact features are not what determine the overall expansion as calculated by IMDIFF. To determine the proper weighting, then, it is necessary to examine the effects of the expansion in the \(u-v \) plane.

This was done as follows: One of the later images (4885 MHz, 1987) was homologously contracted ("shrunk") by interpolation. This contracted image was subtracted from the original one (with the fluxes scaled so that the residuals would have a mean of zero). The resulting difference image was Fourier transformed, and the amplitude of this transformed image is the magnitude of the change in the \(u-v \) plane caused by the contraction. The image is circular to within 50%, and a plot of the radial dependence of the amplitude \((V_R)\) in the \(u-v \) domain is shown in Figure 1. At the center of the \(u-v \) plane \((k = 0, k \) being the \(u-v \) distance from the phase center) the amplitude is zero, which it must be because the residuals have a mean flux of zero. The approximate scaling is \(V_R \propto 1/k \) for \(k > 1 K \lambda \) (which corresponds approximately to the overall size of the Crab nebula).

In consequence, the weighting \((\mathcal{w})\) that was used was the following:

\[
\mathcal{w}(k) \propto \begin{cases}
 k^{-2} & \text{for } k > 1, \\
 k^2 & \text{for } k < 1
\end{cases}
\]

The effect is to weight most strongly the spatial scales close to the overall size of the nebula, as is desirable for a measurement of its global expansion. The weighting was chosen to go to zero in the center of the \(u-v \) plane to reflect the fact that the amplitude scaling and offset are free parameters, so the points near \(k = 0 \) should have little effect on the determination of the expansion parameter, \(e \). Table 1 presents the intervals in Julian days between the two sets of observations as determined by using various weights. The internal variances in these intervals are negligible compared to the overall difference between the various weighting schemes.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>THE EFFECTIVE INTERVALS BETWEEN THE OBSERVATIONS, IN DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATIONS</td>
<td>1.5 GHz</td>
</tr>
<tr>
<td>Uniform</td>
<td>1988</td>
</tr>
<tr>
<td>Flux</td>
<td>1865</td>
</tr>
<tr>
<td>(\mathcal{w}(k))</td>
<td>1911</td>
</tr>
</tbody>
</table>
3. THE EXPANSION OF THE SYNCHROTRON COMPONENT

We determined expansion parameters, e, from the 1987 to the 1982 observations (i.e., e is less than 1). The expansion age is simply $\Delta t/(1 - e)$ where Δt is the interval between the two sets of observations. The Δt values are those obtained by using the weighting $W(k)$ defined in equation (2) above (see also Table 1). We determined e separately for the whole nebula and for the outside edge. The area included in the edge calculations is shown in Figure 2. The edge region was chosen to exclude the very edge (low signal-to-noise ratio) and most of the filamentary emission. The same region was used for all images.

To reduce biases, the IMDIFF program was run in both directions, that is from the 1982 data to the 1987 data and vice versa (the latter determining $1/e$). The two values obtained for e typically agreed to less than 0.0003, and we use the average of the two determinations of e below. The resulting values for the expansion factor, e, are shown in Table 2.

The expansion ages obtained, which are with reference to 1987.4, give a convergence date of a.d. 1233 for the whole nebula and a.d. 1257 for the outer edge. This is somewhat later than the dates of a.d. 1120 ± 7 and a.d. 1140 obtained by Wyckoff & Murray (1977) and Trimble (1968), respectively. It is difficult to determine the uncertainty in our observations. The standard deviations (over four frequencies) quoted in Table 2 are likely lower limits. However, the uncertainty in the result for the outer edge should be larger than that for the whole nebula result (fewer pixels and lower signal-to-noise ratio in the former), so we will take the larger of the two deviations (±92 yr) to represent the true uncertainty. Our results are then within 1.2 and 1.5 σ, respectively.

A fit allowing differential expansion in two orthogonal directions was made, one along the major axis (P.A. = 131°) and one at right angles to this. No significant difference was found. Trimble also (1968) did not find any significant difference in the expansion factors for the optical filaments along the major and minor axes. Thus, both the radio and the optical measurements show that the expansion of the nebula seems to be homologous.

