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SUMMARY 
The stellar mass function for low-mass stars is constrained using the stellar luminosity 
function and the slope of the mass-luminosity relation. We investigate the range of 
mass functions for stars with absolute visual magnitude fainter than Mv~ + 5 which 
are consistent with both the local luminosity function and the rather poorly 
determined mass-absolute visual magnitude relation. Points of inflexion in the 
mass-luminosity relation exist because of the effects of H", H2 and of other 
molecules on the opacity and equation of state. The first two of these correspond to 
absolute magnitudes Mv~ +7 and Mv~ +12, respectively, at which structure is 
evident in the stellar luminosity function (a flattening and a maximum, respectively). 
Combining the mass-luminosity relation which shows these inflexion points with a 
peaked luminosity function, we test smooth mass functions in the mass range 

0.9-0.1 ^o* The smoothest stellar mass function which is consistent with all observa- 
tional data has the form of a Gaussian in log10m for mass, m, greater than 0.35 
and is flat for m less than about 0.35 A mass function that continues to increase 
as an inverse power-law to low masses is not consistent with observations. All mass 
functions which are consistent with stellar data for stars more massive than 0.1 
are convergent when extrapolated to zero mass. The total mass included in objects of 
masses lower than 0.35 ^0, assuming that the mass function continues smoothly 
below the minimum mass for hydrogen burning stars, is less than ~ 20 per cent of the 
total mass in more massive stars. 

1 INTRODUCTION 

Like the stars themselves, discussions of the absolute number 
of very low-mass stars have tended to generate more heat 
than light. In part this is due to the intrinsic importance of 
very low-mass stars to an understanding of the location and 
initial mass function of stellar formation: do low-mass stars 
form in the same places as high-mass stars and what is their 
possible contribution to the various dark matter problems? 
And in part it is due to the rather poor observational and 
theoretical information which has been available until 
recently. Salpeter (1955) first showed that the initial mass 
function can be written approximately as a power law of the 
form ^(m)dm = 0.013m~adm, with a = 2.35, for masses in 
the range 0.4-10^#o- Very little information on lower mass 
stars was available at that time. 

Miller & Scalo (1979) later carried out an extensive study 
of the stellar mass function, showing that the best available 
representation is a half Gaussian in log10m in the mass range 
0.1^o<m<60^o. The Miller-Scalo mass function 
flattens at a mass of approximately 0.6 80 it can be 
extrapolated to zero mass without divergence. It is important 
to remember that the stellar mass function derived by Miller 

& Scalo assumes a distribution of field stars by magnitude 
(luminosity function) which increases smoothly with increas- 
ing magnitude to Mv~ +15, and a mass-luminosity relation 
which is roughly linear in log10m for low masses. 

The most detailed study of the stellar mass function was 
made by Scalo (1986). He derived a mass function for low- 
mass stars that peaks at m«0.3^o and decreases rapidly 
for m<0.2^o. Again this conclusion is sensitive to the 
assumption that the mass-luminosity relation is roughly a 
power law for low masses. 

In all this work the shape of the derived stellar mass 
function has reflected the shape of the stellar luminosity 
function. However, it is important to remember that the 
stellar luminosity function is related to the stellar mass 
function through the slope of the mass-luminosity relation. 
This crucial point has been stressed before by D’Antona & 
Mazzitelli (1983). They assumed a theoretical 
mass-luminosity relation which flattened below about 
0.13^05 ancl obtained a luminosity function with a peak at 
Mv~ 14 from an underlying monotonically increasing mass 
function. The luminosity function derived by D’Antona & 
Mazzitelli is not consistent with recent determinations of the 
observed luminosity function (see Scalo 1986, for further 
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discussion). Nevertheless, the possibility that the mass- 
luminosity relation can be the origin of features, such as a 
change of slope or even of a maximum, in the luminosity 
function, and hence that there may be no such features in the 
stellar mass function, deserves further investigation. Such an 
investigation requires consideration of both the stellar lumin- 
osity function and the stellar mass-luminosity relation. 

There have been a variety of recent determinations of the 
stellar luminosity function for low-luminosity field stars near 
the Sun, following the method of Reid & Gilmore (1982). 
The most extensive are those by Gilmore, Reid & Hewett 
(1985) and Hawkins & Bessell (1988). Recently, these have 
been combined with a new survey by Stobie, Ishida & 
Peacock (1989). They obtained a luminosity function which 
agrees well with the other recent determinations. It is now 
well established that the stellar luminosity function from all 
these surveys of low-mass field stars in the solar neighbour- 
hood shows a maximum at Mv~ 12 and a subsequent 
decrease at least as far as Mv~ 16.5. At lower luminosities 
poor statistics, a shortage of stars with good parallax 
distances to calibrate the absolute magnitude-colour rela- 
tions and considerable uncertainties in the bolometric 
corrections required for comparison with evolutionary tracks, 
continue to limit confidence in the available results, in spite 
of their internal consistency. The consistency of recent 
studies of the solar-neighbourhood luminosity function for 
stars with MV<16.5 allows us to place new limits on the 
underlying stellar mass function. 

