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ABSTRACT

This work completes our earlier paper (Bartkowiak and Jakimiec 1990). We consider
predictions of flare activity by use of linear regression functions. The parametérs of these
functions are usually estimated by the LSE (least squares of errors) method. It is known
that estimates obtained by this method can be strongly influenced by atypical data vectors.
In the earlier paper we stated that we can obtain more stable regression estimates when
applying the a-trimmed regression method. In this paper we use another, more refined
method, called robust regression with Huber’s weights. This method permits to obtain
more detailed information on the role and impact of data items in the estimated regression.

1. Introduction. Aim of the paper

Predictions of flare activity may be done by linear regression functions
(Jakimiec and Wasiucionek 1980, Bartkowiak and Jakimiec 1986, Jakimiec
and Jakubowska 1988). Parameters of these functions have to be estimated
from sample data. Classically, this is done by the ordinary least squares
method. However, this method can be much influenced by atypical data
vectors (outliers) which are likely to occur in the data. The problem of
detection and identification of influential points in a regression was dealt
with by Jakimiec and Bartkowiak (1989).

To obtain more stable regression functions which fit to the bulk of the
data and are not so much influenced by outliers — some other methods of
estimation were developed. Generally speaking, the new methods aim at
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providing estimates which are robust (resistant) to outliers. A class of such
S estimators called L;-norm, or generally, L,-norm (1 < p < 2) estimators,
& is believed to be more resistant against outliers (Huber 1981, Hampel et al.
t: 1986). Other robust estimators are obtained by considering the so called a-
trimmed regression as described by Antoch and Jureckova (1985) or Antoch
and Bartkowiak (1988). The last method was applied by Bartkowiak and
Jakimiec (1990) for solar flare predictions and permitted to identify items
with unexpectedly large residuals.

In this paper we consider a more refined method, namely the robust
regression with Huber’s weights. It gives more detailed informations on the
role and impact of individual data items in the considered regression.

In the following we remind briefly the idea of an a-trimmed regression.
Next we introduce the robust regression with Huber’s weights. In Section 3
we use this regression for construction of short term predictions of flare ac-
tivity considering the same data which was used by Bartkowiak and Jakimiec
(1990).

2. Methods of estimating parameters of a regression function

Consider a predicted variable y and p predictors z,...,2,. We assume
the linear regression model

y=b0+b1z1 +...+bp2,'p+6 (1)

where e, the error term, is a random variable with expected value equal to
zero and a variance equal to o?.

The parameters of the employed regression function have to be estimated
from the data. Our data are in the form of a matrix X = {zij},(i =
1,..,n,7 =1,...,p), containing the values of the p predictors, and a vector
Y =(¥1,-s yn)T of the predicted variable y — collected for n items.

The classical LSE (least squares of errors) estimation method minimizes
the sum of squares of residuals

Z T,‘2 = 2:(’!/z - i)o - I;lzil — eee sz;p)z (2)
=1

1=1

In the above bg ,...,i)p are the estimates of bg,...,b, for which expression given
by Eq. (2) attains minimum.

The estimation of a regression function can be done in such a way that
yields estimators less influenced by outliers. One such method of estimation
is the so called a-trimmed regression (Antoch and Jureckova 1985, Antoch
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and Bartkowiak 1988). This method proceeds in three steps. First it mini-
mizes the sum of weighted absolute residuals r;

n n
Z wilrs| = ngly,- — by — b1zin — ... — bozip| (3)
=1

1=1

with weights w defined as follows:

a ifr; >0
wi_{a—lifr,-<0 (3a)

and rejects the data items with positive weights (i.e. yielding positive resid-
uals). In the second step it minimizes the sum of weighted absolute residuals
analogous to (3), but with weights

' {1—a1fr,->0 (3b)

w; = .
! -a ifr;<0

and rejects the data items with negative weights (i.e. yielding negative resid-
uals). Finally, in the third step, the classical LSE estimates are evaluated
from the remaining data items.

