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ABSTRACT

We consider data characterizing D, E, F sunspot groups in the decay phase. We
construct, using p = 13 variables, a linear regression function allowing to predict the total
X-ray flare flux for the next day from the characteristics recorded the given day. A robust
a-trimmed regression was applied. This procedure permitted us to subdivide our data set
into two parts. The first part, a major one, describes sunspot groups with slowly changing
flaring process, for which the predictions of flare activity for the next day can be performed
rather satisfactorily. The second part of the data, a smaller one, describes sunspot groups
with sudden unexpected and unpredictable changes of flare activity for the next day.

1. Introduction

Short term predictions are often based on a regression equation of the
type:
\y=b0+b1x1+b2x2+...+bpzp+e, (1)

where the predicted variable y is expressed as a linear function of p ex-
planatory (predicting) variables z1,z2,...,z, and an error term e. Such a
regression model was, for example, considered by Bartkowiak and Jakimiec
(1986). Their aim was to obtain a regression function allowing to predict
flare activity (y) for the next day using some characteristics z1,z2,...,2,
describing the active region the given day. They achieved the aim employing
a linear regression function (1) in which the parameters b, by, ...,b, were
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estimated by the least squares of errors method (LSE). The predictions ob-
tained in this way were quite reasonable, what means that for the bulk of
the data the discrepancy between the predicted and actually observed flare
activity was not very high. However, the differences between the predicted
and actually observed values displayed a decidedly non-symmetric pattern,
and moreover, for some particular data vectors the authors obtained a very
large discrepancy. We are confronted with the following problems:

(i) To find out whether the regression equation (1) constructed on the
base of some empirical data is stable, i.e. whether it may remain almost the
same after removing some data vectors from these data.

(ii) To investigate whether some other, more modern as the LSE methods,
called robust methods, might yield a "better” predicting algorithm. By a
"better” algorithm we mean a more appropriate and more suitable to the
main part of the considered data points.

The problems described in (i) and (ii) are dealing with Eq. (1) and with
estimation of its parameters. We might put another question:

(iii) Perhaps, other regression model than that given by Eq. (1) would
be more suitable. There was some evidence that the assumed linear regres-
sion function (1), although very simple and easy to calculate, is somehow
inadequate to our data and we can consider it to be only an approximation
of the true relationship between the predicted and predicting variables.

In the present paper we take under consideration mainly the points (i)
and (ii). We will show also that the assumed model (1) is not fully adequate
for our data.

2. Investigation of the stability of the regression equation

We are likely to say that the regression equation is stable, if the regression
will remain to be almost the same after removing from the training data set
an arbitrary small subset of data vectors. We can consider the problem
in a more precise way employing some special statistics, called regression
diagnostics (see e.g. Atkinson,1987).

Investigating the problem of short-term flare activity prediction Jakimiec
and Bartkowiak (1989) used four such regression diagnostics:

(a) diagonal elements of the hat matrix - pointing to leverage points in
the regression,

(b) studentized residuals - pointing to data vectors which give relatively
large residuals,

(c) DFFITS - a statistics, pointing to single data points, which, when
removed from the process of estimation, give a considerable change in the
fit of the regression, and

(d) DFBETAS - a statistics, pointing to single data points which, when
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removed from the process of estimation, give a considerable change in the
coefficients of the regression equation.

Definitions and exact formulae for these statistics can be found e.g. in
the mentioned paper by Jakimiec and Bartkowiak (1989). They considered
p = 13 characteristics describing sunspot groups in the decay phase of their
evolution (data for 1979 were gathered from Solar Geophysical Data). The
predicted variables y were F's and Fh, i.e. the daily sums of the X-ray flare
fluxes in the wavelength intervals 1-8 A (Fs) and 0.54 A (Fh), respec-
tively. Applying the statistics (a) — (d) described above they found several
really influential data vectors which had great impact on the fit or on the
estimated coefficients of the regression equation. These influential data vec-
tors are related to the sunspot groups with either a very strong flare activity
or a great, sudden change of activity from day to day. However, considering
conditional regression of § in the given intervals of y (i.e. the regression of
the first kind of the predicted values § on the observed values y) they found
that, in spite of the differences in the values of the regression coeflicients,
the constructed conditional regressions are not different in principle, when
obtained for all data vectors, and also for a reduced data set (after removing
some influential data vectors). It means that the predicting algorithm is
sufficiently stable in spite of atypical vectors contained in the training data
set.

3. Robust regression

It can happen that in the training data set used in the estimation process
some atypical, wild data vectors strikingly different than the others occur.
Such wild data vectors can be damaging (very destructive) for the estimated
values of the parameters. To find out which data vectors are influential for
the estimated regression, one can compute regression diagnostics, e.g. those
described in Section 2 of the paper. However, the computation process
is somehow troublesome, because one investigates usually at one step the

impact or importance of only one data vector. So, one must perform the

computation in n + 1 steps (where n is the number of data vectors), n
times removing only one data vector from the set possibly containing other
influential data vectors.

