ASSOCIATIONS BETWEEN QUASI-STELLAR OBJECTS AND GALAXIES

G. Burbidge and A. Hewitt
Center for Astrophysics and Space Sciences, University of California, San Diego
AND
J. V. Narlikar and P. Das Gupta
Tata Institute of Fundamental Research, Bombay, India, and Inter-University Centre for Astronomy and Astrophysics, Poona University Campus, Pune, India
Received 1989 July 13; accepted 1990 March 30

Abstract

We present a table listing all close pairs of QSOs and galaxies that we have been able to find in a computer-aided search of the extensive QSO catalog of Hewitt and Burbidge and the bright galaxy catalog of Sulentic and Tifft, together with an extensive search of the literature. The table contains 577 QSOs and more than 500 galaxies, and includes 28 low-redshift QSOs associated with 42 galaxies with the same redshifts as the QSOs. For the remainder, $z_{Q} \gg z_{G}$, since even when no galaxy redshift has been measured, we know that for $m_{G}<21$, a normal galaxy will have $z_{G} \leq 0.2$. The majority of the angular separations of the pairs are less than 10^{\prime}, corresponding, for example, to a maximum projected linear separation for $z_{G}=0.01$ of about $180 \mathrm{kpc}\left(H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right)$.

In addition to the pairs so far described, we have also looked for pairings between 3CR radio galaxies and QSOs. For most of the pairs involving a powerful radio galaxy listed in the table, the separations are in excess of 1 Mpc and must be accidental. In only seven cases are the pairs close enough that physical associations may be suspected, so that only those cases are used in our general analysis.

We show in two figures that for 300 and 278 pairs, respectively, in which $z_{Q} \gg z_{G}$, there is a large excess of pairs with separations of 2^{\prime} or less, or about 60 kpc , over the numbers expected if the configurations were accidental, thus suggesting that the pairs are physically associated.

We analyze the plot z_{G} against the angular separation θ for 392 pairs. In 1972, when only five close galaxy-QSO pairs had been identified from a complete sample of QSOs and bright galaxies, it was shown that θ was proportional to z^{-1}, thus adding further to the evidence for physical association. This relation was further investigated in 1980, and now, with more than 390 pairs, the relation is still present. We discuss selection effects which bear on it and show that they are not important.

Our conclusion is that there is strong evidence that normal galaxies and QSOs tend to be clustered whether or not their redshifts are the same. This result supports the earlier work showing that many bright galaxies and QSOs with large redshift are physically associated, that small redshift QSOs and galaxies with the same redshift are clustered, and also the more recent work of Webster and her colleagues showing that faint galaxies tend to be clustered around high-redshift QSOs at very small separations ($\leq 6^{\prime \prime}$).

We believe that a general rule can be stated as follows: QSOs tend to lie in the vicinity of normal galaxies much more often than is expected by chance, whether or not the galaxies and the QSOs have the same redshifts. This rule can be extrapolated to apply to situations in which a single high-redshift galaxy is seen apparently in interaction with a small group (triplet, quartet, quintet, etc.) of galaxies all of about the same (lower) redshift.

In the final sections we emphasize that this rule cannot be explained in terms of gravitational microlensing, because, on the one hand, there are not enough faint QSOs to explain the effect seen at comparatively large angular separations involving bright galaxies, and, on the other, there is not enough mass (and hence mass points) to explain the effect where faint galaxies are seen very close to high-redshift QSOs.

It is concluded that some part of the redshift of all classes of active nuclei is not associated with the expansion of the universe. Several possible explanations are briefly described.

Subject headings: galaxies: clustering - galaxies: redshifts - gravitational lenses - quasars radio sources: galaxies

I. INTRODUCTION

QSOs are far rarer than galaxies. Since they have, on the average, very large redshifts ($z \simeq 1.3$), and most galaxies so far studied have redshifts which range from very small values to moderate values ($z \approx 0.3$) for some of the faintest galaxies
visible on the survey plates, with very few having $z>1$, physical associations between these two different types of objects are expected to be very rare if the redshifts of the QSOs are measures of their distances. If this is correct, then, as has been pointed out many times, in cases of close juxtaposition between a QSO and a galaxy, it may be possible to detect absorp-
tion in the spectrum of the QSO due to material in the halo of the foreground galaxy.

If some fraction of the QSOs are not at the distances measured by their redshifts but are much closer, then we may expect to find cases of genuine physical association between QSOs and galaxies with different redshifts. Such associations can be established either by finding luminous connections between galaxies and QSOs or by statistical methods. In such cases, absorption in the halo of the galaxy may or may not be detected in the spectrum of the QSO, depending on the path length in the halo and its composition and density.

It is well known that in some such cases absorption has been found. The first case known was that of 3C 232 and NGC 3067, which was one of the four pairs of 3C QSOs and bright galaxies shown by Burbidge et al. (1971) by statistical arguments to have separations too small to be accidental (cf. also Kippenhahn and de Vries 1974). The absorption was first detected by Boksenberg and Sargent (1978) in the Ca II H and K lines, and later at 21 cm by Haschick and Burke (1975). More recently, the VLA map of this pair at 21 cm shows that a hydrogen cloud appears to connect and envelop 3C 232 and NGC 3067 (Carilli, van Gorkom, and Stocke 1989; Burbidge 1989).

There are a number of pairs, or multiple QSOs lying very near to bright galaxies, where the redshifts of the galaxies are very different from those of the QSOs. The existence of such groupings when subjected to statistical analysis strongly suggests that some galaxies and QSOs with very different redshifts are physically associated (cf. Burbidge et al. 1971; Burbidge 1979; Arp 1987 and references contained therein; Sulentic 1988). There are also a number of pairs in which absorption in the spectrum of the QSO is seen at the redshift of the galaxy, thus implying that the QSO lies behind the galaxy.

There are also a number of comparatively small-redshift ($z \leq 0.4$) QSOs which have been found to have galaxies nearby at the same redshift (Stockton 1978a; Heckman et al. 1984; Green and Yee 1984; Yee 1987; Hutchings et al. 1984; Hutchings, Johnson, and Pyke 1988). These are usually taken as providing evidence that the redshifts of the QSOs are due to the expansion of the universe.

In order to further investigate the association between galaxies and QSOs, it is important to find and list all of the close pairings between QSOs and galaxies which can be found. In 1980, two of us published such a list, which contained 117 QSOs and 82 galaxies (Hewitt and Burbidge 1980). In the decade since then, many more close pairs have been found, while the number of QSOs with measured redshifts has now increased to more than 4000 (Hewitt and Burbidge 1987, 1989).

We give in Table 2 (at the end of this paper) an updated list of pairings which now contains 567 QSOs and more than 500 galaxies. The following section describes this table in detail. A brief glance at it is, however, sufficient to convince oneself that the prima facie evidence for the existence of close pairing of QSOs and galaxies with very different redshifts has grown over the years. There also appears to be no doubt that the number of pairs of QSOs and galaxies with the same redshifts has grown and is statistically significant.

A basic question is whether the evidence for the pairing of galaxies and QSOs with very different redshifts has also grown stronger. It is this issue that we shall examine in §§ III-V.

II. THE DESCRIPTION OF TABLE 2 AND ITS USES

The material in Table 2 has been put together using several sources as follows: Following the publication of our earlier list (Hewitt and Burbidge 1980), the Herstmonceux group (Pocock et al. 1984; Monk et al. 1986, 1988) have published three papers in which they have added to the compilation by Hewitt and Burbidge by surveying the literature. In addition to this, they surveyed the fields around a number of bright, very nearby galaxies out to large angular distances (which still in some cases correspond to linear projected distances (≤ 100 $\mathrm{kpc})$. They restricted their literature search to QSOs brighter than about 17.5 mag . Their results have been incorporated in Table 2.

Next we carried out a computer search by using the HewittBurbidge catalog of QSOs and the Revised New Catalogue of Nonstellar Astronomical Objects (Sulentic and Tifft 1973). All pairs with a separation of 10^{\prime} or less were picked out by the computer, and then each pair was looked at in detail. This gave us about 400 pairs involving comparatively bright galaxies. Included among them were a number which had been discovered earlier, many by Arp and his colleagues.

In addition, Stocke et al. (1987) have given a list of X-rayemitting QSOs with large redshifts which lie close enough to moderate-redshift galaxies so that statistical arguments suggest that they are physically associated, and these are included.

Also among all of the QSOs known there is a small number which, when they were first investigated, were found to have faint galaxies nearby. We have made a careful search of all of the QSOs in our catalogs and have included all QSOs with faint companions which are listed there.

Also included in Table 2 are those QSOs whose fields have been searched for galaxies at the same redshift. Most of the QSOs involved in these studies have small redshifts. However, some studies have been made of faint galaxies close to highredshift QSOs (cf. Green and Yee 1984). Also, studies of the galaxies near low-redshift QSOs have sometimes led to the finding of some galaxies with very different redshifts (cf. Stockton 1978a). The detailed imaging work (Green and Yee 1984; Hutchings et al. 1984; Hutchings, Johnson, and Pyke 1988) has led to many galaxies being listed. While we have tried to include in Table 2 all QSOs whose fields have been looked at, the reader is referred to the original papers when many galaxies are involved. In these latter cases, we have put in the table the statement "faint galaxies" followed by the reference number.

Finally, in order to see whether or not there are any close connections between QSOs and another class of high-redshift objects, we have compared our QSO catalog with the catalog of $3 C R$ radio galaxies using the list of those with redshifts given by Spinrad et al. (1985) together with radio galaxies with unpublished redshifts which Spinrad communicated to us. There is a wide range of redshifts among the 3 CR radio galaxies. Since we are concerned ultimately with pairs for which the projected linear separations are small, the pairs in this category which we list depend on the redshifts of the galaxies. In general in Table 2, we have only listed pairs with separations of 30^{\prime} or less, but for some galaxies comparatively nearby, we have listed pairs with wider angular separations.

In all cases in which a distance to the galaxy can be estimated, we have calculated from the angular separation a linear
projected distance. To do this, we have used either the redshift with a Hubble constant of $50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ or a distance modulus directly taken from, e.g., Sandage and Tammann (1981).
A principal reason for compiling Table 2 is to obtain an extensive list from which attempts to detect absorption can be made.

In § I we mentioned the complicated case of NGC 3067 and 3C 232. A number of other QSO-galaxy pairs have been studied for absorption, and the following QSOs in Table 2 have been found to contain absorption at the redshift of the paired galaxy: 0109+200 (Wills et al. 1980), 0119-046 (Junkkarinen 1989), 0151+045 (Bergeron 1988), 0235+164 (Burbidge et al. 1976), 0248+430 (Kuhr 1980; Junkkarinen 1989), 0446-208 (Blades, Hunstead, and Murdoch 1981), 1038+064 (Weymann et al. 1979), 1127-145 (Cristiani 1987), 1209+107 (Young, Sargent, and Boksenberg 1982), 1327-206 (Kunth and Bergeron 1984), 1511+103 (Foltz et al. 1986), 2020-370 (Boksenberg et al. 1980), 2128-12 (Bergeron and Kunth 1984), 2135-147 (Bergeron and Kunth 1983), and 2145+067 (Wills et al. 1980).

In addition, we note from the literature that there are also some cases in which absorption has been looked for and not found-for example, the work by Morton, York, and Jenkins (1986).

Broadly speaking, there are four categories of QSO-galaxy pairs listed in Table 2.

1. First, there are the pairs in which QSO and galaxy have approximately the same redshift. In all of these cases, the galaxies are faint ($<17 \mathrm{mag}$).
2. Next we have a fairly large number of pairs, found mostly by studying the literature, in which a faint galaxy is seen close to a QSO with a large redshift. In many of these cases no redshift is available for the galaxy, and in some cases no estimates of magnitude either. However, the fact that the QSO has a large redshift means that there must be a redshift discrepancy in the pairs.
3. Third, we have the large number of QSO-bright galaxy pairs with $m_{g} \leq 15$. The majority of the galaxies have NGC numbers. Many of the pairs were originally found by Arp, but there is a large number of pairs which are new. In all of these cases, the redshifts of QSO and galaxy are very different.
4. Finally, we have included a small number of pairs involving a $3 C R$ radio galaxy and a QSO , but since the $3 C R$ radio galaxies are rare and are mostly at comparatively large redshifts, the separations are very wide, and, as we shall show in $\S \mathrm{V}$, they are not statistically significant. Only in a few special cases is it reasonable to suppose that the pairing has any physical significance. We shall return to this question in $\S \mathrm{V}$.

In Table 2 there are listed 577 QSOs and more than 500 galaxies. Of these, there are 29 QSOs and 42 galaxies where in each case the QSO and the neighboring galaxy or galaxies have the same redshift. That these are physical associations is not in doubt. The discussion and analysis carried out in $\S \S$ III and IV bears on the question of whether or not pairs of galaxies and QSOs with different redshifts are physically associated. Thus in these analyses we have omitted all galaxy-QSO associations with the same redshift.