Essentially we are dealing with the following question in 
this paper: how much of the observed luminosity function 
might be due to structure in the mass function and how much 
must be due to structure in the mass-luminosity relation? The 
form of the low-mass mass-luminosity relation is not well 
known so we test the following hypothesis: we assume that the 
maximum in the luminosity function near Mv~ 12 is due to 
an inflexion in the mass-luminosity relation and is not 
caused by a real feature in the mass function. To do this we 
choose a range of mass functions and then calculate the 
resultant mass-luminosity relation which converts each mass 
function into a luminosity function, consistent with that 
derived by Stobie et al (1989). These mass-luminosity rela- 
tions are then tested for consistency with the available obser- 
vational constraints on the mass-luminosity relation. The 
subset of the mass functions which is consistent with the 
observed luminosity function is identified. We emphasize 
that this method assumes that all structure, consistent with 
the rather weak observational constraints on the 
mass-luminosity relation, is real. This is unlikely to be cor- 
rect. However, available theoretical mass-luminosity models 
do indeed show that structure with a similar amplitude and 
similar location to that required to explain all the observed 
structure in the stellar luminosity function for stars with 
Mv> + 5 may be due to structure in the mass-luminosity 
relation. 

2 FROM LUMINOSITY FUNCTION TO MASS 
FUNCTION 

The aim of the present investigation is to determine the 
maximum range of stellar mass functions which is both con- 
sistent with the observed stellar luminosity function and 
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allowed by the observational constraints on the stellar 
mass-luminosity relation. In practice the luminosity function 
is determined to better precision than the mass-luminosity 
relation. Thus we proceed by adopting a smooth (numerical) 
description of the luminosity function, generate a range of 
mass functions, and determine which of these mass functions 
is consistent with both the adopted luminosity function and 
the observational constraints on the mass-absolute visual 
magnitude {m-Mv) relation. The constraints on the adopted 
m-Mv relation are the observations of binary stars, which 
were compiled by Popper (1980). We restrict the discussion 
to the stellar mass function for stars less massive than 
~ 0.9^o since these stars have not evolved off the main 
sequence. This avoids the need for a model-dependent and, 
for the present purposes, irrelevant consideration of the star 
formation history of the Galaxy. 

The luminosity function for low-mass stars which we 
adopt is shown in Fig. 1. For stars with MV>1 this is 
taken from the Stobie et al (1989) compilation and re- 
analysis of all recent determinations for very low-luminosity 
stars. For stars with 3^MV<1, it is taken from the extensive 
study of all available determinations by Scalo (1986). The 
luminosity functions of Stobie et al and of Scalo are in good 
agreement in their region of overlap. 

We require a smooth fit to the luminosity function for the 
analysis below. The adopted fit is shown in Fig. 1, and is a 
seven-knot cubic spline fitted to \p(Mv), where xp{Mv)dMv 

is the number of stars per cubic parsec with magnitudes 
between Mv and Mv+ dMv. We emphasize that this repre- 
sentation of the luminosity function has no theoretical basis. 
We require only that it be a smooth and satisfactory repre- 
sentation of the data. The reduced chi-squared of the fit is 
1.011, confirming its adequacy for present purposes. 

A further assumption, which is implicit in our analysis, is 
that the m-Mv relation is single valued. For this to be valid 
all stars must be isolated, have similar composition and lie on 
the zero-age main sequence. This last requirement is not 
likely to be met for stars with m> 0.9^o where significant 
evolution across the main sequence can have occurred in the 
life-time of the Galaxy, and for very low-mass stars, which 
have long contraction times to the main-sequence, and may 
still be somewhat above the zero-age main-sequence. Both 
these effects make a star over-luminous for its true mass, and 
lead to the assigned mass being too large. At the high-mass 
end this tends to raise the amplitude of the resultant mass 
function for the highest mass stars and to flatten the slope 
slightly. At the low-mass end the effect is to lower the 
amplitude of the mass function for the lowest masses and 
again to flatten the slope of the mass function slightly (assum- 
ing a decreasing mass function with increasing mass). Both 
these effects should be small, and have been minimized by 
our restriction of the mass range of interest to be 0.09< 
m<0.9^#o- 

