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MAGNETIC FIELD EVOLUTION DURING PROMINENCE
'ERUPTIONS AND TWO-RIBBON FLARES

E.R. PRIEST* and T. G. FORBES
Space Science Center, Science Engineering Research Building, Durham, NH 03824, U.S.A.

(Received 15 June, 1989; in revised form 17 November, 1989)

Abstract. Simple models for the MHD eruption of a solar prominence are presented, in which the
prominence is treated as a twisted magnetic flux tube that is being repelled from the solar surface by
magnetic pressure forces. The effects of different physical assumptions to deal with this magneto-
hydrodynamically complex phenomenon are evaluated, such as holding constant the prominence current,
radius, flux or twist or modelling the prominence as a current sheet. Including a background magnetic field
allows the prominence to be in equilibrium initially with an Inverse Polarity and then to erupt due to
magnetic non-equilibrium when the background magnetic field is too small or the prominence twist is too
great. The electric field at the neutral point below the prominence rapidly increases to a maximum value
and then declines. Including the effect of gravity also allows an equilibrium with Normal Polarity to exist.
Finally, an ideal MHD solution is found which incorporates self-consistently a current sheet below the
prominence and which implies that a prominence will still erupt and form a current sheet even if no
reconnection occurs. When reconnection is allowed it is, therefore, driven by the eruption.

Introduction

Eruptions of solar prominences are thought to be caused by an instability or lack of
equilibrium in a magnetic arcade. This may occur when the magnetic field is twisted or
sheared too much or the prominence altitude becomes too great or the feet become too
far apart (Van Tend and Kuperus, 1978; Sturrock, 1980; Hood and Priest, 1980;
Browning and Priest, 1986; Zwingmann, 1985; Amari and Aly, 1989; Demoulin and
Priest, 1988). The eruption is expected to drive reconnection and heating in a current
sheet that forms about an X-type neutral point below the rising prominence (Priest,
1981; Steele and Priest, 1989). Detailed numerical experiments of reconnection in such
a sheet have been investigated (Forbes and Priest, 1983; Robertson and Priest, 1987)
and global numerical models have recently been set up (Mikic, Barnes, and Schnack,
1988; Biskamp and Welter, 1989).

The aim of the present paper is to study magnetic field evolution (including recon-
nection and the creation of current sheets) below erupting prominences, both quiescent
and active-region, by means of a complementary simple analytical model which
elucidates some of the physics in this complex process. The prominence is generally
modelled as a flux tube (or line current) above the photosphere in the same way as Van
Tend and Kuperus (1978), who found non-equilibrium when the prominence height is
too great; their work has been put on a firm mathematical foundation and extended by
Amari and Aly (1989) and Demoulin and Priest (1988), who have elucidated the
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conditions for non-equilibrium. Line tying by the dense photosphere is simulated by
including an image flux tube (Kuperus and Raadu, 1974), but circuit equations are not
employed (Kaastra, 1985; Kuin and Martens, 1986; Martens, 1986) since we do not
believe that they give an adequate modelling of the MHD of the process (Priest, 1986).

In Section 2 we begin with the simplest model of an erupting prominence, namely a
straight horizontal flux tube which is moving upwards due to the repulsion from an
image flux tube. The effects of different assumptions are evaluated, such as holding the
prominence current and radius constant or of instead keeping the prominence flux or
twist constant. Also modelling the prominence as a current sheet rather than a flux tube
is considered. In Section 3 the effects of a background active region field and of gravity
are included so that the prominence can be initially in equilibrium and then erupt due
to non-equilibrium or instability. Finally, in Section 4 the additional complication of
including a reconnecting current sheet below the prominence is evaluated.

2. Simple Prominence

In order to elucidate some of the basic properties of an erupting prominence we first
of all consider the simplest model namely that of a straight horizontal flux tube (or line
current 27//u) whose axis H is located a distance 4 above an origin O in a line-tying
surface (the photosphere). The effect of line tying is taken into account by placing an
image flux tube (with current — 27/ u) at a distance 4 below the photosphere (the x-axis)
as shown in Figure 1(a). The resulting magnetic field may be written most elegantly in
terms of the complex variable z = x + iy as

I 2ikl
z—ih z+ih 2+ K

B, +iB, = (1)
Note that regarding 27/ u as the current rather than 7 removes the factor of u/(2n) that
normally appears in Equation (1) in MKS units.

It should be noted that, although in a vacuum one may switch on a current in a wire
and produce a magnetic field of the above form outside the wire, the same physics does
not apply in the solar atmosphere. Here currents are not driven by electric fields but
instead arise in a secondary manner from force balance and magnetic field evolution
(e.g., Priest, 1982, 1986). For example, as one twists up a flux tube through motions of
its footpoints, one may increase the current and azimuthal field locally. The magnetic
field around the line currents in Figure 1 should not be thought of as being produced
by the current, but represents instead a simple model of the ambient magnetic field in
which the flux tube is located: more realistic models will be proposed in the following
sections.

The magnetic field of Equation (1) refers to the field outside the prominence and, in
view of the singularities at z = + ik, we shall cut it off at some distance R, from the
singularities. Furthermore, in the case when R, < 4 we shall assume that R, is inde-
pendent of the angular direction from H, so that the cut-off curve is approximately a
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Fig. 1. The notation for a section through an isolated prominence with continuous magnetic field lines and

repelled by an image prominence having dashed field lines. The prominence is modelled as (a) a flux tube

with current I at a point H a distance & above the photosphere or (b) a vertical current sheet stretching
from H, to H,.

circle. Inside the flux tube we shall assume a purely azimuthal field

r
BizBpR_a (2)

P

where B, (~ I/R,) is the field at the surface of the flux tube (or prominence).
Now the vertical equation of motion of the flux tube (of mass M) moving under the
repulsion from the image alone (a distance 24 away) is

2
d (M%) -Fr=" (3)
dt dr uh

Also the magnetic flux ¥, crossing the y-axis below the flux tube between O and H,
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(the point where the lower part of the flux tube intersects the y-axis, Figure 1(a)) is

h—Rp

Yo = J B,(0,y)dy

(0]
or

2
Yo —Ilog(—h—l) 4)
Rp
If the flux tube starts from rest at a height 4,, its subsequent speed upwards (v = dh/dr)
may be found by integrating (3) to give

J —dh, (5)

where the term on the right-hand side is minus the potential energy or the work done
by the force of repulsion.