A study of Table 2 also shows there is a considerable number of cases where a single QSO lies near to several galaxies with
much smaller redshifts, and there are also cases in which a single galaxy with a small redshift appears to be surrounded by several QSOs with very different redshifts. In order to avoid duplication among the pairs, we have used the following criteria of selection: In the fields where there is more than one galaxy in close proximity to a QSO, we have chosen the one for which the angular separation is the least. When several QSOs lie close to one galaxy, we count each QSO-galaxy pair separately.
Included in the table are 84 pairs of QSOs and galaxies for which we have no z_{G} but a measured angular separation, 14 pairs in which we have a measured z_{G} but no measured angular separation, and 16 pairs in which a close association has been noted but neither the separation of the pair nor the redshift of the galaxy has been measured.
It is clearly very important that a program be initiated to obtain redshifts for those galaxies in Table 2 for which no redshifts are available.

III. 3CR RADIO GALAXIES AND QUASI-STELLAR OBJECTS

We briefly consider possible associations between QSOs and $3 C R$ radio galaxies. While some of the best known QSOs were discovered because they were 3CR sources, because both this class of strong radio sources and QSOs are rare, we do not expect to find many close pairs unless they are physically associated.
This turns out to be the case. In Table 2 only 24 3CR radio galaxies with 25 QSOs are listed. This is the case even though we have allowed in the 3CR search all pairs with separations of 30^{\prime} or less, a much larger separation limit than has been used for the majority of the other pairs.

Of these pairs, 17 have angular separations which convert to projected distances of more than 1 Mpc , with about one-half having separations of at least 10 Mpc (depending on the value for q_{0}, which is assumed). These are obviously all accidental pairs.
The interesting cases which remain, all of which may be real physical pairs, are the following:

1. 3CR 31 (NGC 383), which has a QSO within $985^{\prime \prime}$, or 480 kpc .
2. 3CR 66B, which has a BL Lac object, 3C 66A, within $390^{\prime \prime}$, or 240 kpc .
3. 3CR 272.1 (NGC 4374), a member of the Virgo Cluster, which has a QSO within $158^{\prime \prime}$, or 17 kpc .
4. 3CR 274 (M87), also in the Virgo Cluster, which has a QSO within $1213^{\prime \prime}$, or 129 kpc .
5. 3CR 303, which has a QSO within $20^{\prime \prime}$, or 82 kpc .
6. 3CR 435A, which has what we believe to be a QSO within $10^{\prime \prime}$, or 140 kpc . (McCarthy, van Breugel, and Spinrad 1989, who have studied the pair 3CR 435A and 3CR 435B, have concluded that 3CR 435A is a radio galaxy, but that 3CR 435B is a foreground star with $z=0$ occulting a second radio galaxy with $z=0.8$. The combination of improbable events, involving the occurrence of two independent 3CR radio sources within $10^{\prime \prime}$ of each other, and also the occultation of the optical center of one of them by a Galactic star, is too much for us to believe. It is for this reason that we include the pair in Table 2, believing that 3CR 435B is a QSO.)
7. 3CR 441 , which has a QSO within $51^{\prime \prime}$, or 1 Mpc .

Because these pairs have small galaxy redshifts and/or small angular separations, all of them have been used in our analyses when appropriate. However, objects 1 and 4 are not included in Figure 1 since their angular separations are more than 10^{\prime}, and neither of objects 1, 2, and 7 is included in Figure 2, where the projected separation limit is 200 kpc .

In what follows we discuss the likelihood, based on the cata\log of 3CR radio galaxies, that these are physical pairs. In the 3CR catalog there are about 300 radio galaxies (RGs) spread at random over about two-thirds of the sky ($\approx 27,000$ square degrees) and about 5000 QSOs so far identified over the whole sky with a surface density of about 20 per square degree at 20 mag. This means that there should be about 540,000 QSOs over that part of the sky covered by the 3CR catalog.

The objects 3CR 303, 3CR 435, and 3CR 441 are of particular interest, since in each case the close-by QSO has been found only after detailed studies of the field of the radio galaxy. For a population of objects distributed at random on the sky, we have

$$
\langle n\rangle=8.64 \times 10^{-4} \Gamma(<m) \theta^{2} N
$$

where $\langle n\rangle$ is the number of objects expected by chance to lie within θ (measured in arcminutes) of an arbitrary point, with a surface density of Γ (per square degree); N is the number of objects surveyed. If we put $\Gamma=20, N=300$, and $\theta=1$, we get $\langle n\rangle=5$. Thus, to find three pairs if all of the fields of the radio galaxies had been searched would not be unlikely. However, only a fraction of them, perhaps 50, have been searched. If this is the case, $\langle n\rangle \simeq 1$, and the significance of the three cases is marginal. On the other hand, two of the three lie along the radio axis, and the third is a radio source of comparable strength only $10^{\prime \prime}$ away.

We may ask how likely it is that two 3CR radio sources lie within $10^{\prime \prime}$ of each other, as is the case for 3CR 435A and 3CR 435B, by chance. To determine this, we put $\theta=1 / 6, N=300$, $\Gamma=1 / 90 ;$ then $\langle n\rangle=2.7 \times 10^{-6}!$ Thus it is very unlikely that these two radio sources are not associated.

We now consider the other four pairs of 3CR radio galaxies and QSOs listed at the beginning of this section. The separations in these cases are $\theta \simeq 3^{\prime}, 7^{\prime}, 17^{\prime}$, and 20^{\prime}. Using the same expression for $\langle n\rangle$, and again putting $N=300$, and $\Gamma=20$, we find that for $\theta=3^{\prime}, 7^{\prime}, 17^{\prime}$, and $20^{\prime},\langle n\rangle \simeq 4.5,25,140$, and 200, respectively.

These would be the expected numbers if all of the QSOs over that part of the sky containing the 3CR radio galaxies had been cataloged. Since only ~ 5000 are cataloged, the values of $\langle n\rangle$ must be reduced by a factor $\sim 5000 / 540,000 \simeq 10^{-2}$, so that more realistic values of $\langle n\rangle$ range from 0.05 to 2 .

We have included these rather untidy and inconclusive results at the suggestion of the referee, since they may give the reader some idea of the real uncertainties involved in this part of the discussion.

Finally, in this section we wish to add a special comment about 3CR 435A and 3CR 435B (McCarthy, van Breugel, and Spinrad 1989). The object is unique in that, according to McCarthy et al., the two radio sources 3CR 435A and 3CR 435B, despite their comparable radio fluxes, lie within $10^{\prime \prime} \mathrm{ac}-$ cidentally on the sky. This peculiar feature is further compounded by the fact that the optical center of 3CR 435A is
accidentally occulted by a Galactic star. This is the only way in which McCarthy et al. can explain the existence of three objects with very different redshifts ($z=0$ in absorption, $z=$ $0.461, z=0.865$, both in emission) lying within $10^{\prime \prime}$ of each other, with one pair with redshifts of 0 and 0.461 being coincident. We simply do not believe that this is an accident. In our opinion, one object (with apparently two redshifts), is a QSO physically associated with a radio galaxy with $z=0.865$. For the present we do not understand the two redshifts in a single object.

IV. EVIDENCE FOR SIGNIFICANT EXCESSES OF PAIRS OF GALAXIES AND QUASI-STELLAR OBJECTS

In an earlier analysis of the bright galaxy-QSO pairs listed in the paper of Hewitt and Burbidge (1980), Burbidge (1981) showed by studying the pairs with separations less than 10^{\prime} that there was a significant excess of QSOs around bright galaxies out to about 3' over the numbers expected by chance, and that for QSOs farther out the effect disappears. The significance of such associations is discussed extensively by Arp (1987). Stocke et al. (1987) have found a similar result from a sample of X-ray-emitting QSOs (which are contained in Table 2) near faint galaxies.

With the very much larger number of pairs now available from Table 2, the effect can be tested further. To do this, we have plotted in histograms shown in Figures 1 and 2 the numbers of QSO-galaxy pairs as functions of their angular separations out to 10^{\prime}, and also out to linear projected separations of 200 kpc .

The material is all taken from Table 2. As was stated earlier, we have excluded those pairs in which galaxy and QSO have the same redshifts. By restricting the separations to 10^{\prime}, we have also excluded the very widely separated pairs in Table 2 which arise either because the galaxies are very close by or because the separations are so large as not to be statistically significant, as is the case for most of the 3CR radio galaxies (cf. § III.).

Figure 2 contains some of the QSOs found at large angular separations from nearby galaxies, but it excludes all of the QSO-galaxy pairs for which no galaxy redshift is available. Figure $1 a$ contains 300 pairs, and Figure 2 contains 278 pairs. In every case, the redshift of the QSO is large enough so that whether or not the redshift of the galaxy is measured, we know that $z_{Q} \gg z_{G}$.

Plotting the histograms of N against θ and N against l (the linear separation) enabled us to show all of the pairs whether or not the redshifts of the galaxies have been measured, and whatever the magnitude of the galaxy is. From both histograms it is clear that there is a large excess of galaxies near to QSOs, within about 2^{\prime} in angular measure, or out to $40-60 \mathrm{kpc}$ in projected metric separation.

The result shown in Figures $1 a$ and 2 is exactly what was found from the earlier samples (Burbidge 1979), which involved only 73 pairs. In that paper it was shown that the number of pairs at the extreme separation of $600^{\prime \prime}$ was significantly below that expected from chance juxtapositions based on the assumed surface density of QSOs.

It could be argued that the effect may be artificial where pairs have been discovered by careful searches near galaxies, especially faint ones. To see whether the effect persists, we have

Fig. $1 a$

Fig. $1 b$
FIG. 1.-(a) Histogram of the distribution of separations of 300 QSO-galaxy pairs for $\theta \leq 600^{\prime \prime}$ taken from Table 2. (b) Histogram of the distribution of separations of 197 QSO-galaxy pairs for $\theta \leq 600^{\prime \prime}$ taken from Table 2. The difference between this histogram and that shown in (a) is that we have left out any pairs which were found by deliberate searches around galaxies.

FIG. 2.-Histogram of the distribution of separations of 278 QSO-galaxy pairs for $l \leq 200 \mathrm{kpc}$ taken from Table 2 .
therefore constructed in Figure $1 b$ another histogram of numbers of pairs with different separations found only by the random search method (and not through deliberate searches). There are 197 such pairs, and it is clear to the eye that Figure $1 b$ shows the same bunching effect at close separations as is seen in Figure $1 a$.
If, further, we eliminate from the sample all galaxies fainter than 15 mag , the number distribution does not change its character. There are now 94 pairs left, and their numbers in the angular separations lying in the ranges $\theta \leq 60^{\prime \prime}, 60^{\prime \prime}<\theta \leq 120^{\prime \prime}$, $120^{\prime \prime}<\theta \leq 300^{\prime \prime}$, and $300^{\prime \prime}<\theta \leq 600^{\prime \prime}$ are respectively $7,8,24$, and 55 as opposed to $0.94,2.82,19.74$, and 70.5 expected by chance. The χ^{2} for this distribution is $52: 9$, whereas the probability of its exceeding ~ 11.3 by chance is 0.01 . Thus the observed number distribution could not have arisen from a purely random distribution of QSOs and galaxies.

There is another way of looking at the bright galaxy sample from Table 2 obtained by taking only those galaxies which are brighter than 15 mag. From the number-magnitude relation for galaxies (cf. Shane 1975 and \S V) we find that the surface density of galaxies brighter than 15 mag is about 0.35 per square degree.

Thus, in a circle of radius 2^{\prime} around an arbitrary point, we expect to find a bright galaxy with a probability $\sim 12.2 \times 10^{-4}$. Assuming that each of the ~ 5000 QSOs known today is one such arbitrary point, we would expect, by chance, about six QSO-bright galaxy pairs with separation less than 2^{\prime}. In Table 2 the number of such pairs already found is 38 . In all of these, the galaxy is 15 mag or brighter, and in fact the average galaxy magnitude is 13.7 mag.

These results suggest that many more galaxies will be found very close to QSOs when the fields are studied in more detail. It should be remembered that faint galaxies have not been looked for around most of the QSOs now contained in the catalogs.

The referee has pointed out that, in addition to looking at the pairs presented in this way, we could have carried out a statistical study of nearest-neighbor distances using our updated QSO catalog (Hewitt and Burbidge 1987, 1989) with the catalog of galaxies. This test has already been performed, albeit with smaller samples of QSOs, by Seldner and Peebles (1979) and by some of us (Chu et al. 1984; see also Nieto and Seldner 1982). Both Seldner and Peebles and Chu et al. obtained positive results showing statistical evidence for the association of QSOs at all redshifts with bright galaxies having $z \leq 0.05$. It is our intention to carry out a similar analysis with an even larger sample of QSOs in the future.

V. A CORRELATION BETWEEN ANGULAR SEPARATION AND REDSHIFT

In the early 1970s, Burbidge, O’Dell, and Strittmatter (1972) plotted the angular separation θ between the two members of a QSO-bright galaxy close pair against the redshift z of the galaxy, for the five known cases. On the $\log \theta-\log z$ plot the five points fell very close to a straight line of slope -1 , implying an empirical relation

$$
\begin{equation*}
\theta z=\mathrm{constant} . \tag{.1}
\end{equation*}
$$

If the redshift of the galaxy is an indicator of distance, the above relation suggests a fixed metric distance (projected perpendicular to the line of sight) for all five cases. If the QSO redshifts are cosmological, such a relation cannot exist and the above result must be entirely accidental. Indeed, if the result were accidental, then discoveries of further close pairs would wipe it out.
In 1979, Narlikar (cf. Burbidge 1979) found that the $\log \theta-\log z$ plot for 94 QSOs close to 65 galaxies had a consider-
able scatter but an unmistakable trend similar to that indicated in equation (1). The slope of the best-fit line was -1.17 with a correlation coefficient of 0.68 .