The effects of an abundance dispersion on the 
mass-luminosity relation are likely to be minor since the 
luminosity function data are for field stars within 100 pc of 
the Sun. The abundance dispersion for such stars is cr[Fe/H] ~ 
0.2 dex (Gilmore & Wyse 1985). The slope of the abso- 
lute magnitude-abundance relation is ~ 1.16[Fe/H] 
magnitudes per dex, for [Fe/H] > - 0.6, so that any real fea- 
tures in the mass-luminosity relation will tend to be 
smoothed with a Gaussian of dispersion <0.23 mag in Mv. 
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Figure 1. The stellar luminosity function for field stars near the Sun (points) together with a smooth fit (solid line) adopted for the present 
analysis. The luminosity function data are from Stobie ei a/. (1989) for Mv> + 8, and from Scalo (1986) for more luminous stars. 

This will also lead to a small Malmquist-like bias, but will not 
affect the results of this paper significantly. Other effects 
which will lead to a real dispersion in the mass-luminosity 
relation include mass loss, rotation, magnetic fields and 
binary interaction. None of these is likely to be important for 
the samples of interest here since the uncertainties are domi- 
nated by the small number of points available to calibrate the 
mass-luminosity relation. 

From the definition of the luminosity function we have 

_ dN _ dN dm _ _ dm 
^ dMv dm dMv dMv' 
where N is the number of stars per cubic parsec, m the stellar 
mass, My the absolute magnitude and ^(m) dm is the number 
of stars per cubic parsec with masses between m and 
m + dm. Equation ( 1 ) can be integrated to obtain the relation 
between mass and absolute visual magnitude. To select 
suitable boundary conditions we consider a zero-age solar 
mass model as a fixed point on the m-Mv relation and from 
a theoretical model (see Section 3.1) we take the visual 
magnitude of such a star to be Mv=5.15. We also fix the 
relation so that it passes through a mass m = 0.09^o when 
Mv= 16.5. This ensures that the mass-luminosity relation is 
consistent with the theoretical curve discussed below and 
also ensures that the relationship is consistent with the 
observational data points for the lowest mass stars which 
have reasonably precise mass and luminosity determinations 
available (Popper 1980). 

Thus, integrating, we have 
' Mv f m 

ip dM'v= - Çdrri, (2) 
J 16.5 J 0.09 

and 

£ dm. (3) 
0.09 

The second integral has the effect of normalizing the mass 
function, g, so that the number of stars observed between 
Mv= 16.5 and M^= 5.15 is always equal to the number of 
stars with masses between 0.09</#0 and l.O^o* To compute 
the mass-luminosity relation we first apply this normaliza- 
tion and then compare the values of the two integrals in 
equation (2) over the range of interest. The various choices 
for the mass functions and the results are discussed in 
Section 4. 

We emphasize that the m-Mv relation computed here 
from the luminosity function and an assumed mass function 
has no theoretical basis, but is entirely observational. We also 
emphasize that both the stellar luminosity function and the 
observational constraints on the m-Mv relation are based 
directly on observations in the visual photometric pass band. 
Thus the derivation of the acceptable range of mass func- 
tions in this paper is entirely free of the need to adopt a 
bolometric correction scale. In the section below we discuss 
various theoretical models of the m-Mv relation to see if the 
structure required to convert a smooth mass function into 
the observed peaked luminosity function is compatible with 
current theory. This comparison is sensitive to the adopted 
bolometric corrections. We emphasize this point in con- 
sequence of the detailed analysis of the form of the low-mass 
stellar mass function by Piskunov & Maikov (1987), who 
considered the effects of uncertainties in available theoretical 
mass-luminosity relations on mass functions derived by 
direct multiplication of the observed stellar luminosity 
function by the slope of a theoretical mass-luminosity relation. 
They show that uncertainties in the theoretical models them- 
selves, compounded by further uncertainties in the derivation 
of appropriate effective temperatures and bolometric correc- 
tions, are so large that no useful mass function can be derived 
in this way. It is for this reason that we have followed the 
inverse procedure here, and allow any m-M^ relation which 
is not inconsistent with direct observational constraints. 
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3 THE MASS-LUMINOSITY RELATION 