Since (3) determines A(t) in terms of I(¢) we need to make an assumption to determine
I and there are several possibilities, as enumerated below and sketched in Figure 2.

2.1. CONSTANT CURRENT (I)
This may seem (at first) an attractively simple assumption which leads to a speed of rise

increasing in an unbounded manner (Figure 2) like

2nl?. h

log— . (6
uM gho :

v? =

However, the magnetic energy in the system (outside the flux tubes) is
2K%1?
W, - ” I dx dy, ™
[x* + (v = ?*1[x* + (» + 2]

where circles of radius R, about z = + ik are excluded. For > R, and I constant it
becomes

12
Wy ™ log 2 (8)
LR,

which surprisingly increases with 4 (for constant R ), whereas, since the repulsive force
does work as the flux tube moves up, one would have expected the magnetic potential
energy to decrease! Indeed, the work done by the repulsive force is

= odh=-"log— .

j‘ nl? nl?> h
K ho
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Fig. 2. Therise speed (v), current (/ ) and flux tube radius (R,,) for: a constant current ( ), a constant
P
flux tube radius (—_____ ), constant twist (. . . .. .. ), and constant magnetic fluxes (—._._._). The rise

speed is measured in units of a typical speed v, = (n/uM)"?I,.

The resolution of this paradox is that the magnetic flux 2y, (from (4)) through a
circuit consisting of the current /7, its image — / and their closure at infinity is increasing
in time and so the current sources at infinity are also doing work. Consequently, this
case is not the most realistic.

2.2. CONSTANT FLUX TUBE RADIUS (Rp)

If we assume the flux ¥, remains constant, Equation (4) determines I provided we know
how R varies. If, for example, the flux tube is modelled as a rigid structure of constant
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radius (R ), then, as shown in Figure 2, the current decreases as

I = Yo _ I log(2ho/Rp — 1)
log(2h/Rp — 1) log(2h/Rp — 1)

and for R, < h, the rise speed from (5) increases with height like

3 ( 1 1 )
v? = —~ , 9)
uM \log(2ho/Rp — 1) log(2h/Rp, — 1)

approaching a constant value at large altitudes of

2 2
02 = o _ Tk 1og(—25 - ) . (10)
pMlog(2ho/Rp — 1) puM Rp

Correspondingly, the work done by the repulsive force is

2 2
o )
U R, log2h/Rp, log2ho/Rp

If it is assumed that the field (B,) within the filament matches continuously to the
external magnetic field, then constant R, implies that the magnetic flux (/) in the tube
decreases with height, i.e.,

Rp

1 Th
l//P:‘jBidr:'ERPBP= ~

17 (11)
2h-R, 2
0

However, if there is a surface current on the filament, the B, need not match continuously
to the external magnetic field and consequently ¥, would not necessarily increase with
height.

2.3. CONSTANT MAGNETIC FLUXES

Another possibility is to hold fixed the fluxes ¥, and ¥/, both between the photosphere
and the prominence and also inside the prominence. For A > R,, we then have
(Figure 2)
I 2h 1
B,~ —, Vo~ Ilog—, ~—1,
P R, o R, Ve 5

so that I remains constant, while the tube radius increases linearly with height,

RPthexp<—;j—O> , (12)

sz%exp<—h) . (13)
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In this case the speed of rise increases indefinitely (Equation (6)) and the magnetic
energy Wy (Equation (8)) remains constant. In a two-dimensional, coplanar numerical
experiment Forbes (1990) found that ¥, and ¥, are indeed nearly constant when the
magnetic Reynolds number of the system is very large. However, R, does not increase
as fast as predicted by (12) and consequently a surface current appears on the filament.
Thus, in general the filament properties in this numerical experiment are more nearly
like those of Section 2.2.

2.4. CONSTANT TWIST

For arising magnetic three-dimensional flux tube there is no clear reason why ¥/, should
remain constant since the tube may locally untwist or twist up and so decrease or
increase the field in the plane of Figure 1. If the ends of the flux tube are anchored down
in the solar surface a good approximation is to regard the net twist ¢ along the tube as
being constant. If its length is L, then in terms of the axial field (B,) and the azimuthal
field (Bp) the surface twist may be written approximately as

_ LB, _ LI
RP‘BZ RIZ’BZ ‘

o (14)

For a uniform axial field (B,), the constancy of axial flux then implies that R%B, is
constant and so, by assuming that L increases roughly linearly with 4 (Steele and Priest,
1989), we obtain that 4/ remains constant or

I=1,-2 (15)

in terms of the initial current (/) and height ().
In this case Equation (4) determines the tube radius to be approximately

Ry, =2h exp(- tl/oph) ,
IOhO

which increases to a maximum value of (21,hy/(Yope) at h = Ioh,/Y,p and thereafter
declines to zero as k2 approaches infinity (Figure 2). At the same time the rise speed from
(5) is given by

21,2 1 1
somE(L 1) a9
uM \R2 h

and so increases monotonically to a value (n/uM )21, at large altitudes.

2.5. BENNETT'S RELATION

Although the net upwards force on the flux tube arises from the global effect of the
surrounding magnetic field and the small departure of the flux tube from a circular shape,
the local magnetic equilibrium of the flux tube (neglecting that departure) gives rise to
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a constraint known as Bennett’s relation. Thus, if the field component out of the plane
of Figure 1 is uniform, the local radial force balance is

which, after using (2), determines the internal pressure to be

12 2 2
i =Pe+ — (R —r?). (17)
P RS P
Here p, is the external pressure, which for the external potential field of Equation (1)
we shall neglect by comparison with the magnetic pressure. Now the mass (per unit
length) of the flux tube is
Rp

M= | p2nrdr,

0
and so for a uniform temperature 7 and a gas law p; = Rp,T this gives the Bennett
relation

nl?