On the hypothesis that the two members of a close pair are physically associated with a linear separation distance l of the order of 100 kpc , some scatter is certainly to be expected in the $\log \theta-\log z$ plot. The scatter in θ comes partly from a scatter in l and partly from the projection effect. It is interesting, therefore, to reexamine the data as they stand today. Figures $3 a$ and $3 b$ respectively illustrate the $\theta-z$ distributions of data points included in the 1980 study (Hewitt and Burbidge 1980) and those added subsequently. The total is plotted in Figure $3 c$. It is clear that the trend has persisted even though the data points have multiplied by a factor of 4 since 1980, and a hundred fold since 1972.

To test the similarity of the pre-1980 and post-1980 $\theta-z$ distributions, we have used the following adaptation of the Kol-mogorov-Smirnov (KS) test. In the post-1980 data there are 316 pairs. These were used to generate a "parent" probability distribution. From this distribution 1000 samples were generated by the Monte Carlo technique, each sample having 76 pairs (corresponding to the number in the pre-1980 data). ${ }^{1}$

The KS statistic DN can be calculated for each of the 1000 samples by the formula

$$
\begin{equation*}
\mathrm{DN}=\sqrt{76} \times \underset{1 \leq i \leq 76}{\operatorname{Max}}\left\{\mid \operatorname{Obs}\left(z_{i}, \theta_{i}\right)-\text { Theory }\left(z_{i}, \theta_{i}\right) \mid\right\} \tag{2}
\end{equation*}
$$

where $\operatorname{Obs}\left(z_{i}, \theta_{i}\right)$ denotes the fractional number of pairs in the sample, with $z \leq z_{i}, \theta \leq \theta_{i}$. Theory $\left(z_{i}, \theta_{i}\right)$ is the probability distribution given by the parent population.

Thus a distribution of the statistic DN is obtained against which one can test the value of DN obtained for the actual pre-1980 sample, which is 1.638 . What is the chance that this value is exceeded in the DN distribution? This works out as 3.2%. This probability, however, increases to 6.3% if the pair NGC 1298 (galaxy) and 0317-023 (QSO) is omitted. Thus, at the 1% level (2.56σ) the hypothesis that the pre- and post-1980 distributions are drawn from the same population cannot be rejected.

To minimize the effect of scatter in Figure $3 c$, it is instructive to plot the median angular separation against the redshift. Accordingly, in Figure $3 d$ we have binned the data points in several relatively narrow redshift bins and plotted the log of the median angular separation in a given bin against the mean of the logs of the maximum and minimum redshifts of the bin. The dotted line of slope -1 is drawn in Figure $3 d$ for comparison. In Figures $3 c$ and $3 d$, it is clear that the most discrepant points come from pairs where the galaxy redshifts are very small and the angular separations are very large. Nearly all of these pairs come from the studies of Pocock et al. (1984) and Monk et al. (1986, 1988), who looked for QSOs around nearby galaxies. The angular separations are so large that statistical arguments suggest that these are not real pairs but chance configurations. They are not used in constructing the histograms shown in Figures $1 a, 1 b$, and 2.

[^0]For the dotted line the median projected separation in a close pair corresponds to $50-100 \mathrm{kpc}$ for $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1}$ Mpc^{-1}. We may consider this figure as characteristic of the range of influence of the galaxy on the QSO or vice versa.

It is necessary at this stage to review the possible selection effects that might have influenced the trend apparent in the above $\theta-z$ plots. These were earlier discussed by Arp (1983). We discuss them briefly in terms of the two zones of avoidance shown by hatched sections in Figure $3 c$.

The lower section basically comes from the difficulty of detecting a QSO against the luminous disk of the galaxy. For a typical disk of radius $R \sim 10 \mathrm{kpc}$ located at redshift z, the angular radius is $\theta \simeq R H_{0} / c z$. Allowing for the projection effect of the galactic disk, the lower zone of avoidance may be set at

$$
\begin{equation*}
\theta z \leq 0^{\prime \prime} .16 \tag{3}
\end{equation*}
$$

Notice that very few of the pairs lie within the above zone, and the median separation of the pairs is several times the above galactic limit.

To understand the upper zone of avoidance, consider the following scenario. Suppose a search is made for QSOs brighter than apparent magnitude m in the neighborhood of a galaxy of redshift z. Let $N(m)$ denote the surface density of QSOs brighter than magnitude m. Then the chance of finding a QSO within an angular separation θ of the galaxy is given by

$$
\begin{equation*}
p=\pi \theta^{2} N(m) \tag{4}
\end{equation*}
$$

There are several surveys of optical QSOs down to different magnitudes. The slope $d \log N / d m$ is super-Euclidean at the bright end and progressively flattens at fainter magnitudes. Schmidt and Green (1983) find 92 QSOs over 10,714 square degrees down to an average limiting magnitude $B=16.16$. They estimate the number per square degree at $B=21$ to lie between 30 and 60 . The average slope over the magnitude range $16.16-21$, therefore, lies between 0.73 and 0.79 . For the computation that follows we take this value as 0.8 . Thus we have

$$
\begin{equation*}
\log N(m)=\alpha m+\text { constant } \tag{5}
\end{equation*}
$$

with $\alpha=0.8$. Thus, for the same value of p, the value of θ decreases as m increases.

Consider now QSOs of the same absolute magnitude M associated with galaxies observed at varying redshifts z. The apparent magnitudes of these QSOs would vary with z as

$$
\begin{equation*}
m=M+5 \log z+\text { constant } \tag{6}
\end{equation*}
$$

Therefore, for this class of QSOs,

$$
\begin{equation*}
\log N(m)=5 \alpha \log z+\text { constant } \tag{7}
\end{equation*}
$$

and for a fixed p,

$$
\begin{equation*}
2 \log \theta+5 \alpha \log z=\text { constant } \tag{8}
\end{equation*}
$$

The constant in the last equation can be calculated as follows. Set $N(m)=20$ per square degree for $m=20$, and calculate θ

Fig. $3 a$

Fig. $3 b$
Fig. 3.-(a) Plot of the angular separation θ against z_{G} for the 76 QSO-galaxy pairs listed by Hewitt and Burbidge (1980). (b) Plot of θ against z_{G} for the 316 QSO-galaxy pairs in Table 2 which have been found since 1980. (c) Plot of θ against z_{G} for all 392 QSO-galaxy pairs given in Table 2 . (d) Median angular diameter-redshift relation for 392 QSO-galaxy pairs. For comparison the relation $\theta \propto \bar{z}_{\boldsymbol{G}}^{1}=$ constant is plotted.

Fig. $3 c$

Fig. 3d
for $p=0.1$. We get $\theta \cong 140^{\prime \prime}$. Set $z=1$ in the above relation for $\theta=140^{\prime \prime}$. For $\alpha=0.8$, this gives the straight line

$$
\begin{equation*}
\log \theta+2 \log z=2.15 \tag{9}
\end{equation*}
$$

The upper shaded region lies above this straight line in Figure $3 c$.

The rationale behind this zone of avoidance is as follows. The permitted zone for the effect must be such that the probability of finding a QSO within it by pure chance should not be appreciable. The shaded part has $p \geq 0.1$. It is also apparent that the QSOs looked for near very bright and nearby galaxies (z small) tend to be brighter (low m) than those looked for near fainter, more distant galaxies.

It is clear from Figure $3 c$ that the scattered distribution of points lies well away from this forbidden zone. In other words, the trend seen appears not to be a consequence of the way QSOs are selected.

It could be argued that the upper limit to the distribution of Figure $3 c$ is a consequence of the increasing surface density of galaxies at fainter magnitudes (and higher redshifts). In a Euclidean universe with a uniform distribution of galaxies, the number of galaxies out to a distance r is proportional to r^{3}. These are projected against the sky with a mean angular separation $\Delta \theta \propto r^{-3 / 2}$. Thus the galaxies would tend to "crowd" together at higher redshifts with the mean angular separation $\Delta \theta \propto z^{-3 / 2}$ for $z \ll 1$. A more exact relation can be worked out at higher redshifts for any specified cosmological model.

This dependence of $\Delta \theta$ on $z^{-3 / 2}$ is, however, different from the dependence $\theta \propto z^{-1}$ observed in Figure 3c, and could not be responsible for it. However, it is possible that for large enough $z, \Delta \theta$ becomes smaller than θ, and thus the above upper bound does become the main cause of the observed decrease of θ with z.

To test whether this actually happens in the present case, it is necessary to know how the number density of galaxies changes with redshift. To date no such information is available. The best that can be done is to use the data on the number density of galaxies as a function of galaxy magnitude, and to see whether a relation of the above kind could have come from the increasing closeness of fainter and fainter galaxies as they are projected on the sky.

While we undertake such an exercise, we feel it necessary to mention a point of caution. In Figure $3 c$ we have plotted the median value of θ, as a function of z. While Hubble's law implies increasing faintness with increasing z for galaxies, the relatively large scatter of the $m-z$ relation even for galaxies shuffles the bins used for computing the median values. Also, while Figure $3 c$ contains those data points for which (θ, z) values are known, the present data do not contain magnitudes for all galaxies, as is evident from Table 2. Thus, to look for the above effect the median values of θ from the different magnitude ranges should be compared with the value of $\Delta \theta$ for galaxies within the same magnitude ranges. The following calculation shows that, with increasing faintness, both the median θ and $\Delta \theta$ decrease, but the former stays well below the latter.

The number-magnitude relation $N(m)$ for galaxies follows the slope

$$
\begin{equation*}
\frac{d \log N(m)}{d m}=0.57-0.59 \quad \text { for } \quad 12 \leq m \leq 15 \tag{10}
\end{equation*}
$$

giving, on an average, say

$$
\begin{equation*}
\log N(m)=0.58 m+C \tag{11}
\end{equation*}
$$

(cf. Shane 1975). The constant C can be fixed by comparison with the counts in Zwicky's catalog and/or the Lick catalog. Taking an average value between the two, we get for equation (11)

$$
\begin{equation*}
N(m)=\operatorname{dex}(0.58 m-9.15) \text { per square degree } \tag{12}
\end{equation*}
$$

For fainter magnitudes ($m>15$) one may consider the counts given by Tyson and Jarvis (1979). Based on these figures, we arrive at Table 1. The first two columns of Table 1 list the magnitude limits for the galaxies in the QSO-galaxy pairs. There are 263 pairs for which the galaxy magnitudes are known. The third column lists the median separation $\theta_{\text {med }}$ between the pairs, while the fourth column lists the average separation $\Delta \theta$ of galaxies on the sky within the same magnitude range. It is evident from this table that $\Delta \theta$ exceeds $\theta_{\text {med }}$ by a considerable factor. Thus the observed relation could not have been driven by the increasing closeness of fainter and fainter galaxies.

Figure $3 c$ has a number of galaxies at redshifts greater than 0.1 , and it is expected that the bulk of their magnitudes would lie in the range $\sim 18.5-22 \mathrm{mag}$. However, as is seen from Table 2, these magnitudes are not known in most cases. Nevertheless, had we continued the exercise of Table 1 to the above magnitude range, then the data on galaxy counts (Tyson and Jarvis 1979) tell us that $\Delta \theta \sim 70^{\prime \prime}$. (It needs to be emphasized here that the galaxy counts at faint magnitudes are known to flatten with a slope of ~ 0.4 for $d \log N / d m$ as opposed to the Euclidean value, and so $\Delta \theta$ does not drop off with increasing m as rapidly as at the bright end.) Thus the last point on the $\theta-z$ relation of Figure $3 c$ also could not have come from this effect.

There is one further test that we have carried out to test the reality of equation (1). In Figure 4 we plot the difference between the apparent magnitudes of the paired QSO and the galaxy against the redshift of the galaxy. If the QSOs were projected near their neighbor galaxies by chance, we should expect their magnitudes to be uncorrelated with the redshifts of the corresponding galaxies. As a result, allowing for the scatter, we should see the above plot mimic the Hubble plot for galaxies. On the other hand, if the QSOs are physically near to their neighbor galaxies, then the above difference in magnitudes should be uncorrelated with the galaxy redshifts. Figure 4 supports the latter alternative, except for the wide pairs at very

TABLE 1
COMPARISON OF $\theta_{\text {med }}$ WITH $\Delta \theta$ at DIFFERENT Galaxy Magnitudes

m_{1}	m_{2}	$\theta_{\text {med }}$	$\Delta \theta$
7	11.3	$840^{\prime \prime}$	$72000^{\prime \prime}$
11.4	12.7	580	30996
12.8	14.0	458	13176
14.1	15.0	336	7236
15.1	18.6	161	362

Fig. 4.-Plot of $m_{\text {QSo }}-m_{G}$ against z_{G} for all pairs used in Fig. $3 c$, with the Hubble relation plotted as a straight line.
small galaxy redshifts. (The correlation coefficient for the data points in Figure 4 is -0.54 .)

VI. RESULTS AND POSSIBLE INTERPRETATIONS

As was stated in § I, the tendency for QSOs and galaxies to cluster together has been discussed for nearly 20 years. The results described in $\S \S$ IV and V from a much larger body of data than has ever been used before seem to show unambiguously that QSOs and galaxies with very different redshifts cluster together.