3.1 Theoretical models 

As a means of illustrating the level of complexity in the 
mass-luminosity relation, we have calculated theoretical 
models of zero-age main-sequence stars using the evolution 
program written and developed by Eggleton (1971, 1972). 
The basis for the equation of state used in this code is 
described by Eggleton, Faulkner & Flannery (1973). In its 
current (updated) form it allows for ionization of hydrogen 
and helium, and also for the dissociation of H2, but no other 
molecules. A better correction for pressure ionization is also 
included. Convection is treated by a mixing length theory 
(Böhm-Vitense 1958) as described by Baker & Temesvary 
(1966) with a, the ratio of the mixing length to the pressure 
scaleheight, taken to be 1.5. Unfortunately this is the weakest 
part of stellar structure theory and cannot be expected to be 
a good approximation for low-mass stars with deep convec- 
tive envelopes. For this reason more than any other these 
theoretical models are not to be trusted quantitatively. Also 
important in the very outer layers of these stars are the radia- 
tive opacities which are taken from Cox & Stewart (1970). 
Included in these are the effects of H2, H", H2

+ and He“ 
along with all the normally ionized species for a population I 
mixture. Other molecules such as CO and H20 that may well 
be important are not included nor is Coulomb pressure. 

For lower masses than approximately 0.15^#o (which are 
not important for present purposes) the present set of 
models is inaccurate, mainly owing to the neglect of other 
molecules (CO, H20, etc.) and the effect of grain formation, 
and because we do not fit a detailed model atmosphere. 
Rather, we adopt an Eddington approximation (Woolley & 
Stibbs 1953) for simplicity. However, the models presented 
here are sufficiently reliable to illustrate the important point 

Figure 2. The bolometric luminosity-mass relation for the theore- 
tical models described in the text, both including the effects of 
molecular hydrogen on the equation of state (solid line) and 
suppressing its effect (dotted line). The models are indicative rather 
than definitive, but emphasize the important feature of all available 
models for present purposes, namely that there is a point of 
inflexion in the mass-luminosity relationship near 0.3</#o- This 
mass corresponds approximately to the luminosity at which a maxi- 
mum is evident in the luminosity function of Fig. 1. 
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for present purposes, namely that considerable structure 
exists in the theoretical mass-luminosity relation at just those 
absolute magnitudes where structure is seen in the luminosity 
function. 

We have computed 103 models for masses between 
l.OOO^o and 0.093^o equally spaced in log10m and with 
a standard population I mixture (A= 0.7, Y=0.28 and 
Z = 0.02). Fig. 2 illustrates the bolometric luminosity-mass 
relation for these models and also shows a fairly good 
analytic fit given by 

0.1400w2 +46.81m9 ^ 
2.395 x 10~10m~9+ 1 + 57.99m45 4/ 

where the mass is in solar units. The radius can be fitted by 

mL25(0.8478m2 + 0.1159) 
2.241 x 10-11m_8 +4.613 x 10~2 + ra2 ^°’ (5^ 

where JfQ and are the solar bolometric luminosity and 
radius, respectively. 

Using these and assuming a blackbody relationship we can 
obtain the effective temperature and thence estimate the 
bolometric correction by interpolating the tables of Popper 
(1980) and of Greenstein, Neugebauer & Becklin (1970, for 
the low temperatures) using a seven-knot spline. From the 
bolometric luminosity and the bolometric correction we then 
obtain the absolute visual magnitude, Mv. We expect the 
errors introduced due to the very uncertain bolometric 
corrections at the lowest temperatures to be appreciable, 
making our models quite uncertain for masses below 
approximately 0.15 */#0. We will not discuss the uncertain- 
ties in detail, as the theoretical models implemented here are 
required only to test the plausibility of the existence of real 
structure in the m-Mv relation. It is sufficient to stress the 
fact that theoretical models in general are very uncertain in 
the very low-mass regime. 

There is a point of inflexion in the m-Mv relation near 
0.33^q. This change in the m-Mv relation is a result of the 
formation of hydrogen molecules on the equation of state in 
the outer layers (coupled with the interior by convection) of 
lower mass stars. The physical basis of this result depends on 
the fact that the mean molecular weight of hydrogen 
molecules is twice that of hydrogen atoms. Thus the forma- 
tion of hydrogen molecules means that the pressure is 
reduced, causing contraction and core heating. The result is 
higher luminosity than if recombination were prevented. In 
addition, there is a rapid change in the interior structure of a 
star near 0.33 ^0, with more massive stars having radiative 
cores and lower mass stars being completely convective, 
further enhancing the contraction and increasing the 
luminosity. 

