A CATALOG OF RICH CLUSTERS OF GALAXIES GEORGE O. ABELL¹ Department of Astronomy, University of California, Los Angeles HAROLD G. CORWIN, JR. McDonald Observatory and Astronomy Department, University of Texas at Austin AND #### RONALD P. OLOWIN Department of Physics and Astronomy, University of Oklahoma; and Department of Mathematical Sciences, Saint Mary's College of California *Received 1988 May 31; accepted 1988 July 19 #### **ABSTRACT** This is an all-sky catalog of 4073 rich clusters of galaxies, each having at least 30 members within the magnitude range m_3 to $m_3 + 2$ (m_3 is the magnitude of the third brightest cluster member) and each with a nominal redshift less than 0.2. The southern data have been collected from a survey of UK 1.2 m Schmidt telescope IIIa-J plates and films and have been reduced to the systems defined by the northern data previously published by G. O. Abell. A revised northern catalog, including Bautz-Morgan types and redshifts where known, is also included. Subject headings: galaxies: clustering — galaxies: redshifts — galaxies: structure #### I. INTRODUCTION AND BACKGROUND The catalog of rich galaxy clusters by Abell (1958) has been widely used as a source list for studies of the distribution of rich clusters (see, e.g., Abell 1958, 1961, 1975; Rood 1976; Peebles 1980; Thuan 1980; Bingelli 1982; Schmidt 1983; Bahcall and Soneira 1984; Batuski and Burns 1985; Ciardullo, Ford, and Harms 1985; Kalinkov and Kuneva 1986; Tully 1986, 1987; and references therein), cosmological and extragalactic distance scale studies (see, e.g., Sandage 1973; Sandage, Kristian, and Westphal 1976; Hoessel, Gunn, and Thuan 1980; Aaronson et al. 1986; de Vaucouleurs and Corwin 1985, 1986; Buta and Corwin 1986a, b; and references therein), studies of the properties of individual clusters (see, e.g., Noonan 1974; Chincarini and Rood 1976; Smyth 1979; and references therein), studies of the collective properties of clusters (see, e.g., Culhane 1978; Baier 1978; Lari and Perola 1978; Dressler 1978a, b, 1980; Mitchell et al. 1979; Owen et al. 1982; Johnson et al. 1983; Kowalski et al. 1984; Struble and Rood 1987a; and references therein), Galactic extinction studies (Holmberg 1974; de Vaucouleurs and Buta 1983), and other studies. The original catalog, however, has several drawbacks that have somewhat limited its usefulness. These include (1) sky coverage limited to declinations north of -27° , the original southern limit of the Palomar Sky Survey (hereinafter PSS), (2) serious incompleteness beyond $z = v/c \approx 0.2$ (though many of its included clusters have considerably larger redshifts; see, e.g., Struble and Rood 1987b), (3) possible systematic errors in its magnitude scale (see, e.g., Corwin 1974), (4) cluster populations given only as "richness classes," and (5) listing The first of these shortcomings is the most serious and has to some extent hampered the progress of extragalactic astronomy and cosmology in the southern sky. This led Abell to propose in 1975 that a "southern rich cluster survey" be carried out on the deep IIIa-J Southern Sky Survey plates being taken by the United Kingdom's 1.2 m Schmidt telescope at Siding Spring in Australia (hereinafter UKST). Consequently, Abell spent a sabbatical year at the Department of Astronomy, University of Edinburgh, and the Royal Observatory, Edinburgh, in order to begin the survey. There, he enlisted Corwin's help for the survey. Abell and Corwin completed about half of the survey before Abell's return to the University of California, Los Angeles, in 1977 and Corwin's return to the University of Texas in 1981. A status report on the survey to that point is given by Abell and Corwin (1983). It was their intention to finish the survey as soon as possible on the high-quality film copies issued as the UKST IIIa-J portion of the Southern Sky Survey. This was prevented by Abell's untimely death in 1983 October and by Corwin's continuing commitment to the *Third Reference Catalogue of Bright Galaxies* (de Vaucouleurs *et al.*, in preparation). In 1984, G. Chincarini of the University of Oklahoma suggested to Corwin that Olowin might help in the completion of the survey. A joint proposal to the National Science Foundation was submitted and, upon its approval, Olowin finished the remaining portion of the survey on the UKST films. This paper presents the results of that work, the southern portion of the "Abell catalog" of rich clusters. We also present here a revised and corrected version of the northern only the richest clusters found by Abell (see, e.g., Einasto, Jôeveer, and Saar 1980). ¹Deceased 1983 October 7. portion of the catalog. This revision was initially prepared in 1980 under Abell's direction by Katherine Sedwick and Albert Lee, then graduate students in the Department of Astronomy, University of California, Los Angeles. Corrections suggested by Corwin (1972, unpublished), Leir (1976), and Struble and Rood (1987a) have been incorporated in the northern catalog, as have Bautz-Morgan types and redshifts where known (Struble and Rood 1987b). Throughout this paper, we use the terms "northern cluster," "northern survey," or "northern catalog" to refer to Abell's (1958) catalog of clusters found on the PSS 103a-E plates. The terms "southern cluster," "southern survey," or "southern catalog" refer to the clusters found by us on the UKST IIIa-J plates or copy films and listed here for the first time. We have reduced the data for the southern clusters to the systems of the northern catalog by means of 275 northern clusters included in the 10° overlap zone $(-17^{\circ} \text{ to } -27^{\circ})$ between the PSS and the UKST. The result is a homogeneous all-sky catalog of rich galaxy clusters, nominally complete to z = 0.2 for clusters with populations of 30 or more galaxies in the magnitude range m_3 to $m_3 + 2.0$, where m_3 is the magnitude of the third brightest cluster member. We hope that this will be the last such catalog prepared by visual scans of photographic plates, and we urge future investigators to compile cluster catalogs using high-speed microphotometric scanning machines and objective selection criteria. We are aware of two such projects under way using the COSMOS and APM machines in the United Kingdom, another, using the Minnesota APS machine, is being planned. In order to remove the possibility of systematic error from such catalogs, there must be at least three independent compilations of clusters. ## II. DATA COLLECTION # a) Edinburgh (Abell and Corwin) #### i) Selection of Plate Material In Edinburgh, Abell and Corwin scanned original IIIa-J plates on a light table with a $3 \times$ wide-field magnifier. The plates were selected from rejected UKST plates stored at the Royal Observatory. Many of these plates were rejected from the UKST because of "cosmetic" flaws (i.e., faint streaks or splotches, unacceptably large numbers of satellite trails, broken glass backing, etc.), but nevertheless have images ($30-40~\mu m$ or less for the faintest stars) and limiting magnitudes ($B \approx 23$) typical of survey quality plates. In a few cases, however, the only available plate for a field had images of substandard quality. These were nevertheless scanned, but were noted as being of poor quality so that they could be later resurveyed on the issued film copies. Corwin also scanned in Edinburgh a few film copies of fields for which only "accepted" survey plates had been taken (these plates are permanently stored at Siding Spring). These copies were made for the survey by the photo labs of the Royal Observatory, either in Edinburgh or at Siding Spring. ## ii) Selection of Clusters All clusters deemed rich enough to be included in the catalog were marked on the backs of the plates (or on transparent overlay sheets for the films). Criteria for selection were those adopted for the northern survey (Abell 1958), and were continually checked and recalibrated by scanning fields in the overlap zone. Since the IIIa-J plates show considerably fainter galaxies than the 103a-D red plates taken for the Palomar Sky Survey, the possibility of selecting "rich" clusters that are no more than chance superpositions increases sharply toward the plate limit. Lucey (1983) and Struble and Rood (1987a) estimate that perhaps 25% of the northern Abell clusters are the result of such superpositions. Fesenko (1979a, b, c, and references therein) suggests that the percentage of such illusory clusters is even higher. Since one of the nearest clusters included in the present catalog (A3526, the well-known Centaurus Cluster) may be such a superposition (Lucey, Dickens, and Dawe 1980; Lucey, Currie, and Dickens 1986), we have no reason to doubt that there are many others in the list. The only sure way at present to detect such superpositions is through extensive redshift surveys (either by means of spectroscopy or multicolor imaging) of suspected cluster members. We also caution that confusion with field stars at low Galactic latitude has limited the number of distant clusters that we have found near the plane of the Milky Way. A few relatively nearby low-latitude clusters are included in the catalog, but the confusion problem means that our list cannot be complete in areas where the star density is high on the plates. Thus, since the present all-sky catalog is based on purely visual surveys of apparent areal densities of galaxies, it should not be taken as a definitive catalog of rich clusters, but rather as a finding list of apparent rich clusters which need further investigation. Only two out of 135 northern clusters (in all richness classes) on the overlap zone plates scanned by Corwin (Abell did not scan any plates in the overlap zone) were missed completely, though another seven would not have been included in the southern survey had they not been listed in the northern catalog. The two clusters missed are A503 and A512, both poor clusters in rich
star fields. The other seven clusters are all too poor or too close to the Galactic equator to be included in Abell's statistical sample. On the other hand, Corwin found 45 new clusters (and Abell found one cluster at $-26^{\circ}57'$, A3205, in a -30° zone field) with richness classes greater than 0 and redshifts less than the nominal cutoff at z = 0.2. This is a significantly larger number than would be expected if the selection criteria of the two surveys were the same. This, in turn, appears to confirm a suggestion by Huchra (1987, private communication) that the northern catalog is deficient in clusters in its southern-most zones. Olowin, Chincarini, and Corwin (1987) have indeed found significant selection effects in the cluster catalogs. However, Batuski and Bahcall (1988, private communication), taking appropriate measures to define statistically complete, high-Galactic latitude samples, find that the two-point correlation functions for the northern and southern catalogs are virtually identical. ### iii) Positions Celestial coordinates were estimated using overlay grids photocopied onto transparent plastic sheets produced at ESO by Lauberts. Since it was not possible to exactly reproduce the 67".14 mm⁻¹ scale of the plates in the x-axis with the computer-driven plotter used to draw the overlays (Lauberts, private communication), there will be small errors in determining celestial coordinates with these overlays. Comparison of galaxy positions so determined with precise positions from the ESO/Uppsala catalog (Lauberts 1982) shows that these systematic errors rarely exceed 3' (Corwin, de Vaucouleurs, and de Vaucouleurs 1985). Since the cluster centers were chosen visually, we expect their positions to have slightly larger errors than those for objects with well-defined centers. A comparison of the positions of 288 clusters found in two or more fields yielded standard deviations in right ascension \pm 3'.2 and \pm 2'.4 in declination. Rectangular coordinates for the clusters were measured independently of the celestial coordinates. The rectangular coordinates of the left (east) and bottom (south) crosses at the edges of the plates were also measured so that the cluster coordinates could be referred to them. Because the plates that Abell and Corwin searched are not those used for the issued film copies, these rectangular coordinates are generally not the same as those measured on the films. They are usually close enough, however, to allow unambiguous identification of the clusters on the issued films. #### iv) Cluster Classifications Clusters were classified in the Abell (1965) and Bautz and Morgan (1970) systems. We have not attempted to make Rood and Sastry (1971) classifications; we hope this will be done later by other investigators. We have extended the Abell system (which originally consisted of only two classifications, regular [R] and irregular [I]) to include two intermediate types, RI and IR. Clusters classified RI are characterized by either (a) less overall symmetry of distribution of galaxies within the cluster than regular clusters, but with early-type galaxies still dominating the cluster or (b) strong overall distribution symmetry, but with considerable morphological diversity among the member galaxies. The IR clusters show little symmetry of distribution with early-type galaxies dominating or moderate symmetry with mixed morphology among the member galaxies. Type examples for each class include the Coma Cluster (A1656) as R, the Virgo and Centaurus (A3526) Clusters as RI, the Perseus Cluster (A426) and A1367 as IR, and the Hercules Cluster (A2151) as I. The Bautz-Morgan system was used in its original form where the magnitude difference between the first and second brightest galaxies in the cluster is the major classification criterion. Uncertainty symbols (a colon or a question mark) have been added to the cluster types where foreground or background contamination confused the appearance of the cluster, where the cluster appeared at the edge of a plate, or where it was so distant as to make classification difficult. #### v) Magnitudes and Distances Estimates of the total V magnitudes of the first, third, and tenth brightest cluster members were made using a step scale of elliptical and lenticular galaxy images. Construction and calibration of the step scale is discussed below in § IV. Use of the step scales was found to be very sensitive to the appearance of the galaxy images. When the appearance of the galaxy image matched that of the images on the step scale, repeated estimates for the same galaxy seen on the same plate or film are consistent to within ± 0.1 mag. However, spiral galaxies, edgewise galaxies of all types, low-surface-brightness galaxies, and galaxies with extended coronae did not match the images on the step scale, so we had more difficulty estimating their magnitudes. We marked these cases as uncertain and noted the reason for the uncertainty (see Table 7). Internal mean errors in the magnitudes so estimated by Corwin were found by comparison of the data for the 288 clusters that he found on two or more plates. For the firstranked cluster members, the standard deviation, $\sigma(\overline{m} - m_i)$, is ± 0.32 mag; for the third-ranked members, the standard deviation is ± 0.27 mag; and for the tenth-ranked members, ± 0.28 mag. Much of the scatter comes from the different background densities of the original plates (background densities for fully exposed sky-limited plates ranged from less than 0.5 to more than 1.5). Some of the scatter comes from the selection of the first, third, and tenth brightest galaxies from among the galaxies within the counting radius. Obvious foreground galaxies were always excluded, but foreground objects are often not easily distinguishable from real cluster members. Since Abell found only one cluster in two adjacent fields, we are unable to derive internal errors for his magnitude data. However, Olowin has 42 clusters in common with Abell (Corwin has only three), so we shall be able to derive "external" errors for Abell's southern data (see § VI). Cluster distances, needed to determine counting radii, were estimated solely from the magnitude of the tenth brightest galaxy. This procedure was adopted to provide consistency with Abell's northern survey and also as a matter of expediency. Based on the work of Leir and van den Bergh (1977), we expect that some combination of all the magnitude estimates for a given cluster will provide a better distance estimate for that cluster. Leir and van den Bergh also used an estimate of the cluster diameter in their distance determination formulation. (We found that the "edges" of the clusters as seen on the UKST plates were too ill-defined to allow consistent diameter estimates to be made. Analysis of ring counts in each cluster could perhaps provide a consistent set of cluster radii on some system [see, e.g., de Vaucouleurs 1948; Noonan 1974; Bahcall 1975; Olowin 1986; and references therein], but would have been beyond the scope of the present survey.) A magnituderedshift relation for our estimates is given below in § VIIc. # vi) Counts The distance estimated from the magnitude of the tenth brightest cluster member was used to assign a "counting radius" to the cluster. These are the same as the so-called Abell radii used in the northern survey, and the reader is referred to Abell's original discussion for more detail. As in the northern catalog, counts were made in the magnitude interval m_3 to $m_3 + 2$. The counts were made through a transparent film overlay with the counting radii and radial lines dividing the counting areas into octants photographically copied on it. The internal standard deviation in Corwin's counts is ± 23.4 (after correction for background contamination, and after correction to the system of Abell's northern survey; see §§ III and VIa). As with the magnitudes, we are unable to make an estimate of the internal error in Abell's southern counts, but we will derive an "external" error estimate below in § VIa. ## b) Oklahoma (Olowin) ### i) Selection of Films In general, Olowin worked from the issued survey films, though he also searched a few film copies of fields not yet issued. (These copies were made for us by the photo labs of the Royal Observatory, Edinburgh, from survey quality plates.) He attached the films to a Houston Instruments backlit digitizer and also searched for clusters by eye using a $7 \times$ magnifier. ### ii) Selection of Clusters Olowin used the same criteria for cluster selection as did Abell and Corwin; see § IIa(ii). In the overlap zone, Olowin found 90 new clusters with richness classes of 1 or larger and nominal redshifts less than 0.2, 11 of which are in common with Corwin's list. Again, this is a significantly larger number than would be expected if the selection criteria had been identical to those used by Abell for the northern survey. As mentioned in § IIa(ii) above, Huchra has suggested that there is a dependence on declination in the areal density of clusters in the northern survey. We cannot rule out a similar dependence in the southern survey; because of the high altitude of the overlap zone at Siding Spring $(77^{\circ}-87^{\circ})$, we may have included relatively too many clusters in this zone. #### iii) Positions Once the clusters had been located on the films, the rectangular coordinates of the estimated cluster center were measured with the digitizer. The machine was set to automatically average eight consecutive readings, with the output fed directly to a VAX minicomputer. In addition to the cluster centers, the crosses at the north, west, and east edges of the plates and 20-25 SAO stars were also measured. All measurements were referred to the plate centers as defined by the edge crosses, and a whole plate solution (including radially dependent terms) was made (König 1962; Luyten and La Bonte 1972;
and references therein). Though the digitizer has a resolution of 0.025 mm (1".7 at the 67.14 mm arcsec⁻¹ scale of the UKST), the standard deviations in the calculated positions for the standard stars were 16".1 in right ascension, and 19".5 in declination. The large errors are attributed to slight shifting of the films during digitizing since they were not removed from their protective plastic bags. The error in declination is significantly larger than that in right ascension, apparently because of slight internal bias of unknown origin in the digitizer. #### iv) Cluster Classifications Olowin classified the clusters in the same ways as Abell and Corwin (§ IIa[iv]). #### v) Magnitudes and Distances Olowin also used the same step scale that Corwin used for most of his portion of the survey, though some of the fainter images were replaced, and their magnitudes recalibrated, toward the end of the survey. Distance estimates were also made using the same criteria as used by Abell and Corwin. From 538 multiply observed clusters, internal standard deviations in Olowin's magnitude estimates are ± 0.37 for first-ranked cluster members, and ± 0.25 for both third- and tenth-ranked members. These are similar to the standard deviations for Corwin's magnitude estimates (see § IIIa[v]). ## vi) Counts Again, Olowin followed the same procedures that Abell and Corwin used (§ IIa[vi]). However, the standard deviation (± 17.9) in his counts (again corrected for background and to Abell's northern system) was significantly smaller than that for Corwin's counts. #### III. BACKGROUND CORRECTION Background corrections were made assuming a "universal" luminosity function for "field" galaxies. Since the time of the northern survey, considerable evidence has accumulated that the luminosity function of faint galaxies is the same in all directions in the sky (see, e.g., Brown 1974; 1979; Rainey 1977; Peterson et al. 1979; Karachentsev 1980; Kron 1980; Shanks et al. 1984; Tyson 1984; and references therein). Therefore, we have adopted a "universal" luminosity function from Rainey (1977) and have used it to correct our counts for background contamination. Rainey's V counts have been corrected for the difference in effective wavelength between V magnitudes and IIIa-J magnitudes, and for the differential k-correction between the two passbands. The counts have also been extrapolated slightly so that we can make background corrections for the most distant clusters that we found. The extrapolation was done using the theoretical k-correction for spiral galaxies in a $q_0 = 0.5$, $\Lambda = 0$ expanding universe model. The theoretical prediction for spirals fits Rainey's data at the faint end better than does the theoretical prediction for ellipticals, perhaps due to moderate evolutionary effects. Thus, for those clusters with $m_3 + 2$ fainter than 21.0, our background correction will be dependent on the model we assumed rather than on Rainey's data. These clusters are too distant to be included in the main catalog, but are included in a supplementary table (Table 6) with many poorer clusters that we also found. Rather than assume some specific form of the apparent luminosity function, we have simply used linear approximations over different magnitude intervals for computational purposes: $$\log N(\leq m_v) = 0.596(m_v - 17.0) + 1.335, m_v \leq 17.8;$$ $$\log N(\leq m_v) = 0.529(m_v - 18.5) + 2.182, 17.9 \leq m_v \leq 19.0;$$ $$\log N(\leq m_v) = 0.457(m_v - 19.5) + 2.670, 19.1 \leq m_v \leq 19.8;$$ $$\log N(\leq m_v) = 0.344(m_v - 20.3) + 2.983, 19.9 \leq m_v \leq 20.7;$$ $$\log N(\leq m_v) = 0.250(m_v - 21.5) + 3.327, m_v \geq 20.8;$$ (1) where $N(\leq m_n)$ is the number of galaxies per square degree FIG. 1.—Luminosity function for field galaxies. The dots are the calculated points from Rainey (1977), corrected for the difference in effective wavelength between V and IIIa-J magnitudes and for the differential k-correction between the two passbands. The dashes represent uncertain data. The lines are the linear representations over specific magnitude ranges that we used for computing the background correction. TABLE 1 Areas within Counting Diameters | | | | | | I | DIAMETER | (mm) | | | | | |---|---|----|-------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------| | | 9 | 14 | 18 | 22 | 30 | 36 | 45 | 60 | 90 | 120 | 180 | | Diameter (arcmin) Area (arcmin ²) | | | 20.1
317 | 24.6
475 | 33.6
887 | 40.3
1276 | 50.4
1995 | 67.1
3536 | 101
8012 | 134
14100 | 201
31730 | brighter than magnitude m_v . The actual data used, along with these linear fits, are shown in Figure 1. The number of "field" galaxies within the counting area (defined by the "Abell" radii) is then just $$C_f = [N(\le m_3 + 2)] \left(\frac{A}{3600} \right),$$ (2) where $N(\leq m_3+2)=N(\leq m_v)$ is from equations (1) above and A is in square arcminutes from Table 1. The corrected counts are then $$C_r(c) = C_r - C_f, (3)$$ where C_r are the raw counts. # IV. CONSTRUCTION AND CALIBRATION OF THE STEP SCALES Step scales of galaxy images ("flyspankers") were constructed from cosmetically defective film copies of IIIa-J plates. Elliptical or early lenticular galaxy images of moderate ellipticity were chosen, mounted side by side and arbitrarily numbered with lower numbers representing brighter images. (A similar step scale is shown by Dressler 1980.) Abell used a different step scale than did Corwin, but both calibrated the step scales against the same galaxies as explained below. Corwin's step scale (the first constructed by Abell) proved unsatisfactory in its middle range as several galaxies did not match the appearance of typical cluster objects, so Corwin constructed a third step scale from a film copy of the Virgo Cluster plate used for calibration (see below). This step scale was used for most of the survey by both Corwin and Olowin. Abell also constructed step scales of spiral and edgewise galaxies, but these were found to be of little use for the following reasons: (1) It is difficult to distinguish morphological types for galaxies fainter than about V=17 on the UKST plates. This made construction of the faint end of the spiral step scale difficult. (2) Virtually no accurate photometry for faint spiral galaxies existed in the southern hemisphere at the time of the step scale's construction (1976). This meant that accurate calibration of the faint end of the step scale would be impossible. (3) While many clusters have first- or thirdranked members that are spirals or spindles (edgewise galaxies), very few clusters have enough such objects dominating at the level of the tenth-ranked galaxy to make the use of a spiral or edgewise step scale necessary. Without introducing large errors in the finally adopted distances (our only use for the magnitude estimates of the tenth-ranked objects), we could usually choose elliptical or lenticular galaxies as the tenth brightest member. Abell and Corwin calibrated the arbitrary steps of their step scales against magnitude using an original IIIa-J plate (J2137) of the central part of the Virgo Cluster. Accurate total V magnitudes derived from photoelectric photometry were taken from de Vaucouleurs and Head (1978) for most galaxies in the field brighter than V=13, and for many fainter objects as well. Similar total V magnitudes for other galaxies in the field were derived by Corwin using observations from Sandage (1972) for galaxies in A1553, and by Corwin (1980, and unpublished McDonald observations) for several other galaxies in the Virgo Cluster as well as behind it. A few additional calibrating galaxies were chosen from the Indus Supercluster fields and from A2670, all photoelectrically measured by Corwin (1980). The faint end of the step scale was calibrated using magnitudes of globular clusters and stars around M87 (Hanes 1975). Since all of the globular clusters are completely stellar in appearance, and since they are seen against the faint outskirts of M87, use of their magnitudes and the magnitudes of stars to calibrate galaxy images will introduce systematic errors in the calibration. In addition, the colors of the Galactic foreground stars and the M87 globulars are on average bluer than the colors of most of the faint cluster galaxies. Therefore, we checked the calibration of the faint end of our step scale against magnitudes for very faint stars and galaxies observed electrographically by Hawkins (1981). While Hawkins compares his B magnitudes with ours, he does not show the V magnitude comparison which interests us here. This comparison, shown in Figure 2, suggests that our calibration has no large errors except for the known effect of color. FIG. 2.—(a) Comparison of Hawkins's (1981) electrographic V magnitudes with step scale V magnitude estimates. (b) Correlation of Hawkins's (1981) B-V electrographic colors with V magnitude differences (electrographic minus step scale). The solid points are data for stars; the open points are for galaxies. FIG. 3.—Step scale calibration example. The lines show the adopted calibration for Corwin's step scale. Filled circles are data for Virgo Cluster galaxies, plus signs are data for Indus Supercluster galaxies, the cross is for a galaxy in Abell 2670, open circles are for field stars around M87, filled squares are for globulars around M87, and short dashes are uncertain data. The impartial line shown in Figure 2b, $$V_{\rm EG} - V_{\rm S} = \begin{array}{l} +0.064 - 0.875 \left[(B - V)_{\rm EG} - 1.0 \right], \ \sigma = \pm 0.260 \\ \pm 0.047 \pm 0.107 \end{array}$$ (4) applies to all 32 objects in common between the two samples (the "EG" subscripts refer to Hawkins's electrographic data, and the "S" subscript to our step scale data). However, for the eight galaxies with B-V>1.0, the mean residual is -0.114 ± 0.114 (s.d.
$=\pm0.323$). Since we expect that most of our cluster galaxies will have B-V color indices larger than 1.0, we have made no corrections to our V magnitude estimates. Nevertheless, we caution users of the southern catalog that our magnitude estimates are probably more uncertain at m>18 than for brighter objects because of our reliance on stars and globular clusters for the calibration at these faint magnitudes. Olowin recalibrated the step scale against a film copy of the same IIIa-J Virgo Cluster plate that Abell and Corwin used. His calibration differed only slightly in zero point (see § V) and was adopted as the final magnitude system for the southern survey as his data constitute nearly 60% of the survey data. As an example of our calibration curves, the final adopted calibration for Corwin's second step scale is shown in Figure 3. # V. COMPARISON OF THE EDINBURGH AND OKLAHOMA SURVEYS After all the fields were scanned, the cluster data were collected and reduced to a common magnitude system by comparing Olowin's Oklahoma data with Corwin's Edinburgh data. The counts were directly reduced to the system of the northern survey as discussed below in § VI. A preliminary comparison of the magnitude estimates for the tenth-ranked members in the 45 northern Abell clusters in common between Corwin's and Olowin's lists showed only a marginally significant zero-point difference of 0.13 ± 0.08 (mean error), in the sense that Corwin's estimates are systematically brighter than Olowin's. Therefore, all Corwin's estimates were corrected by +0.1. We attribute this small difference to the fact that the sky background was always denser on the original plates scanned by Corwin than on the films scanned by Olowin. A test of the magnitude residuals for all 201 clusters in common after this correction (see Fig. 4) showed that Olowin's estimates for the first-ranked galaxies were 0.19 ± 0.04 mag brighter than the means, while Corwin's estimates were 0.12 ± 0.03 fainter. While these are significant differences, the fact that the third- and tenth-ranked estimates did *not* show any significant differences ($\langle \Delta m_3[O] \rangle = 0.00\pm0.03$, $\langle \Delta m_{10}[O] \rangle = -0.03\pm0.02$, $\langle \Delta m_3[C] \rangle = 0.00\pm0.02$, and $\langle \Delta m_{10}[C] \rangle = +0.03\pm0.02$) has persuaded us to make no further correction to the magnitudes for the first-ranked galaxies. The large magnitude difference for the first-ranked members is possibly FIG. 4.—Comparison between Corwin's and Olowin's magnitudes for 201 clusters in common. The open circles are data for the first-ranked cluster members, the filled circles are for the third-ranked members, and the crosses are for the tenth-ranked members. Δm is m_c minus m_0 . due to foreground contamination: that is, Olowin and Corwin apparently often selected different galaxies as first-ranked cluster "members," one or the other of which may be a foreground galaxy. The standard deviations in the residuals from the means for the third- and tenth-ranked objects are also smaller than those for the first-ranked galaxies. For Olowin's data, the standard deviations are ± 0.60 (first), ± 0.36 (third), and ± 0.30 (tenth); for Corwin's data, the standard deviations are $\pm 0.46, \pm 0.35,$ and ± 0.34 , respectively. (Considering the differences in the sample sizes, these numbers are reasonably consistent with the internal standard deviations found in § II.) Thus, we must caution users of the catalog that the magnitudes of the first-ranked galaxies are probably not suitable for use as distance indicators. We have, of course, not used them in this way. We have also compared Abell's southern data for the 45 clusters he has in common with Olowin and Corwin. For the counts, a triangular comparison of the residuals yields $\sigma(\text{Abell}) = \pm 12.1$, $\sigma(\text{Corwin}) = \pm 20.0$, and $\sigma(\text{Olowin}) = \pm 13.9$. These are not in agreement with counts for the northern samples (§ VIa) because of the small numbers of clusters in common in the south (Abell and Olowin have 42 clusters in common, while Abell and Corwin have just three clusters in common). They are also obviously very uncertain, again because of the small numbers of clusters in common to the different lists. We found no dependence on magnitude in Abell's southern counts, nor did we find a dependence in the residuals on the counts themselves. We did, however, find a magnitude-dependent correction in Abell's southern magnitude estimates when compared with Olowin's and Corwin's estimates. Figure 5 shows an apparent discontinuity at $m_A(\text{south}) = 15.0$. We have corrected Abell's data to Olowin's scale using simple zero point shifts: $$m_{\text{OC}} = m_{\text{A}} + 0.7, \qquad \text{s.d.} = \pm 0.5, \qquad m_{\text{A}} < 15.0,$$ $$m_{\text{OC}} = m_{\text{A}} - 0.5, \qquad \text{s.d.} = \pm 0.55, \qquad m_{\text{A}} > 15.0. \quad (5)$$ We do not know the source of the discontinuity in the magnitude scales. # VI. COMPARISON OF THE NORTHERN AND SOUTHERN SURVEYS In order that the present survey be as homogeneous as possible with the northern survey (Abell 1958), we treated the northern Abell clusters in the overlap zone as newly discovered clusters, estimating magnitudes and counts in the same manner as for the "new" southern clusters. Here, we compare counts and magnitudes with Abell's northern data in order to derive formulae that will reduce the new data to the systems of the northern catalog. ## a) Counts Figure 6 shows the residuals between Corwin's counts and Abell's northern counts as a function of the magnitude (m_3) of the third brightest cluster member for 166 clusters in common. Three more or less distinct zones are set off in the figure, which also shows the adopted relations between the two sets of counts: $$\begin{split} C_{\rm C}({\rm fc}) &= C_{\rm C}({\rm c}) - 30, \qquad m_3 \le 13.5; \\ C_{\rm C}({\rm fc}) &= C_{\rm C}({\rm c}) - 2 + 17.7 (m_3 - 16.5), \\ &\pm 3 \pm 3.4 \end{split}$$ $$13.5 \le m_3 \le 17.4, \qquad {\rm s.d.} = \pm 27; \\ C_{\rm C}({\rm fc}) &= C_{\rm C}({\rm c}) - 5, \qquad m_3 \ge 17.5, \qquad {\rm s.d.} = \pm 30; \quad (6) \end{split}$$ where $C_{\rm C}(c)$ are the background corrected counts from equation (3), and $C_{\rm C}({\rm fc})$ are the fully corrected counts in Abell's northern system. Figure 7 shows a similar plot for 158 Abell clusters counted by Olowin. The four residuals shown as dashes have been FIG. 5.—Comparison of Abell's southern magnitudes with Olowin's and Corwin's. The lines show the adopted corrections; the other symbols are the same as those in Fig. 4. The short dashes represent rejected data. Fig. 6.—Corwin's corrected counts minus Abell's corrected northern counts versus m_3 . The lines show the adopted corrections; the filled circles represent the data. Fig. 7.—Olowin's corrected counts minus Abell's corrected northern counts versus m₃. The symbols are the same as in Fig. 6, except for the short dashes which represent rejected data. rejected from the comparison. The adopted relations are $$C_{\rm O}({\rm fc}) = C_{\rm O}({\rm c}) - 40, \qquad m_3 \le 15.0, \qquad {\rm s.d.} = \pm 8;$$ $$C_{\rm O}({\rm fc}) = C_{\rm O}({\rm c}) + 13 + 38.8 (m_3 - 16.5),$$ $\pm 3 \pm 3.9$ $$15.0 \le m_3 \le 17.5$$, s.d. $= \pm 23$; $$C_{\rm O}({\rm fc}) = C_{\rm O}({\rm c}) + 45, \qquad m_3 > 17.5, \qquad {\rm s.d.} = \pm 43. \quad (7)$$ The differing zero points for the bright and faint clusters, and the strong slopes for the clusters of intermediate brightness, are most likely due to the different magnitude systems used for the two surveys ($\S VIb$). We derived final errors in the counts in the following manner. The standard deviation in the counts (after correcting Corwin's counts via eq. [6]) within the Corwin-Abell (north) sample is ± 28.1 . For the Olowin-Abell (north) sample (Olowin's counts corrected via eq. [7]), the standard deviation in the counts is ± 33.6 . For the 42 clusters in the overlap zone in common between Corwin and Olowin, the standard deviation in the fully corrected counts is ± 41.1 . Therefore, a triangular comparison of these fully corrected counts gives $\sigma(\text{Abell north}) = \pm 10.7$, $\sigma(\text{Corwin}) = \pm 26.0$, and $\sigma(\text{Olowin})$ $=\pm 31.8$. However, a better indication of the true errors in the corrected counts is probably given by comparison of the total sample (including the 42 northern clusters) of 201 clusters in common between Corwin and Olowin. When this sample is used, the triangular comparison yields $\sigma(Abell)$ north) = ± 25.7 , $\sigma(Corwin) = \pm 11.3$, and $\sigma(Olowin) = \pm 21.6$. These external errors are in agreement with the previously derived internal errors (§ IIb[vi]) only for Olowin's counts. There are obviously too few clusters in Abell's southern sample to derive a meaningful standard deviation for his data, and the implication of an external error in Corwin's counts of less than half the internal error is also not realistic. Therefore, we have finally adopted a mean of the southern and northern comparisons, assuming that the standard deviations in Abell's northern and southern counts are the same. The triangular comparison then gives $\sigma(Abell north and south) = \pm 19$, $\sigma(Corwin) = \pm 17$, and $\sigma(Olowin) = \pm 18$. These are obviously uncertain, but suggest that the errors in the counts of the three observers are about the same. Therefore, we adopt a final standard deviation of ± 18 for our southern counts and subject to confirmation—Abell's northern counts as well. Since the mean number of galaxies in a rich cluster in the southern list is 60 (compared with 64 for the northern list), the standard deviation derived in the previous paragraph corresponds to uncertainties of 30% in the south and 28% in the north. These are significantly larger than the 17% internal
uncertainty found by Abell for the northern survey. Considering the comparison here of an "external" with an "internal" uncertainty, and considering also the differences in plate material, counting techniques, magnitude scales, number of observers, etc., a somewhat larger error for the southern counts would not be unexpected. FIG. 8.—Corwin-Olowin southern m_{10} minus Abell northern m_{10} versus Corwin-Olowin southern m_{10} . The short dashes represent uncertain data. The solid lines are the adopted relations. The size of the difference is larger than we expected, however. We suggest (without proof) that our use of a "universal" luminosity function to compute the background corrections has led to much of the difference. Abell (1958) used counts near each cluster to find background corrections for the northern clusters. These "local" corrections are probably much more appropriate for the counts than are corrections from an all-sky luminosity function, given the uneven nature of the distribution of the galaxies (see, e.g., Shane and Wirtanen 1967; and de Vaucouleurs 1971). Another indication of the inappropriateness of the use of the "universal" background correction is seen in the negative corrected counts for many of the poorer clusters that we found (see Table 5). Since these groups and clusters were selected as density enhancements above the *local* background, we expect that local background counts would show them to have a positive number of member objects, in accord with our visual impressions. Odewahn (1987, private communication) has suggested that the faint, diffuse background light seen in many of the clusters (see § VIII) may have led to uncertainties in the magnitude estimates and therefore in the counts. This may have had a "second-order" effect on the magnitudes and counts, but we have no ready way of testing for it with the present data. # b) Magnitudes As explained in § IV, the magnitudes estimated in the southern survey are total V magnitudes, rather than red magnitudes as estimated by Abell for the northern clusters. Also, the southern magnitudes were estimated on IIIa-J plates and film copies, so there will be a second color term in any comparison made between the two systems. The differential k-correction between the two passbands will add yet another color term to the relationship. However, because the k-term ensures that the colors of elliptical and lenticular galaxies are correlated with redshift (thus with distance and magnitude itself), any color terms will be absorbed into the magnitude scale terms in the following comparison. We have, however, removed the Galactic latitude correction from the northern magnitudes and have made the small correction to bring Corwin's magnitude estimates into Olowin's system (§ V). Figure 8, the comparison of the m_{10} values, clearly shows the increased sensitivity of the IIIa-J emulsion to redshift. For clusters with $m_{10} \ge 17.0$, $$m_{10}(N) = m_{10}(S) - 1.12 - 0.91 [m_{10}(S) - 18.5],$$ $\pm 0.15 \pm 0.03 [m_{10}(S) - 18.5],$ s.d. = ± 0.28 . (8) Since the slope is so close to 1.0, the northern magnitude estimates apparently have almost no correlation with distance for $m_{10}(N) > 17$. The low redshift resolution of the northern survey explains why many of the clusters are being found to have redshifts beyond the nominal cutoff at z = 0.2 (see Struble and Rood 1987b). For the clusters with m_{10} brighter than 17.0, $$m_{10}(N) = m_{10}(S) + 0.30, \quad \text{s.d.} = \pm 0.31.$$ (9) After the corrections of equations (8) and (9) were made, the revised magnitude residuals were once again checked. A residual zero point of -0.24 mag ($m_{10}[S]$ too bright) was found and corrected. We also searched for but found no systematic effects in these final residuals dependent on magnitude, richness, or Galactic latitude. Finally, the corrected southern magnitudes were further corrected for Galactic extinction using Abell's (1958) formula $$m_{10}(c) = m_{10} - 0.136(|\csc b| - 1).$$ (10) The southern magnitudes so reduced are listed in the catalog for comparison with the northern catalog only. As explained above, the southern magnitudes are preferred for redshift estimates. # VII. RICHNESS AND DISTANCE CLASSES AND A MAGNITUDE-REDSHIFT RELATION ## a) Richness Classes We have adopted Abell's (1958) richness classes for the southern clusters. (For convenience, Abell's table of count versus richness class is copied here as Table 2A.) We note that Abell's original goal was to produce a "statistical" sample of rich clusters with more than 50 member galaxies in the magnitude interval m_3 to $m_3 + 2$. We stress that while we may have achieved this statistical goal (this assertion needs to be tested with a machine-selected sample of rich clusters), we nevertheless strongly urge that the counts given here, even for the northern clusters, not be used in studies of individual clusters. Detailed luminosity functions corrected for the local background will have to be used to derive accurate counts. ## b) Distance Classes Even though the magnitudes for the northern clusters have almost no correlation with distance for $m_{10}(N) > 17.0$, we have still used the southern magnitudes converted to the northern scale for distance class determination. We do this for consistency with the northern survey. Table 2B repeats Abell's (1958) table of distance class versus magnitude. # c) Magnitude-Redshift Relations and Cluster Redshifts From a consideration of a mean cluster luminosity function (Abell 1976, and references therein), the k-correction, and the differences between the IIIa-J bandpass and the standard B TABLE 2A CLUSTER POPULATIONS AND RICHNESS CLASSES | Population | Class | Population | Class | |--------------------------|-------|-----------------------------------|-------| | 30–49
50–79
80–129 | | 130–199
200–299
300 or more | | TABLE 2B MAGNITUDES AND DISTANCE CLASSES | <i>m</i> ₁₀ (c) | Class | <i>m</i> ₁₀ (c) | Class | |----------------------------|-------|----------------------------|-------| | <13.3 | 0 | 15.7–16.4 | 4 | | | 1 | 16.5–17.2 | 5 | | | 2 | 17.3–18.0 | 6 | | | 3 | >18.0 | 7 | FIG. 9.—Magnitude-redshift relations. The dots are data for the Abell clusters in the overlap zone or for nearby southern clusters, with known redshifts. The thin line is a linear magnitude-redshift relation with a slope of 5. The solid and dashed lines are the empirical relationships over different magnitude ranges. The plus signs represent a magnitude-redshift relation calculated from northern hemisphere data corrected to the magnitude system of the southern survey. and V bandpasses, Abell derived the magnitude-redshift relation shown in Figure 9. Figure 9 also shows a linear magnitude-redshift relation fit to Abell's at $m_{10} \approx 17.0-17.5$. Finally, Figure 9 displays data for the northern clusters measured on IIIa-J plates/films in the overlap zone and our adopted magnitude-redshift relation. As a check of this adopted relation, we have also plotted the data for the nearer southern clusters with known redshifts. There is a significant departure in the same sense as is seen for the bright galaxies in the southern hemisphere (see, e.g., de Vaucouleurs 1958; de Vaucouleurs and Peters 1985; Dressler et al. 1987; and references therein): the redshifts are lower than the adopted magnitude-redshift relation would predict. The effect is clearly significant, and is larger than any allowable uncertainty in our magnitude calibration at the bright end. Therefore, before searching for cluster redshifts for the southern clusters, we derived an empirical magnitude-redshift relation from the data shown in the figure. Again, we prefer not to fit a single arbitrary function to the data, but use instead straight line segments over limited magnitude ranges (the data for A2359, shown as a dash in Fig. 9, were omitted): log $$cz = 0.108 [m_{10}(S) - 11.5] + 3.26, m_{10}(S) \le 12.5,$$ $$\log cz = 0.23 \left[m_{10}(S) - 13.5 \right] + 3.595,$$ $$12.5 < m_{10}(S) \le 14.5$$, $$\log cz = 0.324 [m_{10}(S) - 15.25] + 4.07,$$ $$14.5 < m_{10}(S) \le 15.75$$, $$\log cz = 0.18[m_{10}(S) - 17.0] + 4.46,$$ $$15.75 < m_{10}(S) \le 18.0$$, log $$cz = 0.14[m_{10}(S) - 19.5] + 4.85, m_{10}(S) > 18.0.$$ (11) These empirical relationships are shown in Figure 9. The range about these linear relationships is roughly ± 0.3 in log cz. Therefore, in our searches for redshifts, we adopted the following restrictions: if a redshift for a galaxy within one Abell radius of the center of the cluster is more than ± 0.6 in log cz away from the nominal redshift predicted by equations (11), we assume the galaxy to be either a foreground or a background object. Those objects with redshifts in the range ± 0.3 to ± 0.6 in log cz from the nominal redshift are considered as possible cluster members; if there are no other redshifts for galaxies in the area of the cluster, then these redshifts are enclosed in parentheses in Tables 4–6 to call attention to their uncertainty. We suspect that most of these redshifts will, upon further examination, turn out to apply to foreground or background objects. #### VIII. THE ABELL CATALOG OF RICH GALAXY CLUSTERS Tables 3 and 4 give data for 4073 clusters of galaxies meeting our criteria for "rich clusters within z = 0.2," that is, the so-called Abell clusters. The adjective "rich" has the same meaning as in Abell (1958) and in the above discussion: at least 30 cluster members in the magnitude range m_3 to $m_3 + 2$. With the mean error of ± 18 in the counts of cluster members, our catalog should be "complete" for clusters with 50 or more members in that magnitude range. Table 3 is the revised northern "Abell catalog" in essentially the same form that it has been distributed in by Abell and his colleagues at UCLA since 1980. However, the coordinates are now for the equinoxes 1950 and 2000, the precession and cluster diameters
have been omitted, the redshifts have been updated from Struble and Rood (1987a), and Bautz-Morgan types have been added from Leir and van den Bergh (1976) (or from other sources given below if not listed by Leir and van den Bergh). The northern catalog has also had all known errors corrected (Struble and Rood 1987a; Leir 1976 as reported by Struble and Rood 1987a; and Corwin 1972, unpublished). The columns are as follows: Column (1).—Abell number, 1 to 2712, numbered in order of right ascension for 1855.0, the original equinox of the northern catalog. Columns (2) and (3).—Right ascension and declination for the equinox 1950.0. Columns (4) and (5).—Right ascension and declination for the equinox 2000.0. Columns (6) and (7).—Galactic longitude and latitude calculated from the 1950.0 equatorial coordinates. Columns (8) and (9).—Rectangular coordinates (in millimeters, computed with respect to the southeast corners) on the Palomar Sky Survey prints from Sastry and Rood (1971), who give additional information, also, the PSS field number and alternate rectangular coordinates if the cluster appears in more than one field. Column (10).—Cluster classification in the Bautz-Morgan system (Bautz and Morgan 1970). For the northern Abell catalog, these types are primarily from Leir and van den Bergh (1977). Other sources for the northern catalog are Bautz and Morgan (1970), Bautz (1972), Corwin (1974), Sandage, Kristian, and Westphal (1976), Kristian, Sandage, and Westphal (1978), and White (1978). Column (11).—Background-corrected count of cluster members in the magnitude range m_3 to $m_3 + 2$. Column (12).—Cluster redshift from Struble and Rood (1987b). Columns (13), (14), and (15).—Richness and distance classes and m_{10} , the red magnitude of the tenth brightest cluster member, all from Abell (1958). Finally, we refer users of the northern catalog to Struble and Rood (1987a), who give valuable and extensive notes for the northern clusters. The information for the clusters found during the southern survey is given in Tables 4–6. The columns on the left-hand side of the page are as follows: Column (1).—Abell number, 2713 to 4076, for the southern rich clusters (Table 4), numbered in order of 1950 right ascension. (When the notes to these tables were being prepared, three duplicate entries were found in Table 4: A3208 = A3207, A3833 = A3832, and A3897 = A2462.) Table 5 lists the supplementary southern clusters not rich enough or too distant for inclusion in the main catalog. These are numbered from S1 to S1174, also in order of right ascension. Table 6 includes data for northern clusters found on IIIa-J UKST plates and films in the 10° overlap zone (-17° to -27°). Columns (2) and (3).—Right ascension and declination for equinox 1950.0 of the apparent cluster center. When the cluster was found in more than one field, a mean position is listed. As explained in §§ IIa(iii) and IIb(iii) above, Abell and Corwin used overlays positioned with respect to SAO stars to estimate the position, while Olowin calculated positions from his measured rectangular coordinates. Thus, Olowin's positions were given double weight when means were taken. Columns (4) and (5).—Right ascension and declination of the apparent cluster center precessed to the equinox of 2000.0. Columns (6) and (7).—Galactic longitude and latitude calculated from the 1950.0 equatorial coordinates. Column (8).—Southern Sky Survey Field Number in which the cluster is located. For clusters found in two or more fields, the field given is the one in which the cluster is closest to the plate center. Column (9).—Rectangular coordinates in millimeters of the apparent cluster center, referred to the center of the Southern Sky Survey Field given in the previous column. The field centers are defined by the crosses near the edges of the plates. The positive x-direction is to the east (left) and the positive y-direction is to the north (top). These are in the same sense as the rectangular coordinates given by Lauberts (1982) in the ESO/Uppsala Catalog, and are listed to facilitate location of the cluster on the 5°×5° ESO 1.0 m Schmidt portion of the Southern Sky Survey. Abell and Corwin measured rectangular coordinates from the left and bottom edges of the plates, so the x_{cen} and y_{cen} from their data are calculated assuming that the plate center is 164 mm from the left and bottom crosses on the plates (they also measured the crosses). Olowin referred his rectangular coordinates directly to the plate center as defined by the crosses, so no transformation is necessary for his data. Column (10).—Rectangular coordinates of the apparent cluster center, referred to the southeast (lower left) edge of the Southern Sky Survey Field given in column (8). The field edges are defined by the crosses near, but not at, the edges of the plates; thus, it is possible for these coordinates to be negative. Olowin's data were transformed assuming that the plate center is 164 mm from the crosses. The columns on the right-hand side are: Column (1).—Abell number, repeated. Column (2).—Cluster classification in Abell's (1965) system: I, irregular; R, regular; IR and RI, intermediate. A colon indicates a mean type, with differences between estimates of two steps, or an uncertain type estimate; a question mark indicates a mean type, with differences between estimates of three steps, or a questionable type estimate. Column (3).—Classification in the Bautz-Morgan system (Bautz and Morgan 1970) from the UKST. A colon indicates a mean type, with differences between estimates of two steps, or an uncertain type estimate; a question mark indicates a mean type, with differences between estimates of three or more steps, or a questionable type estimate. Column (4).—Number of cluster members between m_3 and $m_3 + 2$, corrected for background contamination using the "universal" luminosity function from Rainey (1977). The southern counts are corrected to the system of the northern catalog (see § VIa). Column (5).—Weighted mean total apparent V magnitude estimate for the first-ranked cluster member. No Galactic extinction correction has been applied. A colon indicates a mean magnitude, with a standard deviation of more than ± 0.5 mag, or an uncertain magnitude estimate. A question mark indicates a mean magnitude, with a standard deviation of more than ± 1.0 mag, or a questionable magnitude estimate. An asterisk indicates that the magnitude estimate is for a known or probable foreground object. Column (6).—Weighted mean total V magnitude estimate for the third-ranked cluster member, again uncorrected for Galactic extinction. Uncertainty symbols as for m_1 . Column (7).—Weighted mean total V magnitude estimate for the tenth-ranked cluster member, again uncorrected for Galactic extinction. Uncertainty symbols as for m_1 . Column (8).—Number of fields in which the cluster was found, and the observer's initial (A, Abell; C, Corwin; O, Olowin). Column (9).—Sources of previous data listings for the clusters: B, Braid and MacGillivray (1978); D, Duus and Newell (1977), d, Dressler (1980); K, Klemola (1969); O, Olowin (1987); Q, Quintana and White (1980 and private communication); R, Rose (1976); S, Sersic (1974); and s, Snow (1970). Even though all questionable cases of cross identification were checked on the Southern Sky Survey, there remain a few uncertain cases. These are given in Table 7. Duus and Newell (1977) give references to all lists of southern groups and clusters published previous to their compilation, including several shorter lists not referred to here. Column (10).—Cluster redshift from the list by Struble and Rood (1987b, for the northern Abell clusters in Table 6), from Huchra's 1986 collection of published redshifts (Huchra, private communication), and from Fairall (1985), Corwin (1981; see also Corwin and Emerson 1982), Couch and Newell (1984 and private communication), Noonan (1981), and Spinrad (private communication). The redshift is in parentheses if it is between 0.3 dex and 0.6 dex from the expected redshift for the cluster's m_{10} (see § VIIc). Cluster redshifts from Huchra's list and from Fairall (1985) were determined by selecting all galaxies with known redshifts within one Abell radius of the cluster center, rejecting discordant redshifts, and averaging the remainder. Column (11).—Richness class as defined by Abell (1958). Column (12).—Distance class from m_{10} (col. [13], right-hand side). See § VIIb for details. Column (13).—Magnitude for the tenth-ranked cluster member in Abell's (1958) system (from eqs. [8] and [9], corrected for Galactic extinction following Abell's formula, eq. [11]). Most of the southern clusters have notes. These are given in Table 7 for the clusters listed in Tables 4-6. Notes for Olowin's clusters are given in upper case type, while Abell's and Corwin's notes are given in lower case type. Olowin's notes often refer to quadrants relative to the cluster or plate centers. These quadrants are numbered from 1 to 4 in a FIG. 10.—All-sky distribution of the 4073 Abell clusters in supergalactic coordinates. The symbol size has been scaled by distance class: the nearest (distance class 0) clusters are represented by large open circles, while distance class 7 clusters are shown as small dots. FIG. 11.—Distribution of 1638 Abell clusters south of $-16^{\circ}45'$. Large dots show the positions of the northern Abell clusters between $-16^{\circ}45'$ and -27° ; small dots show the positions of the 1360 southern Abell clusters, including the "new" clusters in the overlap zone. The projection is centered on the south celestial pole. counterclockwise direction, with quadrant 1 to the northwest of the cluster or plate center. We also note that many of the clusters in the catalog have a very faint background light, typically diffused throughout the central area of the cluster. This background glow has been
previously noted by Zwicky (1952, 1957) and has been measured in the Coma Cluster (A1656) (e.g., de Vaucouleurs and de Vaucouleurs 1970; Gunn and Melnick 1975) and in other clusters (e.g., Baum 1973). The high-contrast, fine-grain UKST IIIa-J plates detect this background light readily. As noted above (§ VIa), this background light may have had a small effect on our magnitude estimates and counts. The distribution of the 4073 Abell clusters is shown in Figure 10, with those south of $-16^{\circ}45'$ shown in Figure 11. The distribution will be studied in detail by Chincarini *et al.* (in preparation). Figure 12 is an all-sky integrated "luminosity function" for the rich clusters, with Figure 13 showing only the northern data, and Figure 14 the southern. Figure 14a uses our V magnitude estimates, while Figure 14b uses these estimates converted to Abell's northern system (using eqs. [8] and [9]). Figure 14b suggests that equations (8) and (9) over-correct our magnitudes at the limit of the survey. #### IX. DISTRIBUTION OF THE CATALOG DATA Magnetic tape copies of the main data tables (Table 3-6) listed here are available from the NASA Astronomical Data Center in Greenbelt, Maryland, and from the Stellar Data Center in Strasbourg, France. The tapes may be obtained by completing a copy of the request form published in the latest issues of the Astronomical Data Center Bulletin and the Bulletin d'Information du Centre de Données Stellaires (or by sending a letter with tape specifications—density, internal coding [ASCII or EBCDIC], and maximum allowable block size [physical record length]), and including with the request a 2400 foot (732 m) blank (preferably new) magnetic tape to Dr. Wayne H. Warren, Jr., Astronomical Data Center, Code 633, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, or to Centre de Données Stellaires, Observatoire de Strasbourg, 11, rue de l'Université, 67000 Strasbourg, France. Floppy disk copies in IBM-PC format are available from either the second or third authors. Printed copies (reprints) of this article are available from the Astronomy Department, University of California, Los Angeles, or from the second or third authors. Financial support for this project came primarily from the United States National Science Foundation as Grant Numbers AST 78-25648 (to the University of California, Los Angeles), AST 85-12150 (to the University of Texas, Austin), and AST 85-11837 (to the University of Oklahoma). An equipment grant from the OU Associates at the University of Oklahoma provided the digitizer and its support equipment. Dr. Philip Leitner, Dean of the School of Science of Saint Mary's College of California, provided additional financial support for travel and for computing equipment. Travel and subsistence support from the United Kingdom Science and Fig. 12.—All-sky Abell cluster luminosity function. The line has the canonical slope of 0.6 and is fit by eye to the data between $m_{10} = 14.5$ and $m_{10} = 17.0$. Fig. 13.—Northern Abell cluster luminosity function. The line of slope 0.6 is again fit by eye to the data between $m_{10} = 14.5$ and $m_{10} = 17.0$. Engineering Research Council (SERC), McDonald Observatory, and the University of California, Los Angeles, is also gratefully acknowledged. A project of this size could not have succeeded without the help and encouragement of many people. In particular, we are pleased to thank Professors Vincent C. Reddish and Malcolm S. Longair, successive directors of the Royal Observatory, Edinburgh, for their hospitality during Abell's and Corwin's stays in Scotland, the staff of the United Kingdom Schmidt Telescope Unit for help in the plate library, and for taking several plates specifically for this program, the excellent photographers at Siding Spring and Edinburgh who provided the film copies that enabled us to finish the survey, the Time Allocation Committees of the SERC and McDonald Observatory for generous allocations of telescope time for calibration photometry, the on-site staffs of the South African Astronomical Observatory and McDonald Observatory for valuable help during observing, Professor Guido Chincarini, who not only kept after all three of us until we got the work done, but who also contributed his expertise in innumerable ways throughout the later stages of the project, Phyllis Abell, Professor Ferdinand Coroniti, Forrest Barger, Phyllis Williams, and Katherine Sedwick for assistance and support during a trip to UCLA by H. C. in 1983 December, Katherine Sedwick and Albert Lee for their help in preparing the revised northern catalog, Warrick Couch, Tony Fairall, John Huchra, Barry Newall, and Hyron Spinrad for sending redshifts in advance of publication, Hernan Quintana and Richard White for their unpublished list of southern clusters, Gerard de Vaucouleurs, Frank Bash, Guido Chincarini, John Huchra, Ronald Buta, Shyamal Mitra, and Steve Odewahn for valuable comments on an early version of the manuscript, Wayne Warren for help in preparing the magnetic tape version of the catalog for distribution, and for ferreting out several errors and inconsistencies in the catalog files, Neta Bahcall, David Batuski, and Jack Burns for several valuable conversations and comments on the catalog, Harvey MacGillivray and George Efstathiou for information about the COSMOS and APM cluster surveys, respectively, and our devoted wives Phyllis, Kay, and Mary for their infinite patience with us. Finally, it has become the sad duty of two of us (H. C. and R. O.) to dedicate this catalog to the memories of George Ogden Abell (1927–1983) and Antoinette de Vaucouleurs (1921–1987), two great catalogers whose work has helped immeasurably to advance extragalactic research in the twentieth century. Fig. 14.—Southern Abell cluster luminosity functions. (a) V magnitudes. (b) R magnitudes in Abell's northern system. The lines of slope 0.6 are fit by eye to the data between $m_{10} = 13.5$ and $m_{10} = 17.0$. TABLE 3 REVISED NORTHERN "ABELL CATALOG" | | D m | 0 0 17.4
0 6 18.0
0 0 17.2
0 0 17.7
0 0 17.2 | 0 6 18.0
0 6 17.6
0 5 17.2
0 6 17.5
0 6 17.9 | | 0 0 17.8
0 6 17.5
0 6 18.0
0 5 17.1
0 6 17.5 | 0 3 15.5
0 0 16.3
0 6 18.0
0 0 15.9
0 3 15.5 | 0 3 15.0
1 5 16.5
0 6 17.9
1 5 17.1
0 5 17.1 | 17
17
17
17 | 0 4 15.9
0 5 16.6
1 6 17.6
0 5 16.6
0 5 17.2 | 0 6 17.6
0 0 17.9
0 0 16.9
0 0 17.2
1 5 17.2 | 0 | |-----------|-------------|--|--|---|--|--|--|--|--|--|--| | | z R | 00000 | | 00000 | | 0.0724 (| 0.0416 0.0719 0.0927 | 0.1030 | 0.0610 | 0.1115 | 0.1344 | | | D | 37
76
33
49 | 50
98
51
70
I: 94 | н | 47
86
I 52
I:106
I: 50 | 0 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | I 42
I: 65
73 | 46
125
36
76
59 | 31
58
37
93 | 55
46
47
44
I: 52 | 61
80
I:185
40 | | | T_{B-M} | H | | 0 III
0 III
3 II-II
9 III- | 5
9 II
0 II-III
0 II-III
4 II-III | 0 III
1
5 III
7 | 3 II-III
6 I:
9 II-III
0 III | 9 III:
1 III:
5 II:
2 I | 4
8 III
6 IIII
8 IIII
8 III | 3 II
5
6
11-III | 1 I-II
9 III
6 II-III
8 | | | x y | 180 155
165 120
155 47
171 278
139 149 | 139 34
137 296
136 90
163 146
157 133 | 01010010 | 101 175
103 199
99 300
95 150 | 124 110
166 331
82 315
89 227
69 307 | 61 173
91
106
89 279
57 140
73 99 | 80 39
78 201
43 241
44 315
36 272 | 44 254
18 248
44 26
16 268 | 15 203
322 275
317 105
307 6 | 62 323
4 179
288 266
279 149
280 318 | | | 9 | 34.33
74.37
59.93
35.96 | 70.22
71.32
59.21
32.45 | 84.55
13.10
43.82 | 67.77
43.48
53.56
44.41 | 33.19
17.09
53.31
84.40
41.53 | 55.98
33.29
36.07
44.65 | 40.53
37.41
48.76
41.41 | 84.29
72.55
87.80
72.19
60.63 | 73.39
42.18
81.15
65.15 | 23.36
85.84
42.37
80.46
65.36 | | | 1 | 69.61-8
104.88-7
109.25-6
118.06-3 | 109.96-7
109.33-7
110.69-6
118.59-3 | 78.30-8
117.83-4
120.35-1
118.05-4 | 113.17-6
118.25-4
116.93-5
118.35-4 | 119.39-7
120.59-7
117.51-7
91.67-1 | 117.76-5
120.11-3
119.93-3
119.33-4
76.92-8 | 119.77-4
120.07-3
119.25-4
119.96-4 | 101.56-84
116.01-77
61.98-87
116.23-72 | 115.86-73
120.51-42
110.92-81
119.26-65 | 121.89-
105.02-
121.36-
116.25-
120.43- | | | RA(2000)Dec | 6-2339
8-1211
6-0733
7+2644
0+0619 | 8-0747
9-0854
0-0645
5+3016
0+3001 | 8-2311
3+2023
9+4941
5+1854
9+1904 | 6-0510
0+1915
0+0908
6+1820
3-0725 | 8+2935
5+4543
3+0925
9-2218
8+2115 | 8+0646
6+2931
6+2644
6+1808
4-2440 | 0+2216
4+2524
4+1402
8+2124
6-0920 | 5-2147
0-0947
9-2602
1-0925
4+0210 | 2-1037
7+2039
7-1827
3-0219
9-0051 | 4+3930
9-2309
4+2029
8-1738
3-0230 | | | RA(20 | 0031.6
0031.8
0032.6
0033.7 | 0033.8
0034.0
0034.6 | 4.0.0.0.0 | 0036.6
0037.0
0037.0
0037.6 | 0037.8
0038.9
0038.9 | 0039.8
0040.6
0040.6 | 0041.0
0041.4
0041.8
0041.8 | 0042.0
0043.0
0043.0 | 0043.7
0043.7
0043.7 | 0046.4
0045.9
0046.4 | | .0G,, | (1950)Dec | 1-2356
3-1228
1-0750
1+2628 | 3-0804
4-0911
5-0702
8+3000
3+2945 | 3-2328
7+2007
1+4925
9+1838
3+1848 | 1-0527
4+1859
4+0852
0+1804
8-0742 | 1+2919
8+4527
7+0909
4-2235
2+2059 | 2+0630
9+2915
9+2628
0+1752
9-2457 | 4+2200
7+2508
8+1346
2+2108
1-0937 | 0-2204
5-1004
4-2619
6-0942
8+0154 | 7-1054
1+2023
2-1844
7-0236 | 7+3914
4-2326
8+2013
3-1755
7-0247 | | CATALO | RA(19 | 0029.
0029.
0030.
0031. | 0031.
0031.
0031. | 0032.
0032.
0033.
0034. | 0034.
0034.
0035.
0035. | 0035.
0035.
0035.
0036. | 0037.
0037.
0037.
0038. | 0038.
0038.
0039. | 0040.
0040.
0040. | 0040.
0041.
0041.
0042. | 0043.
0043.
0043.
0044. | | "ABELL | Abell | 0051
0052
0053
0054
0055 | 0056
0057
0058
0059
0060 | 0061
0062
0063
0064
0065 | 0066
0067
0068
0069
0070 | 0071
0072
0073
0074
0075 | 0076
0077
0078
0079
0080 | 0081
0082
0083
0084
0085 | 0086
0087
0088
0089
0090 | 0091
0092
0093
0094
0095 | 0096
0097
0098
0099
0100 | | ORTHERN | a l | 17.1
17.3
17.0
17.8 | 17.5
17.1
17.2
18.0 | 17.2
17.2
16.6
15.2 | 17.0
17.6
17.1
17.8 | 16.2
17.5
17.0
17.5 | 17.4
16.5
17.6
17.5 | 17.7
18.0
17.9
18.0 | 17.6
18.0
17.6
18.0 | 17.6
17.1
15.9
17.0 | 7.7.6 | | CEVISED N | R D | 49 1 5
0 6
0 5
1 0 | 73 1 5
0 5
0 5
0 5 | 0 0 5 0 5 0 | 8 2 5
0 6
0 6
1 50 | 8 2 2 8
0 2 0 3 H
6 6 5 5 6 | 00000 | 0000
0000
2000
2000 | 99999 | 7
3
3
4
0
1
0
6
0
6 | 1 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | K. | 8 | 1 0.12
2
5
5
6 | 6
5 0.107
5
8 | 9
2
5 0.064
5 0.121 | 6 0.083
11
2 | 6 0.094
1 0.143
5 0.005
7 0.133 | 000VN | 0 0.159
1
8
8 | 40004 | 0.275
0.108
0.111 | 0.150 | | | -M C | 87989 | II 11
II 5
II 5
II: 5 | : 129
112
92
: 35
III 35 | I: 86
II 62
41
I 102
-III: 54 | 14
12
12 | 12
12
10 | 6 9 6 6 8 | 80000 | III 153
154
: 37
104 | III 78
50
52
77
86 | | | y T_B | 51 III
42 II
347 II:
173 III | 115 II-I
261 II-I
174 III
317 II-I
131 III | 214 III:
44 III
49 II:
141 III:
27 II-II | 71 II
81 I-
02 II
08 II | 60 I:
44 I
83
95 III
22 III | 179
312
246 III
270
120 III | 58 II-II
186 II-II
50 III
02 I-II | 88 III
10 II
35 II:
63 III | 30 II-
56 I
09 III
33 II | 84 II-II
28 II
60 III
61 II
32 II: | | | x | 171
159
148
147 | 134
124
110
107 | 102 2
94
92
63 1 | 48 1
46 2
44 3
19 1
2 8 | 18
311
302
308
284 1 | 305 1
265 3
256 2
264 2
232 1 | 252
230 2
225 3
236 3
232 2 | 220
216 2
212 2
211 1
210 | 208 2
217 1
206 1
197 1
191 1 | 186 8
192 13
176 10
171 10 | | | 9 | -45.08
-77.63
-57.22
-54.60 | -44.09
-29.71
-71.58
-52.20 | -76.05
-68.49
-78.46
-81.22
-81.83 | -55.10
-53.12
-64.31
-67.67 | -33.75
-82.98
-62.81
-39.10 | -25.69
-81.16
-54.18
-24.06
-73.98 | -39.90
-71.07
-80.56
-70.81 | -74.62
-72.50
-48.57
-73.35 | -54.60
-83.78
-44.96
-50.49 | .74.91
-84.44
-50.03
-73.61 | | | ~ | 107.97.
67.91.
103.24.
104.71.
113.09. | 109.30-
113.28-
90.97-
107.09-
97.75- | 80.99
96.38
72.27
52.57
38.67 | 107.78-
108.66-
102.80-
101.17-
63.20- | 114.77.
42.89.
106.53.
114.37. | 11.6.71
78.09
111.79
117.70
100.55 | 115.62
103.999
85.46
104.47 | 100.53-74
103.39-77
114.47-48
102.80-77 | 113.22-
65.76-
115.34-
114.53-
103.04- | 102.70-7.
64.11-8
115.24-5
105.31-7.
79.00-8 | | | RA(2000)Dec | 6+1630
4-1938
3+0401
4+0646
3+3305 | 5+1741
7+3224
2-1111
4+0927
9-0559 | 7-1626
4-0736
6-1930
2-2353 | 8+0644
0+0847
1-0247
9-0611
6-2237 | 5+2837
7-2542
8-0053
5+2317
1-0009 | 3+3650
8-2042
2+0807
0+3833
7-1211 | +2237
-0906
-1930
-0848
-2140 | 6-1247
9-1031
4+1355
3-1123
6+1623 | 8+0750
6-2338
9+1734
6+1201
8-1217 | -1252
-2409
+1232
-1125
-2213 | | | RA(20 | 0007.
0008.
0009.
0009. | 0010.
0011.
0012.
0012. | 0012.
0013.
0013.
0015. | 0016.8
0017.0
0017.1
0018.9 | 0020.7
0020.7
0021.8
0022.8 | 0023.3
0024.8
0025.2
0027.0 | 0027.1
0026.9
0027.1
0027.2 | 0027.6
0027.9
0028.4
0028.3 | 0028.8
0028.6
0028.9
0029.6 | 0030.2
0030.6
0031.2
0031.4 | | | RA(1950)Dec | 0+1614
9-1955
7+0345
8+0630
7+3249 | 9+1725
1+3208
6-1128
8+0911
3-0616 | 2-1643
8-0753
1-1947
7-2410
7-2618 | 2+0628
4+0831
5-0304
3-0628
1-2254 | 9+2821
2-2559
2-0110
9+2301
5-0026 | 7+3634
3-2059
6+0751
3+3817
2-1228 | 5+2221
4-0923
6-1947
7-0905
9-2157 | 1-1304
4-1048
8+1339
8-1140
0+1607 | 2+0734
1-2355
3+1718
0+1145
3-1234 | 7-1309
1-2426
6+1216
9-1142
9-2230 | | | | 0005.
0005.
0006.
0006. | 0007.
0009.
0009.
0009.
0010. | 0010.
0010.
0011.
0012. | 0014.2
0014.4
0014.5
0016.3 | 0017.9
0018.2
0019.2
0019.9 | 0020.7
0022.3
0022.6
0024.3 | 0024.5
0024.4
0024.6
0024.7
0024.7 | 0025.1
0025.4
0025.8
0025.8 | 0026.2
0026.1
0026.3
0027.0 | 0027.7
0028.1
0028.6
0028.9
0028.9 | | | Abell | 0001
0002
0003
0004
0005 | 0006
0007
0008
0009
0010 | 0011
0012
0013
0014
0015 | 0016
0017
0018
0019
0020 |
00021
00023
00024
00024 | 0026
0027
0028
0029
0030 | 0031
0032
0033
0034
0035 | 0036
0037
0038
0039
0040 | 0041
0042
0043
0044
0045 | 0046
0047
0048
0049
0050 | | | 8 | 15.
17.
17.
15. | 16.
15.
17. | 16.
17.
17. | 17.
17.
15.