Let us look at other results concerning this effect and how they have been interpreted. We first consider QSOs and faint galaxies which lie at the same redshifts. The many studies of these low-redshift QSOs have led to the conclusion that these QSOs have more companion galaxies than would be expected in the general field. Sometimes it is stated that low-redshift QSOs are usually situated in groups or clusters of galaxies (cf. Gehren et al. 1984), or, as Yee (1987) has put it, the frequency of finding close companions to these low-redshift QSOs is ~ 6 times that expected for field galaxies. In addition to this, Dahari (1984, 1985) and Byrd, Sundelius, and Valtonen (1987) have concluded that Seyfert galaxies are much more likely to have companions than normal galaxies. At the other extreme, Webster et al. (1988) have found an excess concentration of high-redshift QSOs within 6" of lower redshift galaxies, and Fugmann (1988) has found a similar effect.

With the heterogeneous sample described here, we have demonstrated that this same affinity of high-redshift QSOs for lower redshift galaxies is present all the way from the famous cases of comparatively nearby galaxies with QSOs some few arcminutes distant (in the original 3C sample of Burbidge et al. 1971) to pairs with much smaller separations, with galaxies at appreciable (cosmological) redshifts.

The general conclusion is that QSOs tend to lie in the vicinity of galaxies much more often than would be expected by chance, whether or not the galaxies and QSOs have the same redshifts.

This result may also have a bearing on the anomalies involving smaller redshifts. For many years it has been known that there is a significant number of close groups of galaxies-pairs, triplets, quartets, quintets, etc. (cf. Burbidge and Sargent 1971) -in which one galaxy has a highly discrepant excess redshift, and in which statistical or morphological arguments suggest that only one physical system is involved. Here again we are seeing a (comparatively) high-redshift galaxy with lowredshift companions far in excess of what would be expected by chance.

What explanations are available for this remarkable effect? In principle, there are two possibilities. The first is that QSOs lie at the distances implied by their redshifts and the reason for their probability of discovery close to galaxies is not well understood. Alternatively, they are physically associated with
galaxies, so that the bulk of their redshifts are of noncosmological origin.

The conservative position is that perhaps after all the cosmological redshift hypothesis is correct, and because of uncertainties in the surface density of faint QSOs and the content of galactic halos, it may be possible to explain the results in terms of gravitational microlensing.

The alternative, which we favor, is that these results are further direct evidence for noncosmological redshifts. Why do we believe this? For low-redshift QSOs it has sometimes been argued that the companion galaxies trigger by tidal activity the activity in the "host galaxy" which gives rise to the QSO (Byrd, Sundelius, and Valtonen 1987). However, for the high-redshift QSOs associated with low-redshift galaxies, it has sometimes seemed that acceptance of the reality of the effect hinged on the availability of an explanation for it within the conventional framework of Hubble's law. An explanation that has been attempted on several occasions involves statistical gravitational lensing (Canizares 1981; Schneider 1987). Although, prima facie, this idea looks attractive, bearing in mind the reservation made above, its quantitative application to the actual data appears to encounter severe difficulties.

As concluded by Linder and Schneider (1988), there is now a general agreement that gravitational lensing by compact foreground objects is not likely to generate a statistically significant overdensity of QSOs around galaxies containing these objects. The difficulty (also highlighted by Arp 1990) is that the fractional density enhancement is significant only if the number of QSOs increases sharply as the magnitudes become fainter and one is dealing with large enough numbers to start with. The counts of QSOs are indeed steep at the bright end, but the numbers are too small to make a significant contribution to the observed overdensity. Also, at fainter magnitudes the number counts of QSOs flatten considerably, so that lensing cannot be very effective in augmenting their surface densities.

Can the observed overdensity of galaxies near QSOs be explained by statistical microlensing? Again, Linder and Schneider (1988) have pointed out that some detectable effect is possible, but its amplitude is smaller than observed.

Webster et al. (1988) have tried to argue for microlensing to explain their finding of an excess concentration of high-redshift QSOs within 6" of low-redshift galaxies. However, the amount of lensing matter required for the observed effect turns out to be excessive compared with the dynamical estimates of
M / L for galaxies and clusters (Hogan, Narayan, and White 1989).

In any case, the lensing scenario cannot work for the effect highlighted in §§ IV and V where the angular separations are as high as 2^{\prime}, and the galaxies concerned are very close by.

VII. POSSIBLE THEORETICAL INTERPRETATIONS

The general result described in § IV requires that some part, ranging from a very small increment in Δz in low-redshift QSOs to the dominant component Δz in high-redshift objects, is due to effects other than the expansion of the universe. It appears that this result may apply to all classes of active objects (sometimes called AGNs).

As is well known, the alternatives to the cosmological redshift include a local Doppler effect, gravitational redshifts, a tired-light mechanism, a variable-mass hypothesis, etc. (for a review see Narlikar 1989). The apparent lack of blueshifts is a problem with the Doppler hypothesis, although this could be explained if the ejected QSOs radiate preferentially in the backward direction (Narlikar and Subramanian 1983). The gravitational redshift or the tired-light theory cannot explain why QSO-galaxy pairs should exist. The variable-mass hypothesis (Narlikar 1977; Narlikar and Das 1980) holds out a possible explanation. In this theory the QSO is made of newly created matter ejected from the parent galaxy. The excess redshift, however, does not arise from a high speed of ejection but from the low mass of the newly created matter. It was shown by Narlikar and Das (1980) that the ejected QSO can be bound to the parent galaxy with a typical separation of the order of $\sim 100-200 \mathrm{kpc}$.

Our ideas so far are fragmentary, but we do believe that the existence of this widespread effect requires a new approach to the cosmogony of violent nonthermal events wherever they may occur.

Two of us, G. B. and A. H., wish to thank the Director and staff of the Tata Institute of Fundamental Research for giving us short-term appointments and a great deal of hospitality in Bombay in the period 1988 December-1989 February. One of us, J. V. N., would like to thank the Center for Astrophysics and Space Sciences at UCSD for hospitality for a short visit in 1989 May. We also wish to thank J. P. Huchra and H. Spinrad, for galaxy information and V. Junkkarinen for a number of helpful discussions. This work was supported by NASA under NASA NGT-50175.

REFERENCES

Akujor, C. E. 1987, A.J., 94, 867.
Anderson, S. F., and Margon, B. 1987, Ap. J., 314, 111.
Arnaud, J., Hammer, F., Jones, J., and Le Fèvre, O. 1988, Astr. Ap., 206, L5.
Arp, H. 1974, in IAU Symposium 58, Formation and Dynamics of Galaxies, ed. J. R. Shakeshaft (Dordrecht: Reidel), p. 199.
——. 1976, Ap. J. (Letters), 210, L59.
-. 1977, in Colloque Internat. du CNRS, No. 263, L'Evolution des Galaxies et ses Implications Cosmologiques (Paris: CNRS), p. 377.
-—. 1980a, Ap. J., 236, 63.
——. 1980b, Ap. J., 240, 415.
-_. 1980c, in Proc. 9th Texas Symposium (Munich) (Ann. NY Acad. Sci., 336, 94).

Arp, H. 1981, Ap. J., 250, 31.
-. 1983, Ap. J., 271, 479.

- 1987, Quasars, Redshifts and Controversies (Berkeley: Interstellar Media).
-_. 1990, Astr. Ap., 229, 93.
Arp, H., and Duhalde, O. 1985, Pub. A.S.P., 97, 1149.
Arp, H., and Gavazzi, G. 1984, Astr. Ap., 139, 240.
Arp, H., Sargent, W. L. W., Willis, A. G., and Oosterbaan, C. E. 1979, Ap. J., 230, 68.

Arp, H., and Sulentic, J. W. 1979, Ap. J., 229, 496.
Arp, H., Sulentic, J. W., and di Tullio, G. 1979, Ap. J., 229, 489.
Arp, H., Wolstencroft, R. D., and He, X. T. 1984, Ap. J., 285, 44.
Bahcall, J. N., and Bahcall, N. A. 1970, Pub. A.S.P., 82, 721.

Bergeron, J. 1986, Astr. Ap., 155, L8.

- 1988, in QSO Absorption Lines, ed. J. C. Blades, D. A. Turnshek, and C. A. Norman (Cambridge: Cambridge University Press), p. 128.
Bergeron, J., Boulade, O., Kunth, D., Tytler, D., Boksenberg, A., and Vigroux, L. 1988, Astr. Ap., 191, 1.
Bergeron, J., and Kunth, D. 1983, M.N.R.A.S., 205, 1053.
-_. 1984, M.N.R.A.S., 207, 263.
Blades, J. C. 1988, in QSO Absorption Lines, ed. J. C. Blades, D. A. Turnshek, and C. A. Norman (Cambridge: Cambridge University Press), p. 147.

Blades, J. C., Hunstead, R. W., and Murdoch, H. S. 1981, M.N.R.A.S., 194, 669.
Boksenberg, A., Danziger, I. J., Fosbury, R. A. E., and Goss, W. M. 1980, Ap. J. (Letters), 242, L145.
Boksenberg, A., and Sargent, W. L. W. 1978, Ap. J., 220, 42.
Boyle, B. J., Fong, R., Shanks, T., and Clowes, R. G. 1985, M.N.R.A.S., 216, 623.
Browne, I. W. A., and McEwan, N. J. 1973, M.N.R.A.S., 162, 21 P.
Burbidge, E. M., Burbidge, G., Solomon, P. M., and Strittmatter, P. A. 1971, Ap. J., 170, 233.
Burbidge, E. M., Caldwell, R. D., Smith, H. E., Liebert, J., and Spinrad, H. 1976, Ap. J. (Letters), 205, L117.
Burbidge, E. M., Junkkarinen, V. T., and Koski, A. T. 1979, Ap. J. (Letters), 233, L97.
Burbidge, E. M., and Sargent, W. L. W. 1971, Nuclei of Galaxies (Pontif. Acad. Sci. Scripta Varia), p. 351.
Burbidge, G. 1979, Nature, 282, 451.
-. 1981, Ann. NY Acad. Sci., 375, 123.

- 1989, Nature, 339, 22.

Burbidge, G. R., O’Dell, S. L., and Strittmatter, P. A. 1972, Ap. J., 175, 601.

Byrd, G. G., Sundelius, B., and Valtonen, M. 1987, Astr. Ap., 171, 16.
Callahan, P. S. 1977, Astr. Ap., 55, 73.
Canizares, C. R. 1981, Nature, 291, 620.
Carilli, C. L., van Gorkom, J. H., and Stocke, J. T. 1989, Nature, 338, 134.
Carswell, R. F., Morton, D. C., Smith, M. G., Stockton, A. N., Turnshek, D. A., and Weymann, R. J. 1984, Ap. J., 278, 486.

Chen, J. S. 1985, Chinese Astr. Ap., 9, 343.
Chu, Y., Zhu, X., Burbidge, G., and Hewitt, A. 1984, Astr. Ap., 138, 408.
Corrigan, R., Jedrzejewski, R., Webster, R., Harding, M., and Hewett, P. 1988, Gemini, No. 22, p. 1.
Cristiani, S. 1987, Astr. Ap., 175, L1.
Cristiani, S., Danziger, I. J., and Shaver, P. A. 1987, M.N.R.A.S., 227, 639.
Dahari, O. 1984, A.J., 89, 966.
——. 1985, A.J., 90, 1772.
Danziger, I. J., Guzzo, L., Cristiani, S., and Shaver, P. A. 1987, Bull. AAS, 19, 1126.
Djorgovski, S., and McCarthy, P. 1985, Bull. AAS, 17, 830.
Djorgovski, S., Strauss, M. A., Perley, R. A., Spinrad, H., and McCarthy, P. 1987, A.J., 93, 1318.

Foltz, C., Weymann, R., Peterson, B. M., Sun, L., Malkan, M. A., and Chaffee, F. H. 1986, Ap. J., 307, 504.
Ford, H. C., and Epps, H. W. 1972, Ap. Letters, 12, 139.
Fugmann, W. 1988, Astr. Ap., 204, 73.
Gehren, T., Fried, J., Wehinger, P. A., and Wyckoff, S. 1984, Ap. J., 278, 11.

Gioia, I. M., Maccacaro, T., Schild, R. E., Stocke, J. T., Liebert, J. W., Danziger, I. J., Kunth, D., and Lub, J. 1984, Ap. J., 283, 495.
Giommi, P., Barr, P., Garilli, B., Gioia, I. M., Maccacaro, T., Maccagni, D., and Schild, R. E. 1987, Ap. J., 322, 662.

Green, R. F., Williams, T. B., and Morton, D. C. 1978, Ap. J., 226, 729.
Green, R. F., and Yee, H. K. C. 1984, Ap. J. Suppl., 54, 495.
Haschick, A. D., and Burke, B. F. 1975, Ap. J. (Letters), 200, L137.
He, X. T., Cannon, R. D., Peacock, J. A., Smith, M. G., and Oke, J. B. 1984, M.N.R.A.S., 211, 443.
Heckman, T. M., Bothun, G. D., Balick, B., and Smith, E. P. 1984, A.J., 89, 958.
Hewitt, A., and Burbidge, G. 1980, Ap. J. Suppl., 43, 57.
-. 1987, Ap. J. Suppl., 63, 1.
. 1989, Ap. J. Suppl., 69, 1.
Hintzen, P., Romanishin, W., Foltz, C., and Keel, W. 1989, Ap. J. (Letters), 337, L5.