To confirm the origin of this effect we calculated another 
set of models in which hydrogen recombination was sup- 
pressed by reducing the dissociation energy from 4.48 to 
1.00 eV, but with unaltered opacities. These models are 
shown as a dotted line in Fig. 2 and indeed the inflexion has 
disappeared. We emphasize that this effect is not a new 
feature of these models, but has been established for many 
years. Copeland, Jensen & Jorgensen (1970) first discussed 
the existence of this point of inflexion, and attributed it to the 
lowering of the adiabatic gradient in the H2 dissociation 
zone. 
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A recent and comprehensive study of models of low-mass 
stars, by Dorman, Nelson & Chau (1989; their fig. 2), 
also shows this feature in all the models studied. They also 
illustrate the limitations of the models described here outside 
the range of present interest. The agreement is good between 
the two sets of models for masses above about 0.15*#o> but at 
lower masses the more detailed models of Dorman et al. are 
systematically cooler and of lower luminosity than those 
described here. The cause of this difference is the effect on 
the opacity and equation of state of the star of the other 
molecules (H20, CO, etc.) and grains. A comparison of the 
sophisticated low-mass models constructed by Burrows et al 
(1989) and those of Dorman et al (1989) shows that there 
remains a substantial uncertainty in the theoretical m-Mv 

relations. We re-emphasize that these uncertainties in the 
models do not affect the conclusions of this paper. Both the 
m-Mv relation and the stellar luminosity function, in units 
of stars per unit volume per absolute visual magnitude, are 
based entirely on observations in the visual photometric 
system and are independent of uncertainties in bolometric 
corrections and in available stellar models. 

3.2 Observational constraints on the mass-luminosity 
relation 

Available observational constraints on the mass-luminosity 
relation have been compiled by Popper (1980). These data, 
excluding obviously evolved stars and with Popper’s derived 
observational errors, are shown in Fig. 3, as is a ten-knot 
spline fit. To fit the spline we utilized Popper’s data in the 
mass range 0.1-1.6^o. 

Subsequent to Popper’s (1980) review, mass-luminosity 
data have been derived for several other low-mass stars. 

These recent data are well reviewed by Liebert & Probst 
(1987) and are essentially in agreement with the data com- 
piled by Popper. In most cases, however, the formal uncer- 
tainties are sufficiently large that these data provide no useful 
information for present purposes. They are not shown in 
Fig. 3. 

Two exceptions to this deserve comment. The binary Ross 
614, shown in Fig. 5 with large open circles, appeared 
anomalous in fig. 7 of Scalo (1986). The more recent photo- 
metric data reported by Liebert & Probst (1987) show the 
members of Ross 614 to be in good agreement with the data 
for other stars. The second exception is Wolf 424, for which 
Heintz (1989) has determined the masses of the equally 
luminous components (MI/= 15.04) to be 0.059^o and 
0.051 «/^o with small formal errors - in striking disagreement 
with data for other stars. These results were obtained at the 
resolution limit of the equipment used (the orbital semi- 
major axis has a separation of 0.7 arcsec, and the predominant 
number of observations are photographic exposures) so that 
confirmatory observations would be of considerable interest. 
In the interim we do not include the data for Wolf 424 in the 
present analysis. 

The theoretical models discussed in Section 3.1 are con- 
sistent with the observational data, supporting the identifica- 
tion of real structure in the mass-luminosity relation. Points 
of inflexion in the mass-luminosity relation occur near 
Mv= + 7, mass « 0.6*/#o, owing to the H" opacity, and near 
Mv~ 12, mass «0.3^o, owing to the effects of molecular 
hydrogen. Further structure is expected at lower masses 
where additional molecules and grains become important but 
where current theoretical models are still uncertain. The 
observational data shown in Fig. 3 are the constraints on the 
range of mass-luminosity relations which we utilize to limit 
the available range of mass functions. 

Figure 3. Available observational data to determine the mass-absolute visual magnitude relation, from the compilation by Popper ( 1980). Also 
shown are a ten-knot spline fit (solid line), the theoretical model from Fig. 2 including the contribution from molecular hydrogen (dashed line) 
and the theoretical model from Fig. 2 without molecular hydrogen included (dotted line). 
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4 STELLAR MASS FUNCTIONS 

The identification of points of inflexion in the m-Mv relation 
forms the basis for our set of constraints on the stellar mass 
function. Since the m-Mv relation is not required to be 
(nearly) linear at low masses, we have the freedom to allow 
features in this relation to be the explanation of features in the 
observed luminosity function. Thus a maximum in the 
observed luminosity function need not correspond to a 
maximum in the stellar mass function. However, since the 
available theoretical mass-luminosity relations remain 
uncertain, we proceed by allowing any level of structure in 
the m-Mv relation which is not inconsistent with the direct 
observational constraints. We specify a wide range of smooth 
mass functions, and determine which can be made consistent 
with the observed luminosity function by adoption of an 
allowed relation. 