4. DISCUSSION

We find that the expansion of the pulsar bubble must have been accelerated since the supernova event. The amount of post-SN acceleration seems to be slightly larger than that observed for the line-emitting filaments by Trimble (1968; see also Wyckoff & Murray 1977). We emphasize that the previous results applied only to the (line-emitting) filamentary material, whereas our results apply to the more smoothly distributed (synchrotron-emitting) material, and to a larger volume. While our uncertainties are larger than those obtained by Trimble and Wyckoff & Murray, our data still clearly show that post-SN acceleration must have taken place. We note that there is no evidence of compact features moving more rapidly through the diffuse material, as is observed in Cassiopeia A (Braun, Gull, & Perley 1987). Also, there is no difference in the convergence dates between the major and the minor axis directions of the nebula. To the accuracy of the observations, the expansion of the Crab is homologous. Furthermore, the outside edge of the nebula has also undergone post-SN acceleration.

In most models of the Crab Nebula (e.g., Rees & Gunn 1974; Kundt & Krotschek 1980; Kennel & Coroniti 1984; Reynolds & Chevalier 1984) the pulsar emits a wind consisting of relativistic particles, magnetic field, and possibly strong, low-frequency electromagnetic waves. This wind inflates a bubble inside the expanding supernova ejecta, which are assumed to form a continuous shell. The shell of filaments, however, is not complete, as can be seen in optical images (see also Paper II). The coupling mechanism between the filaments and the relativistic gas is unclear. In any case, the relativistic bubble is seen to extend significantly beyond the faintest optical filaments, especially in the northwest quadrant (WSH), so the filaments obviously do not completely contain the relativistic gas.

Our data suggest that the post-SN acceleration of the relativistic bubble may be larger than that of the line-emitting filaments. We think it very unlikely that the tentative difference in convergence dates between the present measurements of the relativistic bubble and the previous measurements of the line-emitting filaments can be ascribed to the different epochs at which they were measured, since a huge acceleration over the last $\simeq 50$ yr would be required to reconcile them. While the greater acceleration of the pulsar bubble is only marginally (1.2−1.5 σ) established in our data, and requires further work.

Table 2

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>WHOLE NEBULA</th>
<th>OUTER EDGE</th>
<th>WHOLE NEBULA</th>
<th>OUTER EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1410</td>
<td>0.99359</td>
<td>0.99289</td>
<td>734</td>
<td>734</td>
</tr>
<tr>
<td>1515</td>
<td>0.99370</td>
<td>0.99297</td>
<td>744</td>
<td>744</td>
</tr>
<tr>
<td>4625</td>
<td>0.99213</td>
<td>0.99289</td>
<td>698</td>
<td>698</td>
</tr>
<tr>
<td>4887</td>
<td>0.99326</td>
<td>0.99333</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>mean</td>
<td>754 ± 92a</td>
<td>730 ± 22a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Expansion factors were calculated from 1987 to 1982 as described in the text.

b Expansion ages are from epoch 1987.4.

c Quoted uncertainties are merely the standard deviations of the ages in the given column.
for confirmation, it is exactly what would be expected if the
relativistic bubble is "bursting through" the filamentary shell.

The relativistic bubble is expected to accelerate under a
range of circumstances (e.g., Chevalier 1984; Tenorio-Tagle,
Bodenheimer, & Franco 1987), and a convergence date of A.D.
1233–1257 for the relativistic bubble (§ 3) would be entirely
consistent with Chevalier's (1977) predicted convergence date
for a pulsar braking index $n = 3.0$ (assumed constant). In our
scenario, the filamentary shell is only partially successful in
confining the bubble.