Hogan, C. J., Narayan, R., and White, S. D. M. 1989, Nature, 339, 106.
Huchra, J., Gorenstein, M., Kent, S., Shapiro, I., Smith, G., Horine, E., and Perley, R. 1985. A.J., 90, 691.
Hutchings, J. B. 1990, Pub. A.S.P., 102, 431.
Hutchings, J. B., Campbell, B., and Crampton, D. 1982, Ap. J. (Letters), 261, L23.
Hutchings, J. B., Crampton, D., Campbell, B., Duncan, B., and Glendenning, B. 1984, Ap. J. Suppl., 55, 319.
Hutchings, J. B., Crampton, D., Campbell, B., Gower, A. C., and Morris, S. C. 1982, Ap. J., 262, 48.

Hutchings, J. B., Hickson, P., and De Robertis, M. M. 1986, A.J., 92, 279.
Hutchings, J. B., Johnson, I., and Pyke, R. 1988, Ap. J. Suppl., 66, 361.
Junkkarinen, V. T. 1989, private communication.
Kippenhahn, R., and de Vries, H. L. 1974, Ap. Space Sci., 26, 131.
Kronberg, P. P., Burbidge, E. M., Smith, H. E., and Strom, R. G. 1977, Ap. $J ., 218,8$.
Kronberg, P. P., Dyer, C., Burbidge, E. M., and Junkkarinen, V. T. 1990, private communication.
Kühr, H. 1980, Ph.D. thesis, Universität Bonn.
Kunth, D., and Bergeron, J. 1984, M.N.R.A.S., 210, 873.
Langston, G. I., et al. 1989, A.J., 97, 1283.
Le Borgne, J. F., Pelló, R., Sanahuja, B., Soucail, G., Mellier, Y., and Breare, M. 1990, Astr. Ap., 229, L13.
Le Fèvre, O., and Hammer, F. 1990, Ap. J. (Letters), 350, L1.
Linder, E. V., and Schneider, P. 1988, Astr. Ap., 204, L8.
Margon, B., Boroson, T. A., Chanan, G. A., Thompson, I., and Schneider, D. P. 1986, Pub. A.S.P., 98, 1129.

Margon, B., Downes, R. A., and Chanan, G. A. 1985, Ap. J. Suppl., 59, 23.
Margon, B., Downes, R. A., and Spinrad, H. 1983, Nature, 301, 221.
Marr, J., and Spinrad, H. 1985, Pub. A.S.P., 97, 684.
McCarthy, P. J., Dickinson, M., Filippenko, A. V., Spinrad, H., and van Breugel, W. J. M. 1988, Ap. J. (Letters), 328, L29.
McCarthy, P. J., van Breugel, W., and Spinrad, H. 1989, A.J., 97, 36.
Miller, J. S., Goodrich, R. W., and Stephens, S. A. 1987, A.J., 94, 633.
Miller, J. S., Robinson, L. B., and Wampler, E. J. 1973, Ap. J. (Letters), 179, L83.
Mitton, S., Hazard, C., and Whelan, J. A. J. 1977, M.N.R.A.S., 179, 569.
Monk, A. S., Penston, M. V., Pettini, M., and Blades, J. C. 1986,
M.N.R.A.S., 222, 787.
. 1988, M.N.R.A.S., 234, 193.
Morton, D. C., York, D. G., and Jenkins, E. B. 1986, Ap. J., 302, 272.
Murdoch, H. S., McAdam, W. B., and Hunstead, R. W. 1974, Nature, 248, 491.

Narlikar, J. V. 1977, Ann. Phys., 107, 325.
-_. 1989, Space Sci. Rev., in press.
Narlikar, J. V., and Das, P. K. 1980, Ap. J., 240, 401.
Narlikar, J. V., and Subramanian, K. 1983, Ap. J., 273, 44.
Nieto, J.-L., and Seldner, M. 1982, Astr. Ap., 112, 321.
Peterson, B. 1974, in IAU Symposium 58, Formation and Dynamics of Galaxies, ed. J. R. Shakeshaft (Dordrecht: Reidel), p. 221.
Pocock, A. S., Blades, J. C., Penston, M. V., and Pettini, M. 1984, M.N.R.A.S., 210, 373.

Reimers, D., Clavel, J., Groote, D., Engels, D., Hagen, H. J., Naylor, T., Wamsteker, W., and Hopp, U. 1989, Astr. Ap., 218, 71.
Sandage, A., and Tammann, G. A. 1981, A Revised Shapley-Ames Catalog of Bright Galaxies (Washington, DC: Carnegie Institution of Washington).
Schmidt, M., and Green, R. F. 1983, Ap. J., 269, 352.
Schneider, P. 1987, Ap. J. (Letters), 316, L7.
Seldner, M., and Peebles, P. J. E. 1979, Ap. J., 227, 30.
Shane, C. D. 1975, in Stars and Stellar Systems, Vol. 9, Galaxies and the Universe, ed. A. Sandage, M. Sandage, and J. Kristian (Chicago: University of Chicago Press), p. 660.
Spinrad, H., Djorgovski, S., Marr, J., and Aguilar, L. 1985, Pub. A.S.P., 97, 932.

Stickel, M., Fried, J. W., and Kühr, H. 1988, Astr. Ap., 206, L30.
Stocke, J. T., and Arp, H. 1978, Ap. J., 219, 367.
Stocke, J. T., Liebert, J., Schild, R., Gioia, I. M., and Maccacaro, T. 1984, Ap. J., 277, 43.
Stocke, J. T., Schneider, P., Morris, S. L., Gioia, I. M., Maccacaro, T., and Schild, R. E. 1987, Ap. J. (Letters), 315, L1 1.
Stockton, A. N. 1969, Ap. J. (Letters), 155, L141.

Stockton, A. N. 1978a, Ap. J., 223, 747.

- 1978b, Nature, 274, 342.

Strittmatter, P. A., Carswell, R. F., Gilbert, G., and Burbidge, E. M. 1974, Ap. J., 190, 509.
Sulentic, J. W. 1988, Phys. Letters A, 131, 227.
Sulentic, J. W., and Tifft, W. G. 1973, The Revised New General Catalogue of Nonstellar Astronomical Objects (Tucson: University of Arizona Press).
Thompson, D. J., Djorgovski, S., and Weir, W. N. 1989, Pub. A.S.P., 101, 1065.

Tyson, J. A., and Jarvis, J. F. 1979, Ap. J. (Letters), 230, L1 53.
Vader, J. P., Da Costa, G. S., Frogel, J. A., Heisler, C. A., and Simon, M. 1987, A.J., 94, 847.
Véron, M. P., Véron, P., Adgie, R. L., and Gent, H. 1976, Astr. Ap., 47, 401.

Webster, R. L., Hewett, P. C., Harding, M. E., and Wegner, G. A. 1988, Nature, 336, 358.
Weedman, D. W. 1980, Ap. J., 237, 326.

Weedman, D. W. 1985, Ap. J. Suppl., 57, 523.
Weymann, R. J., Williams, R. E., Peterson, B. M., and Turnshek, D. A. 1979, Ap. J., 234, 33.
Wills, B. J., Netzer, H., Uomoto, A. K., and Wills, D. 1980, Ap. J., 237, 319.

Wills, B. J., and Wills, D. 1979, private communication.
Wolstencroft, R. D., Ku, W. H. M., Arp, H. C., and Scarrott, S. M. 1983, M.N.R.A.S., 205, 67.

Wright, A. E., Jauncey, D. L., Peterson, B. A., and Condon, J. J. 1977, Ap. J. (Letters), 211, L1 15.

Wyckoff, S., Wehinger, P. A., Spinrad, H., and Boksenberg, A. 1980, Ap. J., 240, 25.

Yee, H. K. C. 1987, A.J., 94, 1461.
Yee, H. K. C., and Green, R. F. 1987, A. J., 94, 618.
Young, P., Sargent, W. L. W., and Boksenberg, A. 1982, Ap. J. Suppl., 48, 455.

Zhan, Y., and Chen, J.-S. 1987, Chinese Astr. Ap., 11, 299.
G. Burbidge and A. Hewitt: Center for Astrophysics and Space Sciences, C-011, University of California, San Diego, La Jolla, CA 92093
P. Das Gupta and J. V. Narlikar: Inter-University Centre for Astronomy and Astrophysics, Poona University Campus, Pune 411 007, India

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
0001-121(UT)	N 7813									1
1.30	-									
18	15.0	582	-							
0002-422	N 55(Sc)			N300(Sc)						2
2.758	0.00044			0.00044						
17.21	7.8	12180	148	11.3	38820	350				
2319-383										2
0.37	"									
17.3		37200	450							
0048-396										2
0.478				"						
17.8					7020	64				
0053-384										2
0.379				"						
18.9					-	17				
0056-363										2
0.162				"						
16.7					6060	56				
0056-394										2
1.409				"						
18.6					6000	55				
0059-361										2
0.901				"						
18.3					-	76				
0122-380										2
2.181				"						
16.5					22920	209				
0125-400										2
1.39				"						
17.1					24000	219				
0130-403										2
3.03				"						
17.02					28140	256				
0003+158(4C15.01)	ANON(S)			N7814(S)			faint			2
0.450	0.119			0.0042			galaxies(88)			
15.95	-	120	415	12.4	2352	239				
0007-000(UM280)	ANON									3
2.31	-									
17	-	-	-							
0007+106	IIIZw2-B(E)									4,70
0.089	0.0856			0.0906			galaxies (88)			26
15.4	17.66	50	124	16.25	250	659				
0007+332(4C33.01)	N29 (S)									1
0.743	-									
18.8	13.5	570	-							

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	
0013-004(UM224)	N60(S)									1
2.086	-									
17	15.5	320	-							
0014+166(PG)	faint									
0.100	galaxies(88)									
16.23										
$0015+162$	ANON									26,86
0.553	0.541									
18.2	-	60	900							
0017+257(4C25.01)	ANON									90
0.248	-									
15.4	-	10	-							
0017+154(3CR9)	ANON									98
2.012	0.254									
18.21	20.5	11	81							
0021-017	ANON									84
1.35	-									
-	-	3.5	-							
										5,70
(1.46)	_									
18	14.8	240	-							
0026+129(PG)	ANON(S)			faint						2
0.142	0.0058			galaxies(88)						
15.41	-	336	57							
0027+018(UM247)	N132(SBb/Sc)									5,70
2.35	0.0179									
18.9	13.8	300	156							
0027-289(QSO1)	ANON1(S)			ANON2(S)						6
0.28	-			-						
17.1	-	11	-	-	23	-				
0027-289(QSO2)	"			"						6
1.6										
19.36		26	-		45		-			
0032-086(BSO1)	N157(Sc)			ANON(S pec.)						7,70
0.756	0.00583			-						
19	11.1	1740	306		119		-			
$\begin{aligned} & 0034+024(\mathrm{UM} 52) \\ & (2.27) \end{aligned}$	N164									1
18	16	497	-							
0038+327(1E)	3CR19									1
0.197	0.482									
18.06	20	716	>1000							
0038-020(PKS)	UGC439(Sa)			N227(E)						9,10
1.178	0.017			0.017						70
18.5	14.4	430	213	13.7	1784	88				
				690						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kp	Galaxy	arcsec	kpc		arcsec	kpc	
0048-071(PKS)	N273									1
1.974	0.0158									
19.5	13	338	156							
0050+124(IZw1)	ANON									88
0.061	-									
14.07	-	-	-							
0051-274	ANON(Pec)									15
0.65	-									
		-	-							
0052+251(PG)	ANON			faint						16
0.155	-			galaxies(88)						
		10	23							
0055-277(CT250)	UGC554(S)									1
2.186	-									
18.77	15.6	185	-							
0100-351	ANON									17
1.413	-									
19.0	-	10	-							
0101-353	N365									1
2.20	-									
17.3	-	228	-							
0104+318(1E)	ANON			N383/3CR31(E)						8,18
2.027	0.111			0.0167						1
18.72	17.5	10	33	13.5	985	478				
	ZW									19,70
2.107	0.0067									
18.39	14.8	192	37							
0107-356	N415									1
2.19	0.0218									
20.1	-	286	182							
0109+200(TVT)	ANON									77
0.746	0.535									
17	-	7.0	102							
$0110+318(4 \mathrm{C} 31.03)$	$\mathrm{N} 420(\mathrm{So})$									1
0.603	0.0165									
18	13.5	578	277							
0112-014	N442(Pec)									1
2.20	0.0187									
20.3	14.5	589	321							
0112-017(PKS)	N448(E)			N450(SC)						19,2
1.365	0.0067			0.0062						70
17.41	13.2	600	61	12.5	2118	189				
0112+329(1E)	N447(SB)			N449(SB0/SBa)						1
0.764	0.0187			0.0160						
18.9	15.0	467	254	14.0	542	252				
				692						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kp	Galaxy	arcsec	kpc		arcsec	kpc	
0114+074(PKS)	ANON									20
0.861	-									
18	18.	30	-							
0117+213(PG)	ZW459.034(S)			faint						2
1.493	-			galaxies(88)						
16.05	-	336	-							
0117+031g(57)	N470(S)			N474(S0)						21
1.902	0.0079			0.0078						
18.79	12.5	2430	624	12.9	2133	548				
0117+031g(68D)										21
1.533	"			"						
18.2		96	25.2		300	77				
										21
1.609	"			"						
19.4		2160	555		1933	497				
0117+031g(D8)										21
2.090	"			"						
18.9		2160	555		1867	480				
0117+031g(68)										21
1.875	"			"						
19.9		93	24.4		264	68				
0118+034(PKS)	N479(Sb)									19,70
0.765				"						
18.09	15.1	518	-		1380	355				
0117-340	N491A									1
1.87	0.0119									
19.9	-	261	96							
0119-341	N491(SB)									1
2.22	0.0130									
18.5	13.0	595	219							
0119-341										1
1.47	"									
20.6		564	207							
0119-046(PKS)	ANON									78
1.948	0.133									
16.47	20	14	44							
$0120+092$	N505(S0)			N509(S0)			N516(S0)			1,14
0.176	0.0185			0.0076			0.0081			
18.2	15.1	590	318	14.7	375	82	14.3	530	125	
0121+108(MC2)	ANON(S)									22
0.510	-									
18	-	40	-							
$0122+035 \mathrm{~g}(31)$	N520(Amorph)									21
0.633	0.00728									
18.59	12.4	1330	308							

