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Dynamics of flaring loops

I. Thermodynamic decay scaling laws
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Abstract. We derive a simple analytical approximate solution for
the hydrodynamic equations describing the decay of a flaring
loop. We find that, independent of chemical composition of the
plasma, the entropy per particle at the top of the loop undergoes
an initial phase of linear decay, with a slope related to the initial
loop conditions. The characteristic decay time is shorter than
conductive or radiative times for typical solar flare conditions.
We compare our analytical solution with numerical solutions of
the full set of hydrodynamic equations for loop flares, and show
that its validity extends over a large fraction of the decay. We also
relate the decay times of temperature, density and pressure to the
entropy decay time.
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1. Introduction

According to the picture derived from X-ray observations, the
plasma of the solar corona is confined in loop-like magnetic flux
tubes anchored in the photosphere. In addition to providing a
channel for heat deposition, the magnetic field acts both by
confining plasma motions along its direction and suppressing
thermal conduction across the field. It thus provides a means of
insulating one loop structure from another. The solar corona,
therefore, is a collection of loops, of different sizes and thermo-
dynamical plasma parameters.

The constraints provided by the magnetic field, together with
the condition that these plasma structures be stationary over the
time scales indicated by solar observations, require that only two
parameters are independent among the linear dimension of the
loops (L), their base pressure (p), maximum temperature ( T,,,)
and heating flux (Fy). We have thus two relationships among
these four parameters which, for loops shorter than the pressure
scale height and uniform heating, are known as the RTV (Rosner
et al. 1978) scaling laws: T3,,ccpL, and Eyocp™/ L™ 56 (where
Ey=Fy/L is the volumetric heating rate).

After the discovery by the Einstein observatory of the wide-
spread X-ray emission by normal stars (Vaiana et al. 1981), this
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picture of the solar corona has been extended to stellar coronae.
The evidence for this extension is strong although indirect. For
example, the existence of coronae with temperature ~107 K in
red giants requires their confinement; the escape velocity from
these stars is in fact smaller than the thermal velocity (e.g.
Maggio et al. 1989). Loop models of stellar coronae have been
developed and confronted with observations (Giampapa et al.
1985, Schmitt et al. 1985, Landini et al. 1985, Stern et al. 1986,
Reale et al. 1988, Schrijver et al. 1989) giving this picture a
more solid foundation.

One dimensional hydrodynamic models have been applied
both to solar and stellar flares (Peres et al. 1987, Reale et al. 1988).
They have shown a remarkable success in modeling the sequence
of events characteristic of a flare following the sudden switching
of an impulsive heating mechanism. Moreover, Jakimiec et al.
(1986) have shown that loop models are very useful in under-
standing the evolution of temperature and density in solar flares,
and in ascertaining whether energy deposition continues during
the decay phase. However, despite the insight we may gain from
models, because of the complications of the numerical hydrodyn-
amics involved in these calculations, a simpler approach would
be highly desirable.

We follow here an approach to confined solar and stellar
flares complementary to that of numerical hydrodynamics, i.e. an
approximate analytical approach. In the present paper we shall
investigate, in particular, the early decay phase of single loop
flares. Since this requires approximations, we shall use the results
of numerical calculations as a guide and as a way of verifying
their validity. In particular, we shall study the slow evolution of a
flaring loop following the peak phase.

In Sect. 2 of our paper we shall summarize the framework of
the hydrodynamic treatment of loop flares, giving the relevant
equations. We shall give in Sect. 3 the derivation of a simple
approximate solution to the equations, valid during the decay
phase of the flaring plasma. We shall compare the analytical
results with results of numerical solutions of the fully hydrodyn-
amic equations in Sect. 4, both to justify the approximations
made and to validate our treatment. Section 5 will summarize
and discuss our results.

In a forthcoming series of papers we shall use results of
numerical calculations of the full set of hydrodynamic equations
relaxing some of the approximations to investigate in more
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details the decay phase of loop flares (Paper II), and shall com-
pare our results to a representative sample of SMM observations
(Paper III).