Using these ideas and a variety of mass functions, we 
calculate the required mass-luminosity relations and 
compare them with the data in Fig. 3 using a %2 test: 

440 points (M) used to represent the continuous fit to the 
models. 

We consider the following mass functions and in each case 
record n, the number of free parameters that are varied to 
minimize x2' 

(i) Gaussian (GS) 

7 £gs(™) = - exp k o 2a1 (B) 

where a and fi are the free parameters and n = 2; 
(ii) Miller-Scalo (MS) 

7 Ims("i) = —^—: 
k |logio<7| 

exp 
(logiom —logio/<)2 

2(log10<7)2 (9) 

where o and ¡u are the free parameters and n = 2; 
(iii) a Miller-Scalo function with a linear extension to low 

masses from the mass, m*, at which the slopes are equal 
(MSLi) 

7=E 
m- m(MK/) 

<5ra. 

V%v (6) 

where is the reduced %2 and v = N-n-l is the number 
of degrees of freedom, with N being the number of data 
points constraining the mass-luminosity relation, and n the 
number of free parameters used in the model, m,, MVi corre- 
spond to the ith star and is the error in its mass. We 
calculate x2 over the interval MK= 5-16, so that N=23 (only 
21 points appear as two pairs are the same). We assume that the 
deviations follow a normal distribution and use the reduced 
xl to identify a 5 per cent two-sigma confidence limit for 
consistency with the observations. Mass functions that 
require a greater value of xl are rejected as being incon- 
sistent with the observations constraining the mass-lumino- 
sity relation. 

To compare with the theoretical model we calculate the 
variance (used here as a probability indicator) 

s'2 — - 
M 

M-Ï ,5 
(7) 

where m¡ are mass values from the computed mass-lumino- 
sity relation corresponding to m- from the theoretical 
relation, and we evaluate it over the range Mv= 5-16, with 

^ImsuM = - 

liogioH 
exp 

(logiflffl —login//)2 

2(log10CT)2 , if m > m* 

ó x m + - £MS(ra*)- ó x m*, if m<m* 
k 

(10) 

where ó = d/dra[(l//c)§MS(ra*)] with a, // and ô the free 
parameters and n = 3\ 

(iv) power-law (Po) 

7 Ç?o(m) = m a, k 
(id 

where a is the free parameter and n=l. The factor k allows 
for the normalization of equation (3) in all cases. 

By varying the parameters we have minimized x2 f°r the 
four mass functions listed above (MS, GS, Po and MSLi with 
ó = 0 [MSLil]). The resulting parameters and the corre- 
sponding x2 and 52 values are listed in Table 1. For compari- 
son we also calculate and present in Table 1 the %2 for a 
Salpeter (SL) mass function which is the power law with 
a = 2.35. 

We have used the 5 per cent confidence limit to place con- 
straints on the low-mass region by considering a range of 
linear extensions to the Miller-Scalo mass function with var- 
ious positive and negative slopes, but constraining fi and o to 

Table 1. Mass function properties. 

Mass Function 

MSLil 
MSLill 
MSLilll 

MS 
GS 

Power Functions 
Po 
SL 

Parameters 
/z(M0) <r(M@) 8(Mq1) 

0.35 
0.35 
0.35 
0.23 
0.23 
a 

0.70 
2.35 

0.54 
0.54 
0.54 
0.42 
0.42 

0.0 
+6.0 
-5.0 

18.6 
30.6 
30.8 
17.6 
18.4 

52.1 
1552.0 

2.7 - IO"4 

7.9 • 10“4 

3.7 • 10"4 

4.7 • IO'4 

2.4-lO"4 

0.02290 
0.02449 
0.02093 
0.03720 
0.03701 

17.0 • 10"4 0.03231 
587.0 • 10“4 0.00301 

p(M®pc 3) 
(m < O.35M0) 

0.0052 
0.0048 
0.0058 
0.0078 
0.0050 

0.0063 
oo 
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the values corresponding to a flat extension to low masses. 
We have v = 21 for which ^^<1.56 for a 5 per cent con- 
fidence interval. The mass functions with the most extreme 
allowed linear extrapolations of the Miller-Scalo mass func- 
tion consistent with the 5 per cent confidence limit, desig- 
nated here MSLill and MSLilll, are included in Table 1. The 
resulting mass-luminosity relations are illustrated in Fig. 4. 

In addition to summarizing the quality of the various numeri- 
cal descriptions of the mass function adopted here, Table 1 
also gives the normalization constant k introduced in equa- 
tions (8 )-( 11). 