This method proved to be very useful in short-term predictions of flare
activity. Its virtue is that it permits to fit the regression function to the
bulk of the data and yields estimates of parameters which are not much
influenced by the outliers hidden in the data. Its handicap is that it is a
crude method: it simply removes a part of the data items and carries out the
process of estimation for the diminished data set. The remaining amount
of data vectors depends upon «, a declared fraction of the total size n.
Moreover, always an o part of the data items yielding the largest positive
residuals, and an o part of the data items yielding the largest negative
residuals — are removed from the data. So always a fraction 2a of the data
items is not accounted for in the process of estimation — and this is done
without looking more precisely which was exactly the impact of the removed

~items on the estimated regression.

The method of robust regression with Huber’s weights enables to fit the
regression to the bulk of the data items not by removing items with big
residuals but by giving them less weight. This method is more refined then
a-trimmed method: it permits to reveal more exactly the role played by the
individual data vectors in the estimated regression.

Now let us introduce the robust regression with Huber’s weights. We
seek for estimates I;,I;l, e ,b;, minimizing the sum of weighted squares of
residuals 7:

n n
Z w;(r;)riz = Z wi(r;) (yi —bo—byzy — ... — 5,,:1:,-,,)2 (4)

1=1 =1
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with weights w;(r;) depending on the magnitude of the respective resid-
S ual r;. Huber’s weights are defined as follows :

& (1 i Y<K
| w(?) = { K/l if [f|> K (5)

with K being an assumed constant called also ”tuning” constant (usually
we take K =1 or K = 1.5).
Often the weights w; apperaring in (4) are defined as functions of stan-
dardized residuals
t; = T,'/ o (5‘1)
with

n

~2

4 r? (5b)

_ 1

- - T 1
n—p—1 =

Sometimes a more robust estimator for o2 is used, e.g. omay be estimated

as the median of absolute residuals.

Substituting t; from (5a) into (5), i.e. into the formula for Huber’s
weights, one can see that: 1. Huber’s weights are equal to 1.0 if ¢;, the
tth standardized residual, is smaller or equal to K the assumed tuning con-
stant; and 2. Huber’s weights become smaller than K , inversely proportional
to the magnitude of absolute value of r;, if the residual ¢ is larger than the
tuning constant K.

To evaluate the standardized residuals ¢; we have to know o, the ex-
pected standard error of the error terms e appearing in the regression equa-
tion (1) :

o? = E(e)

Usually o2 is not known and as a substitute we use an estimate 62 evaluated
with Eq. (5b). The estimate 6% is evaluated together with the estimates
bo, b1, ...,I;p of the regression function.

To solve Eq. (4) for bo, by, .., I;p we used the iterative reweighted least
'squares method proposed by Beaton and Tukey and described by Li (1985).
In the following we shall refer to the estimated regression as the Beaton-
Tukey regression with Huber’s weights. To obtain estimates of this regression
we considered the set of p + 1 simultaneous equations determined by the
matrix equation

xTwab = 2wy (6)

with W being a diagonal matrix, and the matrix X is obtained by adding to
the data matrix X a column of ones: X = [1,,X]. The obtained equation
looks similar as that of a weighted least-squares regression, but now the
weights w; (¢ = 1,...,n) are neither equal nor X -determined — they depend
on the residuals r; = y; — z;b.
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The matrix equation (6) was solved iteratively using the Beaton-Tukey
method with Huber’s weights.

In each iterative step (no. m) we obtained an estimate b(™) solving
the matrix equation (6) approximately. From the vector b{™) the residuals
r;(™) | an estimate of o and the new weights w;(™) were evaluated:

r(™ =y — z;b(™),

a.(m) = med(r1 (m), cony Tn(m)))
wilm) = Hri™ /6]
¢ rt(m)/&(m)

with the function ¥(t) defined for the case of Huber’s weights as

_Jt for |t| < K,
¥() = { Ksgn(t) for |t| > K. (7)

Then a new approximation of b was evaluated by the formula:
b+ = p(m) 4 (ATW )~ 1 ATW ™) (y — ab(™) (8)

The parameter ¢ was estimated before each iterative step as the median of
absolute residuals.