To avoid this handicap, other methods of estimation were developed
with the aim to make the estimated values to be resistant against atypical
data vectors occurring in the data.. We imagine that the whole considered
data set is a mixture of some basic, essential data, for which the estimation
process is carried out, and of a small contamination connected with atypical
data points or simply errors. This contamination should not influence the
estimates of the parameters expected to be proper for the main part of the
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data.

It has long be known that the LSE estimates are very sensitive to con-
taminations of the basic data. Therefore, to get protection against such
contaminations, other estimation methods were developed. They are called
robust methods. For a review of these methods see e.g. the monographs by
Huber (1981) or Hampel et al. (1986). A general idea of these methods is to
evaluate a kind of weighted estimates giving less weight to the data vectors
which, for some reasons, are suspected to be ”wild”, not belonging to the
main bulk of the data set.

We have chosen for our investigations the so called a-trimmed LSE re-

gression. It seems to have good properties, what was stated in some simu-
lation experiments (Antoch et al. 1984). Now we present in short the main
features of the a-trimmed LSE regression:
Let r; be the difference between the recorded (y;) and predicted (yfa) =
b8 + b8z + ... + bVz;,) value of the considered variable y, for i =
1,2,...,n (where n is the number of considered data vectors). Let 0 < a < 1
be a fixed real value. Find b((f'),b{a) ooy b,(pa) such, that the sum of very sim-
ply weighted residuals r; is minimized:

{b((,a), bﬁ"”, e ,b;(,")} = a.rg{ min wi"'i}, (2)
=1

Dosb1, ... bp i

where

rs = Y — b(()a) - bga):t,'l i B b,(p"’)a:,-p,
w: = a if r; >0,
v a-—-1 if r; <.

It is advised for the practice to take for a such values as 0.05, 0.10, 0.15.
Computing the coefficients b(()a‘),bgal), ... ,b},‘”) for a given a = a; < 0.5 we
obtain such regression equation which trimmes off [a;n] data vectors with
big negative values of the residuals. Repeating this procedure with o =
az = 1—aj, we get a regression with coefficients b((,o"), bgaz) yeens b£a2) which
trimmes off [a2n] data vectors with big positive values of the residuals (Fig. 1
illustrates this process). It is not always possible to obtain in the trimming
process exactly an amount [a;n] or [a2n] data vectors satysfying the Eq. (3).
The regression obtained from Eq. (2) should pass exactly through p + 1
data points. These points are not trimmed off from the data. In both
cases, the method trimmes off points yielding large discrepancies between
the observed values (y; ), and those calculated from the estimated regression

3)

function (yia)). We reckon the remaining data set for homogeneous one.
This reduced data set is used for computation of an ordinary LSE regression,


http://adsabs.harvard.edu/abs/1990AcA....40..169B

T ..4A0C T169B!

iy

© Copernicus Foundation for Polish Astronomy * Provided by the NASA Astrophysics Data System

Vol. 40 173

X

Fig. 1. Trimming off an @ = 0.1 part of points from the "bottom” and from the
”top” of the (z,y) data cloud.

which is called now ”a-trimmed LSE regression”. The coefficients of this
regression will be denoted as b(()a),bga) - ,b,(,a)

We used in our computations an algorithm developed by Antoch and
described by Antoch et al. (1984). This algorithm with a = 0.10 was ap-
plied to the same data which was previously considered by Jakimiec and
Bartkowiak (1989). We remind that these data comprise p = 13 sunspot
group characteristics employed as predicting variables, and two predicted
variables (y = Fs and y = Fh).

In Table 1 and Table 2 we show the estimates of the parameters (o, by,
...,bp) obtained by use of ordinary LSE method (denoted I;j ), and by use of

the a-trimmed LSE method (denoted bga)). Together with the appropriate
values of b; (j =0,1,...,13) we show also the values ¢; defined as follows:

b

= . 4
T Waro) 7 W
In the formula above b; stands for b; or b;a). From the values b;, b§°')
and t; shown in Table 1 (prediction of Fs) and in Table 2 (prediction of
Fh) we state that the difference between the estimates b; (obtained by the

LSE method) and bga) (obtained by the a-trimmed method) is not very
large. From the ¢; values, indicating the statistical significance of the j-th
predicting variable in the regression equation, one can state, that the ¢-values
obtained from the a-trimmed regression are for several predictors much more
pronounced than those calculated from the LSE regression. Those of them,
which are surpassing the value ¢ = 2.0 are marked in Tables 1 and 2 by
a ”x” sign. Also R?, the square of the multiple correlation coefficient, is
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Tablel

Coeflicients of the regression function obtained for the predicted
variable F's by use of the LSE and a-trimmed methods,
together with the corresponding ¢ values. R? is the square of
the multiple correlation coefficient.