M= .
2nuRT

(18)

Thus, if the mass and temperature remain constant, we recover the constant current case
(1), but in general they both may change in time in a prescribed way. For example the
prominence temperature may rise as it is heated up or cool adiabatically as it expands.
Furthermore, the mass may decrease as plasma flows down along the flux tube to the
solar surface or it may increase as extra mass is entrained.

2.6. PROMINENCE AS A CURRENT SHEET

We may instead follow Demoulin and Priest (1990) in modelling the prominence as
a small current sheet of length / (Figure 1(b)) stretching vertically between points A, and
H, at altitudes # — [/2 and & + [/2, respectively. The flux function for a single line current
(ul/2m) at a height A together with its image (— uf/27) at height — 4 is

A=1G,
where

z — ih
z+ ih

G(z, h) = —log (19)

is the Green’s function. Thus if the current density at height 4’ in the current sheet is
wj(h')/2x, the flux function for the current sheet may be written

h+1/2
A= J ()G (z, b)) dh' . (20)

h—1/2
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In particular, the value on the y-axis is

h+12
_h’
A0, ) = j jh') log - ]dh' (1)
y + h’'
h—12

At the point H, this becomes for a uniform current density (j(h')! = I)

or, for 2h > |,

Yo z](l + log glé) . (22)

Thus for constant Y, and /, the current falls off with height as

; _ 1o(1 + log2h/1)

(23)
1 + log2h/l

while from (5) the rise speed is given by

2 2m,bo( 1 _ 1 ) , 24)
uM \1+log2hyi 1+ log2h/l

which approaches a constant value of 2mlZ/(uM (1 + log2hy/l)) at large heights
(Figure 2). Modelling the prominence as a current sheet is an improvement on treating
it as a line current since it is observed to be tall and thin. The solution above (20) lays
the foundations for an improved model, although by itself it suffers from the self-
pinching problem identified by Anzer (1989) in relation to the Kuperus—Raadu model.
However, such a difficulty disappears when a sufficiently large ambient field is super-
imposed (as in Section 3.6).

3. Prominence in a Background Field

3.1. DEPRESSED DIPOLE — INVERSE POLARITY SOLUTIONS

Next let us suppose the prominence is supported in a background magnetic field due
to, for example (but not necessarily), an active region and modelled by a dipole of
moment m (a distance 4, below the photosphere, Figure 3), so that

1 I im

B, +iB, = - + . (25)
z—ih z+ih (z+ih)

The image at z = — ik ensures that the normal field on the photosphere (y = 0) is
independent of 7 and A.
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(b)

Fig. 3. The notation for a section through a prominence in a background field and with (a) inverse polarity;
(b) normal polarity.

Neutral points are located at points z = iy, on the y-axis such that

I 4nl 2h1
y§(1+%)+ihbyr(h2——h§) -0, (26)

m m m

and so the values of y,/h, depend on h,I/m and h/h,. In particular, a neutral point
appears above the solar surface (y = 0) when A/h, > 2Ih,/m. When h,I/m < 1, the
upper neutral point becomes approximately

h( hb1<hb 2))
In=—\l-———=1=+—])>
a m\h a

where a? = (1 + 2hI/m).
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The vertical equation of motion becomes

E(Mgﬁ)zpzzit{(i_i) ) (27)
dt dt pw \2h (h+h)?

Equilibrium occurs for a given I and 4, when the filament height (k) is given by

1/2
n )G ) o
h, \h,I hd \h,I

which gives two solutions when m/(h,/)> 2 and no solutions when m/(h, 1) <2
(Figure 4(a)). When A, I/m < 1, the equilibrium becomes approximately

hy 1
h=2—m-(1——"->.
I m

At the non-equilibrium point 4 = A, and there is one solution. The lower branch is stable
and the upper branch is unstable in such a way that to the left of the non-equilibrium

5 7 1.0
/
/
/
4 /
/ 0.54
/
/
3 1 /
= /
> // < 0.01
2 /
/
!
/ -0.51
|_‘ P g
(0] T T T T -1.0 = T T
(0] | 2 3 4 5 (0] 2 4 6
m/(hpI) h/hp

(a) (b)

Fig. 4. (a) The equilibrium prominence height (%) as a function of m/I, where m is the background dipole

strength and 7 the prominence current. The continuous equilibrium is stable and the dashed one unstable.

Pis a non-equilibrium point. (b) The potential energy W (in units of #72/p) as a function of prominence height

h for values of m/(h,I) equal to 1, 2, and 3. The dotted line indicates the location corresponding to point
P in Figure 4(a).

point or above the unstable branch the unbalanced force is upwards and so causes the
filament to erupt. This can also be seen from the potential energy curve W(k) in
Figure 4(b) which arises from integrating the force given in (27):

h

W=—JFdh=—2—nI(£log£+ milho = 1) ) (29)
b \2 hy (Bt h)(ho + hy)

ko
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Thus as the dipole moment (m) decreases or the dipole depth (%, )increases or the flux
tube current (/) increases, so the prominence passes through a series of gradually
increasing equilibrium heights until when m/(h,I) becomes less than 2 there is no longer
an equilibrium and the prominence erupts.

If the flux tube starts from rest at height 4, its subsequent rise speed (v = dh/dz) is
given from (27) by

A
2
jn] _ 2nlmjp dh
ph (h+h,)

1
~Mv? =

5 (30)

ho
In particular if 7 and m remain constant we find

2 —
2 27;1/1 (10 h N 2m(hy — h) ) .
U

gho I(h + hy)(ho + hy)

Thus when 1 is positive the effect of the ambient magnetic field trying to pull down the
flux tube slows down the rise, since the second term on the right-hand side is negative,
although the rise speed still increases indefinitely (Figure 5).