The variance-covariance matrix SB of the coefficients b = by, ... ,f)p
which solves Eq. (4) is given by

o - ZiU((n—p)
(57 ¥/(ro) P

where ¥’ is the derivative of ¥ with respect to the argument ;.

(A 2)" (9)

3. Predictions of flare activity by robust regression with
Huber’s weights

We applied the robust regression with Huber’s weights to the data con-
sidered formerly by Jakimiec and Bartkowiak (1989) and Bartkowiak and
Jakimiec (1990). The data comprises n = 149 items for the year 1979 and
describes daily characteristics of sunspot groups of D,E,F Zurich classes. The
considered predictors are: (1) Mc Intosh sunspot class (McI); (2) Sunspot
group area ( A); (3) Calcium area (CaA); (4) Calcium plage intensity (Cal );
(56) Magnetic class (Mag); (6) Magnetic field strength ( H); (7) Magnetic
field index (M FT); (8) Maximum value of X-ray flare flux (mazX ); (9) Num-
ber of faint flares (N FF); (10) Number of strong flares (NSF'); (11) The
total daily sum of the X-ray flare flux for the wavelengths 1-8 A (Fs);
(12) Hardness index (HI); (13) The total daily sum of the X-ray flare flux
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for the wavelengths 0.5-4 A (Fh). The predicted characteristics are: F's
% and Fh on the next day.

& For these data we evaluated the coefficients of the robust regression func-
2 tion satisfying Eq. (4). Together with the estimates 130, .. .Bp we evaluated
also their standard deviations by Eq. (9). From these values we evaluated b;,
the standardized (robust) coefficients of regression given as

b; = 5,’/\/ var(l;;).

The respective values of b evaluated for the regressions for the predicted
variables F's and Fh are given in Table 1.

Tablel

Standardized values of the regression coefficients evaluated by (a) the classical LSE, (b)
robust a-trimmed and (c) robust regression with Huber’s weights method.

No. ot Predicted variable: F, Predicted variable: F}

expla-

natory LSE o«-trimmed Huber’s LSE «-trimmed Huber’s

variable (a) (v) (¢) (a) (b) (c)
0 -2.72 - -2.75| -2.21 - -2.78
1 0.81 0.64 0.73 0.46 0.93 0.65
2 -0.99 -1.26 -0.84| -1.10 -1.74 -1.13
3 1.95 2.52 2.00 1.70 2.35 1.81
4 2.20 2.43 1.97 2.22 3.11 2.67
5 0.54 1.22 0.88 1.07 0.93 1.10
6 -0.34 -0.05 -0.51| -0.54 -0.97 -0.92
7 1.87 2.04 2.26 1.92 3.47 2.58
8 0.59 1.35 0.60 0.41 0.41 0.42
9 -0.46 -0.18 -0.67 | -0.40 -0.29 -0.46
10 2.89 3.44 2.27 3.10 3.19 3.08
11 1.84 2.11 2.15 1.45 1.47 1.59
12 -0.51 -0.95 -0.43| -0.30 -0.44 -0.42
13 -1.47 -2.01 -1.72| -1.13 -1.14 -1.18

One can see that the standardized values of the regression coefficients
evaluated by the three methods (i.e. the classical least squares method, the
robust a-trimmed method and the robust Beaton-Tukey method using Hu-
ber’s weights) are very similar. For some variables the a-trimmed method
gives higher coeflicients than the classical LSE methods. The robust Huber’s
method gives also coefficients similar to those obtained by the LSE method.
In principle, the differences between the coefficients obtained by Huber’s
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Fig. 1. Residuals for the variable Fs (y-axis) evaluated from robust regression with
Huber’s weights. The z-axis indicates the item numbers. Items trimmed off by the a-
trimmed regression are marked by a dash.

and LSE methods are smaller than the differences between the coefficients
obtained by the a-trimmed and the LSE method. We have studied also
the residuals evaluated from the robust regression using Huber’s weights.
The residuals are shown in Fig. (1) and (3) for the predicted variables F's
and Fh, respectively. The residuals r; in these figures are shown versus 2,
the no. of the item. The expected value of each residual is equal to zero.
The boundaries in the figures marked by dots indicate the value 26, where
&% denotes the estimated value of the variance of the error term appearing
in the regression Eq. (1). The value o was estimated as a median of resid-
uals. We have marked with a dash the residuals of those items, which were
trimmed off by the robust a-trimmed regression when using a = 0.1. One
can see that, generally, the trimmed-off items have large residuals evaluated
by the robust regression using Huber’s weights.