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kp ${ }^{\text {c }}$	Galaxy	arcsec	kpC	Galaxy	arcsec	kpc	
0239-154(UM677)	N1065									1
2.782	0.02465									
18.6	14.0	548	393							
0240-011(BSO1)	N1073(SBc)									7,33
1.945	0.00415									34,70
19.8	11.3	104	13.2							
0240-011(BSO2)										7,33
0.599	"									34,70
18.8		117	15.0							
0241-011(RSO)										7,33
1.411	"									34,70
		84	10.8							
0238-315(QSO2)	N1097(SB)									35
2.153	0.0041									
19.5	9.7	6068	756							
0238-301(QSO3)										35
2.265	"									
19.9		4642	579							
0238-310(QSO6)										35
2.034	"									
19.0		4804	599							
0240-309(QSO7)										35
0.374	"									
18.5		3134	391							
										35
1.588	"									
19.5		4850	604							
0241-302(QSO10)										35
0.359	"									
19.5		2563	319							
										35
0.874	"									
19.0		2688	335							
0242-310(QSO13)										35
1.985	"									
19.5		2674	333							
0242-305(QSO14)										35
1.042	"									
19.0		1111	138							
0242-301(QSO15)										35
2.269	"									
20.0		1442	180							
0242-301(QSO16)										35
0.783	"									
19.5		1477	184							
				697						

		Separation			Separation			Separation		
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	REF
0243-294(QSO17)										35
1.683	"									
18.5		3824	476							
0243-297(QSO18)										35
1.577	"									
19.5		2570	320							
0243-291(QSO19)										35
2.163	"									
18.5		4799	598							
0243-318(QSO21)										35
1.875	"									
18.5		4868	607							
0243-297(QSO22)										35
2.063	"									
20.0		2503	312							
0243-302 (QSO23)										1,36
0.89	"									
19.1		720	90							
0244-302(QSO25)										1,36
3.103	"									
19.3		660	82							
0244-302(QSO26)										1,36
1.00	"									
17.8		900	112							
0244-303(QSO27)										1,36
0.528	"									
18.3		600	75							
0245-302(QSO28)										1,36
0.34	"									
18.2		1260	157							
0245-301(QSO29)										1,36
(1.10)	"									
20.5		1440	179							
0245-294(QSO30)										35
1.663	"									
19.5		4012	500							
0245-297(QSO31)										35
1.004	"									
20.0		3026	377							
0245-294(QSO33)										35
2.141	"									
19.5		4028	502							
0245-298(QSO34)										35
1.862	"									
19.5		2771	345							

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	
0246-308(QSO35)										35
1.093	"									
18.5		2046	255							
0246-300(QSO36)										35
1.775	"									
19.0		2319	289							
0247-304(QSO37)										35
1.646	"									
19.0		2272	283							
										35
2.193	"									
20.0		4372	545							
0249-290(QSO42)										35
2.204	"									
19.5		6898	860							
0243-007(UB1)	N1087(Sc)									7,70
2.147	0.00615									
19.16	11.3	170	27							
0244-003(US3146)	N1090(SBc)									1
1.815	0.00912									
18.99	12.5	353	97							
0245-004(US3167)	N1094									1
2.118	0.0211									
18.68	13.5	427	263							
0248+430(S4)	ANON									37,78
1.316	0.0512									
18.0	-	15	22							
0302-223(1E)	N1232(Sc)									2
1.400	0.0055									
16.0	10.2	7020	1208							
0304-392	N1217									1
1.965	0.0208									
17.6	13.99	294	178							
0306+169	3CR79(N)									1
2.14	0.2559									
20.3	18.5	930	>1000							
0307+172										1
2.28	"									
19.2		1344	>1000							
0308-420	N1291(S)									38
0.581	0.0027									
17.6	10.2	4580	209							
0309-403										38
1.729	"									
18.5		4160	190							
				699						

TABLE 2-Continued

QSO	Galaxy	Separation		Galaxy	Separation		Galaxy	Separation		REF
		arcsec	kpc		arcsec	kpc		arcsec	kpc	
$0849+336 \mathrm{~g}(\mathrm{U} 1)$	N2683(Sb)			UGC4658(Sc)						40
0.621	0.0012			0.0143						
17.4	9.7	3200	124	14.9	517	215				
$0849+336 \mathrm{~g}$ (U2)										40
1.262	"			"						
18.7		2817	109		453	270				

0849+336g(U3)						40
1.252	"					
19.3		2783	108	658	180	

0851+142(3CR208.1)	ANON									93
1.011	0.159									
19.26	20.85	3.9	18.5							
0853+515(UB1)	N2693(E)			N2694						40,1
2.31	0.0162			0.0168						
19.5	13.1	188	92	15	-	92				
$0855+539 \mathrm{~g}(\mathrm{UB1})$	N2701(Sc)			ANON						23
0.243	0.0075			-						40
19.4	12.5	420	99	-	110	-				
$0902+186$	N2744(SB)			N2747			N2749(E3)			1
(0.465)	0.0114			-			0.0137			
17.53	13.8	491	163	15.5	133	-	13.5	509	206	
0903 + 169(3CR215)	ANON									26
0.411	0.41									
18.27	-	8	100							

| $0903+175$ | ANON | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2.756 | - | | | | | |
| 17.3 | 18.0 | | | | | |

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
0918+511g										23,2
0.297	"			"						
19.2		2310	160		1500	104				
0921+348g(U1)	ANON(Pec)			N2859(SB)						40,46
0.23	0.006			0.0056						70
19.2	15.3	60	10	12.2	574	88				
0921+348g(U2)	ANON									40,46
2.25	0.006			"						70
19.7	15.7	66	12		1320	203				
0921+344(U3)	ANON(S pec)									40,46
1.46	0.006			"						70
20.3	(15.9)	73	13		1440	222				
0921+348										47
0.487				"						
18.6					596	97				
0923+201(PG)	N2903(Sc)			ANON			faint			2,26
0.190	0.0015			0.190			galaxies(88)			16
16.04	9.8	7740	353	-	9	48				
0929+218										1
2.53	"									
20.9		500	23							
0924+301	B2									10,70
2.02	0.0266									
21.0	14.0	480	371							
0931+437(PG)	faint									
0.456	galaxies(88)									
16.3										
$0932+219 \mathrm{~g}$ (UB1)	N2916(S)									40,23
0.238	0.0123									
19.2	12.3	216	77							
$0932+219 \mathrm{~g}(\mathrm{UB} 2)$										40,23
0.793	"									
17.6		370	132							
$0932+219 \mathrm{~g}$ (UB3)										23
1.279	"									
18.2		1234	442							
$0932+219 \mathrm{~g}$ (UB4)										40,23
1.868	"									
19.3		586	208							
$0932+219 \mathrm{~g}$ (UB5)										23
0.732	"									
19.1		746	118							
0935+417(PG)	faint									
$\begin{aligned} & 1.980 \\ & 16.25 \end{aligned}$	galaxies(88)									

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kpC	Galaxy	arcsec	kpc	Galaxy	arcsec	kpC	
0956-073(1E)	N3115(E/S0)									2
0.327	0.002									
16.5	9.9	5256	223							
0959-075										38
1.559	"									
17.8		2200	93							
0957+558g(UB1)	N3073(S0)			N3079(Sc pec)						23
1.53	0.0038			0.0041						
18.8	13.8	190	23	11.9	725	86				
0957+558g(UB2)										23
2.091	"			"						
17.3		693	82		1077	128				
										23
1.154	"			"						
17.4		933	111		199	24				
0957+561(A/B)										10,70
1.405				"						
17.0					880	105				
0958-551(MKN132)										10,70
1.751				"						
16.0					2700	321				
	A1008-04(Irr)									38
1.810	0.00011									
18.0	-	3040	175							
0958-042										38
0.497	n									
18.1		2570	148							
0959-028										38
1.816	"									
18.7		2710	156							
1000-037										38
0.143	"									
17.6		2170	125							
1000-032										38
0.526	"									
19.4		2220	128							
1001-033										38
0.458	"									
19.8		2070	113							
1003-026										38
2.871	"									
18.2		2140	123							
1006-023										38
0.687	"									
18.6		2070	119							
				706						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
1006-050										38
1.169	"									
18.8		750	43							
1008-055										38
2.109	"									
18.3		1160	67							
1010-072										38
0.640	"									
17.8		2830	163							
1001+291(TON28)	3CR234									1
0.329	0.1848									
15.5	17.27	1794	>1000							
1002-248	N3109(SB)									38
2.437	0.0013									
17.7	10.4	2310	76							
1004-256										38
1.876	"									
18.2		1790	59							
1004+130(PKS)	ANON			ANON			faint			25,70
0.241	0.2423			0.2400			galaxies(88)			
15.15	-	34	237	-	45	314				
1008+133(PG)	faint									
1.287	galaxies (88)									
16.24										
1011+250(TON490)	faint									
1.631	galaxies(96)									
15.4										
1011-282(PKS)	faint									
0.253	galaxies(90)									
16.88										
1012+008(PG)	ANON			ANON			faint			26,88
0.185	0.186			0.187			galaxies(88)			16
16	17.6	3	12	18.4	-	30				
$1012+736 \mathrm{~g}(\mathrm{U} 1)$	N3147(Sb)			ANON(S pec)						40
1.055	0.0092			-						
19.0	11.45	1800	508	-	60	-				
$1015+416 \mathrm{~g}$ (UB1)	N3184(Sc)			ANON(S pec)						23,40
0.152	0.0019			-						
17.7	10.9	284	17	-	797	-				
$\begin{aligned} & 1015+416 \mathrm{~g}(\mathrm{UB} 3) \\ & (0.92) \end{aligned}$	"			"						23,40
19.1		584	34		339	-				
$1015+416 \mathrm{~g}$ (UB4)										23,40
2.029	"			"						
18.1		900	53		278	-				
				707						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
1016+359(CSD 259)	ANON									94
1.552	0.055									
17	-	45	72							
1017+280(TON34)	N3204(SBb)									1
1.928	0.0167									
15.69	14.8	314	152							
1020-103(OL-133)	faint									
0.197	galaxies(90)									
16.11										
1021-006(PKS)	ZW									19,70
2.547										
18.22	15.5	126	-							
1031+583(1E)	3CR244.1									1
0.248	0.428									
18.66	19	595	>1000							
1037-270(TOLOLO19)	ANON									49
2.18	-									
17.4	-	40	-							
1038+064(4C06.41)	ANON			faint						77
1.27	0.441			galaxies(88)						
16.81	-	9.6	123							
$1039+140 \mathrm{~g}$ (UB1)	ANON(S pec)			N3338(Sbc)						7,1
(2.04)	A			0.0043						70
20.4	15.5	218	-	11.5	-	-				
$1039+140 \mathrm{~g}$ (UB2)	ANON(S dstb)									7,1
2.14	-			"						70
19.7	13.8	251	-		-	-				
1038-272(TOLOLO22)	ANON									49
2.331	-									
17.8	-	95	-							
1045+350	N3381(SB)									1
0.923	0.0054									
20.8	12.8	518	82							
$1045+128 \mathrm{~g}(\mathrm{UB} 1)$	N3379(EO)						N3389(Sc)			50,1
1.111	0.00297			0.0024			0.0042			70
19.4	11.0	584	43	10.8	250	18	12.5	146	11	
$1045+128 \mathrm{~g}$ (UB2)										50,1
1.28	"			"			"			70
19.8		960	71		710	52		365	27	
$1045+128 \mathrm{~g}$ (UB4)										50,1
1.107	"			"			"			70
19.9		647	48		668	49		1043	77	
										50,1
1.192	"			"			"			$\begin{array}{r}\text { 50, } \\ \hline 0\end{array}$
19.2		960	71		1064	78		1440	106	
				708						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
$1045+128 \mathrm{~g}$ (UB8)										50,1
1.134	"			"			"			70
18.7		1189	88		795	59		657	48	
$1045+128 \mathrm{~g}$ (UB13)										50,1
(0.497)	"			"			"			70
20.6		600	44		167	12		417	31	
$1045+128 \mathrm{~g}$ (UB14)										50,1
(0.52)	"			"			"			70
20.5		1649	122		1461	108		1106	82	
$1045+128 \mathrm{~g}$ (UB15)										50,1
1.131	"			"			"			70
19.7		1878	138		1607	118		1294	95	
1048+342(CSO294)	ANON			ANON			faint			16,26
0.167	0.167			-			galaxies(88)			88
15.81	19.7	-	11	20.2	-	50				
1048-090(PKS)	ANON			ANON			faint			25,70
0.344	-			0.1255			galaxies			
16.79	-	23	-	-	26	95	$(88,90)$			
1049-005(PG)	IC653(Sa)			faint						2
0.357	0.0182			galaxies(88)						
15.95	14.2	1074	569							
1049+616(4C61.20)	N3407(E/S0)			N3435(Sb)						9,70
0.422	0.0153			0.0174						
16.48	15.0	173	85	12.8	1062	520				
1058+110(4C10.30)	ANON(S)			faint						2
0.423	-			galaxies(90)						
17.1	-	120	-							
$1059+730$	N3516(SB0)									2
0.089	0.0087									
14.7	12.3	1344	339							
1104+728(W1)										1
2.10	"									
18.9		255	64							
1100+772(3CR249.1)	faint									
0.311	galaxies(88)									
15.72										
1100-264	ANON			ANON			ANON			97
2.145	0.18			0.297			0.370			
16.02	-	17	89	-	60	520	-65	700		
1103-006(PKS)	N3521(Sb)			faint						19,70
0.426	0.0021			galaxies(88)						
16.46	10.1	3180	193							
1104+167(4C16.30)	faint									
0.634	galaxies(88)									