16. | 15
17
17
17 | 17
17
17
15
15 | 17
17
16
17 | 17
17
15
15 | 17, 17, 18, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 | 17
17
17
17 | |----------|-------------------|--|--|--|--|--|--|--|--|--|--| | | R D | 0100 | 1000
004
24 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | 0000 | 101
100
100
100 | 0 0 1 0 0
6 4 1 E | 0000 | | | 82 | 0.0526 | 0.0645 | | 0.1156 | 0.0706 | 0.0547
0.135 | | 0.1029
0.1230
0.0335
0.0015 | 0.0482
0.0178
0.0422 | | | | 0 | 72
46
108
66
51 | 65
61
61
51
34 | 41
68
88
60
37 | 76
78
89
63
37 | 42
75
74
36
84 | : 56
68
77
31
33 | 39
74
78
74 | 56
111
: 57
: 50
33 | 89
90
37
32 | 77
65
110
46
57 | | | x y T_{B-M} | 304 270 II:
300 240
303 92 II:
284 116 II
24 92 II-III | 40 319
277 3 II
274 74
264 287 III
260 322 III | 57 210
243 288 III
309 174 III
238 253 III
296 276 | 231 225 III:
300 160 III
230 146 II-III
89 86
218 192 | 210 40 I
205 307 II:
314 297
307 126
173 287 III: | 168 18 II-III
222 298 III
146 245 III
146 213 III
139 295 I | 138 150 II-III
134 84
198 251
133 190 II-III
192 274 III | 126 218 II
128 67 III
125 92 II-III
115 222 III
112 248 | 114 290 III
108 52 I:
99 278 II
89 52 II
82 197 II | 156 92 III
74 127 III:
69 216 III
69 144
65 306 III: | | | 9 1 | 142.90-77.61
129.71-48.65
131.38-57.34
129.52-44.96
185.41-85.17 | 127.80-29.23
143.70-76.47
129.91-45.71
145.63-77.06
130.52-47.04 | 128.07-25.22
134.18-59.49
129.61-37.84
137.10-65.99
128.76-30.00 | 150.38-77.89
129.88-38.07
135.67-62.04
128.00-21.51
132.19-49.33 | 131.73-46.18
135.39-59.01
128.73-23.57
129.38-26.70
133.01-47.44 | 143.59-69.87
171.34-81.07
132.58-42.22
132.71-42.82
137.81-58.98 | 139.16-61.61
144.22-68.51
177.57-81.33
134.60-49.12
175.88-80.96 | 148.20-71.74
166.65-79.35
151.54-73.88
139.32-60.20
148.23-71.13 | 133.21-41.30
138.27-57.41
136.94-53.26
142.07-63.10
134.40-42.91 | 133.53-38.93
166.81-77.86
162.41-76.50
166.19-77.55
135.86-46.74 | | | RA(2000)Dec | 0108.9-1525
0109.8+1358
0109.7+0513
0111.0+1739
0110.3-2449 | 0111.8+3326
0111.1-1424
0111.8+1652
0112.0-1506
0112.9+1530 | 0114.8+3724
0114.2+0252
0114.6+2443
0114.3-0345 | 0114.6-1616
0115.4+2428
0115.2+0014
0116.5+4106
0116.1+1305 | 0116.8+1615
0117.0+0314
0118.8+3859
0119.8+3548
0119.6+1452 | 0119.6-0808
0120.0-2101
0121.8+2004
0121.8+1928
0121.9+0300 | 0122.0+0017
0122.2-0655
0121.9-2154
0122.7+1302
0122.4-2128 | 0122.7-1025
0122.5-1913
0122.8-1246
0123.7+0138
0123.7-0951 | 0124.4+2054
0124.3+0428
0125.1+0841
0125.6-0130 | 0127.2+2312
0126.7-1806
0127.0-1626
0127.1-1747
0128.0+1512 | | ia . | RA(1950)Dec | 0106.4-1541
0107.2+1343
0107.1+0458
0108.3+1724
0107.9-2505 | 0109.0+3311
0108.6-1440
0109.1+1637
0109.5-1522
0110.2+1515 | 0112.0+3709
0111.6+0237
0111.9+2428
0111.8-0401 | 0112.1-1632
0112.7+2413
0112.6-001
0113.6+4051
0113.5+1250 | 0114.1+1600
0114.4+0259
0115.9+3844
0117.0+3533
0116.9+1437 | 0117.1-0824
0117.6-2117
0119.1+1949
0119.1+1913
0119.3+0245 | 0119.4+0002
0119.7-0711
0119.5-2210
0120.0+1247
0120.0-2144 | 0120.2-1041
0120.1-1929
0120.3-1302
0121.1+0123
0121.2-1007 | 0121.7+2039
0121.7+0413
0122.5+0826
0123.0-0146
0124.2+1855 | 0124.5+2257
0124.3-1822
0124.6-1642
0124.7-1803
0125.3+1457 | | Onlinue | Abell | 0151
0152
0153
0154 | 0156
0157
0158
0159
0160 | 0161
0162
0163
0164
0165 | 0166
0167
0168
0169
0170 | 0171
0172
0173
0174
0175 | 0176
0177
0178
0179
0180 | 0181
0182
0183
0183
0185 | 0186
0187
0188
0189
0190 | 0191
0192
0193
0194
0195 | 0196
0197
0198
0199 | | IABLE 3— | C z R D m | 90 0.0632 0 5 17.2
39 0.0632 0 3 15.4
80 0 5 17.2
50 0.0822 1 4 15.9
59 0.082 1 4 15.9 | 37 0 0 17.2
59 0 5 17.1
72 0 5 17.2
746 0 0 17.2 | 140 0 5 17.2
50 0 5 17.2
43 0.0566 0 4 15.9
174 0.1971 3 6 17.3 | 48 0.0665 0 4 15.7
40 0.0535 0 4 16.0
77 0 5 16.5
69 0.0440 1 3 15.0
52 0 5 17.2 | 67 0.1048 1 4 16.0
64 0 5 17.1
72 0 5 17.2
94 2 0 17.5
66 0.188 1 5 17.2 | 51 0 5 16.6
58 0 6 17.7
41 0 0 17.0
103 0 5 17.2
66 0 5 17.2 | 51 0 5 17.2
39 0 0 17.7
47 0.0604 0 4 15.9
43 0.0699 0 4 16.0
100 0 6 17.7 | 99 0.1569 2 6 17.5
102 0 6 17.5
146 3 0 17.5
120 2 0 17.5
182 0.152 3 6 17.5 | 140 0.230 3 6 17.7
95 0 6 18.0
59 0 6 17.5
63 0 6 17.5
82 0 6 17.6 | 70 0 6 17.6
32 0.0438 0 3 15.0
52 0 5 17.2
98 0.0596 1 5 16.6 | | | x y T_{B-M} | 278 82 II:
263 205 II-III
253 139 III
293 161 II-III:
249 199 II-III | 236 148
234 64 III
229 102 III
262 37 III:
208 138 | 205 184 III
196 88 III
196 205 III
228 261
218 257 III | 167 167
162 237
200 8 III:
159 64 II-III
147 217 III: | 143 77 III
180 15 I:
131 3 II:
260 154
113 254 III | 113 13 1-II:
149 166 II-III:
103 80
97 241 II
90 124 II-III | 81 304 III
133 294
115 255
68 317
108 213 III: | 119 190 I
115 226 II-III
201 192
158 153
93 139 II: | 80 105 III
28 183 III:
88 253 II-III
68 305 II | 325 172 I
323 249 III
318 68 III
162 219
308 196 I-II | | | 9 1 | 120.75-63.77
121.49-61.49
121.43-68.71
122.46-38.35
121.70-67.59 | 122.00-74.55
120.95-82.11
122.65-69.42
123.25-40.65
123.55-56.75 | 123.87-67.88
124.19-63.66
124.31-67.48
128.36-84.53
124.21-36.54 | 125.31-62.21
126.77-72.87
176.44-88.80
125.76-64.11
130.19-79.21 | 127.33-69.83
180.90-88.42
130.54-77.17
124.51-20.48
126.12-48.55 | 131.93-76.94
151.07-85.86
131.90-75.68
130.88-72.69
128.50-62.91 | 134.93-77.40
126.12-35.78
149.10-84.09
129.88-65.25
154.06-84.72 | 126.57-37.71
126.63-37.04
125.64-19.70
126.07-26.40
166.69-85.67 | 175.32-85.93
130.72-61.70
127.20-36.51
152.25-82.87
132.04-65.05 | 137.08-73.68
131.44-60.43
139.26-75.53
126.38-19.15 | | | RA(2000)Dec | 0047.6-0054
0048.7+0122
0049.2-0550
0049.8+2431
0049.5-0443 | 0050.4-1140
0050.3-1914
0051.0-0632
0052.5+2213
0052.8+0607 | 0052.8-0500
0053.7-0047
0053.5-0436
0053.7-2140
0056.0+2619 | 0055.9+0038
0056.0-1001
0055.7-2624
0056.4-0115 | 0057.5-0700
0057.4-2616
0058.4-1423
0059.4+4222 | 0059.8-1412
0059.9-2327
0100.5-1257
0101.0-0957 | 0102.2-1446
0103.0+2701
0102.6-2147
0103.0-0231 | 0104.1+2504
0104.5+2544
0105.3+4306
0105.4+3623 | 0105.6-2435
0106.2+0057
0106.7+2614
0106.3-2051 | 0107.5-1114
0108.2+0209
0108.0-1310
0109.4+4335 | | | RA(1950)Dec | 0045.0-0111
0046.1+0106
0046.7-0607
0047.1+2415 | 0047.9-1157
0047.8-1931
0048.5-0649
0049.8+2157
0050.2+0551 | 0050.3-0517
0751.1-0104
0651.0-0453
0051.2-2157 | 0053.3+0022
0053.5-1018
0053.3-2641
0053.8-0132
0054.6-1641 | 0055.0-0717
0055.0-2633
0055.9-1440
0056.6:4206 | 0057.3-1429
0057.5-2344
0058.0-1314
0058.5-1014 | 0059.7-1503
0100.3+2645
0100.2-2204
0100.5-0248
0100.8-2251 | 0101.4+2448
0101.8+2528
0102.5+4250
0102.6+3607
0102.1-2414 | 0103.2-2452
0103.6+0041
0104.0+2558
0103.9-2108 | 0105.0-1131
0105.6+0154
0105.5-1327
0106.5+4320 | | | Abell | 0101
0102
0103
0104
0105 | 0106
0107
0108
0109
0110 | 0111.
0112.
0113
0114 | 0116
0117
0118
0119
0120 | 20 0121 0122 0123 0124 0125 | 0126
0127
0128
0129
0130 | 0131
0132
0133
0134
0135 | 0136
0137
0138
0139
0140 | 0141
0142
0143
0144
0145 | 0146
0147
0148
0149 | | | | 78697 | 06778 | 0.0879 | 00000 | 13786 | w 6 6 4 4 | 52180 | 2222 | മെവവര | 16256 | |----------|---|--
--|---|--|---|--|--|---|---|---| | | 8 | 17. | 17.
16.
17.
15. | 13. | 17.
16.
16.
17. | 16.
16.
17.
16. | 16.
15.
17. | 17. | 17.
17.
17.
17. | 17.
16.
17.
17. | 17.
17.
17.
17. | | | R D | 0000 | 0
0
0
0
0
0
0
4 | 00100 | 00000 | 01060 | 01010 | 0000 | 00100 | 00000 | 00000 | | | 2 | | 0706
0273
0348 | 0467
0161 | | 0877 | 0947
0896
0797 | 088 | | 1631 | | | | | V 4 H 9 O | 0 00 | 00 H 98 | 87481 | 00822 | 0000 | 2 0 . | 10223 | 6
6
1
0. | 80444 | | | ٥ | 40007 | ∠ 24 € ₹2 |
04700 | ო დ 4. დ. ტ | 2 1 2 5 5 E | W W W V 4 | 44000 | 9.97.79.4 | വയയ്ന | 5
II: 5
6 | | | T_{B-M} | | 111-1 | 1
111
111-111 | ::-ii | #### | | änn | iii n | iii
iiii | | | | | 80713 | 50 III
07 III
05 II | 15 I
45 II
21
45 II
80 II | 44440 | 30
47 H
65 H
79 H | 4 2 3 5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4.04.44
5.05.74
11.11 | 37 III
60 II
00 II | 22
9 4 0
10 0 0
11 11 11 | 30 H | | | y | 22 27 31 6
9 28 27 2 2 2 2 2 3 8 2 8 2 8 3 2 3 2 3 3 3 3 3 | 14 25
04 24
97 10
77 30 | 47080
12 | 47 23
38 7
35 22
31 30 | 0 0 0 0 0 | 291 10
324 (
116 23
321 13 | 008
108
100
100
100
100
100
100
100
100 | 92
63
39
10
46 | 442
442
3445
11. | 37 29 29 29 29 29 29 29 29 29 29 29 29 29 | | | 8 | 3 12 13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 19 11 17 17 17 17 17 17 17 17 17 17 17 17 | 2 2 2 5 8 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 98608 | 18000 | 2.6.1.6.E | 0 0 0 0 0 | 94960 | 18147 | 88110 | | | 9 | 12022 | 1.0.4.0.0 | 1.26
15.09
13.70
16.43
15.23 | 7.0021 | 57.41
27.08
75.40
54.29
15.39 | 80970 | 2.0.20.7 | 0.4.4.4.0 | 59.9
54.7
53.2
58.8 | 60.6
74.1
65.5
57.3 | | | | 77-6
70-6
34-4
34-6 | 34-6
48-4
95-3
13-6
26-2 | 48-6
59-2
30-2
61-7 | 03-6
09-5
25-6
66-6 | .00-5
.79-2
.18-7
.58-6 | .98-19
.57-65
.55-57 | . 15-6
. 27-6
. 63-7
. 73-5
. 00-6 | .111-5
.40-6
.38-4
.69-7 | 89-5
27-4
31-5
08-5 | .26-
.33-
.73-
.63- | | | 7 | 158.
153.
140.
153. | 155.
143.
139.
168. | 155.
136.
136.
210. | 158.
153.
155.
158. | 153.
137.
202.
161. | 135
163
138
154 | 162
168
197
156 | 158
166
145
207
144 | 159
145
154
153 | 161
211
169
158
146 | | | ည္မ | 718
242
038
317
159 | 351
358
327
309 | 214
608
733
546
701 | 102
102
119
119 | 145
335
616
439 | 121
722
213
103 | 1550
202
1038
1344 | 146
751
325
137
101 | 210
905
346
524
104 | 307
534
920
019 | | | A(2000)Dec | 9 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6-0
0+1
1+2
3-1
9+3 | 4 + 1 3 4 + 1 0 4 + 1 3 4 + 1 4 +
1 4 + 1 | 6-040
9+010
5-041
8-024 | 1+0
3+3
1-2
7-0
8+1 | .1+41
.8-07
.3+32
.4+01 | 00000 | .4-01
.7+18
.7-24
.2+21 | 2 + 0
2 + 0
5 + 0
5 - 0 | 3 + 0
3 + 0
11 + 12 | | | RA(20 | 0146.
0146.
0147.
0147. | 0147.
0150.
0150.
0151. | 0151.
0152.
0153.
0151. | 0152
0152
0153
0153 | 0155
0155
0154
0154 | 0157
0155
0157
0156
0156 | 0157
0157
0156
0157 | 0158
0200
0200
0200 | 05050
05050
05050
05050 | 0202
0202
0202
0204
0204 | | | - | W L 4 U 4 | 64.E4.8 | 2229 (5554 (719 (716 (| | 1244
1242
125 | 337
337
31
31
31 | 10 4 5 8 6 | 00
10
11
11
47 | 25
32
10
19 | 35 (
37 (| | | 60)De | 9-073
1-025
1+202
7-033 | 1-04(
3+134
3+233
8-123
0+325 | 9-02
9+35
4+37
5-26 | 1-0423
3+0048
8-0122
0-0434
3-0304 | 5+01
4+33
8-23
1+14 | 1+41
3-07
4+31
8+00
0-02 | 6-060
5-102
6-221
3-005
4-035 | 9-02
9-08
0+18
4-24 | 1-02
7+18
4+03
6+05 | 3-03
3-25
3-09
2+00
6+17 | | | RA(1950)Dec | 4444 | 45.
47.
49. | 8 0 0 0 0 | 50.
50.
51. | 51.
52.
51.
52. | 154.
153.
154. | 54.
54.
55. | 99.50 | 159.
159.
159. | 159.9
159.8
200.3
202.3 | | pən | | 00000 | 99999 | 00000 | 00000 | 10 2 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 9 6 8 6 9 | 12648 | 6 011
9 0 011
0 0 011 | 00000 | 00000 | | ontinued | Abell | 0251
0252
0253
0253
0254 | 0256
0257
0258
0259
0260 | 0261
0262
0263
0264
0265 | 0266
0267
0268
0269
0270 | 027
027
027
027
027 | 027
027
027
027
028 | 028
028
028
028 | 028
028
028
028
028 | 029
029
029
029 | 029
029
029
030 | | <u> </u> | | | | | | | | | · | | | | 3 | | | | | | | | | | | | | BLE | = | 7.1 | 7.5 | 7.22 | 2.7.2 | 7.7
7.6
7.0
5.9 | 7.6 | 7.6 | 7.2
6.6
7.5
5.6 | 7.6
8.0
8.0
6.6
4.6 | 6.9
7.7
7.7 | | (II) | D m | 0 17.
6 17.
5 17.
6 17.
6 17. | 0 17.
0 17.
0 16.
6 17.
0 17. | 5 17.
0 17.
6 17.
6 17.
6 17. | 5 17.
5 17.
6 17.
5 17.
6 17. | 6 17.
6 17.
6 17.
5 17.
4 15. | 6 17.
6 17.
6 17.
5 16.
6 17. | 0 17.
6 17.
5 17.
6 17.
6 17. | 5 17.
0 16.
6 17.
6 17.
3 15. | 6 17.
6 18.
5 16.
6 17.
4 16. | 4 16.
5 16.
6 17.
6 17.
6 17. | | BLE | | 17.
17.
17.
17. | 0 0 17.
0 0 17.
0 0 16.
6 3 6 17.
0 0 17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 0 6 17.
3 6 17.
3 6 17.
7 1 5 17.
2 1 4 15. | 82 1 6 17.
0 6 17.
89 0 6 17.
0 5 16.
0 6 17. | 0 0 17.
74 1 6 17.
0 5 17.
31 1 6 17.
0 6 17. | 4 1 5 17.
0 0 16.
0 6 17.
0 6 17.
8 0 3 15. | 0 6 17.
0 6 18.
7 0 5 16.
0 6 17.
0 0 4 16. | 16.
16.
17.
17. | | BLE | Q | 0 0 17.
0 6 17.
0 5 17.
7 1 6 17.
0 6 17. | 0 0 17.
0 0 17.
0 0 16.
3 6 17.
0 0 17. | 5 17.
0 17.
6 17.
6 17.
6 17. | 8 1 5 17.
6 1 5 17.
0 6 17.
0 5 17.
0 6 17. | 0 6 17.
3 6 17.
3 6 17.
1 5 17.
1 4 15. | 2 1 6 17.
0 6 17.
9 0 6 17.
0 5 16.
0 6 17. | 0 0 17.
4 1 6 17.
0 5 17.
1 1 6 17.
0 6 17. | 4 1 5 17.
0 0 16.
0 6 17.
0 6 17.
8 0 3 15. | 0 6 18.
0 6 18.
.0117 0 5 16.
0 6 17. | 0 1 4 16.
0 5 16.
0 6 17.
0 6 17.
0 6 17. | | BLE | R D | 43 0 0 17.
11 0 6 17.
71 0 5 17.
55 0.1557 1 6 17.
77 0 6 17. | 39 0 0 17.
41 0 0 17.
41 0 0 16.
58 0.206 3 6 17.
34 0 0 17. | 5 17.
0 17.
6 17.
6 17.
6 17. | .1158 1 5 17.
.1126 1 5 17.
0 6 17.
0 5 17. | 71 0 6 17.
55 0.211 3 6 17.
52 0.207 3 6 17.
75 0.1617 1 5 17.
51 0.0692 1 4 15. | 75 0.1282 1 6 17.
79 0 6 17.
33 0.0289 0 6 17.
77 0 5 16.
04 0 6 17. | 0 0 17.
1874 1 6 17.
0 5 17.
1731 1 6 17.
0 6 17. | .1874 1 5 17.
0 0 16.
0 6 17.
0 6 17.
.0618 0 3 15. | 0 6 17.
0 6 18.
17 0 5 16.
90 0 4 16. | .0700 1 4 16.
0 5 16.
0 6 17.
0 6 17. | | BLE | M C Z RD | 43 0 0 17.
111 0 6 17.
: 71 0 5 17.
: 55 0.1557 1 6 17.
77 0 6 17. | 39 0 0 17.
41 0 0 17.
41 0 0 16.
158 0.206 3 6 17.
34 0 0 17. | 83 0 5 17.
44 0 0 17.
50 0 6 17.
71 0 6 17.
: 66 0 6 17. | III 70 0.1158 1 5 17.
64 0.1126 1 5 17.
59 0 6 17.
62 0 5 17.
69 0 6 17. | 71 0 6 17.
:155 0.211 3 6 17.
152 0.207 3 6 17.
75 0.1617 1 5 17.
51 0.0692 1 4 15. | 75 0.1282 1 6 17.
79 0 6 17.
33 0.0289 0 6 17.
77 0 5 16.
104 0 6 17. | 48 0 0 17.
71 0.1874 1 6 17.
58 0 5 17.
76 0.1731 1 6 17.
74 0 6 17. | II: 58 0.1874 1 5 17.
34 0 0 16.
63 0 6 17.
80 0 6 17.
II 43 0.0618 0 3 15. | I 52 0 6 13.
52 0 6 18.
61 0 5 16.
61 0 6 17.
40 0.0790 0 4 16. | 56 0.0700 1 4 16.
57 0 5 16.
79 0 6 17.
63 0 6 17.
53 0 6 17. | | BLE | C z RD | II-III 111 0 6 17.
II-III: 71 0 6 17.
III 55 0.1557 1 6 17.
III: 77 0 6 17. | 39 0 0 17.
41 0 0 17.
II-III:158 0.206 3 6 17.
34 0 0 17. | II: 83 0 5 17.
44 0 0 17.
III 50 0 6 17.
IIII: 66 0 6 17. | II-III 70 0.1158 1 5 17.
11: 64 0.1126 1 5 17.
11: 59 0 6 17.
11: 62 0 5 17.
11: 69 0 6 17. | III
III-III:155 0.211 3 6 17.
III 152 0.207 3 6 17.
III 75 0.1617 15 17.
III-III 51 0.0692 1 4 15. | II 75 0.1282 1 6 17. 79 0 6 17. III 77 0 6 16. III 104 0 6 17. | HII: 71 0.1874 16 17. III-III: 76 0.1731 16 17. IIII: 76 0.1731 16 17. IIII: 74 0.1731 16 17. | II-III: 58 0.1874 1 5 17.
34 0 0 16.
III 80 0 6 17.
III-III 43 0.0618 0 3 15. | III 68 0617.
52 0618.
147 0.0117 0516.
111 61 0617.
40 0.0790 0416. | II-III 56 0.0700 1 4 16.
III 57 0 5 16.
III-III: 79 0 6 17.
III 53 0 6 17. | | BLE | В-м С z RD | 55 43 0 0 17. 202 II—III 111 0 6 17. 234 II—III: 71 0 5 17. 90 III 55 0.1557 1 6 17. 145 III: 77 0 6 17. | 53 39 0017.
164 0 017.
49 II-III:158 0.206 3 6 17.
32 34 0 017. | 240 II: 83 0 5 17. 51 44 0 0 17. 276 III 50 0 6 17. 167 III: 66 0 6 17. | 112 II-III 70 0.1158 1 5 17. 24 II: 64 0.1126 1 5 17. 301 III 59 0 6 17. 236 II 69 0 6 17. | 142 III 71 0 6 17. 81 III-III:155 0.211 3 6 17. 92 III 152 0.207 3 6 17. 83 III 75 0.1617 1 5 17. 182 II-III 51 0.0692 1 4 15. | 228 II 75 0.1282 1 6 17.
145 II 79 0 6 17.
261 III 77 0 5 16.
168 III 104 0 6 17. | 164 48 0 0 17. 221 III: 71 0.1874 1 6 17. 36 III-III 58 0.1731 16 17. 165 III: 74 0 6 17. | 142 II-III: 58 0.1874 1 5 17.
149 111 63 0 6 17.
146 III 80 0 6 17.
219 II-III 43 0.0618 0 3 15. | 229 III 68 0 6 17.
229 III 52 0 6 18.
229 47 0.0117 0 5 16.
161 III 61 0 6 17.
153 40 0.0790 0 4 16. | 122 II-III 56 0.0700 1 4 16.
116 III 57 0 5 16.
13 II-III: 79 0 6 17.
245 III 63 0 6 17.
226 III 53 0 6 17. | | BLE | T_{B-M} C z R D | II-III 111 0 6 17.
II-III: 71 0 6 17.
III 55 0.1557 1 6 17.
III: 77 0 6 17. | 39 0 0 17.
41 0 0 17.
II-III:158 0.206 3 6 17.
34 0 0 17. | II: 83 0 5 17.
44 0 0 17.
III 50 0 6 17.
IIII: 66 0 6 17. | II-III 70 0.1158 1 5 17.
11: 64 0.1126 1 5 17.
11: 59 0 6 17.
11: 62 0 5 17.
11: 69 0 6 17. | III
III-III:155 0.211 3 6 17.
III 152 0.207 3 6 17.
III 75 0.1617 15 17.
III-III 51 0.0692 1 4 15. | II 75 0.1282 1 6 17. 79 0 6 17. III 77 0 6 16. III 104 0 6 17. | HII: 71 0.1874 16 17. III-III: 76 0.1731 16 17. IIII: 76 0.1731 16 17. IIII: 74 0.1731 16 17. | II-III: 58 0.1874 1 5 17.
34 0 0 16.
III 80 0 6 17.
III-III 43 0.0618 0 3 15. | 190 229 III 68 0 6 17. 187 10 I-II 52 0 6 18. 188 129 47 0.0117 0 5 16. 168 151 III 61 0 6 17. 168 153 40 0.0790 0 4 16. | II-III 56 0.0700 1 4 16.
III 57 0 5 16.
III-III: 79 0 6 17.
III 53 0 6 17. | | BLE | x y T_{B-M} C z R D | .65 55 43 00 17.
.67 54 234 IIIII. 71 06 17.
.83 49 90 III 55 0.1557 1 6 17.
.45 45 145 III: 77 0 6 17. | .57 117 53 39 0 0 17. 76 41 0 41 0 0 17. 77 312 164 41 0 0 16. 80 72 32 11-III:158 0.206 3 6 17. | .86 312 240 II: 83 0 5 17.
.03 298 51 44 0 0 17.
.08 279 276 III 50 0 6 17.
.41 32 167 III: 66 0 6 17. | .66 260 112 II-III 70 0.1158 1 5 17. 12 260 24 II: 64 0.1126 1 5 17. 17 258 201 III 59 0 6 17. 18 258 301 III 62 0 5 17. 21 258 236 II 69 0 6 17. | .34 245 142 III 71 0 6 1722 246 81 III-III:155 0.211 3
6 1739 240 92 III 152 0.207 3 6 1755 239 83 III 75 0.1617 15 1757 234 182 II-III 51 0.0692 1 4 15. | .74 227 228 II 75 0.1282 1 6 1719 223 145 II 79 0 6 1754 224 238 33 0.0289 0 6 1758 224 261 III 77 0 6 1661 220 168 III 104 0 6 17. | .01 312 164 48 0 0 1769 212 221 III: 71 0.1874 1 6 1712 21 36 11-III: 76 0.1731 1 6 1713 208 165 III: 74 0.1731 0 6 17. | 13 207 142 II-III: 58 0.1874 5 17. 13. 206 149 34 0 0 16. 10. 23. 191 II 63 0 6 17. 10. 191 11 80 0 6 17. 10. 191 11 11 13 0.0618 0 3 15. | .07 190 229 III 68 0 6 1750 187 10 I-II 52 0 6 1821 181 229 47 0.0117 0 5 1622 188 161 III 61 0 6 1715 168 153 40 0.0790 0 4 16. | 64 159 122 II-III 56 0.0700 1 4 16. 38 154 116 III 57 0 5 16. 04 153 13 II-III: 79 0 6 17. 96 136 245 III 63 0 6 17. 29 132 226 III 53 0 6 17. | | BLE | $y T_{B-M}$ C z R D | 45.45 65 55 43 0 0 17. 59.67 54 234 III-III 0 6 17. 67.83 49 90 III 55 0.1557 1 6 17. 55.45 45 145 III: 77 0 6 17. | 2-81.57 117 53 39 0 0 17. 6-63.76 41 0 41 0 0 17. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7 | 9-64.86 312 240 II: 83 0 5 17.
9-56.73 298 51 44 0 0 17.
1-84.108 279 276 III 50 0 6 17.
1-83.36 47 25 I 71 0 6 17.
0-79.41 32 167 III: 66 0 6 17. | 2-66.66 260 112 II-III 70 0.1158 1 5 17.
9-68.12 260 24 II: 64 0.1126 1 5 17.
5-70.47 258 201 III 59 0 6 17.
6-52.05 258 301 III 62 0 5 17.
4-53.21 258 236 II 69 0 6 17. | 6-43.34 245 142 III 71 0 6 17. 7-72.22 246 81 II-III155 0.211 3 6 17. 2-71.99 92 III 152 0.207 3 6 17. 3-66.95 239 83 III 75 0.1617 15 17. 6-42.57 234 182 II-III 51 0.0692 1 4 15. | 6-69.74 227 228 II 75 0.1282 1 6 17. 8-43.19 223 145 II 79 0 6 17. 8-69.54 224 238 33 0.0289 0 6 17. 3-63.85 224 261 III 77 0 5 16. 5-70.61 220 168 III 104 0 6 17. | 7-37.01 312 164 48 0 0 17. 0-69.69 212 221 III: 71 0.1874 1 6 17. 6-26.12 31 316 III-III: 58 0.1731 16 17. 8-75.13 208 165 III: 74 0 6 17. | 9-70.87 207 142 II-III: 58 0.1874 1 5 17.
4-60.13 206 149 34 0 0 16.
178.10 283 191 III 63 0 6 17.
2-70.69 196 146 III 80 0 6 17.
2-53.16 197 219 II-III 43 0.0618 0 3 15. | 1-74.07 190 229 III 68 0 6 17.
9-69.26 187 10 I-II 52 0 6 18.
9-69.23 181 129 47 0.0117 0 5 16.
5-42.63 168 161 III 61 0 6 17.
8-54.15 168 153 40 0.0790 0 4 16. | 1. 64 159 122 II-III 56 0.0700 1 4 16.
3.38 154 116 III 57 0 5 16.
3.04 153 13 II-III: 79 0 6 17.
3.96 136 245 III 63 0 6 17.
1.29 132 226 III 53 0 6 17. | | BLE | x y T_{B-M} C z R D | 38.51-45.45 65 55 43 0 0 17.
38.64-54.48 61 202 II-III 111 0 6 17.
41.41-59.67 54 234 II-III: 71 0 5 17.
48.09-67.83 49 90 III 55 0.1557 1 6 17.
39.56-55.45 45 115 III: 77 0 6 17. | 04.52-81.57 117 53 39 0 0 17. 44.66-63.76 41 0 41 0 0 17. 59.88-73.47 31 164 41 0 0 16. 59.88-73.47 318 49 II-III:158 0.206 3 6 17. 08.05-80.80 72 32 34 0 0 17. | 47.89-64.86 312 240 II: 83 0 5 17.
42.69-56.73 298 51 44 0 0 17.
95.21-41.08 279 276 III 50 0 6 17.
95.00-79.41 32 167 III: 66 0 6 17. | 52.42-66.66 260 112 II-III 70 0.1158 1 5 17.
54.29-68.12 260 24 III: 64 0.1126 1 5 17.
505-76.47 258 201 III 59 0 6 17.
41.56-52.05 258 301 III 62 0 5 17.
42.14-53.21 258 236 II 69 0 6 17. | 38.26-43.34 245 142 III 71 0 6 17.
62.47-72.22 246 81 III-III155 0.211 3 6 17.
53.93-61.99 240 92 III 152 0.207 3 6 17.
53.93-66.95 239 83 III 75 0.1617 15 17.
38.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 58.76-69.74 227 228 II 75 0.1282 1 6 17. 38.78-43.19 223 145 II 79 0 6 17. 51.03-63.85 224 228 33 0.0289 0 6 17. 51.03-63.85 224 261 III 77 0 5 16. 60.85-70.61 220 168 III 104 0 6 17. | 36.97-37.01 312 164 48 0 0 17.
55.60-66.69 212 221 III: 71 0.1874 1 6 17.
49.85-62.12 213 36 II-III 58 0 5 17.
38.90-42.41 209 184 II-III: 76 0.1731 1 6 17.
74.68-75.13 208 165 III: 74 0 6 17. | 29-70.87 207 142 II-III: 58 0.1874 1 5 17.
44-60.13 206 149 34 0 0 16.
51-78.10 281 191 III 63 0 6 17.
72-70.69 196 146 III 80 0 6 17.
12-53.16 197 219 II-III 43 0.0618 0 3 15. | 72.41-74.07 190 229 III 68 0 6 17.
68.03-72.60 187 10 I-II 52 0 6 18.
60.80-69.26 181 229 47 0.0117 0 5 16.
40.05-42.63 168 161 III 61 0 6 17.
45.68-54.15 168 153 40 0.0790 0 4 16. | 46.27-54.64 159 122 II-III 56 0.0700 1 4 16.
40.69-43.38 154 116 III 57 0 5 16.
52.42-62.04 153 13 II-III: 79 0 6 17.
40.23-40.96 136 245 III 63 0 6 17.
40.46-41.29 132 226 III 53 0 6 17. | | BLE | l b x y T_{B-M} C z R D | 135.51-45.45 65 55 43 0 0 17. 138.64-54.48 61 202 II-III 111 0 6 17. 141.41-59.67 54 234 II-III: 71 0 5 17. 148.09-67.83 49 90 III 55 0.1557 1 6 17. 139.56-55.45 45 145 III: 77 0 6 17. | 204.52-81.57 117 53 39 0 0 17.
144.66-63.76 41 0 41 0 0 17.
143.79-60.70 332 164 41 0 0 16.
159.88-73.47 318 49 II-III:158 0.206 3 6 17.
208.05-80.80 72 32 34 17. | 147.89-64.86 312 240 II: 83 0 5 17. 142.69-56.73 298 51 44 0 0 17. 136.64-10.08 279 276 II 50 0 6 17. 209.21-80.36 47 25 I 71 0 6 17. 195.00-79.41 32 167 III: 66 0 6 17. | 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 155.05-70.47 258 201 III 59 0 6 17. 141.56-52.05 258 301 III 62 0 5 17. 142.14-53.21 258 236 II 69 0 6 17. | 138.26-43.34 245 142 III 71 0 6 17. 162.47-72.22 246 81 III-III155 0.211 3 6 17. 153.42-7199 240 92 III 155 0.207 3 6 17. 153.93-66.95 239 83 III 75 0.1617 15 17. 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 158.76-69.74 227 228 II 75 0.1282 1 6 17.
138.78-43.19 223 145 II 79 0 6 17.
158.58-69.54 224 238 33 0.0289 0 6 17.
151.03-63.85 224 261 III 77 0 5 16.
160.85-70.61 220 168 III 104 0 6 17. | 136.97-37.01 312 164 48 0 0 17.
159.60-69.69 212 221 III: 71 0.1874 1 6 17.
149.86-62.12 213 36 III-III 58 0 5 17.
138.90-42.41 209 184 III-III: 76 0.1731 16 17.
174.68-75.13 208 165 III: 74 0 6 17. | 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17.
148.44-60.13 206 149 34 0 0 16.
195.61-78.10 283 191 III 63 0 6 17.
162.72-70.69 196 146 III 80 0 6 17.
144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 172.41-74.07 190 229 III 68 0 6 17.
168.03-72.60 187 10 I-II 52 0 6 18.
160.80-69.26 181 229 47 0.0117 0 5 16.
145.08-42.63 168 161 III 61 0 6 17.
145.68-54.15 168 153 40 0.0790 0 4 16. | 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
140.69-43.38 154 116 III 57 0 5 16.
152.42-62.04 153 13 II-III: 79 0 6 17.
140.23-40.96 136 245 III 63 0 6 17.
140.46-41.29 132 226 III 53 0 6 17. | | BLE | l b x y T_{B-M} C z R D | 135.51-45.45 65 55 43 0 0 17. 138.64-54.48 61 202 II-III 111 0 6 17. 141.41-59.67 54 234 II-III: 71 0 5 17. 148.09-67.83 49 90 III 55 0.1557 1 6 17. 139.56-55.45 45 145 III: 77 0 6 17. | 535 204.52-81.57 117 53 39 0 0 17. 229 144.66-63.76 41 0 41 0 0 17. 334 159.88-73.47 318 49 II-III:158 0.206 3 6 17. 558 208.05-80.80 72 32 34 | 147.89-64.86 312 240 II: 83 0 5 17. 142.69-56.73 298 51 44 0 0 17. 136.64-10.08 279 276 II 50 0 6 17. 209.21-80.36 47 25 I 71 0 6 17. 195.00-79.41 32 167 III: 66 0 6 17. | 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 155.05-70.47 258 201 III 59 0 6 17. 141.56-52.05 258 301 III 62 0 5 17. 142.14-53.21 258 236 II 69 0 6 17. | +1808 138.26-43.34 245 142 III 71 0 6 171258 162.47-72.22 246 81 III-III155 0.211 3 6 171245 162.42-71.99 22 III 152 0.207 3 6 170656 153.93-66.95 239 83 III 75 0.1617 15 171853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | -1014 158.76-69.74 227 228 II 75 0.1282 1 6 17.
+1811 138.78-43.19 223 145 II 79 0 6 17.
1002 158.56-69.54 224 238 33 0.0289 0 6 17.
-0337 151.03-63.85 224 261 III 77 0 5 16.
-1121 160.85-70.61 220 168 III 104 0 6 17. | 136.97-37.01 312 164 48 0 0 17.
159.60-69.69 212 221 III: 71 0.1874 1 6 17.
149.86-62.12 213 36 III-III 58 0 5 17.
138.90-42.41 209 184 III-III: 76 0.1731 16 17.
174.68-75.13 208 165 III: 74 0 6 17. | 1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17. 2001 148.44-60.13 280 149 34 0 0 16. 2002 155.61-78.10 283 191 III 63 0 6 17. 2146 162.72-70.69 196 146 III 80 0 6 17. 20137 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 418 168.03-72.60 187 101-II 68 0 6 17.
418 168.03-72.60 187 10 1-II 52 0 6 18.
131 160.080-69.26 181 229 47 0.0117 0 5 16.
829 140.05-42.63 168 161 III 61 0 6 17.
623 145.68-54.15 168 153 40 0.0790 0 4 16. | 48 146.27-54.64 159 122 II-III 56 0.0700 1 4 16. 738 140.69-43.38 154 116 III 57 0 5 16. 715 152.42-62.04 153 13 II-III: 79 0 6 17. 702 140.23-40.96 136 245 III 63 0 6 17. 740 140.46-41.29 132 226 III 53 0 6 17. | | BLE | l b x y T_{B-M} C z R D | 1+1631 135.51-45.45 65 55 43 00 17.
9+0716 138.64-54.48 61 202 II.111 111 06 17.
3+0152 141.41-59.67 54 234 II.III: 71 05 17.
6-0647 148.09-67.83 49 90 III 55 0.1557 1 6 17.
0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 5-2535 204.52-81.57 117 53 39 0 0 17. 1-0229 144.66-63.76
41 0 41 6+032 143.96-67 0 312 164 41 0 0 17. 6-1334 159.88-73.47 318 49 II-III:158 0.206 3 6 17. 3-2558 208.05-80.80 72 32 34 0 0 17. | 2.8-0400 147.89-64.86 312.240 II: 83 0 5 17. 4.3+0429 142.69-56.73 298 51 44 0 0 17. 5.4+2037 136.64-41.08 279 276 III 50 0 6 17. 4.3-2605 209.21-89.36 47 25 I 71 0 6 17. 5.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 7-0624 152.42-66.66 260 112 III-III 70 0.1158 1 5 17.
5-0802 154.29-66.12 260 24 II: 64 0.1126 1 5 17.
5-0804 158.05-70.47 258 201 III 59 0 6 17.
8+0909 141.56-52.05 258 301 III 62 0 5 17.
8+0756 142.14-53.21 258 236 II 69 0 6 17. | 11-1808 138.26-43.34 245 142 III 71 0 6 17. 5-1258 162.47-72.22 246 81 III-III:155 0.211 3 6 17. 0-1246 152.42-71.99 240 92 III 152 0.207 3 6 17. 0-6566 153.93-66.95 239 83 III 75 0.1617 15 17. 9+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17.
9+1811 138.78-43.19 223 145 II 79 0 6 17.
1-1002 158.58-69.54 224 238 33 0.0289 0 6 17.
1-0337 151.03-63.85 224 261 III 77 0 5 16.
5-1121 160.85-70.61 220 168 III 104 0 6 17. | 5+2431 136.97-37.01 312 164 48 0 0 17. 1-1021 159.60-69.69 212 221 III: 71 0.1874 1 6 17. 1-1049 149.85-62.12 213 36 III-III 58 0 5 17. 1-1855 138.90-42.41 209 184 II.III: 76 0.1731 1 6 17. 1-1724 174.68-75.13 208 165 III: 74 0 6 17. | 5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17. 0.40016 148.44-60.13 206 149 34 0 0 16. 9-2302 9-2302 191 III 63 0 0 6 17. 4-1146 162.72-70.69 196 146 III 80 0 6 17. 9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 6-1614 172.41-74.07 190 229 III 68 0 6 17. 9-1418 168.03-72.60 187 10 I-II 52 0 6 18. 5-1013 160.80-69.26 181 229 1 47 0.0117 0 5 16. 2+1829 140.05-42.63 168 161 III 61 0 6 17. 1+0623 145.68-54.15 168 153 40 0.0790 0 4 16. | 4.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
5.2+1738 140.69-43.38 154 116 III 57 0 5 16.
4.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17.
6.7+2002 140.23-40.96 136 245 III 63 0 6 17.
7.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | BLE | b x y T_{B-M} C z R D | 0128.1+1631 135.51-45.45 65 55 43 00 17. 0127.9+0716 138.64-54.48 61 202 II-III 111 06 17. 0128.3+0152 141.41-59.67 54 234 II-III: 71 05 17. 0128.6-0647 148.09-67.83 49 90 III 55 0.1557 16 17. 0129.0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 0128.5-2535 204.52-81.57 117 53 39 0 0 17. 0129.1-0229 144.66-63.76 41 0 41 0 0 0 17. 0131.6+0032 143.79-60.70 332 164 41 41 0 16. 00 17. 0132.0-1334 155.88-73.47 318 49 II-III:158 0.206 3 6 17. 0132.3-2558 208.05-80.80 72 32 34 0 0 17. | 0132.8-0400 147.89-64.86 312 240 II: 83 0 5 17. 0134.3+0429 142.69-56.73 298 51 44 0 0 177. 0135.4+2037 136.64-41.08 279 276 III 50 0 6 17. 0135.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 0136.7-0624 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 0136.6-0802 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 0136.6-0802 154.59-68.12 260 24 II: 64 0.1126 1 5 17. 0136.6-0909 141.56-52.05 258 301 III 62 0 6 17. 0137.3+0756 142.14-53.21 258 236 II 69 0 6 17. | 0138.1+1808 138.26-43.34 245 142 III 71 0 6 17. 0138.2-1258 162.47-72.22 246 81 III-III155 0.211 3 6 17. 0138.0-1246 162.42-71.99 240 92 III 152 0.207 3 6 17. 0138.3-0-056 153.93-66.95 239 83 III 75 0.1617 15 17. 0138.3+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 0139.0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17. 0139.8-8-181 138.78-421.9 223 145 II 79 0 6 17. 0139.2-1002 158.58-69.54 224 238 33 0.0289 0 6 17. 0139.4-0337 151.03-63.85 224 261 III 77 05 16.0319.8-121 160.85-70.61 220 168 III 104 0 6 17. | 0140.6+2431 136.97-37.01 312 164 48 0 0 17. 0140.1-1021 159.60-69.69 212 221 III: 71 0.1874 1 6 17. 0140.3-0149 149.85-62.12 231 33 6 III-III 58 0 5 17. 0141.0+1855 138.90-42.41 209 184 II-III: 76 0.1731 16 17. 0140.2-1724 174.68-75.13 208 165 III: 74 0 1731 16 17. | 0140.5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17. 0141.0+0016 148.44-60.13 206 149 34 0 0 16. 0146. 0140.9-2302 195.64-78.10 283 191 III 63 0 6 17. 0141.4-1146 162.72-70.69 196 146 III 80 0 6 17. 0141.9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 0141.6-1614 172.41-74.07 190 229 III 68 0 6 17. 0141.9-1418 168.03-72.60 187 10 I-II 52 0 6 18. 0142.5-1013 160.80-69.26 181 129 47 0.0117 0 5 16. 0144.2+1829 140.05-42.63 168 161 III 61 0 6 17. 0144.1+0623 145.68-54.15 168 153 140 0.0790 0 4 16. | 0144.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
0145.2+1738 140.69-43.38 154 116 III 57 0 5 16.
0144.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17.
0146.7+2002 140.23-40.96 136 245 III 63 0 6 17.
0147.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | BLE | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 0128.1+1631 135.51-45.45 65 55 43 00 17. 0127.9+0716 138.64-54.48 61 202 II-III 111 06 17. 0128.3+0152 141.41-59.67 54 234 II-III: 71 05 17. 0128.6-0647 148.09-67.83 49 90 III 55 0.1557 16 17. 0129.0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 551 0128.5-2535 204.52-81.57 117 53 39 0 0 17. 45 0129.1-0229 144.66-63.76 41 0 41 0 0 017. 0131.6131.3 159.88-73.47 318 49 II-III:158 0.206 3 6 17. 514 0132.3-2558 208.05-80.80 72 32 34 | 416 0132.8-0400 147.89-64.86 312 240 II: 83 0 5 17.
414 0134.3-0429 142.69-56.73 298 51 44 0 0 17.
922 0135.4+2037 136.64-41.08 779 276 III 50 0 6 17.
521 0134.3-2605 299.21-80.36 47 25 I 71 0 6 17.
342 0135.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 0136.7-0624 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 0136.6-0802 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 0136.6-0802 154.59-68.12 260 24 II: 64 0.1126 1 5 17. 0136.6-0909 141.56-52.05 258 301 III 62 0 6 17. 0137.3+0756 142.14-53.21 258 236 II 69 0 6 17. | 0138.1+1808 138.26-43.34 245 142 III 71 0 6 17. 0138.2-1258 162.47-72.22 246 81 III-III155 0.211 3 6 17. 0138.0-1246 162.42-71.99 240 92 III 152 0.207 3 6 17. 0138.3-0-056 153.93-66.95 239 83 III 75 0.1617 15 17. 0138.3+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 030 0139.0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17. 756 0139.8+181 138.78-43.19 223 145 II 79 0 6 17. 018 0139.2-1002 158.58-69.54 224 238 33 0.028 0 6 17. 353 0139.4-037 151.03-63.85 224 261 III 77 0 6 17. 130.028 0 6 17. | 0140.6+2431 136.97-37.01 312 164 48 0 0 17. 0140.1-1021 159.60-69.69 212 221 III: 71 0.1874 1 6 17. 0140.3-0149 149.85-62.12 231 33 6 III-III 58 0 5 17. 0141.0+1855 138.90-42.41 209 184 II-III: 76 0.1731 16 17. 0140.2-1724 174.68-75.13 208 165 III: 74 0 1731 16 17. | 1206 0140.5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17. 001 0141.0+0016 148.44-60.13 206 149 2318 0140.9-2302 195.61-78.10 283 191 III 63 0 617. 1202 0141.4-1146 162.72-70.69 196 146 III 80 0 6 17. 0722 0141.9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 630 0141.6-1614 172.41-74.07 190 229 III 68 0 6 17. 844 0141.9-1418 168.03-72.60 187 10 I-II 52 0 6 18. 129 0142.5-1013 160.80-69.26 181 129 47 0.0117 0 16. 184 0144.2-1829 140.05-42.63 168 161 III 61 0 6 17. 508 0144.1+0623 145.68-54.15 168 153 16 0.0790 0 4 16. | 0144.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
0145.2+1738 140.69-43.38 154 116 III 57 0 5 16.
0144.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17.
0146.7+2002 140.23-40.96 136 245 III 63 0 6 17.
0147.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | BLE | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 5.4+1616 0128.1+1631 135.51-45.45 65 55 43 00 17. 5.3+0701 0127.9+0716 138.64-54.48 61 202 II-III 111 06 17. 5.7+0137 0128.3+0152 141.41-59.67 54 234 II-III: 71 05 17. 5.1-0703 0128.6-0647 148.09-67.83 49 90 III 55 0.1557 1 6 17. 5.4+0557 0129.0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 6.1-2551 0128.5-2535 204.52-81.57 117 53 39 0 0 17.
6.6-0245 0129.1-0229 144.66-63.76 41 0 41 0 0 017.
9.0-40017 0131.6+0032 143.79-60.70 332 164 41 0 0 016.
9.5-1350 0132.0-1334 159.88-73.47 318 49 II-III:158 0.206 3 6 17.
9.9-2614 0132.3-2558 208.05-80.80 72 32 34 0 017. | 0.3-0416 0132.8-0400 147.89-64.86 312 240 II: 83 0 5 17.
1.7+0414 0134.3+0429 142.69-56.73 298 51 44 0 0 17.
2.7+2022 0135.4+2037 186.4-41.08 759 276 III 50 0 6 17.
3.0-2621 0134.3-2605 209.21-80.36 47 25 I 71 0 6 17.
3.0-2342 0135.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 4.2-0640 0136.7-0624 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 4.1-0818 0135.6-0802 154.29-68.12 560 24 II: 64 0.1126 1 5 17. 4.1-1100 0136.6-0804 158.05-70.47 258 201 III 59 0 6 17. 4.7+0854 0137.3+0909 141.56-52.05 258 301 III 62 0 5 17. 4.7+0741 0137.3+0756 142.14-53.21 258 236 II 69 0 6 17. | 5.4+1753 0138.1+1808 138.26-43.34 245 142 III 71 0 6 17.
5.0-1314 0137.5-1258 162.47-72.22 246 111.11.155 0.211 3 6 17.
5.5-1302 0138.0-1246 162.42-71.99 240 92 III 152 0.207 3 6 17.
5.8-0712 0138.3-0656 153.93-66.95 239 83 III 75 0.1617 15 17.
6.2+1838 0138.9+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 5.5-1030 0139.0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17. 7.141756 0139.8+181 138.78-43.19 223 145 II 79 0 6 17. 7.1-1018 0139.2-1002 158.58-69.54 224 238 33 0.0289 0 6 17. 5.9-0353 0139.4-0337 151.33-63.85 224 261 III 77 0 5 16. 7.0-1137 0139.5-1121 160.85-70.61 220 168 III 104 0 6 17. | .8+2416 0140.6+2431 136.97-37.01 312 164 48 0 0 17. (6-1037 0140.1-1021 159.60-69.69 212 221 III: 71 0.1874 1 6 17. 8-0205 0140.3-0149 149.85-62.12 31 3.6 III-III 58 0 5 17. (3+1840 0141.0+1855 138.90-42.41 209 184 II-III: 76 0.1731 16 17. (8-1740 0140.2-1724 174.68-75.13 208 165 III: 74 0 6 17. | 8.0-1206 0140.5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17.
8.4-4001 0141.0+0016 148.44-60.13 206 149 34 0 0 16.
8.5-2318 0140.9-2302 15.61-78.10 283 191 II 63 0 6 17.
8.9-1202 0141.9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 9.2-1630 0141.6-1614 172.41-74.07 190 229 III 68 0 6 17.
9.5-1434 0141.9-1418 168.03-72.60 187 10 I-II 52 0 6 18.
0.0-1029 0142.5-1013 160.880-69.26 181 229 47 0.0117 0 5 16.
1.5+1814 0144.2+1829 140.05-42.63 168 161 III 61 0 6 17.
1.5+0608 0144.1+0623 145.68-54.15 168 153 40 0.0790 0 4 16. | 2.1+0533 0144.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
2.5+1723 0145.2+1738 140.69-43.38
154 116 III 57 0 5 16.
2.3-0231 0144.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17.
4.0+1948 0146.7+2002 140.23-40.96 136 245 III 63 0 6 17.
4.3+1926 0147.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | BLE | l b x y T_{B-M} C z R D | .4+1616 0128.1+1631 135.51-45.45 65 55 43 00 17. 3+0701 0127.9+0716 138.64-54.48 61 202 II-III 111 06 177+0137 0128.3+0152 141.41-59.67 54 234 II-III: 71 05 171-0703 0128.6-0647 148.09-67.83 49 90 III 55 0.1557 16 174+0557 0129.0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 1-2551 0128.5-2535 204.52-81.57 117 53 39 0 0 17. 6-0245 0129.1-0229 144.66-63.76 41 0 41 0 0 17. 0+0017 0131.6+0032 143.96-60.70 312.16+013 144.66-63.76 0 16. 0 16. 5-1350 0132.0-1334 159.88-73.47 318 49 II-III:158 0.206 3 6 17. 9-2614 0132.3-2558 208.05-80.80 72 32 34 0 0 17. | 3-0416 0132.8-0400 147.89-64.86 312 240 II: 83 0 5 17.
14444 0134.3+032 142.69-56.73 298 51 44 0 0 177.
17+2022 0135.4+2037 136.64-41.08 279 276 III 50 0 6 177.
0-2621 0134.3-25605 209.21.80.36 47 25 I 71 0 6 17.
0-2342 0135.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 2-0640 0136.7-0624 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 1-0818 0136.6-082 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 1-1100 0136.6-1044 18.05-70.47 258 201 III 59 0 6 17. 7+0854 0137.3+0909 141.56-52.05 258 301 III 62 0 6 17. 7+0741 0137.3+0756 142.14-53.21 258 236 II 69 0 6 17. | 1314 0137.5-1258 162.47-72.22 246 81 III-III155 0.211 3 6 17.
1302 0138.0-1246 162.42-71.99 240 92 III 155 0.207 3 6 17.
0712 0138.3-0565 153.93-66.95 239 83 III 75 0.1617 15 17.
1838 0138.9+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 5-1030 0139.0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17. 1+1756 0139.48-1811 138.78-43.19 223 145 II 79 0 6 17. 7-1018 0139.2-1002 158.56-69.54 224 238 33 0.0289 0 6 17. 9-0353 0139.4-0337 151.03-63.85 224 261 III 77 0 5 16. 0-1137 0139.5-1121 160.85-70.61 220 168 III 104 0 6 17. | 8+2416 0140.6+2431 136.97-37.01 312 164 48 0 0 17.
6-1037 0140.1-1021 159.60-69.69 212 221 III: 71 0.1874 16 17.
8-0205 0140.3-0149 149.85-62.12 213 36 II-III 58 0 5 17.
3+1840 0141.0+1855 1885 189.90-42.41 209 184 II-III: 76 0.1731 16 17.
8-1740 0140.2-1724 174.68-75.13 208 165 III: 74 0.1731 0 6 17. | 0-1206 0140.5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17.
4-6001 0141.0+0016 148.44-60.13 206 149 34 0 0 16.
5-2318 0140.9-2302 155.61-78.10 283 191 III 63 0 6 17.
9-1202 0141.4-1146 162.72-70.69 196 146 III 80 0 6 17.
3+0722 0141.9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 2-1630 0141.6-1614 172.41-74.07 190 229 III 68 0 6 17.
6-1434 0141.9-1418 168.03-72.60 187 10 I-II 52 0 6 18.
6-1029 0142.5-1013 160.80-69.26 181 229 47 0.0117 0 5 16.
5+1814 0144.2+1829 140.05-42.63 168 161 III 61 0 6 17.
5+0608 0144.1+0623 145.68-54.15 168 153 40 0.0790 0 4 16. | .1+0533 0144.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16.
.5+1723 0145.2+1738 140.69-43.38 154 116 III 57 0 5 16.
.3-0231 0144.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17.
.0+1948 0146.7+2002 140.23-40.96 136 245 III 63 0 6 17.
.3+1926 0147.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | BLE | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 5.4+1616 0128.1+1631 135.51-45.45 65 55 43 00 17. 5.3+0701 0127.9+0716 138.64-54.48 61 202 II-III 111 06 17. 5.7+0137 0128.3+0152 141.41-59.67 54 234 II-III: 71 05 17. 5.1-0703 0128.6-0647 148.09-67.83 49 90 III 55 0.1557 1 6 17. 5.4+0557 0129.0+0612 139.56-55.45 45 145 III: 77 0 6 17. | 6.1-2551 0128.5-2535 204.52-81.57 117 53 39 0 0 17.
6.6-0245 0129.1-0229 144.66-63.76 41 0 41 0 0 017.
9.0-40017 0131.6+0032 143.79-60.70 332 164 41 0 0 016.
9.5-1350 0132.0-1334 159.88-73.47 318 49 II-III:158 0.206 3 6 17.
9.9-2614 0132.3-2558 208.05-80.80 72 32 34 0 017. | 0.3-0416 0132.8-0400 147.89-64.86 312 240 II: 83 0 5 17.
1.7+0414 0134.3+0429 142.69-56.73 298 51 44 0 0 17.
2.7+2022 0135.4+2037 186.4-41.08 759 276 III 50 0 6 17.
3.0-2621 0134.3-2605 209.21-80.36 47 25 I 71 0 6 17.
3.0-2342 0135.4-2326 195.00-79.41 32 167 III: 66 0 6 17. | 34.1-0640 0136.7-0624 152.42-66.66 260 112 II-III 70 0.1158 1 5 17. 34.1-0818 0136.6-0802 154.29-68.12 260 24 II: 64 0.1126 1 5 17. 34.1-1100 0136.6-0441 158.05-70.47 288 201 III 59 0 6 17. 34.7+0854 0137.3+0909 141.56-52.05 258 301 III 62 0 5 17. 34.7+0741 0137.3+0756 142.14-53.21 258 236 II 69 0 6 17. | 5.4+1753 0138.1+1808 138.26-43.34 245 142 III 71 0 6 17.
5.0-1314 0137.5-1258 162.47-72.22 246 111.11.155 0.211 3 6 17.
5.5-1302 0138.0-1246 162.42-71.99 240 92 III 152 0.207 3 6 17.
5.8-0712 0138.3-0656 153.93-66.95 239 83 III 75 0.1617 15 17.
6.2+1838 0138.9+1853 138.26-42.57 234 182 II-III 51 0.0692 1 4 15. | 5.5-1030 0139.0-1014 158.76-69.74 227 228 II 75 0.1282 1 6 17. 7.141756 0139.8+181 138.78-43.19 223 145 II 79 0 6 17. 7.1-1018 0139.2-1002 158.58-69.54 224 238 33 0.0289 0 6 17. 5.9-0353 0139.4-0337 151.33-63.85 224 261 III 77 0 5 16. 7.0-1137 0139.5-1121 160.85-70.61 220 168 III 104 0 6 17. | 37.8+2416 0140.6+2431 136.97-37.01 312 164 48 0 0 17. 37.6-1037 0140.1-1021 159.60-69.69 212 221 III: 71 0.1874 16 17. 37.8-0205 0140.3-0149 149.85-62.12 213 36 II-III 58 0 5 17. 38.3+1840 0141.0+1855 138.90-42.41 209 184 II-III: 76 0.1731 16 17. 37.8-1740 0140.2-1724 174.68-75.13 208 165 III: 74 0 6 17. | 38.0-1206 0140.5-1150 162.29-70.87 207 142 II-III: 58 0.1874 1 5 17. 38.44-001 0141.0+0016 148.44-60.13 206 149 38.5-2138 0140.9-2302 195.61-78.10 283 191 III 63 0 6 17. 38.9-1202 0141.4-1146 162.72-70.69 196 146 III 80 0 6 17. 39.3+0722 0141.9+0737 144.12-53.16 197 219 II-III 43 0.0618 0 3 15. | 39.2-1630 0141.6-1614 172.41-74.07 190 229 III 68 0 6 17. 39.5-1434 0141.9-1418 168.03-72.60 187 10 I-II 52 0 6 18. 40.0-1029 0142.5-1013 160.80-69.26 181 229 47 0.0117 0 5 16. 41.5+1814 0144.2+1829 140.05-42.63 168 161 III 61 0 6 17. 41.5+0608 0144.1+0623 145.68-54.15 168 153 40 0.0790 0 4 16. | 42.1+0533 0144.7+0548 146.27-54.64 159 122 II-III 56 0.0700 1 4 16. 42.5+1723 0145.2+1738 140.69-43.38 154 116 III 57 0.05 16. 42.3-0231 0144.8-0215 152.42-62.04 153 13 II-III: 79 0 6 17. 44.0+1948 0146.7+2002 140.23-40.96 136 245 III 63 0 6 17. 44.3+1926 0147.0+1940 140.46-41.29 132 226 III 53 0 6 17. | | | 8 | 16.
17.
17.
18. | 17.
16.
15.
18. | 17.
17.
17. | 17.
16.
17.
17. | 17.
17.
17. | 15
17
17
16 | 17
17
18
18 | 17.
17.
15. | 17.
17.
17. | 16.
15.
17.
13. | |-----------|-------------|---|---|---|---|---|---|---|---|---|---| | | R D | 09990 | 90000 | 00000 | 0000 | 0000 | 0000 | 0000 | 00040 | 0000 | 11000 | | | z | | 0.0576 | | 0.373 | | 0.0489 | | 0.1160 | | 0.0325
0.0715
0.0232 | | | C | 45
53
51
43 | 108
35
34
104
107 | 41
77
119
96
34 | 71
57
44
57
57 | 68
40
57
87
44 | 36
75
68
58
64 | 83
53
100
75 | 35
35
97
46 | 67
37
67
68
82 | 37
35
64
57
58 | | | Тв-м | :::::::::::::::::::::::::::::::::::::: | i I. | :
:::::::::::::::::::::::::::::::::::: | | i i | 1-11
1111
1111 | ii
HH-H | Ħн | II-II
II-III | | | | y | 315
23 1
246 1
216 1 | 58 I
206
75
291 I
193 I | 295
200
325
284
63 | 169 1
64 1
11
272 1
55 1 | 181 I
133
34
47 I
91 | 190 1
346
297 1
325 1
24 1 | 107 1
52 1
276 1
19 1 | 187
41
262
96 1 | 8 I
86
31 I
0 I
229 I | 125
33 I
266 I
197 I | | | ы | 248
216
27
211
209 | 206
203
183
175 | 171
167
158
158
126 | 1112
98
222
59 3 | 39
129
186
14
169 | 293
154
309
305
138 | 298
287
267
268
97 | 232 : 79 : 221 : 54 : 54 : 198 : | 197
190
189
186
178 | 292
161
153
146 | | | q | 68-61.17
92-55.96
12-67.62
15-53.10
86-62.69 | 39-50.57
53-43.15
73-63.04
52-51.63
89-48.18 | 65-51.49
38-57.36
31-45.94
63-46.25
51-54.15 | 45-57.04
75-64.69
51-66.39
29-55.00
01-53.57 | 58-59.73
34-16.32
14-28.67
01-48.57
87-27.59 | 08-20.59
81-28.56
35-53.74
40-48.90
45-64.81 | 77-51.83
99-47.95
74-53.46
31-52.60
94-63.09 | 14-60.88
04-27.60
06-53.00
04-63.04
80-59.30 | 06-51.79
40-46.30
40-47.05
51-58.92
85-56.55 | 86-15.34
92-37.24
78-58.91
38-39.47
25-44.93 | | | - | 177.6
169.9
205.1
166.1 | 163.3
156.5
186.7
165.5 | 165.6
174.3
160.3
161.6 | 200.7
200.7
217.5
175.2 | 186.8
144.3
151.1
168.0 | 147.0
151.8
176.3
169.4 | 173.7
168.9
177.7
176.3 | 199.1
153.0
179.0
215.0 | 178.0
170.4
171.4
195.5
188.8 | 146.8
161.9
197.7
164.3 | | | RA(2000)Dec | 0225.4-0843
0228.1-0210
0227.5-2203
0228.6+0125
0228.2-1155 | 0229.1+0428
0229.4+1314
0230.2-1311
0230.9+0249
0231.3+0659 | 0231.5+0253
0231.6-0451
0232.8+0927
0235.2+0841
0235.6-0124 | 0235.7-0525
0236.6-1922
0237.4-2630
0239.7-0332
0239.8-0135 | 0241.1-1113
0243.6+4150
0243.4+2759
0243.5+0414
0244.9+2903 | 0245.8+3651
0246.0+2748
0245.0-0305
0245.5+0324
0244.4-2615 |
0246.0-0038
0247.1+0418
0248.1-0329
0248.2-0216
0247.7-2148 | 0250.0-1709
0252.5+2806
0251.6-0345
0251.3-2454
0252.8-1457 | 0253.5-0229
0254.3+0456
0254.4+0355
0253.9-1438
0254.5-1022 | 0257.5+4136
0257.0+1557
0256.1-1540
0257.9+1300
0257.6+0601 | | | | 57 0
17 0
12 0
09 0 | 15
01
02
36
0
46
0 | 010400 | മവനയ | | | 51
06
06
29
01
0 | 22 0
54 0
58 0
07 0 | 42 0
44 0
51 0
35 0 | 24
45
53
0
50
0 | | | A(1950)Dec | .9-08
.6-02
.2-22
.0+01 | .5+04
.7+13
.8-13
.3+02 | .1-050
.1-050
.1+091
.5+082 | .2-053
.3-193
.2-264
.2-034 | .7-1126
.4+4138
.5+2747
.9+0402
.9+2851 | .7+3639
.1+2736
.5-0318
.9+0312 | .4-00
.5+04
.6-03
.7-02 | .7-17
.5+27
.1-03
.1-25 | .0-024
.7+044
.8+034
.5-145 | .3+41
.2+15
.8-15
.2+12 | | 7 | RA(1 | 0222
0225
0225
0226
0226 | 0226
0226
0227
0228
0228 | 0222
0229
0230
0232
0233 | 0233
0234
0235
0237
0237 | 0238
0240
0240
0240
0241 | 0242
0242
0242
0242 | 0243
0244
0245
0245
0245 | 0247
0249
0249
0249
0250 | 0251
0251
0251
0251
0252 | 0254
0253
0253
0255
0255 | | Continued | Abell | 0351
0352
0353
0354
0355 | 0356
0357
0358
0359 | 0361
0362
0363
0364 | 0366
0367
0368
0369
0370 | 0371
0372
0373
0374
0375 | 0376
0377
0378
0379
0380 | 0381
0382
0383
0384
0385 | 0386
0387
0388
0389 | 0391
0392
0393
0394
0395 | 0396
0397
0398
0399
0400 | | E3- | | 00000 | 8 12 12 18 19 | പം കാ | 79697 | 02200 | 00000 | 49989 | 79989 | 87746 | anons | | TABL | п | 6 18.0
6 17.9
5 16.0
6 17.8 | 6 17.8
6 17.8
6 17.8
6 17.8 | 0 16.1
6 17.9
6 17.9
6 17.9 | 0 17.3
6 17.9
6 17.9
6 17.9 | 6 17.
6 17.
6 17.
6 17. | 5 17.
0 17.
0 17.
5 17. | 5 17.
6 17.
6 17.
6 17. | 6 17.
6 17.
6 17.
6 17. | 0 17.
6 17.
6 17.
6 17. | 5 16.
1 13.
6 18.
0 17.
6 17. | | | z R I | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0187 0
274 1 | | | | 40004 | សិស្ 4 -សិសិ | 32731 | m 10 m m 10 | 98615 | 40000 | 87888 | 0 2 4 4 7 | 0 8 8 6 1 | 00 | | | 0 | H
12 12 12 12 |
₪ 14 ₪ 10 | . 41
63
67
96
93 | 43
55
78
78
65 | で40で レ | 949R4 | 7
11
5 | 41.000. | 1 10 E | _ uuu | | | T_{B-M} | 11111 | III-III | 11111 | ::
::::::::::::::::::::::::::::::::::: | 111-111
111-111
111-111 | i i | | | 11-11 | | | | 8 | 20
00
00
00
00
00
00 | 147 I
50 I
279
298 I | 29
77
88
83 | 57
1 1
269 1
132 1
213 1 | 158 1
219
305 1
55 1 | 77 1
29
90
216 1 | 99 1
51 1
77 1
233 1 | 23
113
175
175
100 | 201
286 1
257
321 1
226 1 | 267 1
136 1
184 1
256 1 | | | ы | 200
297 1
186 2
186
178 3 | 171 1
153
162 2
161 2
160 1 | 157 2
144
137 2
138 | 135
133
237
109
234 | 117 1
93 2
87 3
87 205 | 203
203
733 | 54
62
61
51 | 2 4 4 8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 324
328
302
302 | 121
306
268
199
250 | | | | 40000 | 4 0 0 0 4 | 73384 | 15
68
90
92 | 40
07
77
68
64 | 05
75
83
37 | 43
41
41
14 | .72 | 28
40
40
79 | 17
23
33
36
96 | | | p | 1.33-59.3
9.00-73.2
3.06-60.2
5.62-53.5
1.75-68.6 | 2-66
3-59
3-59 | 3-52.8
3-54.4
3-57.3 | 7-67.
5-63.
3-32.
0-65.
7-33. | 1-56.
3-50.
9-58.
3-57. | 3-62.
1-71.
3-61.
8-47. | 1-46.
5-66.
5-41.
2-59. | -57
-40
-64
-62 | 1-53.
0-69.
5-36.
5-43. | 11-32.
17-17.
99-61.
31-22.
29-61. | | | - | 61.33
09.00
63.00
81.75 | 175.82-
151.81-
163.83-
157.53-
155.56- | 46.89
56.43
78.91
62.03 | 180.17.
171.65.
144.73.
178.30. | 161.24
155.73
165.49
164.03 | 170.98-62
214.41-71
170.70-61
167.92-59
154.28-47 | 153.64-46
182.55-66
150.56-41
168.12-59
180.05-65 | 165.77
150.52
179.01
175.52 | 190.44-67.
161.91-53.
202.90-69.
149.46-36.
153.95-43. | 147.1
141.1
176.9
143.3 | | | | -2 | | ааааа | | | | | | | | | | RA(2000)Dec | 3-0205
5-2445
2-0318
5+0429
5-1454 | 1.1-1147
1.1+1028
1.0-0320
1.3+0300 | 2+1943
6+0452
1+0254
6-1253 | 9-1328
2-0831
9+2626
8-1205
1+2523 | 7+0023
5+0730
6-0252
7-0132
0-2516 | 7-0707
1-2606
9-0652
7-0432
4+1019 | 6+1121
5-1336
6+1650
3-0412 | .6-0207
.9+1730
.5-1116
.8-0906 | 0-1648
3+0243
1-2151
7+2121
4+1335 | 5+2623
8+4152
0-0835
4+3649
0-0949 | | | tA(200 | 0205.
0206.
0206. | 0207.
0208.
0208.
0208. | 0209.2
0209.6
0210.1
0209.6 | 0209.9
0210.3
0212.9
0213.3 | 0211.
0213.
0213.
0213.
0213. | 0213.7
0213.1
0213.9
0214.7
0215.4 | 0215.0
0215.0
0216.0
0216.0 | 0216.
0217.
0217.
0217. | 0219.0-
0219.8+0
0219.1-3
0221.7+3 | 0222.
0225.
0224.
0226. | | | | | | | | | | | | | C | | | 50)Dec | 3-0220
2-2500
7-0333
9+0415 | 7-1202
4+1014
5-0335
7+0246 | 4+1929
0+0438
5+0240
2-1308
5-0114 | 5-1343
7-0846
0+2612
4-1226 | 1+0009
9+0716
1-0306
2-0146
7-2531 | 2-0721
8-2621
4-0706
2-0446
7+1006 | 9+1108
1-1350
9+1637
8-0426
7-1223 | 1-0221
1+1717
1-1130
3-0920 | 6-1702
2+0230
8-2205
9+2108
7+1322 | 6+261
7+413
5-084
3+363
6-100 | | | RA(1950)Dec | 0202.8-
0203.2-
0203.7-
0203.9+ | 0204.7
0205.4
0205.5
0205.5 | 0206.4
0207.0
0207.5
0207.5 | 0207.7
0210.0
0210.0 | 0209.
0210.
0211.
0211. | 0211.
0210.8
0211. | 0212.9
0213.3
0213.9
0213.8 | 0214.3
0215.3
0215.3
0216.0 | 0216.0
0217.3
0216.8
0218.9 | 0219.
0222.
0221.
0223. | | | | 0302
0302
0304
0304
0305 | 0306
0307
0308
0310 | 0311
0312
0313
0314
0315 | 0316
0317
0318
0319
0320 | 0321
0322
0323
0324
0325 | 0326
0327
0328
0329
0330 | 0331 0
0332 0
0333 0
0334 0 | 0336
0337
0338
0339
0340 | 0341 0
0342 0
0343 0
0344 0 | 0346 0
0347 0
0348 0
0349 0 | | | اوا | | | | | | | | | | | | | Abell | 00000 | 88888 | 00000 | 00000 | 22 | 88888 | 00000 | 00000 | 88888 | 88888 | | | 4(0000) | | | E | | 7 | | - 11 | | | | | | | |---|---|--|---|-------|--|--|--------------------------------------|---|---|--|--|---------------------------------|--------|---| | $RA(1950)Dec$ $RA(2000)Dec$ l b x y T_B | h x q 1 | b x y | 'n | W- | Z C | R D m | Abell | RA(1950)Dec | RA(2000)Dec | 9 1 | x y T _{B-A} | M C | z R | a | | 0256.2+1323 0258.9+1334 164.19-38.87 133 227 I
0255.4-2219 0257.6-2207 210.00-60.96 295 247
0256.6+0318 0259.2+40329 173.10-46.55 121 330 II-
0257.8+4112 0301.2+4123 147.57-15.19 256 113
0257.8+3733 0301.0+3744 149.44-18.37 131 237 | 9+1334 164.19-38.87 133 227
6-2207 210.00-60.96 295 247
2+0329 173.10-46.55 121 330
2-4123 147.57-15.19 256 113
0+3744 149.44-18.37 131 237 | .87 133 227
.96 295 247
.55 121 330
.19 256 113 | 33 227
95 247
21 330
56 113
31 237 | ij | 90 0.07
35
100 0.10
53 | 48 2 3 15.6
0 0 17.9
33 2 6 17.5
0 0 16.8
1 0 17.5 | 0451
0452
0453
0453
0454 | 0339.6-0235
0343.2+0132
0342.5-2011
0342.9-1308
0343.9+0743 | 0342.1-0225
0345.8+0141
0344.7-2001
0345.2-1258
0346.6+0752 | 189.24-42.30
185.60-39.12
212.33-49.86
202.56-47.05
179.78-35.03 | 189 19
141 240
144 40 III:
141 96 III:
134 250 III | 448
944
445 | | 0 0 17.