LSE method a-trimmed method
j b; t; i) t;
0 -1.2304 - -1.3595 --
1 0.1442 0.67 0.1769 0.92
2 -0.0923 -0.58 -0.1497 -1.07
3 0.2472 1.50 0.2882 1.56
4 1.9950 2.41 2.1601 2.95x
5 0.0157 0.42 0.0317 0.94
6 -0.0171 -0.28 -0.0015 -0.03
7 0.2668 1.89 0.2432 2.52x
8 0.2233 0.92 0.3047 1.49
9 -0.0022 -0.10 0.0027 0.14
10 0.0783 3.23 0.0861 3.67x
11 0.2732 0.76 0.1230 0.39
12 -2.4840 -1.31 -3.5364 -2.12x
13 -0.0430 -0.22 0.0214 0.12
R? = 0.5510 n = 149| R? = 0.6459 n = 133

higher for the a-trimmed method, both for F's and for F'A. From the ¢;
values, given in Tables 1 and 2, we can see that several predicting variables
(z4 — the calcium plage intensity, 7 — the magnetic field index, 19 — the
number of stronger flares, and x5 — the hardness index, Fh/Fs) are much
more pronounced than the others, i.e. they are indicated to be important
predictors in the regression equation. The chosen subset of the predictors is
the same for the both predicted variables, i.e. F's and Fh.

To visualize, and to examine in more details the quality of the prediction
we constructed scatterdiagrams of the values (y,-,y(a) ), for i = 1,2,...,n,

i
with y,(a) calculated from the a-trimmed LSE regression. These scatter-
diagrams for F's and Fh are shown in Figs. 2 and 3, respectively. The
circled points correspond to the data vectors, which were trimmed off in

the estimation process. The line corresponds to the conditional regression
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= Table 2

c Coeflicients of the regression function obtained for the predicted
variable Fh by use of the LSE and a-trimmed methods,
together with the corresponding ¢ values. R? is the square of
the multiple correlation coefficient.

LSE method a-trimmed method
j b; t; b ti
0 -1.5722 -- -2.0423 --
1 0.1219 0.36 0.2064 0.72
2 -0.1795 -0.72 -0.1984 -0.92
3 0.3098 1.19 0.2640 1.18
4 3.1427 2.41 3.8093 3.40x
5 0.0567 0.96 0.0513 1.00
6 -0.0467 -0.49 -0.0564 -0.69
7 0.3404 1.97 0.4554 2.91x
8 0.2667 0.69 0.3245 1.01
9 -0.0012 -0.03 0.0039 0.13
10 0.1312 3.42 0.1374 3.92x
11 0.1994 0.35 -0.0220 -0.05
12 -3.3251 -1.11 -4.8539 -1.89
13 0.0629 0.20 0.2319 0.84
R? = 0.5231 n = 149 | R?2 = 0.6871 n = 129

line of ¥(®) on y. Analogous scatterdiagrams were constructed by Jakimiec
and Bartkowiak (1989) for the values ( §; ) calculated from the ordinary LSE
regression. Obtained by them conditional regression lines of § on y are
marked in Figs. 2 and 3 by the dashed lines. We do not see a big difference
between the scatterdiagrams for the values calculated from the a-trimmed
and from the LSE regression. There are some, nor very large, differences
between the corresponding conditional regressions.

Dividing the values of y and y(® into 8 classes with class boundaries:
(0.0, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8) for F's, and (0.0, 0.5, 1.0, 1.5, 2.0, 2.5,
3.0) for Fh, we constructed contingency tables (Table 3) of counts nyy,
where k and [ are the indices of the classes, into which the observed (y)
and predicted (y(®)) values were accounted, respectively. As previously, the
values of y(®) were calculated from the a-trimmed regression. The trimmed
off data vectors are marked by dots. In Table 3 one can see that the pattern
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Fig. 2. Scatterdiagram of observed and predicted from the a-trimmed regression
function values (y,y(®)) of the predicted variable y = Fs. The line denotes con-
ditional regression line of y{*) upon y. Circled points denote the data vectors
trimmed off by the robust method.

of the counts is asymmetric with respect to the diagonal. The asymmetry
effect, (discussed e.g. by Jakimiec and Wanke-Jakubowska, 1988), consist in
overestimation of low flare activity and in underestimation of strong flare
activity.