The magnetic flux between the photosphere and the neutral point below the promi-
nence is

Y

h+yy my
Yon = J B (0,y)dy = Ilog -
i h—yy On+h)h,

0

or, when A, J/m <1 and h, < yy,

1+2h1m1/2+1 m
Yo = Tlog / )12 . (31)
1+ 2hm)2 -1 h,

At large heights & > m/I this reduces to

y (2]m>1/2 m
ON h h, .
As the prominence rises so the magnetic field in general reconnects at the neutral point
N and the flux Y, increases (although the net flux , remains constant (Section 3.4)).
The resulting electric field is (assuming m remains constant)

EN=

— (W 32
o dt g(1+2hI/m)‘/2—1 h (), (32)

Won _ dIlo (1 +20m"V*+1 1 (1 2h1)‘1/2 d

m

or, at large heights 2 > m/I,

1/2
s (3) a)-
21 dr \A
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Fig. 5. The prominence height (%), rise speed (v), and neutral point electric field (E,) as functions of time

(in units of Ag/fv,) for constant filament current. The dotted curve is the case with no background field

(m = 0), while the solid curves are those with a background field (m = 1) and with a 17, and a 107
perturbation of the filament in the upwards direction from its equilibrium position.

Thus in the particular case when I remains constant

EN= _(m'—I)l/zL ’
2) wP

where v = dh/dt. Figure 5(c) plots the electric field at the X-line as a function of time
for the constant filament current model with 4, = 0. The electric field peaks when the
filament height (#) equals exp 0.5, i.e., & = 1.65, and the value of the electric field at this
peak is independent of the initial perturbation as long as the perturbation is small.
The variation of the electric field shown in Figure 5(c) is qualitatively very similar to
that inferred by Poletto and Kopp (1986) from the time behaviour of the chromospheric
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ribbons produced by the large flares of 29 July, 1973 and 21 May, 1980. In these flares
the electric field increased rapidly to a peak value about 20 to 30 min after flare onset,
and then it decreased at a slower rate over a period of several hours in a manner
reminiscent of Figure 5(c). In terms of the present model, this behaviour occurs because
the flare’s electric field is determined entirely by the dynamics of the filament motion
if reconnection is allowed to proceed as rapidly as needed.

3.2. BACKGROUND DIPOLE CLOSE TO PHOTOSPHERE

When the prominence height () is much larger than the depth (4, ) of the background,
the magnetic field becomes

. )
B 4B = iQhI + m)(z* - zx)

33
7 * (22 + h?)z? (33)

where z,, = iy, and

h

VT onim + )2

The force on the filament vanishes when 4 = 0 (lower branch) or (on the upper branch)
when

h=2m/I (34a)

which gives a neutral point position

Yv=—r . (34b)
NG
The resulting flux () and neutral point electric field (E ) are given by Equations (31)
and (32).
It is of interest for our later discussion to note that (33) may be deduced from the
general form

with the three conditions that determine 4, z,, & being the behaviour at 0 (~ im/z?), the

behaviour at ik (~ I/(z — ih)) and the filament equilibrium.
Furthermore, the magnetic energy present may be written

o 72

272 2
2 J J {4h ! L7 4hIm (r - K cos20)} rdrdf,
U

4

where the three terms represent the energy of the current-image pair, the energy of the
background field, and the mutual energy of the current-image pair in the background,
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and r, 6 are polar coordinates of a point P with respect to the origin and a vertical axis
while
ry = (W + r* — 2hr cos 0)!/%

ry = (W + r* + 2hr cos )2

are the distances of P from the current I and its image. After some algebra this reduces
to

nl? { h mB, Zm}
Wy=—142log— + —2+ ¢, (35)
z R

where B, = m/R} is a typical active region field strength and R, is the cut-off distance
at the origin (roughly the same as the diple depth 4, ). Here the first term is the energy
of the current and its image found previously in Equation (8). It is positive, as is the
second term, while the third term is positive when Im > 0 but negative when Im < 0.
When I and R, are constant, W increases indefinitely with 4, as before.

3.3. EFFECT OF GRAVITY — EXTRA SOLUTIONS WITH NORMAL POLARITY

When the force of gravity (Mg) is important, the equation of motion (27) becomes
modified to

S(M%>=2_M<i_ﬂ)_Mg, (36)
de\  dr p \2h K

in the limit when 4 > h,. When Mg is constant, the equilibria are, therefore, given by

Rl 14 (1-8G)"?

) 37
m 2G (37)
where G = uMgm/(nI3) or
1
h = G (1 + (1 -8mGy/D'?), (38)

0

where G, = uMg/(nI?).
From (37) we can see that there are no equilibria when G > § and two equilibria when

G < 3, being approximately 1/G and 2 when G < 1 (Figure 6(a)). Furthermore, the
variation of the equilibrium height with dipole moment m from (38) is shown in
Figure 6(b), which reveals several interesting features. (When the limit 4 < A, is not
taken, a third solution with 4 ~ h, appears and bends back as in Figure 4.)

G, is a positive constant, and so when m and [ have the same sign there are two
solutions. These represent prominences with inverse polarity (Priest, 1989) in the sense
that the magnetic field below the flux tube axis is oppositely directed from that near the
photosphere (Figure 3(a)). We have, therefore, the effect of gravity on the solutions of
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Fig. 6. (a) The equilibrium prominence height (%) as a function of G = uMgm/(nI?). (b) The variation of
the prominence height (k) with mG,/I.

Sections 3.1 and 3.2, in which the curve in Figure 6(b) may be regarded as the con-
tinuation of the upper branch in Figure 4(a). Here the force nl?/(uh) of repulsion from
the image is upwards, while gravity and the background force 2nlm/uh?®) act down-
wards. Gravity paradoxically makes the equilibrium height of the lower branch increase
above the value (34). It also in (36) has the effect of decreasing the acceleration at a
particular height.

When m and I have opposite signs there is only one solution but it has a higher
altitude A > 1/G, and a normal polarity, i.e., the same below the tube axis as the
underlying photosphere (Figure 3(b)). It needs gravity to exist since the background
force now acts upwards to reinforce the line-tying force and so gravity is the only force
pulling downwards.