0 0 17.
0 6 17.
0 6 17. | | 0256.5-1949 0258.8-1937 205.36-59.92 120 55
0258.6+3538 0301.7+3549 150.61-19.95 121 135 II
0259.6+3213 0302.7+3224 152.68-22.77 265 275
0300.7+0141 0303.3+0152 175.82-47.00 67 244 II-I
0301.3+0336 0303.9+0347 174.04-45.53 60 347 II | 8-1937 205.36-59.92 120 55
7+3549 150.61-19.95 121 135 II
7+3224 152.68-22.77 265 275
3+0152 175.82-47.00 67 244 III-
9+0347 174.04-45.53 60 347 II | 36-59.92 120 55
61-19.95 121 135 II
68-22.77 265 275
82-47.00 67 244 III-
04-45.53 60 347 II | 20 55
21 135 II
65 275
67 244 II-
60 347 II | I | 48
46 0.047
66
72
70 0.089 | 0 0 17.7
0 0 2 14.7
1 0 17.4
0 6 17.8
97 1 5 16.9 | 0456
0457
0458
0459
0460 | 0343.2-2053
0343.4-2017
0343.7-2426
0343.9-2027
0344.3-1351 |
0345.4-2043
0345.6-2007
0345.8-2416
0346.1-2017
0346.6-1341 | 213.44-49.93
212.58-49.69
218.84-50.80
212.88-49.64
203.73-47.06 | 136 2 III
133 34 III
20 135 I-II
127 25 III
122 59 III | 50
70
114
66 | 0.1050 | 0 6 17
0 6 17
2 5 17
0 6 17
0 6 17 | | 0302.0+0049 0304.6+0100 177.07-47.38 50 198 II 0303.7-0022 0306.3-0010 178.77-47.88 26 133 0304.0+0204 0306.6+0215 176.27-46.15 23 264 III 0303.7-1439 0306.1-14.27 197.78-56.22 28 10 0304.4-1214 0306.8-1202 194.20-54.90 17 139 II | 640100 177.07-47.38 50 198
3-0010 178.77-47.88 26 133
6-61215 176.27-46.15 23 264
1-1427 197.78-56.22 28 10
8-1202 194.20-54.90 17 139 | 177.07-47.38 50 198
178.77-47.88 26 133
176.27-46.15 23 264
197.78-56.22 8 10
194.20-54.90 17 139 | 198
133
264
10 | | 59
36
55
40
67 0.078 | 0 6 17.6
0 0 17.5
0 6 17.5
0 0 17.5
88 1 4 16.3 | 0461
0462
0463
0464
0465 | 0345.8+2659
0346.0-1749
0347.0-2144
0347.2-1758 | 0348.8+2708
0348.3-1739
0349.2-2134
0349.5-1748
0351.0+0617 | 164.73-21.00
209.37-48.27
215.10-49.34
209.74-48.06
182.10-35.22 | 26 320
100 167 III
299 283
84 159 II:
76 167 II-I: | 83
97
44
104
III 63 | 0.0855 | 2 0 17
0 6 17
0 0 17
0 6 17
1 6 17 | | 0304.9-1655 0307.2-1643 201.71-56.96 319 212 III 0305.2-1445 0307.6-1443 198.24-55.95 319 7 0305.9-1355 0308.3-134 197.08-55.41 310 51 II 0306.9-1350 0308.3-134 197.08-55.41 298 170 III | 2-1643 201.71-56.96 319 212
6-1433 198.24-55.95 319 7
3-1343 197.08-55.91 310 51
5-2338 214.24-58.94 160 166
3-1131 193.98-54.11 298 170 | -56.96 319 212
-55.95 319 7
3-55.41 310 51
-58.94 160 166
3-54.11 298 170 | 212
7
51
166
170 | | 52
30
50
32 0.04(| 0 6 17.7
0 0 17.8
0 6 17.8
06 0 4 15.7
0 5 16.8 | 0466
0467
0468
0469
0470 | 0349.3+2505
0348.1-2225
0349.8+2116
0349.8-2219 | 0352.3+2513
0350.3-2215
0352.7+2124
0352.0-2210
0355.2-0440 | 166.72-21.88
216.22-49.30
169.66-24.59
216.25-48.89
194.16-40.85 | 301 221
284 246
67 333 I-II:
263 252 II-III
12 220 | 56
46
34
II: 97 | 0.1325 | 1 0 17.
0 0 17.
0 6 17.
0 6 17.
0 0 16. | | 0307.9+0937 0310.6+0948 170.14-39.98 292 350 III 0307.9-1114 0310.3-1102 193.49-55.65 286 196 III 0308.9-1218 0311.3-1206 195.26-53.98 272 139 III 0309.7-0250 0311.3-1208 183.04-48.38 268 4 III: 0313.5-1155 0315.9-1143 195.64-52.82 211 159 II-I | 5+0948 170.14-39.98 292 350 III
3-1102 193.49-53.65 286 196 III
3-1206 195.26-53.98 272 139 III
2-0238 183.04-48.38 268 4 III:
9-1143 195.64-52.82 211 159 II-I | 70.14-39.98 292 350 III
93.49-5.65 286 196 III
95.26-53.98 272 139 III
83.04-48.38 268 4 III:
95.64-52.82 211 159 II-I | 350 III
196 III
139 III
4 III:
159 II-I | II | 52
53
89 0.07
57 | 0 5 17.1
0 6 17.6
97 2 5 16.6
0 6 17.5
0 6 17.8 | 0471
0472
0473
0474
0475 | 0357.2-1347
0401.4-1714
0402.2-1736
0409.6-1649 | 0359.5-1338
0403.7-1705
0404.5-1727
0411.9-1641
0408.9-0923 | 205.55-44.20
210.55-44.64
211.13-44.60
211.03-42.66
201.77-40.26 | 266 64 II-II:
209 201 III:
199 182
155 223 III
144 293 III | II 57
96
43
52
63 | | 0 6 17
0 6 17
0 0 17
0 5 17
0 6 17 | | 0315.3+4120 0318.6+4130 150.39-13.38 81 120 II-II 0315.3+3416 0318.2+3426 154.42-19.30 249 64 0313.7-19.17 0316.0-1905 207.12-55.94 205 86 III 0316.5+3638 0319.7+3648 153.77-17.18 232 190 0319.2-1531 0321.5-1520 202.02-53.26 135 288 | 3.6+4130 150.39-13.38 81 120 III-
2.2+3426 154.42-19.30 249 64
3.0-1905 207.12-55.94 205 86 III
3.7+3648 153.27-17.18 232 190
1.5-1520 202.02-53.26 135 288 | 50.39-13.38 81 120 II-
54.42-19.30 249 64
07.12-55.94 205 86 III
53.77-17.18 232 190
02.02-53.26 135 288 | 1 120 II-
9 64
5 86 III
2 190
5 288 | III | 88 0.01
66
47
108
38 | 83 2 0 12.5
1 0 17.7
0 5 16.5
2 0 17.7
0 0 17.7 | 0476
0477
0478
0479
0480 | 0409.0-1120
0409.6-0200
0410.6+1021
0411.8-0333 | 0411.4-1112
0412.1-0152
0413.3+1028
0414.3-0325
0415.1+0059 | 204.26-40.54
194.04-35.78
182.42-28.30
196.02-36.14
191.62-33.59 | 112 195 II-III
109 53 III
102 73
76 291
70 208 | II 61
65
104
43
43 | 60.0 | 0 6 17
0 6 17
2 6 17
0 0 17
0 6 17 | | 0319.3-1644 0321.6-1633 203.89-53.74 134 223 III 0321.6-0559 0324.1-0548 189.49-47.93 107 156 II 0322.1-0658 0324.6-0647 190.81-48.39 101 103 II-III 0322.6-0938 0325.0-0927 194.33-49.73 92 282 III 0323.5-0548 0326.0-0537 189.67-47.44 81 165 II-III | 6-1633 203.89-53.74 134 223 III
1-0548 189.49-47.93 107 156 II
6-0647 190.81-48.39 101 103 II-1
0-0927 194.33-49.73 92 282 III
0-0537 189.67-47.44 81 165 II-I | 03.89-53.74 134 223 III
89.49-47.93 107 156 II
90.81-48.39 101 103 II-1
94.33-49.73 92 282 III
89.67-47.44 81 165 II-I | 34 223 III
07 156 II
01 103 II-I
92 282 III
81 165 II-I | 11 11 | 66
108
: 71
59
67 | 0 6 17.4
0 6 17.8
0 6 17.8
0 6 17.6
0 6 17.6 | 0481
0482
0483
0484
0485 | 0413.1-1004
0414.0-0215
0413.7-1139
0413.9-0747
0415.0+0441 | 0415.5-0956
0416.5-0207
0416.1-1131
0416.3-0739
0417.6+0448 | 203.38-39.07
195.02-34.98
205.30-39.65
200.93-37.82
188.35-30.88 | 58 263
50 39 II-L.
51 178 III
49 64 III
39 90 | 49
III 55
52
50
50 | 0.0386 | 0 0 17
0 6 17
0 6 17
1 5 16
0 0 17 | | 0324.0+0859 0326.7+0909 174.43-37.74 79 316 0324.3-0254 0326.8-0243 186.44-45.57 73 0 0326.2-1001 0328.6-0950 195.54-49.17 45 261 I-II: 0327.5+437 0330.5+247 162.96-25.47 246 191 0326.8-1047 0329.2-1036 196.67-49.42 36 220 III | 7+0909 174.43-37.74 79 316
3-0243 186.44-45.57 73 0
0-0950 195.54-49.17 45 251 1
5+2447 162.96-25.47 246 191
2-1036 196.67-49.42 36 220 I | 74,43-37,74 79 316
86,44-45,57 73 0
95,54-49,17 45 261 I
62,96-25,47 246 191
96,67-49,42 36 220 I | 9 316
3 0
5 261 I
6 191
6 220 I | | 42
33
60
35 0.000 | 0 0 17.1
0 0 16.5
0 5 17.2
63 0 5 17.0 | 0486
0487
0488
0489
0490 | 0420.0-0503
0422.2-0523
0423.9-0442
0423.9-0442 | 0422.5-0456
0422.8-2415
0424.7-0516
0426.4-0435 | 198.90-35.16
221.89-42.64
199.58-34.85
199.12-34.14
217.72-40.71 | 288 214 III
202 145 II-II
258 196 III
235 232 III
216 11 | 58
II: 59
52
33
48 | | 0 6 17.
0 5 17.
0 6 17.
0 6 17. | | 0328.1-0708 0330.6-0657 192.24-47.24 21 94 III 0328.0-1305 0330.4-1254 200.02-50.27 22 96 III: 0329.1-0625 0331.6-0614 191.57-46.64 327 135 III 0332.8-0308 0335.4+0317 181.86-40.12 281 326 0334.0-0302 0336.5-0252 188.62-43.70 262 316 II-III | 5-0657 192.24-47.24 21 94 III
4-1254 200.02-50.27 22 96 III:
5-0614 191.57-46.64 327 135 III
4-0317 181.86-40.12 281 326
5-0252 188.62-43.70 262 316 III-I | 192.24-47.24 21 94 III
200.02-50.27 22 96 III:
191.57-46.64 327 135 III
181.86-40.12 281 328
188.62-43.70 262 316 II-I | 21 94 III:
22 96 III:
27 135 III:
81 326
62 316 II-I | н | 71
66
60
33
50 | 0 6 17.6
0 6 17.6
0 6 17.9
0 0 17.5 | 0491
0492
0493
0494
0495 | 0427.0-0509
0433.3+7625
0434.8+7342
0428.4-0751
0427.9-2628 | 0429.5-0502
0440.2+7630
0440.9+7347
0430.8-0744 | 200.06-33.70
134.93 19.33
137.22 17.70
203.12-34.69
225.19-41.61 | 194 209 III
228 80
204 255
176 64 III | 56
62
80
115
49 | | 0 6 17
2 0 17
2 0 17
0 6 17 | | 0334.7-0235 0337.2-0225 188.26-43.30 255 19 0335.5-0517 0338.0-0507 191.49-44.68 241 196 I 0336.3-1117 0338.7-1107 199.05-47.63 227 196 III 0343.5+72320 0349.6+7511 133.70 16.18 141 32 0338.7+2320 0341.7+2329 166.04-24.80 109 122 | .2-0225 188.26-43.30 255 19
0-0507 191.49-44.68 241 196
7-1107 199.05-47.63 227 196
6+7511 133.70 16.18 141 322
7+2329 166.04-24.80 109 122 | 88.26-43.30 255 19
91.49-44.68 241 196
99.05-47.63 227 196
33.70 16.18 141 322
66.04-24.80 109 122 | 196
196
196
322
122 | | 38
81
80
56 0.0803
40 0.0607 | 0 0 17.5
0 6 17.7
0 6 17.6
03 1 4 16.2
07 0 4 16.4 | 0496
0497
0498
0499
0500 | 0431.3-1321
0434.1+1032
0434.8+2106
0435.0-2031
0436.8-2212 | 0433.6-1314
0436.9+1038
0437.8+2111
0437.2-2025
0438.9-2206 | 209.58-36.48
186.18-23.61
177.40-16.98
218.37-38.33
220.57-38.48 | 135 90 I:
108 85
106 330
87 27
3 259 III | 50
47
55
53 | 0.0320 | 1 3 15
0 0 17
0 0 17
1 4 15 | | | B | 17
17
15
17 | 16
17
17
15 | 17
17
16
16 | 13 15 | 17
17
17
17 | 14
17
17
16 | 17.
16.
17.
17. | 17.
16.
17.
17. | 16.
15.
17.
15. | 17.
17.
17.
16. | |-------------|-------------
--|---|---|---|---|---|---|--|--|---| | | R D | 11001
00%00 | 00001 | 0 1 0 1 0 0 0 4 C | 40000
4000 | 0000 | 0000 | 10010
04900 | 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 H 3 H 5 H 6 H 7 H 9 H 9 H 9 H 9 H 9 H 9 H 9 H 9 H 9 | 00110 | | | z | 0.0670 | 0.0757 | 0.110 | 0.0984
0.0751
0.0196 | | 0.0381 | | 0.171 | 0.0624
0.226
0.0666 | | | | 0 | 62
30
42
57 | 47
34
103
33
69 | 33
70
84
56
59 | 127
60
36
36
101 | 84
37
50
102
45 | 61
125
44
121
121 | 64
34
106
51
35 | 190
59
78
53
65 | 50
53
154
50
45 | 95
70
33 | | | T_{B-M} | II | III | 111-111
1111 | 11-111
11-111
111: | ::::::::::::::::::::::::::::::::::::::: | III:
III:
III-III | III-III
II-III | i
iii
ii-iii | :::::::::::::::::::::::::::::::::::::: | III
III-III | | | y | 186
90
212
254
214 | 234
47
276
67
285 | 346
41
349
69
174 | 41
338
135
221
120 | 183
223
270
134
262 | 282
248
243
229
163 | 141
192
249
335
131 | 278
55
95
64
153 | 297
52
244
143
90 | 232
164
176
348 | | | н | 319
238
282
173
33 | 121
335
272
286
51 | 53
232
234
190
162 | 206
214
194
81
81 | 114
137
137
106
250 | 84
244
96
47
314 | 99
290
282
199
264 | 159
244
322
293
173 | 153
190
252
162
159 | 233
319
89
194
203 | | | 9 1 | 23.08-20.24
37.68 23.87
65.16 14.06
47.10 21.87
24.85-15.17 | 47.82 22.66
45.58 23.40
41.08 25.06
45.31 24.36
47.32 24.20 | 46.11 24.54
45.98 25.29
46.36 25.77
45.52 26.13
43.44 26.90 | 52.74 25.48
83.93 16.27
82.26 18.25
68.58 22.81
44.95 27.68 | 43.38 27.80
62.37 25.02
48.26 27.38
44.42 27.85
35.08 28.43 | 61.42 26.24
35.36 28.58
48.94 28.07
81.55 21.44
77.00 23.68 | 06.78 12.58
76.55 24.24
75.45 24.63
92.20 19.46
77.89 24.44 | 187.54 21.93
179.49 24.44
145.59 29.42
153.03 29.59
184.15 24.10 | 175.08 27.18
210.25 15.59
142.22 30.28
208.89 16.79
166.21 29.69 | 42.41 30.65
84.98 26.96
03.18 20.84
46.77 31.10
52.73 31.26 | | | | 48000 | 22222 | 28161 | 87297 | 2017 | 42040 | 00172 | 7 18
7 17
9 15
6 18 | 71068
43017 | 44844 | | | RA(2000)Dec | 0554.9-174
0609.4+761
0612.6+483
0618.7+672
0617.2-171 | 0628.6+670
0630.3+691
0638.8+733
0640.1+694
0643.0+675 | 0643.9+690
0651.9+691
0657.9+690
0700.7+694 | 0704.5+631
0701.6+324
0707.6+350
0709.2+483 | 0718.9+715
0714.2+543
0717.4+673
0720.0+705
0730.3+791 | 0721.4+554
0733.2+785
0725.0+665
0721.3+364
0721.3+412 | 0725.7+110
0728.2+415
0728.8+430
0728.6+264
0731.0+405 | 0732.3+313
0733.0+392
0739.0+695
0741.3+6329
0737.5+351 | 0742.0+435
0742.6+092
0752.0+724
0744.8+110 | 0756.7+7237
0752.0+3521
0750.9+1739
0757.5+6850 | | | Dec | 745
619
837
727 | 704
915
338
944
755 | 6904
6920
6905
6953
7150 | 322
254
507
842
034 | 1158
1445
1737
1103 | 902
902
705
650 | 1112
204
308
647
057 | 144
933
004
336
523 | 4405
0929
7257
11111
5212 | 7245
3529
1747
6859
6353 | | | A(1950)Dec | 3.7-17
3.3+7
3.5+6
3.5+6 | 3.4+6
1.8+6
2.5+7
1.6+6
7.7+6 | 44444 | 3.3+3
3.3+3
1.3+3
5.4+4 | 3.1+7
0.1+5
2.3+6
4.4+7
2.3+7 | 3.3+7
3.3+7
3.0+6
3.0+3
4+4 | .9+1
.7+4
.3+4
.5+2 | .1+3
.6+3
.6+7
.7+6 | 4444 | 9494 | | pa | RA(| 0552
0602
0608
0613 | 0623
0634
0634
0637 | 0638
0646
0652
0655
0701 | 0659
0658
0704
0705
0712 | 0713
0710
0712
0714
0722 | 0717
0725
0720
0718
0722 | 0722
0724
0725
0725
0725 | 0729
0729
0733
0736
0734 | 0738
0739
0746
0742
0745 | 0751
0748
0748
0752
0751 | | - Continued | Abell | 0551
0552
0553
0554
0554 | 0556
0557
0558
0559
0560 | 0561
0562
0563
0564
0565 | 0566
0567
0568
0569
0569 | 0571
0572
0573
0574
0575 | 0576
0577
0578
0579
0580 | 0581
0582
0583
0584
0585 | 0586
0587
0588
0589
0590 | 0591
0592
0593
0594
0595 | 0596
0597
0598
0599
0600 | | LE 3- | | | | 80000 | ₩ ₩₩₩ | 27.06 | 41000 | 0 10 20 0 4 | 00440 | ഠവരവവ | 0000 | | TABL | 8 | 17.4
16.8
17.7
17.4 | 17.5
17.4
17.4
17.4 | 17.
17.
17.
15. | 17.
17.
17.
17. | 17.
17.
16.
16. | 16.
15.
17.
17. | 17.
17.
15.
17. | 17.
17.
17.
14. | 17.
17.
016.
17. | 17.
17.
13.
17. | | | R D | 3060 | 0 0 0 0 0 | 01000 | 3000 | 00000 | 140
10022
44000 | 00040
0040 | 01020 | 04
00
00 | 00100 | | | 10 | 0543 | 1561
1479
0836 | 1491 | 1407
2244
1804 | | 0541
0794
0896 | .0472 | . 0267 | .154 | .041 | | | 5 | 68
64
75
39 0. | 888 0.
533 0.
72 0.
61 | 48
52
32
0.
78
67 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 9 4 7 7 0
0 4 4 4 0 | 71 0
34 0
40 0
89 | 53
31
56
56 | 97
04
60
50
55 | 10
70
78
89
34 0 | 68
89
79
03
03 | | | M | | H | HH | д | - A. | | | iii | 1 2 | . | | | T_{B-} | H H | | | HHH H | | | H H | Ë HHË | HH | III | | | y | 287
41
200
202
271 | 282
133
269
284
0 | 86
145
283
30
171 | 309
230
199
320 | 255
153
311
69
69
278 | 133
255
0
172
116 | 293
160
236
247
26 | 313
280
289
191
75 | 83
63
251
64
194 | 195
40
84
165 | | | н | 36
164
31
20
171 | 324
314
300
276
267 | 227
260
259
256
256
255 | 237
229
217
195
188 | 180
146
130
129 | 118
94
115
107 | 89
79
45
73
331 | 317
296
213
214
71 | 128
105
105
319
308 | 88
241
124
293
42 | | | q | 3.87
5.84
6.27
2.15 | | .74
.31
.76
.01 | 03
49
57 | 3.19
3.19
3.17
3.54 | 1.79
9.32
8.98
1.23 | 6.03
7.56
3.67
9.53 | 7.20
0.29
8.19
7.72
9.43 | 6.49
6.68
7.26
8.35
2.72 | 8.22
2.79
4.82
9.19
2.01 | | | | 98-23
01 15
00-36
50-24 | 90-32
67-36
47-26
47-26
99-36 | 25-37
89-35
54-31
39-36
14-23 | .84-30.93
.32-31.03
.00-31.49
.87-25.57 | 85-30
00-28
18-20
54-33
81-20 | 30-2
54 1
20-2
75-2 | 98-26
97-17
118-33
91 19 | 17-2
00-2
07-2
10-1 | 10 16
65 16
53-27
33-28 | 5.62 18
3.01-22
0.29-24
7.99 15 | | | 1 | 188.98-23
141.01 15
215.00-36
190.60-24 | 206.9
216.0
195.4
219.9 | 225.3
216.8
207.9
219.3 | 206.8
207.3
209.0
197.8 | 208.
205.
191.
219. | 194.
208.
193. | 202.
188.
223.
138. | 209.4
138.9
216.9
195.7 | 148.
148.
225.
229.
214. | 146.
218.
230.
147. |
| | ၁ | 823
947
711
648 | | | | 015
608
846
942
808 | 341
341
900
610
051 | | 914
352
541
627
541 | 424
401
2224
556 | 627
425
536
1541 | | | RA(2000)Dec | 0 9 1 0 8 | 3-0942
2-1828
9+0200
7+0217
8-2100 | .7-2524
.5-1816
.2-0942
.7-2025 | 1-0848
5-0913
4-1042
8+0040 | 2-1
0-0
0+0
5+0 | 3+0
3+0
3-0
7+0
5-0 | .3-0332
.2+1157
.5-2236
.3+7330 | 3-1
3-1
6+0
5-2 | 1+64
.9+64
.6-22
.9-25 | .5+66
.0-25
.6+65 | | | RA(2 | 0442.0
0450.4
0441.4
0500.3 | 0443.3
0443.3
0445.9
0446.8 | 0446.
0447.
0448.
0447.
0449. | 0450.
0450.
0451.
0453. | 0454
0457
0459
0459
0459 | 0459.
0510.
0459.
0500. | 0501
0503
0501
0515 | 0507
0524
0515
0516
0525 | 0534
0537
0530
0530
0532 | 0542
0537
0547
0556
0552 | | | ၁ခ | 818
942
717
643 | 8 4 7 2 2 9 | 0-01 -0 -1 10 | -1 0 0 0 0 | 313
342
347
304 | | | 350
350
545
544 | 422
400
2227
559 | 626
427
538
541 | | | RA(1950)Dec | 2 - 1 - 2 + 4 | 9-094
0-183
3+015
1+021
6-210 | 6-253(
3-1822
8-0948
5-203] | 7-0854
1-0919
0-1048
2+003 | .8-1020
.6-0613
.3+0842
.6-1947 | .2+0522
.0+7338
.9-0905
.0+0606 | .8-0337
.4+1153
.4-2241
.1+7327 | 3+7
0-1
9+0 | 2+64
1+64
5-22
9-25 | 1 - 1 - 1 | | | RA(1 | 0439.00445.00439.00440.00440.00451.0 | 0440.9
0441.0
0443.3
0445.1 | 0444.
0445.
0445.
0445. | 0448.
0448.
0449.
0451. | 0451
0454
0456
0455
0455 | 0457
0504
0456
0458
0458 | 0458
0500
0459
0509
0505 | 0505
0518
0513
0513
0523 | 0529
0533
0528
0528
0530 | 0537.4
0535.3
0545.0
0551.0 | | | Abell | 0501
0502
0503
0504
0505 | 0506
0507
0508
0509
0510 | 511
512
513
514
515 | 516
517
518
519
520 | 521
522
523
524
525 | 526
527
528
529
530 | 531
532
533
534 | 536
537
538
539
540 | 541
542
543
544
545 | 0546
0547
0548
0549
0550 | | , d | 4 | 22222 | 88888 | 88888 | 88888 | 24 | 88888 | 88888 | 00000 | 88888 | 00000 | | σ | |--------------| | ø | | 2 | | 2 | | Ξ. | | 2 | | 0 | | ťί | | ~ | | | | - 1 | | 3 | | rrl | | Ħ | | \mathbf{H} | | B | | 7 | | ٠, | | _ | | • | | | | | | | E | 17.5 | 17. | 17.7. | 17. | 17. | 17. | 17.
17.
17. | 17. | 17.
16.
17.
17. | 17.
17.
17.
16. | |----------|--|--|---|---|---|---|--|---|---|---|---| | | R D | 8
3010
3010
2010 | 01000 | 2000 | 00000 | 4
00000
w0000 | 0000 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00001 | 0000 | | | Z | 0.0938 | | 0.1816 | | 0.0494 | 0.079 | | 0.042 | 0.068 | | | | O | 42
39
52
55
142 | 54
50
53
57 | 74
35
44
81
321 | 43
41
57
60
106 | I: 38
37
37
30
32 | 36
60
55
40
61 | 34
39
112
44 | 1: 55
I 50
I 44
52 | 3 4 4 6 6 9 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 51
1 53
73
50
30 | | | T_{B-M} | 111
1-11 | | 111
111: | IIII | 111-11 | 1-11
111
111 | 1 111 | III-III
III-III
I | 111 | | | | ß. | 308
265
36
158 | 219
91
76
277
247 | 154
334
138
117
202 | 326
349
135
324
254 | 222
333
49
224
330 | 263
189
348
199
247 | 301
87
270
250
322 | 201
209
86
40
141 | 204
350
258
313 | 103
221
178
85
85
255 | | | в | 299
168
301
22
307 | 303
287
280
275
258 | 153
263
247
263
292 |
236
283
234
134
278 | 108
105
222
198
190 | 190
183
223
163
150 | 206
64
312
48
192 | 288
178
103
103
284 | 158
263
61
250
250 | 52
68
134
221
36 | | | 9 | 27.18
35.24
20.58
34.00 | 35.21
27.34
27.34
28.79
33.86 | 35.56
24.58
33.70
22.76
34.67 | 34.47
35.42
33.93
35.85 | 33.11
33.69
28.14
29.78
35.34 | 35.15
35.04
36.69
35.43 | 36.81
37.23
34.99
33.99 | 32.53
37.20
30.45
30.12 | 37.57
34.78
24.42
36.13 | 31.48
37.25
37.96
35.86 | | | 1 | 07.93
61.77
22.54
82.55
72.68 | 71.28
08.19
08.54
04.64 | 165.31
215.92
187.51
219.87 | 83.38
75.66
87.63
61.38 | 92.76
90.38
09.54
06.27
83.43 | 84.94
86.64
68.29
85.50 | 76.88
66.86
92.31
41.29 | 135.67
179.05
209.79
210.71
195.30 | 179.22
197.89
225.03
191.57 | .09.89
.86.40
.79.90
.96.92
.85.75 | | |)ec | 606 2
602 1
1113 2
855 1 | 816 1
557 2
540 2
924 2
650 1 | 308
449
552 | 819 1
4443 1
618 1
652 1 | 025
228
510
510
825
2 | 709 1
546 1
042 1
557 1 | 350 1
150 1
113 1
248 1 | 743
208
551
850 | 202
644
104
203 | 610 2
620 1
132 1
747 1
657 1 | | | RA(2000)Dec | 2.3+1
5.7+5
1.8+0
5.3+4 | 3.3+1
3.8+1
4.1+1
5.3+3 | 7.3+5
4.8+0
6.5+3
0.8+6 | 7.2+3
8.1+4
7.7+3
0.2+5
2.6+6 | 8.5+3
8.9+3
8.3+1
0.2+1 | 1.6+3
2.3+3
4.3+5
4.1+3
5.3+3 | 6.2+4
8.0+5
6.6+3
3.4+7
7.6+4 | 7.9+7
9.0+4
7.5+1
7.5+1
9.2+2 | 1.1+4
0.9+2
9.7+0
1.2+3 | 1.6+1
2.9+3
3.4+4
4.6+2
6.0+3 | | | RA(| 08222 | 082
082
082
082 | 0 8 2 2 0 8 3 3 5 6 8 5 6 8 6 9 8 7 6 8 9 7 6 8 9 7 6 8 9 7 6 9 8 7 6 9 8 9 7 6 9 8 9 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 082
082
083 | 082
083
083
083 | 083
083
083 | 083
083
083 | 083
083
083 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | | A(1950)Dec | +1616
+5612
+0123
+3905
+4717 | 9+4826
5+1607
0+1550
2+1934
1+3700 | 5+5318
1+0839
3+3459
2+0436
2+6603 | 9+3829
6+4453
5+3456
3+5629
0+6703 | +3035
+3239
+1520
+1836
+3835 | 4+3720
1+3557
7+5053
9+3608
1+3702 | 8+4401
3+5201
5+3124
1+7259
2+4425 | 5+7754
7+4219
7+1602
7+1510
2+2901 | 8+4213
9+2655
1+0115
1+3214
3+3228 | 8+1621
7+3631
1+4143
6+2758
8+3708 | | | RA(195 | 819.5
821.8
819.2
820.9 | 821.
820.
821.
821.
822. | 0823.5
0822.1
0823.3
0822.2 | 0823.9
0824.6
0824.5
0826.3 | 0825.8
0825.8
0827.5
0827.3 | 0828.4
0829.1
0830.7
0830.9 | 0832.8
0834.3
0833.5
0838.1 | 0841.5
0835.7
0834.7
0834.7 | 837.
837.
837.
838. | 0838.8
0839.7
0840.1
0841.6 | | ontinuea | Abell 1 | 0651 0
0652 0
0653 0
0654 0
0655 0 | 555
557
558
559
660 | 0661 0
0662 0
0663 0
0664 0 | 666
667
668
669
670 | 671 C
672 C
673 C
674 C | 676
677
678
679
680 | 681
682
683
684
685 | 686
687
688
689
0 | 691 0
692 0
693 0
694 0 | 0696
0697
0698
0698
0070 | |)—C0 | | | 99999 | | | | | 00000 | | 00000 | | | ц | | | | | | | | | | | | | 1 1 | 8 | 17.6
15.8
16.8
17.1 | 17.7
16.9
17.1
17.1 | 17.9
16.5
17.5
17.0 | 17.1
17.7
17.3
16.8 | 17.3
17.4
16.9
17.8 | 17.1
17.4
15.9
17.1
16.9 | 17.1
17.2
17.1
14.9
17.0 | 16.8
17.5
17.0
17.7 | 17.5
17.7
17.1
16.2 | 16.8
17.8
17.7
17.3
17.5 | | 1 1 | R D m | 7 6 5 7 | 7 9 7 9 | | 7.7. | 7.
6. | 7.7. | 0000 | 7:7: | 7677 | 0 5 16.
1 0 17.
0 6 17.
0 6 17.
0 0 17. | | IABL | Ω | 0 17
4 15
5 16
0 17
0 16 | 0 17
0 16
5 17
5 17
0 16 | 0 17.
5 16.
6 17.
5 17.
0 17. | 5 17.
6 17.
6 17.
0 16.
6 17. | 0 6 17.
0 6 17.
0 871 1 5 16.
0 6 17.
0 5 16. | 0 5 17.
0 6 17.
0 4 15.
.138 1 5 17.
0 5 16. | 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | 0 0 16.
0 0 17.
0 0 17.
291 3 6 17. | 0 0 17
0 6 17
0 0 17
0 0 17
0 0 16 | .1303 0 5 16.
1 0 17.
0 6 17.
0 6 17. | | 1 1 | R D | 0 17
4 15
5 16
0 17
0 16 | 0 17
0 16
5 17
5 17
0 16 | 0 17.
5 16.
6 17.
5 17.
0 17. | 5 17.
6 17.
6 17.
0 16.
6 17. | 0 6 17.
0 6 17.
871 1 5 16.
0 6 17. | 53 0 5 17.
54 0 6 17.
43 0 138 1 5 17.
35 0 5 16. | 0 0 1
1 0 1
0 5 1
67 0 3 1 | 0 0 16.
0 0 17.
0 0 17.
91 3 6 17. | 0 0 17
0 6 17
0 0 17
0 4 16
0 6 17 | 303 0 5 16.
1 0 17.
0 6 17.
0 6 17. | | 1 1 | z R D | II 32 04 15
II: 54 0 5 16
39 0 0 17 | 60 1 0 17
49 0 16
-III: 57 0 5 17
-III 63 0 5 17
46 0 0 16 | I 71 50 05 16 17. II 71 06 17. II 44 05 17. | -III: 84 0 6 17.
-III: 76 0 6 17.
52 1 0 16.
I 83 0 6 17. | 111 57 0 6 17.
57 0.0871 1 5 16.
74 0 6 17.
107 0 5 16. | I-III: 53 0 5 17.
II 54 0 6 17.
I-III: 43 0 4 15.
II 38 0.138 1 5 17.
II 35 0 5 16. | 38 0 0 0 1 62 1 0 1 0 1 91 | 43 0016.
40 0017.
48 0017.
II 135 0.291 3 6 17.
II 53 0 6 17. | II 35 0 0 17
3 0 0 17
II: 42 0.0704 0 4 16
II 50 0 6 17 | II 48 0.1303 0 5 16. 74 10 17. II: 56 0 6 17. I 40 0 6 17. | | 1 1 | B-M C Z R D | 57 1 0 17
32 0 4 15
54 0 5 16
38 0 0 17
39 0 0 16 | 60 1 0 17
49 0 0 16
III: 57 0 5 17
III 63 0 5 17
46 0 0 16 | 56 1 0 17.
71 50 0 5 16.
71 0 6 17.
44 0 5 17.
59 1 0 17. | III: 84 0 5 17. III: 84 0 6 17. III: 52 1 0 16. 83 0 6 17. | 97 0 6 17.
57 0.0871 1 5 16.
74 0 6 17.
107 0 5 16. | III: 53 0 5 17.
54 0 6 17.
111: 43 0 4 15.
78 0.138 1 5 17.
35 0.138 0 5 16. | 0 0 1
1 0 1
0 5 1
0.0267 0 3 1 | 43 0 0 16.
40 0 0 17.
48 0 0 17.
135 0.291 3 6 17.
53 0 6 17. | 35 0 0 17
91 0 6 17
30 0 17
42 0.0704 0 4 16
50 0 6 17 | 48 0.1303 0 5 16.
74 1 0 17.
56 0 6 17.
40 0 6 17.
31 0 0 17. | | 1 1 | T_{B-M} C z R D | 0 III 32 04 15
6 II: 54 0 5 16
7 38 0 0 17
5 39 0 0 16 | 6 11-111: 57 0 5 17 17 17 17 17 17 17 17 17 17 17 17 17 | 01 | 32 II 65 0 5 17. 60 II-III: 84 0 6 17. 77 17 52 1 0 16. 72 III 83 0 6 17. | 91 III 97 0 6 17.
97 II-III 57 0 6 17.
43 III 74 0 6 16.
13 III 107 0 5 16. | 61 II-III: 53 0 5 17.
28 III 54 0 6 17.
25 II-III: 78 0.138 1 5 17.
07 III 35 0.138 0 5 16. | 95 38 0 0 0 1 78 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 | 39 43 0 0 16.
74 48 0 0 17.
02 III 135 0.291 3 6 17.
90 III 53 0 6 17. | 25 35 0 0 17
95 III 0 6 17
19 30 0 6 17
11 III: 42 0.0704 0 4 16
37 III 50 0 6 17 | 53 III 48 0.1303 0 5 16.
83 74 1 0 17.
35 III: 56 0 6 17.
51 II 40 0 6 17.
31 31 0 0 17. | | 1 1 | $y = T_{B-M}$ C z R D | 6.97 305 108 57 1 0 17
5.49 215 160 III 32 0 4 15
7.29 278 76 II: 54 0 5 16
1.64 280 274 38 0 0 17
5.49 180 55 39 0 0 16 | 8.11 262 194 60 1 0 17
8.99 300 56 49 0 0 16
1.91 168 76 II-III: 57 0 5 17
1.93 167 63 II-III 63 0 5 17
6.03 145 41 46 0 0 16 | 8.91 220 201 56 1 0 17.
8.61 220 133 II-III 50 0 5 16.
0.99 208 43 III 71 0 6 17.
3.20 265 195 III 44 0 5 17.
8.14 107 288 59 1 0 17. | 1.52 192 132 II 65 0 5 17.
0.92 132 160 II-III: 84 0 6 17.
2.29 132 152 79 II-III: 76 0 6 17.
4.73 235 77 52 1 0 16.
1.62 179 72 III 83 0 6 17. | 4 91 III 97 0 6 17.
4 197 II-III 57 0 6 17.
5 144 57 0.0871 15 16.
5 137 III 74 0 6 17.
6 113 III 107 0 5 16. | 2.83 136 261 II-III: 53 0 5 17.
0.23 128 128 III 54 0 6 17.
0.51 101 251 III: 43 0 4 15.
1.74 159 107 III 35 0.138 15 17. | 0.90 109 195 38 0 0 0 1
9.62 147 140 62 1 0 1
3.37 18 III: 91 0.0267 0 5 1
3.64 182 94 III 40 0.0267 0 5 1
4.94 135 129 III 35 0 5 1 | 2.39 137 239 43 0 0 16.
3.48 96 218 40 0 0 17.
4.07 106 274 48 0 0 17.
3.27 81 302 III 135 0.291 3 6 17.
0.61 240 190 III 53 0 6 17. | 7.85 270 125 35 0 0 17
1.05 225 195 III 91 0 6 17
4.02 216 119 33 0 0 0 17
5.25 34 111 III: 42 0.0704 0 4 16
4.78 191 337 III 50 0 6 17 | 4.58 29 153 III 48 0.1303 0 5 16.
3.19 322 283 74 1 0 17.
2.33 180 335 III: 56 0 6 17.
5.03 313 251 II 40 0 6 17.
8.14 297 231 31 0 0 17. | | 1 1 | x y T_{B-M} C z R D | 6.19 26.97 305 108 57 1 0 17
148 25.49 215 160 III 32 0 4 15
6.96 27.29 278 76 II: 54 0 5 16
5.52 31.64 280 274 38 0 0 17
3.76 25.49 180 55 39 0 0 16 | .64 28.11 262 194 60 1 0 17
91 28.99 300 56 49 0 0 16
69 31.91 168 76 II-III: 57 0 5 17
96 31.93 167 63 II-III 63 0 5 17
30 26.03 145 41 46 0 0 16 | 71 28.91 220 201 56 1 0 17.
22 28.61 220 133 II—III 50 0 5 16.
23 30.99 208 13 III 71 0 6 17.
38 23.20 265 195 III 44 0 5 17.
51 28.14 107 288 59 1 0 17. | 2.64 31.52 192 132 II 65 0 5 17.
6.79 30.92 132 160 II-III: 84 0 6 17.
8.18 14.73 235 77 52 10 16.
3.28 14.73 235 77 52 10 16.
3.98 31.62 179 72 III 83 0 6 17. | .24 32.16 174 91 III 97 0 6 1730 32.19 164 197 II-III 57 0 6 1750 105 105 134 15 17 17 74 0 6 1753 31.23 119 137 III 74 0 6 1798 30.02 126 113 III 107 0 5 16. | 96 32.83 136 261 II-III: 53 0 5 17. 70 30.23 128 128 III 54 0 6 17. 18 30.51 121 155 III-III: 43 0 4 15. 39 33.01 101 221 III 78 0.138 1 5 17. 40 31.74 159 107 III 35 0 5 16. | .40 30.90 109 195 38 0 0 1
.55 19.62 147 140 62 1 0 1
.57 33.37 8 9 78 III: 91 91
.40 33.64 182 94 III 40 0.0267 0 3 1
.15 24.94 135 129 III 35 0 5 1 | .91 32.39 137 239 43 0 0 16.
.01 33.48 96 218 40 0 0 17.
.67 24.07 106 224 48 0 0
17.
.63 33.27 81 302 III 135 0.291 3 6 17.
.82 30.61 240 190 III 53 0 6 17. | 0.33 27.85 270 125 35 0 0 17
2.57 31.05 225 195 III 91 0 6 17
6.10 34.40 216 119 30 0 17
0.01 15.25 34 111 III: 42 0.0704 0 4 16
1.14 34.78 191 337 III 50 0 6 17 | 2.65 34.58 29 153 III 48 0.1303 0 5 16.
6.32 23.19 322 283 74 1 0 17.
9.92 32.33 180 335 III: 56 0 6 17.
0.53 35.03 313 251 II 40 0 6 17.
5.36 28.14 297 231 31 0 0 17. | | 1 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 186.19 26.97 305 108 57 1 0 17
1 191.48 25.49 215 160 III 32 0 4 15
5 186.96 27.29 278 76 II: 54 0 5 16
1 155.52 31.64 280 274 38 0 0 17
3 193.76 25.49 180 55 39 0 0 16 | 5 184.64 28.11 262 194 60 1 0 17
9 180.91 28.99 300 56 49 0 0 16
5 152.69 31.91 168 76 II-III: 57 0 5 17
5 152.96 31.93 167 63 II-III 63 0 5 17
6 194.30 26.03 145 41 46 0 0 16 | 184.71 28.91 220 201 56 1 0 17. 186.12 28.61 220 133 II-III 50 0 5 16. 174.52 30.99 208 43 III 71 0 6 17. 203.88 23.20 265 195 III 44 0 5 17. 189.61 28.14 107 288 59 1 0 17. | 8 172.64 31.52 192 132 II 65 05 17. 8 136.79 30.92 132 160 II II 06 17. 2 2.23 14.73 2.35 17 17 52 10 16. 1 173.98 31.62 179 72 III 83 0 6 17. | 145.24 32.16 174 91 III 97 0 6 17. 171.30 32.19 164 197 II-III 57 0 6 17. 222.50 16.00 195 144 57 0.0871 15 16. 137.25 31.23 119 137 III 74 0 6 17. 130.98 30.02 126 113 III 107 0 5 16. | 2 169.96 32.83 136 261 II-III: 53 0 5 17.
3 186.70 30.23 128 128 III 54 0 6 17.
3 186.18 30.51 121 115 II-III: 43 0 4 15.
5 149.39 33.01 101 221 III 78 0.138 1 5 17.
9 180.40 31.74 159 107 III 35 0 5 16. | 8 185.40 30.90 109 195 38 0 0 0 1 4 152.57 19.62 147 140 62 1 0 0 1 4 152.57 33.79 0 78 III: 91 90.0267 0 5 1 3 206.15 24.94 135 129 III 35 0.51 0 5 1 | 4 141.91 32.39 137 239 43 0 0 16.
2 171.01 33.48 96 218 40 0 0 17.
5 209.67 24.07 106.87 48 0 0 17.
4 147.56 33.27 81 302 III 135 0.291 3 6 17.
2 192.82 30.61 240 190 III 53 0 6 17. | 7 200.33 27.85 270 125 35 0 0 17
2 192.57 31.05 225 195 III 91 0 6 17
9 166.10 34.40 216 119 30 0 0 17
5 230.01 15.25 34 111 III: 42 0.0704 0 4 16
4 161.14 34.78 191 337 III 50 0 6 17 | 172.65 34.58 29 153 III 48 0.1303 0 5 16.
216.32 23.19 322 283 74 1 0 17.
189.92 32.33 180 335 III: 56 0 6 17.
170.53 35.03 313 251 II 40 0 6 17.
205.36 28.14 297 231 31 0 0 17. | | 1 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4+3419 186.19 26.97 305 108 57 1 0 17
3+2921 191.48 25.49 215 160 III 32 0 4 15
8+3345 186.96 27.29 278 76 II: 54 0 5 16
2+6121 155.52 31.64 280 274 38 0 0 17
3+2723 193.76 25.49 180 55 39 0 0 16 | +3556 184.64 28.11 262 194 60 1 0 16 +5319 180.91 28.99 300 56 49 0 0 16 +6345 152.96 31.91 168 76 IIIII 57 0 51 +6331 152.96 31.93 167 63 II-III 63 0 51 +2706 194.30 26.03 145 41 46 0 0 16 | 3604 184.71 28.91 220 201 56 1 0 17. 3448 186.12 28.61 220 133 IIIII 50 0 5 16. 4508 174.52 30.99 208 43 III 71 0 6 17. 1757 203.88 23.20 265 195 III 44 0 5 17. 3143 189.61 28.14 107 288 59 1 0 17. | 44648 172.64 31.52 192 132 II 65 05 17. 47718 136.79 30.92 132 160 II-III: 84 06 17. 4733 148.16 32.29 136 279 II-III: 76 06 17. 40212 223.28 14.73 235 77 52 10 16. 44541 173.98 31.62 179 72 III 83 0 6 17. | +7001 145.24 32.16 174 91 III 97 06 17.17 +4801 171.30 32.19 164 197 II 617 +4801 171.30 32.19 164 197 16 17 +7651 137.25 31.23 119 137 11 74 06 17 +8222 130.98 30.02 126 113 III 107 05 16 | 4912 169.96 32.83 136 261 IIII 54 0 617. 49413 186.70 30.23 128 128 III 54 0 617. 49513 186.18 30.51 121 155 III 43 0 415. 4625 149.39 33.01 101 221 III 78 0.138 15 17. 44019 180.40 31.74 159 107 III 35 0 5 16. | 3558 185.40 30.90 109 195 38 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 44 141.91 32.39 137 239 43 0 0 16. 22 171.01 33.48 96 218 40 0 0 17. 54 120.27 24.07 106 274 48 0 0 17. 54 147.56 33.27 81 30.2 11 135 0.291 3 6 17. 42 192.82 30.61 240 190 III 53 0 6 17. | 7+2237 200.33 27.85 270 125 35 0 0 17
1+3002 192.57 31.05 225 195 III 91 0 6 17
6+5229 236.01 15.25 34 111 III: 42 0.0704 0 4 16
5+5634 161.14 34.78 191 337 III 50 0 6 17 | 44706 172.65 34.58 29 153 III 48 0.1303 0 10 17 +0732 216.32 23.19 322 283 74 1 0 17 +2232 189.92 32.33 180 335 III: 56 0 6 17 +4852 170.53 35.03 313 251 II 40 0 6 17 +1834 205.36 28.14 297 231 31 0 0 17 | | 1 1 | b x y T_{B-M} C z R D | 3419 186.19 26.97 305 108 57 1 0 17
2921 191.48 25.49 215 160 III 32 0 4 15
3345 186.96 27.29 278 76 II: 54 0 5 16
6121 155.52 31.64 280 274 38 0 0 17
2723 193.76 25.49 180 55 39 0 0 16 | 3556 184.64 28.11 262 194 60 1 0 17
3919 180.91 28.99 300 56 49 0 0 16
6345 152.69 31.91 168 76 II-III: 57 0 5 17
6331 122.96 31.93 167 63 II-III 63 0 5 17
2706 194.30 26.03 145 41 46 0 0 16 | 604 184.71 28.91 220 201 56 1 0 17.
448 186.12 28.61 220 131 IIII 50 0 5 16.
508 174.52 30.99 208 43 III 71 0 6 17.
757 203.88 23.20 265 195 III 444 0 5 17.
143 189.61 28.14 107 288 59 1 0 17. | 4648 172.64 31.52 192 132 II 65 0 5 17. 7718 136.79 30.92 132 160 II-III: 84 0 6 17. 6733 148.16 32.59 17 II-III: 76 0 6 17. 621 23.23 149.16 23.5 77 52 10 16. 454 173.98 31.62 179 72 III 83 0 6 17. | 7001 145.24 32.16 174 91 III 97 0 6 17.
4801 171.30 32.19 164 197 II-III 57 0 6 17.
0056 222.50 16.00 195 144 1 57 0.0871 15 16.
7651 137.25 31.23 119 137 III 74 0 6 17.
8222 130.98 30.02 126 113 III 107 0 5 16. | 4912 169.96 32.83 136 261 II-III: 53 0 5 17.
344 186.70 30.23 128 128 III 54 0 6 17.
351 31 86.18 30.51 121 155 II-III: 43 0 4 15.
6625 149.39 33.01 101 221 III 78 0.138 1 5 17.
4019 180.40 31.74 159 107 III 35 0 5 16. | 8 185.40 30.90 109 195 38 0 0 0 1 4 152.57 19.62 147 140 62 1 0 0 1 4 152.57 33.79 0 78 III: 91 90.0267 0 5 1 3 206.15 24.94 135 129 III 35 0.51 0 5 1 | 4 141.91 32.39 137 239 43 0 0 16.
2 171.01 33.48 96 218 40 0 0 17.
5 209.67 24.07 106.87 48 0 0 17.
4 147.56 33.27 81 302 III 135 0.291 3 6 17.
2 192.82 30.61 240 190 III 53 0 6 17. | 37 200.33 27.85 270 125 35 0 0 17
22 122.57 31.05 225 195 III 91 0 6 17
29 166.03 34.40 216 119 30 0 0 17
35 230.01 15.25 34 111 III: 42 0.0704 0 4 16
34 161.14 34.78 191 337 III 50 0 6 17 | 06 172.65 34.58 29 153 III 48 0.1303 0 5 16.
32 216.32 23.19 322 283 74 10 17.
32 189.92 32.33 180 335 III: 56 0 6 17.
52 170.53 35.03 313 251 II 40 0 6 17.
34 205.36 28.14 297 231 31 0 0 17. | | 1 1 | ec RA(2000)Dec l b x y T_{B-M} C z R D | 3427 0753.4+3419 186.19 26.97 305 108 57 1 0 17
2929 0753.3+2921 191.48 25.49 215 160 III 32 0 4 15
3353 0755.8+3345 186.96 27.29 278 76 II: 54 0 5 16
6130 0759.2+6121 155.52 31.64 280 274 38 0 0 17
2732 0756.3+2723 193.76 25.49 180 55 39 0 0 16 | 3605 0757.1+3556 184.64 28.11 262 194 60 1 0 17
3228 0757.5+3919 180.91 28.99 300 56 49 0 0 16
6554 0802.2+6345 152.96 31.91 168 76 II-III: 57 0 5 17
6340 0802.3+6331 152.96 31.93 167 63 II-III: 63 0 5 17
2715 0759.3+2706 194.30 26.03 145 41 46 0 0 16 | 613 0801.0+3604 184.71 28.91 220 201 56 1 0 17.
6457 0801.0+348 186.12 28.61 220 133 IIII 50 0 5 16.
617 0802.5+4508 174.52 30.99 208 131 III 71 0 6 17.
806 0801.1+1757 203.88 23.20 265 195 III 44 0 5 17.
152 0802.8+3143 189.61 28.14 107 288 59 1 0 17. | 7 0804.3+4648 172.64 31.52 192 132 II 65 0 5 17.
8 0814.2+7718 136.79 30.92 132 160 II-III: 84 0 6 17.
9 0809.0+6733 148.16 32.29 136 279 II-III: 76 0 6 17.
10 0802.6-0212 223.28 14.73 235 77 52 1 0 16.
10 0805.7+4541 173.98 31.62 179 72 III 83 0 6 17. | 110 0811.3+7001 145.24 32.16 174 91 III 97 06 17.10 10 0807.4+4801 171.30 32.19 164 197 III 57 06 17.7 48 0805.6-0056 222.50 16.00 195 144 57 0.0871 15 16.10 10 0817.8+7651 31.25 31.23 119 137 111 74 06 17.30 32 0828.2+8222 130.98 30.02 126 113 111 107 05 16. | 1921 0810.7+4912 169.96 32.83 136 261 II-III: 53 0 5 17. 452 0809.3+343 186.70 30.23 128 128 III 54 0 6 17. 552 0810.1+3513 186.78 30.51 121 155 IIII: 43 0 6 17. 5635 0815.0+6625 149.39 33.01 101 221 III 78 0.138 15 17. 5636 0815.0+6629 180.40 31.74 159 107 III 35 0.138 15 17. | 607 0811.2+3558 185.40 30.90 109 195 38 0 0 1 1 50 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | 254 0820.7+7244 141.91 32.39 137 239 43 00 16.
832 0815.0+4822 171.01 33.48 96 218 40 00 17.
335 0813.1+1325 209.67 24.07 180 274 48 00 17.
804 0819.9+6754 147.56 33.27 81 302 III 135 0.291 3 6 17.
952 0817.4+2942 192.82 30.61 240 190 III 53 0.6 17. | 2247 0814.7+2237 200.33 27.85 270 125 35 0 0 17
3012 0819.1+31002 192.57 31.05 225 195 III 91 0 6 17
5529 0819.6+5229 166.10 34.40 216 119 30 0 17
0726 0817.4-0735 230.01 15.25 34 111 III: 42 0.0704 0 4 16
5644 0822.5+5634 161.14 34.78 191 337 III 50 0 6 17 | 4716 0822.1+4706 172.65 34.58 29 153 III 48 0.1303 0 5 16. 0742 0820.4+0732 216.32 23.19 322 283 74 10 17. 3342 0822.2+2232 189.92 32.33 180 335 III: 56 0 6 17. 4902 0824.2+4852 170.53 35.03 313 251 II 40 0 6 17. 1844 0822.5+1834 205.36 28.14 297 231 31 0 0 17. | | 1 1 | ec RA(2000)Dec l b x y T_{B-M} C z R D | 50.2+3427 0753.4+3419 186.19 26.97 305 108 57 1 0 17 50.2+2929 0753.3+2921 191.48 25.49 215 160 III 32 0 4 15 52.6+3353 0755.8+3345 186.96 27.29 278 76 II: 54 0 5 16 54.9+6130 0759.2+6121 155.52 31.64 280 274 38 0 0 17 53.2+2732 0756.3+2723 193.76 25.49 180 55 39 0 0 16 | 53.8+3605 0757.1+3556 184.64 28.11 262 194 60 1 0 17
54.1+328 0757.5+3919 180.91 28.99 300 56 49 0 0 16
57.8+6340 0802.2+6345 152.96 31.91 168 76 II-III: 57 0 5 17
57.8+6340 0802.3+6331 152.96 31.93 167 63 II-III: 63 0 5 17
56.2+2715 0759.3+2706 194.30 26.03 145 41 46 0 0 16 | 57.7+3613 0801.0+3604 184.71 28.91 220 201 56 1 0 17. 57.8+3457 0801.0+3448 186.12 28.61 220 133 II—III 50 0 5 16. 59.0+4517 0802.5+4508 174.52 30.99 208 43 III 71 0 6 17. 58.2+1806 0801.1+1757 20.388 23.20 265 195 III 44 0 5 17. 59.6+3152 0802.8+3143 189.61 28.14 107 288 59 1 0 17. | 90.7+4657 0804.3+4648 172.64 31.52 192 132 II 65 0 5 17. 97.4+572 0814.2+7718 136.79 30.92 132 160 II-III: 84 0 6 17. 94.1+5742 0809.0+6733 1481 32.29 136 279 II-III: 76 0 17. 00.1-0204
0802.6-6212 223.28 14.73 235 77 52 10 16. 12.2+4550 0805.7+4541 173.98 31.62 179 72 II 83 0 6 17. | .1+7010 0811.3+7001 145.24 32.16 174 91 III 97 0 6 17. 8+4810 0807.4+4801 171.30 32.19 164 197 II-III 57 0 6 17. 1-0048 0805.6-065 222.50 16.00 195 144 57 0.0871 15 16. 2+7701 0817.8+7651 137.25 31.33 199 137 III 74 0 6 17. 8+8232 0828.2+8222 130.98 30.02 126 113 III 107 0 5 16. | 0.0+4921 0810.7+4912 169.96 32.83 136 261 II-III: 53 0 5 17. 1.43452 08005.3+3443 186.70 30.23 128 128 III 54 0 6 17. 994552 0810.1+5513 186.18 30.51 121 155 II-III: 43 0 41 15. 1.46635 0815.0+6625 149.39 33.01 101 221 III: 78 0.138 1 5 17. 744028 0811.1+4019 180.40 31.74 159 107 III 35 0 5 16. | 04-3607 0811.2+3558 185.40 30.90 109 195 38 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 | 5.2+7254 0820.7+7244 141.91 32.39 137 239 43 00 16.
1.4+84832 0815.0+4822 171.01 33.48 96 218 40 00 177.
0.3+1335 0813.1+1325 209.67 24.07 106.274 48 00 177.
5.1+6804 0819.9+6754 147.56 33.27 81 302 III 135 0.291 3 6 17.
4.3+2952 0817.4+2942 192.82 30.61 240 190 III 53 0 6 17. | 1.7+2247 0814.7+2237 200.33 27.85 270 125 35 0 0 17
6.0+3012 0819.1+302 192.57 31.05 225 195 III 91 0 6 17
5.8+5239 0819.6+5229 166.10 34.40 216 119 30 0 17
5.0-0726 0811.4-0735 230.01 15.25 34 111 III: 42 0.0704 0 4 16
8.6+5644 0822.5+5634 161.14 34.78 191 337 III 50 0 6 17 | 3.6+4716 0822.1+4706 172.65 34.58 29 153 III 48 0.1303 0 5 16.7.7+0742 0820.4+0732 216.32 23.19 322 283 74 1 0 17.7+0742 0822.2+3232 189.92 32.33 180 335 III: 56 0 6 17.7+074902 0824.2+4852 170.53 35.03 313 251 II 40 0 6 17.7+07444 0822.5+1834 205.36 28.14 297 231 31 0 0 17.7+07416 | | 1 1 | RA(2000)Dec l b x y T_{B-M} C z R D | 2+3427 0753.4+3419 186.19 26.97 305 108 57 1 0 17
2+2929 0753.3+2921 191.48 25.49 215 160 III 32 0 4 15
6+3353 0755.8+3345 186.96 27.29 278 76 II: 54 0 5 16
9+6130 0759.2+6121 155.52 31.64 280 274 38 0 0 17
2+2732 0756.3+2723 193.76 25.49 180 55 39 0 0 16 | 8+3605 0757.1+3556 184.64 28.11 262 194 60 1 0 17
1+3928 0757.5+3919 180.91 28.99 300 56 49 0 0 16
7+6354 0802.2+6345 152.69 31.91 168 76 II-III: 57 0 5 17
8+6340 0802.3+6331 122.96 31.93 167 63 II-III: 63 0 5 17
2+2715 0759.3+2706 194.30 26.03 145 41 46 0 0 16 | .7+3613 0801.0+3604 184.71 28.91 220 201 56 1 0 17. 8+3457 0801.0+3448 186.12 28.61 220 133 II—III 50 0 5 16. 044517 0802.5+4508 174.52 30.99 2.88 43 III 71 0 6 17. 044806 0801.1+1757 203.88 23.20 265 195 III 44 0 5 17. 0441806 0802.8+3143 189.61 28.14 107 288 15 59 1 0 17. | 7.74657 0804.34648 172.64 31.52 192 132 II 65 0 5 17. 447728 0814.2+7718 136.79 30.92 132 160 II-III: 84 0 6 17. 1.46742 0809.0+6733 148.16 32.29 136 279 II-III: 76 0 6 17. 1.0-0204 0802.6-0212 22.32 14.73 235 77 52 1 0 16. 1.46550 0805.7+4541 173.98 31.62 179 72 III 83 0 6 17. | 1+7010 0811.3+7001 145.24 32.16 174 91 III 97 0 6 17. 84810 0807.4+801 171.30 32.19 164 197 II-III 57 0 6 17. 1-0048 0805.6-0056 222.50 16.00 195 144 57 0.0871 15 16. 2+7701 0817.8+7651 137.25 31.23 119 137 III 74 0 6 17. 8+8232 0828.2+8222 130.98 30.02 126 113 III 107 0 5 16. | 1921 0810.7+4912 169.96 32.83 136 261 II-III: 53 0 5 17. 452 0809.3+343 186.70 30.23 128 128 III 54 0 6 17. 552 0810.1+3513 186.78 30.51 121 155 IIII: 43 0 6 17. 5635 0815.0+6625 149.39 33.01 101 221 III 78 0.138 15 17. 5636 0815.0+6629 180.40 31.74 159 107 III 35 0.138 15 17. | 0+3607 0811.2+3558 185.40 30.90 109 195 38 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | .2+7254 0820.7+7244 141.91 32.39 137 239 43 0 0 16. 44832 1815.0+882 171.01 33.48 96 218 40 0 0 177. 13.18 0813.1+1325 20.67 24.07 106 274 48 0 0 177. 146804 0819.9+6754 147.56 33.27 81 302 III 135 0.291 3 6 17. 3+2952 0817.4+2942 192.82 30.61 240 190 III 53 0.291 3 6 17. | .7+2247 0814.7+2237 200.33 27.85 270 125 35 0 0 17
91 0819.1+302 192.57 31.05 225 195 III 91 0 6 17
.8+5239 0819.6+5229 166.10 34.40 216 119 30 0 17
.0-0726 0817.4+0735 230.01 15.25 34 111 III: 42 0.0704 04 16
.6+5644 0822.5+5634 161.14 34.78 191 337 III 50 0 6 17 | 6+4716 0822.1+4706 172.65 34.58 29 153 III 48 0.1303 0 5 16. 7+0742 0820.4+0732 216.32 23.19 322 283 74 1 0 17. 1.+3242 0822.2+3232 189.92 32.33 180 335 III: 56 0 6 17. 6+4902 0824.2+4852 170.53 35.03 313 251 II 40 0 6 17. 6+1844 0822.5+1834 205.36 28.14 297 231 31 0 0 17. | | | В | 17.8
17.8
17.3
15.2 | 17.5
15.6
17.9
17.5 | 17.0
16.2
16.5
17.4 | 17.1
17.1
17.7
16.5 | 17.7
17.7
17.5
16.9 | 17.9
17.5
17.8
13.8 | 17.6 | 16.9
17.0
17.5 | 17.5 | 17.4
16.5
17.7
17.7 | |------------|-------------|---|---|---|--|---|---|--|--|--|--| | | R D | 00000 | 000 | 2
10000
4000 | 00000 | 99909 | 6 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 1005 | 0000 | 0000 | | | 8 | 0.0528 | 0.051 | 0.0333 | | | 0.224 | 0.123 | 0.0241 | 0.135 | | | | D | 35
37
39
39
0 | 55
32
31
63 | 98000 | 74
79
38
38 | 65
55
108
48
61 | 51
210
54
32
39 | 97
107
56
64
39 | 45
106
63
47
75 | 60
64
55
151 | 56
54
38
99 | | | T_{B-M} | 111
1-11: | | II-III
II-III
III: | 1111 | !!!
!!!-!!!
!!: | !!!!
!!!!
!-!!: | | :::
::: | 111-111
111-111
111 111 | 111-111
111-111
111 | | | y | 190
176
158
10
258 | 232
191
236
201
235 | 282
330
100
95 | 275
136
283
63
63 | 273
243
86
182
201 | 4 185
3 221
8 82
2 89
8 192 | 6 230
0 104
7 280
7 265
7 185 | 0 37
5 337
1 224
4 268
3 119 | 0 230
1 255
1 332
8 350
8 324 | 9 234
9 190
2 56
7 144
6 305 | | | н | 248
70
313
308
184 | 184
181
141
138
286 | 281
169
270
27
163 | 254
236
180
244
49 | 49
305
43
226
216 | 21
17
18
27
27 | 3000 | 13
13
14
14 | 31,71,11,11 | 26
8
25
25
17 | | | q | 0 31.16
9 42.66
3 26.30
6 24.76
2 42.95 | 8 42.99
2 43.13
1 43.39
0 43.45
5 27.52 | 1 24.57
0 35.71
1 38.28
3 39.97
4 36.03 | 5 28.45
0 31.81
7 33.40
5 33.03 | 3 41.03
2 43.99
2 43.39
4 34.42
8 34.74 | 9 31.50
4 34.14
5 27.36
7 44.41
5 25.07 | 0 44.05
0 43.95
0 41.53
4 43.33 | 6 36.01
9 36.21
7 37.25
5 41.85 | 3 39.04
3 45.67
3 44.83
4 37.68 | 8 42.37
0 42.04
13 32.96
5 43.22
2 46.43 | | | 1 | 128.9
188.4
236.7
239.2
170.0 | 170.6
171.7
178.8
179.7
235.7 | 240.4
138.4
213.5
150.5 | 235.4
129.8
132.8
227.7
154.7 | 153.7
187.0
166.1
225.6
225.3 | 231.7
133.9
239.5
191.0 | 195.7
165.6
153.4
161.5 | 137.4
137.8
140.1
153.5
244.7 | 218.9
178.3
167.7
223.4
217.0 | 154.18
213.10
130.93
156.11 | | | A(2000)Dec | 2+8325
4+3526
6-0653
8-0938
5+4857 | 4+4828
8+4742
6+4232
8+4153
6-0528 | 7-1035
1+7417
5+1559
2+6349
7+7349 | 1-0443
2+8224
8+7923
3+0318
1+6025 | 6+6110
5+3637
0+5142
6+0531
3+0552 | 3-0023
3+7813
0-0818
8+3346
5-1215 | 4+3026
0+5158
2+6114
5+5458
2+5928 | 8+7447
6+7423
1+7217
3+6101
1-1337 | 3+1225
0+4248
6+5018
8+0839
0+1410 | 0+6023
6+1739
6+8057
3+5844
5+3747 | | | RA(20 | 0928.3
0910.4
0908.6
0908.8 | 0912.0
0912.0
0912.0
0912.0 | 0910.
0919.
0912.
0917. | 0913.
0930.
0925.
0914. | 0918.
0916.
0918.
0915. | 0916.
0928.
0918.
0919. | 0920.
0922.
0923.
0922. | 0928.
0928.
0928.
0925. | 0922.
0925.
0925.
0923. | 0928.
0936.
0939.
0928. | | | (1950)Dec | 5+8338
3+3539
1-0641
4-0926
1+4910 | 0+4841
4+4755
3+4245
6+4206
1-0516 | 3-1023
9+7430
7+1612
1+6402
6+7402 | 6-0431
4+8238
4+7936
7+0331
2+6038 | 7+6123
4+3650
5+5155
0+0544
7+0605 | 7-0011
4+7827
5-0806
8+3359
1-1203 | 4+3039
5+5211
3+6127
9+5511
4+5941 | 7+7501
5+7437
3+7231
5+6114
7-1325 | 6+1238
8+4301
2+5031
1+0852
3+1423 | 2+6037
8+1753
9+8111
6+5858
4+3801 | | | RA(195 | 0919.5
0907.3
0906.1
0906.4 | 0909.4
0909.4
0909.3
0909.6 | 0908.3
0913.9
0909.7
0913.1 | 0910.6
0922.4
0919.4
0911.7 | 0914.7
0913.4
0914.5
0913.0 | 0913.7
0922.4
0915.5
0916.8 | 0917.4
0918.5
0919.3
0918.9 | 0923.7
0923.5
0923.3
0921.5 | 0919.6
0921.8
0922.2
0921.1 | 0924.2
0923.8
0932.9
0926.6 | | -Continued | Abell | 0751
0752
0753
0754
0755 | 0756
0757
0758
0759
0760 | 0761
0762
0763
0764 |
0766
0767
0768
0769
0770 | 0771
0772
0773
0774
0775 | 0776
0777
0778
0779
0780 | 0781
0782
0783
0784
0785 | 0786
0787
0788
0789
0790 | 0791
0792
0793
0794
0795 | 0796
0797
0798
0799
0800 | | ABLE 3— | E | 17.7
17.1
17.8
17.5
17.5 | 17.5
17.5
17.9
17.9 | 17.3
17.7
16.8
16.8 | 17.1
16.7
17.1
17.6
17.6 | 17.7
16.9
17.1
16.7 | 16.7
16.7
17.5
17.1 | 17.6
17.7
17.7
17.7
17.5 | 17.5
16.9
17.5
17.5 | 17.8
17.7
17.5
16.6 | 17.7
17.5
17.4
17.7
17.1 | | T | z R D | 00100 | 90900 | 0000 | 00000 | 0000 | 0000 | 2030 1 6
1159 1 6
0 6 | 0000 | 0 6
0 6
0 6
729 0 5 | 0 | | | C | 3
3
3
3
3
3
3
3 | 0 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 57
47
67 | 46
41
43
87
60 | 36
36
61
36 | 35
65
55
78 | 35
65 0.2
64 0.1
71 | 99
98
96
99 | 50
53
42 0.0 | 77
50
84
44
142 0.10 | | | T_{B-M} | III-III:
II-III | II II | 111:
111:
111:
11-111: | III
I-II | 111-111
111
111-111 | | II-III:
I:
I | 111
111-111
111-111 | :::::::::::::::::::::::::::::::::::::: | | | 8 | y | 321 I
256 I
157
282
203 I | 135 I
313
288 I
244
236 | 219 I
291 I
216 I
204 I
173 I | 231
166
275
211 I | 274
245 I
95 I
342 I | 265 I
68 I
95
111 I
62 I | 52 I
292 I
111 I | 109 I
312
211 I
166 I
223 I | 275 I
222 I
113 I
134 I | 74 I
267 I
89 I
260
155 I | | | н | 314
190
299
246
185 | 178
239
300
247
268 | 240
129
217
318
241 | 32
280
228
237
185 | 171
74
301
201
162 | 63
277
149
159
189 | 145
142
181
114 | 166
209
218
256
209 | 1115
100
29
28
28 | 112
98
211
319
314 | | | q | 38.42
35.61
27.78
32.38
37.03 | 36.88
32.18
38.62
32.03 | 26.35
36.89
34.68
40.10 | 40.28
31.08
32.73
33.25 | 38.80
39.24
31.79
40.55 | 39.52
40.77
32.51
39.71
40.74 | 25.77
29.41
40.25
35.74
39.24 | 41.06
32.65
33.54
41.78 | 42.04
40.32
34.66
37.38 | 42.14
40.17
34.84
33.59
35.52 | | | 1 | 84.31
20.42
21.93
33.68 | 96.03
33.03
85.11
14.55 | 27.24
00.05
08.78
79.59 | 71.01
29.74
33.59
34.90 | 54.45
94.07
31.16
84.02
52.76 | 93.66
82.92
18.44
58.20
67.16 | 32.05
25.50
61.56
11.84
53.68 | 5.96
2.69
2.52
9.12 | 85.89
55.24
19.28
12.13
25.14 | 66.63
54.16
36.91
23.10 | | | ည္က | 3807 13
2458 2
0507 2
7918 1
2959 1 | 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00000 | 4444 | 6117
3045
8127
13834
16236 | 3107 19
3925 18
0958 21
5815 15
5120 16 | 340 2
310 2
537 1
616 2 | 12 16
54 13
01 13
14 17
18 17 | 717 18
017 15
016 21
639 21
446 22 | 5132
6107
7546
10658
20658
1101 | | | RA(2000)Dec | 4444 | 3+28
9+79
0+37
2+12
2+36 | 5.4+0018
2.1+2537
2.6+1812
1.8+4154 | 5.0+4827
2.5+8251
5.8+7913
5.7+7800
5.1+1537 | 4 4 4 4 4 | £ + 4 + 4 | 3+0
3+5
6+1
1+6 | 3.2+5212
3.5+7954
2.4+7801
1.5+4714
5.6+4218 | 5+3
2+6
7+1
3+1
8+0 | 4 4 4 4 4 | | | RA(| 0847
0847
0846
0846
0859 | 0848
0900
0849
0850 | 0850
0852
0852
0854
0854 | 0856
0912
0906
0905
0855 | 0859
0857
0911
0858
0901 | 0858
0859
0857
0901
0900 | 0857
0901
0900
0904 | 0903
0913
0904
0905 | 0906
0910
0906
0907 | 0909
0910
0916
0908
0909 | | | A(1950)Dec | 4+3819
0+2510
5+0519
4+7930
6+3011 | 3+2855
8+8005
8+3743
4+1256
0+3645 | 8+0030
1+2549
8+1824
5+4206
6+3535 | 5+4839
8+8304
1+7925
4+7812
3+1549 | 5+6129
3+3057
1+8140
1+3846
1+6248 | 3+3119
9+3937
9+1010
3+5827
8+5132 | 9-0329
3+0322
6+5549
8+1628
4+6157 | 6+5224
7+8007
2+7814
1+4726
3+4231 | 3+3730
3+6030
0+1029
5+1652
2+0459 | 1+5145
0+6120
9+7559
0+0711
4+1114 | | | RA(19 | 0844.