The x2 values for mass functions defined by a Gaussian, 
by the Miller-Scalo function, and by the Miller-Scalo func- 
tion with a flat extension to low masses all lie within the 60 

Figure 4. The mass-absolute visual magnitude relations required to transform between the observed luminosity function shown in Fig. 1 and 
the MS mass function, with three different linear extrapolations to very low masses (equation 10). The three extrapolations are a mass function 
which is constant below 0.35^0 (solid line; MSli I), and the maximally decreasing (long dashes; MSli II) and maximally increasing (short 
dashes; MSli III) mass function extrapolations allowed by the observational constraints on the mass-luminosity relation. The theoretical model 
from Fig. 2 is also shown for comparison (doted line). The points show the observational data from Popper (1980). 

Figure 5. The mass-absolute visual magnitude relation required to transform between the observed luminosity function shown in Fig. 1 and 
the MS mass function (solid line and equation 9). Also shown are the ten-knot spline fit (dashed line) and the theoretical model curve from 
Fig. 3 including the contribution from molecular hydrogen (dotted line). The points show the observational data from Popper (1980), apart 
from the two data points represented by large open circles, which represent Ross 614 A and B from Fiebert & Probst (1987). 
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per cent confidence limits and are so similar that we cannot 
make a significant distinction between them. A power-law 
mass function lies well outside the 0.1 per cent confidence 
level corresponding to x2 = 47, while the Salpeter mass func- 
tion is completely ruled out. Similar conclusions follow from 
consideration of the 52 statistic used to test consistency with 
the theoretical models. Fig. 5 shows the mass-luminosity 
relation that results when the Miller-Scalo function is 
adopted (or similarly the Gaussian function or Miller-Scalo 
function with a flat extension to low masses) with the numeri- 
cal best-fit and the theoretical curve from Fig. 3 included for 
comparison. 

The mass-luminosity relations for the two power laws, Po 
and SL, are shown in Fig. 6. The strikingly poor fit of the two 
power-law mass functions requires comment. A single 
power-law is in fact an adequate description of the mass 
function for masses above ~0.4^o, but deviates substan- 
tially, by predicting too many stars, at lower masses. Below 
about 0.4^© the mass function can again be described well 
by a power law, but this time with a flat slope. Since all our 
mass-luminosity relations are forced to agree with the 
observational mass-luminosity relation at both 1.0</#o 

and 
at 0.09 ^o, and are also forced to provide a correct value for 
the total number of stars in the luminosity function over the 
same mass range, by being a solution of equation (3), the 
power-law models are unable to find an acceptable compro- 
mise fit. This simply highlights the inadequacy of a single 
power law to describe the stellar mass functions over the 
range of masses from ~ 0.1 to ~ 1.0^o- 

A recent extension of the luminosity function by Leggett 
& Hawkins (1988) suggests that it may be increasing at 
fainter magnitudes than My~ 18.5 {MR~ 16.5). If this result 
is real it may be an artefact of yet unidentified structure in 
the m-Mv relation or perhaps represent lower mass stars 

The low-luminosity stellar mass function 8 3 

that are still contracting and have an appreciable accretion 
luminosity. Alternatively it may indicate an increase in the 
mass function. It is not possible to extend the analysis of this 
paper reliably including the Leggett & Hawkins result, since 
there are no observational mass determinations in the 
relevant absolute magnitude range while theoretical models 
and bolometric corrections are very uncertain. We note at 
this point that even a flat luminosity function at magnitudes 
fainter than Mv~ 16 (m~ 0.1 </#0) may translate into a rising 
mass function because the slope of the m-Mv relation 
appears to approach zero at the hydrogen burning limit. 

The range of mass functions which is consistent with both 
the observational constraints on the ra-Mj/relation and with 
the observed stellar luminosity function for field stars near 
the Sun is shown in Fig. 7. The two power-law functions are 
included for comparison. 

With the parameters in Table 1 it is straightforward to 
calculate the mass density deduced for the solar neighbour- 
hood by integrating the extrapolated mass functions to 
ra = 0 from m = 0.10 JTq. All the mass functions shown 
to be adequate in this study are convergent, and the resulting 
mass densities are given in the final column of Table 1. The 
Salpeter (1955) mass function can be used to calculate the 
mass in stars more massive than 0.35which is 0.05^#0 

pc-3. Roughly one-half of all the mass in the stellar mass 
function is contained in stars with masses near and below 
1^0. Therefore comparing the integral of the Salpeter 
(1955) and the MS mass function over the range 
0.35-1.3^o is of interest. The Salpeter mass function 
contains 0.020pc-3 in this range, while the MS function 
contains 0.025 pc-3. As expected, these values are 
similar since the Salpeter mass function is similar to that of 
the MS mass function over the range which contains most of 
the stellar mass. 