If g and M do not vary with height, the lower branch (dashed) in Figure 6(b) is
unstable, but the upper branch and the normal polarity branch are stabilised by gravity,
since an increase from the equilibrium heights keeps the downwards force of gravity the
same in (36) but decreases the magnetic forces. Indeed the frequency (w) of oscillation
about the equilibrium is given by

,  UMA?
-

w (QGoh - 1). (39)

T
Also to the right of the equilibrium curve in Figure 6(b), gravity dominates and makes
the net force downwards. However, an unstable upper and normal polarity branch and,
therefore, a flux tube eruption may occur if gravity decreases sufficiently fast with height
(for high prominences) or if the prominence mass decreases with height (due to material
draining out of a prominence as it moves upwards).
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Alternatively, for a prominence of inverse polarity an eruption may be initiated by
non-equilibrium near point P in Figure 4(a) with gravity being insufficient to stop the
eruption as the prominence passes the upper branch. Thus, when the effect of gravity
fall-off with height is included, the equation of motion (27) becomes

i(Mg}f> =gn_1(i_ m ) - Mz, . (40)
de\ dr p \2h (h+h)?) (1+ kR,

The equilibria now depend on the parameters m/(h,I), h,/R,, and MgR,/(uI?), where
R, is the solar radius. The potential energy becomes

2n1(1 b, mihy = h) )+

2 ho (h+ hy)(hy + hy)

Mgo( h = ) .
(1+ A/Ro)(1 + ho/Ry)

For small values of Mgyh,/(11?), the equilibrium (%, say) at low heights ceases to exist
and produces an eruption starting from A, ~ h, and W ~ 0 when the value m/(h,I) = 2
is exceeded. Using this critical value the potential energy becomes roughly

2 — —
Wzi(_log ko oAk hb)>+ Mgo(h ~ hy)

. 41)
u hy h+h, ) (1+hRo)(1+hR,)

The sum of the first two terms decreases from zero with height, whereas the last term
increases from zero to Mg,R/(1 + h,/R,) over distances of order R,. Thus the effect
of gravity is unable to stop the eruption if W remains negative, i.e., if for small values
of h,/R,,

MgR,

12

R,
< mlog— . (42)
| hy

It can be seen that gravity then has the effect of slowing the speed of rise below the value
given in (31). Another effect which can slow the rise is the loss of energy via waves to
the surrounding medium, which may be incorporated by including a term of the form
— vdh/dt on the right-hand side of Equation (40).

3.4. CONSTANT PROMINENCE MAGNETIC FLUX
For the magnetic field (25) representing the field of a prominence in a dipole background,
the equilibrium when gravity is negligible is given from (27) by

I m

S 4
2h (b + k) *3)
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The net magnetic flux below the prominence is

h—Rp

Yo = J B.(0,y)dy = Ilog

0

2h-R, m (h-Rp)
R, hy (h+hy— Rp)

(44)

Also, if the field in the prominence increases linearly at the flux tube axis to B at the
lower boundary, the flux in the prominence is

'-//P = %RPBP s (45)

where

I I m
Bp=—+ - )
R, 2h—-R, (h —‘1‘{1,+hb)2

If the fluxes Y, and VY, remain constant (43)—(45) determine A, I, and R, and in the
limit when 4 > R, they reduce to the forms previously calculated in (12). Thus there
are no new equilibria possible after the eruption and the rise speed is given from
integrating (27) by

_ 2nl? 10g£ _4nim (h — hy)

uM hoe Mu (h+ hy)(ho + hy)

U2

which increases indefinitely with A.
At the same time, since I (= I,) and R p/h remain constant ( = R,,/h,), the magnetic
energy (35) becomes,

12 B, 2
W =&{2log—h0 +m20 +—m},
2u Rpo 15 Ioh

so that only the last term varies with 4, and in fact approaches zero as & — co. This
means that the magnetic energy difference between the initial and final state is

Wi - nl,m , (46)

tho

where A, is the initial flux tube height.
Furthermore, the electric field at the neutral point from (32a) is

-1/2
EN=—(1+—2E) v,

m

where v = dh/dt.
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3.5. CONSTANT MAGNETIC TWIST

Suppose the promineﬁce twist remains constant with the filament current decreasing
with altitude like

I= I—“}? (47)

and with the flux tube radius determined by (44) from flux conservation. If an equilibrium
height (4,) and current (I,) are determined by (28) then the equation of motion (27)
integrates to give (for 2> R, and h ~ h,) the subsequent kinetic energy as
h
2 1” 2 I
LY .2 [ L
2 m 2 (h + hy)*

Sho

1 n12h2(1 _ 1)_7r10h0mx
D) p \m K

% (log h(ho + hb) + hb(ho - h) ) (48)
(h+ hy)hg (B + hy)(ho + hy)

so that the rise speed increases more slowly than in the absence of the background field
(Figure 5) and to a lower value, namely

vz~n15(1_2h0m I:log(l+ﬁ>———1 :D
WM\ IR ho) 1+ hylhg

Furthermore, if damping of various kinds dissipates this energy, there is the possibility
of a new equilibrium satisfying (43) and (47), namely ‘

h, 2m
- JCmlIhy) -1 \/ 1

which has & > h, provided 2m/(I,hy) > 1 or hy/h, < 2m(Ih,), which is always the case
for initial equilibria given by (28).

In the limit 2> R, I'log #/R is constant (= Y, ) and the magnetic energy (35)
becomes

Wy =

mloho {ZWOP + mB,, + 2_’”}
2u h Iohy K

in which the first and third terms tend to zero as 4 increases to infinity, leaving only the
energy of the background field. This implies that difference in magnetic energy between
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the initial and final states is

W ”Q{% } (49)
I ho

The flux up to the neutral point when 4, I/m < 1 and h, < y, (Equation (31)) becomes

Lh. (1+2hy/m)'?+1 m
¢ON =——1og -

while the electric field (E,,) at the neutral point (Equation (32a)) reduces to

o (L 2oTo/m) + 1

Ey= ,
dt (1 + 2k I/m) — 1

where dI/dt = — (Ioho/h*)v and v = dh/dt, so that E,, increases in magnitude with v.