0844.
0852. | 0845.0
0853.0
0845.0
0847.4 | 0847.8
0849.8
0851.0 | 0852.6
0903.8
0900.1
0859.4 | 0855.
0854.
0904.
0855. | 0855.0
0855.0
0854.0
0857.0 | 0854.0
0855.0
0857.0
0900.4 | 0859.
0906.
0906.
0901. | 0903.
0906.
0904.
0904. | 0906.
0910.
0910.
0906. | | | Abell | 0701
0702
0703
0704
0705 | 0706
0707
0708
0709
0710 | 0711
0712
0713
0714
0715 | 0716
0717
0718
0719
0720 | 0721
0722
0723
0724
0725 | 0726
0727
0728
0729
0730 | 0731
0732
0733
0734
0735 | 0736
0737
0738
0739
0740 | 0741
0742
0743
0744
0745 | 0746
0747
0748
0749
0750 | | | | | | | | 26 | | | | | | | | B Q | 0 18.4
6 17.8
0 17.5
6 17.7
0 17.4 | 0 17.1
0 16.9
0 16.9
5 16.6
5 17.1 | 0 17.4
6 17.7
0 17.7
6 17.4
5 16.6 | 0 17.5
0 17.5
6 17.6
0 17.4
6 17.7 | 5 17.1
6 17.6
6 17.4
6 17.7
0 17.4 | 6 17.6
6 17.7
5 16.8
5 17.2
6 17.4 | 0 17.7
5 17.1
5 16.8
0 17.1
6 17.7 | 6 17.5
0 17.6
6 17.7
6 17.6
0 17.2 | 6 17.6
0 17.1
6 17.8
0 17.8
6 18.0 | 0 17.0
0 17.6
6 18.0
5 17.2 | |-----------------|-------------------|--|--|--|--|--|--|--|--|--|--| | | z R | 402 1
0
2069 1 | 0
0881
0 | 00000 | 0
0
153 3 | 182 3 | 00000 | 1408 0 | 00000 | 360 1 | 00000 | | | 0 | 71 0.
50
42
59 0.
55 | 42
44 0.
51
59 | 43
68
40
57 | 45
44
186 0.
48
62 | 52
70
133 0.
63 | 59
61
63 | 444
488
63
63 | 69
66
31
31 | 61
42
50
47
53 0. | 44
44
54
34 | | | T_{B-M} | 7
9 III
5 III
3 | 7
8
1
1
1
1
1
1
1
1
1
1 | 1 II-III:
6 III
1 III | 1
7
8 II-III:
5 III | 9 II-III:
5 III
4 III
6 III | 73 II:
75 III
98 II-III:
51 III
08 II-III: | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9 III
9 III
1 III: | 8 II-III
9 | 11
12
13
11
11
11 | | | r h | 213 15
154 17
194 7
195 4 | 132 34
118 27
175 20
174 4
170 32 | 170 21
163 7
160 17
34 17
98 29 | 133 11
149 23
142 6
135 33
133 8 | 130 19
93 17
303 18
114 10
302 16 | 61 17
79 7
91 19
52 15
86 30 | 287 20
71 33
70 18
67 14
97 34 | 88
23 12
78 15
328 14
42 27 | 314 12
36 23
182 21
180 22
91 29 | 297 161
291 116
82 280
33 283
317 245 | | | q | 4 48.52
4 44.66
4 41.80
4 31.33 | 1 45.90
9 22.42
2 40.58
4 42.11
0 38.59 | 4 37.43
1 42.63
3 29.61
7 39.28
2 49.53 | 3 45.59
3 38.03
2 32.49
0 39.27
4 43.14 | 8 42.36
3 35.87
0 39.41
5 45.96
3 39.69 | 4 50.20
1 37.10
4 41.86
2 50.31
2 36.14 | 7 39.37
1 43.45
3 42.05
4 41.68
1 44.38 | 3 46.46
6 51.21
3 36.26
9 49.64
0 36.37 | 2 51.01
6 39.76
3 51.86
4 51.90
6 49.89 | 0 51.66
7 51.41
3 50.11
9 48.06
3 49.03 | | | - | 171.67
198.2
217.9
225.83 | 158.01
255.69
229.62
226.24
233.80 | 235.94
225.51
247.93
140.17 | 155.73
235.73
244.72
234.00
225.84 | 146.0
133.8
139.9
155.6 | 198.8
135.6
230.8
199.5 | 139.27
228.21
231.43
232.34
149.71 | 155.5
181.3
133.9
208.9
242.6 | 200.4
237.2
188.3
188.0
167.0 | 180.2
200.8
167.3
158.6
215.4 | | | KA(2000)Dec | 0942.8+4700
0942.0+2925
0942.2+1523
0942.1+0856 | 0945.4+5633
0942.1-2236
0943.4+0553
0943.7+0851
0943.6+0206 | 0943.6+0003
0944.5+0934
0943.9-1236
0950.0+7111
0946.7+4329 | 0948.0+5808
0945.2+0032
0945.5-0838
0946.2+0221
0946.8+0936 | 0951.2+6546
0955.5+7715
0952.7+7117
0950.6+5801 | 0949.9+2916
0955.9+7522
0949.7+0545
0950.7+2851
0949.7-0410 | 0956.0+7142
0951.3+0814
0951.3+0529
0951.5+0443 | 0954.3+5753
0953.7+4020
0959.8+7656
0953.5+2246 | 0954.3+2824
0953.6+0033
0955.7+3558
0955.9+3609 | 0956.5+4100
0956.3+2811
0957.7+4915
0958.3+5516 | | 1 | KA(1950)Dec | 0939.6+4714
0939.1+2939
0939.5+1537
0939.4+0910
0939.0-0903 | 0941.9+5647
0939.8-2223
0940.8+0607
0941.0+0905
0941.0+0220 | 0941.0+0017
0941.8+0948
0941.5-1223
0945.6+7126
0943.5+4343 | 0944.4+5822
0942.6+0046
0943.0-0825
0943.6+0235 | 0947.3+6601
0950.3+7730
0948.4+7132
0947.1+5816 | 0947.0+2931
0951.1+7537
0947.1+0600
0947.8+2906 | 0951.7+7157
0948.6+0829
0948.7+0544
0948.9+0458 | 0950.8+5808
0950.6+4035
0954.8+7711
0950.7+2301
0950.5-0436 | 0951.4+2839
0951.0+0048
0952.7+3613
0952.9+3624 |
0953.444115
0953.442826
0954.544930
0954.945531
0953.841850 | | -Continue | Abell | 0851
0852
0853
0854
0855 | 0856
0857
0858
0859
0860 | 0861
0862
0863
0864
0865 | 0866
0867
0868
0869
0870 | 0871
0872
0873
0874
0875 | 0876
0877
0878
0879
0880 | 0881
0882
0883
0884
0885 | 0886
0887
0888
0889
0899 | 0891
0892
0893
0894
0895 | 0896
0897
0898
0899
0900 | | IAB | z KU m | 1918 2 6 17.7
0 6 17.3
0 0 17.5
0 6 17.4 | 0 0 17.5
0 6 17.9
0 0 17.4
0 0 16.9 | 0 6 17.4
0 0 17.8
1 0 17.5
0 5 17.1 | 1 0 17.4
0 5 17.1
0 0 16.5
0759 0 5 16.5
0 6 17.5 | 0 0 17.7
1 0 17.5
1 0 17.3
0 6 17.5
1 0 18.2 | 0 0 17.7
0 6 17.5
0 0 17.7
0 0 17.1 | 0 0 17.5
0 0 17.1
0 0 16.7
0 4 16.3
0 6 17.7 | 0 6 17.3
0 6 17.5
0507 0 3 15.3
0 0 17.9 | 0 0 16.5
0 0 16.7
0 6 17.5
0 6 17.6
0 6 17.4 | 0 5 17.0
0 6 17.5
0 0 16.9
0 0 17.2
0 6 17.5 | | | . c | 81 0.1
59
49
64
37 | 42
54
38
31 | 71
39
61
62
62 | 68
50
47
36 0.0 | 448
50
50
57 | 32
55
41
57 | 44
49
43
51 | 52
52
40 0.0
33 | 447
30
559
92 | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | E : | x y $^{IB-M}$ | 73 345 II-III
225 266 III
50 215
234 348 II-III:
47 107 | 231 319
41 183 III
34 299
142 172
19 91 | 139 185 II-III
133 310
22 69
137 99 II-III
267 160 II: | 15 131
324 176 III
96 317
324 84 III
300 51 III | 296 279
294 132
224 104
230 207 III
198 179 | 194 183
289 49 III
280 220
195 325
280 291 II | 281 44
275 96
272 149
187 246 III
256 256 II-III | 125 234 II
255 345 II-III
254 262 III
127 312
123 249 | 234 306
229 52
158 347 III
218 157 III:
168 124 II | 158 130 II:
212 340 II-III 1
104 44
155 69
208 240 III | | 1 1 | | 209.54 43.33
145.79 40.18
220.20 40.44
151.18 42.08
229.20 36.59 | 159.59 44.35
239.70 30.67
225.46 38.62
134.49 35.14
235.91 33.54 | 134.23 35.04
185.39 47.24
247.15 25.87
135.85 35.94
198.25 46.38 | 246.25 26.72
214.14 43.17
137.87 37.03
223.54 40.01
237.20 33.72 | 238.94 32.72
246.76 27.20
256.64 18.71
205.72 45.90
147.35 41.42 | 162.69 45.81
237.37 33.86
221.02 41.87
151.30 42.90
226.49 39.68 | 237.56 33.94
216.52 43.45
222.71 41.41
145.77 40.99
220.47 42.56 | 133.09 34.76
225.64 40.61
239.79 33.14
131.65 33.92
132.80 34.64 | 239.28 33.93
253.70 22.96
158.23 45.44
236.33 36.14
148.20 42.40 | 208.23 46.81
232.86 38.12
136.53 36.99
209.84 46.55
221.35 43.25 | | D A (20000) A G | nA(2000)Dec | 0928.0+2033
0933.4+6702
0929.2+1207
0932.8+6233
0929.0+0406 | 0932.2+5601
0929.0-0626
0930.2+0741
0939.0+7717 | 0939.9+7731
0932.6+3753
0930.5-1433
0939.2+7555
0932.3+2903 | 0931.0-1323
0932.2+1721
0938.9+7358
0932.3+0939
0933.8-0255 | 0934.0-0441
0933.7-1325
0933.2-2551
0935.3+2354
0938.8+6525 | 0937.3+5330
0934.6-0257
0935.6+1211
0938.9+6208
0935.5+0730 | 0935.2-0302
0936.0+1551
0936.2+1051
0940.7+6640 | 0946.5+7826
0937.5+0831
0937.1-0500
0948.6+7953 | 0938.6-0411
0938.2-2055
0941.9+5634
0940.1-0056 | 0941.1+2229
0940.4+027
0947.6+7452
0941.4+2121
0941.1+1234 | | B A (1050) Dog | 14A(1900)Dec | 0925.2+2047
0929.2+6716
0926.5+1221
0928.9+6247
0926.4+0420 | 0928.6+5615
0926.5-0613
0927.5+0755
0933.5+7731 | 0934.4+7745
0929.5+3807
0928.1-1420
0934.0+7609 | 0928.6-1310
0929.4+1735
0934.0+7412
0929.6+0953 | 0931.5-0428
0931.3-1312
0931.0-2538
0932.4+2408 | 0933.8+5344
0932.1-0244
0932.9+1225
0935.1+6222 | 0932.7-0249
0933.2+1605
0933.5+1105
0936.6+6654
0934.7+1305 | 0940.9+7840
0934.8+0845
0934.6-0447
0942.5+8007
0941.9+7856 | 0936.1-0358
0935.9-2042
0938.4+5648
0937.5-0043 | 0938.3+2243
0937.8+0241
0942.7+7506
0938.6+2135 | | A bell | Tancii | 0801
0802
0803
0804
0805 | 0806
0807
0808
0809
0810 | 0811
0812
0813
0814
0815 | 0816
0817
0818
0819
0820 | 0821
0822
0823
0824
0824 | 0826
0827
0828
0829
0830 | 0831
0832
0833
0834
0835 | 0836
0837
0838
0839
0840 | 0841
0842
0843
0844
0844 | 0846
0847
0848
0849
0850 | | | Abell RA(1950)Dec | 0901 0953.7-0945
0902 0954.0-0956
0903 0955.0+1955
0904 0956.6+6015 | 0906 0957.8+653
0907 0955.9-104,
0908 0956.8+223
0909 1000.6+750
0910 0959.1+672 | 0911 0958.0-1500
0912 0958.6+0000
0913 0959.8+204.
0914 1004.3+712
0915 1002.6+511 | 0916 1001.5-1900
0917 1004.2+6240
0918 1006.1+7350
0919 1002.4-0027 | 0921 1002.9+074
0922 1006.3+711
0923 1003.7+260
0924 1004.1+355
0925 1004.0+272 | 0926 1004.0+215
0927 1005.0+503
0928 1004.2+114
0929 1004.9+3811
0930 1004.4-052 | 0931 1004.4-131
0932 1005.3+1956
0933 1005.1+004
0934 1005.9+173 | 0936 1006.4+294
0937 1006.2+141
0938 1006.7+183
0939 1006.3-110
0940 1006.7-162 | 0941 1007.1+035
0942 1008.7+193
0943 1009.3+335
0944 1008.6-014
0945 1011.8+692 | 0946 1009.7+240
0947 1011.6+631
0948 1012.9+723
0949 1009.8+064
0950 1011.5+500 | |-------------|-------------------|---|--|--|---|---|--|---|---|---|---| | | RA(2000)Dec | 2 0956.2-0956
6 0956.5-1010
2 0957.8+1937
9 1000.1+6004
4 1000.4+5659 | 7 1001.6+6522
9 0958.4-1103
9 0959.6+2224
4 1005.2+7449
4 1003.0+6709 | 9 1000.4-1523
8 1001.2-0006
3 1002.6+2028
9 1008.4+7114
0 1005.8+5055 | 8 1003.9-1922
5 1007.8+6230
9 1010.5+7344
7 1005.0-0041
1 1007.3+5516 | 0 1005.5+0725
6 1010.4+7101
9 1006.5+2554
4 1007.0+3539
2 1006.8+2707 | 6 1006.8+2141
4 1008.2+5019
5 1006.9+1130
5 1007.9+3800
3 1006.9-0537 | 0 1006.8-1324
0 1008.1+1935
6 1007.7+0031
0 1008.6+1715
4 1010.6+5559 | 8 1009.3+2933
3 1008.9+1358
9 1009.4+1824
4 1008.8-1118
3 1009.1-1637 | 6 1009.7+0341
2 1011.4+1917
2 1012.2+3337
7 1011.1-0201
0 1015.7+6905 | 6 1012.5+2351
9 1015.2+6304
3 1017.0+7218
0 1012.4+0625
4 1014.7+4949 | | | q 1 | 247.95 33.63
248.21 33.53
214.09 49.65
152.23 46.12
156.19 47.59 | 145.75 43.48
249.37 33.27
210.14 50.89
135.66 37.91
143.64 42.57 | 253.44 30.60
239.45 40.89
213.40 50.99
138.95 40.44
164.19 50.79 | 257.28 28.28
148.56 45.64
136.38 38.90
240.84 41.28
157.87 49.22 | 231.76 46.07
139.04 40.70
205.22 53.25
188.78 54.17
203.24 53.55 | 212.01 52.29
164.87 51.36
226.79 48.39
184.76 54.18
246.18 38.49 | 253.11 33.10
215.41 51.92
240.11 42.56
219.00 51.22
156.57 49.31 | 199.27 54.41
223.77 49.95
217.39 51.82
251.73 34.92
256.20 31.14 | 237.01 44.86
216.31 52.57
192.28 55.26
243.52 41.64
140.60 42.30 | 209.10 54.13
147.21 46.01
137.33 40.23
234.33 46.96
165.00 52.50 | | | x y T_{B-M} | 318 0
313 308
300 300
55 219 III
41 54 | 71 181
288 262
252 128 I-II:
43 50 III:
71 277 II-III | 258 30
256 205
239 345 III
237 174 III
269 50 III | 210 138
283 351 III
222 308 III
205 173 II:
249 282 II-III | 199 288 III
229 162 II-III
167 314 II:
58 195 III
165 58 III | 164 88 II:
281 340 III
184 186 II-III:
54 321
177 231 III: | 175 136
170 297 III:
169 239 III
163 172 III
223 320 | 138 188
157 318 II-III
152 234 III
150 248
144 285 | 143 88 II
127 281
307 87 III
121 101 III
208 58 | 94 205
287 61 III
199 230
108 235 III
227 312 II-III | | TABLE | C z RD m | 52 1 0 17.7
43 0 0 17.7
44 0 0 17.2
51 0 6 17.4
38 0 0 17.8 | 44 0 0 17.4
54 1 0 17.5
55 0 7 18.4
90 0 6 17.7
222 0.2055 4 6 17.5 | 42 0 0 17.5
36 0.0888 0 4 15.9
65 0.1675 1 6 18.0
114 0 6 17.7
54 0 5 17.2 | 41 0 0 17.3
66 0 6 17.4
69 0 5 17.1
60 0 5 17.1
56 0 5 17.1 | 41 0 5 16.7
: 85 0 6 17.9
50 0.1162 1 5 17.2
75 0.0989 1 5 17.2
53 0 6 17.7 | 56 0 6 17.8
66 0 6 17.4
57 0 5 17.2
45 0 0 17.6
50 5 16.5 | 40 0 17.4
50 0 6 17.5
44 0 4 15.9
61 0 5 17.0
49 0 17.2 | 41 0 0 17.2
: 65 0 5 17.2
30 0 5 16.6
31 0 0 17.7
48 0 0 17.5 | 56 0 5 17.1
32 0 0 17.0
82 0 5 17.2
50 0 5 17.1
45 0.0917 0 5 17.2 | 44 0 0 17.6
77 0 5 16.8
32 0 0 17.1
31 0 5 16.8
: 55 0 6 17.6 | | 3—Continued | Abell | 0951
0952
0953
0954
0955 | 0956
0957
0958
0959
0960 | 0961
0962
0963
0964 | 0966
0967
0968
0969 | 0971
0972
0973
0974 | 0976
0977
0978
0979 | 0981
0982
0983
0984
0985 | 0986
0988
0989
0999 | 0991
0993
0994
0994 | 0996
0997
0998
1000 | | | RA(1950)Dec |
1011.0+3458
1011.0+2001
1010.7-1542
1011.1+0007 | 1012.344725
1011.4-0040
1013.244115
1014.1+5948
1015.1+6628 | 1013.6+3352
1015.3+6343
1014.2+3916
1013.8+2503
1015.5+5008 | 1013.9-2508
1015.4+4341
1017.4+6831
1015.7+3037
1015.1-1027 | 1016.8+4113
1017.0+3948
1016.8+0819
1017.0+1418
1019.1+6453 | 1017.0-1340
1018.0+3329
1018.0-0616
1017.9-0738
1019.3+5022 | 1020.7+6822
1019.0+3453
1020.1+6004
1018.7+1227
1019.8+5218 | 1018.9+1423
1019.1+0639
1019.8+3234
1019.4+0927
1020.4+4925 | 1019.7+1908
1019.8+2045
1019.4-0442
1020.1+1935
1020.7+3732 | 1020.2+1524
1021.0+3746
1022.6+6813
1020.7+1306
1021.8+5026 | | | RA(2000)Dec | 1013.9+3443
1013.7+1946
1013.1-1556
1013.7-0007
1012.9-2426 | 1015.4+4710
1014.0-0054
1016.2+4100
1017.5+5932
1018.8+6612 | 1016.5+3337
1018.8+6327
1017.2+3900
1016.6+2448
1018.6+4952 | 1016.2-2522
1018.4+4325
1021.2+6815
1018.5+3021
1017.6-1042 | 1019.8+4057
1020.0+3932
1019.4+0803
1019.7+1402
1022.7+6437 | 1019.4-1355
1020.9+3313
1020.5-0631
1020.4-0753
1022.4+5006 | 1024.4+6806
1021.9+3437
1023.5+5948
1021.4+1211
1023.0+5202 | 1021.6+1407
1021.7+0623
1022.7+3218
1022.0+0911
1023.5+4909 | 1022.4+1852
1022.5+2029
1021.9-0457
1022.8+1919
1023.6+3716 | 1022.9+1508
1023.9+3730
1026.3+6757
1023.4+1250 | | | l b | 190.33 55.60
215.86 53.24
256.49 32.29
242.08 43.33
262.78 25.81 | 169.04 53.57
242.97 42.89
179.22 55.34
151.21 48.26
143.35 44.38 | 192.28 56.16
146.39 46.11
182.62 55.86
207.87 55.25
164.48 53.07 | 264.08 25.54
174.89 55.19
140.99 43.22
198.16 56.49
253.11 36.87 | 179.04 56.01
181.52 56.31
233.68 49.32
225.49 52.34
144.71 45.71 | 256.23 34.82
192.96 57.07
250.01 40.36
251.25 39.38
163.71 53.53 | 140.86 43.55
190.37 57.24
150.24 48.73
228.47 51.84
160.76 52.75 | 225.71 52.78
236.28 48.86
194.66 57.45
232.74 50.47
165.05 54.08 | 218.47 54.87
215.81 55.43
248.84 41.70
217.79 55.11
185.43 57.36 | 224.42 53.51
184.98 57.39
140.85 43.78
227.92 52.58 | | | x y T_{B-M} | 287 147 III:
98 308 II-III
94 0
89 204
60 182 | 222 170 III
85 161 I-II:
97 160 III
227 191 III:
255 228 II-III | 259 87 II-III
263 81
85 54 I-II
44 257 II
192 315 III | 21 131 III:
79 291
237 337 III
30 234 II-III
34 281 III | 61 159 II
57 83 II-III
15 324 II
17 323 II-III
238 142 III: | 324 109
211 65 III
316 185 II
316 112
160 327 II-III | 221 328 II-III
199 140 III:
187 204 III
308 225
126 109 III | 304 329 III
303 236 III
280 339
300 64
149 276 III | 291 262 III
288 349 III
297 269 III
286 286 I:
181 282 III | 287 62 III
177 295 III:
212 320 II
281 260 II-III: | | | C Z | 52 0.14
54
55
49
75 | 52
55 0.04
60
55
:117 | : 88
48
134 0.20
50 | 67
47
119
: 56 | 33 6 8 6 8
9 3 6 8 6 8 | 58
52
55 0.05
39 0.05 | :126
77
87
30
61 | 66
61
32
32
58 | 51 0.08
52
36 0.05
52
56 | 52
70
123
: 33 0.03 | | | R D m | 27 1 6 17,
0 5 16,
1 0 17,
0 0 16, | 0 5 17.2
4 1 4 15.9
0 6 18.0
0 5 17.2 | 0 5 17
0 0 17
6 3 5 17
0 5 17 | 0 6 17.
0 0 17.
0 6 17.
0 6 17.
0 5 16. | 0 5 16.
0 5 17.
0 6 17.
0 6 17.
0 5 16. | 1 0 17.
0 5 17.
27 1 3 15.
5 0 3 15.
0 6 17. | 0 6 17.
0 6 17.
0 6 17.
0 0 17.
0 5 17. | 0 6 17.
0 5 17.
0 0 18.
0 0 17.
0 6 17. | 80 1 5 17.
0 6 17.
33 0 3 14.
0 6 17. | 0 6 17.
0 5 17.
0 6 17.
18 0 3 15. | | | в | 17.5
17.8
17.2
17.2 | 17.0
17.2
17.2
17.2 | 17.7
17.2
17.2
17.2 | 16.6
16.6
17.0
15.1 | 17.2
17.2
17.2
17.3 | 17.2
17.5
17.0
17.1 | 17.2
17.6
17.6
17.4
16.6 | 17.5
17.8
17.0
17.7
17.7 | 17.7
17.6
17.8
18.0
18.0 | 17.8
16.0
16.9
17.0 | |-----------|---|---|---|---|---|--|---|--|--|---|---| | | R D | 00000 | 0 0 5
0 0 0 5
0 0 0 1 | 00000 | 3
0000
032 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 88
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | N | | 0.011 | | 0.063 | 0.13 | | 0.158 | | 0.226 | 0.04 | | | 0 | 54
72
72
85
85 | 51
58
46
57
50 | 99
I: 62
67
54
48 | 68
50
71
45
122 | 44
1 82
77
60 | 1 50
1 888
1: 55
41
42 | 1 83
46
35
31 | 51
44
42
39
99 | 38
76
51
83
93 | 1 60
1 38
32
53 | | | T_{B-M} | ::::::: | | | | 111-111
111
111 | | 111-111
1111
1111 | | | | | | y | 122
110
255
278 | 205
237
130
215
18 | 280
101
250
282
51 | 170
120
105
73
73 | 273
79
251
144
13 | 5 121
3 136
1 249
0 140
5 273 | 2 193
0 343
3 201
5 156
3 338 | 7 294
8 318
3 134
0 250
1 196 | 268
287
58
84
67 | 7 112
0 295
1 3
8 160
3 122 | | | н | 6 23
6 122
1 119
3 183
9 34 | 177
100
100
1 23
1 93 | 138
83
83
74
60 | 6 66
2 150
3 147
2 58
7 197 | 8 132
6 44
7 276
6 275
8 23 | 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 252
0 30
5 33
1 303 | 8 307
8 2903
8 2903 | 0 290
7 293
1 287
5 295
5 279 | 3 287
3 287
3 208
1 283 | | | q | 57.3
60.1
58.7
60.0 | 59.09
55.30
60.54
43.64
26.51 | 45.29
57.26
58.40
49.02
52.32 | 51.6
60.0
60.1
42.1
37.0 | 59.4
52.2
61.1
58.1 | 51.9
58.4
49.4
49.8 | 61.8
62.1
51.0
44.0 | 36.6
59.7
34.1
60.0 | 36.4
50.4
55.5
58.8 | 62.9
46.9
46.9
62.7
61.8 | | | 1 | 168.20
203.21
197.79
174.47 | 175.90
231.36
190.43
253.51
269.64 | 140.23
226.15
221.39
246.43
151.74 |
241.93
178.58
179.11
256.58
130.61 | 172.97
150.74
185.57
166.61
258.20 | 149.56
166.63
248.39
256.38
247.99 | 187.62
194.40
147.63
256.42
219.48 | 264.06
171.00
266.18
222.74
265.62 | 264.73
248.33
238.59
204.90
229.05 | 203.77
196.30
254.35
188.64
216.14 | | | Dec | 612
803
045
237 | 148
224
422
558
731 | +6712
+1552
+1839
+0116
+5653 | 0510
1014
3957
836
7808 | 4305
5724
3638
4638
0943 | 5810
4630
0038
0722
0105 | 3534
3222
5939
0704
2016 | 1629
4354
1928
1838 | 1659
0121
0904
2731
1513 | 2803
3128
0355
3458
2214 | | | A(2000)Dec | 037.0+4
036.4+2
036.7+3
037.3+4 | 037.9+4
037.2+1
037.8+3
037.2-0 | 040.8+6
038.7+1
038.8+1
038.8+0 | 039.4+0
040.6+4
040.8+3
039.9-0 | 042.6+6
043.4+6
042.4+6
043.3+6 | 045.1+9
044.6+4
043.6+0
043.4-0 | 044.8+
044.7+
046.2+
044.6-
045.3+ | 044.7-
046.2+
044.7-
046.4+
045.7- | 046.0-1
046.4+(
046.9+(
047.5+2 | 048.1+7.0048.5+0047.9-0048.9+ | | | 2 | 86466 | 40889 | 0.000 | 20214 | | 0 0 4 7 1 | 00000 | 40644 | 47076 | W4040
44444 | | | (1950)Dec | 0+462
6+281
9+310
4+425
5+372 | 0+420
5+124
0+343
7-054
5-271 | 3+672
0+160
1+185
2+013
8+570 | .8+052
.7+403
.9+401
.4-082 | 7+432
3+574
6+365
3+465
0-092 | 9+582
7+464
0+005
9-070
4+012 | 0+355
9+323
0+595
1-064
6+203 | 2-161
3+441
3-191
7+185 | 5-164
8+013
3+092
8+274
8+152 | 4+281
7+314
4-034
1+351
2+223 | | 7 | RA(18 | 1034
1033
1033
1034 | 1035.
1034.
1035.
1034. | 1037.
1036.
1036.
1036.
1037. | 1036
1037
1037
1037
1042 | 1039
1040
1039
1040 | 1041
1041
1041
1040
1040 | 1042
1041
1043
1042 | 1042
1043
1043
1043 | 1043
1043
1044
1044 | 1045
1045
1045
1046 | | ontinue | Abell | 1051
1052
1053
1054
1055 | 1056
1057
1058
1059
1060 | 1061
1062
1063
1064
1065 | 1066
1067
1068
1069
1070 | 1071
1072
1073
1074
1075 | 1076
1077
1078
1079
1080 | 1081
1082
1083
1084
1085 | 1086
1087
1088
1089
1090 | 1091
1092
1093
1094
1095 | 1096
1097
1098
1099
1100 | | НУ
- (| ı i | 22667 | L2LL2 | 51788 | 40000 | 90106 | 81078 | 0 L 0 D 4 | 52078 | 10090 | 22222 | | | | | | | | | | | | | | | IABL | В | 6 17.
6 17.
5 16.
5 17.
6 17. | 6 17.
6 17.
0 17.
6 17.
5 17. | 0 17.
0 17.
6 17.
5 17.
6 17. | 3 15.
0 17.
6 17.
6 17.
4 16. | 5 16.
0 17.
0 17.
5 17.
5 16. | 5 17.
5 17.
5 17.
5 17.
0 17. | 0 17.
4 15.
5 17.
6 17.
3 15. | 0 17.
0 17.
6 17.
0 17.
0 17. | 5 17.
5 17.
5 17.
6 17.
5 17. | 6 17.
5 17.
0 17.
6 17.
5 17. | | IABL | R D | 0 6 1
0 6 1
0 0 5 1
0 0 5 1 | 17.
17.
17.
17. | 17.
17.
17.
17. | 321 0 3 15.
0 0 17.
97 1 6 17.
650 1 4 16. | 16.
17.
17.
17. | 17.
17.
17.
17. | 0 0 17.
0 4 15.
0 5 17.
0 6 17.
99 2 3 15. | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | | IABL | z R D | 20 06 1 | 2 0 6 17.
0 0 17.
6 0 0 17.
9 0 5 17. | 0 17.
0 17.
6 17.
5 17.
6 17. | 7 0.0321 0 3 15.
7 0 0 17.
0 0.297 1 6 17.
0 0 6 17.
8 0.0650 1 4 16. | 5 16.
0 17.
0 17.
5 17.
5 16. | 5 17.
5 17.
5 17.
5 17.
0 17. | 0 0 17.
0 4 15.
0 5 17.
0 6 17.
9 2 3 15. | 0 17.
0 17.
6 17.
0 17.
0 17. | 5 17.
5 17.
5 17.
6 17.
5 17. | 0 6 17.
0 5 17.
0 0 17.
0 6 17. | | IABL | -M C z RD | 70 0 6 1
50 0 6 1
37 0.0520 0 5 1
I 76 0 5 1 | 11 79 0 6 17.
72 0 6 17.
40 0 0 17.
76 0 6 17.
59 0 5 17. | 46 0 0 17.
38 0 0 17.
88 0 6 17.
84 0 5 17.
61 0 6 17. | 37 0.0321 0 3 15.
47 0 0 17.
50 0.297 1 6 17.
50 0 6 17.
III: 68 0.0650 1 4 16. | : 55 0 5 16.
40 0 17.
31 0 0 17.
69 0 5 17.
87 0 5 16. | 74 0 5 17.
67 0 5 17.
64 0 5 17.
81 0 5 17.
46 0 0 17. | 45 0 0 17.
31 0 4 15.
96 0 5 17.
62 0 6 17.
III: 94 0.0799 2 3 15. | 40 0 0 17.
40 0 0 17.
63 0 6 17.
32 0 0 17.
46 0 0 17. | 50 0517.
51 0517.
60 0517.
III 71 0617.
III 71 0517. | 108 0 6 17.
60 0 5 17.
30 0 0 17.
108 0 6 17.
95 0 5 17. | | IABL | T_{B-M} C z R D | III 70 0 6 1
III 50 0 6 1
37 0.0520 0 5 1
I-II 76 0 5 1
III 81 0 6 1 | III: 79 0 6 17. III: 72 0 6 17. 111 76 0 6 17. III 76 0 6 17. III 59 0 5 17. | 46 0 0 17.
38 0 0 17.
III 84 0 5 17.
III 61 0 6 17. | 37 0.0321 0 3 15.
47 0 0 17.
111 50 0.297 1 6 17.
111 50 0.0550 1 4 16. | III: 55 0 5 16.
40 0 0 17.
31 0 0 17.
III: 69 0 5 17.
III 87 0 5 16. | II 74 0 5 17. II 64 0 5 17. III 81 0 5 17. 46 0 5 17. | HII 31 0 4 15.
III 96 0 5 17.
III 62 0 6 17.
III-III: 94 0.0799 2 3 15. | 40 0 0 17.
40 0 0 17.
1-II 63 0 6 17.
32 0 0 17.
46 0 0 17. | III 50 0517.
III 51 0517.
III-III 71 0617.
III-III 71 0517. | 0 III 108 0 6 17.
9 II 60 0 5 17.
9 30 0 0 17.
8 III 108 0 6 17.
7 III 95 0 5 17. | | IABL | B-M C Z RD | 70 0 6 1
50 0 6 1
37 0.0520 0 5 1
I 76 0 5 1 | 11 79 0 6 17.
72 0 6 17.
40 0 0 17.
76 0 6 17.
59 0 5 17. | 228 46 0 0 17.
281 11 88 0 0 17.
201 111 88 0 6 17.
184 111 61 0 6 17. | 159 37 0.0321 0 3 15.
167 17 47 0 0 17.
250 111 50 0.297 1 6 17.
250 111 58 0.0650 1 4 16. | : 55 0 5 16.
40 0 17.
31 0 0 17.
69 0 5 17.
87 0 5 16. | I 74 0 5 17.
67 0 5 17.
I 64 0 5 17.
II 81 0 5 17.
46 0 0 17. | 40 17. 31 0 4 15. 15. 165 111. 96 0 5 17. 120 111. 94 0.0799 2 3 15. | 40 0017.
40 0017.
II 63 0617.
32 0017.
46 0017. | I 50 0 5 17.
I 51 0 5 17.
-III 71 0 6 17.
-III 71 0 5 17. | III 108 0 6 17. II 60 0 5 17. 30 0 0 17. III 108 0 6 17. III 95 0 5 17. | | IABL | $y T_{B-M}$ C z R D | .78 280 181 III 70 0 6 1
.03 137 314 III 50 0 6 1
.87 135 203 37 0.0520 0 5 1
.56 103 57 I-II 76 0 5 1
.67 206 334 III 81 0 6 1 | .50 206 270 II-III 79 0 6 1792 260 249 III: 72 0 6 1755 250 248 III 76 0 0 1759 299 59 III 59 0 5 17. | .75 254 228 46 0 0 17.
.16 241 283 38 0 0 17.
.52 244 201 III 88 0 6 17.
.68 200 184 III 84 0 5 17.
.46 135 136 III 61 0 6 17. | .45 233 159 37 0.0321 0 3 15.
.59 195 167 47 0 17.
.54 212 190 II 50 0.297 1 6 17.
.54 215 257 III 50 0.050 1 4 16. | .31 126 303 III: 55 0 5 16.
.04 216 90 40 0 0 17.
.50 215 19. 69 0 0 17.
.62 215 94 II: 69 0 5 17.
.62 187 46 III 87 0 5 16. | .12 257 113 II 74 0 5 17.
.14 63 184 I 67 0 5 17.
.96 250 169 II 64 0 5 17.
.36 231 182 III 81 0 5 17.
.11 190 268 46 0 0 17. | .59 249 40 45 0 0 1716 188 108 III 31 0 4 1519 3 165 III 96 0 5 1747 179 253 III 62 0 6 1746 237 120 II-III: 94 0.0799 2 3 15. | .45 172 314 40 0 0 17.
.82 112 43 40 0 0 17.
.57 151 334 I-II 63 0 6 17.
.23 45 82 46 0 0 17. | .77 150 59 III 50 0 5 1736 139 204 III 51 0 5 1750 138 122 III 60 0 5 1794 137 196 II-III 71 0 6 1705 139 252 II-III 71 0 5 17. | 53 155 320 III 108 0 6 17. 29 128 129 II 60 0 5 17. 07 196 319 30 0 0 17. 76 150 308 III 108 0 6 17. 89 20 47 III 95 0 5 17. | | IABL | b x y T_{B-M} C z R D | 71 40.78 280 181 III 70 0 6 1
.79 54.03 137 314 III 50 0 6 1
.03 54.87 135 203 37 0.0520 0 5 1
.91 53.56 103 57 I-II 76 0 5 1
.48 43.67 206 334 III 81 0 6 1 | .66 44.50 206 270 II-III 79 0 6 17. 51 58 04 160 49 III: 72 0 6 17. 81 41.65 257 224 III 76 0 6 17. 01 57.59 299 59 III 59 0 5 17. | .17 52.75 254 228 46 0 0 17.
.63 58.16 241 283 38 0 0 17.
.98 41.52 244 201 III 88 0 6 17.
.20 45.68 200 184 III 84 0 5 17.
.40 58.46 135 136 III 61 0 6 17. | .32 52.45 233 159 37 0.0321 0 3 15.
.43 45.98 195 167 47 0 0 177.
.46 55.59 22 129 II 50 0.297 1 6 17.
.56 58.64 212 257 III 50 0.050 1 4 16. | .45 58.31 126 303 III: 55 0 5 16.
.41 52.04 216 90 40 0 0 17.
.98 48.62 215 174 II: 69 0 5 17.
.77 47.62 187 46 III 87 0 5 16. | .85 58.12 257 113 II 74 0 5 1783 53.14 63 184 I 67 0 5 1788 57.96 251 0169 II 64 0 5 1788 37.36 231 182 III 81 0 5 1724 59.11 190 268 40 0 0 17. | .29 58.59 249 40 45 0 0 1715 49.16 188 108 III 31 0 4 1527 59.19 93 165 III 96 0 5 1748 58.46 237 120 II-III: 94 0.0799 2 3 15. | .56 59.45 172 314 40 0 0 1720 43.82 112 43 40 0 0 1787 48.57 151 279 32 0 6 1788 43.75 152 279 32 0 0 1778 57.23 45 82 46 0 0 17. | .09 40.77 150 59 III 50 0 5 1763 54.36 139 204 III 51 0 5 1768 56.50 138 122 III 60 0 5 1790 60.05 139 252 II-III 71 0 5 17. | .82 44.53 155 320 III 108 0 6 1774 50.29 128 129 II 60 0 5 1725 58.07 196 319 30 0 0 1792 44.76 150 308 III 108 0 6 1762 57.89 20 47 III 95 0 5 17. | | IABL | x y T_{B-M} C z R D | 250.71 40.78 280 181 III 70 0 6 1 163.79 54.03 137 314 III 50 0 6 1 167.03 54.87 135 203 37 0.0520 0 5 1 161.91 53.56 103 57 I-II 76 0 5 1 140.48 43.67 206 334 III 81 0 6 1 | 141.66 44.50 206 270 II-III 79 0 6 17. 193.51 58.04 160 49 III: 72 0 6 17. 250.34 41.65 257 224 III 76 0 6 17. 182.01 57.59 299 59 III 59 0 5 17. | 229.17 52.75 254 228 46 0 0 17.
196.63 58.16 241 283 38 0 0 17.
250.98 41.52 244 201 III 88 0 6 17.
143.20 45.68 200 184 III 84 0 5 17.
190.40 58.46 135 136 III 61 0 6 17. | 231.32 52.45 233 159 37 0.0321 0 3 15. 143.43 45.98 195 167 47 0 0 17. 221.46 55.59 221 190 II 50 0.297 1 6 17. 197.56 58.64 215 257 III 50 0.0650 1 4 16. 232.28 52.32 222 129 II-III: 68 0.0650 1 4 16. | 184.45 58.31 126 303 III: 55 0 5 16.
233.41 52.04 216 90 40 0 0 17.
251.98 41.50 215 172 31 0 0 17.
240.98 48.62 215 94 II: 69 0 5 17.
145.77 47.62 187 46 III 87 0 5 16. | 179.85 58.12 257 113 II 74 0 5 17.
157.83 53.14 63 184
I 67 0 5 17.
177.88 57.96 250 169 II 64 0 5 17.
131.82 37.36 231 182 III 81 0 5 17.
197.24 59.11 190 268 46 0 0 17. | 182.29 58.59 249 40 45 0 0 17. 241.15 49.16 188 108 III 31 0 4 15. 189.27 59.19 93 165 III 96 0 5 17. 220.09 56.77 179 253 III 62 0 6 17. 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 195.56 59.45 172 314 40 0 0 17. 139.20 43.82 112 43 243.87 48.57 151 34 I-II 63 0 6 17. 251.28 43.75 152 279 32 0 0 17. 169.78 57.23 45 82 46 0 0 17. | 255.09 40.77 150 59 III 50 0 5 17. 231.63 54.36 139 204 III 51 0 5 17. 240.68 56.50 138 122 III 60 0 5 17. 240.04 50.94 137 196 III 71 0 6 17. 197.90 60.05 139 252 IIII 71 0 5 17. | 139.82 44.53 155 320 III 108 0 6 17.
241.74 50.29 128 129 II 60 0 5 17.
172.25 58.07 196 319 30 0 0 17.
139.92 44.76 150 308 III 108 0 6 17.
170.62 57.89 20 47 III 95 0 5 17. | | IABL | l b x y T_{B-M} C z R D | -0636 250.71 40.78 280 181 III 70 0 6 1
+4951 163.79 54.03 137 314 III 50 0 6 1
+4747 167.03 54.87 135 203 37 0.0520 0 5 1
+5103 161.91 53.56 103 57 I-II 76 0 5 1
+6813 140.48 43.67 206 334 III 81 0 6 1 | 4-6702 141.66 44.50 206 270 II-III 79 06 17. 4-2255 193.51 58.04 160 49 III: 72 06 17. 0-521 249.98 41.92 250 248 40 0 17. -0547 250.34 41.65 257 224 III 76 0 17. +3903 182.01 57.59 299 59 III 59 0 5 17. | +1215 229.17 52.75 254 228 46 00 17.
+1316 196.63 58.16 241 283 38 00 17.
-0613 250.98 41.52 244 201 III 88 0 6 17.
+5526 143.20 45.68 200 184 III 84 0 5 17.
+3432 190.40 58.46 135 136 III 61 0 6 17. | 1058 231.32 52.45 233 159 37 0.0321 0 3 15.
15507 143.43 45.98 195 167 47 0 0 17.
1513 221.46 55.59 221 190 11 50 0.297 1 6 17.
1048 232.28 52.32 222 129 II-III: 68 0.0650 1 4 16. | 19339 184.45 58.31 126 303 III: 55 05 16. 10940 233.41 52.04 216 90 40 00 017. 1045 251.98 441.50 216 172 31 00 17. 10345 240.98 486.62 215 94 III 69 05 17. 1045 145.77 47.62 187 46 III 87 05 16. | +4004 179.85 58.12 257 113 II 74 0 5 17 +5523 157.83 53.14 63 184 I 67 0 5 17 +4707 177.88 57.96 55 169 II 64 0 5 17 +7719 131.82 37.36 231 182 II 81 0 5 17 +3059 197.24 59.11 190 268 46 0 0 17 | 182.29 58.59 249 40 45 0 0 17. 4400 241.15 49.16 18 108 11 31 0 4 15. 1504 189.27 59.19 91 165 11 96 0 5 17. 1842 250.09 56.77 179 253 11 62 0 6 17. 4012 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 3151 195.56 59.45 172 314 40 0 0 17.
8646 139.20 43.82 112 43 40 0 0 17.
9214 243.87 48.57 151 334 I-II 63 0 6 17.
9447 243.87 151 279 32 0 0 17.
4528 169.78 57.23 45 82 46 0 0 17. | 8853 255.09 40.77 150 59 III 50 0 5 17.
1147 231.63 54.36 139 204 III 51 0 5 17.
1616 224.68 56.50 138 122 III 60 0 5 17.
5539 24.08 50.09 137 196 IIII 71 0 6 17.
3041 197.90 60.05 139 252 II-III 71 0 5 17. | 6757 139.82 44.53 155 320 III 108 0 6 17. 0424 241.74 50.29 128 129 II 60 0 5 17. 4156 172.25 58.07 196 319 30 0 0 17. 6744 139.92 44.76 150 308 III 108 0 6 17. 4448 170.62 57.89 20 47 III 95 0 5 17. | | IABL | b x y T_{B-M} C z R D | 0636 250.71 40.78 280 181 III 70 0 6 1
4951 163.79 54.03 137 314 III 50 0 6 1
4747 167.03 54.87 135 203 37 0.0520 0 5 1
5103 161.91 53.56 103 57 I-II 76 0 5 1
6813 140.48 43.67 206 334 III 81 0 6 1 | 5702 141.66 44.50 206 270 II-III 79 0 6 17. 2355 193.51 58.04 160 49 III: 72 0 6 17. 249.88 41.92 560 248 40.00 0 0 17. 26037 41.65 257 224 III 76 0 6 17. 3903 182.01 57.59 299 59 III 59 0 5 17. | 1215 229.17 52.75 254 228 46 0 0 17.
3116 196.63 58.16 241 283 38 0 0 17.
0613 250.98 41.52 244 201 III 88 0 6 17.
6526 143.20 184 III 84 0 6 17.
3432 190.40 58.46 135 136 III 61 0 6 17. | 058 231.32 52.45 233 159 37 0.0321 0 15. 507 143.43 45.98 195 167 47 0 0 17. 73 221.46 119 111 50 0.297 1 1 17. 048 197.56 58.64 215 257 111 50 0 17. 024 232.28 52.32 222 129 III-III: 68 0.0650 1 16. | 3739 184.45 58.31 126 303 III: 55 0 5 16.
0940 233.41 52.04 216 90 40 0 0 17.
0945 251.98 41.50 116 172 31 0 0 17.
0345 240.98 48.62 215 94 II: 69 0 5 17.
6250 145.77 47.62 187 46 III 87 0 5 16. | 4004 179.85 58.12 257 113 II 74 0 5 17.
5523 157.83 53.14 63 184 I 67 0 5 17.
177.0 177.88 57.96 250 169 II 64 0 5 17.
7719 131.82 37.36 231 182 III 81 0 5 17.
3059 197.24 59.11 190 268 46 0 0 17. | 182.29 58.59 249 40 45 0 0 17. 241.15 49.16 188 108 III 31 0 4 15. 189.27 59.19 93 165 III 96 0 5 17. 220.09 56.77 179 253 III 62 0 6 17. 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 195.56 59.45 172 314 40 0 0 17. 139.20 43.82 112 43 243.87 48.57 151 34 I-II 63 0 6 17. 251.28 43.75 152 279 32 0 0 17. 169.78 57.23 45 82 46 0 0 17. | 853 255.09 40.77 150 59 III 50 0 5 17.
147 231.63 54.36 139 204 III 51 0 5 17.
616 2240.68 56.50 138 122 III 60 0 5 17.
639 240.04 50.94 137 196 II-III 71 0 6 17.
641 197.90 60.05 139 252 II-III 71 0 5 17. | 757 139.82 44.53 155 320 III 108 0 6 17.
424 241.74 50.29 128 129 II 60 0 5 17.
356 172.25 58.07 196 319 30 0 0 17.
744 139.92 44.76 150 308 III 108 0 6 17.
448 170.62 57.89 20 47 III 95 0 5 17. | | IABL | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 0621 1023.2-0636 250.71 40.78 280 181 III 70 0 6 1 5007 1025.1+4951 163.79 54.03 137 314 III 50 0 6 1 4803 1025.1+4747 167.03 54.87 135 203 37 0.0520 0 5 1 5119 1025.5+5103 161.91 53.56 103 57 I-II 76 0 5 1 6829 1027.5+6813 140.48 43.67 206 334 III 81 0 6 1 | 6718 1027.6+6702 141.66 44.50 206 270 II-III 79 0 6 17. 3311 1025.5+3255 193.51 58.04 160 49 III: 72 0 6 17. 0506 1024.9-0521 249.88 41.92 260 248 440 0 0 17. 0512 1024.9-0547 250.34 41.65 257 224 III 76 0 6 17. 3919 1026.2+3903 182.01 57.59 299 59 III 59 0 5 17. | 132 1025.5+1215 229.17 52.75 254 228 46 0 0 17. 558 1026.1+3116 196.63 58.16 241 283 38 0 0 17. 558 1025.9-06456 143.20 45.68 1.52 244 201 111 88 0 6 17. 542 1029.0-6556 143.20 45.68 200 184 111 84 0 5 17. 448 1027.8+3432 190.40 58.46 135 136 III 61 0 6 17. | 114 1027.0+1058 231.32 52.45 233 159 37 0.0321 0 3 15.
523 1030.1+6507 143.43 45.98 195 167 1 47 0 0 177.
47 1027.9+1304 221.65 55.59 221 190 11 50 0.297 1 6 17.
104 1028.4+3048 232.58 64 215 257 III 50 0.050 1 4 16.
040 1027.8+1024 232.28 52.32 222 129 II-III: 68 0.0650 1 4 16. | 55 1028.7+3739 184.45 58.31 126 303 III: 55 0 5 16.
56 1028.3+0940 233.41 52.04 216 90 40 0 0 17.
31 01028.0-0645 251.98 411.50 216 172 31 0 0 17.
50 1028.3+0345 240.98 48.62 215 94 II: 69 0 5 17.
50 1031.6+6250 145.77 47.62 187 46 III 87 0 5 16. | 4020 1030.1+4004 179.85 58.12 257 113 II 74 0 5 17.
5339 1030.9+5323 157.83 53.14 63 184 I 67 0 5 17.
4123 1030.6+4107 177.88 57.96 250 169 II 64 0 5 17.
7735 1035.4+719 131.82 37.36 231 182 III 81 0 5 17.
5115 1030.6+3059 197.24 59.11 190 268 46 0 0 17. | 3859 1031.1+3843 182.29 58.59 249 40 45 0 0 17. 0416 1030.3+0400 241.15 49.16 188 108 III 31 0 4 15. 1550 1031.6+354 189.27 59.19 93 165 III 96 0 5 17. 1858 1031.3+1842 220.09 56.77 179 253 III 62 0 6 17. 4028 1032.1+4012 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 207 1032.1+3151 195.56 59.45 172 314 40 0 0 17.
902 1035.7+6846 139.20 43.82 112 43 40 0 0 17.
230 1033.0+0214 243.74 84.57 151 334 I-II 63 0 6 17.
432 1032.8-0474 251.28 43.75 152 279 32 0 0 17.
544 1034.4+4528 169.78 57.23 45 82 46 0 0 17. | 838 1032.9-0853 255.09 40.77 150 59 III 50 0 5 17.
203 1034.1+1147 231.63 54.36 139 204 III 51 0 5 17.
632 1034.4+1651 224.68 86.50 138 122 III 60 0 5 17.
655 1034.2+0539 26.04 137 196 III-III 71 0 6 17.
657 1035.0+3041 197.90 60.05 139 252 II-III 71 0 5 17. | 813 1037.6+6757 139.82 44.53 155 320 III 108 0 6 17.
440 1034.8+0424 241.74 50.29 128 129 II 60 0 5 17.
412 1036.1+4356 172.25 58.07 196 319 30 0 0 17.
800 1038.6+6744 139.92 44.76 150 308 III 108 0 6 17.
504 1036.9+4448 170.62 57.89 20 47 III 95 0 5 17. | | IABL | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 0.7-0621 1023.2-0636 250.71 40.78 280 181 III 70 0 6 1 2.0+5007 1025.1+4951 163.79 54.03 137 314 III 50 0 6 1 2.0+4803 1025.1+4747 167.03 54.87 135 203 37 0.0520 0 5 1 2.4+5119 1025.5+5103 161.91 53.56 103 57 I-II 76 0 5 1 3.8+6829 1027.5+6813 140.48 43.67 206 334 III 81 0 6 1 | 4.0+6718 1027.6+6702 141.66 44.50 206 270 II-III 79 0 6 17. 2.2-0506 1024.7-0542 129.81 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.92 60 248 41.65 27.24 III 76 0 6 17. 3.3+3919 1026.2+3903 182.01 57.59 299 59 III 59 0 5 17. | 2.8+1231 1025.5+1215 229.17 52.75 254 228 46 0 0 17.
3.3+3132 1026.1+3116 196.63 58.16 241 283 38 0 0 17.
3.4-0558 1025.9-0613 250.98 41.52 244 201 III 88 0 6 17.
5.5+5542 1029.0+6526 143.20 45.68 200 184 III 84 0 5 17.
4.9+3448 1027.8+3432 190.40 58.46 135 136 III 61 0 6 17. | 4.4+1114 1027.0+1058 231.32 52.45 233 159 37 0.0321 0 3 15. 6.6+6523 1030.1+6507 143.43 45.98 195 167 47 0 0 17. 5.2+1749 1027.9+1733 221.66 55.59 221 190 11 50 0.297 1 6 17. 5.6+3104 1028.4+3048 197.56 58.64 215 257 111 50 6 17. 5.2+1040 1027.8+1024 232.28 52.32 129 II-III: 68 0.0650 1 4 16. | 5.8+3755 1028.7+3739 184.45 58.31 126 303 III: 55 0 5 16.
5.7+0956 1028.3+0940 233.41 52.04 216 90 40 0 0 17.
5.5-0630 1028.0-0645 251.98 41.50 216 172 31 0 0 17.
5.7+0401 1028.3+0345 240.98 48.62 215 94 II: 69 0 5 17.
8.2+6306 1031.6+6250 145.77 47.62 187 46 III 87 0 5 16. | 7.2+4020 1030.1+4004 179.85 58.12 257 113 II 74 0 5 17. 7.8+5339 1030.9+5323 157.83 53.14 63 184 I 67 0 5 17. 7.7+123 1030.6+4107 177.88 57.96 520 169 II 64 0 5 17. 1.0+7735 1035.4+7719 137.36 231 182 III 81 0 5 17. 7.8+3115 1030.6+3059 197.24 59.11 190 268 46 0 0 17. | 8.2+3859 1031.1+3843 182.29 58.59 249 40 45 0 0 17. 7.7+0416 1030.3+0400 241.15 49.16 188 108 III 31 0 4 15. 8.7+3520 1031.6+3504 189.25 59.19 93 165 III 96 0 5 17. 9.2+4028 1032.1+4012 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 9.3+3207 1032.1+3151 195.56 59.45 172 314 40 0 0 17.
2.1+6902 1035.7+6846 139.20 43.82 112 43 40 0 0 17.
0.4+0230 1033.0+0214 243.87 48.57 151 334 I-II 63 0 6 17.
0.3-0432 1032.8-0424 435.28 43.75 152 279 32 0 0
17.
1.4+4544 1034.4+4528 169.78 57.23 45 82 46 0 0 17. | 30.4-0838 1032.9-0853 255.09 40.77 150 59 III 50 0 5 17. 31.5+1203 1034.1+1147 231.63 54.36 139 204 III 51 0 5 17. 31.7+1632 1034.4+1616 224.68 56.50 138 122 III 60 0 5 17. 31.6+0555 1034.2+0539 240.04 50.94 137 196 II-III 71 0 6 17. 32.2+3057 1035.0+3041 197.90 60.05 139 252 II-III 71 0 5 17. | 4.0+6813 1037,6+6757 139.82 44.53 155 320 III 108 0 6 17.
2.2+0440 1034.8+0424 241.74 50.29 128 129 II 60 0 5 17.
3.1+4412 1036.1+4356 172.25 58.07 196 319 30 0 0 17.
5.1+6800 1038.6+6744 139.92 44.76 150 308 III 108 0 6 17.
3.9+4504 1036.9+4448 170.62 57.89 20 47 III 95 0 5 17. | | IABL | A(2000)Dec | 7-0621 1023.2-0636 250.71 40.78 280 181 III 70 0 6 1 0.0-5007 1025.1+4951 163.79 54.03 137 314 III 50 0 6 1 0.0-4803 1025.1+4747 167.03 54.87 135 203 37 0.0520 0 5 1 0.4-5119 1025.5+5103 161.91 53.56 103 57 I-II 76 0 5 1 0.8-6829 1027.5+6813 140.48 43.67 206 334 III 81 0 6 1 | .0+6718 1027.6+6702 141.66 44.50 206 270 II-III 79 0 6 17(4-3311 1025.5+325 193.51 58.04 160 49 III: 72 0 6 172-0506 1024.7-0521 249.98 41.92 260 248 40 0 0 174-0532 1024.9-0547 250.34 41.65 257 224 III 76 0 6 173+3919 1026.2+3903 182.01 57.59 299 59 III 59 0 5 17. | .8+1231 1025.5+1215 229.17 52.75 254 228 46 00 17. 3+3132 1026.1+3116 196.63 58.16 241 283 38 00 17. 3-4-0558 1025.9-0613 250.98 41.52 244 2011 18 88 06 17. 5-6542 1029.0+6526 143.20 45.68 200 184 III 84 05 17. 9+3448 1027.8+3432 190.40 58.46 135 136 III 61 0 6 17. | .4+1114 1027.0+1058 231.32 52.45 233 159 37 0.0321 0 3 15. (6+552 1030.1+6507 143.43 45.98 195 167 47 0 0 177. (2+1749 1027.9+1773 221.46 55.59 221 190 III 50 0.297 1 6 177. (2+3104 1028.4+3024 232.28 52.32 222 129 II-III: 68 0.0650 1 4 16. | .8+3755 1028.7+3739 184.45 58.31 126 303 III: 55 05 16. .7+0956 1028.3+0940 233.41 52.04 216 90 40 00 17. .5-0630 1028.0-0648 2551.98 41.50 216 72 31 00 17. .7+0401 1028.3+0345 240.98 48.62 215 94 III 69 07 .2+6306 1031.6+6250 145.77 47.62 187 46 III 87 05 16. | .2+4020 1030.1+4004 179.85 58.12 257 113 II 74 0 5 178+5339 1030.9+5323 157.83 53.14 63 184 I 67 0 5 177+4123 1030.6+4107 137.88 57.96 250 169 II 64 0 5 178+735 1035.4+7719 137.36 231 182 III 81 0 5 178+3115 1030.6+3059 197.24 59.11 190 268 46 0 0 17. | .2+3859 1031.1+3843 182.29 58.59 249 40 45 0 0 177+0416 1030.3+0400 241.15 49.16 188 108 III 31 0 4 157+3520 1031.6+3504 189.27 59.19 93 165 III 96 1031.3+1842 220.09 56.77 179 253 III 62 0 5 172+4028 1032.1+4012 179.44 58.46 237 120 II-III: 94 0.0799 2 3 15. | 3+3207 1032.1+3151 195.56 59.45 172 314 40 0 0 17. 1.1+6902 1035.7+6846 139.20 43.87 112 43 40 0 0 17. 4.40230 1035.8-0447 251.28 43.75 152 279 32 0 17. 5.44544 1034.4+4528 169.78 57.23 45 82 46 0 0 17. | 0.4-0838 1032.9-0853 255.09 40.77 150 59 III 50 0 5 17.
1.5+1203 1034.1+1147 231.63 54.36 139 204 III 51 0 5 17.
1.7+1632 1034.4+1616 224.68 56.50 138 122 III 60 0 5 17.
1.6+0555 1034.2+0539 240.04 50.94 137 196 IIII 71 0 6 17.
2.2+3057 1035.0+3041 197.90 60.05 139 252 II-III 71 0 5 17. | .0+6813 1037.6+6757 139.82 44.53 155 320 III 108 0 6 172+0440 1034.8+0424 241.74 50.29 128 129 II 60 0 5 171+4412 1036.1+4356 172.25 58.07 196 319 30 0 0 171+6800 1038.6+6744 139.92 44.76 150 308 III 108 0 6 17. | | | z R D m | 0 0 17.5
0 6 17.6
0 6 17.5
0 6 17.5
0 5 16.6 | 0 6 17.8
0 5 17.2
0 0 17.6
0 5 17.2
1 0 17.4 | 2 0 17.3
0 6 17.6
1 0 17.0
0 6 17.7
1 0 17.5 | 0 5 17.1
0 6 17.3
0 5 16.8
582 1 5 16.6
620 2 6 17.6 | 0 0 16.2
0 0 17.2
0 5 16.8
0 5 17.0
0 6 17.8 | 0 0 17.7
316 0 4 15.7
596 2 6 17.8
0 0 16.6
0 6 17.8 | 1 0 17.6
0 6 17.5
0 5 17.2
0 0 17.8
304 1 2 14.3 | 0791 2 5 16.5
0791 1 3 15.6
0 6 17.5
0 0 17.0
0794 2 5 16.6 | 0 6 17.5
0 0 17.6
0 5 17.2
0 6 17.5
0 6 17.5 | 0 6 17.8
0 0 17.2
0 6 17.5
0 6 17.6
0 5 17.0 | |-------------|---|---|---|--|---|---|--|--|--|--|---| | | C | 36
59
84
43 | 77
53
34
65
56 | 98
62
72
68 | 58
53
52
73 0.0 | 43
39
86
79 | 31
32 0.0
103 0.2
39
52 | 78
105
61
48
52 0.0 | 107 0.0
55 0.0
80
36
87 0.0 | 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 62
62
53 | | | x y T_{B-M} | 40 215
62 245 III
59 286 III:
82 315 III
36 175 II-III: | 77 186 III
56 303 II-III
85 121
43 245 III
45 163 | 55 310
28 106 III
37 24
24 326 II-III:
47 169 | 267 46 III
52 265 II-III:
21 105 II-III:
172 320 III:
12 324 III | 12 52
322 153
161 194 II-III:
160 285 II
291 67 I-II | 311 251
27 94 I
282 143 III
24 215
254 56 III | 295 120
31 313 III
294 218 II-III
30 343
20 147 II | 110 78 II-III:
135 86 III
325 86 III
284 277
135 154 II: | 283 257 II-III:
145 177
130 240 III
305 256 II-III
273 273 III: | 28 214 III
249 243
299 238 III
259 328 III
266 46 III | | | l b | 185.06 65.64
237.74 60.94
253.42 53.53
157.67 59.50
186.82 65.84 | 161.57 60.94
236.00 61.64
218.51 65.33
238.17 61.24
270.86 37.21 | 272.84 34.50
251.05 55.84
272.63 35.05
253.39 54.50
274.51 32.28 | 135.90 45.72
158.51 60.50
232.54 63.42
167.18 63.28
245.95 58.84 | 252.66 55.32
263.07 47.55
171.70 64.58
168.22 63.81
191.37 67.16 | 248.39 58.19
220.55 66.20
187.73 67.03
215.13 66.91
140.60 50.59 | 272.47 37.00
194.91 67.56
240.48 61.87
155.69 59.97
203.05 67.75 | 130.78 40.21
175.56 65.85
221.29 66.57
255.94 54.57
172.75 65.34 | 256.38 54.31
144.06 53.62
169.29 64.68
197.64 68.04
262.25 49.91 | 150.30 57.71
182.68 67.11
198.52 68.18
224.96 66.34
260.80 51.42 | | | RA(2000)Dec | 1104.4+3556
1104.0+1232
1103.9+0119
1104.9+4949
1104.6+3511 | 1105.0+4724
1104.5+1337
1104.8+2213
1105.5+1232
1105.2-1857 | 1105.5-2206
1106.3+0356
1106.0-2132
1106.5+0203
1106.2-2443 | 1109.1+6844
1108.2+4852
1107.4+1554
1108.1+4356
1107.5+0800 | 1107.5+0256
1108.0-0709
1109.2+4134
1109.4+4316
1109.2+3310 | 1109.0+0637
1109.5+2141
1109.8+3435
1109.9+2357
1111.1+6257 | 1109.5-1946
1110.3+3146
1110.2+1200
1111.2+5017
1110.8+2840 | 1113.9+7523
1111.7+3934
1111.4+2131
1111.1+0107
1111.8+4050 | 1111.2+0045
1112.6+5915
1112.3+4226
1112.2+3042
1111.7-0455 | 1113.0+5352
1112.6+3628
1112.8+3022
1112.6+2004
1112.3-0309 | | 200 | RA(1950)Dec | 1101.6+3613
1101.4+1249
1101.3+0136
1102.0+5006
1101.8+3528 | 1102.1+4741
1101.9+1354
1102.1+2230
1102.9+1249
1102.7-1841 | 1103.0-2150
1103.7+0413
1103.5-2116
1103.9+0220
1103.8-2427 | 1105.9+6901
1105.3+4909
1104.8+1611
1105.3+4413 | 1104.9+0313
1105.5-0653
1106.4+4151
1106.6+4333 | 1106.4+0654
1106.8+2158
1107.1+3452
1107.2+2414
1108.1+6314 | 1107.0-1930
1107.6+3203
1107.6+1217
1108.3+5034
1108.1+2857 | 1110.4+7540
1108.9+3951
1108.7+2148
1108.5+0124
1109.0+4107 | 1108.6+0102
1109.6+5932
1109.5+4243
1109.5+3059
1109.2-0439 | 1110.1+5409
1109.9+3645
1110.1+3039
1110.0+2021
1109.8-0253 | | - Critician | Abell | 1151
1152
1153
1154
1155 | 1156
1157
1158
1159
1160 | 1161
1162
1163
1164 | 1166
1167
1168
1169
1170 | 1171
1172
1173
1174
1175 | 1176
1177
1178
1179
1180 | 1181
1182
1183
1184
1185 | 1186
1187
1188
1189
1190 | 1191
1192
1193
1194
1195 | 1196
1197
1198
1199 | | ر
. ا | | | | | | | | | | | | | CTION | z RD m | 9 0.1614 2 6 17.8
0 6
17.5
8 0 6 17.6
0 0 6 17.4
3 0 5 16.8 | 5 1 0 17.8
0 0 17.0
0 0 17.2
3 0 5 17.2
6 0 6 17.8 | 8 0 6 17.8
7 0 0 17.5
1 0 6 17.6
0 0 5 17.1
6 0 6 17.6 | 6 0 5 17.2
8 0 5 17.2
8 0 0 17.6
1 0 6 17.5
7 0 6 18.0 | 1 0 6 17.7
6 0 0 17.7
8 0.1235 2 5 16.9
0 0 6 17.3
5 0 6 17.6 | 5 0.0852 1 4 16.0
3 0 6 17.8
3 0 0 17.0
3 0 0 17.8
4 0 0 17.1 | 7 0 5 17.2
4 0.1363 1 5 17.0
2 0 6 17.4
6 0 6 17.6
9 0 5 16.9 | 0 6 17.6
7 0 5 17.2
1 0 6 17.5
6 0.0383 0 3 15.0
9 0 0 17.8 | 0 0 17.2
5 0.0353 0 3 15.4
1 0 5 17.2
0 0 17.2 | 2 0.141 4 5 17.0
6 0 6 17.6
8 0 6 17.6
4 0.0710 0 4 16.0
2 0 16.5 | | CTANI | R D | 0.1614 2 6 17.
0 6 17.
0 6 17.
0 6 17.
0 5 16. | 0 0 17.
1 0 17.
0 0 17.
0 5 17.
0 6 17. | 6 17.
0 17.
6 17.
5 17.
6 17. | 0 5 17.
0 5 17.
0 0 17.
0 6 17.
0 6 18. | 0 6 17.
0 0 17.
1235 2 5 16.
0 6 17. | 55 0.0852 1 4 16.
53 0 6 17.
43 0 0 17.
33 0 0 17.
34 0 0 17. | 0 5 17.
.1363 1 5 17.
0 6 17.
0 5 16. | 0 6 17.
0 5 17.
0 6 17.
0 8 17.
0 0 17. | 0 5 17.
0353 0 3 15.
0 5 17.
0 0 17. | .141 4 5 17.
0 6 17.
0 6 17.
.0710 0 4 16. | | | y T_{B-M} C z R D | 65 343 III 89 0.1614 2 6 17.
60 279 III 61 0 6 17.
56 293 III 48 0 6 17.
55 261 III 40 0 6 17.
57 78 III 53 0 5 16. | 324 38 0 0 17.
189 75 1 0 17.
203 II-III: 53 0 5 17.
239 III: 76 0 6 17. | 77 III 88 0 6 17.
299 37 0 0 17.
35 III 60 0 6 17.
56 III 56 0 6 17. | 227 II 46 0 5 17.
97 II-III 58 0 5 17.
299 48 0 0 17.
146 II 61 0 6 17.
259 II-III 97 0 6 18. | 09 56 II-III 81 0 6 17.
58 318 46 0 0 17.
88 83 III 108 0.1235 2 5 16.
36 211 III 90 6 17.
96 121 II-III 65 0 6 17. | 95 154 I-II: 55 0.0852 1 4 16.
92 37 II-III 53 0 6 17.
86 206 33 0 0 17.
78 287 34 0 0 17. | 161 II-III 77 0 5 17.
45 III 74 0.1363 1 5 17.
315 III 86 0 6 17.
100 II-III: 86 0 6 17.
167 II: 69 0 5 16. | 35 III 59 0 6 17.
87 III 57 0 5 17.
296 III 36 0.0383 0 3 15.
106 49 0 0 17. | 228 II-III: 90 0 5 17.
137 II-III: 35 0.0353 0 3 15.
342 III 30 0 517.
151 34 0 17.
148 III 34 0 4 15. | 278 I 222 0.141 4 5 17.
215 III 56 0 6 17.
158 III 78 0 6 17.
303 III 34 0.0710 0 4 16.
312 32 0 0 16. | | | b x y T_{B-M} C z R D | 69.67 60.17 65 343 III 89 0.1614 2 6 17.
41.77 54.76 260 279 III 61 0 6 17.
32.43 58.35 256 293 III 48 0 6 17.
65.50 36.64 255 261 III 40 0 6 17.
38.65 56.18 257 78 III 53 0 5 16. | 70.25 60.42 58 324 38 0 0 17.
46.49 52.59 252 89 75 1 0 17.
27.82 59.82 247 221 40 0 0 17.
73.07 61.27 42 239 III: 76 0 6 17. | 53.73 48.42 235 77 III 88 0 6 17.
51.78 54.39 191.29 37 0 0 17.
40.28 56.06 233 35 II: 61 0 6 17.
20.71 61.71 226 332 III 60 0 5 17.
39.84 56.40 226 56 III 56 0 6 17. | 35.13 58.33 218 227 II 46 0 5 17. 78.14 62.45 21 97 II-III 58 0 5 17. 82.70 63.99 148 II 61 29 97.75 63.97 226 259 II-III 97 0 6 18. | 40.21 56.65 209 56 II-III 81 0 6 17.
81.92 63.06 158 318 46 0 0 17.
31.90 39.55 168 83 III 108 0.1235 2 5 16.
38.67 57.57 196 121 II-III 65 0 6 17. | 27.55 60.98 195 154 I-II: 55 0.0852 1 4 16.
31.52 60.01 192 37 II-III 53 0 6 17.
40.59 56.93 191 55 43 0 6 17.
43.38 58.61 186 206 33 0 0 17.
62.18 42.78 178 287 34 0 0 17. | 37.99 58.36 172 161 II-III 77 0 5 17.
49.26 54.18 248 45 III 74 0.1363 1 5 17.
58.92 58.61 140 315 III 52 0 6 17.
74.72 62.91 273 167 II: 69 0 5 16. | 42.06 57.34 147 35 III 59 0 6 17.
40.64 57.96 146 87 III 57 0 5 17.
92.54 64.99 99 55 III 61 0 6 17.
90.31 64.89 98 106 49 49 0 0 17. | 0.03 59.85 121 228 II-III: 90 0 5 17. 45 58.80 109 342 III 71 0 0 5 17. 45 58.80 109 342 III 71 0 0 5 17. 48 62.56 96 148 III 34 0 4 15. | 20 33.50 106 278 I 222 0.141 4 5 17.
19 60.29 84 215 III 56 0 6 17.
59 51.51 78 158 III 78 0 6 17.
11 57.75 72 303 III 34 0.0710 0 4 16.