	Separation				Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kp	Galaxy	arcsec	kpc		arcsec	kpc	
1107+036(OTL)	ANON									73,70
0.963	0.0291									
18.9	17.0	20	17							
$1108+289$	N3550(Pec)			N3552			N3553			1,51
2.192	0.0351			-			-			
20	14.2	532	543	15	389	-	15	389	-	
"	N3554			N3558			N3561			1,51
	0.0291			0.0299			0.0285			70
	15.5	327	277	15.0	574	501	14.7	66	55	
1109+357(1E)	N3569(S0)									8
0.91	0.027									
18.1	14.5	31	24							
$1112+431(\mathrm{PG})$	faint									
0.302	galaxies(88)									
17.89										
$1113+183$	N3599(E/S0)									1
2.20	0.0028									
18.6	13.0	326	26							
$1113+182$	N3605(E/S0)									1
1.9	0.0023									
19.5	12.7	458	37							
$1114+183$				N3608(E)						1
1.9	"			0.00399						
19.7		600	48	11.7	574	46				
1114+184	N3607(E)									1
2.20	0.0033			"						
20.3	10.2	507	41		150	12				
1114+445(PG)	faint									
0.144	galaxies (88)									
16.05										
$1115+080(\mathrm{~A} / \mathrm{B})$	ANON(S)						faint			2
1.722	-						galaxies(88)			
15.84	-	101	-	14.9	369	-				
1116+215(PG)	faint									
0.177	galaxies(88)									
15.17										
$1117+137$	N3628(Sb dstb)									1
2.15	0.0028									
19.7	11.5	278	19							
1117+139										1
2.06	"									
19.9		468	33							
$1118+138$										1
2.43	"									
21.2		341	24							

		Separat	ion		Separat	ion		Separat		
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	REF
$\begin{aligned} & 1117-248(\mathrm{PKS}) \\ & 0.466 \\ & 17.07 \end{aligned}$	faint galaxies(90)									
$\begin{aligned} & 1117+535(\mathrm{SBS}) \\ & 1.921 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \mathrm{N} 3631(\mathrm{Sc}) \\ & 0.0038 \\ & 11.0 \end{aligned}$	503	60							1
$\begin{aligned} & 1121+423(\mathrm{PG}) \\ & 0.224 \end{aligned}$	faint galaxies(88)									
$\begin{aligned} & 1123+356(\text { CSO } 340) \\ & 1.285 \\ & 17 \end{aligned}$	faint galaxies(94)									
$\begin{aligned} & 1124+571(\mathrm{OM} 540 / 4) \\ & 2.89 \\ & 19.0 \end{aligned}$	$\begin{aligned} & \text { N3683 } \\ & 0.0056 \\ & 12.7 \end{aligned}$	172	30							1
$\begin{aligned} & 1127-145(\mathrm{PKS}) \\ & 1.187 \\ & 16.9 \end{aligned}$	$\begin{aligned} & \text { ANON } \\ & 0.313 \\ & - \end{aligned}$	9.5	86.							
$\begin{aligned} & 1128+315(\mathrm{~B} 2) \\ & 0.289 \\ & 16.6 \end{aligned}$	ANON 0.2896	7	59	ANON	28	-	ANON 0.2920	35	294	25,70
$\begin{aligned} & 1130+473 \mathrm{~g}(\mathrm{BSO} 1) \\ & 1.13 \\ & 18.4 \end{aligned}$	$\begin{aligned} & \text { ANON(Pec) } \\ & 0.0320 \\ & 15.1 \end{aligned}$	100	93	$\begin{aligned} & \mathrm{N} 3726(\mathrm{Sc}) \\ & 0.0028 \\ & 10.95 \end{aligned}$	987	87				9,1,70
$\begin{aligned} & 1131+350(\text { CSO } 352) \\ & 0.204 \\ & 17 \end{aligned}$	ANON	5	-							94
$\begin{aligned} & 1137+660(3 \mathrm{CR} 263) \\ & 0.646 \\ & 16.32 \end{aligned}$	faint galaxies(88)									
$\begin{aligned} & 1138+040(\mathrm{PG}) \\ & 1.877 \\ & 16.05 \end{aligned}$	faint galaxies(88)									
$\begin{aligned} & 1141+202 \mathrm{~g}(\text { QSO1 }) \\ & 0.335 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \text { N3837(E) } \\ & 0.0208 \\ & 14.2 \end{aligned}$	199	126	$\begin{aligned} & \mathrm{N} 3840(\mathrm{Sa}) \\ & 0.0246 \\ & 14.7 \end{aligned}$	470	299	$\begin{aligned} & \text { N3841 } \\ & 0.0212 \\ & 15.0 \end{aligned}$	113	72	52,1
"	$\begin{aligned} & \text { N3862(3CR264) } \\ & 0.0208 \\ & 12.74 \end{aligned}$	1557	940	$\begin{aligned} & \text { N3842(E) } \\ & 0.0208 \\ & 13.3 \end{aligned}$	78	47	$\begin{aligned} & \text { N3844(SD) } \\ & 0.0228 \\ & 14.9 \end{aligned}$	290	184	52,1
"	N3845 0.0188 15	205	130	N3851 0.0216 15	307	195				52,1
$\begin{aligned} & 1141+202 \mathrm{~g}(\mathrm{QSO} 2) \\ & 0.946 \\ & 18.5 \end{aligned}$	N3837 (cont)	292	186	N3840(cont)	457	290	N3841(cont)	108	69	52,1

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kp	
1203+109(4C10.34)	N4082									1
1.088	0.0233									
17.32	15.0	595	403							
1205-008(PKS)	ANON									54,70
1.007	0.306									
18.6	17.5	9.4	84							
1205+644(1E)	3CR268.3									53
0.105	0.371									
17.70	20	762	>1000							
$1206+459(\mathrm{PG})$	N4144(Sc)									2
1.158	0.0011			0.0018						
15.79	12.3	2886	88	9.6	8526	431				
	N4138(S0)									19,70
1.40	0.0036									
18.42	12.1	174	18							
1207+399	N4145A									1
2.4	0.0029									
17.5	15.5	567	57							
										55,1
Cont.	0.0032			0.0224						
20.3	11.2	283	27	14.3	290	190				
	ANON									25,70
0.388	0.1494									
16.0	-	34	148							
1209+107(KP9)	ANON			ANON						71,72
2.191	0.3922			0.629						
17.76	21.9	7	80	23	1.3	24				
$1210+134(4 \mathrm{C} 13.46)$	N4193(Sb)									1
1.137	0.0083									
18.09	13.4	357	86							
1213+132	N4216(Sb)									1
2.562	0.00045									
18.9	11.2	481	51							
1216+069(PG)	faint									
0.334	galaxies(88)									
15.68										
1216+695	N4236(SB)									14
0.627	-									
17.0	10.7	1200	21							
$1217+151($ A3 12)	N4262(SB0)									1
0.564	0.0046									
19.0	12.3	181	19							
1217+023(PKS)	faint									
0.240	galaxies									
	$(88,90)$									

TABLE 2-Continued

QSO	Galaxy	Separation		Galaxy	Separation		Galaxy	Separation		REF
		arcsec	kpc		arcsec	kpc		arcsec	kpc	
1218+753(1E)	ZW1210.9+7520									8
0.645	-									
18.16	15.4	94	-							
1219+047	N4303(SBc)			N4292(S0)			N4294A			1,14
0.094	0.0052			0.0075			-			
16.8	10.9	331	35	14.1	441	97	15	531	-	
1219+755(MKN205)	N4319(SB)									56,70
0.07	0.0062									
14.5	13.0	42	4.5							
1219+285(W Com)	N4295									1
Cont	0.0285									
16.5	15	336	279							
$1219+116$	N4294(Sc)			N4299(Irr)						1
2.178	0.00119			0.00074						
18.5	12.6	491	52	12.8	389	41				
$1220+160$	N4321(Sc)			N4328						14,1
0.081	0.0052			0.0017						
15.9	10.6	546	58	15.0	250	26				
1221-113(MC2)	N4352(S0)									1
1.755	0.0070									
18	14.5	443	47							
1222+216(4C21.35)	faint									
0.435	galaxies(90)									
17.5										
$1222+131$	N4374(3CR272.1)			N4387(E)						1
1.250	0.0031			0.0019						
18.5	8.67	158	17	13.2	534	57				

$1222+135($ RMB98)				74
1.792	n	1505	161	74
18.0				
			1	
$1221+758($ W1)	N4386(S0)			1
1.632	0.0055	374	40	

$1222+102($ WDM 6$)$	$\mathrm{N} 4380(\mathrm{Sa})$			10,70
cont.	-	88	9.3	

$1222+228($ Ton 1530)	faint
2.040	galaxies (88)
15.49	

1223+252(Ton616)	ANON						25,70
0.268	0.0911						90
16.0	-	34	90				
$1223+338 \mathrm{~g}$ (UB1)	ANON(Sc)			N4395			7,27
1.265	0.0220			0.0010			70
18.7	17	145	93	10.5	-		

$$
714
$$

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
$1233+268$	N4555(E)									1
1.99	0.0221									
20.2	13.5	372	239							
$1233+260$	N4562(Sc)			N4565A(Sc)						1
2.04	0.0047			-						
20.5	14.6	463	49	14.5	463	296				
$1233+262$							N4565(Sb)			1
2.09	"			"			0.0041			
21.0		587	62		587	376	10.3	411	47	
$1233+264$	N4565B			N4565C						1
2.40	0.0210			0.0210						
19.1	15.5	260	166	15.5	326	209				
$1233+266$										1
2.10				n						
21.6					582	372				
1241+166(3CR275.1)	N4651(Sc)									27,70
0.557	0.0025									
19.0	11.3	210	22							
1.273	galaxies(88)									
15.38										
1246-057	N4697(E)			N4731(SB)						2
2.236	0.0036			0.0045						
-16.73		780	83	11.60	2280	242				
1247+267(PG)	N4725(Sb)			faint						2
2.038	0.0040			galaxies(88)						
15.53		3690	391							
										2
1.030	0.0012			galaxies(88)						
16.06	8.7	4566	152							
										12,70
0.824										12,70
18.2	14.0	90	-							
1254+047(PG)	N4765(S)			faint						2
1.024	0.0023			galaxies(88)						
15.84	13.0	1212	74							
1254+278	N4824									1
(2.05)	N824									1
21.0	-	79	-							
	N4839(E)			N4840(E)			N4842(E)			1
1.52	0.0245			0.0202			0.0250			
19.4	13.6	305	195	15.0	346	221	15.0	278	178	
1254+279										
2.65	"			"			"			1
20.4		499	319		209	133		327	209	
				716						

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
1255+278										1
1.98	"			"			"			
20.1		385	246		380	243		353	226	
1254+282	N4828			N4850						1
1.88	0.0204			0.0199						
20.8	15.5	491	314	15.5	561	359				
1255+282										1
2.11				"						
20.8					184	118				
$1256+278$	N4854			N4853						1
1.62	0.0269			0.0251						
20.6	15.0	479	307	14.0	246	157				
$1256+280$							N4869			1
2.66	"						0.0226			
21.0		482	308				15.0	490	314	
n	N4875			N4876						1
	0.0263			0.0222						
	15.5	572	366	15.0	572	366				
$1256+280$	"			"			N4894			1
2.30							0.0153			
21.1		512	328		512	328	15.5	583	373	
"							N4898			1
							0.0229			
								527	337	
$1256+281$	"			"						1
0.384										
19.5		254	163		254	163				
"	N4864			N4867			N4869(cont)			1
	0.0226			0.0158						
	15.0	320	205	15.5	371	237		111	71	
"	N4871			N4872			N4873			1
	0.0237			0.0239			0.0188			
		300	192	15.5	309	198	15.5	352	225	
"	N4974(S0)									1
	0.0239									
		350	224							
$1258+281$	N4906			N4911A			N4911(S dstb)			1
1.92	0.0249			-			0.0267			
21.0	15.0	251	161	15.0	285	182	13.7	324	207	
"	N4919(S0)			N4921(S)			N4894(cont)		,	1
	0.0270			0.0182						
	14.9	438	280	13.7	432	276		558	357	
"					N4898(cont)					1
								523	335	
				717						