2. Plasma dynamics in a flux tube

We model the flaring loop as a hydrodynamic process in a rigid
tube, i.e. we consider a flaring loop in which there are no
appreciable changes in magnetic field geometry. For simplicity
we consider a constant cross section loop anchored in the chro-
mosphere, with axis along a plane passing through the center of
the Sun. The shape of the flux tube enters into the equations by
means of g, i.e. the component of gravity along the local direc-
tion of the tube. We assume that the magnetic field acts only to
confine plasma motions and heat conduction along the loop, and
therefore our problem is effectively 1 dimensional. Whenever we
shall give results of the full hydrodynamic equations, we shall use
a semicircular geometry and, by virtue of the assumed symmetry,
solve our equations only in half loop (i.e. a quarter of circle).

The basic equations for the evolution along the tube coordi-
nate s (reckoned from the tube basis) of plasma density n, velocity
v, and internal energy density ¢, taking into account ionization (8
is the ionization fraction), viscosity ( u is the viscosity coefficient),
are written as follows:
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To these equations we add the equation of state, and the relation-
ship between internal energy density and pressure:

p=(1+B)nkT, @
£=§p+nﬂx, &)

where k is Boltzman constant, and y is the hydrogen ionization
potential.

The term Eg(s, t) in Eq. (3) describes a source term for coro-
nal heating, both steady state and dynamic, and can, in principle,
be specified by different physical models. As discussed elsewhere
(for example Peres et al. 1987), while the detailed evolution
depends on the physical model for Ey, its general characteristics
will depend only on the rate of energy input, because of the
extremely high thermal conductivity in the corona that redistri-
butes any heat regardless of where and how it is being deposited.

As apparent from Eq.(2), our equations are written for a
hydrogen plasma (my is the hydrogen mass); however, we take
into consideration radiation losses from a solar abundancy
plasma. The second term in the right hand side of Eq. (3) does in
fact describe radiation losses by the optically thin plasma. In the
following, the function P(T) will be parametrized, as in RTV,
with power laws with different indexes in different temperature
ranges, and a simple thermal bremsstrahlung extension in the
region 7>10" K.

( 10-21:85; 10*3 < T(K) < 10+
10731 7% 10*6 < T(K) < 1042
(1) 10-212; 104° < T(K)< 1054
[erg em? 8_1]={ 107104772, 1054<T(K)<10%®  (6)
10—21.94; 105.8 < T(K)< 106.3
10—17.73 T_2/3; 106.3< T(K)<1070
10—22.40 T1/2; 107.0< T(K)

-

Finally, the last term in Eq. (3) is the conduction term; the
conductive flux is

oT
Fo=—ko T —, )
S

where k, is Spitzer’s coefficient of thermal conductivity. This
term is effective in redistributing excess heat all over the loop.
Because of its presence, the actual dependence of Ey(s,t) on
plasma parameters (p, 7) and on s is almost irrelevant to the
general evolution of the flare.

Notice that the condition of symmetry at the top of the loop
implies F,(sp.. t)=0. For the stationary phase, the small value of
F, at T~210*K and the necessary condition T(L)=T,,, are
discussed in RTV.

Peres et al. (1982) have discussed how important is to con-
sider the chromosphere, together with the corona, in systems
modeled by Egs. (1)-(5). The chromosphere is in fact essential for
a proper treatment of coronal evolution because it acts as a
reservoir providing the flux of plasma particles necessary to
maintain a dynamical equilibrium. Therefore, in the standard
implementations of the numerical solution of Egs. (1)—(5), we
shall follow the prescription of Peres et al. (1982), describing the
radiation losses by means of an effectively thin P(T), down to the
chromospheric temperature minimum. The effective P(T) in the
region below 210* K can be derived from empirical chromo-
spheric models, and we have used the VAL solar atmospheric
model (Vernazza et al. 1980, however, see Reale et al. 1988, for a
discussion of the little importance of a detailed chromospheric
model).

Under Egs. (1)-(5), the evolution of a flare can be computed
by prescribing initial conditions (e.g. a solution of the static
equations, with v=0 and d/dt=0), and a heating term Eg(s, t)
=E,(s, t)+E,, i.c. a transient term in addition to the steady state
heating term E, (which can be assumed as independent on s, as
stated above, because of the high conduction efficiency). We
empbhasize here that the boundary condition F,~0 at T~210* K
is only used in deriving the solution of the static equation which
constitutes the starting point of any dynamical solution, and that,
in addition to the condition of symmetry at the top of the loop,
we use as boundary conditions at the base v =0 and n=constant.