48 41.43 257 312 32 0 0 16. | | | l b x y T_{B-M} C z R D | 049.7+4421 169.67 60.17 65 343 III 89 0.1614 2 6 17. 048.9+0710 241.77 54.76 260 279 III 61 0 6 17. 049.1+1326 232.43 58.35 256 293 III 48 0 6 17. 048.7-1708 265.50 36.64 255 261 III 40 0 6 17. 049.2+0926 238.65 56.18 257 78 III 53 0 5 16. | 050.3+4359 170.25 60.42 58 324 38 0 0 17. 049.5+033 246.49 52.59 252 89 75 1 0 17. 049.9+1613 227.82 5982 247 121 40 0 0 17. 050.1+1745 225.07 60.52 244 203 III-III: 53 0 5 17. 051.6+4223 173.07 61.27 42 239 III: 76 0 6 17. | 050.6-0233 253.73 48.42 235 77 III 88 0 6 17. 052.3+553 151.78 54.39 191 299 37 0 0 17. 051.0+0838 240.28 56.06 233 35 II: 61 0 6 17. 051.4+2009 220.71 61.71 226 332 III 60 0 5 17. 051.5+0902 239.84 56.40 226 56 III 56 0 6 17. | 052.1+1213 235.13 58.33 218 227 II 46 0 5 17. 053.0+394 178.14 62.45 21 97 II-III 58 0 5 17. 053.2+3733 182.70 63.09 161 299 48 0 0 17. 052.7+1042 237.66 57.61 210 146 II 61 0 6 17. 055.3+3048 197.75 63.97 226 259 II-III 97 0 6 18. | 052.8+0901 240.21 56.65 209 56 II-III 81 0 6 17. 053.5+3754 181.92 63.06 158 318 46 0 0 17. 056.7+7530 131.90 39.55 168 83 III 108 0.1235 2 5 16. 056.1+7144 134.78 42.63 36 211 III 90 6 17. 053.8+1014 238.67 57.57 196 121 II-III 65 0 6 17. | 054.0+1651 227.55 60.98 195 154 I-II: 55 0.0852 1 4 16. 054.1+1440 231.52 60.01 192 37 II-III 53 0 6 17. 054.2+0901 240.59 56.93 191 55 | 055.6+1058 237.99 58.36 172 161 II-III 77 0 5 17. 058.3+564 149.26 54.18 248 45 III 74 0.1363 1 5 17. 058.1+4950 158.92 58.61 149.91 100 II-IIII 86 0 6 17. 0557.1-0208 255.11 49.81 149 100 II-IIII 86 0 6 17. 058.1+4102 174.72 62.91 273 167 II: 69 0 5 16. | 057.5+0837 242.06 57.34 147 35 III 59 0 6 17. 057.6+0936 240.64 57.96 146 87 III 57 0 5 17. 058.7+3258 192.54 64.99 99 55 III 57 0 6 17. 058.1+0129 251.47 52.65 136 296 III 36 0.0383 0 3 15. 058.8+3355 190.31 64.89 98 106 49 | 059.5+1213 237.03 59.85 121 228 II-III: 90 0 5 17. 10. 9+1032 240.13 59.16 102 137 II-III: 35 0.0353 0 3 15. 101.9+5020 157.45 58.80 109 342 III 71 0 5 17. 102.4+5845 146.25 53.15 215 151 30 0 0 17. 101.5+1643 229.48 62.56 96 148 III 34 0 4 15. | 02.3+1159 238.19 60.29 84 215 III 56 0 6 17. 02.5-0103 255.59 51.51 78 158 III 78 0 6 17. 03.0+0737 245.11 57.75 72 303 III 34 0.0710 0 4 16. 06.3+7341 132.48 41.43 257 312 32 0.141 4 5 17. | | | | 10.01.00.0 | 20704 | 811735 | 04004 | L 20 2 L | വയനയയ | 0 22 25 00 | 20000 | 42804 | 92050 | |---|-------------|---|--|---|--|--|---|---|--|--|--| | | Ħ | 17.5
17.2
17.3
17.0 | 17.
15.
17.
18. | 17. | 17.
15.
17. | 17.
17.
17.
15. | 17.
17.
16.
16. | 17. | 17. | 15.
17.
18.
17. | 17.
16.
17.
17. | | | R D | 03000 | 0000 | 00000 | 00000 | 00000
00000 | 0000 | 00100 | 90909 | 0007 | 00200 | | | z | 0.0628 | 0.0339 | 0.1267 | 0.0321 | 0.0603 | 0.129 | 0.1434 | | 0.0530 | 0.2247 | | | 0 | 57
61
46
58
77 | 59
42
65
100
90 |
90066 | 37
37
57
54
40 | 73
102
68
58
45 | 54
62
151
32
63 | 61
53
62
66 | 60
39
127
41
73 | 61
104
64
40
1 61 | 36
37
104
62 | | | T_{B-M} | III-III | | | 1111 | | IIII I | ::
::::::::::::::::::::::::::::::::::: | | III
III-II | ::::-:::
::::-::: | | | y | 190 1
66 1
246
168 1 | 307
181
302
177
177
327 | 235 1
144 1
13 1
172 1 | 249
49
218
221 | 23 1
215 1
160 1
319 1 | 267
37
147 | 78 1
110 1
263 1
167 1 | 139]
259
216]
263
90] | 326]
210]
60]
230 | 261
131
46 1
111 1 | | | н | 107
104
295
180 | 93
104
140
82
79 | 176
73
73
75
269 | 83
121
110
70
190 | 94
997
63 | 34
34
138
55 | 244
305
51
28 | 80
134
21
303
45 | 170
43
232
169
328 | 327
51
129
33 | | | 9 | 7.80
18.35
56.69
14.47 | 41.81
70.05
70.81
60.16
57.70 | 63.27
64.17
47.76
68.13 | 70.00
71.42
71.01
70.99
59.15 | 48.19
71.26
50.47
69.95 | 71.47
66.23
70.30
48.08 | 71.47
68.91
53.73
71.07
43.91 | 71.11
48.51
61.44
53.76
71.58 | 57.78
70.97
69.58
59.25 | 52.40
40.00
66.30
71.69 | | | _ | .14 6
.50 4
.14 6
.38 4 | 27
27
23 | 89
00
74
84 | 58
23
23
54
56 | 54
64
73
88
73
88 | 66
30
44
44 | 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | .63
.11
.32
.54 | .78
.84
.17
.71 | .14
.87
.53 | | | | 234
269
166
132 | 274
183
213
256
260 | 154
248
271
235
167 | 179
208
218
186
146 | 271
218
269
229
178 | 189
245
228
134
184 | 188
170
139
183
275 | 223
134
257
139
187 | 143
180
172
145
270 | 269
128
159
186
278 | | |)Dec | 1729
0847
4229
7104
7528 | 1618
3519
25525
0515
0203 | 4819
1037
0947
1708
4120 | 3634
2651
2351
3408
5403 | 9-0935
6+2347
3-0702
7+1953
0+3640 | 3301
1254
2028
6713
3440 | 3322
3959
6045
3502
1433 | 2221
6646
0558
6045
3335 | 5601
3549
3903
5414
0731 | 0509
7613
4448
3358 | | | RA(2000)D | 24.7+1
24.4-0
25.2+4
26.9+7 | 25.4-1
26.1+3
26.2+0
26.2+0 | 27.5+4
27.0+1
26.8-0
27.2+1 | 128.1+
127.9+
128.4+
129.1+ | 28.9-
29.6+
29.3-
29.7+
30.0+ |
30.1+
30.2+
31.2+ | 30.5+
30.7+
31.2+
30.9+ | 30.8+
31.8+
30.8+
31.6+ | 32.1+
31.8+
31.9+
32.3+
31.6- | 31.7-
33.7+
32.5+
32.4+
32.0- | | | RA | 1122 | 1120 | 1127.
1127.
1126.
1127.
1128. | нанан | 11111 | 11111 | 11111 | ===== | 11111 | 11111 | | |)Dec | +1746
-0831
+4246
+7121
+7545 | 9-1602
4+3536
4+2542
6+0532
8+0220 | +4836
+1054
-0931
+1725
+4137 | +3651
+2708
+2408
+3425
+5420 | 1-0919
)+2404
3-0646
1+2010
3+3657 | +3318
+1311
+2045
+6730
+3457 | +3339
+4016
+6102
+3519
-1417 | +2238
+6703
+0615
+6102
+3352 | +5618
+3606
+3920
+5431
-0715 | -0453
+7630
+4505
+3415
-1937 | | | RA(1950)Dec | 122.1-
121.9-
122.5-
123.8-
124.4- | 122.9
123.4-123.6-123.6-123.8 | 24.8
24.4
24.3
24.6 | 25.4
25.3
25.8
26.4 | 26.8 | 27.4+
27.4+
27.6+
28.3+
27.8+ | 27.8
28.0
28.4
28.2
27.9 | 88888 | 29.1
29.2
29.5
29.5 | 29.24
29.84
29.74
29.51 | | | | 1 2 2 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 11
9 11
0 11 | 1
2
3
3
1
1
1
1
1
1
1
1
1 | 6 111
9 111
0 111 | 1 2 6 4 6 | 6 11
9 11
9 11
0 11 | 12.54.2 | 98 11111 | 12648 | 6 11
8 11
9 11
0 11 | | | Abell | 125
125
125
125
125 | 125
125
125
125
125 | 126
126
126
126 | 1266
1267
1268
1269
1270 | 127
127
127
127
127 | 1276
1277
1278
1279
1280 | 1281
1282
1283
1284
1285 | 1286
1287
1288
1289
1290 | 1291
1292
1293
1294
1295 | 1296
1297
1298
1299
1300 | | 1 | | 00000 | 9.1.9.2. | 72252 | 04000 | 00004 | 79887 | 04000 | 7.00.00 | 9259 | 9,0000 | | | D | 5 17
5 17
5 16
6 17
5 16 | 6 17
5 17
6 17
5 17
6 17 | 6 17.
0 17.
2 14.
6 17.
5 16. | 4 16
0 17
4 16
6 17
6 17 | 6 17
5 16
0 17
6 17
3 15 | 0 17
5 16
1 13
6 17
5 17 | 5 17
6 17
0 17
6 17
5 17 | 0 17
6 17
4 16
0 17
5 17 | 6 17
5 17
6 17
0 17
0 17 | 6 17
5 17
0 17
5 17
5 17 | | | я | 88
0 0 0 0 | 00000 | 68 1
0 | 24 1
92 0
0 | 0
0
0
97 1
33 0 | 20 2
50 1
50 1 | 676 1
663 2
042 2 | 0
16 1
0 | 00000 | m 0 0 0 0
9 | | | 2 | 0.168 | | 0.04 | 0.05 | 0.289 | 0.11 | 0.167
0.166
0.104 | 0.07 | | 0.21 | | | 0 | 103
60
75
54
63 | 52
72
89
52
50 | 89
44
51
61
105 | 57
62
47
74
68 | 72
75
43
62 | 43
112
50
72
57 | 45
70
60
88
122 | 49
56
63
47
102 | 50
58
55
45 | :136
72
34
: 77
: 71 | | | T_{B-M} | | | | 111
111-111
1111 | in Hi |
!!!!-!
!! | ii Iii | | 111-1 | 11-11
111:
11-111
11-111 | | | y J | 255 III.
295 III.
295 III. | 37
08
50
50 | 04
81
78
37 | 94
74
74
74
74 | 39
73
06
40
06 | 94
19 III
18 III
36 III | 09
11
66
85
04 | 41
65
75
27
80 | 68 II
61 III
28 III
79 | 89 II
325 II
312
326 II
201 II | | | н | 257 2
301 1
112 1
249 1
254 | 249 2
217 3
244 1
238 2
232 1 | 231 2
111
256 1
204 2
173 1 | 193 2
228 1
280
187 1
182 2 | 201
240 1
239 1
161 2
255 2 | 159
229 2
153 1
227 1 | 221 3
140 2
139 1
183 | 128 2
312 2
125 2
70 2
310 2 | 177
126 1
120 2
207
169 3 | 164
116 3
113 3
168 3 | | | 9 | 96
99
99 | .61
.24
.40 | .21
.42
.01
.08 | .13
.97
.88
.09 | .39
.70
.70 | .75
.75
.05 | .68
.95
.39 | .88
.22
.41
.77 | 4.2.6.8.
2.0.8.
2.0.8. | .27
.78
.18
.11 | | | | 83 63
56 62
51 65
71 65
11 55 | 43 49
97 46
08 57
27 63
86 65 | 02 44
21 55
53 69
51 50
98 58 | 78 51
51 32
98 59
00 66
09 67 | 57 51
58 63
68 64
43 68
73 58 | 74 69
87 62
96 69
94 64
28 69 | 07 61
43 67
27 39
91 68
52 68 | 67 55
88 66
06 56
22 53
31 66 | 63 70
88 67
20 67
70 64
44 70 | 14 69
85 68
55 52
57 47
03 67 | | | 7 | 238.8
159.8
173.8
230.7
255.1 | 263.4
135.9
253.0
240.2
232.8 | 269.0
145.2
201.5
264.5 | 263.7
277.5
151.9
234.0 | 139.5
158.5
160.6
181.4 | 188.7
156.8
186.9
159.9 | 154.0
232.4
275.3
223.9
228.5 | 260.6
165.8
260.0
141.2 | 207.6
234.8
232.3
160.7 | 224.]
227.8
265.9
134.8 | | | Dec | 1325
4730
4017
1735
0230 | 0536
6741
0421
1253
1645 | 1212
5726
2915
0536
0420 | 0428
2513
5142
1641
3729 | 6240
4709
4554
3625
5345 | 3342
4801
3419
4608
2219 | 4942
1753
1856
2123
1937 | -0027
-4250
-0105
-6008 | 2712
1657
1811
4524
3217 | 2125
2000
0412
6801
4138 | | | RA(2000)Dec | 3.0+1;
4.0+4;
3.5+1;
3.4+0; | 3.5-05;
5.7+674
4.1+04;
4.5+129 | 4.8-17
7.2+5
6.5+2
6.9-0
9.5+0 | 7.7-0
7.6-2
8.8+5
8.4+1
8.9+3 | 9.00.01 | ÷ ÷ ÷ ÷ ÷ ÷ | 2.3+4
2.1+1
1.8-1
2.4+2
2.9+1 | 8.4.0.4.E | 3.4+2
3.2+1
3.7+1
4.2+4 | 3.8
4.0
7.7
7.4
4.9 | | | RA | | | | | 1112 | 1121
1121
1121
1122
1122 | 1122
1122
1121
1122
1122 | 112 | | 22222 | | |)Dec | +1342
+4747
+4034
+1752
+0247 | 0-0520
6+6758
5+0438
9+1310
3+1702 | .1156
-5743
-2932
-0520
-0437 | 2-0412
1-2457
0+5159
8+1658
2+3746 | -6257
-4726
-4611
-3642
-5402 | 3359
4818
3436
4625
-2236 | +4959
+1810
-1840
+2140
+1954 | 0044
4307
0122
6025
4323 | -2729
-1714
-1828
-4541 | 2142
2017
0356
-6818 | | | RA(1950)Dec | 4.0.4.0.0 | 40440 | 12.3-1
14.3+5
13.8+2
14.4-0
16.9+0 | യ വയ വ | 16.9+
17.7+
18.0+
18.2+
18.5+ | 18.3+
18.8+
18.8+
19.3+ | 00000 | 1120.2+0
1120.7+4
1120.4+0
1121.1+6 | 1120.7+2
1120.6+1
1121.1+1
1121.5+4
1121.3+3 | 21.2+
21.4+
21.2-
22.4+
22.2+ | | | - 1 | 1 2 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 111
8 111
9 111
0 111 | 1 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 111
8 111
9 111
0 111 | 1 1111
3 1111
4 1111
5 1111 | 6 111
8 1111
9 111 | 1
2
111
3
111
5
111
5 | 9 6 9 6 0 | -1 02 m == 10 | 11111 | | | Abell | 1201
1202
1203
1204
1205 | 1206
1207
1208
1209
1210 | 1212
1212
1213
1214
1214 | 1216
1217
1218
1219 | 122
122
122
122
122 | 1226
1227
1228
1229
1230 | 1237
1232
1233
1234
1236 | 1236
1237
1238
1239 | 1242
1242
1243
1244 | 1246
1247
1248
1249 | | | | | | | | 31 | | | | | | | | a | 17.
17.
17. | 17.
16.
17.
17. | 17.
16.
17.
16. | 16.
13.
17. | 16.
17.
17.
17. | 16.
15.
17.
17. | 17.0
15.9
15.7
17.2 | 17.2
17.0
17.3
16.6 | 18.0
16.6
17.3
17.5 | 17.2
17.7
17.8
16.0 | |---|---|--|--|--|---|---|--|--|---|--
---| | | R D | 0100 | 1000
1020
1020 | 00011
0044 | 000000 | 0 6 2 5 0 | 00000 | 0 4 4 6 C | 0 0 0 0 0
0 0 0 0 4 | 00000 | 00000
0040 | | | z | 0.1178 | 0.0698
0.0783
0.1535 | 0.1070
0.0763 | 0.0215 | 0.1126 | 0.0514 | 0.1053
0.0603
0.0831 | | 0.0382 | 0.0441
0.0913
0.0778 | | | ۵ | 96
64
51
57 | 77
48
56
30
66 | 57
44
41
74
51 | 16
117
78
46
51 | 55
94
54
8 | 50
59
37
76 | 92
54
53
52 | 66
79
58
40
31 | 90
44
78
44 | 382
382
382 | | | x y T_{B-M} | 236 140 I-II
190 31
266 275 II-III
189 118 III
122 213 III | 185 134 II-III:
227 287
181 336 II:
223 307
177 165 III | 26 133 I-II
170 297
112 311
169 121 III
231 266 III | 68 298 II-III
159 316 II-IIII:
62 73 II-III
101 237
314 293 II-III | 146 85 III
145 192 I-II:
145 87 III
306 314 III
136 96 | 134 157 III
58 314 III
205 191 III
124 322
196 293 III | 286 77 II-III
88 191 II:
46 254 III
190 140 III
111 194 III | 106 111 I-II:
31 94 III
178 131 III
93 141 III
92 231 II-III | 88 200 I
77 184
269 166
40 241 II-III:
72 83 | 311 268
132 85
71 127 III
69 49 III
308 281 | | | 9 1 | 139.15 56.37
282.11 38.58
216.69 74.31
255.77 66.46
162.06 69.62 | 255.43 66.72
136.83 53.96
259.07 65.07
136.47 53.65
254.71 67.25 | 153.30 66.58
260.50 64.61
157.89 68.53
270.78 56.82
194.50 74.88 | 132.47 48.46
234.81 73.03
145.99 62.79
160.36 69.61
148.40 64.38 | 246.71 70.80
254.96 68.01
272.04 56.47
147.62 64.13
276.52 51.24 | 271.25 57.73
140.67 59.12
223.30 74.96
261.48 65.51
216.19 75.57 | 128.22 41.25
129.95 44.82
141.44 60.17
227.10 74.91
256.18 68.46 | 272.85 57.20
144.44 62.81
228.02 75.06
272.80 57.81
255.65 69.23 | 280.17 47.83
272.63 58.66
149.88 66.83
157.91 70.41
278.42 51.49 | 140.43 60.18
183.07 75.53
277.96 52.25
274.91 56.46
140.15 59.97 | | | RA(2000)Dec | 1142.5+5832
1141.9-2127
1142.1+2502
1142.2+1009
1142.7+4154 | 1142.5+1026
1143.0+6117
1142.8+0813
1143.5+6139
1143.1+1101 | 1143.8+4621
1143.6+0729
1143.9+4344
1143.7-0145 | 1145.0+6725
1144.5+1950
1145.0+5115
1144.8+4221
1145.2+4920 | 1145.5+1532
1145.5+1131
1145.5-0223
1146.0+4944
1146.1-0814 | 1146.3-0104
1147.0+5544
1146.8+2330
1147.1+0757 | 1148.5+7513
1148.4+7126
1148.2+5437
1148.0+2233
1148.1+1133 | 1148.4-0156
1148.8+5137
1149.0+2223
1149.4-0122
1149.6+1215 | 1149.8-1217
1150.6-0034
1150.8+4700
1151.1+4223
1150.9-0828 | 1151.2+5451
1151.2+331
1151.0-0739
1151.2-0305
1151.4+5506 | | 3 | RA(1950)Dec | 1139.8+5849
1139.4-2111
1139.5+2519
1139.6+1026
1140.1+4211 | 1139.9+1043
1140.3+6134
1140.2+0830
1140.8+6156
1140.5+1118 | 1141.1+4638
1141.0+0746
1141.3+4401
1141.1-0129
1141.8+3111 | 1142.2+6742
1141.9+2007
1142.3+5132
1142.2+4238
1142.5+4937 | 1142.9+1549
1142.9+1148
1142.9-0207
1143.3+5001
1143.5-0758 | 1143.7-0048
1144.3+5601
1144.2+2347
1144.5+0814
1144.9+2541 | 1145.7+7530
1145.6+7143
1145.5+5454
1145.4+2250
1145.5+1150 | 1145.8-0140
1146.2+5154
1146.4+2240
1146.8-0106
1147.0+1232 | 1147.2-1201
1148.0-0018
1148.2+4717
1148.5+4240
1148.3-0812 | 1148.6+5508
1148.6+3348
1148.4-0723
1148.6-0249
1148.8+5523 | | | Abell | 1351
1352
1353
1354
1355 | 1356
1357
1358
1359
1360 | 1361
1362
1363
1364
1365 | 1366
1367
1368
1369
1370 | 1371
1372
1373
1374
1375 | 1376
1377
1378
1379
1380 | 1381
1382
1383
1384
1385 | 1386
1387
1388
1389
1390 | 1391
1392
1393
1394
1395 | 1396
1397
1398
1399
1400 | | , | | | | | | | | | | | | | | C z RD m | 36 0 16.5
85 0 5 16.7
62 0 6 18.0
80 0.2131 2 6 17.5
36 0 0 17.2 | 34 0 0 17.6
71 0 5 16.8
37 0.0481 0 4 15.7
80 0 5 17.0
78 0 6 17.8 | 53 0 6 17.6
64 0 5 17.2
44 0.0341 0 1 13.9
35 0 0 16.5 | 47 0 0 17.6
82 0 5 16.5
56 0.0566 1 3 15.0
04 0 6 17.8
40 0 17.6 | 45
45 0.0104 0 5 17.2
50
0 5 17.2
58
0 5 17.0
63
0 5 17.2 | 80 0 6 17.8
54 0 6 17.5
53 0 5 17.2
59 0 5 16.5
38 0 0 17.8 | 93 0 6 17.6
46 0 16.0
49 0 17.4
39 0.0555 0 4 15.7
51 0 5 17.2 | 46
50 0.0826 1 5 17.2
39
47
0 0 17.4
45
0 0 17.2 | 56 0 6 17.6
53 0.1061 1 5 17.2
32 0.0318 0 5 17.2
51 0 1095 1 5 17.2 | 59 0.0970 1 5 16.8
65 1 0 17.0
99 0 5 17.0
66 0 5 16.9
37 0 0 17.6 | | | z R D | 6 0 0 16.
5 0 5 16.
2 0 6 18.
0 0.2131 2 6 17.
6 0 17. | 4 0 0 17.
1 0 5 16.
7 0.0481 0 4 15.
0 5 17.
8 0 6 17. | 8 1 0 17.
4 0 6 17.
4 0 0 5 17.
5 0 0 1 13. | 0 0 17.
0 5 16.
0 5 16.
0 6 17.
0 0 17. | 0.0104 0 5 17.
0 5 17.
0 5 17.
0 5 17.
0 5 17. | 0 0 6 17.
3 0 6 17.
9 0 5 17.
8 0 0 17. | 3 0 6 17.
6 0 0 16.
9 0 0 555 0 4 15.
1 0 5 17. | 6 0.0826 1 5 17.
9 0 0.0826 1 5 17.
7 0 0 17.
5 0 0 17. | 6 0 6 17.
2 0.1061 1 5 17.
2 0.0318 0 5 17.
1 0.1095 1 5 17. | 9 0.0970 1 5 16.
5 1 0 17.
9 0 5 17.
6 0 5 16.
7 | | | y T_{B-M} C z R D | 0 70 36 0 0 16.
5 240 II: 85 0 5 16.
4 262 III 62 0 6 18.
1 190 II-III 80 0.2131 2 6 17.
8 154 36 0 0 17. | 143 34 0 0 17.
32 II. 71 71 0 5 16.
2 21 III. 87 0.0481 0 4 15.
102 II-III 78 0 6 17. | 207 58 1 0 17.
328 III 53 0 6 17.
274 III 44 0.0341 0 1 13.
214 35 0 0 16. | 294 47 0 0 17.
134 I-II: 82 0 5 16.
269 II 56 0.0566 1 3 15.
227 40 0 0 17. | 222 45 0 0 17. 70 45 0.0104 0 5 17. 108 III 58 0 5 17. 281 II-III 63 0 5 17. | 119 III 80 0 6 17.
292 III 54 0 6 17.
211 1-II 59 0 5 16.
300 38 0 0 17. | 2 37 46 0 0 16.5
5 319 49 0 0 0 16.
2 307 39 0.0555 0 4 15.
5 334 II-III 51 0 5 17. | 6 348 III 46 0 4 16.
6 119 III 50 0.0826 1 5 17.
2 276 47 0 0 17.
9 52 45 0 0 17. | 10 131 III 56 0 6 17. 09 114 III 53 0.1061 1 5 17. 40 254 32 12 0.0318 0 5 17. 05 285 II-III: 51 0.1095 1 5 17. | 02 201 II-III 59 0.0970 1 5 16.
61 129 65 1 0 17.
00 197 III 99 0 5 17.
94 291 II-III 66 0 5 16.
66 250 37 0 0 17. | | | b x y T_{B-M} C z R D | 1133.9+7503 129.46 41.07 40 70 36 0 0 16.
1133.4+6624 134.68 48.90 125 240 II: 85 0 5 16.
1132.8+3647 177.88 70.78 34 262 III 62 0 6 18.
1132.8+3527 181.67 71.29 31 190 II-III 80 0.2131 2 6 17.
1133.0+3446 183.64 71.56 28 154 36 0 0 17. | 1133.2+4636 156.13 65.16 124 143 34 0 0 17. 1132.8+1431 243.52 67.77 310 32 II 71 0 5 16. 1132.9-0358 268.55 53.57 313 2 II-III 37 0.0481 0 4 15. 1133.0-1150 274.37 46.63 307 224 III 80 5 17. 1133.8+3950 169.71 69.49 212 102 II-III 78 0 6 17. | 1133.2-2402 280.89 35.46 37 207 58 1 0 17. 1134.2+5003 150.54 62.73 118 328 III 53 0 6 17. 1134.2+1704 238.34 69.52 291 168 III 64 0.0341 0 1 13. 1134.8+4902 151.84 63.57 112 274 III 44 0.0341 0 1 13. 1136.1+7155 130.94 44.02 141 214 35 0 0 16. | 1135.6+3723 175.49 71.01 300 294 47 0 0 17. 1135.1-133 276.07 45.33 279 134 I-II: 82 0 5 16. 1136.4+5457 143.94 59.01 1372 269 II 56 0.0566 1 3 15. 1136.3+4004 168.40 69.76 187 114 III 104 0 6 17. 1135.8-0548 271.12 52.33 272 227 40 40 | 1136.644804 152.79 64.49 95 222 45 00 17.
1137.0+6313 136.42 51.91 97 70 45 0.0104 0 5 17.
1136.2-0801 272.90 50.41 266 108 II 50 0 5 17.
1137.1+5705 141.60 57.26 278 44 III 58 0 5 17.
1136.7+0711 257.87 63.32 262 281 II-III 63 0 5 17. | 1137.1+4010 167.91 69.83 179 119 III 80 0 6 17.
1137.0+2631 210.78 73.40 322 33 II; 54 0 6 17.
1137.6+3722 174.97 71.37 279 292 III 53 0 5 17.
1138.6+7107 131.14 44.83 129 171 I-II 59 0 5 16.
1138.4+4931 150.13 63.57 82 300 38 0 0 17. | 1138.8+6335 135.86 51.68 88 90 II-III 93 0 6 17. 1138.0-0920 274.42 49.42 242 37 46 0 0 16. 1139.3+4952 149.39 63.39 75 319 49 0 0 17. 1138.9-0418 271.04 54.00 232 307 39 0.0555 0 4 15. 1140.1+6808 132.68 47.62 95 334 II-III 51 0 5 17. | 1139.4+3224 189.92 73.53 286 348 III 46 0 4 16.
1139.4+1009 254.50 65.99 226 119 III 50 0.0826 1 5 17.
1140.4+1814 237.74 71.39 211 230 0 0 16.
1141.6+7304 129.81 43.11 122 276 47 0 0 17.
1140.9+4452 156.81 67.33 49 52 45 0 0 17. | 1140.6+1023 254.65 66.37 210 131 III 56 0 6 17. 1140.7+1004 255.22 66.15 209 114 III 53 0.1061 1 17. 1141.3+6039 137.63 54.43 240 254 32 0.0318 0 5 17. 1140.8-1043 275.25 48.45 205 285 II-III 51 0 5 16. 1141.2+1041 254.41 66.69 202 147 III: 71 0.1095 1 5 17. | 61.85 62.81 202 201 II-III 59 0.0970 1 5 16.
83.55 34.70 261 129 65 1 0 17.
77.36 46.99 200 197 III 99 0 5 17.
42.20 59.10 94 291 II-III 66 0 5 16.
18.25 74.14 266 250 37 0 0 17. | | | l b x y T_{B-M} C z R D | 133.9+7503 129.46 41.07 40 70 36 0 0 16.
133.4+6624 134.68 48.90 125 240 II: 85 0 5 16.
132.8+3647 177.88 70.78 34 262 III 62 0 6 18.
132.8+3527 181.67 71.29 31 190 II-III 80 0.2131 2 6 17.
133.0+3446 183.64 71.56 28 154 36 0 0 17. | 133.2+4636 156.13 65.16 124 143 34 0 0 17. 132.8+1431 243.52 67.77 310 32 II 71 0 5 16. 132.9-0358 268.55 53.57 313 2 II-III 37 0.0481 0 4 15. 133.9-1350 274.77 46.63 307 224 III 80 5 17. 133.8+3950 169.71 69.49 212 102 II-III 78 0 6 17. | 33.2-2402 280.89 35.46 37 207 58 10 17. 44.2+503 150.54 62.73 118 328 III 53 0 6 17. 34.2+1704 238.34 65.57 112 274 III 64 0.0341 0 1 13. 36.1+7155 130.94 44.02 141 214 35 0 0 16. | 135.6+3723 175.49 71.01 300 294 47 0 0 17.
135.1-1331 276.07 45.33 279 134 I-II: 82 0 5 16.
136.4+5457 143.94 59.01 137 269 II 56
0.0566 1 3 15.
136.3+4004 168.40 69.76 187 114 III 104 0 6 17.
135.8-0548 271.12 52.33 272 227 40 | 136.6+4804 152.79 64.49 95 222 45 00 17. 137.0+6313 136.42 51.91 97 70 45 0.0104 0 5 17. 136.2-0801 272.90 50.41 266 108 III 50 0 5 17. 137.1+5705 141.60 57.26 278 64 III 58 0 5 17. 136.7+0711 257.87 63.32 262 281 II-III 63 0 5 17. | 137.1+4010 167.91 69.83 179 119 III 80 0 6 17. 137.0+2631 210.78 73.40 322 33 II; 54 0 6 17. 137.6+3722 174.97 7137 279 292 III 59 0 5 17. 138.6+7107 131.14 44.83 129 171 -II 59 0 5 16. 138.4+4931 150.13 63.57 82 300 | 138.8+6335 135.86 51.68 88 90 II-III 93 0 6 17.
138.0-0920 274.42 49.42 242 37 46 0 0 16.
139.3+4952 149.39 63.39 75 319 49 0 0 17.
138.9-0418 271.04 54.00 232 307 39 0.0555 0 4 15.
140.1+6808 132.68 47.62 95 334 II-III 51 0 5 17. | 139.4+3224 189.92 73.53 286 348 III 46 0 4 16.
130.4+1009 254.50 65.99 226 119 III 50 0.0826 1 5 17.
140.4+1814 237.74 71.39 211 230 0 0 16.
141.6+7304 129.81 43.11 122 276 47 0 0 17.
140.9+4452 156.81 67.33 49 52 45 0 0 17. | 140.6+1023 254.65 66.37 210 131 III 56 0 6 17.
140.7+1004 255.22 66.15 209 114 III 53 0.1061 15 17.
141.3+6039 137.63 54.43 240 254 32 0.0318 0 5 17.
140.8-1043 276.25 48.45 205 285 IIIIII 51 0.1095 15 17. | 141.2+0541 261.85 62.81 202 201 II-III 59 0.0970 1 5 16.
141.0-2530 283.55 34.70 261 129 65 1 0 17.
141.2-1221 277.36 46.99 200 197 III 99 0 5 17.
142.1+5521 142.20 59.10 94 291 II-III 66 0 5 16.
141.8+2435 218.25 74.14 266 250 17. | | | D | 6 17.3
4 15.7
0 17.8
5 17.2 | 5 17.0
0 17.2
0 17.3
5 17.0
6 18.0 | 5 16.6
5 17.2
5 17.2
6 18.0 | 5 17.2
0 17.4
4 16.0
5 17.4 | 0 17.8
6 17.8
6 17.8
6 17.8 | 6 17.6
6 18.0
6 17.8
9 17.0 | 5 17.6
5 17.3
1 6 17.6 | 0 0 17.3
0 6 17.8
0 6 17.8
0 6 17.8 | 0 17.
5 17.
6 17. | 1 4 16.0
2 6 17.8
0 6 17.0
0 5 16.0 | |-----------|-------------------|--|--|--|--|--|--|--|--|--|--| | | z R | 0.0631 0 | 00000 | 00000 | 0.0844 1 | 0
0
0
0
0 | 00000 | 00000 | 00000 | 0
0
0
0.1429 2 | 0.0941 1
0.1669 2
0 | | | ٥ | 131
46
43
52
91 | 75
42
48
60
56 | ::
04
08
86
86
86
86
86 | 8 4 6
8 6 8
8 9 4 8 | 33
88
61
70
56 | 77
71
94
37
88 | 77
34
58
35 | 43
97
99
50 | 40
51
64
123 | 58
I:101
76
58
44 | | | T_{B-M} | 8 III
9 | 3 III
3 7
7 III
9 III | 45 II-III
59 III
07 III
43 III | 45 II
56
79 I:
57 III
04 III | 43
61 II:
50 III
54 III | 70 III
14 II
47 III
79
63 III | 03 III
39 III:
79
26 II: | 48
17 I-II
26 III
83 II:
51 III | 19 ZII
19 ZII
19 ZII
14 ZIII:
76 ZII | 84 III
38 II-II:
06 II:
44 III | | | x | 225 28
219 9°
223 28
218 50
308 11 | 220 12
214 13
216 26
215 3
210 17 | 199 24
206 5
208 10
298 4
290 33 | 301 14
287 25
203 7
195 15
287 20 | 187 14
260 26
257 25
165 5 | 253 27
208 11
238 24
139 27
224 26 | 127 10
125 23
219 13
267 23 | 212 2/
212 2/
106 2/
205 8 | 99 31
197 11
95 21
198 21
194 17 | 317 18
186 :
184 30
83 , | | | 9 | 6 39.98
2 63.80
8 56.19
4 64.46
4 79.42 | 8 64.45
3 63.20
3 55.84
0 62.91
6 62.43 | 9 71.90
2 73.76
4 64.27
4 79.61
4 78.74 | 6 78.54
0 44.09
7 64.21
1 54.02
8 45.06 | 5 63.23
4 79.75
4 79.85
2 74.17
5 79.88 | 2 79.81
5 52.42
8 80.41
0 44.91
0 80.36 | 6 75.32
9 55.86
1 78.11
8 44.70
3 57.53 | 4 80.67
1 80.85
13 49.93
12 81.35
6 77.66 | 2 68.71
2 79.15
13 67.04
4 80.81
8 81.37 | 11 57.19
17 81.67
13 80.72
19 74.90
16 42.49 | | | 1 | 288.2
139.8:
281.1
140.4 | 274.48
139.03
281.63
276.30
138.16 | 258.6
275.2
212.5
183.8 | 233.5
127.7
139.4
283.4
127.8 | 137.8
189.3
190.3
261.0
226.1 | 188.2
130.5
189.5
288.9
187.8 | 260.9
284.7
167.1
127.2
284.1 | 188.94
192.41
288.03
208.32
254.46 | 275.8
170.1
277.9
231.1
196.5 | 131.9
214.0
181.5
266.0
126.3 | | | RA(2000)Dec | 1203.3-2130
1203.6+5144
1203.7-0438
1203.8+5101
1203.9+2759 | 1203.9+0414
1204.1+5225
1204.2-0503
1204.3+0230
1204.5+5317 | 1204.6+4231
1204.8+1503
1204.8+0356
1204.9+2643
1205.0+3207 | 1205.0+2237
1205.4+7236
1205.6+5125
1205.8-0706
1206.9+7138 | 1207.4+5236
1207.6+3048
1207.8+3036
1208.0+1457
1208.1+2424 | 1208.2+3058
1208.9+6404
1210.5+3033
1210.1-1649
1210.7+3051 | 1210.8+1552
1211.0-0-34
1210.9+3517
1211.1+7205
1211.5-0352 | 1211.8+3034
1212.5-1148
1212.5+2729
1212.5+1837 | 1213.0+0753
1213.0+3410
1213.3+0602
1213.2+2356
1213.4+2914 | 1213.4+5916
1214.1+2639
1214.2+3139
1214.2+1445
1213.8+7423 | | | RA(1950)Dec | 1200.7-2114
1201.1+5201
1201.1-0422
1201.3+5118
1201.3+2816 | 1201.3+0431
1201.6+5242
1201.6-0447
1201.7+0247
1202.0+5334 | 1202.1+4248
1202.2+1520
1202.2+0413
1202.3+2700
1202.4+3224 | 1202.4+2254
1202.9+7253
1203.1+5142
1203.2-0650
1204.4+7155 | 1204.9+5253
1205.1+3105
1205.3+3053
1205.4+1514
1205.6+2441 | 1205.7+3115
1206.4+6421
1208.0+3050
1207.5-1633
1208.2+3108 | 1208.3+1609
1208.4+0518
1208.4+3534
1208.7+7222
1208.9-0336 | 1209.3+3051
1209.3+3016
1209.9-1132
1210.0+2746
1210.0+1854 | 1210.4+0810
1210.5+3427
1210.7+0619
1210.7+2413
1210.9+2931 | 1210.9+5933
1211.6+2656
1211.7+3156
1211.7+1502
1211.5+7440 | | Continued | Abell | 1451
1452
1453
1454 | 1456
1457
1458
1459 | 1461
1462
1463
1464 | 1466
1467
1468
1469
1470 | 1471
1472
1473
1474
1475 | 1476
1477
1478
1479
1480 | 1481
1482
1483
1484
1485 | 1486
1487
1488
1489
1490 | 1491
1492
1493
1494
1495 | 1496
1497
1498
1499 | | TABLE 3- | z RD m | 0.1648 3 5 17.0
0 0 17.2
0 6 17.6
0 0 16.6 | 0 5 17.2
0 5 17.0
0 5 16.9
0 5 17.2 | 0.0839 2 4 15.9
0.1427 3 5 17.1
0 5 17.2
0 5 17.0 | 0 6 17.6
0 6 17.6
0 0 17.4
0 5 17.0 | 0 5 17.2
0 0 17.8
0 5 16.5
0 5 16.6 | 0 5 17.2
0 5 17.0
0 6 17.8
0 0 17.6
0.2105 2 6 17.6 | 0 5 17.2
0 0 17.7
0 5 17.1
0 0 17.2
0 5 17.0 | 0.0646 1 3 15.4
0.1339 3 5 17.2
0 6 17.5
0 0 17.2
0 0 17.6 | 0 5 17.2
0 5 17.0
0 6 17.8
0 5 17.0
0 6 17.6 | 0.1028 2 5 17.0
0 6 17.4
0 5 16.6
0 5 17.2
2 0 17.6 | | | ٥ | 153
34
50
39
50 | 56
72
72
38 | 69
196 (
53 | 52
50
48
I 73 | 65
48
63
63 | . 50
33
96 | 65
63
44
42
42 | 69
154
58
30
49 | 56
77
63
106
81 | 85
73
72
107 | | | x y T_{B-M} | 124 286 III
166 240
139 131 III
53 65
136 72 II-III | 281 323 II:
37 122 II
39 78 II-III
236 276 III
103 310 | 14 187 III:
70 302 III
100 184 I
18 127 III:
142 103 III | 324 153 III
78 143 III:
318 181
322 203 II-II:
87 330 III | 263 326 III
309 161
62 93 II-III
304 166 III
68 346 III | 293 163 III
70 256 II-III
291 104 III
47 206
189 313 III | 57 228 II:
249 332
49 319 III
268 153
265 148 III | 237 339 III
265 75 I-II:
42 202 III
177 349
20 242 | 27 197 II-III
254 68 III
25 170 III
31 220 III
248 207 III | 99 113 II-III
18 209 III
232 172 II-III
316 143 III | | | l b | 170.21 73.90
135.65 55.23
204.01 76.86
275.19 56.84
208.86 76.90 | 131.11 48.31
274.87 57.94
251.25 72.19
145.89 65.42
168.10 73.94 | 274.63 59.22
128.32 43.07
226.36 76.79
249.97 73.10
136.79 57.74 | 261.64 69.06
177.33 75.98
285.06 42.29
274.85 59.58
214.68 77.70 | 130.57 48.34
279.95 53.40
180.39 76.66
270.40 64.45
213.47 78.09 | 283.43 47.85
192.68 77.86
264.50 68.67
171.97 75.91
143.22 65.24 | 194.93 78.21
130.15 48.29
216.21 78.35
281.25 53.52
264.33 69.63 | 136.90 59.47
273.62 63.27
197.05 78.55
142.05 64.75
288.10 38.03 | 171.75 76.31
255.91 73.29
229.85 77.99
195.18 78.70
277.29 60.21 | 135.29 57.90
226.74 78.38
282.13 54.07
202.45 79.21
288.76 38.22 | | | RA(2000)Dec | 1152.1+3716
1152.5+6025
1152.3+2823
1152.4-0248
1152.5+2717 | 1153.3+6753
1153.6-0144
1153.8+1523
1154.1+4904
1154.0+3743 | 1155.3-0031
1155.8+7328
1155.4+2322
1155.5+1617
1155.8+5752 | 1155.9+1046
1156.1+3436
1156.0-1838
1156.3-0014
1156.6+2605 | 1157.0+6758
1157.2-0701
1157.4+3339
1157.6+0502
1158.2+2623 | 1158.3-1259
1158.4+3042
1158.4+0951
1159.1+3545
1159.5+4947 | 1159.5+3010
1159.7+6806
1159.7+2552
1200.3-0710 | 1200.5+5615
1200.5+0320
1200.7+2941
1200.8+5027
1200.7-2322 | 1200.9+3534
1201.1+1512
1201.5+2305
1201.7+3001
1201.8-0009 |
1201.9+5801
1202.1+2349
1203.0-0649
1203.1+2834
1203.1-2318 | | | RA(1950)Dec | 1149.5+3733
1149.9+6042
1149.7+2840
1149.8-0232 | 1150.6+6810
1151.0-0128
1151.2+1540
1151.5+4921 | 1152.7-0015
1153.1+7345
1152.8+2339
1152.9+1634
1153.2+5809 | 1153.3+1103
1153.5+3453
1153.4-1822
1153.7+0002
1154.0+2622 | 1154.4+6815
1154.6-0645
1154.8+3356
1155.0+0519
1155.6+2640 | 1155.7-1243
1155.8+3059
1155.8+1008
1156.5+3602
1156.9+5004 | 1156.9+3027
1157.1+6823
1157.1+2609
1157.7-0654
1157.8+1058 | 1157.9+5632
1157.9+0337
1158.1+2958
1158.2+5044
1158.1-2306 | 1158.3+3551
1158.5+1529
1158.9+2322
1159.1+3018
1159.2+0007 | 1159.3+5818
1159.5+2406
1200.4-0633
1200.5+2851
1200.5-2302 | | | Abell | 1401
1402
1403
1404 | 1406
1407
1408
1409
1410 | 1411
1412
1413
1414
1415 | 1416
1417
1418
1419
1420 | 1421
1422
1423
1424
1425 | 1426
1427
1428
1429
1430 | 1431
1432
1433
1434
1435 | 1436
1437
1438
1439
1440 | 1441
1442
1443
1444
1445 | 1446
1447
1448
1449
1450 | | | В | 5 17.
5 16.
6 17.
6 17.
5 17. | 0 17.
6 18.
5 17.
5 17.
0 18. | 0 17.
6 17.
6 17.
5 16.
6 17. | 5 16.
0 17.
6 17.
5 17.
6 17. | 6 17.
6 17.
0 17.
5 16.
0 17. | 6 18.
6 17.
0 17.
6 17. | 5 17.
6 17.
6 17.
5 16.
5 16. | 0 18.
0 17.
0 17.
5 16.
5 16. | 6 17.
0 18.
0 17.
6 17.
6 17. | 0 17.
6 17.
0 18.
0 17.
0 17. | |------------|-------------|--|--|--|--|--|--|--|--|--|---| | | R | 37 1
52 2
0 | 4
2
0 0 0 1 2 | 04000 | 8
00000 | m 0 0 0 0 | 00000 | 00000 | 0
0
18
0 | 00000 | 00000 | | | 12 | 0.08 | 0.10 | 0.19 | 0.07 | 0.20 | | | 0.07 | | 0.30 | | | C | 50
75
100
I. 62
58 | 31
89
36
50
123 | 31
I: 77
50
33
85 | 91
35
56
40
1: 78 | 190
I 63
43
48
47 | 158
73
44
40
I 81 | 50
80
72
51
I 31 | 34
39
48
I: 38 | 121
49
32
I: 57
71 | 48
46
35
37 | | | T_{B-M} | | | :::::::::::::::::::::::::::::::::::::: | 11-11 | 111-111 | III
III-III | | 111-11 | 11-11 | н | | | y | 255
203
141
108 | 1
52
132
280
66 | 75
173
222
315
183 | 135
43
187
142
314 | 182
72
58
285
46 | 73
201
274
215
215 | 43
115
4
185
296 | 107
85
281
250
279 | 320
206
73
83 | 312
230
169
47
254 | | | ы | 316
191
178
176 | 151
65
139
78
135 | 177
200
270
125
190 | 57
232
258
108
108 | 175
104
104
101
218 | 41
86
161
47
130 | 59
231
57
55
47 | 42
172
37
40
149 | 116
161
183
160
160
30 | 31
144
157
19
26 | | | q | 79.41
73.80
72.75
77.87 | 40.67
54.15
49.08
49.92
77.39 | 47.69
75.51
62.88
64.41
75.39 | 52.66
86.55
63.56
78.90
81.91 | 33.76
48.03
47.78
52.00
86.83 | 53.86
62.40
73.84
51.23
39.18 | 65.45
64.93
46.83
44.23 | 72.64
87.68
57.99
81.17
43.96 | 67.14
86.63
83.49
87.91
46.40 | 82.33
44.88
87.20
65.59 | | | 1 | 7.42
3.65
5.63
5.93 | 7.40
6.62
6.46
5.71
3.45 | 5.33
8.99
3.37
5.08 | 5.87
8.51
8.17
3.78
6.94 | 23.59
97.61
97.64
97.13 | 5.73
5.60
1.73
5.16
3.91 | 5.90
7.30
9.43
9.43 | 94.40
02.07
98.30
87.57
24.08 | 27.09
60.14
40.55
02.39
99.87 | 86.78
24.06
67.42
97.69 | | | | 2 4 4 7 6
4 4 2 8
4 2 2 8
2 2 2 2 8 | 00 29
50 12
34 29
06 12 | 10001 | 24 4 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 | 48888 | 11 12 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 | 44 29
05 12
57 29
34 29
29 29 | нииии | 44488 | 24426 | | | RA(2000)Dec | 7+3639
8+1144
8+1034
0+1557
0-1323 | 3-22
6+62
0-13
1+67 | 1+6921
2+4110
1+5403
0+0150
2+4121 | 0+642;
1+264,
8+532,
3+163;
4+194 | 7+8320
7-1441
7-1456
9-1042
3+2648 | 8+6311
9-0016
1+4303
9+6550
0+7755 | 8+02
4+52
5-15
8-18
3-16 | 1+0956
2+2732
6-0447
6+1835
1+7308 | 4+4954
0+2947
0+3318
2+2729
6-1625 | 4+1944
1+7213
5+2906
8+0248
0-1716 | | | RA(20 | 1229.
1229.
1230.
1231.
1232. | 1233.
1232.
1234.
1233. | 1233.
1234.
1234.
1235. | 1235.
1236.
1235.
1236.
1236. | 1232.
1236.
1236.
1236.
1237. | 1236.
1237.
1238.
1237.
1237. | 1239.
1239.
1240.
1240. | 1241.
1241.
1241.
1241.
1240. | 1241.
1242.
1242.
1242.
1242. | 1242.
1241.
1242.
1242.
1243. | | | Dec | 3656
1201
1051
1614
1307 | -2144
+6307
-1318
+6723
+1527 | 6938
4127
5420
0207
4138 | 6439
2701
5341
1652
2005 | 8337
1425
1440
1026
2705 | 6328
0000
4320
6607
7812 | 0301
5222
1541
1818
1613 | 1013
2749
0431
1852
7325 | 5011
3004
3335
2746
1609 | 2001
7230
2923
0305
1700 | | | A(1950)Dec | 27.2+
27.3+
28.3+
28.5+ | 30.7-7
30.3+0
31.4-7
30.9+0 | 31.0+
31.8+
31.8+
32.4+
32.8+ | 33.64 | 31.5+8
34.1-1
34.1-1
34.3-1 | 34.6+63
35.3-0
35.7+43
35.7+6 | 37.2+03
37.1+52
37.9-15
38.2-18 | 38.6+
39.0-
39.1+ | 39.1+
39.6+
39.6+
40.0- | 39.9+
39.1+
40.0+
40.2+ | | pənı | R | 12212 | 12212 | 1221 | 1221 | 5 4 3 12 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 | 1221 | 5 4 3 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1221 | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 12212 | | -Continued | Abell | 1551
1552
1553
1553
1554 | 1556
1557
1558
1559
1560 | 1561
1562
1563
1564
1564 | 1566
1567
1568
1569
1570 | 157
157
157
157 | 1576
1577
1578
1579
1580 | 15888 | 1586
1587
1588
1589
1590 | 15999 | 1596
1597
1598
1599
1600 | | LE 3- | В | 5.22.2 | 8.0
7.2
8.0 | 4.8.1.9. | 6.6
6.6
7.0
6.8 | 6.8
77.8
8.0
8.0 | 8.08.7 | 7.8
7.3
8.0
7.0 | 6.9
7.6
7.2
7.8 | 7.22 | 7.27 | | TABL | R D | 00000 | 0 0 0 0 0
0 4 10 0 0 | 0 0 17
0 6 17
0 0 17
3 6 17
0 6 17 | 0000 | 92000 | 0 5 16
0 0 17
0 6 17
0 0 18
0 6 17 | 2000 | 0000 | 4 8 0 8 9 | 90908 | | | z] | 1836 | 0592 | 1995 | | 1369
259 | | 2319 | | 0586 | 1611 | | | 0 | 57
52
41
98 0. | 68
39 0.
53
80 | 41
70
38
32 0. | 50
44
45
45 | 65
61
36
03 0.
86 0. | 62
34
75
51 | 68
61
19 0.
30 | 652
86
86 | 58 0.
73
40
62 0. | 86
66
39
67
0. | | | М- | HH ## | 1111 | | ::::-
::::-
::::- | I
I
-III 1 | н | III: | | III | 1 II II I | | | TB | 11 2 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 | 2 2 4 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 6 4 8 H | 4 4 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 III
29
60 III
84 II | | | 9 II I | | | | x y | 78 6
72 29
72 29
67 25 | 66 31
98 22
60 19
61 19
57 6 | 54 14
26 7
40 26
39 3 | 19 17
15 26
48 8
24 5
28 14 | 27 12
04 28
06 22
99 31
98 15 | 91 3
83 2
53 1
74 3 | 58 4
64 26
39 29
51 2 | 164 170
26 111
234 51
103 34
228 122 | 223 4
235 29
27 23
96 8
233 18 | 98 145
322 45
201 293
314 162
223 202 | | | 9 | 39 1
57
68
97 1 | .59 2
.38 2
.68 1 | .87
.64
.07 2
.98 1 | . 24
. 85
. 88
. 3 | 45
11
11
32
47
2
86
2 | 96
96
98
98
98
97
97
97
97
97
97
97
97
97
97
97
97
97 | 04 2
116 2
00 2
32 2
75 2 | 91
71
90
33 | 20
20
20
20
20
20 | 33
74
73 | | | 1 | 97 53.
71 53.
83 78.
06 81.
78 78. | 89 80
02 56
90 77
16 78
50 82 | 75 42
55 70
47 44
37 79
42 82 | 03 66
10 56
98 53
76 82
11 48 | 23 48.
29 67.
71 67.
54 69. | 42 74.
33 73.
86 57.
44 64. | 04 59.
28 81.
01 63.
67 55. | 87 39.
97 36.
79 59.
90 54.
68 66. | 59 70.
98 67.
50 83.
06 69. | 11 84.
13 80.
14 84. | | | 1 | 287.3
253.8
208.0 | 179.8
131.0
260.9
162.1
210.5 | 291.7
141.5
126.4
251.3 | 282.0
288.1
128.9
212.7
291.1 | 291.2
136.2
282.7
281.5
281.5 | 274.4
277.3
129.8
128.9 | 130.0
257.2
288.0
128.6
293.7 | 124.8
295.9
129.7
127.9
287.6 | 284.5
132.9
179.5
127.4
134.0 | 127.0
215.8
268.0
191.5 | | |)Dec | 6313
0813
1926
2731 | 3146
5958
1729
3537
2711 | 1914
4513
7249
2039
2758 | 0514
0500
6330
2655
1315 | 1341
4911
0608
0750
0108 | 1344
1213
5854
6113
0205 | 5742
2047
0054
6130 | 7707
2549
5653
6233 | 0850
4926
3022
6325
4724 | 6436
2645
1925
2856
4742 | | | RA(2000)Dec
 214.1+6
215.2-0
215.2+1
215.3+2 | 5.8
6.1
6.3
6.3
7 | 216.8-
216.9+
217.0+
217.9+
218.7+ | 219.0+
219.2-
219.0+
219.3+
219.6- | 219.6-
219.9+
221.3+
221.7+ | 222.8+
222.8+
222.9+
223.3+
222.9+ | 24.1+
24.4+
24.6+
24.1+
25.4- | 24.9+
26.6-
26.3+
26.3+
27.2+ | 27.4+0
27.6+4
27.8+3
27.7+6
28.2+4 | 28.0+6.
28.6+2.
29.0+13.
29.0+21. | | | | 0 6 8 8 8 | 3 121
5 121
6 121
8 121 | ппппп | ааааа | ппппп | ппппп | 122 | 34 12 12 12 12 12 12 12 12 12 12 12 12 12 | 3 12
9 12
1 12
1 12 | 12212 | | | RA(1950)Dec | 7+633
6-075
7+194
8+274
1+185 | 3+3203
4+6015
6+1746
8+3554
0+2728 | 2-1858
4+4530
7+7306
4+2056
2+2815 | 4+0531
6-0444
6+6347
8+2712
0-1259 | 0-1325
4+4928
7+0625
2+0807
5-0052 | 6+1401
3+1230
5+5911
9+6130
3+0222 | 7+5759
9+2104
0+0111
7+6147
8-1523 | 8+772
0-253
9+571
0+625
6+043 | 9+090
2+494
3+303
4+634
8+474 | 7+645
1+270
5+194
5+291
8+475 | | | RA(18 | 1211.
1212.
1212.
1212.
1213. | 1213.
1213.
1213.
1213.
1214. | 1214.
1214.
1214.
1215.
1216. | 1216.
1216.
1216.
1216.
1216. | 1217.
1217.
1218.
1219.
1219. | 1219.
1220.
1220.
1220. | 1221.
1221.
1222.
1221. | 1222.
1224.
1223.
1224. | 1224.
1225.
1225.
1225. | 1225.
1226.
1226.
1226. | | | Abell | 1501
1502
1503
1504 | 1506
1507
1508
1509
1510 | 1511
1512
1513
1514
1515 | 1516
1517
1518
1519
1520 | 1521
1522
1523
1524
1525 | 1526
1527
1528
1529
1530 | 1531
1532
1533
1534
1535 | 1536
1537
1538
1539
1540 | 541
542
543
545 | 546
547
548
549
550 | | | 7 1 | | | | | 34 | | | | ппппп | ааааа | | | R D m | 1 4 16.0
0 6 17.4
0 6 17.7
0 5 16.9
0 6 18.0 | 2 1 13.5
0 6 17.5
0 5 17.2
0 0 17.5
0 6 17.8 | 2 6 17.6
0 5 17.2
0 5 17.0
2 0 17.3
0 6 17.7 | 0 5 16.8
2 6 17.6
0 5 16.6
0 6 17.8 | 0 6 17.4
0 5 17.2
0 0 16.9
3 5 17.2
1 5 17.2 | 0 0 17.5
2 6 17.7
0 6 17.4
2 6 17.5
0 0 17.0 | 0 5 17.1
0 6 17.5
0 5 17.1
0 5 17.2 | 0 6 18.0
0 0 17.5
0 0 17.6
4 6 17.6
0 5 17.2 | 1 3 15.4
0 0 17.2
0 0 17.2
0 5 17.2
0 6 17.8 | 0 0 17.7
2 6 17.5
0 6 17.6
0 6 17.4
0 5 17.2 | |---|--|--|--|--|--|--|--|--|--|--|--| | - | z | 0.0825 | 0.0232 | 0.1671 | 0.1648 | 0.1055 | 0.1832 | 760.0 | 0.181 | 0.0722 | 0.1829 | | | ٥ | 70
64
67
31 | 106
55
50
44
70 | 97
59
56
112
130 | 98 35 4 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 | : 71
53
37
165
50 | 45
112
78
115
47 | : 79
75
64
68
44 | 60
33
49
228
56 | 64
42
50
63 | 84
96
96
98
98 | | | y T _{B-M} | 312 I-II
135 III
181 II-III
217 I
183 II-III | 08 II
02 II-III
29 II-III
92 | 67 III:
40 II
78 II:
97 | 77 III
13 III:
85 II
75 II-III
42 III | 81 II-III
86 II:
88
96 II-III
38 II-III | 04
64 II-III
38 III
12 III
98 | 18 II-III
38 II
18 III
31 III: | 02 II
31
85
33 II-III
90 II-III | 66 II
56
42
09 III
05 III | 99
22 III
60 II:
-2 III
48 III: | | | 8 | 120 3:
118 1:
115 1:
260 2:
212 1: | 256 1(
112 3(
95 3
89 3 | 232 1
77 3
74 .
209 19 | 39 .
213 3:
63 28
57 2: | 188 24
239 4
23 1
181 2
233 1: | 203 2
184 2
251 3:
176 3: | 44 2
187 11
39 2
304 11 | 126 1
228 1
279 2
277 1
270 2 | 123
268
147
209
309 | 136 29
131 13
244 10
233 . | | | 9 1 | 306.75 58.63
306.03 49.34
310.27 74.10
92.20 86.63
121.79 51.73 | 58.09 87.96
317.94 82.22
307.71 59.35
309.26 66.43
118.99 66.72 | 74.06 86.99
311.39 71.00
308.65 60.23
306.51 38.57
23.96 87.34 | 118.77 65.14
94.86 84.65
323.52 81.64
323.71 81.43
327.11 82.59 | 307.18 40.11
99.71 82.95
118.05 65.49
121.16 49.59
102.03 82.01 | 116.56 69.18
83.87 85.08
120.21 54.81
88.67 84.29
109.87 76.94 | 121.44 45.22
115.05 70.34
121.31 45.22
317.84 72.77
97.95 81.52 | 343.80 83.15
118.32 58.56
312.35 57.82
313.39 61.10
334.39 81.02 | 105.19 77.23
313.90 61.50
114.02 68.30
91.88 81.87
118.69 55.29 | 114.07 67.21
1111.82 70.41
312.88 55.42
310.10 40.50
51.51 84.63 | | | RA(2000)Dec | 1259.4-0411
1259.7-1329
1259.6+1120
1259.4+3000
1258.3+6522 | 1259.8+2758
1260.0+1935
1301.2-0326
1301.5+0340
1301.2+5019 | 1301.8+2904
1302.5+0818
1302.8-0231
1303.7-2413
1303.2+2640 | 1302.8+5153
1303.3+3148
1303.9+1915
1304.3+1904
1304.3+2019 | 1305.5-2239
1304.8+3333
1304.5+5130
1303.5+6729
1305.2+3432 | 1304.9+4746
1305.9+3053
1305.0+6214
1306.6+3147
1306.7+3947 | 1305.0+7151
1306.8+4632
1306.2+7151
1309.2+1025
1308.8+3445 | 1310.7+2152
1309.8+5824
1311.5-0440
1311.6-0121
1311.2+1923 | 1311.4+3912
1312.3-0055
1311.3+4829
1311.6+3400
1311.8+6140 | 1312.6+4933
1312.9+4615
1314.1-0700
1314.9-2202
1314.7+2843 | | | RA(1950)Dec | 1256.8-0355
1257.1-1313
1257.1+1137
1257.0+3017
1256.3+6539 | 1257.4+2815
1257.5+1952
1258.6-0310
1259.0+0357
1259.0+5036 | 1259.4+2921
1260.0+0835
1300.2-0215
1301.0-2357
1300.8+2657 | 1300.6+5210
1300.9+3205
1301.4+1932
1301.8+1921
1301.9+2036 | 1302.8-2223
1302.4+3350
1302.3+5147
1301.7+6746
1302.9+3449 |
1302.7+4803
1303.5+3110
1303.0+6231
1304.2+3204
1304.4+4004 | 1303.4+7208
1304.6+4649
1304.6+7208
1306.7+1041
1306.5+3501 | 1308.3+2208
1307.8+5840
1308.9-0425
1309.0-0106
1308.8+1939 | 1309.1+3928
1309.7-0040
1309.1+4845
1309.3+3416 | 1310.444949
1310.744631
1311.5-0645
1312.2-2147
1312.3+2859 | | | Abell | 1651
1652
1653
1653 | 1656
1657
1658
1659
1660 | 1661
1662
1663
1664 | 1666
1667
1668
1669
1670 | 1671
1672
1673
1674
1675 | 1676
1677
1678
1679
1680 | 1681
1682
1683
1684 | 1686
1687
1688
1689
1690 | 1691
1692
1693
1694
1695 | 1696
1697
1698
1699
1700 | | | | | | | | | | | | | | | | RD m | 0 5 17.2
0 6 17.8
0 5 17.2
1 0 17.6
0 5 17.0 | 0 5 17.0
0 5 16.7
0 0 17.2
891 1 5 16.8
0 5 17.2 | 0 6 17.8
0 0 17.6
0 6 17.6
29 0 6 17.5
0 6 18.0 | 52 0 4 16.0
0 6 17.6
0 6 17.5
0 6 17.8
0 5 17.2 | 0 5 16.5
855 2 6 18.0
0 6 17.5
0 6 17.8 | 0 0 17.8
0 0 18.0
0 6 17.4
0 6 17.5
649 1 5 16.7 | 508 0 3 15.4
962 2 5 17.2
1 0 17.6
0 6 17.6
0 5 17.2 | 0 6 17.8
0 5 17.0
0 4 16.0
0 0 17.5
0 6 17.8 | 0 6 17.6
0 6 17.3
981 1 6 17.7
449 1 4 15.7
0 6 17.8 | 0 0 16.9
0 6 17.8
1 0 16.9
0 0 17.2
845 2 5 17.0 | | | z R D | 0 0 5 17.
2 0 6 17.
2 1 0 17.
5 0 5 17. | 2 0 5 17.
3 0 5 16.
6 0.0891 1 5 16.
5 0 5 17. | 5 0 6 17.
7 0 0 17.
1 0.229 0 6 17.
8 0 6 18. | 9 0.0833 0 4 16.
9 0.152 0 6 17.
0 0 6 17.
5 0 6 17.
2 0 5 17. | 1 0.2855 2 6 18.5 0 6 17.0 0 6 17.5 0 0 17.5 0 0 17.5 0 0 17.5 0 0 17.5 0 0 17.5 0 0 17.5 0 0 17.5 0 0 17.5 | 0 0 17.
0 0 18.
0 6 17.
0 6 17.
49 1 5 16. | 08 0 3 15.
62 2 5 17.
1 0 17.
0 6 17.
0 5 17. | 0 6 17.
0 5 17.
0 4 16.
0 0 17.
0 6 17. | 9 0 6 17.
0 0.1981 1 6 17.
8 0.0449 1 4 15.
4 0 6 17. | 0 0 16.
0 6 17.
1 0 16.
0 0 17.
45 2 5 17. | | | R D | 0 5 17.
0 6 17.
0 5 17.
1 0 17.
0 5 17. | 0 5 17.
0 5 16.
0 0 17.
0 0 18 1 5 16. | 0 6 17.
0 0 17.
0 6 17.
0 6 17.
0 6 18. | 0.0833 0 4 16.
0.152 0 6 17.
0 6 17.
0 6 17.
0 5 17. | 0 5 16.
0.2855 2 6 18.
0 6 17.
0 6 17.
0 0 17. | 5 0 0 17.
7 0 0 18.
7 0 6 17.
3 0 6 17.
4 0.0649 1 5 16. | 4 0.0508 0 3 15.
0 0.1962 2 5 17.
5 1 0 17.
6 0 6 17.
3 0 5 17. | 6 17.
5 17.
4 16.
0 17.
6 17. | 0 6 17.
0.1981 1 6 17.
0.0449 1 4 15.
0 6 17. | 0 0 16.
3 0 6 17.
8 1 0 16.
5 0 0 17.
4 0.0845 2 5 17. | | | y T_{B-M} C z R D | 27 55 II 70 0 5 17.
44 72 I: 59 0 6 17.
23 24 III 62 0 5 17.
31 258 63 1 0 17.
18 58 III 55 0 5 17. | 15 216 III 51 0 5 17. 06 121 III 82 0 5 16. 09 348 II-III: 56 0.0891 15 16. 02 219 II-III 65 0 0 5 17. | 72 266 II-III 65 0 6 17.
76 68 33 0 0 17.
24 194 II-III: 77 0 6 17.
16 94 III 51 0.229 0 6 17.
59 267 II-III: 58 0 6 18. | 64 273 II-III 39 0.0833 0 4 16.
83 176 III 139 0.152 0 6 17.
76 138 II: 55 0 6 17.
48 129 III 42 0 5 17. | 5 42 III 51 0 5 16.
6 318 III 96 0.2855 2 6 18.
9 206 III 65 0 6 17.
1 66 45 0 0 17. | 64 289 45 0 0 17. 27 288 37 0 0 18. 25 144 II-III 57 0 6 17. 20 140 II-III 54 0.0649 1 5 16. | 08 31 I 34 0.0508 0 3 15.
32 155 II-III: 80 0.1962 2 5 17.
12 80 75 1 0 17.
92 179 III: 66 0 6 17.
88 58 III 53 0 5 17. | 6 47 III 103 0 6 17.
9 47 III 60 0 5 17.
8 269 III 33 0 4 16.
6 117 49 0 17.
0 33 III 61 0 6 17. | 3 134 II-III 79 0 6 17.
0 237 III 64 0 6 17.
2 250 III 68 0.0449 1 4 15.
0 61 II: 64 0 6 17. | 39 338 30 0 0 16.
43 328 II 53 0 6 17.
65 68 68 1 0 16.
28 96 35 0 0 17.
28 119 I-II 114 0.0845 2 5 17. | | | b x y T_{B-M} C z R D | 96.69 71.75 327 55 II 70 05 17.
07.20 88.22 144 72 I: 59 06 17.
00.27 47.28 323 24 III 62 05 17.
00.70 39.73 131 258 63 1 0 17.
00.62 41.91 318 58 III 55 0 5 17. | 00.29 50.85 315 216 III 51 0 5 17.
23.62 40.97 106 121 III 82 0 5 16.
33.92 88.68 109 37 11.
40.74 86.95 102 219 II-III 65 0.0891 15 16. | 96.10 81.73 272 266 II-III 65 0 6 17.
01.06 60.05 276 68 33 0 0 17.
28.52 81.52 124 194 II-III: 77 0 6 17.
23.60 47.44 116 94 III 51 0.229 0 6 17.
24.60 68.24 59 267 II-III: 58 0 6 18. | 24.10 62.08 164 273 II-III 39 0.0833 0 4 16.
23.87 57.93 83 176 III 139 0.152 0 6 17.
40.082 73.72 254 136 III 55 0 6 17.
42.21 88.53 76 138 III 55 0 6 17.
62.07 61.28 248 129 III 42 0 5 17. | 23.48 54.45 275 42 III 51 0 5 16.
23.71 67.30 46 318 III 96 0.2855 2 6 18.
23.77 69.40 39 206 III 65 0 6 17.
02.77 71.51 238 37 III 60 0 6 17.
02.79 42.08 231 66 45 0 0 17. | 25.62 85.80 64 289 45 0 0 17. 02.60 76.20 27 28 37 0 0 18. 26.39 88.51 51 51 06 11. 37 0 6 17. 03.14 67.43 220 140 II-III 54 0.0649 1 5 16. | 3.44 47.43 208 31 I 34 0.0508 0 3 15.
1.28 88.28 32 155 II-III: 80 0.1962 2 5 17.
3.65 36.48 12 80 75 10 17.
4.08 56.18 192 179 III: 66 0 6 17.
4.14 53.93 188 58 III 53 0 5 17. | 22.54 54.31 246 47 III 103 0 6 17.
21.95 66.31 110 47 III 60 0 5 17.
08.33 81.83 178 269 III 33 0 4 16.
05.95 73.01 176 117 49 0 0 17.
22.34 54.56 240 33 III 61 0 6 17. | 86.86 88.36 303 134 II-III 79 0 6 17. 06.30 69.24 160 237 III 64 0 6 17. 04.92 45.50 152 250 II 68 0.0449 1 6 17. 05.07 47.98 150 61 II: 64 0 6 17. | 2.06 54.96 39 338 30 0 0 16.
4.35 82.83 143 328 II 53 0 6 17.
5.03 36.22 265 68 68 10 16.
8.85 72.55 128 96 35 0 0 17.
6.73 61.06 128 119 I-II 114 0.0845 2 5 17. | | | ec l b x y T_{B-M} C z R D | 243.5+0858 296.69 71.75 327 55 II 70 0 5 17.
243.5+2717 207.20 88.22 144 72 I: 59 0 6 17.
243.9-1533 300.27 47.28 323 24 III 62 0 5 17.
243.9-2306 300.70 39.73 131 258 63 1 0 17.
244.0-2055 300.62 41.91 318 58 III 55 0 5 17. | 244.6-1159 300.29 50.85 315 216 III 51 0 5 17.
245.6+3323 133.92 83.61 143 77 88 0 0 17.
246.5+526.5 244.88 88.68 109 348 II-III: 56 0.0891 1 5 16.
247.1+3001 140.74 86.95 102 219 II-III 65 0.5 17. | 247.3+1854 296.10 81.73 272 266 II-III 65 0 6 17.
247.7-0248 301.06 60.05 276 68 33 0 0 17.
247.4+3533 128.52 81.52 124 194 II-III: 77 0 6 17.
246.3+6940 123.60 47.44 116 94 III 51 0.229 0 6 17.
247.7+4852 124.60 68.24 59 267 II-III: 58 0 6 18. | 247.6+5502 124.10 62.08 164 273 II-III 39 0.0833 0 4 16. 247.6+5911 123.87 57.93 83 176 III 139 0.152 0 6 177 249.0+1051 300.82 73.72 254 156 III 50 0 6 177 249.2+2.830 142.21 88.53 76 138 III 55 0 6 177 249.8-0135 302.07 61.28 248 129 III 42 0 5 17. | 248.7+6240 123.48 54.45 275 42 III 51 0 5 16.
249.6+4949 123.71 67.30 46 318 III 96 0.2855 2 6 18.
249.7+4743 123.77 69.40 39 206 III 65 0 6 17.
250.3+0838 302.77 71.51 238 37 III 60 0 6 17.