This effect can be seen more clearly in diagrams, exhibiting the difference
d = y(®) — y versus the values y, shown in Figs. 4 and 5 for the predicted
variable F's and Fh, respectively. In these diagrams one can see, that for
smaller values of y the difference d tends to be rather positive (overestima-
tion), while for larger values of y the corresponding differences are rather
negative (underestimation). From this fact we infer that the assumed model
is not adequate for our data (we will return to this point in the end of our pa-
per). Moreover, it is of interest to know which data vectors were trimmed off
by the a-trimmed regression. For the predicted variable F's the algorithm
has trimmed off 16 data vectors, and 6 of them were previously discovered
by Jakimiec and Bartkowiak (1989) as influential (atypical) data vectors.
Similarly, for the predicted variable Fh the algorithm has trimmed off 20
data vectors, and 6 of them were previously discovered as influential points.
Not all, revealed previously as influential data points when considering re-
gression diagnostics, were now trimmed off by the robust regression. The
data vectors trimmed off by the a-trimmed regression are marked in Figs.
2-5 by circles. Their position in the contingency tables given in Table 3, is

© Copernicus Foundation for Polish Astronomy * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990AcA....40..169B

Vol. 40 177

; Ykt

3 ) °
0 05 m  © 15 20 25 30 35 y=Fh

Fig. 3. Like Fig. 2, for the predicted variable y = Fh.

denoted by dots. One can see that a large part of the trimmed off points is
located at rather extremly distant positions, far from the bulk of the data
vectors.

4. Conclusions

The employed robust a-trimmed regression permitted to identify data
points yielding large residuals. A large residual means that the flare activity
appearing next day cannot be predicted satisfactorily from the characteris-
tics of the sunspot group observed the given day. Most of the trimmed off
data vectors are related to sunspot groups with sudden change of flare ac-
tivity, e.g. related to a newly emerged magnetic flux. So, the bad prediction
may be due to drastic, sudden changes of the interrelations of the active re-
gion characteristics. However, as it was found by Jakimiec and Bartkowiak
(this issue), removing single, atypical data vectors from the data set, no sig-
nificant change of the interrelation structure (described by common factors)
of the characteristics is stated.

Jakimiec and Wanke-Jakubowska (1988) have removed from the training
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< Table3

o,

o Contingency tables of ny;, the counts of data vectors belonging

to the k-th class of y (the observed values) and to the {-th
interval of y(®) (the predicted values). Dots indicate data vectors
which were trimmed off by the robust regression algorithm.

observed calculated, y("’)

y=Fs 1 2 3 4 5 6 T 8|Total
1 4 21 6 2 0 0 O O 33
2 3 6 7T 4 0 0 O O 20
3 2 411 5 2 0 0 O 24
4 0 212 3 6 1 0 O 24
5 i o 7 &5 3 1 0 1 18
6 o 2 1 6 3 2 0 O 14
7 o o 0 1 6 2 1 O 10
8 0o o o o o 1 2 3 6

Total 10 35 44 26 20 7 3 4| 149

observed calculated, y(®)

y = Fh 1 2 3 4 5 6 7 8|Total
1 518 6 4 0 0 O O 33
2 311 8 5§ 0 0 0 O 27
3 1 3 9 5§ 3 0 0 O 21
4 1 212 3 5§ 2 1 O 26
5 0 1 6 10 0 2 0 O 19
6 i o 1 2 9 2 0 O 15
7 o 0 o o 1 2 0 1 4
8 o o 0 o o 1 1 2 4

Total 11 35 42 29 18 9 2 3| 149

data set these data vectors, which are related to the sunspot groups revealing
sudden increase of flare activity. They found that both, the correlations
between the characteristics and the predicting function are changed for this
modified data set. In this paper, we applied the a-trimmed LSE method,
which automatically removes from the data set the data vectors related to
sudden rise or to sudden drop of flare activity. We found some, not very
large, differences between the predicting functions obtained by use of the
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Fig. 4. The difference d = {® — y between the predicted and observed values of
the predicted variable y = F's, versus y. The values of y(®) are estimated from the
a-trimmed regression with a = 0.1.

standard LSE and the a-trimmed LSE methods. This fact seems to confirm
the conclusion that the predicting algorithm is rather stable.

The a-trimmed method enables us to estimate the predicting function
for the data describing a slowly changing process of flare activity. This
process seems to be defined in principle by the evolution of active regions. If
we would apply some other regression model, may be non linear, this process
might be sufficiently good predictable. Instead, the process defined by the
sudden changes of flare activity, superposed on the slowly changing flare
activity process, is unpredictable as yet.

In a forthcoming work we want to consider the problem of constructing
short-term predictions of flare activity using another form of robust regres-
sion, so called weighted regression with Huber weights. We will compare
the performance of the a-trimmed LSE method and the weighted regression
with Huber weights.
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Fig. 5. Like Fig. 4, for the predicted variable y = Fh.
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