Figure 6. The mass-absolute visual magnitude relations required to transform between the observed luminosity function shown in Fig. 1 and 
two power-law mass functions, forced to satisfy the boundary conditions discussed in Section 2. The SL function is the power law with 
Salpeter’s (1955) index (Section 4), while the curve labelled Po is a power law with index -0.70. Also shown is the theoretical model curve 
from Fig. 3 including the contribution from molecular hydrogen (dotted line). The points show the observational data from Popper (1980). 
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Figure 7. All the mass functions considered in this work. The shaded area represents the range of mass functions which are consistent at the 5 
per cent level with the observed stellar luminosity function and with the observational constraints on the m-Mv relation. 

We emphasize that all the mass functions consistent with 
both the observed luminosity function and the mass-lumino- 
sity relation are convergent when extrapolated to low masses. 
The total amount of mass contained in stars of mass less than 
0.35 ^#0 assuming a linear extrapolation of the stellar mass 
function to zero mass from 0.10 is less than about 20 
per cent of the mass contained in the stellar mass function 
for higher mass stars. Over the range from ~0.1 J?q to 
- 1.0 the mass function for field stars near the Sun is 
smooth. The several features evident in the stellar luminosity 
function over this range are all consistent with being due to 
points of inflexion in the mass-luminosity relation. 

5 CONCLUSIONS 

The stellar m-M^ relation contains points of inflexion where 
the state of the stellar matter changes and where the domi- 
nant opacity source in the stellar atmosphere changes 
rapidly. These changes in the slope of the mass-luminosity 
relation mean that a smooth mass function will correspond to 
a stellar luminosity function which shows corresponding 
structure, for stars of sufficiently low mass not to have 
evolved significantly in a Hubble time. 

An example of these changing opacity sources is the 
flattening of the m-Mv relation near mass « 0.7^0, Mv~ 7, 
due to the increasing importance of H" as an opacity source. 
This leads to a flattening of the observed stellar luminosity 
function above Mv~ 7, a feature which has sometimes been 
called the ‘Wielen Dip’. 

The formation of molecular hydrogen changes the stellar 
equation of state, and thereby affects the m-Mv relation at 
fainter absolute visual magnitudes. Available models for very 
low-mass stars are inadequate to provide a reliable predic- 
tion of the detailed form of the mass-luminosity relation, or 
of the bolometric corrections. Nevertheless, indicative 
theoretical models show that molecular hydrogen produces a 
point of inflexion in the mass-luminosity relation near a mass 

m = 0.35^o, Mv-12. This absolute visual magnitude is 
similar to that at which a maximum is seen in the stellar 
luminosity function. 

The above two examples suggest the possibility that a//the 
observed structure in the stellar luminosity function is due to 
equation of state and opacity-generated structure in the 
mass-luminosity relation, and that the stellar mass function 
is smooth. 

We have examined this hypothesis by determining the 
allowed range of stellar mass functions which can be made 
consistent with the observed stellar luminosity function, and 
at the same time be consistent with the observational con- 
straints on the stellar mass-luminosity relation. We confirm 
that the observed maximum in the stellar luminosity function 
near Mv= + 12 is consistent with being an artefact of a point 
of inflexion in the mass-luminosity relation, caused by the 
effect of H2 on stellar structure. The underlying stellar mass 
function is consistent with being smooth and monotonically 
rising through the region which shows the maximum in the 
stellar luminosity function, and need not have a maximum 
near 0.35*#0. We emphasize that a smooth stellar mass 
function is not required by available data any more than is a 
mass function with structure. However, the important result 
here is that a smooth mass function is consistent with all 
available data and that one with structure is not required. 
Below « 0.1 the mass function remains unknown, as the 
ra-Mj/relation is unconstrained by data for such low masses. 

The allowed range of mass functions, summarized in Fig. 
7, allows us to calculate the total mass in objects below the 
minimum mass for hydrogen burning stars included in any 
hypothetical linear extrapolation of the stellar mass function. 
Assuming a linear extrapolation, the total mass in stars and 
substellar mass objects below 0.35is <0.008pc-3, 
while that in more massive stars is «0.05^o pc-3. Thus a 
dynamically insignificant mass is present in any allowed 
linear extrapolation of the stellar mass function to very low- 
mass objects and there remains no robust evidence to 
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support intrinsic structure in the stellar initial mass function. 
This result has considerable implications for galactic evolu- 
tion models invoking bimodal star formation processes and 
identification of dark matter. 
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