3.6. PROMINENCE AS A CURRENT SHEET

If the prominence is modelled as a current sheet siretching vertically on the y-axis from
y=H,=h-12t0y=H,=~h+ 12 and with a current density of uj(kh’')/2x, the flux
function is

Hy
A= J iy log 2P gpr 4 (50)
z +ih z + ih,
H,
and the magnetic field is
H>
By+in=J Jw) ) g, m (51)
z—ih'  z+ ik (z + ihy)?
H,

The global equilibrium height 2 may be calculated from (43) where ul/27 is the total
current in the prominence sheet, while / and / can be found from (50) by flux con-
servation in and below the sheet. In general the function j(4") is given by the local
internal prominence equilibrium, but a form such as

Jh') = (Hy = B2 = H))Y

may be adopted to ensure that B is well-behaved near the ends of the prominence sheet.
However, this is not easy to evaluate and so for simplicity the global behaviour may be
estimated by setting j(h') constant ( = I/]). Then the flux below the prominence is (for
h>1)

d10=1<1+10g%>+ m_ (52)

h+ h,
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For constant Y, this determines the way I decreases with 4, more rapidly than in the
absence of the background field (Equation (22)), and becoming zero when
h + h, = m/y,. The resulting flux ¥,, and field E, are given by (31) and (32a),
respectively.

The rise speed (v) then follows from the energy equation

A
1 7 J 1_2 _ 2Im
2 ud b (h+h)

ko

dh, (53)

with the sheet height (/) determined by conservation of flux in the prominence, namely

ml ml

Vr = Ttz )2+ k) Bt h)?

(54)

in which the self-current I provides no net contribution. This shows that the prominence
height (/) increases with altitude (k) like (A + h,)>.

The possibility of new equilibria in addition to an initial one (I, A, /,) given by (43)
may be estimated by solving (43) for I together with (52) and (54) for A and / in the forms

2 1
_2h (1 + log gﬁ) + L _ 2hq (1 + log ﬁ) + (55)
(h + h)? l h+hy (hy+ hy) I ho + hy

A
(h+h 2 (ho + 1y

and

(56)

4. Current Sheet Formation

In general for Inverse Polarity solutions, as the prominence rises due to nonequilibrium
or instability, a current sheet may form about the X-point below the prominence. In
Section 3 the effect of such a sheet has been neglected, but during the reconnection
process a sheet must be present (Priest, 1985). When the reconnection is fast, the sheet
is small but it may have a complex structure, the central sheet bifurcating into pairs of
standing current sheets known as slow-mode shock waves which accelerate fast plasma
jets. Also the jets may be slowed down by current concentrations (fast-mode shocks)
as they encounter the ambient medium (Forbes and Priest, 1982; Biskamp, 1982). In
addition the central sheet may itself break up into a series of current filaments as the
reconnection becomes impulsive and bursty (Priest, 1985). When the reconnection is
slow or in a flux pile-up regime (Priest and Forbes, 1986) or is inhibited for some reason,
the current sheet may become much longer and have a greater influence on the global
evolution.
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_M »
0 X

Fig. 7. Magnetic field lines for the low-8, MHD solution of a non-equilibrium case (p/h = 0.25 and
g/h = 0.53).

4.1. GENERAL THEORY

The analysis of Section 3 refers to vacuum reconnection when there is no feedback of
the plasma on the magnetic behaviour. It is a good approximation when the current sheet
is small enough. Here we take account of a simple sheet of density j(h') stretching from,
say, P to Q at heights p and g above the solar surface (Figure 7). The magnetic field (25)
is then modified to

q
2ihl im__ f 2j(h’ Yk dh

+ (57)
22+ B (z+ih,) 2+ h'?

B, +iB, =
p

Thus, except close to the current sheet, the effect of the sheet on the global field is
negligible when its net current

J= fj(h') dn’

p
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is much smaller than the prominence current.

In general j(h') is determined by local prominence equilibrium but, as in Section 3.6,
the global behaviour may be estimated by setting j(h') = J/L, where L = q — p is the
sheet length. Then the flux below the current sheet is

h+p mp 2p
Yop =110 + +J<1+log-—> (58)
S T L

for p> L. The field (57) becomes

2ikl im 2ip]

5 L= + + (59)
22+ K (z+ih) 2+ p?

and so, when the sheet current (J) is so small that pJ/(hl) < 1 its effect is negligible.
Now from the imaginary part of (59) the field and its vertical gradient on the y-axis
are

2hl _ m N 2pJ
h=y* G+h)y p*-y

B._ =

X

(60)

and

0B

x

4hly . 2m N 4pJy
oy W-yP k) (PP
Setting these equal to zero at the midpoint (y = p + L/2) of the sheet (cf. Kaastra, 1985;
Martens, 1986) gives in the limit p > L

(61)

2hl m 2J
2 _ .2 2 7 0, (62)
B -p* (p+h) L
2hip m____y (63)

W —-p?P (p+h) L?

These two equations together with (58) may be used to determine the current sheet
properties (J, L, p) once Y, p, A, and I are known. At one extreme we have vacuum
reconnection with Y, p = You(t), J=0, L =0, p = y5 and at the other extreme no
reconnection is allowed and y,,» remains constant, equal to the initial flux (Y, (0)) up
to the neutral point at the onset of the eruption. In general, however, the reconnected
flux Y,p — Yoa(0) may lie between the vacuum value and zero.

The vertical equation of motion (27) of the prominence becomes modified to

E(M%)Zinl(i_ m _ 2PJ> (64)
e\ de) o \on (h+ k)P R - p?
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and so the current sheet exerts an extra downwards force on the prominence, tending
to slow it down by comparison with the vacuum case. Integrating yields the prominence
kinetic energy

h

1 ﬂjl_z_ 2Im _ 4plJ dh
2 pJt b (h+h) K -p?

ho

(65)

Also from (60) the net magnetic flux below the prominence is modified from (44) to

%-Rp__mb-R) o h-Rp+p

= Ilog (66)
o Ry hyh+h, - Rp) h-Rp-p
Following Section 3.4 the flux in the prominence is now
1 2hI m 2pJ
Yp =~ RP{ - 5 + 5 7 2} (67)
2 Rp(2h - Rp) (h—Rp+hy) p*—-(h—Rp)

and so, if Y, and Y, remain constant, (64), (66), (67) determine A4, I, and R, as functions
of time (Figure 8(a)).
If instead Y, and the prominence twist remains constant with

I.h
1=M, 68
" (68)

then (64), (66), (68) determine the way 4, I, and R, vary (Figure 8(b)).