	Separation				Separation			Separation		
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	REF
1304+293										1
0.26	"									
20.4		462	296							
1305+069(3C281)	faint									
0.602	galaxies(88)									
17.02										
1306+276(US323)	3CR284									1
0.462	0.2394									
18.5	18	1841	>1000							
1307+085(PG)	ANON									16
0.155	-									
15.28	-	-	-							
$1307+298$	N5004C									1
(1.81)	0.0238									
18.5	15.5	553	354							
$1308+297$										1
1.85	"									
17.4		534	342							
$1308+286$	ANON									42
2.39	-									
21.5	-	25	-							
1309+355(PG)	N5033(Sbc)			faint						2
0.184	0.0031			galaxies(88)						
15.45	-	4902	426							
$1313+422 \mathrm{~g}$ (UB1)	ANON(S pec)			N5055(Sb)						7,70
0.91	-			0.0016						
18.3	15.5	315	-	9.7	1477	79				
1317-122(1E)	ANON									8
0.33	-									
18.3	16	10	-							
$1319+388 \mathrm{~g}(\mathrm{UB1})$	N5112(SB)			N5107						1
0.949	-			0.0031						
19.5	12.5	760	74	13.7	40	3.6				
$1322+659(\mathrm{PG})$	ANON									16
0.168	-									
15.86	-	-	-							
1327-206(PKS)	ESO1327-2041(S)									58
1.169	0.0180									
17.04	-	38	20							
1328-173	N5170(Sb)									38
0.329	0.0050									
18.6	11.9	1760	220							
1325-289	N5236(SB)									38
1.412	0.0017									
18.5	8.5	4530	152							

TABLE 2-Continued

QSO	Galaxy	Separation		Galaxy	Separation		Separation		
		arcsec	kpc		arcsec kpc	Galaxy	arcsec	kpc	REF
1510-089(PKS)	ANON								25,70
0.361	0.2536								
16.52	-	25	184						
$1511+103(\mathrm{MC2})$	ANON								77
1.546	0.4359								
17.73	-	6.7	85						
$1512+370(4 \mathrm{C} 37.43)$	ANON			faint					25,70
0.371	0.3722			galaxies(88)					
15.5	-	11	118						
$1518+201$	3CR318								1
2.1	0.752								
19.2	20.3	1167	>1000						

1525+159(1E)	UGC9846(Sc)						2
0.230	-						
17.24	14.7	2616	-				
1525+227(LB9743)	ANON			ANON			25,70
0.253	0.2519			-			
16.39	-	33	240	-	40	-	

$1530+151(1 \mathrm{E})$	N5951(Sc)									1
0.090	0.0059									
18.0	13.8	460	70							
$1537+595 \mathrm{~g}$ (UB1)	N5981(S)			N5982(E)			N5985(Sb)			7,1,70
2.132	0.0094			0.0098			0.0084			
19.0	14.2	107	28	12.5	257	67	12.0	714	187	

$1537+595 \mathrm{~g}$ (UB2)							7,1,70
1.968	"						
19.0		743	194	284	740	194	

$1548+114(B)$						25,70
1.901	"	"				
19.0		9	113	12	151	

		Separation			Separation		Galaxy	Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc		arcsec	kpc	
1549+203(LB906)	3 CR 326			ZW107.051						1,2
0.250	0.0895			-						
17.4	17	527	>1000	-	534	-				
1552+085(PG)	ANON			faint						16
0.119	-			galaxies(88)						
16.02	-	-	-							
1602+178(CL4)	N6039			N6040			N6041(E)			1
3.003	-			0.0413			0.0342			
19.5	14.5	598	-	14.5	598	719	14.9	448	446	
"	N6042			N6043			N6044			1
	0.0347			0.0599			0.0331			
	15.5	394	398	15.5	132	23	15.5	411	396	
"	N6045(Sb)			N6047			N6050			1
	0.0330			0.0315			0.0319			
	14.8	89	86	15.5	117	107	14.9	263	245	
"	N6054									1
	0.0372									
	15.5	360	390							
$\begin{aligned} & 1603+179(\mathrm{CL} 8) \\ & (1.813) \end{aligned}$	"									1
21.0		513	556							
1602+241(1E)	N6051(E)									1
0.087	0.0319									
17.1	14.9	403	375							
1603+183(CL7)	N6053			N6055(S0)			N6057			1
1.620	-			0.0377			0.0348			
20.0	15.5	447	-	15.4	161	177	15.5	247	250	
1603+181(CL9)	"			N6056						1
(2.066)				0.0388						
20.0		517	-	15.0	472	553				
1612+262(TON256)	ANON(S)			ANON			faint			61,70
0.131	0.1205			0.1318			galaxies			
15.41	-	210	764	-	300	1091	$(88,90)$			
$1612+266(\mathrm{NAB})$	N6096									1
0.395	0.0326									
17.3	15.5	453	431							
1613+658(PG)	N6140(SBc)			ANON(S)			faint			2,62
0.129	0.0038			-			galaxies(88)			
15.37	12.6	2820	312	-	20	-				
1614+051(PKS)	ANON									63
3.210	3.125									
19.5	-	-	-							
1617+175(PG)	ANON			ANON			faint			16
0.114	-			-			galaxies(88)			
15.46	-	-	-	-	-	-				

		Separation			Separation			Separation		REF
QSO	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	Galaxy	arcsec	kpc	
$1642+397$	"									1
2.3										
20.6		459	403							
1641+399(3CR345)										1,90
0.595	"									91
15.96		252	221							
$1641+399$										1
1.083	"									
18.4		204	179							
1641+399										1
2.0	"									
20.9		208	183							
$1654+137$ (MG)	ANON									68
1.74	0.254									
20.93	18.66	3	23							
$1700+518(\mathrm{PG})$	ANON			faint						16
0.288	-			galaxies(88)						
15.43	-	-	-							
1700+642(HS)	ANON A			ANON B						92
2.72	0.086			0.19						
16.1	18.8	11	30	-	18	100				
1701+610	N6292(S)			ANON			ANON			1,64
0.164	0.0113			0.052			0.052			
17.0	14.4	333	110	.	29	44	-	38	57	
1704+608(3CR351)	N6306(Sab)			faint						2
0.371	0.0107			galaxies(88)						
15.90	14.3	1080	336							
1749+701(W1)	N6503(Sc)									10,70
cont.	0.0009									
16.5		324	9.5							
1821+642(E)	ANON									2
0.297	-									
14.1	-	90	-							
1828+487(3GR 380)	faint									
0.692	galaxies(88)									
16.81										
1912-550(PKS)	ANON									77
0.402	-							.		
16.49	-	-	-							
1953-325	ANON(E)									32
1.242	-									
20.5	-	32	-							
2020-370(PKS)	ANON			Klemola 31A(S)			Klemola 31B(E)			10,2
1.048	0.0290			0.0288			0.0285			70,81
17.5	-	21	18	-	18	15	-	45	3	
				726						

TABLE 2-Continued

QSO	Galaxy	Separation		Galaxy	Separation		Galaxy	Separation		REF
		arcsec	kpc		arcsec	kpc		arcsec	kpc	
2344+092(PKS)	ANON(S)			faint						2
0.672	0.0426			galaxies(88)						
15.97	-	235	287							
2349-014(PG)	faint									
0.174	galaxies(88)									
15.33										
2355-329	N7793									1
0.071	0.0007									
18.2	10.0	218	4.4							

Note.-For most of the 3CR galaxy-QSO pairs in the table the angular separations are large, and the redshifts are comparatively large, so that the projected separations depend sensitively on the value of q_{0} assumed. Since these pairs are not used in the analysis, we have simply put these separations higher than 1000 kpc .

References for Table 2

1. This paper.
2. Monk et al. 1986.
3. Zhan and Chen 1987.
4. Green, Williams, and Morton 1978.
5. Weedman 1980.
6. Vader et al. 1987.
7. Arp 1980c.
8. Stocke et al. 1987.
9. Arp 1976.
10. Arp 1977.
11. Browne and McEwan 1973.
12. Strittmatter et al. 1974.
13. Pocock et al. 1984.
14. Margon, Downes, and Chanan 1985.
15. Boyle et al. 1985.
16. Yee 1987.
17. Chen 1985.
18. Stocke et al. 1984.
19. Burbidge, O'Dell, and Strittmatter 1972.
20. Akujor 1987.
21. Arp and Duhalde 1985.
22. Mitton, Hazard, and Whelan 1977.
23. Arp 1981.
24. Gehren et al. 1984.
25. Stockton 1978 a.
26. Heckman et al. 1984.
27. Arp 1974.
28. Burbidge et al. 1971.
29. Véron et al. 1976.
30. Miller, Robinson, and Wampler 1973.
31. Wills and Wills 1979.
32. Peterson 1974.
33. Burbidge, Junkkarinen, and Koski 1979.
34. Arp and Sulentic 1979.
35. Arp, Wolstencroft, and He 1984.
36. Wolstencroft et al. 1983.
37. Kühr 1980.
38. Monk et al. 1988.
39. Marr and Spinrad 1985.
40. Arp 1983.
41. Arp 1980a.
42. Weedman 1985.
43. Callahan 1977.
44. Arp et al. 1979.
45. Djorgovski and McCarthy 1985.
46. Arp $1980 b$.
47. Margon et al. 1986.
48. Anderson and Margon 1987.
49. Cristiani, Danziger, and Shaver 1987.
50. Arp, Sulentic, and di Tullio 1979.
51. Stockton 1969.
52. Arp and Gavazzi 1984.
53. Gioia et al. 1984.
54. Wright et al. 1977.
55. Giommi et al. 1987.
56. Ford and Epps 1972.
57. Stockton 1978 b.
58. Kunth and Bergeron 1984.
59. Miller, Goodrich, and Stephens 1987.
60. Kronberg et al. 1977.
61. Bahcall and Bahcall 1970.
62. Yee and Green 1987.
63. Djorgovski et al. 1987.
64. Hutchings, Hickson, and De Robertis 1986.
65. Bergeron 1986.
66. McCarthy et al. 1988.
67. Stocke and Arp 1978.
68. Langston et al. 1989.
69. McCarthy, van Breugel, and Spinrad 1989.
70. Hewitt and Burbidge 1980.
71. Cristiani 1987.
72. Arnaud et al. 1988.
73. Murdoch, McAdam, and Hunstead 1974.
74. He et al. 1984.
75. Stickel, Fried, and Kühr 1988.
76. Hintzen et al. 1989.
77. Bergeron 1988.
78. Junkkarinen 1989.
79. Bergeron et al. 1988.
80. Blades 1988.
81. Boksenberg et al. 1980.
82. Huchra et al. 1985.
83. Danziger et al. 1987.
84. Corrigan et al. 1988.
85. Hutchings et al. 1982.
86. Margon, Downes, and Spinrad 1983.
87. Wyckoff et al. 1980.
88. Green and Yee 1984.
89. Hutchings, Campbell, and Crampton 1982.
90. Hutchings, Johnson, and Pyke 1988.
91. Hutchings et al. 1984.
92. Reimers et al. 1989.
93. Le Fèvre and Hammer 1990.
94. Thompson, Djorgovski, and Weir 1989.
95. LeBorgne et al. 1990.
96. Hutchings 1990.
97. Carswell et al. 1984.
98. Kronberg et al. 1990.
(Note added in proof follows)

Note added in proof.-The following table includes four pairs of galaxies which have been discovered since Table 2 was completed.

Addendum to Table 2

QSO	Galaxy	Separation		Galaxy	Separation		Galaxy	Separation		REF
		arcsec	kpc		arcsec	kpc		arcsec	kpc	
0119+115(PKS)	ANON									1,2
0.570	-									
19	-	2								
0838+770(PG)	UGC 04527									3
0.131	17									
16.30	-	130								
$1228+397$ (B3)	ANON			ANON						4
2.217	18.0			18.0						
17.7	-	26		-						
$1343+284$	ANON									5
0.659	-									
18.0	-	5								

References for Addendum to Table 2

1. Fugmann, W., Meisenheimer, K., and Roser, H.-J. 1988, Astr. Ap. Suppl., 75, 173.
2. Stickel, M., Fried, J. W., and Kühr, H. 1989, Astr. Ap. Suppl., 89, 103.
3. Barvainis, R., and Antonucci, R. 1989, Ap. J. Suppl., 70, 257.
4. Vigotti, M., Grueff, G., Perley, R., Clark, B. G., and Bridle, A. H. 1989, A.J., 98, 419.
5. Crampton, D., Cowley, A. P., and Hartwick, F. D. A. 1990, A.J., 100, 47.

[^0]: ${ }^{1}$ When the earlier analysis was done (cf. Burbidge 1979), 94 pairs were used because duplicates in the sense of the discussion in § II were not removed.