251.0-2047 302.79 42.08 231 66 45 | 250.5+3119 125.62 85.80 64 289 45 00 17. 251.1+1319 302.60 76.20 227 288 37 00 18. 251.0+2836 126.39 88.51 55 144 IIIII 57 0 6 17. 251.6+0355 303.07 66.80 221 106 III: 53 0 6 17. 251.7+0433 303.14 67.43 220 140 IIIII 54 0.0649 1 5 16. | 252.8-1526 303.44 47.43 208 31 I 34 0.0508 0 3 15.
253.0+2848 111.28 88.28 32 155 II-III: 80 0.1962 2 5 17.
254.0-2623 303.65 36.48 12 80 75 1 0 17.
254.0-0641 304.08 56.18 192 179 III: 66 0 6 17.
254.3-0856 304.14 53.93 188 58 III 53 0 5 17. | 253.5+6248 122.54 54.31 246 47 III 103 0 6 17. 253.9+5048 121.95 66.31 110 47 III 60 0 5 17. 254.7+1859 308.33 811.83 175 117 49 0 0 17. 255.0+1009 305.55 73.01 176 117 49 0 0 17. 255.5+103 122.34 54.56 240 33 III 61 0 6 17. | 255.8+2826 86.86 88.36 303 134 II-III 79 0 6 17. 255.9+464 120.19 73.02 275.29+4404 120.19 73.02 2757 229 111 64 0.617. 2557.2-1721 304.92 45.50 152 250 11 68 0.0449 14 15. 257.3-1452 305.07 47.98 150 61 II: 64 0 6 17. | 255.8+6209 122.06 54.96 39 338 30 0 0 16.
255.5+2005 314.35 82.83 143 328 II 53 0 6 17.
259.0-2637 305.03 36.22 265 68 68 10 16.
258.6+0945 308.85 72.55 128 96 35 0 0 17.
258.8-0145 306.73 61.06 128 119 I-II 114 0.0845 2 5 17. | | R
D m | 0 0 17.6
0 0 17.2
0 6 17.3
0 5 17.0 | 0 0 17.6
1 0 17.0
0 3 6 18.0
1 3 6 17.6 | | 0 6 17.5
01 1 4 15.7
0 0 17.2
0 5 17.2
0 6 17.6 | 1 0 16.8
0 5 17.0
76 1 3 15.6
91 2 6 17.6
96 2 4 15.7 | 0 0 17.2
0 6 17.6
0 5 16.6
0 0 17.6 | 62 0 3 15.4
0 6 17.8
66 0 4 16.3
36 2 5 17.2 | 0 6 17.6
0 6 17.8
0 6 17.7
0 0 17.8 | 1 0 17.0
0 6 17.8
1 0 1 16.4
1 0 17.0 | 4
00000
00000
00000 | |-----------------------|--|--|--|--|--|--|---|--|--|--| | z | 7110 | 1
0
8 0.280
2 0.168
8 0.171 | 4 2 2 4
0 .18 | 4
5
5
3
3 | 8
6 0.07
1 0.16
2 0.06 | 15930 | 1 0.07
7 0.07
4 0.21 | 0 88 11 4 15 | 7
44
7
7
0.084
5 | 0.00 | | x y T_{B-M} C | 15 227 3
328 329 4
328 152 III 6
325 230 II-III 5
317 105 III: 6 | 92 335
164 247 54
252 349 III 199
285 335 III 133
284 333 III 16 | 64 92 III 11
139 166 III 55
182 158 III 15
58 214 4
257 130 II 10 | 122 347 III 55
238 177 II 61
238 108 41
95 95 III 55
134 176 III 55 | 61 84 61111 6118 812 107 111 812 107 111 863 341 1 9 | 312 112
173 193 1-II 7
166 258 III 4
160 193 4
154 46 III 7 | 35 207 III 4
150 304 II-III 7
307 302 III 4
141 200 II 7
106 329 I-II 9 | 138 52 III 6
93 257 III 5
299 203 III 7
70 89 4
290 217 III: 7 | 295 127 6
293 258 II-III 5
287 336 III 7
287 30 I 11 | 7 217 II
2 267 II-III
4 85
3 185 II
7 110 II: | | 9 1 | 320.75 55.75
63.63 80.25
327.97 65.74
318.51 49.98
344.92 75.44 | 115.16 54.33
315.34 38.58
107.16 65.34
359.94 78.08 | 112.31 58.62
13.37 79.23
92.61 73.48
113.16 56.39
337.76 70.17 | 64.01 78.76
112.48 57.00
319.99 47.35
39.12 79.38
90.84 72.68 | 316.89 35.22
322.42 49.86
331.10 62.31
87.45 73.50
31.93 78.71 | 110.60 57.89
117.63 45.02
323.16 49.66
100.05 67.15
332.91 62.62 | 49.20 78.04
348.53 71.66
108.23 60.02
336.45 65.04
80.90 74.31 | 95.30 69.13
76.35 74.96
106.17 61.58
84.18 73.09
106.11 61.27 | 318.94 35.63
52.99 77.11
59.02 76.63
318.99 34.70 | 4.93 48.
6.94 76.
8.64 57.
0.42 75. | | m RA(2000)Dec | 1331.3-0544
1330.9+3145
1331.6+0450
1332.0-1139
1331.7+1557 | 1330.5+6212
1333.5-2316
1332.5+5030
1334.0+2014
1334.1+2012 | 1332.8+5738
1335.6+2305
1335.3+4057
1334.7+5954
1336.9+1025 | 1337.1+3227
1336.0+5912
1338.7-1357
1339.2+2745
1340.1+4116 | 1342.2-2616
1342.1-1105
1342.1+0214
1341.2+4000
1341.9+2621 | 1341.0+5801
1339.4+7136
1344.2-1108
1343.2+4736
1344.6+0252 | 1344.5+2950
1344.9+1341
1343.4+5535
1345.6+0544
1344.7+3808 | 1345.5+4459
1345.9+3648
1345.2+5345
1346.2+3939
1346.3+5402 | 1348.9-2526
1348.0+3050
1348.3+3217
1350.2-2619
1349.0+2635 | .3-115
.5+250
.1+573
.4+352 | | RA(1950)Dec | 1328.7-0529
1328.6+3201
1329.1+0506
1329.4-1124
1329.3+1613 | 1328.7+6228
1330.8-2301
1330.5+5046
1331.6+2030 | 1330.9+5754
1333.2+2321
1333.1+4113
1332.9+6010
1334.4+1041 | 1334.8+3243
1334.2+5928
1336.0-1342
1336.9+2801
1337.9+4132 | 1339.4-2601
1339.4-1050
1339.6+0230
1339.0+4016
1339.6+2637 | 1339.2+5817
1338.2+7152
1341.5-1053
1341.2+4752
1342.1+0308 | 1342.2+3006
1342.5+1357
1341.5+5551
1343.1+0600
1342.5+3824 | 1343.4+4514
1343.7+3703
1343.3+5401
1344.0+3954
1344.4+5417 | 1346.1-2512
1345.7+3105
1346.1+3232
1347.4-2605
1346.7+2650 | 1347.6-1140
1347.2+2515
1346.3+5750
1347.2+3541
1347.4+2819 | | Abell | 1751
1752
1753
1754
1754 | 1756
1757
1758
1759
1759 | 1761
1762
1763
1764
1764 | 1766
1767
1768
1769
170 | 1771
1772
1773
1774
1774 | 1776
1777
1778
1778
1779 | 1781
1782
1783
1784
1784 | 1786
1787
1788
1789
1790 | 1791
1792
1793
1794
1795 | 1796
1797
1798
1799
1800 | | R D m | 0 0 17.0
0 6 17.8
0 6 18.0
0 6 17.8
0 6 17.7 | 0 5 17.2
0 6 17.6
0 6 17.8
0 0 16.4 | 0 0 17.2
0 6 18.0
0 5 17.2
0 6 18.0
0 5 17.0 | 0 6 17.8
0 5 17.2
0 6 17.8
0 0 18.0
0 6 17.6 | 0 6 17.8
0 6 17.7
0 5 17.0
0 6 17.5
0 6 17.7 | 0 5 17.2
0 0 17.4
0 0 17.6
0 5 17.2
0 6 17.6 | 0 5 17.2
0 6 17.5
0 6 18.0
0 0 17.3
0 6 17.8 | 0 2 14.8
0 6 17.3
2 5 16.6
0 6 17.6
0 6 17.6 | 0 5 17.1
0 0 17.5
0 6 17.8
0 5 17.2
2 0 18.4 | 0 0 17.2
0 6 18.0
0 6 17.4
1 4 16.0
0 4 15.9 | | z | 2
0
2
4 0.22
9 0.296 | 2
1 0.196
3 | 63215 | ი.ი4.ფი | 6 0.328
7 7
3 | . | 00048 | 1 0.035
0
5 0.1146
1 | | 0.059 | | x y T_{B-M} C | 199 269 4.
115 62 III 55
246 99 II 12.
121 141 II 13.
273 267 III 55 | 75 184 III 99
186 120 II-III: 6
94 136 III 77
185 29 45
63 305 | 178 160
87 124 III 55
162 112 II-III 55
62 81 III 66
65 310 II-III: 50 | 59 104 III 66
29 188 III 66
98 263 III 99
58 237 48
135 58 II-III 46 | 132 289 III 36
263 116 III 86
51 281 III 47
299 162 II-III: 56
120 278 I-II 65 | 118 166 II: 56
279 258 45
113 176 46
111 26 III 76
288 79 III 59 | 137 117 II 92
106 94 I-II 67
64 324 III 90
172 279 40
82 236 III 59 | 244 40 III: 70
316 301 III: 70
119 87 I: 85
247 185 III 51
274 197 III-III: 56 | 238 188 II-III 73
67 300
62 87 II: 69
116 179 I-II 53
149 205 | 289 186 39
145 141 III 59
35 238 III 56
267 302 II: 55
18 107 II-III: 40 | | q 1 | 118.16 55.92
110.07 71.43
114.33 64.91
118.91 52.36
120.66 44.16 | 104.79 74.85
116.81 58.62
110.05 70.00
311.35 40.96
106.76 72.65 | 325.88 72.62
85.55 80.81
115.89 58.68
79.86 81.08
94.59 77.73 | 81.64 80.72
101.96 74.47
118.65 50.06
90.43 78.78
321.18 64.87 | 346.95 79.52
119.43 46.83
92.16 78.03
04.34 81.83
314.03 45.38 | 340.79 77.56
312.69 39.21
330.04 72.43
318.64 58.52
356.92 80.74 | 115.05 58.47
313.55 41.95
322.85 63.73
113.28 61.31
333.47 73.17 | 312.58 35.10
108.97 66.64
114.19 58.95
51.77 82.00
99.10 73.83 | 119.26 45.42
336.40 74.07
324.64 64.95
114.81 57.27
111.60 62.52 | 82.25 78.63
110.66 63.64
350.32 77.59
87.94 76.79
322.65 59.51 | | RA(2000)Dec | 1313.5+6100
1314.5+4507
1315.0+5149
1314.4+6435
1313.7+7252 | 1316.3+4123
1315.7+5813
1316.9+4629
1318.7-2127
1317.8+4338 | 1318.7+1058
1318.4+3416
1319.2+5804
1320.6+3327
1320.8+3744 | 1320.9+3354
1320.8+4126
1319.5+6650
1321.3+3623
1322.0+0305 | 1322.2+1923
1319.7+7006
1322.1+3712
1322.6+2300
1323.9-1647 | 1323.2+1705
1324.2-2302
1323.7+1116
1324.0-0321
1323.6+2127 | 1322.7+5810
1325.0-2013
1326.1+0212
1323.9+5512
1326.1+1223 | 1326.9-2706
1325.4+4933
1325.1+5736
1326.2+2926
1326.1+4139 | 1324.1+7128
1327.3+1334
1327.5+0336
1325.9+5918
1326.8+5349 | 1327.8+3527
1327.2+5237
1329.8+1824
1329.5+3737
1330.9-0150 | | - 1 | 9 5 2 2 9 | 00004 | 22027 | 10
42
42
06
23
21 | 22
22
22
28
28
32 | 21
32
06
43 | 38888 | 545
52
52
53
53 | 52
52
34
05 | 443
453
35
35 | | Abell RA(1950)Dec | 1311.6+611
1312.3+452
1312.9+520
1312.6+645
1312.3+730 | 1314.1+413
1313.7+582
1314.7+464
1316.0-211;
1315.6+435 | 1316.2+111
1316.1+343
1317.2+582
1318.3+334
1318.5+380 | 1318.6+34.
1318.6+41.
1317.8+67(
1319.0+36. | 1319.8+19
1318.2+70
1319.8+37
1320.2+23
1321.2-16 | 1320.8+17
1321.5-22
1321.2+11
1321.4-03
1321.2+21 | 1320.8+58
1322.3-19
1323.6+02
1321.9+55
1323.6+12 | 1324.1-26
1323.3+49
1323.2+57
1323.9+29
1323.9+41 | 1322.7+71
1324.8+13
1325.0+03
1324.0+59 | 1325.5+35.
1325.2+52!
1327.4+18.
1327.3+37!
1328.3-013 | | 1 | z R D m | 0 5 17.2
0 5 16.6
1 0 17.3
0 6 17.5
0 6 17.5 | 0 5 17.2
1 0 17.6
0 0 17.6
0 988 0 6 17.8
0 5 17.2 | 0 5 17.2
0 5 17.2
0 5 17.2
0 5 17.0
0 0 17.8 | 0 5 17.2
0 6 17.5
0 6 17.5
0 5 17.2
0 5 17.2 | 0 0 17.1
0508 0 5 17.2
0776 0 4 16.3
0 6 17.4 | 0 5 17.1
1241 1 6 17.8
254 1 6 17.5
0 6 17.8
1413 1 5 17.2 | 0 5 17.0
0 5 17.2
0 0 17.1
0220 0 6 17.8
0 5 17.0 | 0 5 17.2
0 0 17.2
0 0 17.5
1860 2 6 17.3
0570 0 3 15.5 | 0 5 17.0
0 5 16.5
0 6 17.5
0 5 17.0
225 0 6 17.7 | 0 0 17.2
0 0 17.0
0 5 17.0
0 5 16.0
0 5 17.2 | |-----------|--|---
---|---|---|---|--|---|---|---|--| | | C | 125
77
56
68
55 | 76
79
44
45 0. | 58
51
77
40 | 3 4 4 1 1 4 3 3 9 4 4 1 3 8 9 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 | 32
39 0.
41 0.
50 | 53
71 0.
56 0.
56 | 58
166
46
45 0. | 73
36
40
112 0.
37 0. | 76
79
69
60
107 0. | 45
30
33
72 | | | x y T_{B-M} | 90 223 II-III
210 91 III
202 115
105 270 II-III
268 163 II: | 82 272 III
58 163
167 300
143 217
165 317 II: | 67 96 II-III:
160 241 II-III
65 66 III
158 182 II
137 141 | 138 250 III
51 275 II
44 86 III
46 184 III:
124 246 III | 112 129
119 317
321 112 II
318 198 II-III
101 320 III: | 97 99 III
107 201 II
306 169 III
87 85 II-III
313 125 III | 79 256 III
76 192 III
288 243
101 287
97 302 II-III | 287 57 III
50 189
42 312
260 249 III
35 328 I-II: | 252 105 III
117 254 III
286 340 III
58 287 III
304 175 III | 39 309
313 59
221 272 III:
293 193 III
312 212 III | | | 9 1 | 115.78 44.05
02.61 69.69
325.84 39.78
51.22 73.62
91.89 65.37 | 30.28 73.14
324.34 34.88
336.27 53.53
107.11 54.71
00.21 67.89 | 39.66 73.14
347.91 62.52
37.77 73.09
346.53 61.63
105.71 55.91 | 348.85 62.38
50.91 72.60
39.04 72.71
45.22 72.72
349.16 62.17 | 331.28 44.87
107.94 52.86
40.88 72.21
46.12 72.18
02.29 67.00 | 331.27 44.24
105.85 54.65
44.35 71.97
109.02 51.34
23.12 70.87 | 350.80 61.77
342.41 56.03
326.91 35.67
106.99 53.19
83.18 66.57 | 37.75 71.49
11.43 68.19
03.66 66.02
48.91 71.03
354.04 62.17 | 40.66 70.93
118.19 37.66
115.71 41.63
81.53 66.18
113.76 44.39 | 68.61 68.81
337.20 48.05
32.34 69.93
13.16 67.22
63.55 69.00 | | | RA(2000)Dec | 1359.3+7207
1404.0+1545
1405.6-1946
1404.3+3104
1405.0+4704 | 1406.1+2506
1408.4-2446
1407.9-0419
1405.2+6005 | 1407.5+2748
1408.1+0632
1407.6+2715
1408.3+0526
1405.9+5839 | 1409.8+0642
1409.1+3108
1409.4+2736
1409.3+2926
1410.8+0638 | 1412.4-1330
1409.0+6156
1411.7+2808
1411.7+2944
1412.5+1401 | 1413.5-1404
1410.4+5946
1412.8+2912
1410.5+6335
1413.2+2233 | 1414.2+0651
1414.7-0019
1415.6-2314
1411.9+6122
1413.8+4340 | 1414.7+2708
1416.5+1735
1417.1+1352
1416.7+3043
1417.6+0811 | 1417.5+2802
1409.9+7843
1413.0+7420
1417.7+4322
1414.4+7114 | 1418.7+3747
1421.0-0846
1420.6+2509
1421.4+1741
1421.1+3601 | | 1 | RA(1950)Dec | 1358.5+7222
1401.6+1600
1402.8-1932
1402.1+3119 | 1403.8+2521
1405.6-2432
1405.3-0405
1403.6+6020
1405.2+1412 | 1405.2+2803
1405.6+0647
1405.3+2730
1405.8+0541 | 1407.3+0657
1406.9+3123
1407.1+2751
1407.1+2941
1408.3+0653 | 1409.7-1316
1407.6+6211
1409.5+2823
1409.5+2959
1410.1+1416 | 1410.8-1350
1408.9+6001
1410.6+2927
1409.1+6350
1410.9+2238 | 1411.7+0705
1412.1-0006
1412.8-2301
1410.4+6137
1411.8+4354 | 1412.5+2722
1414.1+1749
1414.7+1406
1414.5+3057
1415.1+0825 | 1415.3+2816
1410.4+7858
1412.6+7434
1415.7+4336
1413.7+7128 | 1416.6+3801
1418.3-0833
1418.3+2523
1419.0+1755
1419.0+3615 | | Continued | Abell | 1851
1852
1853
1853
1854 | 1856
1857
1858
1859
1860 | 1861
1862
1863
1864
1865 | 1866
1867
1868
1869
1870 | 1871
1872
1873
1874
1875 | 1876
1877
1878
1879
1880 | 1881
1882
1883
1884
1885 | 1886
1887
1888
1889
1890 | 1891
1892
1893
1894
1895 | 1896
1897
1898
1899
1900 | | | | | | | | | | | | | | | TABLE 3- | z R D m | 0 6 17.8
1 0 17.0
0 6 17.5
0 6 17.6
0 6 17.8 | 0 6 18.0
0 6 18.0
0 0 17.2
0.0788 1 4 15.8
0 5 17.2 | 0 6 17.5
0 0 17.0
0 4 16.0
0 5 17.2
0 6 17.8 | 1 0 17.6
0 5 17.2
0 5 17.2
0 5 17.2
0 6 17.6 | 0 6 17.5
2 0 17.6
0 6 17.5
0 5 17.2 | 0 6 17.5
0.0668 1 5 16.6
0 5 16.6
0 6 17.8
0 6 17.5 | 0.0733 1 3 15.4
0 5 17.2
0 5 17.0
0 5 17.2
0 0 17.6 | .0363 0 4 15.7
.0376 1 4 15.7
0 6 18.0
0 6 17.4
.0104 0 5 17.2 | 0 6 17.5
0 5 17.2
0 0 17.8
0 0 17.2 | 2 0 17.6
0 6 17.6
0 6 17.7
0 5 16.6 | | | R D | 69 0 6 17.
61 1 0 17.
79 0 6 17.
56 0 6 17.
65 0 6 17. | 0 6 18.
0 6 18.
0 0 17.
788 1 4 15.
0 5 17. | 6 17.
0 17.
4 16.
5 17.
6 17. | 76 1 0 17.
50 0 5 17.
34 0 5 17.
65 0 5 17. | 71 0 6 17.
119 2 0 17.
52 0 6 17.
54 0 0 5 17.
49 0 0 6 18. | 102 0 6 17.
68 0.0668 1 5 16.
59 0 5 16.
58 0 6 17.
56 0 6 17. | 733 1 3 1 0 5 1 0 0 5 1 0 0 0 1 1 0 0 1 1 1 1 1 | 41 0.0363 0 4 15
50 0.0376 1 4 15
130 0 6 18
63 0 0.0104 0 5 17 | 6 17.
5 17.
0 17.
0 17.
0 17. | 0 17.
6 17.
6 17.
5 16.
6 17. | | | z R D | 0 6 17.
1 0 17.
0 6 17.
0 6 17.
0 6 17. | 3 0 6 18.
8 0 6 18.
4 0 0 17.
8 0.0788 1 4 15.
5 0 5 17. | 1 0 6 17.
2 0 0 17.
1 0 0 17.
1 0 5 17.
4 0 6 17. | 6 1 0 17.
0 0 5 17.
4 0 5 17.
5 0 5 17.
8 0 6 17. | 2 0 17.
2 0 17.
2 0 6 17.
4 0 5 17.
9 0.0618 0 4 15. | 0.0668 1 5 16.
0 5 16.
0 5 16.
0 6 17.
0 6 17. | 0.0733 1 3 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | 0.0363 0 4 15
0.0376 1 4 15
0 6 18
0.0104 0 5 17 | 5 0 6 17.
9 0 5 17.
0 0 0 17.
5 0 0 17.
9 0 0 17. | 2 0 17.
6 0 6 17.
0 0 6 17.
2 0 5 16.
7 0 6 17. | | | $y T_{B-M}$ C z R D | 53 60 117 111 69 0 6 17.
41 151 111 111 79 0 6 17.
92 280 111 65 0 6 17.
56 73 111 65 0 6 17. | 12.86 75.27 270 68 II 53 0 6 18.
326.84 50.28 56 11 I-II 58 0 6 18.
344.77 67.20 55 74 44 0 0 17.
335.54 63.54 39 168 II: 78 0.0788 14 15.
71.85 74.14 318 228 III 65 0 5 17. | 162 III 61 0 6 17.
305 41 0 0 17.
188 II: 32 0 4 16.
48 II 71 0 5 17.
108 III 74 0 6 17. | 80 76 10 17.
136 III 50 0 5 17.
46 III 34 0 5 17.
147 III 68 0 6 17. | 256 III 71 0 6 17.
51 III-III: 52 0 6 17.
52 III 54 0 6 17.
32 III 49 0.0618 0 4 15. | 0 243 III 102 0 6 17.
8 89 II: 68 0.0668 1 5 16.
0 231 II-III: 59 0 6 17.
8 335 III 56 0 6 17. | 64 104 III 67 0.0733 1 3 1 64 187 III 54 0 5 1 65 1 8 1 1 1 72 0 5 1 6 1 1 1 7 2 0 5 1 6 4 3 1 1 1 5 4 8 0 0 0 1 | 231 II: 41 0.0363 0 4 15
255 I-II 50 0.0376 1 4 15
162 II-III 130 0 6 18
272 I 0 6 17
243 35 0.0104 0 5 17 | 175 III 55 0 6 17.
220 III 79 0 5 17.
327 40 0 0 17.
132 35 0 0 17.
44 39 0 0 17. | 132 113 2 0 17.
144 III 66 0 6 17.
330 III: 50 0 6 17.
58 II: 57 0 6 17. | | | b x y T_{B-M} C z R D | 1350.6+0519 338.44 64.03 75 177 III 69 0 6 17. 1351.4-2642 319.18 34.26 263 60 61 III. 1346.4-4504 100.56 245.60 141 151 IIIII: 79 0 6 17. 1349.2+5722 108.21 58.08 256 73 III 65 0 6 17. | 1350.9+2118 12.86 75.27 270 68 II 53 0 6 18. 1352.4-0944 326.84 50.28 56 11 I-II 58 0 6 18. 1352.3+05094 344.77 67.20 55 74 4 44 0 0 17. 1353.3+0509 33+054 63.54 39 168 II: 78 0.0788 1 4 15. 1352.6+3615 71.85 74.14 318 228 III 65 0 5 17. | 1349.8+7101 116.25 45.34 128 162 III 61 0 6 17.
1353.1+3742 76.01 73.28 311 305 41 0 0 17.
1353.5+3331 69.17 74.35 311 188 II: 32 0 4 16.
1354.1+1464 356.13 70.97 28 48 II 71 0 5 17.
1354.4+0401 338.74 62.43 23 108 III 74 0 6 17. | 1355.7-2621 320.42 34.32 212 80 76 10 17. 1354.3+834 42.52 76.05 222 136 III 50 05 17. 1354.4+2653 35.65 75.98 222 46 III 50 05 17. 1355.2+2441 25.56 75.38 214 232 III 65 05 17. 1356.3+1046 349.04 67.64 315 147 III 68 0 6 17. | 51.37 75.41 201 256 III 71 0 6
17.
21.51 35.06 178 132 119 2 0 17.
90.95 67.94 32 51 III—III: 52 0 6 17.
35.61 75.25 182 42 III 54 0 5 17.
13.43 73.50 181 32 III 49 0.0618 0 4 15. | 1357.8+3035 50.27 75.07 180 243 III 102 0 6 17. 1358.2+2142 16.93 73.87 178 89 II: 68 0.0668 1 5 16. 1358.4+1823 06.89 72.29 280 231 IIIII: 59 0 5 16. 1358.2+3817 75.72 72.11 256 335 III 58 0 6 17. 1357.8+4724 94.69 65.92 28 185 III 56 0 6 17. | 1359.2+2759 40.14 74.98 164 104 III 67 0.0733 1 3 1 3 1 3 1 3 1 3 2 2 2 2 2 2 2 2 2 | 1401.7-1136 328.98 47.68 252 231 II: 41 0.0363 0 4 15 1401.8-1109 322.28 48.08 251 255 I-II 50 0.0376 1 4 15 1400.3-44103 81.88 70.14 230 162 II-III 130 0 6 18 1402.5-0450 333.85 53.71 239 272 I 63 0 6 17 1401.5+3034 49.76 74.29 137 243 35 0.0104 0 5 17 | 23.35 73.62 132 175 III 55 0 6 17. 06.84 71.21 232 200 III 79 0 5 17. 58.41 68.95 232 327 40 0 0 17. 31.07 49.80 230 44 39 0 0 17. | 2.87 34.69 115 132 113 2 0 17.
1.61 73.27 121 144 III 66 0 6 17.
666 42.21 103 330 III: 50 0 6 17.
1.69 69.56 215 73 III 32 0 5 16.
9.84 65.18 216 58 II: 57 0 6 17. | | | ec l b x y T_{B-M} C z R D | 350.6+0519 338.44 64.03 75 177 III 69 0 6 17. 351.4-2642 319.18 34.26 263 60 61 10 17. 346.6+4614 100.06 65.25 109 280 III 56 0 6 17. 349.2+5722 108.21 58.08 256 73 III 65 | 350.9+2118 12.86 75.27 270 68 II 53 0 6 18. 35.4-0944 326.84 50.28 56 11 I-II 58 0 6 18. 352.2+0924 344.77 67.20 55 74 44 0 0 17. 353.3+0509 339.54 65.54 39 168 II: 78 0.0788 14 15. 352.6+3615 71.85 74.14 318 228 III 65 0 5 17. | 349.8+7101 116.25 45.34 128 162 III 61 0 6 17.
353.1+7742 76.01 73.28 311 305 41 0 0 17.
355.5+5531 69.17 74.35 311 188 II: 32 0 4 16.
354.1+1454 356.13 70.97 28 48 II 71 0 5 17.
354.4+0401 338.74 62.43 23 108 III 74 0 6 17. | 355.7-2621 320.42 34.32 212 80 76 1 0 17. 354.3+2834 42.52 76.05 222 136 III 50 0 5 17. 354.3+2834 55.56 75.98 222 46 III 54 0 5 17. 355.2+2421 55.56 75.38 214 232 III 65 0 5 17. 355.3+1046 349.04 67.64 315 147 III 68 0 6 17. | 56.0+3048 51.37 75.41 201 256 III 71 0 6 17.
56.5-252 32.51 35.06 178 132 119 2 0 17.
56.7+44455 90.95 67.94 32 SIII-III: 52 0 617.
56.7+4465 33.61 75.25 182 42 III 54 0.0618 0 4 15.
58.0+2039 13.43 73.50 181 32 III 49 0.0618 0 4 15. | 57.8+3035 50.27 75.07 180 243 III 102 0 6 17.
56.2+2142 16.93 73.87 178 89 II: 68 0.0668 1 5 16.
58.4+1823 06.89 72.29 280 2311 IIII 59 0 5 16.
58.2+3817 75.72 72.11 256 335 III 56 0 6 17.
57.8+4724 94.69 65.92 28 185 III 56 0 6 17. | 359.2+2759 40.14 74.98 164 104 III 67 0.0733 1 3 1 359.2+2932 46.11 74.90 164 187 III 54 0 5 1 400.2+40437 34.05 62.15 266 138 III 72 0 5 1 358.7+4932 97.45 64.13 137 297 III 52 0 5 1 401.0+0251 340.37 60.57 256 43 48 | 401.7-1136 328.98 47.68 252 231 II: 41 0.0363 0 4 15 401.8-1109 322.28 48.08 251 255 I-II 50 0.0376 1 4 15 400.3-44103 81.88 70.14 230 162 II-III 130 0 6 18 402.5-0450 333.85 53.71 239 272 I 63 0 617 401.5+3034 49.76 74.29 137 243 | 401.9+2318 23.35 73.62 132 175 III 55 0 6 17.
402.2+1747 06.84 71.21 232 200 III 79 0 5 17.
402.5+1030 351.60 66.39 231 327 40 0 0 17.
402.7+1030 351.60 66.39 231 132 35 0 0 17.
403.3-0906 331.07 49.80 230 44 39 0 0 17. | 03.7-2522 322.87 34.69 115 132 113 2 0 17. 02.7+2243 21.61 73.27 121 144 III 66 0 6 17. 58.1+7407 116.86 42.21 103 330 III: 50 0 6 17. 03.6+51525 01.69 69.56 215 73 III 32 0 5 16. 03.8+0907 349.84 65.18 216 58 II: 57 0 6 17. | | | C z RD m | 60 0 6 17.7
107 0.248 2 6 18.0
44 0 5 16.6
120 0.181 2 6 17.6
47 0 0 17.8 | 07 0 6 17.6 66 0.241 3 6 17.8 88 0.2284 2 6 17.8 69 0 6 17.4 53 0.1876 1 5 16.6 | 37 0.232 3 6 17.8
35 0 0 17.2
96 0 6 17.7
44 0 0 16.9
43 0 0 17.6 | 04 0 6 18.0
69 0 6 17.8
68 0 6 17.8
51 0 6 17.7
79 0 5 17.2 | 42
38 0.0189 0 5 17.2
26 0 6 17.6
56 0 6 17.5
57 0 5 17.1 | 53 0.1169 1 5 16.9
98 2 0 17.0
51 0 5 16.8
08 0.1687 2 5 17.2
50 0.1152 1 5 17.2 | 38 0 0 17.0
49 0 5 16.6
51 0.0441 1 3 15.4
93 0.1231 2 5 17.2
52 0 5 17.2 | 67 0.1182 1 5 16.9
43 0 17.6
41 0.0160 0 5 17.2
57 0 5 17.2
40 0.1269 3 5 17.2 | 60 0.0586 1 3 15.4
42 0 0 17.8
53 0 6 17.5
70 0 6 17.7
56 1 0 18.4 | 36 0.0499 0 5 17.0
44 0 1032 1 4 15.7
57 0 5 16.6 | |------------|--|--|--|---|--|---|---|--|--|---|---| | | x y T_{B-M} | 211 172 II
279 134 III 1
29 278 III 1
267 128 I: 1
328 284 | 254 296 III 1 1 252 272 III 1 251 259 III 309 191 III 301 279 III 301 279 III III | 236 271 III: 1
139 273
233 286 III
291 56
50 234 | 170 147 III 1
274 87 III
210 306 III
189 83 III
266 279 III | 260 35
198 203
195 69 III 1
291 42 III
167 50 III: | 174 43 III
156 170
226 345 II:
162 275 II-III 1
160 134 II-III | 150 175
160 245 I-II:
197 139 III:
146 96 II
197 202 III | 139 94 III
140 333
135 34
183 189 II-III:
130 103 III 1 | 175 240 I:
131 58
165 304 III
164 214 III | 89 198
156 317
151 286
51 227 II-III
48 236 III | | | 9 1 | 119.79 33.26
42.94 65.78
10.24 60.73
42.69 65.55
347.89 48.27 | 50.24 65.37
49.16 65.35
48.60 65.33
18.88 62.43
22.27 62.95 | 49.09 65.05
94.90 55.43
49.76 64.98
344.88 44.50
61.25 64.20 | 99.18 52.73 06.03 57.66 50.61 64.53 104.31 49.17 11.86 59.57 | 14.40 60.23
32.61 63.50
40.43 64.10
113.70 40.24
109.01 44.74 | 26.61 62.23
335.11 30.73
14.71 59.55
49.20 63.66
30.29 62.47 | 335.45 30.69
47.96 63.63
18.95 60.12
41.76 63.25
02.27 54.11 | 28.97 61.90
51.59 63.22
26.74 61.48
02.27 53.75
42.12 62.96 | 22.77 60.50
77.67 59.73
357.96 50.91
350.06 45.31
96.88 52.50 | 336.63 30.59
25.73 60.71
357.83 50.49
91.89 54.78
92.01 54.63 | | | RA(2000)Dec | 1423.9+8317
1441.1+2838
1441.9+1317
1442.1+2831 | 1442.9+3139
1443.1+3112
1443.2+3058
1443.9+1742
1444.5+1920 | 1444.5+3111
1442.9+5512
1444.8+3128
1446.8-0846
1445.2+3627 | 1444.1+5853
1447.2+0946
1446.8+3151
1443.9+6341
1447.7+1321 | 1448.0+1447
1448.3+2356
1448.3+2726
1443.2+7449
1446.3+6909 | 1450.4+2057
1452.2-2429
1450.8+1435
1451.0+3116
1451.5+2239 | 1453.4-2422
1451.2+3043
1452.7+1644
1452.4+2756
1453.3+0555 | 1453.2+2154
1452.9+3221
1453.5+2046
1454.4+0541
1453.8+2804 | 1454.5+1837
1453.6+4511
1455.9+0150
1456.2-0550
1452.8+5802 | 1457.4-2355
1455.9+2003
1456.9+0129
1454.1+5418
1454.6+5427 | | pan | RA(1950)Dec | 1427.1+8331
1438.9+2851
1439.5+1330
1439.9+2844
1441.4-0419 | 1440.8+3152
1441.0+3125
1441.1+3111
1441.6+1755
1442.2+1933 | 1442.4+3124
1441.4+5525
1442.7+3141
1444.1-0834
1443.2+3640 | 1442.8+5906
1444.8+0959
1444.7+3204
1442.8+6354
1445.3+1334 | 1445.6+1500
1446.1+2409
1446.1+2739
1443.3+7502
1445.7+6922 | 1448.1+2110
1449.3-2417
1448.4+1448
1448.9+3129
1449.3+2252 | 1450.5-2410
1449.1+3056
1450.4+1657
1450.2+2809
1450.8+0608 | 1450.9+2207
1450.8+3234
1451.2+2059
1451.9+0554
1451.6+2817 | 1452.2+1850
1451.8+4524
1453.4+0203
1453.6-0538
1451.5+5815 | 1454.5-2343
1453.6+2016
1454.4+0142
1452.6+5431
1453.1+5440 | | —Continued | Abell | 1951
1952
1953
1954
1955 | 1956
1957
1958
1959
1960 | 1961
1962
1963
1964
1965 | 1966
1967
1968
1969
1970 | 1971
1972
1973
1974
1975 | 1976
1977
1978
1979
1980 | 1981
1982
1983
1984
1985 | 1986
1987
1988
1989
1990 | 1991
1992
1993
1994
1995 | 1996
1997
1998
1999
2000 | | TABLE 3 | R D m | 0 5 16.6
0 5 17.2
0 5 17.0
0 5 17.0
0 6 18.0 | 0 5 16.6
0 5 17.2
0 5 17.1
0 5 16.8
0 6 17.8 | 913 2 5 17.2
0 5 17.0
533 1 4 16.0
712 2 5 17.2
0 6 17.6 | 0 6 17.8
0 6 18.0
415 3 6 17.5
0 0 17.6
310 2 5 17.0 | 352 1 5
17.2
0 6 17.6
0 5 17.2
2 0 17.0
0 5 17.2 | 0 5 16.6
40 1 4 16.0
0 6 17.6
91 2 6 17.3
13 1 5 17.0 | 0 5 17.2
0 0 17.2
0 6 17.3
95 3 6 17.4
1 0 17.5 | 186 1 5 17.0
182 2 5 17.2
0 5 17.2
183 1 5 16.6
196 3 5 17.0 | 0 6 17.5
3 6 17.5
0 6 17.6
0 5 17.2
1 0 17.6 | 0 6 17.6
0 6 17.5
0 0 17.2
0 5 17.2 | | | 2 | 0.070 | | 0.00 | 0.17 | 0.13 | 0.074
0.219
0.131 | 0.21 | 0.13
0.08
0.13 | 0.224 | | | | x y T_{B-M} C z | 21 122 III: 46
22 280 III: 107
90 68 II-III 53
13 241 II-III: 83 0.07
64 128 III 94 | 262 179 III 46
112 303 III 53
1180 340 III 59
178 259 III 79
175 275 II-III: 48 | 90 47 II-III 80 0.1
56 34 III: 65
23 138 III 53 0.0
56 307 II: 105 0.1
45 325 III 55 | 15 92 II-III: 50
06 317 III 94
03 60 I-II 142 0.1
92 176 35
57 305 II-III:103 0.1 | .1 | 0. 2.1. | ~ | | 8 235 III 56
4 83 III 138 0.22.
7 221 III 86
5 231 III 76
0 292 51 | 149 112 III 69
148 70 II-III: 50
274 243 48
54 216 III 68
47 266 II: 69 | | | $y T_{B-M}$ C | 122 III: 46
280 II: 107
68 II-III 53
241 II-III: 83 0.07
128 III 94 | 179 III 4
303 III 5
340 II: 5
259 III 7
275 II-III: 4 | 6 34 III: 65 0.0
3 138 III: 53 0.0
6 307 II: 105 0.1
5 325 III 55 | 92 II-III: 50
317 III 94
60 I-II 142 0.1
176 35
305 II-III:103 0.1 | 4 161 II 63 0.1
2 348 III 56
1 296 III 53
3 290 95
42 II: 92 | 244 III 112
299 I-II: 50 0.0
130 II: 69 0.2
184 II-III: 95 0.2
296 II 60 0.1 | 330 III 62
166
109 II-III: 93
180 II 142 0.2
137 | 04 252 III: 69 0.1
38 116 III: 99 0.1
88 192 III: 53
17 255 II-III 59 0.0
96 269 III 130 0.1 | 235 III 56
83 III 138 0.22.
221 III 86
231 III 76
292 51 | 12 III 6
70 II-III: 5
43 | | | b x y T_{B-M} C | 4.16 67.28 321 122 III: 46
6.10 68.44 302 280 II: 107
8.86 69.71 190 68 II-III 53
9.66 62.30 113 241 II-III: 83 0.07
1.17 66.15 264 128 III 94 | 3.26 66.60 262 179 III 6
1.40 61.49 112 303 III 5
6.28 69.37 180 340 II: 5
2.11 69.11 178 259 III 7
2.93 69.09 175 275 II-III: 4 | 24 67.30 290 47 II-III 80 0.1
29 69.03 156 34 IIII 65
14 65.58 223 138 III 53 0.0
66.745 256 307 III 55 0.0
42 68.76 145 325 III 55 | 40.00 47.62 215 92 II-III: 50
20.31 66.81 206 317 III 94
66.42 50.86 303 60 I-II 142 0.1
54.44 58.07 192 176
98.45 56.56 257 305 II-III:103 0.1 | 28.03 67.53 114 161 II 63 0.1
22.08 66.58 182 348 III 56
31.43 46.52 181 296 III 53
31.43 34.90 93 290
99.50 55.63 285 42 II: 92 | 32.16 67.61 99 244 III 112
34.84 67.68 93 299 I-II: 50 0.0
54.15 57.02 160 130 II: 69
45.08 67.81 83 184 II-III: 95 0.2
50.54 67.55 77 296 II 60 0.1 | 79.88 63.54 206 330 III 62
84.95 61.91 20 166 45
11.53 44.77 245 109 II-III: 93
44.86 67.48 66 180 II 12 0.2
34.33 37.11 124 137 73 | 95.91 56.57 204 252 III: 69 0.1 00.04 54.04 238 116 III 99 0.1 00.31 52.54 88 192 III: 53 0.0 00.31 56.23 196 269 III 130 0.1 00.1 | 47.53 66.57 318 235 III 56
55.12 55.28 74 83 III 138 0.22.
46.86 66.55 317 221 III 86
37.32 66.51 315 231 III 76
33.61 34.04 310 292 51 | 0.54 64.43 149 112 III
8.81 64.68 148 70 II-III: 5
6.32 60.28 274 243 4
8.88 63.45 54 216 III 6
9.49 60.90 47 266 II: 6 | | | A(2000)Dec l b x y T_{B-M} C | 421.0+4019 74.16 67.28 321 122 III: 46
421.8+3717 66.70 68.44 302 280 II: 107
422.8+2721 38.86 69.71 190 68 II-III 53
422.1+4833 89.66 62.30 113 241 II-III: 83 0.07
423.7+1628 11.17 66.15 264 128 III 94 | 423.8+1725 13.26 66.60 262 179 III 4 422.3+942 91.40 61.49 112 303 III 5 52.5.9+2625 36.28 69.27 180 340 II: 5 424.1+4455 32.11 69.11 178 259 III 7 424.4+2512 32.93 69.09 175 275 II-III: 4 | 424.4+3857 70.24 67.30 290 47 II-III 80 0.1 425.6+2644 37.29 69.03 156 34 III: 65 426.9+1640 12.54 65.88 223 138 III 53 0.0 65.6.19349 67.20 67.45 256 307 II: 55 0.0 426.6+3210 52.42 68.76 145 325 III 55 | 428.4-0809 340.00 47.62 215 92 II-III: 50
428.0+2001 20.31 66.81 206 317 III 94
425.2+609 106.42 50.86 303 60 I-II 142 0.1
425.7+6053 354.44 58.07 192 176
427.3+5546 98.45 56.56 257 305 II-III:103 0.1 | 429.3+2305 28.03 67.53 114 161 II 63 0.1
430.0+2035 22.08 66.58 182 348 III 56
430.0+137 1984 66.22 181 296 III 53
431.5-222 331.43 34.90 93 290
428.4+5651 99.50 55.63 285 42 II: 92 | 430.6+2438 32.16 67.61 99 244 III 112
431.0+5539 34.84 67.68 93 299 I—II: 50 0.0
432.2+0431 354.15 57.02 160 130 II: 69
432.9+231 45.08 67.81 83 184 II—III: 95 0.2
432.6+3136 50.54 67.55 77 296 II 60 0.1 | 432.0+4415 79.88 63.54 206 330 III 62
432.2+4705 84.95 61.91 20 166 45
429.1+707 111.53 44.77 245 109 II-III: 93
433.3+42926 44.86 67.48 66 180 II 12 0.2
435.9-1919 334.33 37.11 124 137 73 | 434.5+5448 95.91 56.57 204 252 III: 69 0.1 434.4+8815 100.04 54.04 238 116 III 99 0.1 437.8-0015 350.31 52.54 88 192 IIII: 59 0.0 66.16 17 255 III-III 59 0.0 435.5+5508 96.15 56.23 196 269 III 130 0.1 | 437.5+3030 47.53 66.57 318 235 III 56
438.6+0340 355.12 55.28 74 83 III 138 0.22
437.7+3014 46.86 66.55 317 221 III 86
437.8+3025 47.32 66.51 315 231 III 76
440.2-2216 333.61 34.04 310 292 51 | 437.9+4013 70.54 64.43 149 112 III 6
438.1+3926 68.81 64.68 148 70 II-III: 5
437.7+4836 86.32 60.28 274 243
440.0+1808 18.88 63.45 54 216 III 6
440.5+1304 09.49 60.90 47 266 II: 6 | | | " | 6 17
6 17
6 17 | 02111 | 40000 | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00 111 | 03066 | 66500 | 111111 | 94220 | 5000 | |------------------------|-------------|---|---|--|--|---|--|--|--|--|--| | | R D | 00100 | 44004 | 20101 | 01070 | 00000 | 00000 | 0000 | 00010 | 04000 | 0000m | | | 100 | 0348
1127
0530 | 0763 | .0337
.007
.0721 | 0732 | | 990 | 1140 | .074 | 990 | 153: | | | 0 | 94
410.
750.
400. | 50
67
60
53
65 | 71
69
63
37
09
09 | 010
886
97
022 | 3459 | 81
50
42
0
42
0 | 59
60
50
52
0 | 86
777
51
70 0 | 55
90
38 | 129
36
64
53
138 0 | | | | | н | 1,000,0 | 11 ii | •• | | 2, 4 0 2, 2, | Ħ | Ħ | A | | | T_{B-M} | !!!-!!
!!!!!!!!!!!!!!!!! | 11-11
111 | ëdë E | | | | 888 | | | i iiii | | | 8 | 149 1
164 1
164 1
215 1 | 1110 1
273
205 1
140 1 | 238
315
345
236
81 | 255
252
187
198
161 | 256 1
214 1
119 1
314 | 316]
311]
146]
186] | 254
66
241
163
273 | 183
32
32
85 | 105 1
262 1
257 1
89 1 | 273]
71
69]
289] | | | 8 | 208
209
209
201
184
282 | 135
158
158
123
141 | 1112
1111
125
187
93 | 111
89
33
80
231 | 224
80
59 1
261
287 | 258
189
43
31
348 | 33 24
24
316 3
167 3 | 282
284
215
282
154 | 286
270
122
264
175 | 1111
170
268
166
99 | | | | 118
24
88
86 | 0 4 0 4 6 0 | 1112 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 35
35
35
35 | 71
995
54
03 | 7 7 7 8 7 7 8 7 8 7 8 7 8 8 9 8 9 9 9 9 | 727
8 8 4 7 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 | 115
62
70
91 | .17
.93
.76
.15 | | | 9 | 40444 | 57.
37.
41.
57. | 57.
49.
54.
56. | 45.
56.
56. | 56.
56.
39. | 54
346.
55. | 35.
45.
55. | 540.
540.
54. | 54.
54.
54.
53. | 54
53
53
53 | | | - | 9.40
9.52
9.66
83 | 3.69
1.84
8.99
4.79
0.86 | 8.16
2.81
9.82
9.82 | 03.92
48.67
08.36
46.85
56.56 | 9.73
7.12
9.95
0.54 | 2.01
7.82
1.80
5.20 | 3.66
8.08
8.08
2.55
96 | 08.74
07.95
62.74
43.95 | 7.11
9.48
13.38 | 9.97
3.78
5.42
0.65 | | | | 00000 | 35.04.0 | 42717.4 | - | 7,24,91 | 7 0 C 0 8 | 9 35
4 4 7
1 1 | нн | 44000 | 0
5
5
6
7
8
6
7 | | |)Dec | -0056
+0700
-0040
+5446
+0612 | +2816
-1039
+7150
+2850
-1209 | 3+3039
3+3209
0+0838
0+4838 | +0102
+3054
+7129
+2953
+3514 | 7+3700
9+1812
7+2824
7+6345 | 1+4407
1+6202
9-1300
1+2852
6+4143 | 5-1059
7+032
4+304
1+351
6+072 | 1+7222
7+7135
0+3851
7+2800
7+6133 | +1014
+3108
+3702
-0201
+4031 | 4+372(4+393)
1+693(6+4344 | | | RA(2000)Dec | 516.8
516.8
517.3
514.6 | 519.2+
521.0-
513.8+
520.3+ | 521.3
521.3
521.0
522.7 | 523.9+
523.2+
517.8+
524.0+
524.3+ | 524.7
525.9
525.7
522.7 | 526.1:
524.1:
529.9:
528.1: | 3390. | 524.1
524.7
531.0
532.7 | 34.3+
36.3+
36.6- | 35. | | | R/ | нанан | ааааа | ааааа | нанан | нанан | ннннн | 1221 | нанан | 155 | 152 | | |)Dec | 0046
0711
0030
5458
0623 | 2827
1029
7202
2901 | 3050
3216
0849
4849
2754 | 0113
3105
7140
3004
3525 | 3711
1823
2835
6356
7411 | +4418
+6213
-1250
+2903
+4154 | 8-1049
2+0337
4+3055
2+3528
2+0732 | +7233
+7146
+3902
+2811
+6144 | 9+1024
3+3119
4+3712
0-0152
0+4041 | 5+3730
6+3945
9+6941
9+4354
5+3748 | | | RA(1950)Dec | 14.2-
14.3+
14.7-
13.2+
16.3+ | 17.1+
18.3-
13.8+
18.2+ | 19.2+
20.6+
19.4+
20.6+ |
21.4+
21.2+
17.8+
21.9+
22.3+ | 522.8+3
523.6+1
523.6+2
521.9+6
520.1+7 | 524.44
523.24
527.1-
526.04 | 28.24
28.24
28.24
28.24
29.24 | w @ 67 60 80 | 321.9
342.4
33.0 | 33.94 | | pa | RA | 151 | 151
151
151
151 | 151
151
152
153 | 15 | 155 | 152 | 152 | 1524
1524
1529
1530 | 155 | 151 | | Continued | Abell | 2051
2052
2053
2053
2054
2055 | 2056
2057
2058
2059
2060 | 2061
2062
2063
2064
2065 | 2066
2067
2068
2069
2070 | 2071
2072
2073
2074
2075 | 2076
2077
2078
2079
2080 | 2081
2082
2083
2084
2085 | 2086
2087
2088
2089
2090 | 2091
2092
2093
2094
2095 | 2096
2097
2098
2099
2100 | | $\frac{3-C_{\ell}}{2}$ | | | | | | | | | | | | | BLE | 日 | 17.2
17.2
17.0
16.0 | 17.2
16.9
17.5
17.2 | 17.2
16.6
18.0
17.5 | 17.6
16.6
16.6
16.3 | 17.0
15.6
17.2
18.0 | 16.7
17.7
15.7
16.0
16.9 | 17.1
17.9
15.7
16.9
17.1 | 16.0
17.5
17.2
17.2 | 17.2
17.2
17.2
17.6 | 16.9
17.9
16.0
17.0 | | TA | R D | 0402
60864 | 011201 | 01010 | 00000 | 00011 | 00440
00440 | 0 0 4 2 2 | 40004 | 0000 | 00101 | | | z | 122
11
172
640
257 | 164
810
530 | 511 | 578 | 994
564 | 0772 | | 163
456 | | 83 45 | | | | 0000 | 0.1 | 0.1 | 0.0 | 00. | | | 0.0 | | 0.09 | | | C | 57
68
34
105 | 58
93
78 | 50
53
91
50 | 63
73
53
47 | 52
50
50
50
50 | 51
82
82
82 | 76
: 76
40
::105 | 38
46
52 | 39
72
51
53 | 55
75
75
50 | | | T_{B-M} | :::
:::-:::
:::::::::::::::::::::::::: | | | | :::::::::::::::::::::::::::::::::::::: | I:
I-II
-II | !!!-!!!
!!!-!!! | II-III | | | | | y J | 40 III
83 III
56 III | 95 H
12 H
60 H
66 H | 26 H
26 H
136 H | 63 E
63 E
71 E
57 E | 22 H | 86 II
45 II
85 II
91 I | 245
194 II
223 II
72 II
198 II | 06 II
20 II
54
85
80 II | 527 III | 44
10
10
10
10
10
10
10
10
10
10
10
10
10 | | | x | 1 2 4 5 1 2 2 1 2 2 4 7 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 | 110 2
202 3
54 1
51
178 | 80 3
80 1
73 2
76 3 | 71 1
24 1
63 1
20
57 3 | 330 1
310 1
30
24 1
118 1 | 318 1
152 2
305 2
286 1
282 1 | 278 2
217 1
279 2
78
272 1 | 655
625
625
625
625
626
626
626
626
626 | 69
69
10
10
10
10
10
10
10
10
10
10
10
10
10 | 53 1
208 2
228 1
187 2
214 2 | | | | | .76 1
.21 2
.70
.16 | 63
05
24
13 2 | 23362 | 90 3
67 3
74 04 | 115 3
38 1
87 3
78 2 | | 70382 | | 20003 | | | q | 61.27
44.98
59.88
61.43 | 59.7
61.2
60.7
34.7 | 50.50 | 55.32
60.16
57.63
60.83 | 59.9
60.6
49.7
57.0 | 58.3
51.8
50.5
46.3 | 38.73
37.20
50.81
59.53
42.48 | 56.5
55.2
52.5
51.1 | 43.76
59.02
55.64
54.69 | 58.9
48.8
58.6
45.9 | | | 1 | 31.18
07.65
25.04
35.79
41.80 | 5.59
3.21
2.31
8.90 | 4.32
0.36
8.96
3.46 | 2.04
2.68
0.11
0.72
7.62 | 32.50
43.31
01.72
79.27
55.56 | 8.86
1.46
8.46
6.51 | 9.28
4.79
7.39
3.61 | 24.69
09.97
20.20
12.23
09.06 | 6.79
2.20
8.89
7.64 | 6.12
4.89
5.81
0.19 | | | | - 7 | 112362 | 8 4 9 4 9 | H 8 8 4 0 | | 35
0
35 | 349.
114.
07.
53. | - | 106
59
22
18
18 | 56
114
05
50
50 | | |)Дес | -2244
-6821
-1927
-2456
-2749 | 1940
3800
2308
2122
8108 | 1+4945
1+1631
1+6030
1-1601
1+5559 | +1112
+2310
+4716
+2711
+0755 | +2301
+2825
+0251
+4707 | 6-0016
3+4245
6+0731
0+0545 | -1111
+7748
+0621
+3331 | +1803
+7212
+1513
+0947
+0725 | +6852
+3632
+1625
+1418
-0245 | 7+3450
3+7807
3+0422
7+3146
4+0005 | | | RA(2000)Dec | 57.0+
53.0+
58.7+
58.6+ | 59.6+18
58.9+38
00.0+23
00.3+21 | 59.8+
01.8+
58.8+
603.6- | 02.7+
02.5+
01.2+
03.0+ | w 4 10 10 10
10 u m 10 10 10 | 08.6-
07.3+
09.6+
111.0+ | 511.9-
500.7+
511.5+
510.2+ | 511.54
505.24
512.24
512.64 | 507.04
511.44
512.74
512.84 | 512.7+
503.3+
515.3+
514.7+ | | | RA | 44444 | 15001 | 1250 | 150 | 150
150
150
150 | 155 | 151 | 151 | 151
151
151
151 | 151 | | |)Dec | 2257
6834
1939
2508
2801 | 1952
3812
2320
2134
8121 | 4957
1643
6042
1550
5611 | 1124
2322
4728
2723
0807 | 2313
2837
0303
4719
3439 | 0-0005
5+4257
1+0743
5+0557
7+0006 | -1100
+7800
+0633
+3343 | +1815
+7224
+1525
+0959
+0737 | 5+6904
4+3644
4+1637
5+1430
6-0234 | 7+3502
6+7819
8+0434
7+3158
8+0017 | | | A(1950)Dec | 6.6+28
6.6+28
6.6+28 | 4.0.9
9.8
9.8
9.8
9.8 | 58.2+
59.5+
57.6+
00.8- | 2.34 | 501.3+
502.2+
503.3+
503.8+ | 506.0-
505.5+
507.1+
508.5+ | 509.2-
501.8+
509.0+
508.2+
509.5- | • 44 40 40 44 | 506.5+
509.4+
510.4+
510.5+ | 510.7+
504.6+
512.8+
512.7+
513.8+ | | | RA | 145
145
145
145 | 1455 | 145
145
150
150 | 150
145
150
150 | 150
150
150
150 | 150
150
150
150 | 150
150
150
150 | 1509
1509
1509
1510 | 150
150
151
151
151 | ппппп | | | Abell | 2001
2002
2003
2004
2005 | 2006
2007
2008
2009
2010 | 2011
2012
2013
2014
2015 | 2016
2017
2018
2019
2020 | 2021
2022
2023
2024
2024 | 2026
2027
2028
2029
2030 | 2031
2032
2033
2034
2035 | 2036
2037
2038
2039
2040 | 2041
2042
2043
2044
2045 | 2046
2047
2048
2049
2050 | | | | | | | | 39 | | | | | | | | C z RD m | 87 0.0371 2 1 13.8
60 0.0374 1 1 13.8
33 0.06 16.9
51 0 6 17.5 | 00 0 6 17.5
76 0 6 17.7
45 0.1349 0 5 16.8
34 0 0 15.9
52 0 6 17.9 | 94 0 6 17.5
37 0.0320 0 1 13.7
119 0.0698 2 6 17.5
36 0 0 17.5
34 0.0286 0 6 17.4 | 51 0 5 17.1
43 0 0 17.6
66 0 5 16.5
45 0 4 15.9
38 0 4 15.9 | 62 0.1387 15 17.1
51 10 17.1
59 0 5 17.1
61 0.0978 1 4 16.2 | 127 0 5 17.1
44 0.0769 0 6 17.5
51 0.0928 1 5 17.1
52 0.1360 1 5 17.1
60 0 5 17.1 | 51 0 6 17.7
43 0 0 17.4
56 0.1365 1 5 17.1
31 0.0550 0 4 15.9
51 0 6 17.4 | 49 0.0825 0 5 17.1
42 0 0 17.1
70 0 5 17.1
51 0 6 17.7 | 62 0.1868 1 5 17.1
53 0 5 17.1
43 0 0 16.9
76 0 6 17.4 | 46 0.1332 0 5 16.9
73 0.0308 1 1 13.9
85 0.0798 2 6 17.7
88 0.0309 2 1 13.9
48 | |------------|-----------------------|--|--|---|--|--|---|--|--|---|---| | | x y T_{B-M} | 189 181 III
172 307
32 156 II-III
182 248 III | 135 261 III 72 190 III: 139 249 108 140 129 191 III | 112 173 II-III
117 170 II-III
68 187
172 216
99 338 | 33 306 III
287 324
315 204 III
312 256 III
65 151 III: | 91 181 III
54 218 II-III
315 347
134 253 II:
26 191 II | 77 170 II-III:
17 289
325 228 II
315 216 III
263 175 III | 273 171 III:
271 321
302 232 II
249 310 II:
59 126 III | 274 114
278 153
174 71
60 225 III
256 283 III | 249 291
252 227 II-III:
247 71 III
68 45
203 220 III | 246 164 II-III
239 132 III
236 289 III:
236 58 I | | | q 1 | 31.60 44.52 29.92 44.02 27.11 42.77 98.25 41.72 41.66 46.24 | 107.37 37.66
75.13 46.87
68.04 47.41
31.35 42.84
48.93 46.32 | 105.34 38.27
48.41 46.04
06.76 30.52
91.98 42.88
44.50 45.12 | 86.12 44.17
61.27 46.46
83.64 44.57
76.65 45.56
39.97 43.67 | 105.22 37.86
66.99 45.90
22.89 37.53
92.48 41.97
49.35 44.41 | 104.82 37.77
43.73 43.42
42.31 43.03
66.97 45.26
74.37 44.80 | 111.33 34.72
29.63 39.29
67.38 45.01
77.85 44.26
103.73 37.94 | 47.74 43.16
65.30 44.54
54.83 43.96
105.67 36.92
68.69 44.15 | 44.39 41.99
67.27 44.07
39.18 40.76
87.01 42.14
75.39 43.62 | 65.63 43.96
64.82 43.80
68.86 43.77
62.90 43.70
47.53 42.14 | | | RA(2000)Dec | 1605.2+1744
1605.4+1626
1606.8+1405
1602.5+6505
1607.3+2500 | 1600.6+7311
1607.5+4751
1608.2+4300
1611.6+1658
1611.5+2956 | 1605.4+7131
1612.5+2932
1615.6-0607
1610.4+6024
1614.2+2640 | 1612.2+5558
1614.3+3825
1613.1+5409
1614.1+4907
1616.8+2310 |
1610.5+7139
1616.7+4223
1620.3+0853
1616.2+6104
1620.4+2954 | 1613.5+7125
1621.0+2544
1621.5+2438
1620.2+4224
1620.2+4739 | 1610.6+7729
1623.1+1425
1621.5+4242
1621.0+5011
1616.8+7035 | 1625.0+2832
1624.3+4115
1625.2+3344
1618.9+7225
1626.0+4341 | 1627.7+2552
1626.6+4240
1628.2+2146
1625.0+5710
1626.6+4832 | 1627.4+4129
1628.2+4054
1628.1+4349
1628.6+3931
1629.4+2810 | | pa | RA(1950)Dec | 1603.0+1753
1603.1+1635
1604.5+1413
1602.0+6514
1605.2+2508 | 1601.3+7320
1606.0+4759
1606.6+4308
1609.3+1706
1609.5+3004 | 1605.8+7139
1610.5+2940
1612.9-0600
1609.6+6032
1612.1+2648 | 1611.1+5606
1612.5+3833
1611.9+5417
1612.7+4915
1614.7+2318 | 1610.9+7147
1615.1+4231
1617.9+0901
1615.5+6112
1618.4+3002 | 1613.9+7133
1618.9+2552
1619.4+2446
1618.6+4232
1618.7+4747 | 1612.5+7737
1620.8+1432
1619.9+4250
1619.7+5019
1617.1+7043 | 1623.0+2839
1622.6+4122
1623.3+3351
1619.5+7233
1624.4+4348 | 1625.6+2559
1625.0+4247
1626.0+2153
1624.0+5717
1625.2+4839 | 1625.7+4136
1626.5+4101
1626.5+4356
1626.9+3938
1627.4+2817 | | -Continued | Abell | 2151
2152
2153
2153
2154 | 2156
2157
2158
2159
2160 | 2161
2162
2163
2164
2164 | 2166
2167
2168
2169
2170 | 2171
2172
2173
2173
2174 | 2176
2177
2178
2179
2180 | 2181
2182
2183
2183
2184
2185 | 2186
2187
2188
2189
2190 | 2191
2192
2193
2193
2194
2195 | 2196
2197
2198
2199
2200 | | TABLE 3- | z R D m | 0 0 17.2
0 6 17.7
0 0 17.1
0 6 17.4
0 5 17.2 | 0.0421 14 15.7
0.0919 04 15.7
0.0978 1 5 17.0 | 0.229 3 6 17.8
0 0 17.8
0 0 17.1
0 0 17.8
0 6 17.8 | 0 6 17.8
0 6 17.8
0 0 17.1
0 0 17.2
0 6 17.8 | 0 6 17.4
0 5 16.6
0 0 17.5
0.0654 1 3 15.6
0.2465 4 6 17.6 | 0 6 17.6
0 0 17.9
0 5 16.5
0 6 17.8
0 6 17.8 | 0 6 17.5
0 0 16.9
0 6 17.8
0 6 17.5 | 0 6 17.6
0 0 17.1
0 0 17.5
0 6 17.4 | 0.0899 2 4 16.0
0.0899 2 0.16.6
0.016.6
0.017.5 | 0.0356 1 13.8
0.0442 0 3 15.4
0 0 16.1
0 6 17.7 | | | x y T_{B-M} C | 235 214 35
259 104 III 69
220 111 46
218 21 III 89
245 313 III: 56 | 68 76 III: 69
204 80 I
204 193 III 45
206 200 444
196 237 I-II 54 | 62 116 II-III 148
61 217 47
193 128 47
119 255 37
244 96 II-III 84 | 101 245 II-III 58
102 295 III 50
98 190 41
145 66 36
322 119 III 56 | 230 81 II-III 104
312 207 II-III: 68
128 81 46
307 203 I 50
154 216 II-III 230 | 118 305 III 34
106 111 34
99 33 I-II 39
98 308 II-III 52
274 228 III 52 | 268 201 II: 69
208 102
254 213 III 50
203 145 III 88
200 335 40 | 176 42 III 78
283 308 40
181 76 40
84 168 II: 70
170 232 31 | 169 167 II 74
286 48 II 89
166 271 37
167 118 III 109
141 50 48 | 73 220 III 77
227 83 III 52
231 273 41
109 191 42
146 165 II-III 79 | | | 9 | .31
.26
.98
.74 | 54
17
62
21 | 41
32
45
10 | 97768 | ñ040∞ | | | | | | | | 1 | 20.48 48
105.99 41
03.93 39
02.84 39
109.91 38 | 53.73 53.
34.40 51.
28.62 50.
13.07 44. | 54.96 53.4
58.12 53.3
11.67 43.6
69.20 52.4 | 68.78 52.16
70.26 51.97
67.13 52.27
18.08 45.49
55.12 52.53 | 105.12 41.05
57.80 52.40
359.60 34.74
57.69 52.30 | 41.54 50.99
111.56 36.95
04.84 37.66
32.79 49.05
58.49 51.71 | 57.68 51.58
105.26 40.49
58.02 51.31
106.03 39.94
79.89 48.52 | 80.66 48.31
95.27 44.13
54.10 49.87
99.22 42.41
76.87 48.47 | 56.74 49.71
44.22 48.70
59.73 49.67
105.00 39.70
53.41 49.07 | 100.13 41.69
28.81 44.49
42.00 47.23
83.96 46.26
105.64 38.88 | | | m RA(2000) Dec l | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 73 53.
40 51.
62 50.
07 44.
78 53. | 54.96 53.
58.12 53.
11.67 43.
69.20 52.
05.62 41. | 78 52.
26 51.
13 52.
08 45. | 1539.1+6947 105.12 41.0
1544.5+15607 57.80 52.4
1547.1-0810 359.60 34.7
1545.0+3603 57.69 52.3
1541.0+6618 101.21 42.9 | 54 50.
56 36.
34 37.
79 49. | 57.68 51.
05.26 40.
58.02 51.
06.03 39. | 0.66 48.
5.27 44.
4.10 49.
9.22 42.
6.87 48. | 56.74 49.
44.22 48.
59.73 49.
05.00 39. | 0.13 41.6
8.81 44.4
2.00 47.2
3.96 46.2
5.64 38.8 | | | | 538.1+1217 20.48 4
532.4+7009 105.99 4
539.9-0209 03.93 3
540.1-0317 02.84 3
531.0+7404 109.91 3 | 539.0+3340 53.73 53.
539.8+2146 34.40 51.
540.1+1753 28.62 50.
540.7+0601 13.07 44.
539.7+3042 48.78 53. | 539.6+3424 54.96 53.
539.9+3617 58.12 53.
541.6+0440 11.67 43.
540.4+4301 69.20 52.
535.9+7003 105.62 41. | 542.2+4249 68.78 52.
542.3+4345 70.26 51.
542.5+4148 67.13 52.
545.0+0930 18.08 45.
543.9+3429 55.12 52. | 539.1+6947 105.12 41.0
544.5+3607 57.80 52.4
547.1-0810 359.60 34.7
545.0+3603 57.69 52.3
541.0+6618 101.21 42.9 | 546.7+2558 41.54 50.
537.7+7615 111.56 36.
548.9-0303 04.84 37.
548.4+2002 32.79 49.
547.9+3633 58.49 51. | 548.6+3603 57.68 51.
543.5+7012 105.26 40.
549.9+3616 58.02 51.
544.6+7100 106.03 39.
553.0+5034 79.89 48. | 553.3+5107 80.66 48.
552.7+6202 95.27 44.
556.6+3345 54.10 49.
553.4+6523 99.22 42.
556.6+4839 76.87 48. | 557.8+3527 56.74 49.
558.3+2713 44.22 48.
558.0+3723 59.73 49.
552.6+7031 105.00 39.
600.3+3315 53.41 49. | 556.1+6620 100.13 41.6
602.3+1553 28.81 44.4
603.3+2527 42.00 46.7.2
601.6+5352 83.96 46.7.2
557.4+7123 105.64 38.8 | | : | | | | | TABLE | tinn | - 11 | | | | | 31 | | |--|---|---|---|---|--|--------------------------------------|---|---|---|--|--|---|---| | Abell | 1 RA(1950)Dec | RA(2000)Dec | 9 1 | x y T_{B-M} | C z RD m | Abell | RA(1950)Dec | RA(2000)Dec | q 1 | x y T _{B-M} | 0 | z R D | E | | 2201
2202
2203
2204
2205 | 1625.9+5534
1627.9+4856
1623.7+7328
1630.3+0541
1630.2+1259 | 1627.0+5527
1629.3+4849
1622.9+7321
1632.8+0534
1632.5+1252 | 84.67 42.30
75.70 43.14
106.50 36.22
21.10 33.24
29.02 36.58 | 204 269 I-II:
179 235
50 276 III
151 168 II
148 238 III | 95 0 5 17.1
41 0 0 17.1
83 0 5 17.1
133 0.1523 3 5 17.1
49 0 5 16.5 | 2251
2252
2253
2254
2254 | 1710.5+2452
1712.6+4927
1713.4+3843
1715.5+1946
1712.2+6409 | 1712.6+2448
1713.9+4923
1715.1+3839
1717.7+1942
1712.5+6405 | 46.60 31.95
75.96 35.83
62.89 34.64
41.46 29.15
93.98 34.95 | 19 230 II
84 260 II-III
234 325 III
180 274
219 81 II-III: | 60
63
45
124
102 | 0 6
0.1147 1 6
0 5
0.0800 2 3 | 17.
17.
16.
15. | | 2206
2207
2208
2209
2210 | 1629.4+4326
1627.4+6532
1628.7+5837
1625.3+7341
1632.3+0535 | 1631.0+4319
1627.7+6525
1629.6+5830
1624.4+7334
1634.8+0528 | 68.15 43.26
97.19 39.19
88.51 41.19
106.67 36.02
21.28 32.76 | 208 262 III
179 160 II:
39 118 I-II:
298 281
124 163 | 55 0 6 17.7
75 0 6 17.6
65 0 5 17.1
40 0 17.9
50 0.0465 1 5 17.1 | 2256
2257
2258
2259
2259 | 1706.6+7847
1716.1+3238
1717.0+3146
1718.2+2742
1714.3+7211 | 1703.7+7843
1718.0+3234
1718.9+3142
1720.2+2739
1713.5+7207 | 111.10 31.74
55.85 32.89
54.90 32.49
50.37 31.15
103.45 33.18 | 123 227 II-III
257 321
248 274
237 56
109 194 III | :
61
57
82
82 | 0.0601 2 3
0.0054 1 5
1 0
1 0
0 5 | 15.
17.