If the pulsar bubble has, indeed, "burst through" the fila-
mentary shell, then the relativistic fluid must be expanding
directly into the surrounding medium. Our finding that the
relativistic bubble is accelerating implies that deceleration by
the ram or thermal pressure of any surrounding medium is
small, allowing upper limits to its density to be obtained, as
we now demonstrate. The nebula must be expanding into one
of the following three entities: (1) the undisturbed ISM, (2) the
region occupied by the wind of the pre-SN Crab progenitor
star, or (3) the postulated Crab "halo" (see Chevalier 1977),
consisting of the outer, H-rich layers of the progenitor star,
which were ejected in the SN event, but have not so far been
unambiguously detected. The minimum pressure inside the
bubble is several 10^{-9} dyn cm$^{-2}$, which is higher than the
thermal pressure expected from either the ISM or a pre-SN
wind zone. Therefore, if the pulsar bubble is being decelerated
by either of these components, ram pressure would have to
provide the decelerating external force (as suggested by Kundt
1983). The absence of deceleration implies that the density in
the surrounding medium must be less than about 0.05 cm$^{-3}$,
which is not unreasonable given the distance of 180 pc above
the Galactic plane. Because of the small swept-up mass, the
X-ray emission from a shock at the interface would be too faint
to be detectable.

If the bubble is expanding into the H-rich envelope ejected
by the supernova (Chevalier 1977), then the speed of expansion
into this "halo" is only the amount by which the bubble has
been post-SN accelerated, that is, 200 km s$^{-1}$. If 8 M_\odot were
ejected at velocities up to 7000 km s$^{-1}$, the mean density of the
envelope now is 0.3 cm$^{-3}$. The ram pressure at the boundary
between the bubble and the envelope would be 2×10^{-10}
dyn cm$^{-2}$, too low to decelerate the bubble. The thermal
pressure in the envelope would be $4 \times 10^{-10} (T/10^7$ K). A gas
capable of static pressure confinement, however, would be
inconsistent with the upper limit on the amount of X-ray-
emitting gas set by Schattenburg et al. (1980). Furthermore, the
low speed of expansion into the halo would not generate a
shock strong enough to heat the gas to 10^7 K. We conclude
that the decelerating effect of any surrounding envelope ejected
in the supernova explosion is small.

Our conclusion that deceleration effects are small implies
that the bubble is in almost free expansion. The Alfvén velocity
near the outer edge of the bubble must then be on the order of
the 1500 km s$^{-1}$ expansion speed, considerably lower than the
hydromagnetic speeds of 0.1c observed near the center of the
nebula (Scargle 1969). Assuming a field of 2×10^{-4} G, such a
velocity would correspond to a thermal density of 0.08 cm$^{-3}$
near the periphery of the bubble. This value is in accord with
the upper limit of 0.2 cm$^{-3}$ for the thermal density obtained by
Paper II from an analysis of the rotation measure distribution.

This discussion leaves unsettled the question of why the fila-
ments and the synchrotron nebula are roughly in the same
place. The expansion of the synchrotron bubble is largely
determined by the parameters of the pulsar wind and of the
external medium, while the expansion of the line-emitting fila-
ments is largely determined by the supernova explosion (the
post-SN acceleration is only $\approx 8\%$; Trimble 1968). Why are
they largely coincident? This coincidence implies (Wilson 1972)
a considerable, but not complete, coupling between the
filaments and the bubble, and such a coupling is also needed in
order to accelerate the filaments. If this coupling was stronger
in the past, the synchrotron bubble and the filaments would
have expanded together in the early phases of the evolution,
and only relatively recently would the bubble have "burst
through" the filamentary net, which would explain why the
bubble is now almost coincident with, but somewhat larger
than, the line-emitting filaments. This is in agreement with the
scenario presented by Chevalier (1977), who shows that the
growth time of the Rayleigh-Taylor instability in the shell of
line-emitting material is comparable to the present age of the
Crab.

M. F. B. and P. P. K. acknowledge financial support for this
work from the Natural Sciences and Engineering Research
Council of Canada. M. F. B. acknowledges further support from
the University of Toronto and the government of Ontario. A. S. W. thanks the University of Maryland Graduate
School for a Faculty Research Fellowship during the com-
pletion of this work. We thank the Ontario Centre for Large
Scale Computation (OCLSC) for computing support.

REFERENCES

- Bietenholz, M. F. 1990, Ph.D. thesis, University of Toronto
- Chevalier, R. A. 1977, in Supernovae, ed. D. N. Schramm (Dordrecht: Reidel),
- 53

© American Astronomical Society • Provided by the NASA Astrophysics Data System