In Fig. (2) and (4) we show the weights w; ascribed to subsequent items
by the robust regression using Huber’s weights for the predicted variables F's
and Fh, respectively. We have marked in these figures by circles the weights
for those items, which were trimmed off when applying the a-trimmed re-
gression with a = 0.1.

One can see that the robust regression with Huber’s weights gives much
smaller weights to the items removed by the robust o-trimmed regression.
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Fig. 2. Predicted variable: Fs. Indexplot of weights (y-axis) given to the considered
items by the robust regression with Huber’s weights. The item numbers are marked on
the z-axis. Items trimmed off by the a-trimmed regression are marked by a circle.

However there are few disaccords: For instance, the item no. 44 was trimmed
off by the a-trimmed regression, but it obtained the full weight (equal to 1.0)
in the Huber regression. That might be explained by the crudeness of the
a-trimmed methods, which assignes data items into two categories only: to
be removed or to be left, while the Beaton-Tukey regression assignes to the
items values (weights) from the dense interval [0,1].

4. Conclusions

Taking into account the results presented in Figs. (1)—(4) and in Table 1

we may conclude:

The robust regression with Huber’s weights is a refined method. It as-
signs to the considered items various weights according to the magnitude of
the residuals obtained from the estimated regression: the items with large
residuals obtain smaller weights — what, in turn, makes them less influential
in the evaluated regression. ,

In principle, the items trimmed off by the robust a-trimmed regres-
sion obtained smaller weights in the Beaton-Tukey regression with Huber’s
weights. These items are atypical with respect to some characteristics; this
is connected with great changes of flare activity of the sunspot grups from
day to day.
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Fig. 4. The same as Fig. 2 but for the predicted variable Fh.

387

What concerns the prediction problem — we can say, that the results
. obtained by robust regression with Huber’s weights confirm the conclusions
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presented in our earlier paper (Bartkowiak, Jakimiec 1990). In this paper,
¢ considering both residuals and weights given to individual items, we got a
S, more detailed information on the items identified earlier as possibly influen-
2 tial in the regression used for predictions.

REFERENCES

Antoch, J., and Bartkowiak, A. 1988, Listy Biometryczne (Biometrical Letters), 35, 3.

Antoch, J.,and Jurezkova, J. 1985, Comput.Stat. Quarterly, 2, 329.

Bartkowiak, A., and Jakimiec, M. 1986, Solar- Terrestrial Predictions, eds. P.A. Simon, G.
Heckman, and M.A.Shea, p.285.

Bartkowiak, A., and Jakimiec, M 1989, Acta Astr., 39, 85.

Bartkowiak, A., and Jakimiec, M 1990, Acta Astr., 40, 169.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. 1986, Robust statistics -
The approach based on influence functions, (Wiley, New York), p. 7.

Huber, P.J. 1981, Robust statistics, (Wiley, New York.

Jakimiec, M., and Bartkowiak, A. 1989, Acta Astr., 39, 257.

Jakimiec, M., and Wanke-Jakubowska, M. 1988, Acta Astr., 38, 431.

Jakimiec, M., and Wasiucionek, J. 1980, Solar-Terrestrial Predictions Proceedings, ed.
Donnelly, p. 271.

Li, G. 1985, Robust regression. In: Ezploring Data Tables, Trends and Shapes, eds. D.C.
Hoaglin, F. Mosteller, J.W. Tukey (Wiley), p.281.

Sposito, V., Smith, W., and Mc Cormick, G. 1978, Minimizing the sum of absolute deviations,
Vanderhoeck and Ruprecht, Gotingen.

© Copernicus Foundation for Polish Astronomy * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990AcA....40..379B