3. Thermodynamics of the flare decay phase

Solutions of the system of Egs. (1)—(5) have been discussed by
Peres et al. (1982, 1987), Pallavicini et al. (1983), Reale et al.
(1988), Antonucci et al. (1987). In response to an impulsive heat
source in corona, the coronal plasma increases its temperature,
while a conduction front travels down to the transition region. As
soon as it penetrates the transition region, it ablates it, allowing
evaporating material to be shot up in the corona. The evapor-
ation phase lasts a few tens of seconds; if the impulsive heating
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term is active for a time significantly longer than the evaporation
phase, then there is generally enough time for a quasi-stationary
state to be reached in corona before the heating is switched off. In
these cicumstances we can describe the phenomenology of the
decay as due both to the cooling of the hot (7> 107 K) coronal
plasma and to the “bouncing back™ of the transition region,
which starts traveling upward as soon as the impulsive heating is
switched off, and might even reach near the top of the loop.

We shall now show that, if we are only interested in describ-
ing high temperature phenomena, i.e. those accessible to X-ray
observations, the decay of the flare can be described in a some-
what simplified way.

As a first approximation, it is easily shown that the viscosity
terms in Eqgs.(2) and (3) can be neglected. They act only to
smooth shock fronts, and have little influence on average para-
meters such as integrated emission in a band or a line.

It is also easy to see that we can disregard the term in y and
set f=1 in Eq. (5), if we limit our attention to the region of the
loop where kT'> y!. Using these two approximations we can now
rewrite Eq.(3) in terms of the entropy per particle S
=klIn(T*?2/p):

d 0
p—S/k=Ey(s,t)—n?P(T)——F.,. (8)
dt Js

We now set ourselves to analyze our system under the condition
that the initial conditions describe a static state with spatially
uniform heating, i.e. d/dt and v=0, Ey(s, t)=Eg, and that its
evolution after =0 is driven by a sudden decrease of heating. A
similar description is appropriate to the initial decay of a flare,
from its peak phase.

The possibility of describing plasma conditions in the loop at
flare peak as “static” needs some qualifications. It is in fact
obvious that the system will deviate from staticity because of the
disturbances going back and forth along the loop, remaining
from the highly dynamic rise phase; moreover, it is well known
that different plasma parameters peak at different times, making
the definition of the initial state ambiguous. We shall investigate
in Paper II how and when a Quasi Steady State (QSS) phase may
be reached. However, for simplicity, we shall assume here that the
system is initially in a steady state.

It is easy to see that, if we start from a steady state (d/dt=0), a
sudden change in Eg(s, t) will result in the switching on of the
d/dt term in Eq. (8). Under the effect of switching Ej off, there-
fore, since the radiative and conductive terms in Eq.(8) will
initially be balanced by Ey, the result is just

ds/k

——=—E,. 9
14 dt H 9

! The validity of this approximation would appear to be obvious,
where it not for the possibility of exchange between coronal
plasma and plasma in the low temperature region, where the
effect of ionization in regulating the energy balance is large, and
its effect on the amount and velocity of evaporating plasma might
be large as well. However, we can safely adopt this approxima-
tion, if we are only interested in describing the high temperature
coronal plasma. During the decay phase, the ionization terms
will be important only in the description of the upward shift of
the transition region.
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If we limit our consideration to the region near the top of the
loop, where we have d/dt ~ 3/0t being v~ 0 for symmetry, Eq. (9)
can be integrated to give

kt
SNSO—?, (10)
T5/2 T5/2
. ~—p°— e, (11)
0
where
r=22, (12)
H

and T,, p, and S, are, respectively, the initial temperature,
pressure and entropy at the top of the loop. Obviously, Egs. (10)
and (11) hold only during the initial phase of the decay of the
flare, because, in due time, the pressure p in Eq. (8) will change,
making (10) deviate from the true solution. Moreover, the radi-
ative and conductive terms in Eq. (8) might not keep their initial
distribution during the advanced phases of decay.