4.2. A PARTICULAR SELF-CONSISTENT SOLUTION

In the limit of zero plasma beta, currents in two-dimensional, ideal MHD become
concentrated at singularities and branch cuts in the complex plane. To model an
erupting current filament with a current sheet below it we may choose a solution of the
form

iA(ZZ +P2)1/2(22 + q2)1/2
22(z% + W?)

which incorporates a line current at z = ik, an image line current at z = —ih, a two-
dimensional dipole field at z = 0, and a current sheet stretching from z = ip to z = iq as
shown in Figure 7.

The three parameters A4, p, and g are not arbitrary, but are instead fixed by the
following ideal-MHD constraints.

(i) Near z = ih the field should behave like I/(z — ih), where I may be a function of
h.

(i1) Near z = 0 the field should behave like im/z?, where m is constant.

B, +iB, = (69)
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Fig. 8. (a) The magnetic work W (in units of nI?/u) of the self-consistent, MHD solution for # > 2 (solid

curve) and the vacuum solution for 4, = 0 (dashed curve) as a function of filament height /4 (in units of

Yy = ho/\/g , the X-line height when there is no current sheet). (b) The corresponding upper and lower edges

of the current sheet (¢ and p, respectively) as functions of height 4. (¢) The corresponding velocity as a
function of height.

(iii) The magnetic flux between the dipole at z = 0 and the bottom edge of the current
sheet at p should be constant.

(iv) The magnetic flux between the filament at z = ik and the top edge of the current
sheet at g should also be constant.

The form (69) represents a generalization of the field of Section 3.2 to include a
current sheet of finite length, and it has the same property that the normal photospheric
field (along z = x) is constant in time and independent of 4, ¢, and p (i.e., the magnetic
field is line-tied at the photosphere).
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Applying conditions (i) and (ii) at z = ik and 0 gives
A = mh*|pq (70)

and

2hpa iy ()
12— Y22 - )2 ]

where [ is a yet-to-be-determined function of 4. The flux condition (iii) gives

J fO)dy = Yop, (72)
where
mhz(pz _ y2)1/2(q2 _ y2)1/2
pqy*(y*> — 1)

is the magnetic field along the y-axis.
If the initial state is of the form (33), then we have

JO) =

op = J So) dy, (73)
where

fo») = 2”—’ -
Y
in terms of the initial filament current (/,), filament height (4,) and neutral line height
(yn)- The integrals (72) and (73) are infinite due to the singularity of the diple field at
z = 0. This singularity can be removed without affecting the flux constraint (iii) since
the dipole field is independent of /2 and, hence, constant. Subtracting the dipole con-
tribution between z = 0 and z = iy, from both sides of (72) gives

Jf(y)+—dy Jz”""’d J—dy

or equivalently,

p
20,2 ON2(,2 _ ,2)1/2
hoji(_h(p ¥ (g% - %) +1>dy=
J Y (

2 m* - y*)pq

=log\/§+1+\/§p—h0. (74)
J5-1 2
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In deriving (74) we have used the expressions h, = 2m/l, and y, = ho/\/g from
Equation (34).

So far, we have applied conditions (i) through (iii) to determine the parameters 4, p,
and ¢, but these three parameters are not yet fully specified since they depend on (k)
which remains undetermined at this point. To determine I (%) we use the last condition
(iv) which requires that the flux between the top of the current sheet (¢) and the filament
(h) be constant.

Recall that in Sections 2.1 and 2.2 we found for the vacuum case with no current sheet
that the filament current cannot be kept constant unless there is an external source to
pump energy into the system. If no such external source exists, then the current in the
vacuum case decreases as

_J log[(2ho/Rp) — 1]
® log[(2h/Ry) - 11

where the filament radius R is constant. In the limit that R, equals zero, I = I,,, and
the current no longer increases as h increases, provided /4 approaches infinity more
slowly than R, approaches zero. However, if & approaches infinity more rapidly than
R, approaches zero, the current I at infinity can approach zero rather than I,.

For the self-consistent solution of this section we have already taken the limit R,
equals zero in obtaining condition (iv), so one expects that, as in the vacuum case, I = I,
in this limit. To show this explicitly we follow the same procedure that we used at the
base to obtain (74) from the flux conservation condition (ii). The magnetic flux from the
top of the current sheet to the filament is

l%h=-[f00dya (75)
where ’

_ mhz(p2 ~ p)2(g2 - y2)1/2

) pgy*(y* — h?)

As before, the integral (75) is infinite, but this time the infinite value is due to the
singularity at y = h instead of the one at y = 0. We can remove the singularity at y = A
by subtracting the initial filament field between y, and A from both sides,

h ho h—(ho—ynN)
I I I.d
.Pm+ °®=J °—%®+ o
y - y+hy y y—h
q YN q

or equivalently when I = I,
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h

20,2 _ 22\1/2 (4,2 _ ,2)1/2
J ! <l_hoh(y )02 - ) )dy=
q

y—h 2pqy*(y + h)

(/5 = D2k L 76
¢ 02 -5 W/5-D. (76)

At y = h the integrand of the integral in (76) reduces to

Iy -1

(77)
y—=hy — h

when (71) is used to eliminate m. Now if I # I, (77) is infinite, and the corresponding
integral in (76) is also infinite. Thus, for I # I, there is no solution which satisfies (76).