17. | | 2211
2212
2213
2214
2214 | 1632.4+4102
1632.1+4922
1634.9+4123
1636.0+3800
1636.7+4809 | 1634.1+4055
1633.5+4915
1636.5+4116
1637.8+3754
1638.1+4803 | 64.87 42.69
76.18 42.41
65.36 42.23
60.83 41.83
74.46 41.76 | 180 133 II-III:
143 259 II-III:
154 151 III
39 295
101 194 II-III | 54 0.1355 1 6 17.4
50 0 5 16.9
75 0.1597 1 6 17.7
38 0 0 17.6
68 0 5 17.1 | 2261
2262
2263
2264
2264 | 1720.6+3212
1721.2+2348
1721.2+2659
1721.8+2914
1713.7+7729 | 1722.5+3209
1723.3+2345
1723.2+2656
1723.7+2911
1711.4+7725 | 55.62 31.86
46.33 29.30
49.81 30.30
52.35 30.83
109.52 31.80 | 206 296
205 168 II-III
205 339 II
194 137
97 160 | 128
102
46
41
47 | 2 0
0 6
0.1051 0 5
0 0 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, | | 2216
2217
2218
2219
2219 | 1634.5+6746
1638.7+2800
1635.7+6619
1638.9+4647
1638.5+5351 | 1634.5+6739
1640.7+2754
1635.9+6612
1640.4+4641
1639.6+5345 | 99.53 37.73
47.91 39.65
97.75 38.12
72.60 41.47
81.96 40.84 | 142 280 III
89 78 III
134 203 II:
78 122 III | 78 0 6 17.4
73 0 5 17.1
214 0.171 4 6 17.7
159 0 6 17.4
42 0.0106 0 6 17.5 | 2266
2267
2268
2269
2270 | 1722.8+3209
1722.4+6104
1725.8+5523
1726.5+4912
1726.3+5513 | 1724.7+3206
1723.0+6101
1726.8+5520
1727.8+4909
1727.3+5510 | 55.70
31.40 90.10 34.14 83.23 33.91 75.80 33.55 83.03 | 181 294 III
269 237
37 259 II-III
259 243
32 250 | 83
61
44
49 | 0.1671 2 6
1 0
0 6
0.0377 0 6 | 7777 | | 1222222 | 1639.5+4321
1639.5+4253
1640.5+2731
1641.1+1326
1638.7+5551 | 1641.1+4315
1641.1+4247
1642.5+2725
1643.4+1320
1639.7+5545 | 68.02 41.42
67.40 41.41
47.43 39.15
30.87 34.35
84.55 40.48 | 110 258 III
109 233 III
67 53 III
320 261 III
108 285 II-III | 73 0 6 17.7
69 0 6 17.7
36 0 5 16.5
138 0.1504 3 6 17.4
: 50 0 6 17.5 | 2271
2272
2273
2274
2274 | 1719.9+7804
1731.3+4038
1732.2+4225
1726.3+7728
1734.9+5313 | 1717.3+7800
1732.9+4035
1733.8+4223
1723.9+7725
1736.0+5311 | 110.06 31.32
65.85 31.58
67.95 31.73
109.28 31.15
80.69 32.51 | 84 193 I
190 104 III:
179 200
61 164 III
260 135 II-III | 35 (
53
33
110
18 | 0.0568 0 4
0 5
0 0
0 5
0 5 | 15,17 | | 2226
2227
2228
2229
2230 | 1638.3+6709
1641.8+5122
1645.8+3001
1642.6+6543
1645.8+4841 | 1643.0+6703
1643.0+5116
1647.8+2955
1642.8+6537
1647.2+4835 | 98.64 37.60
78.62 40.66
50.90 38.60
96.75 37.65
75.04 40.22 | 121 248
75 45 III
310 185 I-II:
95 172
321 222 III | 43 0 0 17.6
71 0 6 17.4
55 0 5 16.9
43 0 0 17.7
51 0 5 16.8 | 2276
2277
2278
2279
2280 | 1734.6+6404
1733.0+7056
1738.6+3955
1741.5+2446
1742.8+6346 | 1734.9+6402
1732.4+7054
1740.2+3953
1743.6+2444
1743.1+6344 | 93.56 32.53
101.66 31.96
65.35 30.08
49.10 25.26
93.16 31.64 | 88 78 II
318 126 III
114 66 III:
275 217
39 65 II-III | 51
50
49
50
79 | 00000 | 11,11,11 | | 2231
2232
2233
2234
2234
2235 | 1645.5+5635
1646.9+6150
1650.9+4315
1649.8‡5631
1653.3+4006 | 1646.5+5629
1647.5+6144
1652.5+4310
1650.8+5625
1655.0+4001 | 85.28 39.42
91.84 38.21
67.97 39.35
85.08 38.85
63.97 38.67 | 59 327 III
218 281
291 250 III
307 320 II-III
272 81 III | 51 0 6 17.9
70 1 0 18.1
33 0 6 17.4
51 0 6 17.7
73 0.1511 1 5 17.1 | 2281
2282
2283
2284
2284 | 1742.8+6440
1743.6+7149
1744.9+6940
1751.3+5417
1752.8+4250 | 1743.0+6438
1742.8+7147
1744.5+6938
1752.3+5416
1754.3+4249 | 94.22 31.61
102.56 31.01
100.05 31.11
82.16 30.18
69.26 28.09 | 43 113
267 168 III
272 53 I
130 191 III:
272 220 II | 33
79
65
40 | 0 0
0 6
0.1830 1 6
0 5 | 71 | | 2236
2237
2238
2239
2240 | 1651.0+7133
1654.3+5519
1655.9+3718
1654.4+5859
1654.0+6649 | 1655.3+514
1655.3+5514
1657.6+3713
1655.2+5854
1654.1+6644 | 103.34 35.09
83.45 38.38
60.50 37.84
88.06 37.86
97.67 36.24 | 205 158 I:
277 254 III
124 252 II-III
165 128 II:
38 237 III | 59 0 5 17.1
54 0 6 17.7
68 0 6 17.4
39 0 5 17.1
165 0.138 3 6 17.4 | 2286
2287
2288
2289
2289 | 1752.2+5205
1743.5+7936
1752.4+5942
1753.2+5805
1751.6+7320 | 1753.3+5204
1740.0+7934
1753.1+5941
1754.0+5804
1750.4+7319 | 79.66 29.79
111.49 29.86
88.43 30.45
86.57 30.25
104.24 30.26 | 120 74 II:
258 264
70 164 III:
60 78
229 247 | 69
4 6 6 9
4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 00000 | 16.
17.
17. | | 2241
2243
2243
2244
2244 | 1656.5+5430
1656.5+5430
1700.0+3508
1700.9+3407
1700.9+3336 | 1659.7+3232
1657.6+5425
1701.8+3503
1702.7+3402
1702.7+3331 | 54.79 36.64 82.37 38.15 57.98 36.68 56.78 36.31 56.15 36.20 | 171 322
262 209 III
78 137 II
67 83 I-II:
66 55 II | 30 0.0635 0 3 15.6
38 0 5 16.9
63 0 5 17.1
89 0.0970 2 5 16.6
63 0 5 16.5 | 2291
2292
2293
2294
2294 | 1755.7+5109
1756.2+5350
1800.5+5738
1736.1+8555
1800.3+6913 | 1756.9+5108
1757.2+5349
1801.3+5738
1723.3+8552
1759.9+6913 | 78.68 29.13
81.74 29.42
86.15 29.24
118.59 28.61
99.45 29.78 | 296 345
91 168
321 51 III:
153 284 II:
228 346 II-III | 82
66
38
97
I 48 | 2 0
1 0
0 4
0 6
0 6 | 17.
16.
16. | | 2246
2247
2248
2248
2250 | 1700.4+6417
1652.0+8139
1659.9+7705
1707.9+3431
1709.1+3945 | 1700.7+6412
1647.4+8133
1657.8+7700
1709.7+3427
1710.8+3941 | 94.43 36.19
114.49 31.22
109.36 32.65
57.61 34.97
63.98 35.62 | 219 56 III
219 56 III
136 135 II
298 101 III
109 61 III: | 146 0.225 3 6 17.6
35 0.0392 0 3 15.3
34 0.0663 0 3 15.5
39 0.0809 0 3 15.4
52 0.0654 1 5 16.5 | 2296
2297
2298
2299
2300 | 1756.5+7741
1804.4+4222
1805.6+5013
1807.6+4356
1806.6+7640 | 1754.0+7740
1805.9+4222
1806.8+5013
1809.1+4356
1804.5+7640 | 109.20 29.51
69.31 25.91
77.93 27.43
71.16 25.73
107.98 29.04 | 237 158
157 193 III:
214 292 II-III
127 278
211 101 III | 30
40
I: 37
60
62 | 01000 | 15
17
17
17 | | | DB | 5 17.1
0 17.1
5 16.6
5 17. | 5 17.
6 17.
0 17.
6 17. | 5 16.
5 17.
6 17. | 4 15.
5 17.
6 17.
5 17.
0 17. | 5 17.
0 16.
6 17.
5 17. | 5 17.
5 16.
0 16.
0 17.
6 17. | 5 17.
4 16.
5 16.
5 17. | 0 17.
0 17.
5 16.
6 17.
0 17. | 0 17.
6 17.
6 17.
5 17.
0 17. | 0 17.
6 17.
0 17.
3 15.
5 16. | |-------------|-------------------|---|---|---|---|--|---|---|--|---|---| | | z R | 000011244 2 | 1161 2 | 00000 | 0542 0 | 00000 | 0808 2 | 0.0648 1
0943 1 | 1
2
2
0
0
1 | 00001 | 1.224 3
0.0587 1.0881 1 | | | C | 50
45
51
81
112 0 | 89 0
57 34
64 | 50
69
63
72
94 | 47 0
55
55
61
41 | 61
79
50
61 | 59
94 0
37
45
73 | 67
50 0
78
61 0 | 73
101
46 0
86
72 | 46
70
52
50
50 | 50
146 0
41
52 0
56 0 | | | $y = T_{B-M}$ | 62 III
253
52 II-III
303 III
213 III | 144 II-III:
182 II
251 II-III
270
295 III | 13 II-III
16 II
13 III
14 I:
101 III | 91 I-II
26 III
32 III
120 III:
59 | 132 III
32
196 III
61 III
76 III | 242 II
242 II
31
178
206 II-III | 261 I:
263 II-III
292 III
54 II-III
167 II-III | 95
95
11-III
246 II-III | 284
172 III
279 III
70 I-II: | 164
165
165
40 III | | | ы | 294
294
277
277 | 275
300
261
261
261
260 | 233
212
207
197
185 | 182
182
171
165
165 | 195
156
155
150 | 144
143
131
118
81 | 71
68
107
68
68 | 109
244
34
32
32 | 34
21
21
330 | 321
322
320
305
312 | | | 9 1 | 39.39-42.12
36.37-43.10
52.74-36.39
37.70-43.05
55.95-34.92 | 54.74-35.72
26.77-46.03
36.64-43.70
68.05-26.97
37.69-43.40 | 38.88-43.55
39.16-43.88
46.44-41.29
31.35-46.36 | 48.41-40.96
47.00-41.56
32.04-46.71
34.33-46.27
32.82-46.73 | 26.14-48.16
32.17-46.98
57.28-37.00
48.17-41.75
33.40-46.86 | 45.90-42.87
45.19-43.17
32.37-47.43
57.48-37.75
52.16-41.44 | 59.69-37.54
38.93-46.93
31.18-48.90
33.56-48.40
27.83-49.75 | 79.30-22.14
117.39.22.43
65.90-34.28
53.67-41.80
73.94-27.83 | 39.83-47.35
58.65-39.22
54.49-41.61
34.42-49.05
66.71-34.26 | 70.07-31.80
59.74-39.15
64.81-35.88
49.84-44.57 | | | RA(2000)Dec | 2134.4-1323
2134.5-1549
2134.4-0135
2135.8-1454
2135.3+0123 | 2135.8+0007
2136.6-2314
2137.0-1552
2136.1+1426
2137.1-1503 | 2139.1-1419
2140.7-1416
2141.1-0819
2142.0-2018 | 2142.8-0652
2142.9-0805
2144.1-1958
2144.6-1820
2144.9-1928 | 2145.1-2412
2145.3-1958
2144.7+0103
2145.2-0725
2146.0-1908 | 2145.9-0926
2146.0-1002
2147.3-1959
2147.5+0044
2150.4-0442 | 2150.9+0217
2152.0-1538
2152.2-2111
2152.3-1932
2153.1-2331 | 2151.8+2508
2138.7+8306
2153.6+0814
2154.1-0357
2153.6+1740 | 2154.6-1514
2154.4+0037
2154.8-0320
2155.7-1913
2155.3+0845 | 2155.6+1229
2156.1+0120
2156.1+0631
2157.5-0747
2157.8-1122 | | pa | RA(1950)Dec | 2131.7-1337
2131.7-1603
2131.8-0149
2133.1-1508
2132.8+0110 | 2133.2-0006
2133.8-2328
2134.3-1606
2133.7+1413
2134.4-1517 | 2136.4-1433
2138.0-1430
2138.4-0833
2139.2-2032
2140.2-1855 | 2140.2-0706
2140.2-0819
2141.3-2012
2141.8-1834
2142.1-1942 | 2142.3-2426
2142.5-2012
2142.1+0050
2142.6-0739
2143.2-1922 | 2143.2-0940
2143.3-1016
2144.5-2013
2144.9+0031
2147.8-0457 | 2148.4+0203
2149.3-1553
2149.4-2126
2149.5-1947
2150.3-2346 | 2149.5+2454
2141.3+8253
2151.1+0800
2151.5-0412
2151.2+1726 | 2151.9-1529
2151.8+0023
2152.2-0335
2152.9-1928
2152.8+0831 | 2153.2+1215
2153.6+0106
2153.6+0617
2154.9-0802
2155.1-1137 | | - Continued | Abell | 2351
2352
2353
2354
2354 | 2356
2357
2358
2359
2360 | 2361
2362
2363
2364
2364 | 2366
2367
2368
2369
2370 | 2371
2372
2373
2374
2374 |
2376
2377
2378
2379
2380 | 2381
2382
2383
2384
2385 | 2386
2387
2388
2389
2390 | 2391
2392
2393
2394
2395 | 2396
2397
2398
2399
2400 | | TABLE 3- | R D m | 1 0 4 15.8
0 6 17.4
0 0 16.7
0 5 17.0
0 5 17.0 | 0 5 17.0
0 6 17.8
0 4 16.4
0 5 17.0 | 0 4 16.0
0 4 15.8
0 6 17.4
0 5 17.2
0 4 16.3 | 0 6 17.4
3 6 17.6
0 5 17.0
1 1 3 15.4
2 5 16.9 | 0 6 17.6
0 6 17.6
0 0 17.3
1 0 16.8
0 0 16.8 | 1 0 17.4
1 0 16.8
2 4 16.4
1 0 17.5
3 2 6 17.4 | 0 0 16.3
0 0 17.5
0 5 16.8
0 6 17.4
0 6 17.4 | 0 6 17.4
0 6 17.4
0 5 17.0
3 1 5 17.0
0 5 17.1 | 0 5 17.0
0 6 17.5
0 5 17.1
7 1 6 17.6
0 5 16.9 | 0 5 16.5
6 1 4 16.4
0 0 17.1
0 5 17.1 | | | 12 | 0.087 | | | 0.211
0.056 | | 0.047 | | 0.1128 | 0.1447 | 0.1190 | | | O | 119
44
34
53 | 47
39
41
67 | 60
74
89
121
66 | 85
186
68
68
85 | 9
9
9
9
9
9 | 58
67
81
56
91 | 30
37
57
76
114 | : 79
64
76
50 | 101
104
62
75
107 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | x y T_{B-M} | 131 47 II:
207 339 III
88 130
135 329 II
98 140 III: | 100 321 III:
93 234 II:
51 126 II-III
100 157 III:
273 238 II | 282 81 III
224 291 III
81 196 III
82 229 III
234 54 III | 80 285 II-III
152 326 II
293 176 III
307 266 II-III
161 107 | 104 238 II-III
260 18 III
153 271
272 23
163 102 | 143 34
90 87
273 153
173 251
140 253 II-III | 139 49
128 200
113 77 II
64 79 III
37 265 II-III | 21 297 III
218 234 II-III
175 31 III
172 282 II-III
154 98 III | 166 189 II-III
145 105 III:
134 173 III
116 317 II
77 132 III | 67 84 III
68 240 III:
42 191
330 29 III
326 144 | | | 9 1 | 99.95 28.48
85.96 26.69
115.04 28.47
99.15 28.02
101.92 27.87 | 105.71 27.82
90.73 25.59
101.61 26.98
109.13 26.95
104.28 26.18 | 101.08 25.58
98.96 24.88
109.94 26.59
110.62 26.59
100.82 24.57 | 111.79 26.52
100.03 23.74
109.78 25.80
75.68 13.58
102.26 23.54 | 105.13 23.14
105.73 21.12
112.63 23.98
23.70-29.16
19.15-31.95 | 103.80 17.47
115.54 23.94
28.78-33.56
38.18-32.10
24.83-37.10 | 40.85-31.65
30.96-35.75
28.43-36.86
21.45-39.44
25.89-38.85 | 26.75-38.92
26.24-41.53
21.59-43.32
27.71-42.08
38.36-38.95 | 25.52-42.70
38.60-39.05
46.81-35.82
29.02-42.87
39.91-39.98 | 38.95-40.53
27.52-44.17
41.55-40.07
57.76-32.64
47.75-38.14 | | | RA(2000)Dec | 1814.8+6939
1819.9+5708
1800.5+8253
1819.6+6855
1822.8+7121 | 1825.1+7442
1834.1+6110
1833.6+7101
1842.1+7742
1847.4+7318 | 1849.7+7022
1853.6+6821
1850.3+7823
1851.5+7859
1900.8+6957 | 1855.3+8002
1908.3+6903
1905.3+7808
1920.8+4357
1916.5+7059 | 1931,3+7324
2000,4+7312
1957,1+8011
2024,3-2018
2030,2-2454 | 2030.2+6952
2027.0+8236
2048.2-1748
2055.7-0959
2057.8-2202 | 2058.2-0745
2059.5-1656
2100.8-1914
2104.2-2515
2106.1-2146 | 2107.3-2109
2117.5-2220
2121.0-2607
2121.1-2127
2121.2-1247 | 2121.7-2311
2121.9-1239
2122.4-0523
2125.6-2047
2127.1-1207 | 2127.9-1301
2129.5-2212
2129.7-1102
2131.4+0356
2132.0-0553 | | | RA(1950)Dec | 1815.2+6938
1819.1+5707
1806.9+8253
1819.9+6854
1823.5+7120 | 1826.6+7441
1833.5+6108
1834.2+7059
1844.5+7739
1848.5+7315 | 1850.2+7019
1853.8+6818
1853.0+7820
1854.5+7856
1901.2+6953 | 1858.9+7958
1908.5+6859
1907.8+7804
1919.2+4352
1917.0+7054 | 1932.2+7318
2001.0+7304
2000.1+8003
2021.4-2028
2027.2-2505 | 2030.0+6942
2031.2+8226
2045.4-1800
2053.0-1011
2054.9-2214 | 2055.5-0757
2056.7-1708
2058.0-1926
2101.3-2527
2103.2-2159 | 2104.4-2122
2114.6-2233
2118.1-2620
2118.3-2140
2118.5-1300 | 2118.8-2324
2119.2-1252
2119.8-0536
2122.8-2100
2124.4-1221 | 2125.2-1315
2126.7-2226
2127.0-1116
2128.9+0343
2129.4-0607 | | | Abell | 2301
2302
2303
2304
2304 | 2306
2307
2308
2309
2310 | 2311
2312
2313
2314
2315 | 2316
2317
2318
2319
2320 | 2325
2325
2325
2325
2325
42 | 2326
2327
2328
2329
2330 | 2331
2332
2333
2334
2335 | 2336
2337
2338
2339
2340 | 2341
2342
2343
2344
2344 | 2346
2347
2348
2349
2350 | | _ | | |----|--| | ıe | | | n | | | Ħ | | | ó | | | Ç | | | | | | n | | | щ | | | 돐 | | | ₽ | | | Ľ | Ħ | 17.
18.
17.
17. | 17.
16.
16.
16. | 17.
16.
17. | 17. | 6 17.
6 17.
6 17.
6 17. | 6 17.
0 16.
6 17.
0 16.
5 16. | 6 17.
6 17.
6 18.
6 18. | 0 17.
0 17.
6 17.
6 18.
5 17. | 0 17.
0 16.
0 17.
6 17.
0 16. | 5 17
0 17
6 17
5 17
5 16 | |-----------------|---|--|--|--|---|--|---|--|--|--|--| | | R D | 0000 | 0 0 5
4 0 0 6
0 0 4 8 | 8
0 0 0 0
7 4 0 0 0 | 000 | 70000 | 00000 |
00000 | 00000 | 00000 | 00000
m | | | 2 | | 0.059 | 0.069 | 0.065 | 0.107 | | | | | 0.123 | | | ٥ | 39
60
88
78 | 50
33
52
53 | : 62
40
33
102
65 | 37
44
61
61 | 92
73
103
82
70 | 81
35
76
44
51 | 68
112
61
61
68 | 94
94
65
56 | 444
486
486
88 | 104
44
69
79
71 | | | T_{B-M} | :::::::::::::::::::::::::::::::::::::: | I-II:
III | II-III
I-III
III | i:
I-III | | 111:
11-111
11 | 111111111111111111111111111111111111111 | 111-11 | H | 1-11
111
111:
11-111 | | | y J | 117
005
23
42 | 278 I
213 I:
162
258 I:
130 I: | 4 0 8 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 | 04
338
53 I
94 I | 100
100
100
100
100
100
100
100
100
100 | 230 I
178
147 I
91 | 264 I
292 I
79 I
208 I
233 | 88
300
161
163
1 | 180
64
27
53 I | 217 I
29
258 I
30 I
57 I | | | н | 147 3
144 3
142
133 1 | 130 2
113 2
113 1
110 2 | 172 2
79 1
73 3
69 2
65 1 | 151
54
50
50
50
50
50 | 322 | 17 3 322 3 300 295 | 73
284
279
268
264 | 254
39
41
256
255 | 243
238
235
235 | 233
229
214
312 | | | 9 | 4.80
4.93
3.27
5.44 | 6.22
6.60
3.72
6.71 | 9.23
5.97
0.86
2.04 | 9.55
2.52
9.40
5.44 | 3.45
6.99
3.88 | 8.59
8.94
9.31
6.11 | 1.18
1.73
6.07
8.86
9.50 | 6.64
1.54
2.29
3.71
2.65 | 5.31
1.19
3.05
7.38 | 0.14
9.41
3.58
3.65 | | | | 02-4
81-5
45-3
58-4
91-5 | .41-5
.66-4
.40-3
.11-5 | 97-5
70-4
38-5 | .32-4
.38-4
.79-3 | 86-4
13-3
75-5
24-5 | .63-3
.03-5
.11-5
.66-3 | . 02 – 6
. 58 – 5
. 20 – 4
. 86 – 4 | . 54 – 3
. 80 – 6
. 51 – 6
. 16 – 5 | .89-3
.31-6
.33-6
.45-3 | .73-6
.14-6
.30-3
.67-6 | | | 1 | 70
81
72
88 | 46
68
83
46
83 | 36.
43.
71.
63. | 37
74
76
79
83 | 75.8
84.
50.
39. | 8
4
4
4
4
4
4
4 | 37
66
75
71
47 | 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 86
42
28
85
81 | 744
148
29 | | |)Dec | 2+0324
7-0847
3+1635
2+0547
9-1341 | 1-1517
8+0128
6+1831
6-1539
6+1755 | 8-2105
1-1721
7+0342
2-0357
5-0544 | -2054
+0603
+0812
+1215 | +0715
+1731
-1332
-2012
+0727 | 1+1346
0-1707
6-1742
1+1711
1-1741 | -2139
-0301
+0458
+0123
-1607 | +1709
-2057
-2333
-0525
-0347 | +1852
-1915
-2602
+1630
+1053 | -1624
-1955
+1419
-2558 | | | RA(2000)Dec | 233.7.2
234.2.3 | 235.1
235.8
235.6
236.6 | 238.8
239.1
239.7
239.2 | 240.5
240.1
240.5
240.5 | 241.8
242.9
242.5
242.5 | 243.1
244.0
244.6
245.1
246.1 | 246.8
247.1
247.3
248.3
248.6 | 248
249.8
249.5
249.5
249.3 | 50.3 | 251.0
251.2
252.0
253.1 | | | | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 33 23 119 22 25 25 25 25 25 25 25 25 25 25 25 25 | 00000 | 00000 | 78880 | 31 23
23 23
56 22
57 22 | 00000 | 654 2
113 2
349 2
541 2
403 2 | 837 22
931 22
618 22
615 22
038 22 | 640 22
011 22
404 22
614 22
544 22 | | | A(1950)Dec | 7+03
1-09
9+16
7+05
2-13 | 2+011
2+011
2+181
9-15 | .1-2121
.4-1737
.2+0327
.6-0413 | .8-2110
.6+0548
.0+0757
.0+1200 | 3+070
4+171
8-134
3-202
1+071 | 6+13
3-17
9-17
6+16 | .1-2155
.5-0317
.8+0443
.7+0108 | 3+16
7-21
8-23
6-05 | 0+18
.8-19
.0-26
.8+16 | 3-16
.5-20
.5+14
.4-26 | | 7 | RA(19 | 2230.
2231.
2230.
2231.
2231. | 2232.
2233.
2233.
2233.
2235. | 2236.
2236.
2236.
2236.
2236. | 2237.
2237.
2238.
2238.
2238. | 2239
2239
2239
2240 | 2240
2241
2241
2242
2242 | 2244
2244
2244
2245
2245 | 22246
22246
22246
22246 | 2247
2247
2248
2247
2247 | 22248
22248
22249
2250
2250 | | Continued | Abell | 2451
2452
2452
2453
2454
2455 | 2456
2457
2458
2459
2460 | 2461
2462
2463
2464
2465 | 2466
2467
2468
2468
2469 | 2471
2472
2473
2474
2474 | 2476
2477
2478
2479
2480 | 2481
2482
2483
2484
2485 | 2486
2487
2488
2489
2490 | 2491
2492
2493
2494
2495 | 2496
2497
2498
2499
2500 | | $\frac{3-C}{C}$ | | | | | | | | | | | | | TABLE | 8 | 6.5
7.1
7.8 | 7.7
7.1
7.1
6.8
6.0 | 7.5
5.9
7.1
5.9 | 17.5
17.1
17.5
16.9 | 6.8
7.7
4.7 | 16.8
17.7
17.2
17.7 | 7.7 | 7.2 | 44.000 | 7.2
7.7
6.0
7.1
8.0 | | 7 ∣ | | аанан | HHHHH | निनेन्नन | нанала | 16
17
17
17 | | 17
17
17
17 | ääääää | 17
17
16
17 | 22222 | | TA | R D | 00000 | 10001
10001
11011 | 00000 | 2000 | 00000 | 00000 | 11111
0000
0000 | 00000
00004 | 10011 | 00000
00400
11111 | | TAI | Q | 00000 | 1 0 1
0 5 1
0 0 0
1 0 0 5 1
1 4 1 4 1 | 0 6 1
0 0 1
0 0 0
0 0 1
0 0 0 1 | 0 | 0000 | 0000 | ଡ ଉ ಬ ଉ ଡ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 5 1
0 5 1
108 2 5 1
.324 1 6 1 | 0 5 1
0 6 1
0 6 1
0 0 1
0 0 1 | | TAI | R D | 00000 | 1 0 1
0 5 1
0 0 1
0 0 1
806 1 4 1 | 0 6 1
0 6 1
0 0 1
0 0 1
597 0 4 1 | 838 2 5 5 1 | 0000 | 0000 | ଡ ଉ ಬ ଉ ଡ | 56
43
61
50
50
32 0.0904 0 4 1 | 0 5 1
0 8 2 5 1
24 1 6 1 | 0 5 1
0 6 1
810 0 4 1
0 0 1 | | TAI | $_{B-M}$ C z R D | 2
2
0
0
0
1
0
0
0
0
1 | 56 1 0 1
52 0 5 1
37 0 0 1
91 0 5 1 | .I 63 0 6 1
43 0.0735 0 4 1
48 0 0 1
45 0 0 1
1.1 40 0.0597 0 4 1 | 57 0 6 1
32 0 0 1
-III: 61 0 6 1
I 50 0 5 1
88 0.0838 2 5 1 | 47
62
62
7
63
64
7
65
65
65
65
65
65
65
65
65
65
65
65
65 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6
3
1
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 65 0 5 1
52 0 5 1
17 0.108 2 5 1
76 0.324 1 6 1
75 | 57 0 5 1
74 0 6 1
36 0.0810 0 4 1
49 0 0 1
64 0 6 1 | | TAI | -м С z RD | 22 II 56 0 5 1
54 32 0 0 1
24 40 0 0 1
5 46 0 0 1
44 41 0 0 0 1 | 01 III 55 0 5 1
11 III 52 0 5 1
37 0 0 1
48 III 54 0.0806 1 4 1 | 0 III 63 0 6 1 1 99 48 0 0 77 48 0 0 0 1 87 48 0 0 1 87 48 57 III 40 0.0597 0 4 1 | 7 I 57 06 1
32 00 0 1
3 II-III: 61 06 0 5 1
5 III 88 0.0838 2 5 1 | 06 III 47 0 5
55 II-III: 58 0 6
24 III 62 0 6
93 II-III 53 0 6 | 22 III 114 0 5
48 34 0 0
76 II: 51 0 5
01 III 120 0 6
80 | 94 III 90 0 6 14 III 50 0 6 15 III 11 15 0 0 5 15 15 III 65 0 6 1 III 65 0 6 | 05 III 56 0 5 1
93 III 61 0 0 1
64 IIIII: 61 0 6 1
84 II 32 0.0904 0 4 1 | 79 III 65 0 5 1
03 II-III 52 0 5 1
99 II 117 0.108 2 5 1
46 III: 75 0.324 1 6 1 | III 57 0 5 1
II-III 74 0 6 1
II: 36 0.0810 0 4 1
III 64 0 6 1 | | TAI | T_{B-M} C z R D | 2 II 56 0 5 1
4 40 0 0 1
5 46 0 0 1
4 46 0 0 0 1 | III 52 0 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | III 63 0 0 6 1 1 43 0 0 735 0 4 1 4 8 0 0 1 1 4 6 0 0 1 1 1 40 0 0 0 97 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | I 57 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 III 47 0 5
5 II-III: 58 0 6
4 III 62 0 6
3 II-III 53 0 6 | III 114 0 5
34 0 0
III: 51 0 5
III 120 0 6
48 0 0 | 4 III 90 0 6
4 III 50 0 6
5 III-III: 43 0 5
6 III: 65 0 6 | III 56 0 5 1
43 0 0 1
III: 61 0 5 1
III-III: 50 0 0 6 1
II 32 0.0904 0 4 1 | 9 III 65 0 5 1
3 III-III 52 0 5 1
9 II 117 0.108 2 5 1
6 III: 76 0.324 1 6 1 | II 57 051
I-III 74 061
I: 360.0810041
II 64 061 | | TAI | $y T_{B-M}$ C z R D | .04 286 22 II 56 0 5 1
.79 302 254 32 0 0 1
.42 285 124 40 0 0 1
.42 278 144 41 0 0 1 | 56 251 101 56 1 0 1 0 1 | 64 281 27 43 0.0735 0 4 1 2 21 99 48 0 0 0 9 | 78 277 77 I 57 0 6 1 1 2 4 0 1 1 1 1 2 4 0 1 1 1 2 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 82 143 206 III 47 0 6
69 128 155 II-III: 58 0 6
10 126 124 III 62 0 6
36 96 193 6
51 88 133 II-III 53 0 6 | 747 83 222 III 114 0 5
79 141 148 34 0 0
33 68 276 II: 51 0 5
64 41 301 III 120 0 5
75 42 280 48 | 21 29 294 III 90 0 6
26 28 214 III 50 0 6
29 24 245 II-III: 43 0 5
31 15 III: 65 0 6
25 16 304 III: 65 0 6 | 67 307 193 305 III 56 0 5 1
67 307 193 11: 61 0 5 1
77 291 164 III-III: 50 0 6 1
40 273 48 II 32 0.0904 0 4 1 | 81 249 279 III 65 0 5 1
80 248 103 II-III 52 0 5 1
.27 235 99 II 117 0.108 2 5 1
47 310 146 III: 76 0.324 1 6 1
62 318 234 75 10 1 | 77 196 176 III 57 0 5 1
85 182 31 IIII 74 0 6 1
07 170 2 II: 36 0.0810 0 4 1
11 155 289 49 0 0 1
67 154 292 III 64 0 6 1 | | TAI | b x y T_{B-M} C z R D | 04 286 22 II 56 0 5 1
479 302 254 32 0 0 1
485 124 40 0 0 1
66 290 5 46 0 0 1
42 278 144 41 0 0 1 | 11-33.56 251 101 56 1 0 1 63-36.24 253 211 III 52 0 5 1 91-37.08 252 146 37 0 0 1 91-36.58 257 248 III 54 0.0806 1 4 1 | 85-46.00 238 0 III 63 0 6 1 1 1-51.64 281 277 43 0.0735 0 4 1 1 77-34.12 211 99 48 0 0 1 67-35.287 45 0 0 94-45.05 201 157 III 40 0.0597 0 4 1 | 22-52.78 277 77 I 57 0 6 1 7 7 7 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 55-48.82 143 206 III 47 0 5
65-38.69 128 155 II-III: 58 0 6
12-39.10 126 111 62 0 6
09-34.36 96 193 11-III 53 0 6
93-39.51 88 133 II-III 53 | 89-54.79 141 148 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 65-38.21 29 294 III 90 0 6
31-39.26 28 214 III 50 0 6
09-34.59 24 245 II-III: 43 0 5
18-52.32 31 15 III
55
04-38.25 16 304 III: 65 0 6 | 33-46.49 319 305 III 56 0 5 1
86-35.67 307 193 III 61 0 0 0 1
559-53.48 299 26 III: 61 0 5 1
51-47 291 164 II-III: 50 0 6 1
46-46.40 273 48 II 32 0.0904 0 4 1 | 94-47.81 249 279 III 65 0 5 1
95-49.80 248 103 II-III 52 0 5 1
38-33.27 235 99 II 117 0.108 2 5 1
57-57.47 310 146 III: 76 0.324 1 6 1
48-26.62 318 234 75 10 1 | 56-49.77 196 176 III 57 0 5 1
02-43.85 182 31 II-III 74 0 6 1
83-52.07 170 2 II: 36 0.0810 0 4 1
92-36.11 155 289 III 64 0 6 1
31-52.67 154 292 III 64 | | TAI | x y T_{B-M} C z R D | -50.04 286 22 II 56 0 5 1
45.79 302 254 32 0 0 1
49.42 285 124 40 0 0 1
48.06 290 5 46 0 0 1
-49.42 278 144 41 0 0 1 | 13.56 251 101 56 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 46.00 238 0 III 63 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2-52.78 277 77 I 57 06 1 2 2 0 0 0 1 2 2 0 1 2 1 2 1 2 1 2 1 2 | 48.82 143 206 III 47 0 5 -39.10 126 128 155 II-III: 58 0 6 -39.10 126 124 III 62 0 6 34.36 96 193 11-III 53 0 6 -39.51 88 133 II-III 53 0 6 | 49.47 83 222 III 114 0 5
54.79 141 148 34 0 0
49.33 68 276 II: 51 0 5
49.72 42 280 48 0 0 | 38.21 29 294 III 90 0 6
-39.26 28 214 III 50 0 6
-34.59 24 245 II-III: 43 0 5
-25.32 31 15 III 55 0 6
-38.25 16 304 III: 65 0 6 | 3-46.49 319 305 III 56 0 5 1
6-35.67 307 193 43 0 0 1
9-53.48 299 262 III: 61 0 5 1
6-46.40 273 48 II 32 0.0904 0 4 1 | 4-47.81 249 279 III 65 0 5 1
5-49.80 248 103 II-III 52 0 5 1
8-33.27 235 99 II 117 0.108 2 5 1
7-57.47 310 146 III: 76 0.324 1 6 1
8-26.62 318 234 75 | 6-49.77 196 176 III 57 0 5 1
2-43.85 182 31 III-III 74 0 6 1
3-52.07 170 2 II: 36 0.0810 0 4 1
2-36.11 155 289 49 0 0 1
1-52.67 154 292 III 64 0 6 1 | | TAJ | l b x y T_{B-M} C z R D | 005 33.54-50.04 286 22 II 56 0 5 1
945 47.62-45.79 302 254 32 0 0 1
811 36.32-49.42 298 124 40 0 0 1
424 41.67-48.06 290 5 46 0 0 1
749 36.92-49.42 278 144 41 0 0 1 | 1118 70.11-33.56 251 101 56 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 126 32.11-51.64 281 27 43 0.0735 0 4 1
118 70.77-34.12 211 99 48 0 0 0 0
68.67-25.94 205 287 45 0 0 1
535 53.94-45.05 201 157 III 40 0.0597 0 4 1 | 513 26.22-52.78 277 77 I 57 06 1
425 27.70-53.11 240 117 32 0 0 1
511 24.94-53.86 220 23 II-III: 61 0 6 1
747 77.15-30.31 147 126 III 88 0.0838 2 5 1
211 46.49-49.47 147 125 I 88 0.0838 2 5 1 | 41 48.55-48.82 143 206 III 47 0 520 67.65-38.69 128 155 II-III: 58 0 6 45 67.12-39.10 126 124 III 62 0 6 03 47.09-34.36 96 193 69 19 6 1 0 56 67.93-39.51 88 133 II-III 55 0 6 | 252 49.68-49.47 83 222 III 114 0 5
351 29.39-54.79 141 148 34 0 0
321 51.37-49.33 68 276 II: 51 0 5
904 71.57-37.96 41 301 III 120 0 6
916 51.86-49.72 42 280 48 | 70.31-39.26 28 214 III 90 0 6 70.31-39.26 28 214 III 50 0 6 76.09-34.59 24 245 III.III: 43 0 5 72.04-38.25 16 304 III: 65 0 6 | 0247 60.33-46.49 319 305 III 56 0 5 1
1305 75.86-35.67 307 193 III 51 0 0 0 1
1534 43.29-53.48 299 262 III: 61 0 5 1
0033 64.51-44.70 273 48 II 32 0.0904 0 4 1 | 0634 56.95-49.80 248 103 III 65 0 5 1
0634 56.95-49.80 248 103 II-III 52 0 5 1
1720 80.38-33.77 235 99 II 117 0.108 2 5 1
23350 30.57-57.47 310 146 III: 76 0.324 1 6 1
2549 86.48-26.62 318 234 75 | 0404 70.02-43.85 182 31 III-III 74 0 6 1 0 8 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 | | TAJ | l b x y T_{B-M} C z R D | 8.9-2005 33.54-50.04 286 22 II 56 0 5 I
8.7-0945 47.62-45.79 302 254 32 0 0 1
8.7-1811 36.32-49.42 290 5 46 0 0 1
9.5-1749 36.92-49.42 278 144 41 0 0 1 | 1+1118 70.11-33.56 251 101 56 10 10 11+0723 66.63-36.24 253 211 III 52 0 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | 5-0831 49.85-46.00 238 0 III 63 0 6 1 1 2-2126 32.11-51.64 281 277 43 0.0735 0 4 1 2.4118 70.77-34.12 211 99 48 0 0 0 1 2.740848 68.67-75 20 20 20 20 20 20 20 20 20 20 20 20 20 | 2-2513 26.22-52.78 277 77 I 57 06 13-2425 27.70-53.11 240 117 32 0 0 0 13-2425 27.70-53.11 240 117 32 0 0 0 13-241 24.94-53.86 220 23 III-III: 61 0 6 13-4174 77.15-30.31 141 126 III 88 0.0838 2 5 14-1211 46.49-49.47 147 125 I 88 0.0838 2 5 1 | 0.7-1041 48.55-48.82 143.206 III 47 0 5
0.6+0620 67.65-38.69 128.155 II-III: 58 0 6
0.7+0545 67.12-39.10 126.124 III 62 0 6
2.8+1303 47.09-34.36 95.193 II-III 53 0 6
3.6+0556 67.93-39.51 88.133 II-III 53 0 6 | 4.5-1022 49.68-49.47 83 222 III 114 0 5 5.5-2351 29.39-54.79 141 148 34 0 0 6 6.2-0921 51.37-49.33 68 276 II: 51 0 5 5 7.1+0904 71.57-27.96 41 301 III 120 0 6 8 8.2-0916 51.86-49.72 42 280 48 0 0 | 8.0+0856 71.65-38.21 29 294 III 90 0 6
8.0+0727 70.31-39.26 28 214 III 50 0 6
8.4+1401 76.09-34.59 24 245 II-III: 43 0 5
9.3-1412 72.04-38.25 16 304 III: 65 0 6 | 20.5-0247 60.33-46.49 319 305 III 56 0 5 1
20.9+1305 75.86-35.67 307 193 11 43 0 0 1
21.9-1534 43.59-53.48 299 262 III: 61 0 5 1
22.6+0033 64.51-44.70 273 48 II 32 0.0904 0 4 1 | 5.7-0316 60.94-47.81 249 279 III 65 0 5 1
5.8-0634 56.95-49.80 248 103 II-III 52 0 5 1
6.1-1720 80.38-33.27 235 99 II 117 0.108 2 5 1
7.6-2350 30.57-57.47 310 146 III: 76 0.324 1 6 1
6.7+2549 86.48-26.62 318 234 75 | 9.7-0511 59.56-49.77 196 176 III 57 0 5 1
0.5+0404 70.02-43.85 182 31 III-III 74 0 6 1
11.7-0826 55.33-52.07 170 2 II: 36 0.0810 0 4 1
2.4+1453 79.92-36.11 155 289 49 0 0 1
3.0-0902 55.31-52.67 154 292 III 64 0 6 1 | | TAJ | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 2158.9-2005 33.54-50.04 286 22 II 56 0 5 1
2158.7-0945 47.62-45.79 302 254 32 0 0 1
2158.9-1811 36.32-49.42 285 124 40 0 0 1
2159.4-1424 41.67-48.06 290 5 46 0 0 1
2159.5-1749 36.92-49.42 278 144 41 0 0 1 | 2201.0+1118 70.11-33.56 251 101 56 10 1 2201.1+0723 66.63-36.24 253 211 III 52 0 5 1 2201.3+0610 65.54-37.08 252 146 37 0 0 1 2200.9+2057 77.91-65.65 247 295 II 91 0 5 1 2202.1-0953 48.05-46.58 257 248 III 54 0.0806 1 4 1 | 2202.5-0831 49.85-46.00 238 0 III 63 0 6 1 2 2 0 4 2 2 0 4 2 2 0 4 2 2 0 4 2 2 0 4 2 2 0 4 2 2 0 4 2 0 | 2205.0-2513 26.22-52.78 277 77 1 57 06 1 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2210.7-1041 48.55-48.82 143 206 III 47 0 5 2210.6+0620 67.65-38.69 128 155 II-III: 58 0 6 2210.7+0645 67.12-39.10 126 124 III 62 0 6 2213.6+055 67.93-39.51 88 133 II-III 53 0 6 | 2214.5-1022 49.68-49.47 83 222 III 114 0 5 2215.5-2351 29.39-54.79 141 148 34 0 0 6 2215.2-0921 51.37-49.33 68 276 II: 51 0 5 2217.1+0904 71.57-37.96 41 301 III 120 0 6 2218.2-0916 51.86-49.72 42 280 48 0 0 | 2218.0+0856 71.65-38.21 29 294 III 90 0 6 2218.0+0727 70.31-39.26 28 214 III 50 0 6 2218.0+1101 76.09-34.59 24 245 II-III: 43 0 5 2219.3+3141 45.18-55.32 31 15 III 65 0 6 2219.0+0907 72.04-38.25 16 304 III: 65 0 6 | 2220.5-0247 60.33-46.49 319 305 III 56 0 5 1 2220.9+1305 75.86-35.67 307 193 43 0 0 0 1 2221.9-1534 43.59-53.48 299 262 III: 61 0 5 1 2222.6+0033 64.51-44.77 211 164 II-III: 50 0 6 1 2223.9-0135 62.46-46.40 273 48 II 32 0.0904 0 4 1 | 2 2225.7-0316 60.94-47.81 249 279 III 65 0 5 1 2 225.8-0634 56.95-49.80 248 103 II-III 52 0 5 1 5 2 2226.14720 80.38-33.27 235 99 II 117 0.108 2 5 1 6 2 227.6-2350 30.57-57.47 310 146 III: 76 0.324 1 6 1 6 1 2 2226.7+2549 86.48-26.62 318 234 75 | 2230.5+0404 70.02-43.85 182 31 III-III 74 0 6 1 2231.7-0826 55.83-52.07 170 2 11: 36 0.0810 0 4 1 2232.4+1453 79.92-351.1 155 289 49 00 1 2233.0-0902 55.31-52.67 154 292 III 64 0 6 1 | | TAI | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 1-2020 2158.9-2005 33.54-50.04 286 22 II 56 0 5 1
0-1000 2158.7-0945 47.62-45.79 302 254 32 0 0 1
2-1826 2158.9-1811 35.2-49.45 285 124 40 0 0 1
7-1439 2159.4-1424 41.67-48.06 290 5 46 0 0 1
8-1804 2159.5-1749 36.92-49.42 278 144 41 0 0 1 | 5+1104 2201.0+1118 70.11-33.56 251 101 56 10 10 10 10 10 10 10 10 10 10 10 10 10 | 9-0846 2202.5-0831 49.85-46.00 238 0 III 63 0 6 1 4-2141 2204.2-2126 32.11-51.64 281 277 43 0.0735 0 4 1 2 4 2 10 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 | 2-2528 2205.0-2513 26.22-52.78 277 77 I 57 06 1
5-2440 2207.3-2425 27.70-53.11 240 117 32 0 0 0 1
2-2626 22090-2611 24.94-53.86 220 23 III-III: 61 0 6 1
9-1733 2209.3+1747 77.15-30.31
141 126 III 50 0 5 1
7-1226 2210.4-1211 46.49-49.47 147 125 I 88 0.0838 2 5 1 | 2210.7-1041 48.55-48.82 143 206 III 47 0 5 2210.6+0620 67.65-38.69 128 155 II-III: 58 0 6 2210.7+0645 67.12-39.10 126 124 III 62 0 6 2213.6+055 67.93-39.51 88 133 II-III 53 0 6 | 8-1037 2214.5-1022 49.68-49.47 83 222 III 114 0 5
7-2406 2215.5-2351 29.39-54.79 141 148 34 0 0
6-0936 2216.2-0921 51.37-49.33 68 276 II: 51 0 5
6-0849 2217.1+0904 71.57-37.96 41 301 III 120 0 5
6-0932 2218.2-0916 51.86-49.72 42 280 | 2218.0+0856 71.65-38.21 29 294 III 90 0 6 2218.0+0727 70.31-39.26 28 214 III 50 0 6 2218.0+1101 76.09-34.59 24 245 II-III: 43 0 5 2219.3+3141 45.18-55.32 31 15 III 65 0 6 2219.0+0907 72.04-38.25 16 304 III: 65 0 6 | 1250 2220.9+1305 75.86-35.67 307 193 305 III 56 0 5 1 1150 2220.9+1305 75.86-35.67 307 193 43 0 0 1 1150 2221.9-1334 43.59-53.48 299 262 III: 61 0 5 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0332 2225.7-0316 60.94-47.81 249 279 III 65 0 5 1
-0650 2225.8-0634 56.95-49.80 248 103 II-III 52 0 5 1
11705 2226.1-11720 80.38-33.27 235 99 II 117 0.108 2 5 1
12406 2227.6-2350 30.57-57.47 310 146 III: 76 0.324 1 6 1
12534 2226.7+2549 86.48-26.62 318 234 75 | 5229.7-0511 59.56-49.77 196 176 III 57 0 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | TAI | l b x y T_{B-M} C z R D | -2020 2158.9-2005 33.54-50.04 286 22 II 56 0 5 1
-1000 2158.7-0945 4.62-45.79 302 254 32 0 0 1
-1826 2158.9-1811 36.32-49.85 124 40 0 0 1
-1439 2159.4-1424 41.67-48.06 290 5 46 0 0 1
-1804 2159.5-1749 36.92-49.42 278 144 41 0 0 1 | 1+1118 70.11-33.56 251 101 56 10 10 11+0723 66.63-36.24 253 211 III 52 0 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | 9-0846 2202.5-0831 49.85-46.00 238 0 III 63 0 6 1 14-2141 2204.2-2126 32.11-51.64 281 277 43 0.0735 0 4 1 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 | 2-2528 2205.0-2513 26.22-52.78 277 77 I 57 06 1 2-2440 2207.3-2425 27.70-53.11 240 117 32 00 0 1 2-2626 2209.0-2611 24.9-53.86 220 23 III-III: 61 06 1 9+1733 2209.3+1747 77.15-30.31 141 126 III 50 0 5 1 7.1526 2210.4-1211 46.49-49.47 147 125 I 88 0.0838 2 5 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 | 0-1056 2210.7-1041 48.55-48.82 143 206 III 47 0 5
1+0606 2210.6+0620 67.65-38.69 128 155 II-III: 58 0 6
2-40531 2210.7+0545 67.12-39.10 126 111 62 0 6
4+1249 2212.8+1303 74.09-34.36 95 193 11-III 53 0 6
1+0542 2213.6+0556 67.93-39.51 88 133 II-III 53 0 6 | 1.8-1037 2214.5-1022 49.68-49.47 83 222 III 114 0 5
2.7-2406 2215.5-2351 29.39-54.79 141 148 34 0 0 0
3.5-6-936 2216.2-9021 51.37-49.33 68 276 II: 51 0 5
4.6+0849 2217.1+0904 71.57-37.96 41 301 III 120 0 5
5.6-0932 2218.2-0916 51.86-49.72 42 280 48 | 5.5+0841 2218.0+0856 71.65-38.21 29 294 III 90 0 6
5.5+0712 2218.0+0727 70.31-39.26 28 214 III 50 0 6
5.6-14346 2218.4+1401 76.09-34.59 24 245 II-III: 43 0 5
6.6-1428 2219.0+0907 72.04-38.25 16 304 III: 65 0 6 | 7.9-0303 2220.5-0247 60.33-46.49 319 305 III 56 0 5 1
3.4+1250 2220.9+1305 75.86-35.67 307 193 43 0 0 1
3.2-1550 2221.9+1305 75.89-53.48 299 262 III: 61 0 5 1
3.0-1018 2222.6+0033 64.51-44.77 291 164 II-III: 50 0 6 1
64.51-44.77 291 164 II-III: 50 0 6 1
64.51-46.40 273 48 II 32 0.0904 0 4 1 | 3.1-0332 2225.7-0316 60.94-47.81 249 279 III 65 0 5 1
3.2-0650 2225.8-0634 56.95-49.80 248 103 II-III 52 0 5 1
3.4-1705 2226.1+1720 80.38-33.27 235 99 II 117 0.108 2 5 1
4.8-2406 2227.6-2350 30.57-57.47 310 146 III: 76 0.324 1 6 1
4.4+2534 2226.7+2549 86.48-26.62 318 234 75 | 227.1-0527 2229.7-0511 59.56-49.77 196 176 III 57 0 5 1 228.0+0349 2230.5+0404 70.02-43.85 182 31 III-III 74 0 6 1 229.1-0842 2231.7-0825 55.83-52.07 170 2 II: 36 0.0810 0 4 1 229.9+1438 2232.4+1453 79.92-356.11 155 289 49 0 0 1 230.4-0918 2233.0-0902 55.31-52.67 154 292 III 64 0 6 1 | | TAI | $RA(2000)Dec$ l b x y T_{B-M} C z R D | 156.1-2020 2158.9-2005 33.54-50.04 286 22 II 56 0 5 1
156.0-1000 2158.7-0945 47.62-45.79 302 254 32 0 0 1
156.2-1826 2158.9-1811 36.32-45.79 1285 124 40 0 0 1
156.7-1439 2159.4-1424 41.67-48.06 290 5 46
156.8-1804 2159.5-1749 36.92-49.42 278 144 41 0 0 1 | 158.5+1104 2201.0+1118 70.11-33.56 251 101 56 10 118.6+0709 2201.1+0723 66.63-36.24 253 211 III 52 0 5 118.6+0556 2201.3+0610 65.54-37.08 252 146 37 0 0 11.28.6+2043 2200.9+2057 77.91-26.65 247 295 II 91 0 5 1159.4+1008 2202.1-0953 48.05-46.58 257 248 III 54 0.0806 14 1 | 9-0846 2202.5-0831 49.85-46.00 238 0 III 63 0 6 1 4-2141 2204.2-2126 32.11-51.64 281 277 43 0.0735 0 4 1 2 4 2 10 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 | 2-2528 2205.0-2513 26.22-52.78 277 77 I 57 06 1
5-2440 2207.3-2425 27.70-53.11 240 117 32 0 0 0 1
2-2626 22090-2611 24.94-53.86 220 23 III-III: 61 0 6 1
9-1733 2209.3+1747 77.15-30.31 141 126 III 50 0 5 1
7-1226 2210.4-1211 46.49-49.47 147 125 I 88 0.0838 2 5 1 | 2210.7-1041 48.55-48.82 143 206 III 47 0 5 2210.6+0620 67.65-38.69 128 155 II-III: 58 0 6 2210.7+0645 67.12-39.10 126 124 III 62 0 6 2213.6+055 67.93-39.51 88 133 II-III 53 0 6 | 8-1037 2214.5-1022 49.68-49.47 83 222 III 114 0 .7-2406 2215.5-2351 29.39-54.79 141 148 34 0 0 .6-6036 2215.5-2021 51.37-49.33 68 276 II: 51 0 5 .6-0849 2217.1+0904 71.57-37.96 41 301 III 120 0 6 .6-0932 2218.2-0916 51.86-49.72 42 280 48 0 0 | 5+0841 2218.0+0856 71.65-38.21 29 294 III 90 0 6
5+0712 2218.0+0727 70.31-39.26 28 214 III 50 0 6
0+1346 2218.4+1401 76.09-34.59 24 245 II-III: 43 0 5
6-1428 2219.3-3141 45.18-55.32 31 15 III 59 0 6
5+0852 2219.0+0907 72.04-38.25 16 304 III: 65 0 6 | 9-0303 2220.5-0247 60.33-46.49 319 305 III 56 0 5 1
.4+1250 2220.9+1305 75.86-35.67 307 193 43 0 0 1
.2-1550 2221.9-1354 43.59-53.48 299 262 III: 61 0 5 1
.0-10018 2222.6+0033 64.51-44.77 291 164 II-III: 50 0 6 1
.3-0151 2223.9-0135 62.46-46.40 273 48 II 32 0.0904 0 4 1 | 1-0332 2225.7-0316 60.94-47.81 249 279 III 65 0 5 1 | 27.1-0527 2229.7-0511 59.56-49.77 196 176 III 57 0 5 1 28.0+0349 2230.5+0404 70.02-43.85 182 31 II-III 74 0 6 1 29.1-0842 2231.7-0826 55.83+52.07 170 2 II: 36 0.0810 0 4 1 30.9+1438 2223.4+1453 79.92-36.11 155 289 49 0 0 1 30.4-0918 2233.0-0902 55.31-52.67 154 292 III 64 0 6 1 | | | 目 | 17.
18.
17.
16. | 16.
17.
17. | 17.
17.
17.
16. | 16.
16.
16. | 17.
15.
17.
17. | 17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
15. | 17.
16.
15.
17. | 17.
16.
17.
17. | |------------|--------------|---|---|--|---|---|---|---|---|---|--| | | R D | 22000
23000
20000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 1
8
0
0
0
0
0
0 | 0000 | 00000 | 0000 | 0000 | 90m90
0000 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 2 | 0.1060
0.1388 | 0.086 | 0.027 | 0.0821 | 0.039 | | 0.1196 | 0.0421 | 0.0433 | 0.0852 | | | ၁ | 58
: 94
76
159 | : 67
47
73
81 | 44
44
40
40 | 51
30
35
56 | 80
80
80 | 92
73
55
66 | 76
53
46
81 | 46
97
61
53 |
54
45
65
65
65 | 44
43
61
51
50 | | | T_{B-M} | :::::::::::::::::::::::::::::::::::::: | 111-111
1111:
11-11 | | H HH | | III
III
III-III | | III II | 111-111
11
11-111 | 11 111 | | | y | 8 233
8 324
9 86
6 272
2 233 | 8 264
6 186
8 42
6 40
4 239 | 5 280
9 263
1 245
2 290 | 8 3
4 123
9 232
3 84
9 237 | 4 9
2 171
4 0
3 269
5 238 | 3 215
3 191
4 209
9 266
1 177 | 4 186
0 289
9 0
1 323
3 14 | 221
301
69
244 | 147
139
273
243
322 | 9 168
6 124
8 337
0 148
9 221 | | | н | 222 | 2256 | 22 22 23 23 23 23 23 23 23 23 23 23 23 2 | 214 | 184
174
173
305 | 282
283
283 | 144
135
281
263 | 124
259
114
111
106 | 106
107
105
103
242 | 238
238
220
215 | | | 9 1 | 84.67-47.42
80.93-50.94
32.97-67.68
41.62-66.79 | 41.38-66.97
51.88-65.11
87.04-45.58
58.37-63.42
53.99-64.66 | 90.41-41.87
100.05-26.06
57.68-64.00
90.32-42.58
43.19-67.42 | 44.99-67.17
71.49-59.15
40.71-68.01
61.43-63.88
81.56-53.23 | 77.18-56.64
94.22-58.89
77.22-56.90
82.52-52.91
41.58-68.61 | 40.46-68.77
39.41-69.07
75.21-58.72
43.19-68.73
38.85-69.34 | 54.44-66.93
83.41-65.56
46.34-68.56
99.72-31.25 | 46.64-68.82
41.43-69.53
89.55-47.95
94.67-41.20 | 82.03-55.51
95.51-40.04
93.50-43.21
88.99-48.98 | 38.94-70.14
65.37-64.84
100.70-31.32
38.16-70.59
42.09-70.23 | | | RA(2000)Dec. | 2311.3+0752
2311.4+0335
2312.4-2456
2312.5-2128
2312.8-2212 | 2313.1-2137
2313.0-1658
2312.8+1018
2313.1-1341
2313.2-1558 | 2313.6+1444
2313.6+3225
2314.4-1416
2314.8+1405
2315.8-2106 | 2315.9-2022
2316.3-0608
2317.0-2211
2317.9-1251
2318.2+0158 | 2318.6-0215
2318.4+1844
2319.3-0226
2319.3+0234
2319.8-2204 | 2319.9-2230
2320.7-2257
2320.8-0431
2321.1-2133
2321.6-2313 | 2321.8-1657
2321.8+0256
2322.2-2025
2322.1+2733
2322.9-2614 | 2323.4-2025
2323.5-2224
2323.7+0909
2324.0+1649
2324.4+0205 | 2324.4+0017
2324.3+1808
2324.5+1438
2324.5+0804
2324.9-2031 | 2325.0-2324
2325.3-1206
2325.7+2749
2326.6-2346 | | pa | RA(1950)Dec |
2308.8+0736
2308.9+0319
2309.7-2513
2309.8-2145
2310.1-2229 | 2310.4-2154
2310.4-1715
2310.3+1002
2310.5-1358
2310.6-1615 | 2311.1+1428
2311.2+3209
2311.8-1433
2312.3+1349
2313.2-2123 | 2313.3-2039
2313.7-0625
2314.3-2228
2315.3-1308
2315.6+0142 | 2315.0-0232
2315.9+1828
2316.7-0243
2316.7+0218
2317.2-2221 | 2317.3-2247
2318.1-2314
2318.2-0448
2318.5-2150
2319.0-2330 | 2319.2-1714
2319.2+0240
2319.6-2042
2319.6+2717
2320.2-2631 | 2320.8-2042
2320.9-2241
2321.2+0853
2321.5+1633
2321.8+0149 | 2321.8+1752
2322.0+1422
2322.0+1422
2322.0+0748
2322.3-2048 | 2322.4-2341
2322.7-1223
2323.2+2733
2324.0-2403
2324.1-2241 | | -Continued | Abell | 2551
2552
2553
2554
2554 | 2556
2557
2558
2559
2559 | 2561
2562
2563
2564
2564 | 2566
2567
2568
2569
2569 | 2571
2572
2573
2574
2574 | 2576
2577
2578
2578
2579
2580 | 2581
2582
2583
2583
2584
2585 | 2586
2587
2588
2589
2590 | 2591
2592
2593
2594
2595 | 2596
2597
2598
2599
2600 | | TABLE 3- | R D m | 0 6 17.9
0 5 16.6
0 4 16.4
0 0 17.2
0 6 17.6 | 1 5 17.1
0 6 17.6
0 6 17.5
1 5 17.1
0 6 17.8 | 0 0 16.0
0 5 17.1
1 0 17.9
0 6 17.6 | 0 5 17.1
0 0 17.5
1 5 17.2
0 0 17.2 | 2 5 16.9
0 6 17.7
0 5 17.0
0 5 16.5
0 4 16.0 | 0 6 17.4
0 6 17.7
0 5 16.8
0 5 17.2
0 5 17.2 | 1 5 17.1
1 0 17.5
0 5 17.2
2 6 17.5
1 0 16.9 | 2 6 17.5
0 6 18.0
1 5 16.5
1 5 16.9 | 2 5 17.1
0 5 17.2
0 0 17.2
0 0 17.2 | 2 5 17.1
2 5 16.9
0 5 17.0
2 5 16.9 | | | 8 | | 2306 | | ,1351 | . 1359 | . 0955 | .1741 | .0817
.1735
.1297 | 1603 | .1119
.1492
.1101 | | | 0 | 58
58
58
55 | 76
92
64
70
59 | 31
53
69
64 | 52
45
78 0
37 | 103 0
51
58
60
31 | 53
68
39 0
81 | 73 0
69
59
110 0 | 102 0
51
72 0
66 0 | 83 0
57 0
31
35 | 90 0
84 0
65 0
57 | | | T_{B-M} | 8 III:
9 III:
7 III | 1 II:
5 III-III:
8 III | 5
11 11
0 111
9 1111 | 1 II
3 III
8 III | S I I I I I I I I I I I I I I I I I I I | 6 III
7 III:
6 III: | 2 III
2 II-III 3 | !!!
!!!-!!!
!!:-!!! | 3 III
7 III
6 II:
0 | 9 II-III
1 III
0 II-III:
7 III
8 II-III: | | | y | 88 318
81 209
90 100
66 29 | 204
204
204
506
606
607
607
708
708
708
708
708
708
708
708
708
7 | 25
18
18 | 1 161
17 60
19 128
14 288
10 240 | 02 245
85 243
71 176
69 119
67 207 | 179 136
166 67
160 277
32 64
34 220 | 14 262
13 280
16 209
12 60 | 34 221
21 14
11 29
21 272
13 236 | 06 193
00 97
96 296
94 194
95 100 | 907 20
905 29
80 29 | | | н | ппонп | 7 154
8 153
1 145
6 256
8 134 | 7 126
4 114
0 240
0 226
0 232 | 96 1111
59 107
94 219
64 104
87 100 | 70 20
999 8
118 7
72 6 | 4.10.4-0.10 | 65 144
96 152
02 23
07 136
99 172 | 1 2 2 2 2 2 | 7 | 82003 | | | l b | 85.64-38.75
48.34-61.09
94.53-26.89
51.56-60.56
72.09-51.68 | 84.76-40.87 78.29-47.18 85.79-40.01 38.51-63.66 73.68-51.28 | 63.92-56.97
83.07-43.94
93.78-30.20
35.64-64.60 | 89.25-36.9
83.66-43.5
33.50-64.9
52.44-61.6
86.34-40.8 | 38.67-64.7
86.70-40.9
49.11-63.1
89.56-38.0
60.86-59.7 | 34.22-65.6
31.26-66.1
40.56-65.2
57.18-61.8
91.49-36.7 | 40.14-65.6
96.61-28.9
53.83-63.0
37.94-66.0 | 38.53-66.0
73.83-54.8
44.55-65.4
40.93-65.9
39.44-66.3 | 37.62-66.7
33.82-67.0
55.18-63.4
62.51-61.1
82.17-49.3 | 38.46-66.7
42.14-66.3
43.87-66.1
59.42-62.5
40.81-66.6 | | | RA(2000)Dec | 2254.0+1527
2255.1-1632
2254.8+2928
2256.1-1454
2256.5-0031 | 2256.6+1320
2256.7+0530
2257.3+1429
2257.9-2143
2258.3+0026 | 2258.9-0736
2259.6+1006
2259.4+2615
2300.3-2311
2259.7+3103 | 2260.0+1831
2300.2+1038
2300.8-2409
2300.9-1504 | 2302.3-2158
2301.9+1403
2303.5-1709
2303.2+1744
2303.6-1034 | 2304.1-2401
2305.2-2518
2305.7-2123
2306.3-1314
2306.1+1936 | 2307.0-2140
2306.6+2830
2307.2-1512
2307.6-2239
2306.7+4039 | 2307.8-2225
2308.3-0210
2308.7-1952
2308.8-2128
2309.5-2209 | 2310.1-2257
2310.1-2429
2310.0-1454
2310.3-1048
2310.1+0523 | 2310.8-2239
2310.9-2107
2311.4-2025
2311.3-1248
2311.6-2144 | | | RA(1950)Dec | 2251.5+1512
2252.4-1649
2252.4+2912
2253.5-1511
2253.9-0048 | 2254.1+1304
2254.2+0514
2254.8+1413
2255.2-2200
2255.7+0010 | 2256.3-0753
2257.1+0950
2257.0+2559
2257.6-2328
2257.3+3047 | 2257.5+1815
2257.7+1022
2258.1-2426
2258.3-1521
2258.2+1344 | 2259.6-2215
2259.4+1347
2300.9-1726
2300.7+1728
2301.0-1051 | 2301.4-2418
2302.5-2535
2303.0-2140
2303.7-1331
2303.6+1920 | 2304.3-2157
2304.2+2814
2304.6-1529
2304.9-2256
2304.4+4023 | 2305.1-2242
2305.7-0227
2306.0-2009
2306.1-2145
2306.8-2226 | 2307.4-2314
2307.4-2446
2307.4-1511
2307.7-1105
2307.6+0507 | 2308.1-2256
2308.2-2124
2308.7-2042
2308.7-1305
2308.9-2201 | | | Abell | 2501
2502
2503
2503
2504 | 2506
2507
2508
2509
2510 | 2511
2512
2513
2514
2514 | 2516
2517
2518
2519
2520 | 2521
2522
2523
74
2524
2525 | 2526
2527
2528
2528
2529
2530 | 2531
2532
2533
2534
2534
2535 | 2536
2537
2538
2539
2540 | 2541
2542
2543
2544
2544 | 2546
2547
2548
2549
2550 | | | z RD m | 0 5 16.
0 6 17.
0 6 17.
0 5 17.
2 5017. | 0 0 16.
.0414 1 3 14.
.185 3 6 17.
0 5 17. | 0 6 17.
0 6 17.
0 6 17.
0 6 17.
.0556 0 4 15. | .0265 0 1 13.
0 6 17.
0 5 17.
0 6 17. | 0 5 16.
0 5 17.
0 6 18.
0 6 17. | 0 0 16.
1 0 17.
0 0 16.
0 6 17.
0 6 17. | 0 6 17.
0 6 17.
0 0 16.
0 6 17.
0 6 17. | .1124 1 5 16.
1 0 16.
0 6 17.
0 6 18. | 0 0 16.
0 6 17.
0 6 17.
0 958 3 5 17.
0 6 17. | 0 0 16.
0 5 17.
0 5 17.
0 6 17. | |------------|-------------------|---|---|--|---|---|---|--|---|--|--| | | O | 83
159
73
96
80 | 35
51 0
143 0
58
45 | 147
77
127
87
34 0 | 34 0
165
86
77
142 0 | 81
70
68
84
60 0 | 37
72
40
108
126 | 54
64
44
80
1 | 50 0
52
131
93
38 | 41
64
73
132 0
I 91 | 39
97
83
I: 58
59 0 | | | x y T_{B-M} | 190 295 III
174 218 III
167 250 III
161 56 III
0 248 III: | 153 232
152 300 III
152 114 III
151 266 II-III
307 29 | 130 215 III
93 46 III
254 101 III
82 258 II:
74 137 | 249 300 I
228 32 I
57 241 III
46 302 III
31 215 I-II | 17 100 III:
199 262 III
14 235 III
333 225 III
329 101 II | 329 134
166 43
325 114
186 329 III
171 295 III | 160 118 II:
159 321 III
158 53
295 209 III
147 114 II-III | 135 308 II
126 233
268 337 III:
267 251 III | 255 286
244 134 II
239 47 III
238 261 I:
232 171 II-III | 227 179
226 125 III
225 58 II:
219 276 II-III | | | 9 1 | 101.94-38.96
75.92-66.80
99.19-45.52
80.97-64.64 | 85.42-62.03
96.66-50.30
73.28-68.50
66.67-70.68
33.66-75.18 | 77.46-67.38
102.09-43.94
39.32-75.92
88.38-62.31
96.89-53.66 | 106.71-33.81
34.37-76.62
101.85-46.39
95.68-56.56
81.33-68.52 | 98.12-54.72
107.58-34.74
95.75-57.95
95.73-58.14
101.74-49.13 | 98.80-54.20
110.07-27.12
101.96-48.93
57.41-75.54
55.90-76.07 | 42.84-77.52
58.12-76.03
37.33-77.84
83.34-69.19
42.86-77.77 | 58.16-76.54
110.46-29.46
105.28-45.28
74.08-73.53
39.93-78.37 | 94.31-63.14
104.34-49.04
64.17-76.40
102.81-52.52
107.20-42.63 | 98.58-59.68
92.25-66.07
101.08-56.19
77.47-73.77
99.63-58.64 | | | m RA(2000)Dec | 2341.9+2103
2343.3-1022
2343.7+1412
2344.3-0723
2344.4-2152 | 2344.9-0406
2344.8+0908
2345.0-1218
2345.1-1528
2345.3-2558 | 2346.7-1025
2349.4+1624
2349.7-2443
2350.2-0337
2350.8+0606 | 2350.9+2708
2351.8-2600
2352.2+1402
2352.9+0310
2354.2-1024 | 2355.1+0524
2355.1+2626
2355.3+0155
2355.6+0144
2355.6+1125 | 2355.8+0602
2355.8+3421
2355.9+1139
2355.3-2027
2356.5-2102 | 2357.4-2420
2357.5-2033
2357.6-2533
2358.2-1031
2358.5-2424 | 2359.4-2048
0000.0+3209
0000.2+1549
0000.2-1544 | 0001.4-0305
0002.1+1202
0002.2-1933
0002.6+0825 | 0003.4+0053
0003.4-0606
0003.5+0437
0003.8-1516 | | pa | RA(1950)Dec | 2339.4+2047
2340.7-1039
2341.2+1356
2341.7-0740
2341.8-2209 | 2342.3-0423
2342.3+0852
2342.4-1235
2342.5-1545
2342.7-2615 | 2344.1-1042
2346.9+1608
2347.1-2500
2347.6-0354
2348.2+0550 | 2348.4+2652
2349.2-2617
2349.6+1346
2350.3+0254
2351.6-1041 |
2352.5+0508
2352.6+2610
2352.7+0139
2353.0+0128
2353.0+1109 | 2353.2+0546
2353.3+3405
2353.3+1123
2352.7-2044
2353.9-2119 | 2354.9-2437
2354.9-2050
2355.0-2550
2355.6-1048
2355.9-2441 | 2356.8-2105
2357.5+3153
2357.6+1533
2357.6-1601
2357.8-2525 | 2359.5+1146
2359.5+1146
2359.6-1950
2360.0+0809 | 0000.8+0037
0000.8-0623
0000.9+0421
0001.2-1533 | | -Continued | Abell | 2651
2653
2653
2653
2654
2655 | 2656
2657
2658
2659
2659 | 2661
2662
2663
2663
2664 | 2666
2667
2668
2669
2669 | 2671
2672
2673
2674
2675 | 2676
2677
2678
2678
2680 | 2681
2682
2683
2683
2685 | 2686
2687
2688
2689
2690 | 2691
2692
2693
2694
2695 | 2696
2697
2698
2699
2700 | | TABLE 3- | z R D m | 0 6 17.7
0 6 17.7
0 0 17.7
0 0 17.1
0 5 17.1 | 0 5 17.1
0 0 17.6
0 5 17.1
0 6 17.4
0 6 17.6 | 0 5 17.2
0 6 17.7
0 5 17.2
0 6 17.5
0 6 17.7 | 0.1832 2 5 17.2
0 5 17.0
0.0705 0 4 15.9
0 0 16.5
0 6 17.8 | 0 6 17.9
0.0621 0 4 15.9
0.1784 3 5 17.2
0 6 18.0
0.0609 0 3 15.6 | 0.0573 0 3 15.2
0 5 17.1
0 6 17.7
0 6 17.5
0.0675 0 3 15.2 | 0.186 3 6 17.8
0.0312 1 1 13.8
0 6 17.5 | 0 6 17.8
0 5 16.6
0 0 5 17.2
0 6 17.7
0 5 16.7 | 0 6 17.7
0 0 16.8
0 6 17.7
0 5 16.6
0.246 4 6 18.0 | 0.193 3 6 17.6
0 0 17.1
0 6 17.6
0 5 16.9
1 0 17.1 | | | M C | 111 55
46
31
111 54 | III: 78
38
59
69
69
130 | 74
III 97
88
III 54 | III 94
95
35
38
129 | 76
II: 41
142
103
45 | 47
II 50
83
100
31 | 136
144
96
52
121 | 110
60
II: 123
II 92
63 | 87
49
77
59
II:205 | 135
48
67
50
57 | | | x y T_{B-} | 218 113 III
78 309 II-I
203 64
197 215
191 171 II-I | 184 286 II-I
35 95
172 262 III
172 24 III
29 94 III | 31 273 III
29 95 II-III
19 79 II
143 266 II-III
142 160 III | 307 110 II-I
305 318 II:
140 78 II
288 345
295 180 III | 285 233 III
128 315 II-I
283 110 III:
275 110 III
260 267 | 258 301 I-II
105 127 II-I
93 127 III
84 194 III
247 336 | 250 147 I:
247 279 III
240 195 II:
87 294 II:
235 56 III | 234 261 III
225 317 II
211 146 II-II
210 51 II-II
208 220 III | 46 90 III
206 196
201 262 III
203 135 II
199 289 II-I | 199 237 III
51 229
196 -1 III
47 169 I-II | | | q 1 | 36.27-70.77
97.86-37.40
33.67-71.21
42.15-70.66
39.82-71.01 | 46.13-70.45
92.96-46.77
45.09-70.81
31.62-71.91
96.77-41.44 | 98.52-38.37
53.33-69.64
66.06-66.47
45.94-71.30
39.99-71.95 | 90.04-52.20
92.92-48.79
100.59-36.47
100.16-37.45
91.35-51.16 | 99.28-39.41
102.78-32,43
90.68-52.41
90.89-52.48 | 100.47-38.42
101.76-35.87
38.84-72.98
43.02-72.80
98.10-43.45 | 87.04-57.34
75.31-65.04
96.83-45.93
103.46-33.06
68.27-68.12 | 75.22-65.45
101.33-38.36
72.30-67.30
95.98-48.61
100.90-40.16 | 37.20-74.00
74.13-66.70
101.41-39.47
88.25-57.97
77.20-65.48 | 75.65-66.21
103.74-34.45
67.31-69.39
103.35-35.52
103.92-34.22 | | | RA(2000)Dec | 2326.7-2425
2326.7+2118
2327.9-2520
2328.5-2231
2329.0-2321 | 2329.6-2112
2329.7+1117
2330.5-2139
2330.5-2605
2330.4+1716 | 2330.4+2037
2330.9-1838
2331.2-1256
2332.9-2134
2333.0-2333 | 2333.2+0536
2333.3+0928
2333.8+2300
2334.0+2158
2334.1+0654 | 2334.4+1953
2334.9+2725
2335.0+0536
2335.7+0536
2336.3+2031 | 2336.5+2109
2336.7+2354
2337.0-2409
2337.7-2255
2337.5+1549 | 2337.7+0017
2337.8-0913
2338.1+1311
2338.3+2701
2338.6-1322 | 2338.8-0933
2339.1+2127
2340.5-1142
2340.4+1030
2340.5+1939 | 2340.9-2450
2340.9-1046
2341.0+2026
2341.2+0005
2341.4-0902 | 2341.4-1000
2341.3+2547
2341.6-1428
2341.5+2440
2341.6+2603 | | | m RA(1950) Dec | 2324.1+2442
2324.2+2102
2325.3-2537
2325.9-2248
2326.4-2338 | 2327.0-2129
2327.2+1101
2327.9-2156
2327.9-2622
2327.9+1700 | 2327.9+2021
2328.3-1855
2328.6-1313
2330.3-2151
2330.4-2350 | 2330.7+0520
2330.8+0912
2331.3+2244
2331.5+2142
2331.6+0638 | 2331.9+1937
2332.4+2709
2332.5+0520
2333.1+0520
2333.8+2015 | 2334.0+2053
2334.2+2338
2334.4-2426
2335.1-2312
2335.0+1533 | 2335.1+0001
2335.2+0930
2335.6+1255
2335.8+2645
2336.0-1339 | 2336.2-0950
2336.6+2111
2337.9-1159
2337.9+1014
2338.0+1923 | 2338.3-2507
2338.3-1103
2338.5+2010
2338.6+0011
2338.8-0919 | 2338.8-1017
2338.8+2531
2339.0-1445
2339.0+2424
2339.1+2547 | | | Abell | 2601
2602
2603
2603
2604 | 2606
2607
2608
2609
2610 | 2611
2612
2613
2614
2614 | 2616
2617
2618
2619
2620 | 2621
2622
2623
2623
2623
2623 | 2626
2627
2628
2629
2639 | 2631
2632
2633
2634
2634 | 2636
2637
2638
2639
2640 | 2641
2642
2643
2644
2644 | 2646
2647
2648
2649
2650 | ABLE 3—Continued | | | | | | | | | | | ı | | |-------|---------------------|---------------|--------------|------|-----------|-----------------------|-----|-------------|-------|--------|----------| | Abell | m Abell RA(1950)Dec | m RA(2000)Dec | q 1 | ы | y | x y T_{B-M} C | C | z | R D m | | 8 | | 2701 | 0001.7-0952 | | 88 31-69 22 | 21.6 | 260 | | ď | | - | [| a | | 2702 | 0002.3+3107 | 0004.9+3123 | | | 202 | 207 | 3 2 | 32 0 0 17.1 | 0 | , , | 7:5 | | 2703 | 0002.8+1549 | | 107.10-45.35 | | 29 | | 46 | 0.0144 | 0 | 2 | 7.1 | | 2704 | 0003.0-1209 | | | | 13 | II | 86 | | 0 | 9 | 7.7 | | 2705 | 0003.4+1531 | 0006.0+1547 | 7 | 191 | 332 | III | 64 | | 0 | 2 | 7.1 | | | | | | | | | | | | | | | 2706 | 0003.5+1051 | | _ | | 84 | III | | | 0 | n
N | 7.2 | | 2707 | 0003.8-1041 | | 88.38-70.19 | | 216 | II-II: | | | 0 | 9 | 7.6 | | 2708 | 0004.0-1712 | | | | 188 | ii: | | | 0 | 9 | 7.4 | | 2709 | 0004.1-1015 | 0006.7-0958 | | | 239 | III | | | 0 | 2 | 7.2 | | 2710 | 0004.1-1539 | 0006.7-1522 | 79.16-74.30 | | 182 271] | I-II: | 64 | | 0 | 2 | 0 5 17.2 | | | | 1 | | | | ! | i | | | , | 1 | | 7/11 | 0004.4+2449 | 0007.0+2505 | 110.36-36.69 | | 55 191] | III | 73 | | 0 | 9 | 0 6 17.5 | | 2712 | 0004.4-1821 | 0007.0-1804 | 72.09-76.32 | | 126 | III | 71 | | 0 | 9 | 7.5 | TABLE 4 SOUTHERN "ABELL CATALOG" | B | 17.3
17.3
17.3 | 16.3
15.0
17.3
17.3 | 17.0 | 17. | 15.