Equation (12) gives, however, the characteristic time for the
decay of entropy near the top of the loop during the initial decay
phase of a flare. Assuming that the heating rate during decay is
completely switched off? during the decay phase, and using the
RTYV scaling laws and cgs units, the thermodynamic decay time 7
can also be written as

10—5 L5/6
= (13)
or else,
371074 L L,
1= ~120—— (14)

JTo JTr
where T, is the initial temperature at the top of the loop in units
of 107 K, and L, the length of the loop in units of 10° cm. Notice
that the dependence expressed by Eq. (12) is independent of the
details of the radiative losses (i.e. on the chemical composition of
the plasma), while the dependence of the decay time on L and T,
is a consequence of the RTV scaling law, and therefore, of the
details of the conduction term and the radiative loss function.

4. Comparison with detailed numerical results

We want now to check the validity of our approach to the decay
phase of loop flares by comparing the predictions of Eq. (10)
with decays computed from numerical solutions of the complete
set of Egs. (1)-(5) by means of the Palermo-Harvard numerical
code (a complete description of the code is in Peres & Serio 1984).

We have computed a grid of steady state model loops, as
discussed in Sect. 3 above (see Table 1 for the parameters of the
models), and have let them evolve by switching off completely the
heating term. As an example, we show in Fig. 1 the evolution of
temperature, density, pressure and entropy at the top of the loop

2 Actually, if the system has to decay to a pre-flare condition
typical of non-flaring active region loops, the heating term should
not be allowed to go to zero, but rather to an appropriate value.
In all practical cases, however, this baseline value is negligible
with respect to the flare Ey, and we shall neglect it.
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Fig.1. Decay curves for tempera-
ture (top left), density (top right),
pressure (bottom left) and entropy
(bottom right) at the top of the
flaring loop of model B, in Table 1
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Table 1. Models of decaying flaring loops
Model L* To® Doase’ T Taim® Atyin/Tgim'
A, 0.5 1 1000 58 62 1.45
B, 2 1 185 234 279 1.72
C, 5 1 75 585 759 1.71
D, 10 1 37 1170 1557 1.99
A, 0.5 2 7200 41 41 1.59
B, 2 2 1458 165 208 1.63
C, 5 2 580 414 548 1.64
D, 10 2 290 827 1110 1.76

? Length of semiloop from footpoint to apex, in units of 10° cm
® Initial temperature at the loop apex in units of 107 K

¢ Initial pressure at the base of the corona in dyne cm ™2

4 Entropy decay time (s) as computed from Eq. (14)

¢ Entropy decay time (s) derived from calculations (cf. Fig. 2).
The values shown are derived by means of linear regressions
starting at t=0 and terminating at the time at which the
correlation coefficient drops below 0.99 after initial fluctuations
T Time (in units of the characteristic decay times 7,,) of termin-
ation of the linear regression for the entry in the previous
column. Over this time decay of entropy can be considered
linear

for model B, (Table 1), and in Fig. 2 the decay of entropy for all
models studied.

Notice that the behaviour of the entropy is initially linear in
time, as predicted. The abrupt drop at late times corresponds to
the thermal instability caused by having set the heating term
equal to zero (see footnote 2). A small residual heating function
would, instead, allow the loop to eventually reach a steady state
at coronal conditions.

200 300 400 500 600 700

Time (s)

In Table 1 we also show the values of the entropy decay times
as obtained from Eq. (12), and the corresponding values obtained
from our numerical calculations, together with the range of
validity of the linear decay phase. To obtain these values we have
computed the linear regression of entropy versus time, and the
corresponding correlation coefficient, at progressive times after
the beginning of the decay phase. After a few initial oscillations,
the correlation coefficient stabilizes at a value close to unity,
starting, thereafter, a slow decrease; we stop the regression when
this coefficient becomes smaller than 0.99. The coefficient of the
regression provides the decay time, and the stopping time the
range of the validity of our linear solution. We shall refer to the
duration of this regime as the linear phase of flare decay.

As can be seen in Table 1, this linear phase lasts, generally,
approximately 1.5-2 decay time scales, and, therefore, it de-
scribes the decay of the entropy by a factor ~ 5.