For I = I, the value of the integral in (76) can be found by taking limits. We do this
by letting

I=1,(1-9)
and rewriting (76) as

h—Rp

1 -
g(h) + lim f Y og 25 1=V5_ - 0.2945 (78)
R,—0 y—h 1+/5 2

q
whereé

h

1 hohz(yz _p2)1/2 (2 - q2)1/2 >
- -1)dy-
s J y—h ( 2pqy*(y + h) g

q

log 2(/5 - Dk, Dho
N

Evaluation of the integral in (78) gives

. h-gq
gh) + RI,EI}O dlog s 0.2945 . (79)

D

Unlike the integral in (76), g(%) can easily be evaluated using L’Hdpital’s rule. Table I
lists numerically determined values of g, p, and ¢ as functions of 4, where g and p are
determined by numerical integration of the lower flux constraint (74). (See also
Figure 8(b).) The table shows that g(k) is a slowly increasing function of 4. Thus, to
satisfy the upper flux constraint (79) we require that

g(h) +0.2945 _

0= - lim
R,~0log[(h — q)/Rp]

(80)
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TABLE 1
Numerically derived values of g(h)

h P q g

2.0 0.894 0.894 -0.294
2.1 0.834 1.012 -0.257
22 0.816 1.088 -0.219
2.3 0.805 1.156 -0.182
35 0.769 1.874 0.200
4.6 0.762 2.498 0.463

Note that although 0 is zero, the term in which it occurs in (79) is not. Putting this term
to zero corresponds to setting the filament current constant even when the filament
radius R, is finite, and when this is done, flux is not conserved between the filament
and the upper edge of the current sheet. Just as in the vacuum case, the current in the
filament must decrease as 4 is increased. However, as R, approaches zero the amount
of current decrease required becomes increasingly small because the amount of flux
between the sheet and the filament is approaching infinity. Thus in the limit R, = 0, only
an infinitesimally small change in the filament current is required.
Filament equilibria occur when the external force on the filament is zero, i.e.,

lim[f(y)+—l—h:|=0. (81)

y—h y —

In other words, after a little algebra,

mI[h* = 3(p* + ¢*)h* + 5p’q*]

A’pq(h* - p*)'72 (h* - ¢?)'* " )
which has the two solutions
W =330 + @) + /9" + 94 - 2°¢°] (83)
and
h=o0. (84)

The first solution is unstable, while the second is stable. When the lower flux constraint
(73) is applied one finds p = g = y,,, and (83) reduces to

h=ﬁyN. (85)

Thus, there are only two equilibria. The first has no current sheet and corresponds to
the vacuum model configurations when 4, = 0. The second equilibrium has a semi-
infinite current sheet which extends to & = oo from & = p_,, where

mm/l,

P T mI/5+ 0I5 - DI+ 5
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Equation (86) is obtained by evaluating (74) in the limit that 4 and g are much larger
than p.

The magnetic work and corresponding kinetic energy are obtained by numerically
integrating the force on the filament over 4. This force is simply I times the left-hand
side of (82), and when integrated it gives the magnetic work and filament speed as shown
in Figure 8. As in the vacuum model the magnetic energy of the system decreases as the
filament moves upwards, but the magnetic energy release in the MHD case is only about
129, of the energy released in the vacuum case at any given A. The difference in energy
is due to the formation of the current sheet.

5. Conclusion

We have modelled in Section 2 an erupting prominence as a horizontal twisted magnetic
flux tube being repelled from the solar surface by magnetic pressure forces. Mathemati-
cally, this is treated by replacing the flux tube by a line current (/') and the repulsive force
by the force from an image line current below the photosphere. The prominence height
(h) and rise speed (v) are determined by the equation of motion, but one first needs an
extra physical assumption to determine the current (/). Holding I constant by itself is
found to increase the magnetic potential energy rather than decrease it as the promi-
nence rises since the magnetic flux (¥, ) below the prominence increases. Holding
constant instead means that one needs one more assumption to determine the promi-
nence rises since the magnetic flux (y,,) below the prominence increases. Holding
constant instead means that one needs one more assumption to determine the
prominence radius (R ). For example, if R , remains constant, then the current decreases
logarithmically with height and the rise speed increases up to a constant value at large
heights. Alternatively, if the azimuthal flux inside the prominence is held constant (as
in the numerical experiment of Forbes, 1989), then R, may increase linearly or, if R,
is constant, a surface current forms on the filament. A preferable assumption is to set
the prominence twist constant, in which case the current decreases like £~ !, while the
tube radius increases to a maximum and then declines towards zero and the speed
increases up towards a constant value.

When the prominence itself is modelled as a vertical current sheet, its current falls
off logarithmically with height when the flux below the prominence is fixed and the rise
speed increases up to a constant value.

When a background magnetic field is incorporated with a dipole form having a depth
h,, (Section 3), the initial equilibrium before the eruption of a prominence with Inverse
Polarity can also be modelled. As the dipole moment (m2) decreases or the flux tube twist
or current increases, so the prominence passes slowly through a series of equilibria until,
when (m/h,I) becomes less than 2, there is no longer an equilibrium and the prominence
erupts. If the prominence current or flux remains constant, the rise speed increases
indefinitely, while the electric field (E,) at the neutral point below the prominence
increases to a maximum and then decreases towards zero at large heights. If the
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prominence twist remains constant the prominence speed increases to a constant value,
smaller than in the absence of the background field, while the reconnection electric field
is proportional to the prominence speed.

The effect of gravity is also included, which is more important for quiescent promi-
nences than for active-region prominences (where the magnetic field dominates). When
m and I have the same sign there are two equilibrium solutions for prominences with
Inverse Polarity and heights below G, = uMg/(nI?) in which the repulsion from the
image current acts upward while gravity and the background force act downwards.
When m and I have opposite signs there is an equilibrium of normal polarity at a height
larger than G, and with the background force now acting upwards. If gravity and the
prominence mass (M) are constant the lower inverse polarity branch is unstable, while
the upper inverse polarity branch and the normal polarity branch are stable, although
eruption of a normal polarity prominence may occur if gravity decreases rapidly enough
with height or if the prominence mass drains away as the prominence moves upward.
Alternatively, an inverse polarity prominence may erupt by non-equilibrium as before
when gravity is insufficient to stop the eruption as the prominence passes the upper
branch.

Finally, a self-consistent ideal MHD solution is obtained in the low-f limit which
describes the formation of a current sheet below an erupting filament. The solution
shows that the formation of the current sheet does not prevent the ideal instability or
non-equilibrium which drives the eruption. However, the formation of the sheet does
reduce the energy released by the ideal process by about 909, . In practice reconnection
at the sheet will be driven by the eruption (Steele and Priest, 1989) and so will release
the extra energy.
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