5. Discussion and conclusions

It is interesting to compare the thermodynamic decay time given
by Eq. (14) with the conductive (z,) and radiative (,) times that
are sometimes used in the literature to estimate the dimensions of
flaring regions. These parameters, derived by the crude as-
sumptions that the decay is driven only by the conduction or the
radiative term in Eq. (3), are defined according to:

B 3nkL?

TC_KO T3? (15)
3k T,
= (16)
nP (1)

It is easy to show, by using the RTV scaling laws on the initial
decay state assumed as static, as we have done in Sect. 3, that
7.=1.57, and 1,=6.71/T;, where T, is the temperature in units of
107 K (we have assumed here that the initial flare temperature is
> 107 K and, therefore, P(T)=10"224 T1/2),
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Fig. 2. Decay curves for log T52/p (in units of K~ %2 dyne~! cm?) for
the models reported in Table 1. From top to bottom and from left to
right: models A,, B;,C,, Dy, A,, B,,C,,D,

We see, that the thermodynamic decay time scales with T,
and L as the conductive time, although it is shorter by a factor
2/3; it is comparable to the radiative cooling time only for initial
temperature near 6 107 K. Notice, however, that the thermodyn-
amic time acts as the decay time constant only for the specific
combination of temperature and pressure appearing in the ex-
pression for entropy, i.e. T°2/p, and not for other thermodyn-
amic or observable variables. As can be seen in Fig. 1, the
thermodynamic variables T, n, and p, in fact, show similar
behaviors (i.e. exponential, although with some more pronoun-
ced fluctuations) over the linear decay phase, but on different
time scales.

We have derived the decay time corresponding to each of the
three variables above for each of the models in Table 1, by means
of independent simple regressions over the linear phase (as
previously defined). The results are presented in Table 2 which
lists, for each model, the decay time for temperature (7;), pres-
sure (t,), and density (7,), in units of the entropy decay time.

It is easy to verify that the values so derived are compatible
with the two relationships that should hold among the four decay
times, ie. 1,! '+1,', and t7'=2517"—1,'. We see,
therefore, that the temperature at the top of the loop decays with
essentially the same time scale as entropy, while the decay of
density is approximately twice slower, reflecting the fact that
both gravity and pressure forces are essentially zero near the top

=1;
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Table 2. Temperature, density, and pressure decay times

Model T2 7,° 7,

A, 0.97 1.82 0.63
B, 0.95 1.72 0.61
C, 1.03 2.20 0.70
D, 1.06 2.39 0.73
A, 0.85 132 0.51
B, 1.01 2.06 0.68
C, 1.05 2.35 0.73
D, 1.03 2.19 0.70

? Temperature decay time derived from a best fit in the linear
region (s)

b Density decay time (as above)

¢ Pressure decay time (as above)

of the loop and, therefore, rather inefficient in driving the evacu-
ation of the structure. We notice also that the emission measure
(ocn?) will decay on the same timescale as temperature and
entropy. It is also interesting to note that the factor of 2 difference
in the decay times of density and temperature, will force a Tocn?
relationship during the decay phase. This relationship will be
investigated in Paper II of this series. We wish to point out here
that these relationships among decay times appear to be only of
an empirical and approximate nature, since we have been unable
to find a compelling physical reason for them to hold. We notice,
moreover, that while the linear decay of the entropy can be
closely verified (Fig.2) in all our calculations, the decays of
temperature, density and pressure do show pronounced devi-
ations from pure exponential decays.

A comment is of order, with respect to the meaning, in terms
of observable quantities, of our analytically derived time scale 1,
and of the time scales for temperature, pressure, and density. Our
solution is, in fact, valid only for the top point of the loop, while
quantities observed with limited resolution instruments should in
general be represented by some kind of average over the loop.
However, since temperature and density in most of the loop
appear to be reasonably close to their value near the top, as can
be ascertained by the numerical calculations, we can argue that
our findings can be easily extended to observable, average ther-
modynamical variables. This extension, and the detailed be-
havior of temperature, density and pressure during the decay
phase will be the subject of Papers II and III of this series.
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