17.
17.
16. | 16.9
17.1
17.1 | 17.71 | 17.71 | |-----------------|----------------------------------|---|---|--|--|--|--|--| | Δ | 200 | 4 6 10 10 4 | စစစညည | വവഴയ | w rv A 4 A | 00000 | 00000 | იიიიი | | æ | 707 | 8 70 11 0 | 000 n | 04444 | 2 | 00400 | ппппп | 04484 | | Z | | 0.0498 | 0.114 | 0.114 | 0.0312 | | 0.308 | | | Previous | Ω | s
BO | 0 D | BO | BDORS
B
D | DR
B | a k | | | Obs | 100 | 20
1C
1C
10
10,10 | 10,10
10,10
10,10
10,10 | 10
10
10,10
10,10 | 2C
10
2C
10,1C | 10,20
10
10
10 | 2C, 10
1C, 10
1C
10, 1C | 10, 10
10, 10
20, 20 | | m ₁₀ | 18.7
18.0
16.9 | 16.1
15.4
17.8
17.5 | 16.8
18.0:
18.6
19.3 | 18.0
19.1
18.8:
18.3: | 15.1:
17.3
18.6
16.1
18.7 | 16.8
18.6
19.1
19.1 | 18.3
19.3
19.5
18.0 | 18.7
19.1:
19.5
17.5 | | m ₃ | 17.6
17.3
16.3 | 15.3
14.5
16.7:
16.7 | 16.3
17.1
17.5
18.4 | 16.8
18.0
17.8
17.4 | 13.3:
16.8
17.8:
15.1:
17.5 | 15.6
18.0
17.9
17.6 | 16.8
19.0
18.3
19.3 | 18.3
18.4
18.7
16.5 | | m_1 | 17.4
16.4
16.0 | 14.2:
13.6?
16.3:
15.4 | 15.2?
17.0
15.5
17.2: | 14.5
14.7:
16.5
16.4 | 13.0:
16.1
17.6:
13.9 | 14.2
15.8*
17.4
17.5
15.8: | 16.4
18.1
17.9
18.9 | 17.6
18.5
18.0
16.0 | | ٥ | 58
45
112 | 44.
52
61
41 | 192
51
47
92 | 47
68
56
79 | 39
744
57 | 41
63
42
42 | 59
66?
69
137:
62 | 35
56:
70
109
69: | | T_{B-M} | I-II
III-III | 11-11
11-11
11-11
11-11 | 1111111111111 | I
I:
II:
II-III?
II | !!!!
!!!!
!!!! | 111
111-111
111-111 | !!!
!!!
!!!
!!! | 111-111
111-111
1111
1111 | | T_A | I
IR
RI | ннижн | RI
I
RI?
IR | RILIR | u H i H I | RI
I I I I I I | R R R R I: | HÄHLL | | Abell | 2713
2714
2715 | 2716
2717
2718
2719
2720 | 2721
2722
2723
2724
2725 | 2726
2727
2728
2729
2730 | 2731
2732
2733
2734
2735 | 2736
2737
2738
2739
2740 | 2741
2742
2743
2744
2745 | 2746
2747
2748
2749
2750 | | _ | E 4. 0 | 511426 | 167
98
35
51 | 251
310
110
321 | 43
180
1184
211
266 | 295
78
131
220
245 | 287
223
75
129
275 | 92
182
248
150 | | x II y | 57 33
166 254
166 169 | 162 36
160 102
53 44
149 251
136 256 | 130 16
123 5
153 5
116 5 | 111 21
155 33
132 11
79 33 | 113 ,
123 14
73 14
65 2:
120 26 | 74 2
116 3
303 2
106 2 | 2944
296 22
33 11
50 27 | 104 9
288 18
261 24
282 19 | | Ycen | -131
90
5 | -128
-62
-120
87
92 | 3
-66
-129
-113
108 | 87
146
-54
157
-48 | -121
16
20
47
102 | 131
-86
-33
56
81 | 123
59
-89
111
 -72
18
84
-14 | | Gen | 107 | 2
111
15
28 | 34
11
11
58 | 53
32
85
77 | 51
91
99
44 | 90
48
84
-139
58 | 120
104
131
131 | 60
-124
-97
-118 | | Field | F292
F050
F349 | F472
F349
F472
F538 | F349
F293
F028
F409 | F409
F002
F111
F538 | F149
F078
F349
F409 | F241
F078
F193
F539 | F349
F473
F241
F409 | F078
F410
F539
F350 | | 9 | -67.79
-48.42
-77.13 | -79.20
-76.48
-72.26
-78.54
-75.98 | -77.69
-73.41
-39.71
-79.29 | -80.19
-34.96
-55.54
-75.81 | -59.25
-52.11
-78.70
-80.98 | -72.88
-50.31
-65.65
-77.75 | -80.23
-80.84
-69.40
-81.24
-72.76 | -50.63
-81.70
-77.91
-79.11 | | - | 325.33 -
309.79 -
354.08 - | 29.93 -
349.21 -
333.29 -
50.79 -
71.02 - | 352.11 -
333.55 -
306.13 -
4.11 -
73.42 - | 24.59 -
304.80 -
312.29 -
77.57 - | 313.93 -
310.17 -
350.20 -
19.47 - | 328.44 -
309.11 -
318.08 -
74.34 - | 357.51 -
53.27 -
321.54 -
8.91 - | 308.87 -
15.15 -
78.68 -
344.84 - | | Dec | 03
40 | 10
57
56
07 | 58
08
51
43 | 00
00
47
41 | 22
26
26
4
8
8 | 14
20
19
12 | 2 28
3 38
6 21
2 37 | 6 04
9 22
8 12
4 57
08 | | RA (2000) Dec | .6 -47
.5 -68
.8 -34 | .9 -27
.3 -35
.7 -41
.0 -23 | .1 -34
.0 -40
.0 -77
.2 -31 | .3 -28
.4 -82
.0 -60
.4 -16 | .2 -56
.2 -64
.2 -34
.3 -28 | .0 -42
.0 -66
.6 -50
.7 -18 | 7.00 E.E. | .2 -66
.0 -18
.0 -34 | | RA (| 00 02.6
00 02.5
00 02.8 | 00 03
00 03
00 04
00 05 | 00 06
00 07
00 07
00 07 | 00 07
00 08
00 09
00 09 | 000000000000000000000000000000000000000 | 00 12
00 12
00 12
00 12 | 00 13
00 14
00 14 | 00 14
00 15
00 16
00 16
00 16 | | Dec | -47 26
-68 20
-34 57 | 27 27 27 36 14 12 13 24 18 18 | -35 00
-41 15
-77 25
-32 08
-18 00 | -28 24
-82 17
-61 04
-17 04
-35 58 | -57 16
-64 43
-34 43
-29 09
-68 05 | -42 31
-66 37
-50 36
-18 59
-63 29 | 32 45
23 55
46 38
30 40 | -66 21
-29 39
-18 29
-35 14 | | RA (1950) Dec | 000 | 6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 97656 | æ ⊔ ñ e 4. | 77788 | 26444 | 24000
24000 | ထက္ကက္က | | RA (| 0000 | 00000
00000
00000 | 00 00 00 00 04 4 4 4 4 4 4 4 4 4 4 4 4 | 00 04
00 05
00 05
00 06
00 07 | 00 07
00 07
00 08
00 08 | 00 09
00 09
00 10
00 10 | 00000 | 00000 | | Abell | 2713
2714
2715 | 2716
2717
2718
2718
2720 | 2721
2722
2723
2723
2724
2725 | 2726
2727
2728
2728
2729 | 2731
2732
2733
2734
2734 | 2736
2737
2738
2739
2740 | 2741
2742
2743
2744
2744 | 2746
2747
2748
2749
2750 | | | 17
17
17
16 | 717171 | 17 17 17 16 17 17 17 17 17 17 17 | 7777 | 717171 | 7171 | 17
16
17
17 | 717171 | 17
17
17
17 | 17
17
17
16
15 | |---------------------------|--|--|---|--|--|---|--|--|--|--| | | വഴവഴവ | വവവവവ | വവഴവഴ | വഴഴവഴ | 9999 | വഴവഴ | 99999 | വവയവയ | စစညစစ | N N N 4 4 | | # | 7770 | 10000 | 00444 | 00111 | 01011 | 10101 | 0000 | 44004 | 40040 | 00444 | | 8 | | | 0.1124 | | | | | | | 0.1126 | | Previous | B B DR | DR. | DOR | Ω | р
ВВ | 0 m m | Q | aa 8a | o ä | 800
8 00
9 0 | | Obs | 1C, 10
1C
2C
1C, 10
2C | 10
20,10
10
20 | 20
20, 10, 10, 10, 10, 10, 10 | 20000 | 50000
50000 | 22222 | 10
10
10
10 | 12000 | 10
10
10
10 | 10,10
10,10
10,10 | | m ₁₀ | 17.6:
19.1
17.7
19.1
16.7: | 17.1
18.1
17.0
17.1 | 18.7
16.9
18.3
16.7 | 19.0
17.8
18.6
18.4 | 16.8
17.7
18.5
18.5
19.1 | 19.1
18.0
16.8
18.0
17.1 | 19.1
16.3
18.6
18.7
19.0 | 18.7
17.5
19.3
17.8 | 18.9
19.0
17.6
18.6 | 17.7
18.1
17.3
16.0
15.6 | | m ₃ | 16.77
17.7
17.0:
18.4
16.1: | 16.5
16.8
15.7
15.8
16.8 | 17.6
16.5
17.5
15.8 | 18.5
16.8
18.1
17.8
16.8 | 14.7
16.8
16.7
17.5
18.3 | 17.9
17.1
15.5
16.8
15.7 | 18.6
16.1
18.2
17.6
18.3 | 18.2
16.1
18.0
16.7 | 18.2
18.5
16.3
17.7 | 16.0
17.8
16.0
15.1 | | m ₁ | 15.77
17.1
16.2
18.0
15.7: |
15.4
16.4
15.4
15.7 | 15.9
16.0
14.9
15.7 | 18.0
15.5
18.1
16.8 | 13.5
16.4
16.8
18.2 | 17.4
16.0
14.8
15.1 | 17.8
15.9
17.7
17.4 | 18.1
16.0
17.7
15.4
16.5 | 17.7
18.1
15.6
17.5
16.6 | 15.7
16.5
14.1
15.0 | | D D | 68
70
76
41
120* | 79
40
37
47
39 | 40
58
58
58
58 | 33.
33. | 33
37
69
51 | 53
54
54
54 | 78
32
32
32 | 44 4 5 8 8 8 8 8 8 | 73
33
57
44 | 33
58
59
59 | | ТВ-М | | :::::::::::::::::::::::::::::::::::::: | II
III-III?
II | 11-111:
11-11
11-11 | II-II
III-III
II III | HHHH | | | | | | T_A | наная | HIRIT | H H K K K | RERIE | I KIR II | HRHRI | RH R I | R H H R R | нннн | I RIE | | Abell | 2751
2752
2753
2754
2755 | 2756
2757
2758
2759
2760 | 2761
2762
2763
2764
2765 | 2766
2767
2768
2769
2770 | 2771
2772
2773
2774
2774 | 2776
2777
2778
2779
2780 | 2781
2782
2783
2784
2784 | 2786
2787
2788
2789
2790 | 2791
2792
2793
2794
2795 | 2796
2797
2798
2799
2800 | | ng. | 77
72
157
266 | 139
83
114 | 173
225
45
191 | 305
251
309
170 | 144
235
109 | 127
138
140
252 | 146
237
182
273 | 140
188
188 | 27.9
14.9
27.5
9.1 | 2275
195
145 | | n _x | 307 | | 00044 | 40000 | | | | | 0 0 0 0 4 6 | | | Ycen | L 0 L 0 I | | | ********* | | | | | | | | - 11 - 1 | -87
-92
102 | -25
-108
-50 | 61
-119
-54 | 141
87
145
6 | -20
-20
-55 | | | | | | | *Cen | 110 -8
125 -98
113 10 | 1 | ı | | , 47.000 | 127
126
126
126
126
126
126
126
126
126
126 | 118 120 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 2 1 2 4 8 8 8 8 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 115 | 111
111
65
31 | | Field x _{cen} | | 1 - 100
- 174
- 102 - 844 - 844 - 844 - 105 | 3 -129
-129
4 -107
-27 | 50 -47
94 -61
39 6
94 -46 | F294 -42
F294 -37
F242 -56
F079 -116 | F194 -55 -37
F194 -47 -26
F410 33 -24
F410 40 30 F44 | F539 81 -18
F150 -42 73
F350 42 18
F410 -94 109 | 29 -88 -24 -24 -25 -24 -102 -24 -24 -24 -24 -24 -24 -24 -24 -24 -2 | 1 -156 115
2 -32 -15
2 58 111
3 124 -73 | 9 -57 13
9 -57 111
1 -131 65
4 -106 -19 | | ا ہ | 1.22 F410 -110
9.52 F241 125
6.29 F194 -143
3.54 F149 113 | 9.16 F350 -100
9.02 F539 -74
8.93 F001 -10
3.87 F294 -102 -
1.24 F078 89 | .25 F078 92
.93 F150 -129
.11 F194 -107
.66 F539 -27 | .03 F350 -47
.47 F294 -61
.10 F539 6
.27 F539 46 | 86 F294 -42
80 F294 -37
84 F242 -56
24 F050 -116 | 6.21 F194 -55 -37 6.41 F194 -47 -26 4.10 F410 33 -24 88 83.69 F150 4.0 | 1.42 F539 81 -18
3.45 F150 -42 73
1.45 F350 42 18
4.30 F410 58 20 | 5.17 F294 29 -88
11.71 F150 -28
5.71 F410 76 123
7.79 F051 -102 24 | 3.19 F474 -156 115
7.00 F112 -32 -15
4.52 F002 58 111
4.53 F410 124 -73
5.08 F150 114 -73 | 52.58 F079 -57 13
54.39 F079 -57 11
86.62 F411 -131 65
77.66 F294 93 31
86.36 F474 -106 -19 | | Field | .22 F410 -110
.52 F241 125
.29 F194 -143
.54 F149 113 | 76.58 -79.10 F350 -100
76.58 -79.02 F539 -74
03.26 -28.93 F001 -10
25.63 -73.87 F294 -102 -
480 -81.97 F410 -84
08.26 -51.24 F078 R9 | 08.58 -52.25 F078 92
13.41 -62.93 F150 -129
24.38 -73.84 F294 -86 -
16.02 -67.11 F194 -107
74.36 -80.66 F539 -27 | 2.75 -82.03 F350 -47
9.82 -77.47 F294 -61
9.35 -78.10 F539 -6
5.58 -76.27 F394 -46 | 4.42 - 75.86 F294 - 42
8.39 - 77.80 F294 - 37
9.30 - 72.84 F242 - 56
7.20 - 51.24 F079 - 116
6.38 - 48.02 F050 109 | 2.93 -66.21 F194 -55 -37
2.65 -66.41 F194 -47 -26
9.76 -84.10 F410 33 -24
9.55 -65.69 F150 -53 88 | .13 -81.42 F539 81 -18
.01 -63.45 F150 -42 73
.27 -81.45 F350 42 18
.78 -84.90 F410 58 20
.44 -54.31 F079 -94 109 | 17.59 -75.17 F294 29 -88 08.81 -61.71 F150 -28 26.77 -85.77 F410 76 123 05.32 -47.79 F051 -102 24 | 10.15 -00.01 F194 0 -1/
86.61 -83.19 F474 -156 115
06.51 -57.00 F112 -32 -15
03.57 -34.52 F002 58 111
41.89 -84.93 F410 124 -73
08.50 -65 08 F150 11 154 | 05.55 -52.58 F079 -57 13
05.78 -54.39 F079 -57 11
7.39 -86.62 F411 -131 65
15.66 -77.66 F294 93 31
66.17 -86.36 F474 -106 -19 | | b Field | 16.2 -31 23 1.82 -81.22 F410 -110
16.3 -46 23 320.47 -69.52 F241 125
16.3 -49 51 317.12 -66.29 F194 -143
17.1 -52 48 314.64 -63.54 F149 113 | 17.8 -19 18 76.58 -79.15 F350 -100
17.8 -19 18 76.58 -79.02 F539 -74
15.8 -88 10 303.26 -28.93 F001 -10
18.4 -41 46 325.63 -73.87 F294 -102 -
18.5 -30 40 48.0 -81.97 F410 -84
19.2 -65 33 308.26 -51.24 F078 89 | 19.3 -64 31 308.58 -52.25 F078 92 19.4 -53 32 313.41 -62.93 F150 -129 20.0 -41 57 324.38 -73.84 F294 -86 -20.5 -49 13 316.02 -67.11 F194 -107 21.5 -20 45 74.36 -80.66 F539 -27 | 22.7 -32 05 352.75 -82.03 F350 -47 22.8 -38 07 329.82 -77.47 F294 -61 24.0 -17 03 89.35 -78.10 F539 6 42 -39 38 32.58 -76.27 F294 -46 24 5-65 55 F5 4-60 97 F078 114 | 25.0 -43 26 319.30 -72.86 F294 -42 25.0 -37 59 328.39 -77.80 F294 -37 25.2 -43 26 319.30 -72.84 F242 -56 25.7 -68 56 306.38 -48.02 F050 119 | 26.2 -50 25 312.93 -66.21 F194 -55 -37 2.2 -50 15 312.65 -66.21 F194 -47 -26 28.6 -30 14 359.76 -84.10 F410 33 -24 29.0 -53 06 310.55 -63.69 F150 -53 88 | 30.1 -20 04 87.13 -81.42 F539 81 -18 30.3 -53 23 310.01 -63.45 F150 -42 73 30.6 -34 24 333.27 -81.45 F350 42 18 30.8 -29 26 4.78 -84.90 F410 58 20 30.8 -52 34 30.6 4.54 31 F079 -94 109 | 31.6 -41 23 317.59 -75.17 F294 29 -88 32.2 -27 30 26.77 -85.71 F410 76 123 33.3 -69 15 5 6 77 -85.71 F410 76 123 33.3 -69 15 5 6 77 -85.71 F410 76 123 33.3 -69 15 305.32 -47.79 F051 -102 24 | 34.1 -21 34 86.61 -83.19 F474 -156 115 35.9 -60 01 306.51 -57.00 F112 -32 -15 35.2 -82 35 303.57 -34.52 F002 58 111 36.6 -31 01 341.89 -84.93 F410 124 -73 36.6 -31 01 341.89 -84.93 F410 124 -73 | 36.7 -64 28 305.55 -52.58 F079 -57 13 37.0 -62 39 305.78 -54.39 F079 -57 111 37.5 -28 30 7.35 -86.62 F411 -131 65 37.5 -39 07 315.66 -77.66 F294 93 31 38.0 -25 05 66.17 -86.36 F474 -106 -19 | | (2000) Dec <i>l</i> Field | .2 -31 23 1.82 -81.22 F410 -110
.3 -46 23 320.47 -69.52 F241 125
.3 -49 51 317.12 -66.29 F194 -143
.1 -52 48 314.64 -63.54 F149 113 | 15.3 -19 35 00 17.8 -19 18 76.58 -79.15 F350 -100 15.8 -88 27 00 15.8 -88 10 303.26 -28.93 F001 -10 15.9 -42 03 00 18.4 -41 46 325.63 -73.87 F294 -102 -16.0 -30 57 00 18.5 -30 40 4.80 -81.97 F410 -84 16.8 -65 50 00 19.2 -65 33 308.26 -67.24 F078 89 | 16.9 -64 48 00 19.3 -64 31 308.58 -52.25 F078 92 17.0 -53 49 00 19.4 -53 32 313.41 -62.93 F150 -129 17.5 -42 14 00 20.0 -41 57 324.38 -73.84 F294 -86 -180 -49 30 00 20.5 -49 13 316.02 -67.11 F194 -107 19.0 -21 02 00 21.5 -20 45 74.36 -80.66 F939 -27 | 2 -32 22 00 22.7 -32 05 352.75 -82.03 F350 -47 3 -38 24 00 22.8 -38 07 329.82 -77.47 F294 -61 5 -17 20 00 24.0 -17 03 89.35 -78.10 F539 6 7 -39 55 00 24.2 -33 38 325.58 -76.27 F294 -46 -46 10 00 24.2 -36.5 F5 107.34 -50 7 F078 114 | 22.1 -40 24 00 24.6 -40 07 324.42 -75.86 F294 -42 22.5 -43 16 00 25.0 -43 26 319.30 -72.84 F242 -56 22.7 -43 43 00 25.2 -43 26 319.30 -72.84 F242 -56 23.2 -65 57 00 25.5 -65 40 307.20 -51.24 F079 -116 23.5 -69 13 00 25.7 -68 56 306.38 -48.02 F050 109 | 23.8 -50 42 00 26.2 -50 25 312.93 -66.21 F194 -55 -37 24.8 -50 32 00 27.2 -50 15 312.65 -66.41 F194 -47 -26 26.1 -30 31 00 28.6 -30 14 359.76 -84.10 F410 33 -24 26.6 -53 23 00 29.0 -53 06 310.55 -65.69 F150 -53 88 -26 26 26 26 26 26 26 26 26 26 26 26 26 2 | 0 27.6 -20 21 00 30.1 -20 04 87.13 -81.42 F539 81 -18 0 27.9 -53 40 00 30.3 -53 23 310.01 -63.45 F150 -42 73 0 28.1 -34 41 00 30.6 -34 24 333.27 -81.45 F350 42 18 0 28.3 -29 43 00 30.6 -29 26 4.78 -84.90 F410 58 20 0 28.8 -6.5 6 0 0 31.1 -6.3 34 36.6 4 -54 31 F079 -94 109 | 29.2 -41 40 00 31.6 -41 23 317.59 -75.17 17294 29 -88 29.6 -55 28 00 31.9 -55 11 308.81 -61.71 17150 -28 -24 29.7 -27 7 7 00 32.2 -27 30 26.77 -83.71 1740 76 123 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 32 00 33.3 -69 15 308.32 -47.79 17511 102 24 31.2 -69 15 308.32 -47.79 17511 102 24 31.2 -69 15 308.32 -47.79 17511 102 24 31.2 -69 15 308.32 -47.79 17511 102 24 31.2 -69 15 308.32 -47.79 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 24 31.2 -69 17511 102 34 31.2 -69 17511 102 34 31.2 -69 17511 102 34 31.2 -69 17511 102 34 31 31 31 31 31 31 31 31 31 31 31 31 31 | 31.6 -21 51 00 34.1 -21 34 86.61 -83.19 F474 -156 115 33.6 -60 18 00 35.9 -60 01 306.51 -57.00 F112 -32 -15 34.0 -82 52 00 35.2 -82 35 303.57 -34.52 F002 58 111 34.189 -84.93 F410 124 -73 34.1 -31 18 00 36.6 -31 01 341.89 -84.93 F410 124 -73 34.1 -57 3 00 36.6 -57 3 00 36.6 -73 34.1 -73
34.1 -73 34. | 34.5 -64 45 00 36.7 -64 28 305.55 -52.58 F079 -57 13 34.8 -62 56 00 37.0 -62 39 305.78 -54.35 F079 -57 111 35.1 -28 49 00 37.6 -28 32 7.39 -86.62 F411 -131 65 35.1 -39 24 00 37.5 -39 07 315.66 -77.66 F294 93 31 35.5 -25 22 00 38.0 -25 05 66.17 -86.36 F474 -106 -19 | $^{^{48}}$ \circledcirc American Astronomical Society • Provided by the NASA Astrophysics Data System | | B | 17.3
17.4
17.2
17.2 | 15.3
17.3
17.3
17.3 | 17.2
17.3
17.4
17.2 | 16.9
17.3
17.4
16.0 | 17.2
17.3
17.2
15.5
17.3 | 17.4
17.3
17.2
17.2 | 17.4
17.4
17.4
17.4 | 16.3
17.2
17.3
17.3 | 17.0
17.3
17.3
17.2 | 17.4
17.3
17.3
17.4 | |-----------|--|---|---|--|--|--|--|--|--|---|---| | | А | ဖဖဖဖဖ | იაიის | စေလစလ | ₩ 6 4 W | രെവരവ | ००००० | 00000 | 40000 | രവരെവ | 00000 | | | R | 44640 | 00100 | 44648 | 00171 | 01001 | 01011 | 0000н | 00004 | 04044 | 70007 | | | 8 | | 0.0271 | | | 0.0486 | | | | | | | | Previous | | DR
D
BD
BDQR | m | 0 BD | | <u>м</u> д | | Δ Δ | മ മ | | | | Obs | 20
10
10
10 | 99999 | 22222 | 10
10
10
10,10 | 00000 | 10,1C
10
10
10 | 10,10
10,10
10 | 99999 | 02200 | 100000 | | | m ₁₀ | 18.1
19.0
19.1
17.3 | 15.1
18.2
18.1
18.1 | 17.3
18.6
19.4
17.1 | 16.7
18.6
19.2
15.8
18.0 | 17.8
18.6
17.3:
15.3 | 19.0
18.8
18.2
17.3 | 19.5
19.5
19.1
19.1 | 16.1
18.0
18.1
18.0 | 16.8
18.9
18.8
17.8 | 18.5:
18.0
18.3
19.1
18.6 | | | m ₃ | 16.7
18.3
18.5
16.1 | 13.5
17.4
17.5
16.7
15.9 | 16.9
17.5
18.4
16.1
18.6 | 15.8
17.4
17.8
15.4 | 16.8
18.1
16.7:
14.4?
17.4 | 18.1
17.8
17.0
15.9 | 18.9
18.7
18.6
18.1 | 15.4
17.3
16.8
16.9 | 16.2
18.5
18.0
17.4 | 17.8
16.7
17.4
18.4
17.6 | | | m ₁ | 15.6
17.9
18.2
16.0 | 12.7
16.4
17.4
16.0
15.0 | 15.6
16.1
18.1
16.0
17.9 | 14.8
16.8
16.7
15.1
16.5: | 15.4
15.6
16.6:
13.6 | 16.6:
17.1
16.2
15.4
17.1? | 18.2
17.7?
17.5
16.8
16.8 | 12.9*
16.7
15.5?
15.8?
15.2 | 14.5
18.0
17.7
16.7 | 17.1
16.1
15.4
17.8 | | | ٥ | 74
74
105
56: | 37
36
44
44 | 73
55
155
52
110 | 48
47
56:
51 | 30
67
39:
56 | 44:
54
37
50
(58) | 32
32
34
53
33 | 44
347
54
54 | 35
70
34
78 | 53
38
34:
102 | | | Тв-м | 1
111
11-11
11-11 | | | II-III
I-II II-II | 1-11
11-111
111-1111
1111 | 1
11
11-11
11? | | 11-11
11-11
11-111 | 1
111-11
111-11
111-11 | !!:
!-!!
!!!
!!! | | | T_A | Hahaa | RIRI | R. I. I. R. | ннжжн | I
I
R:
RI? | HH HH | ä
H
H
H
H
H
H
H
H | ı Kırı | ннняй | RHRR | | Continued | Abell | 2801
2803
2803
2804
2804 | 2806
2807
2808
2809
2810 | 2811
2812
2813
2814
2815 | 2816
2817
2818
2819
2820 | 2821
2822
2823
2823
2824
2825 | 2826
2827
2828
2829
2830 | 2831
2832
2833
2834
2835 | 2836
2837
2838
2839
2840 | 2841
2842
2843
2844
2845 | 2846
2847
2848
2849
2850 | | Ĭ. | | | | | | | | | | | | | 4 | | | | | | | | | | | | | ц. | na
na | 200
329
153
209 | 88
173
137
213
92 | 44446 | 252
211
141
226 | 193
232
104
77 | 1 287
135
176
230 | 126
226
109
118 | | 1 208
1 197
1 15
1 147
1 215 | 5 167
1 187
1 10
1 200 | | ц. | xu yu | 283 200
26 329
228 153
270 209
132 301 | 130 88
274 173
99 137
61 213
160 92 | 240 230
291 247
179 117
226 225
153 317 | | 156 193
229 232
227 104
116 77
255 109 | 144 287
267 135
198 176
132 230
1 221 | 44 126
99 226
35 109
248 118
253 319 | 246 279
250 130
168 190
235 99
165 159 | 231 208
51 197
46 15
72 147
141 215 | 66 167
74 187
122 110
247 97
39 200 | | ц. | Ycen XII | 36 283 2
165 26 3
-11 228 1
45 270 2
137 132 3 | -76 130
9 274 1
-27 99 1
49 61 2
-72 160 | 66 240 2
83 291 2
-47 179 1
61 226 2
153 153 3 | 88 148
47 84
-23 309
62 168
-109 76 | 484 4 | 123 144
-29 267
12 198
66 132
57 1 | -38 44
62 99
-55 35
-46 248
155 253 | 115 246 2
-34 250 1
26 168 1
-65 235
-5 165 1 | 44 231
33 51
-149 46
-17 72
51 141 | 10 =1 01 b 0 | | ц. | xcen Ycen XII | -119 36 283 2
138 165 26 3
-64 -11 228 1
-106 137 132 3 | 34 -76 130
-110 9 274 1
65 -27 99 1
103 49 61 2
4 -72 160 | 240 2 291 2 179 1 153 3 3 | 16 88 148
80 47 84
-145 -23 309
-4 62 168
88 -109 76 | 29 156 1
68 229 2
60 227 1
87 116
55 255 1 | 20 123 144
-103 -29 267
-34 12 198
32 66 132
163 57 1 | 120 -38 44
65 65 39
129 -55 35
-84 -46 248
-89 155 253 | 246 2
250 1
168 1
235 1 | 231
51
46
72
141 | 66
74
122
247
39 | | ц. | cen Ycen XII | 119 36 283 2
138 165 26 3
164 -11 228 1
106 45 270 2
32 137 132 3 | 34 -76 130
-110 9 274 1
65 -27 99 1
103 49 61 2
4 -72 160 | 1 -76 66 240 2
5 -127 83 291 2
0 -15 -47 179 1
1 -62 61 226 2
0 11 153 153 3 | 16 88 148
80 47 84
145 -23 309
-4 62 168
88 -109 76 | 8 29 156 1
5 -65 68 229 2
6 -63 -60 227 1
0 48 -87 116
3
-91 -55 255 1 | 20 123 144
03 -29 267
34 12 198
32 66 132
63 57 1 | 20 -38 44
65 62 99
29 -55 35
84 -46 248
89 155 253 | 115 246 2
-34 250 1
26 168 1
-65 235
-5 165 1 | 5 -67 44 231
1 113 33 51
1 118 -149 46
1 92 -17 72
5 23 51 141 | 8 3 66
0 23 74
2 -54 122
3 -67 247
5 36 39 | | ц. | xcen Ycen XII | 86.56 F411 -119 36 283 2
84.76 F350 138 165 26 3
82.34 F540 -64 -11 228 1
85.85 F411 -106 45 270 2
64.85 F150 32 137 132 3 | 60.90 F150 34 -76 130
82.17 F351 -110 9 274 1
66.79 F194 65 -27 99 1
73.17 F242 103 49 61 2
55.99 F112 4 -72 160 | 87.51 F411 -76 66 240 2
78.81 F295 -127 83 291 2
83.24 F540 -15 -47 179 1
87.67 F411 -62 61 226 2
79.66 F540 11 153 153 3 | 80.87 F540 16 88 148
63.26 F150 80 47 84
66.98 F195 -145 -23 309
53.52 F079 -4 62 168
60.34 F150 88 -109 76 | 2.93 F079 8 29 156 1
8.65 F295 -65 68 229 2
6.25 F295 -63 -60 227 1
4.18 F240 -91 -55 255 1
1.36 F243 -91 -55 255 1 | 54.70 F079 20 123 144
66.85 F195 -103 -29 267
77.60 F295 -34 12 198
88.60 F411 163 57 13 | 1.75 F150 120 -38 44
6.46 F474 65 62 99
1.43 F150 129 -55 35
6.51 F195 -84 -46 248
0.26 F195 -89 155 253 | 69.51 F195 -82 115 246 2
36.87 F013 -86 -34 250 1
77.87 F295 -4 26 168 1
66.14 F195 -71 -65 235 1
77.28 F295 -1 -5 165 1 | 68.17 F195 -67 44 231
86.81 F474 113 33 51
88.79 F474 118 -149 46
86.85 F411 92 -17 72
78.28 F295 23 51 141 | 7.15 F411 98 3 66
2.63 F351 90 23 74
5.30 F295 42 -54 122
3.63 F541 -83 -67 247
7.41 F411 125 36 39 | | ц. | Field xcen ycen x11 | 7.75 -86.56 F411 -119 36 283 2
3.46 -84.76 F350 138 165 26 3
1.139 -82.34 F540 -64 -11 228 1
7.85 -86.85 F411 -106 45 270 2
7.24 -64.85 F150 32 137 132 3 | .16 -60.90 F150 34 -76 130
.48 -82.17 F351 -110 9 274 1
.37 -66.79 F194 65 -27 99 1
.15 -73.17 F242 103 49 61 2
.09 -55.99 F112 4 -72 160 | 83 -87.51 F411 -76 66 240 2
02 -78.81 F295 -127 83 291 2
71 -83.24 F540 -15 -47 179 1
50 -87.67 F411 -62 61 226 2
00 -79.66 F540 11 153 153 3 | 4.45 -80.87 F540 16 88 148
4.83 -63.26 F150 80 47 84
5.25 -66.98 F195 -145 -23 309
3.99 -53.52 F079 -4 62 168
3.97 -60.34 F150 88 -109 76 | 3.58 -52.93 F079 8 29 156 1
6.08 -78.65 F295 -65 68 229 2
5.46 -76.25 F295 -63 -60 227 1
6.53 -71.36 F243 -91 -55 255 15 | 3.31 -54.70 F079 20 123 144
3.25 -66.85 F195 -103 -29 267
3.19 -77.60 F295 -34 12 198
3.05 -88.60 F11 3 56 132
3.05 -68.55 F194 163 5 7 | 98 -61.75 F150 120 -38 44
.23 -86.46 F474 65 62 99
.57 -61.43 F150 129 -55 35
.37 -66.51 F195 -89 155 253
.15 -70.26 F195 -89 155 253 | 86 -69.51 F195 -82 115 246 2
87 -36.87 F013 -86 -34 250 1
44 -77.87 F295 -4 26 168 1
85 -66.14 F195 -71 -5 235 3
31 -77.28 F295 -1 -5 165 1 | 1.34 -68.17 F195 -67 44 231
2.19 -86.81 F474 113 33 51
1.70 -88.79 F414 118 -149 46
1.11 -86.85 F414 22 -17 72
7.84 -78.28 F295 23 51 141 | 7.38 -87.15 F411 98 3 66
1.21 -82.63 F351 90 23 74
7.18 -76.30 F295 42 -54 122
9.17 -83.63 F541 -83 -67 247
1.27 -87.41 F411 125 36 39 | | ц. | l b Field xcen ycen x11 | 357.75 -86.56 F411 -119 36 283 2 333.46 -84.76 F350 138 165 26 3 101.39 -82.74 F840 -64 -11 228 1 357.85 -86.85 F411 -106 45 270 2 307.24 -64.85 F150 33 137 132 3 | 306.16 -60.90 F150 34 -76 130 319.48 -82.17 F351 -110 9 274 1 307.37 -66.79 F194 65 -27 99 1 309.15 -73.17 F242 103 49 61 2 305.09 -55.99 F112 4 -72 160 | 357.83 -87.51 F411 -76 66 240 2
312.02 -78.81 F295 -127 83 291 2
106.71 -83.24 F540 -15 -47 179 1
352.50 -87.67 F411 -62 61 226 2
115.00 -79.66 F540 11 153 153 3 | 114.45 -80.87 F540 16 88 148
304.83 -63.26 F150 80 47 84
305.25 -66.98 F195 -145 -23 309
303.99 -53.52 F079 -4 62 168
303.97 -60.34 F150 88 -109 76 | 303.58 -52.93 F079 8 29 156 1
306.08 -78 65 F295 -65 68 229 2
305.46 -76.25 F295 -63 -60 227 1
116.35 -84.18 F540 -91 -55 255 16 | 303.31 -54.70 F079 20 123 144
303.25 -66.85 F195 -103 -29 267
303.19 -77.60 F295 -34 12 198
303.90 -88.60 F411 15 56 132
303.05 -68.55 F194 163 57 1 | 302.98 -61.75 F150 120 -38 44 125.23 -86.46 F474 65 62 99 302.57 -61.43 F150 129 -55 35 302.37 -66.51 F195 -89 155 253 302.15 -70.26 F195 -89 155 253 | 301.86 -69.51 F195 -82 115 246 2 302.87 -36.87 F013 -86 -34 250 1 300.44 -77.87 F295 -4 26 168 1 301.85 -66.14 F195 -7 -5 255 300.31 -77.28 F295 -1 -5 165 1 165 1 | 301.34 -68.17 F195 -67 44 231
142.19 -86.81 F474 113 33 51
231.70 -88.79 F474 118 -149 46
231.71 -86.85 F411 92 -17 72
297.84 -78.28 F295 23 51 141 | 277.38 -87.15 F411 98 3 66
291.21 -82.63 F351 90 23 74
297.18 -76.30 F295 42 -54 122
139.17 -83.63 F541 -83 -67 247
261.27 -87.41 F411 125 36 39 | | ц. | Dec l b Field xcen yeen xil | 9 04 357.75 -86.56 F411 -119 36 283 2
1 36 333.46 -84.76 F350 138 165 26 3
9 58 101.39 -82.34 F540 -64 -11 228 1
8 54 357.85 -86.85 F411 -106 45 270 2
2 10 307.24 -64.85 F150 32 137 132 3 | 6 09 306.16 -60.90 F150 34 -76 130
4 36 319.48 -82.17 F351 -110 9 274 1
0 14 307.37 -66.79 F194 65 -27 99 1
3 50 309.15 -73.17 F242 103 49 61 2
1 05 305.09 -55.99 F112 4 -72 160 | 8 32 357.83 -87.51 F411 -76 66 240 2
8 09 312.02 -78.81 F295 -127 83 291 2
8 37 106.71 -83.24 F540 -15 -47 179 1
8 37 352.50 -87.67 F411 -62 61 226 2
6 52 115.00 -79.66 F540 11 153 153 3 | 8 05 114.45 -80.87 F540 16 88 148
3 50 304.83 -63.26 F150 80 47 84
0 07 305.25 -66.98 F195 -145 -23 309
0 07 305.25 -66.98 F195 -145 -23 309
6 46 303.97 -60.34 F150 88 -109 76 | 111 303.58 -52.93 F079 8 29 156 1
127 306.08 -78.65 F295 -65 68 229 2
151 305.46 -76.25 F295 -63 -60 227 1
116.35 -84.18 F240 -91 -55 255 116
15 304.53 -71.36 F243 -91 -55 255 1 | 2 5 303.31 -54.70 F079 20 123 144 0 16 303.25 -66.85 F195 -103 -29 267 0 31 303.19 -77.60 F295 -34 12 198 13 303.05 -88.66 F411 132 66 132 8 34 303.05 -68.55 F194 163 57 1 | 5 22 302.98 -61.75 F150 120 -38 44 35 125.23 -86.46 F474 65 62 99 5 41 302.57 -61.43 F150 129 -55 35 6 51 302.15 -66.51 F195 -89 155 253 | 7 36 301.86 -69.51 F195 -82 115 246 2
0 15 302.87 -36.87 F013 -86 -34 250 1
9 14 300.44 -77.87 F295 -4 26 168 1
9 8 301.85 -66.14 F195 -71 -55 235
9 49 300.31 -77.28 F295 -1 -5 155 1 | 8 56 301.34 -68.17 F195 -67 44 231
4 06 142.19 -86.81 F474 113 33 51
7 30 231.70 -88.79 F474 118 -149 46
8 47 297.84 -78.28 F411 92 -17 72
8 47 297.84 -78.28 F295 23 51 141 | 9 41 277.38 -87.15 F411 98 3 66
4 19 291.21 -82.63 F351 90 23 74
0 44 297.18 -76.30 F295 42 -54 122
0 59 139.17 -83.63 F541 -83 -67 247
9 02 261.27 -87.41 F411 125 36 39 | | ц. | l b Field xcen ycen x11 | .6 -29 04 357.75 -86.56 F411 -119 36 283 2
.9 -31 36 333.46 -84.76 F350 138 165 26 3
.5 -19 58 101.39 -82.34 F540 -64 -11 228 1
.7 -28 54 357.85 -86.85 F411 -106 45 270 2
.5 -52 10 307.24 -64.85 F150 32 137 132 3 | .6 -34 36 306.16 -60.90 F150 34 -76 130 6 -34 36 319.48 -82.17 F351 -110 9 274 1 5 -50 14 307.37 -66.79 F194 65 -27 99 1 5 -43 50 309.15 -73.17 F242 103 49 61 2 6 -61 05 305.09 -55.99 F112 4 -72 160 | 2 -28 32 357.83 -87.51 F411 -76 66 240 2
5 -38 09 312.02 -78.81 F295 -127 83 291 2
-4 -20 37 106.71 -83.24 F540 -15 -47 179 1
-4 -28 37 352.50 -87.67 F411 -62 61 226 2
-16 52 115.00 -79.66 F540 11 153 153 3 | 8 -18 05 114.45 -80.87 F540 16 88 148
.7 -53 50 304.83 -63.26 F150 80 47 84
.8 -50 07 305.25 -66.98 F195 -145 -23 309
.8 -63 35 303.99 -53.52 F079 -4 62 168
.7 -56 46 303.97 -60.34 F150 88 -109 76 | 9 -64 11 303.58 -52.93 F079 8 29 156 1
3 -38 27 306.08 -78.65 F295 -65 68 229 2
3 -40 51 305.46 -76.25 F295 -63 -60 227 1
6 -21 20 116.35 -84.18 F540 48 -87 116 1
5 -45 45 304.53 -71.36 F243 -91 -55 255 1 | .6 -62 25 303.31 -54.70 F079 20 123 144
.7 -50 16 303.25 -66.85 F195 -103 -29 267
.2 -39 31 303.19 -77.60 F295 -34 12 198
.3 -28 31 303.90 -88.60 F411 32 66 132
.48 34 303.05 -68.55 F194 133 56 | 3 -55 22 302.98 -61.75 P150 120 -38 44
.1 -23 35 125.23 -86.46 P474 65 62 99
.7 -55 41 302.57 -61.43 P150 129 -55 35
.9 -50 30 302.37 -66.51 P195 -89 155 253 | 7 -47 36 301.86 -69.51 F195 -82 115 246 2
7 -80 15 302.87 -36.87 F013 -86 -34 250 1
.2 -39 14 300.44 -77.87 F295 -4 26 168 1
.4 -50 58 301.85 -66.14 F195 -71 -65 235 1
-4 39 49 300.31 -77.28 F295 -1 -5 165 1 | .1 -48 56 301.34 -68.17 F195 -67 44 231
.6 -24 06 142.19 -86.81 F474 113 33 51
.6 -27 30 231.70 -88.79 F474 118 -149 46
.6 -27 30 282.11 -86.85 F411 92 -17 72
.7 -38 47 297.84 -78.28 F295 23 51 141 | .1 -29 41 277.38 -87.15 F411 98 3 66
.7 -34 19 291.21 -82.63 F351 90 23 74
.6 -40 44 297.18 -76.30 F295 42 -54 122
.1 -20 59 139.17 -83.63 F541 -83 -67 247
.3 -29 02 261.27 -87.41 F411 125 36 39 | | ц. | Dec l b Field xcen yeen xil | 6 -29 04 357.75 -86.56 F411 -119 36 283 2
9 -31 36 333.46 -84.76 F350 138 165 26 3
5 -19 58 101.39 -82.34 F540 -64 -11 228 1
5 -28 54 357.85 -86.85 F411 -106 45 270 2
5 -52 10 307.24 -64.85 F150 32 137 132 3 | 2 -56 09 306.16 -60.90 F150 34 -76 130 6 -34 36 319.48 -82.17 F351 -110 9 274 1 5 -50 14 307.37 -66.79 F194 65 -27 99 1 5 -43 50 309.15 -73.17 F242 103 49 61 2 5 -61 05 305.09 -55.99 F112 4 -72 160 | 2 -28 32 357.83 -87.51 F411 -76 66 240 2
5 -38 09 312.02 -78.81 F295 -127 83 291 2
4 -20 37 106.71 -83.24 F540 -15 -47 179 1
4 -28 37 35.250 -87.67 F411 -62 61 226 2
5 -16 52 115.00 -79.66 F540 11 153 153 3 | 8 -18 05 114.45 -80.87 F540 16 88 148
7 -53 50 304.83 -63.26 F150 80 47 84
8 -50 07 305.25 -66.98 F195 -145 -23 309
8 -63 35 303.99 -53.52 F079 -4 62 168
7 -56 46 303.97 -60.34 F150 88 -109 76 | 9 -64 11 303.58 -52.93 F079 8 29 156 1
3 -38 27 306.08 -78.65 F295 -65 68 229 2
3 -40 51 305.46 -76.25 F295 -63 -60 227 1
5 -45 45 304.53 -71.36 F24.18 -91 -55 255 15 | 6 -62 25 303.31 -54.70 F079 20 123 144
7 -50 16 303.25 -66.85 F195 -103 -29 267
2 -39 31 303.19 -77.60 F295 -34 12 198
3
-28 31 303.90 -88.60 F11 13 56 132
2 -48 34 303.05 -68.55 F194 163 57 1 | 3 -55 22 302.98 -61.75 F150 120 -38 44
1 -23 35 125.23 -86.46 F474 65 62 99
7 -55 41 302.57 -61.43 F150 129 -55 35
9 -50 36 302.37 -66.51 F195 -84 -46 248
0 -46 51 302.15 -70.26 F195 -89 155 253 | 7 -47 36 301.86 -69.51 F195 -82 115 246 2
7 -80 15 302.87 -36.87 F013 -86 -34 250 1
2 -39 14 300.44 -77.87 F295 -4 26 168 1
4 -39 58 301.85 -66.14 F195 -71 -65 235 1
4 -39 49 300.31 -77.28 F295 -1 -5 165 1 | -48 56 301.34 -68.17 F195 -67 44 231
-24 06 142.19 -86.81 F474 113 33 51
-27 30 231.70 -88.79 F474 118 -149 46
-38 47 297.84 -78.28 F411 92 -17 72
-38 47 297.84 -78.28 F295 23 51 141 | 1 -29 41 277.38 -87.15 F411 98 3 66
7 -34 19 291.21 -82.63 F351 90 23 74
6 -40 44 297.18 -76.30 F295 42 -54 122
1 -20 59 139.17 -83.63 F541 -83 -67 247
3 -29 02 261.27 -87.41 F411 125 36 39 | | ц. | RA (2000) Dec l b Field xcen yeen x!! | 38.6 -29 04 357.75 -86.56 F411 -119 36 283 2 38.9 -31 36 333.46 -84.76 F350 138 165 26 3 39.5 -19 58 101.39 -82.34 F540 -64 -11 228 1 39.7 -228 54 35.85 -86.85 F411 -106 45 270 39.5 -52 10 307.24 -64.85 F150 32 137 132 3 | 5 00 40.2 -56 09 306.16 -60.90 F150 34 -76 130
3 00 40.6 -34 36 319.48 -82.17 F351 -110 9 274 1
1 00 40.5 -50 14 307.37 -66.79 F194 65 -27 99 1
7 00 41.5 -43 50 309.15 -73.17 F242 103 49 61 2
2 00 41.5 -61 05 305.09 -55.99 F112 4 -72 160 | 42.2 -28 32 357.83 -87.51 F411 -76 66 240 2
42.5 -38 09 312.02 -78.81 F295 -127 83 291 2
43.4 -20 37 106.71 -83.24 F540 -15 -47 179 1
43.4 -28 37 352.50 -87.67 F411 -62 61 226 2
45.5 -16 52 115.00 -79.66 F540 11 153 153 3 | 45.8 -18 05 114.45 -80.87 F540 16 88 148 45.7 -53 50 304.83 -63.26 F150 80 47 84 45.8 -50 07 305.25 -66.98 F195 -145 -23 309 45.8 -63 35 303.99 -53.52 F079 -4 62 168 47.7 -56 46 303.97 -60.34 F150 88 -109 76 | 47.9 -64 11 303.58 -52.93 F079 8 29 156 1
48.3 -38 27 306.08 -78.65 F295 -65 68 229 2
48.3 -40 51 305.46 -76.25 F295 -63 -60 227 1
48.6 -42 5 10 116.35 -84.18 F540 48 -87 116
48.5 -45 45 304.53 -71.36 F243 -91 -55 255 1 | 49.6 -62 25 303.31 -54.70 F079 20 123 144 50.7 -50 16 303.25 -66.85 F195 -103 -29 267 51.2 -39 31 303.90 -78.60 F411 198 51.3 -48 34 303.05 -68.55 F194 163 57 1 | 51.3 -55 22 302.98 -61.75 F150 120 -38 44 52.1 -23 35 125.23 -86.46 F474 65 62 99 52.7 -55 41 302.57 -61.43 F150 129 -55 35 52.9 -50 36 302.37 -66.51 F195 -84 -46 248 53.0 -46 51 302.15 -70.26 F195 -89 155 253 | 53.7 -47 36 301.86 -69.51 F195 -82 115 246 2 52.7 -80 15 302.87 -36.87 F013 -86 -34 250 1 54.2 -39 14 300.44 -77.87 F295 -4 26 168 1 54.2 -59 58 301.85 -66.14 F195 -71 -65 235 54.4 -39 49 300.31 -77.28 F295 -1 -5 165 1 65 | 55.1 -48 56 301.34 -68.17 F195 -67 44 231 56.0 -24 06 142.19 -86.81 F474 113 33 51 56.6 -27 30 231.70 -88.79 F474 118 -149 46 56.6 -27 30 03 281.70 -88.75 F411 92 -17 72 56.7 -38 47 297.84 -78.28 F295 23 51 141 | 57.1 -29 41 277.38 -87.15 F411 98 3 66 58.7 -34 19 291.21 -82.63 F351 90 23 74 58.6 -40 44 297.18 -76.30 F295 42 -54 122 59.1 -20 59 139.17 -83.63 F541 -83 -67 247 59.3 -29 02 261.27 -87.41 F411 125 36 39 | | ц. | Dec RA (2000) Dec l b Field xcen yeen x11 | 1 00 38.6 -29 04 357.75 -86.56 F411 -119 36 283 2
3 00 38.9 -31 36 333.46 -84.76 F350 138 165 26 3
5 00 39.5 -19 58 101.39 -82.34 F540 -64 -11 228 1
10 0 39.7 -28 54 357.85 -86.85 F411 -106 45 270 2
7 00 39.5 -52 10 307.24 -64.85 F150 32 137 132 3 | 00 40.2 -56 09 306.16 -60.90 F150 34 -76 130 00 40.6 -34 36 319.48 -82.17 F351 -110 9 274 1 00 40.5 -50 14 307.37 -66.79 F194 65 -27 99 1 00 41.5 -43 50 309.15 -73.17 F242 103 49 61 2 00 41.5 -61 05 305.09 -55.99 F112 4 -72 160 | 00 42.2 -28 32 357.83 -87.51 F411 -76 66 240 2 00 42.5 -38 09 312.02 -78.81 F295 -127 83 291 2 00 43.4 -20 37 106.71 -83.24 F540 -15 -47 179 1 00 43.4 -28 37 352.50 -87.67 F411 -62 61 226 2 00 45.5 -16 52 115.00 -79.66 F540 11 153 153 35 | 00 45.8 -18 05 114.45 -80.87 F540 16 88 148 00 45.7 -53 50 304.83 -63.26 F150 80 47 84 00 45.8 -50 07 305.25 -66.98 F155 145 -23 309 00 45.8 -63 35 303.99 -53.52 F079 -4 62 168 00 47.7 -56 46 303.97 -60.34 F150 88 -109 76 | 00 47.9 -64 11 303.58 -52.93 F079 8 29 156 1
00 48.3 -38 27 306.08 -78.65 F295 -65 68 229 2
00 48.3 -40 51 305.46 -76.25 F295 -63 -60 227 1
00 48.5 -21 20 116.35 -84.18 F243 -91 -55 255 116
00 48.5 -45 45 304.53 -71.36 F243 -91 -55 255 1 | 2 00 49.6 -62 25 303.31 -54.70 F079 20 123 144
3 00 50.7 -50 16 303.25 -66.85 F195 -103 -29 267
8 00 51.2 -39 31 30.19 -77.60 F295 -34 12 198
8 00 51.3 -28 31 303.90 -88.60 F11 135 56 132
1 00 51.2 -48 34 303.05 -68.55 F194 163 57 1 | 2 00 51.3 -55 22 302.98 -61.75 F150 120 -38 44
2 00 52.1 -23 35 125.23 -86.46 F474 65 62 99
3 00 52.7 -55 41 302.57 -61.43 F150 129 -55 35
3 00 52.9 -50 36 302.37 -66.51 F195 -84 -46 248
3 00 53.0 -46 51 302.15 -70.26 F195 -89 155 253 | 2 00 53.7 -47 36 301.86 -69.51 F195 -82 115 246 2
2 00 52.7 -80 15 302.87 -36.87 F013 -86 -34 250 1
1 00 54.2 -39 14 300.44 -77.87 F295 -4 26 168 1
5 00 54.2 -50 58 301.85 -66.14 F195 -71 -65 235
6 00 54.4 -39 49 300.31 -77.28 F295 -1 -5 165 1 | 00 55.1 -48 56 301.34 -68.17 F195 -67 44 231 00 56.0 -24 06 142.19 -86.81 F474 113 33 51 00 56.6 -27 30 231.70 -88.79 F474 118 -149 46 00 56.7 -38 47 297.84 -78.28 F411 92 -17 72 00 56.7 -38 47 297.84 -78.28 F295 23 51 141 | 00 57.1 -29 41 277.38 -87.15 F411 98 3 66 00 58.7 -34 19 291.21 -82.63 F351 90 23 74 00 58.6 -40 44 297.18 -76.30 F295 42 -54 122 00 59.1 -20 59 139.17 -83.63 F541 -83 -67 247 00 59.3 -29 02 261.27 -87.41 F411 125 36 39 | | ц. | (1950) Dec RA (2000) Dec l b Field x con year x ll | 6.1 -29 21 00 38.6 -29 04 357.75 -86.56 F411 -119 36 283 2 6.5 -31 53 00 38.9 -31 36 333.46 -84.76 F350 138 165 26 3 7.0 -20 15 00 39.5 -19 58 101.39 -82.34 F540 -64 -11 228 1 7.2 -29 11 00 39.7 -28 54 357.85 -86.85 F411 -106 45 270 2 7.2 -52 27 00 39.5 -52 10 307.24 -64.85 F150 32 137 132 3 | 7.9 -56 26 00 40.2 -56 09 306.16 -60.90 F150 34 -76 130 8.2 -34 53 00 40.6 -34 36 319.48 -82.17 F351 -110 9 274 1 8.2 -50 31 00 40.5 -50 14 307.37 -66.79 F194 65 -27 99 1 9.1 -44 07 00 41.5 -43 50 309.15 -73.17 F242 103 49 61 2 9.3 -61 22 00 41.5 -61 05 305.09 -55.99 F112 4 -72 160 | 9.7 -28 49 00 42.2 -28 32 357.83 -87.51 F411 -76 66 240 201 -38 26 00 42.5 -38 09 312.02 -78.81 F295 -127 83 291 201 20.9 -20 54 00 43.4 -20 37 106.71 -83.24 F540 -15 -47 179 10.9 -28 54 00 43.4 -28 37 352.50 -87.67 F411 -62 61 226 23.0 -17 09 00 45.5 -16 52 115.00 -79.66 F540 11 153 153 35 | 3.3 -18 22 00 45.8 -18 05 114.45 -80.87 F540 16 88 148 3.4 -54 07 00 45.7 -53 50 304.83 -63.26 F150 80 47 84 3.5 -50 24 00 45.8 -50 07 305.25 -66.98 F195 -145 -23 309 3.7 -653 52 00 45.8 -53 50 303.99 -53.52 F150 88 -109 76 5.5 -57 03 00 47.7 -56 46 303.97 -60.34 F150 88 -109 76 | 5.8 -64 28 00 47.9 -64 11 303.58 -52.93 F079 8 29 156 1
5.9 -38 44 00 48.3 -38 27 306.08 -78.65 F295 -65 68 229 2
5.9 -41 08 00 48.3 -40 51 305.46 -76.25 F295 -63 -60 227 1
6.1 -21 37 00 48.5 -45 45 304.53 -71.36 F243 -91 -55 255 1 | 7.5 -62 42 00 49.6 -62 25 303.31 -54.70 F079 20 123 144 8.4 -50 33 00 50.7 -50 16 303.25 -66.85 F195 -103 -29 267 20 8.8 -39 48 00 51.2 -39 31 303.99 -77.60 F295 -34 12 198 8.9 -34 48 00 51.3 -28 31 303.90 -88 50 F411 163 57 1 | 9.1 -55 39 00 51.3 -55 22 302.98 -61.75 F150 120 -38 44 9.6 -23 52 00 52.1 -23 35 125.23 -86.46 F474 65 62 99 0.5 -55 58 00 52.7 -55 41 302.57 -61.43 F150 129 -55 35 0.7 -55 53 00 52.9 -50 36 302.37 -66.51 F195 -84 -46 248 0.7 -47 08 00 53.0 -46 51 302.15 -70.26 F195 -89 155 253 | 1.4 -47 53 00 53.7 -47 36 301.86 -69.51 F195 -82 115 246 2
1.6 -80 32 00 52.7 -80 15 302.87 -36.87 F013 -86 -34 250 1
1.8 -39 31 00 54.2 -39 14 300.44 -77.87 F295 -4 26 168 1
2.0 -51 15 00 54.2 -50 58 301.85 -66.14 F195 -71 -65 235 2
2.1 -40 06 00 54.4 -39 49 300.31 -77.28 F295 -1 -5 165 1 | 2.8 -49 13 00 55.1 -48 56 301.34 -68.17 F195 -67 44 231 3.6 -24 23 00 56.0 -24 06 142.19 -86.81 F474 113 33 51 4.2 -27 47 00 56.6 -27 30 231.70 -88.79 F474 118 -149 46 4.2 -30 20 00 56.7 -38 47 297.84 -78.28 F411 92 -17 72 4.4 -39 04 00 56.7 -38 47 297.84 -78.28 F295 23 51 141 | 4.7 -29 58 00 57.1 -29 41 277.38 -87.15 F411 98 3 66 6.3 -34 36 00 58.7 -34 19 291.21 -82.63 F351 90 23 74 6.3 -41 01 00 58.6 -40 44 297.18 -76.30 F295 42 -54 122 6.6 -21 16 00 59.1 -20 59 139.17 -83.63 F541 -83 -67 247 6.9 -29 19 00 59.3 -29 02 261.27 -87.41 F411 125 36 39 | | ц. | Dec RA (2000) Dec l b Field xcen yeen x11 | .1 -29 21 00 38.6 -29 04 357.75 -86.56 F411 -119 36 283 2
.5 -31 53 00 38.9 -31 36 333.46 -84.76 F350 138 165 26 3
.0 -20 15 00 39.5 -19 58 101.39 -82.34 F540 -64 -11 228 1
.2 -29 11 00 39.7 -28 54 357.85 -86.85 F411 -106 45 270 2
.2 -52 27 00 39.5 -52 10 307.24 -64.85 F150 32 137 132 3 | .9 -56 26 00 40.2 -56 09 306.16 -60.90 F150 34 -76 130 .2 -34 53 00 40.6 -34 36 319.48 -82.17 F351 -110 9 274 1 .2 -50 31 00 40.5 -50 14 307.37 -66.79 F194 65 -27 99 1 .1 -44 07 00 41.5 -43 50 309.15 -73.17 F242 103 49 61 2 .3 -61 22 00 41.5 -61 05 305.09 -55.99 F112 4 -72 160 | 7 -28 49 00 42.2 -28 32 357.83 -87.51 F411 -76 66 240 2
11 -38 26 00 42.5 -38 09 312.02 -78.81 F295 -127 83 291 2
1.9 -20 54 00 43.4 -20 37 106.71 -83.24 F540 -15 -47 179 1
1.9 -28 54 00 43.4 -28 37 352.50 -87.67 F411 -62 61 226 2
0 -17 09 00 45.5 -16 52 115.00 -79.66 F540 11 153 153 3 | .3 -18 22 00 45.8 -18 05 114.45 -80.87 F540 16 88 148 .4 -54 07 00 45.7 -53 50 304.83 -63.26 F150 80 47 84 .5 -50 24 00 45.8 -50 07 305.25 -66.98 F195 -145 -23 309 .7 -63 52 00 45.8 -63 35 303.99 -53.52 F079 -4 62 168 .5 -57 03 00 47.7 -56 46 303.97 -66.34 F150 88 -109 76 | 8 -64 28 00 47.9 -64 11 303.58 -52.93 F079 8 29 156 1
9 -38 44 00 48.3 -38 27 306.08 -78.65 F295 -65 68 229 2
1.9 -41 08 00 48.3 -40 51 305.46 -76.25 F295 -63 -60 227 1
1.2 1 37 00 48.6 -21 20 116.35 -84.18 F540 -48 -87 116
1.2 -46 02 00 48.5 -45 45 304.53 -71.36 F243 -91 -55 255 1 | .5 -62 42 00 49.6 -62 25 303.31 -54.70 F079 20 123 144 -50 33 00 50.7 -50
16 303.25 -66.85 F195 -103 -29 267 .8 -39 48 00 51.2 -39 31 303.19 -77.60 F295 -34 12 198 .9 -28 51 00 51.2 -48 34 303.05 -68.55 F194 153 57 1 | 1 -55 39 00 51.3 -55 22 302.98 -61.75 F150 120 -38 44 6 5 -23 52 00 52.1 -23 35 125.23 -86.46 F474 65 62 99 5 -55 58 00 52.7 -55 41 302.57 -61.43 F150 129 -55 35 -50 53 00 52.9 -50 36 302.37 -66.51 F195 -84 -46 248 74 7 08 00 53.0 -46.51 302.15 -70.26 F195 -89 155 253 | .4 -47 53 00 53.7 -47 36 301.86 -69.51 F195 -82 115 246 2 6 -80 32 00 52.7 -80 15 302.87 -36.87 F013 -86 -34 250 1 8 -39 31 00 54.2 -39 14 300.44 -77.87 F295 -4 26 168 1 0 -51 15 00 54.2 -50 58 301.85 -66.14 F195 -71 -55 235 1-40 06 00 54.2 -39 49 300.31 -77.28 F295 -1 -5 165 1 165 1 | .8 -49 13 00 55.1 -48 56 301.34 -68.17 F195 -67 44 231 .6 -24 23 00 56.0 -24 06 142.19 -86.81 F474 113 33 51 .2 -27 47 00 56.6 -27 30 232.17 -88.79 F474 118 -149 46 .2 -30 20 00 56.6 -37 30 23.21.10 -86.85 F474 118 -149 72 4 -39 04 00 56.7 -38 47 297.84 -78.28 F295 23 51 141 | 7 -29 58 00 57.1 -29 41 277.38 -87.15 F411 98 3 66 3 -34 36 00 58.7 -34 19 29.21 -82.63 F351 90 23 74 3 -41 01 00 58.6 -40 44 297.18 -76.30 F295 42 -54 122 6 -21 16 00 59.1 -20 59 139.17 -83.63 F541 -83 -67 247 9 -29 19 00 59.3 -29 02 261.27 -87.41 F411 125 36 39 | | IABLE 4 | (1950) Dec RA (2000) Dec l b Field x con year x ll | 0 36.1 -29 21 00 38.6 -29 04 357.75 -86.56 F411 -119 36 283 2 0 35.5 -31 53 00 38.9 -31 36 333.46 -84.76 F350 138 165 26 3 0 35.0 -20 15 00 39.5 -19 58 101.39 -83.74 F540 -64 -11 228 1 0 37.2 -29 11 00 39.7 -28 54 357.85 -86.85 F411 -106 45 270 3 37.2 -52 27 00 39.5 -52 10 307.24 -64.85 F150 32 137 132 3 | 37.9 -56 26 00 40.2 -56 09 306.16 -60.90 F150 34 -76 130 38.2 -34 53 00 40.6 -34 36 319.48 -82.17 F351 -110 9 274 1 38.2 -50 31 00 40.5 -50 14 307.37 -66.79 F194 65 -27 99 1 39.1 -44 07 00 41.5 -43 50 309.15 -73.17 F242 103 49 61 2 39.3 -61 22 00 41.5 -61 05 305.09 -55.99 F112 4 -72 160 | 39.7 -28 49 00 42.2 -28 32 357.83 -87.51 F411 -76 66 240 2 40.1 -38 26 00 42.5 -38 09 312.02 -78.81 F295 -127 83 291 2 40.9 -20 54 00 43.4 -20 37 106.71 -83.24 F540 -15 -47 179 1 40.9 -28 54 00 43.4 -28 37 352.50 -87.67 F411 -62 61 226 2 43.0 -17 09 00 45.5 -16 52 115.00 -79.66 F540 11 153 153 35 | 43.3 -18 22 00 45.8 -18 05 114.45 -80.87 F540 16 88 148 43.4 -54 07 00 45.7 -53 50 304.83 -63.26 F150 80 47 84 43.5 -50 24 00 45.8 -50 07 305.25 -66.98 F195 -145 -23 309 43.7 -63 52 00 45.8 -63 35 303.99 -53.52 F079 -4 62 168 45.5 -57 03 00 47.7 -56 46 303.97 -60.34 F150 88 -109 76 | 45.8 -64.28 00 47.9 -64 11 303.58 -52.93 F079 8 29 156 1
45.9 -38 44 00 48.3 -38 27 306.08 -78.65 F295 -65 68 229 2
45.9 -41 08 00 48.3 -40 51 306.46 -76.25 F295 -63 -60 227 1
46.1 -21 37 00 48.6 -45 45 304.53 -71.36 F243 -91 -55 255 156 | 47.5 -62 42 00 49.6 -62 25 303.31 -54.70 F079 20 123 144 48.4 -50 33 00 50.7 -50 16 303.25 -66.85 F195 -103 -29 267 48.8 -39 48 00 51.2 -39 31 303.90 -78.60 F119 -78.60 51.2 -39 31 303.90 -88.60 F411 108 51.2 -48 34 303.05 -68.55 F194 163 57 1 | 49.1 -55 39 00 51.3 -55 22 302.98 -61.75 F150 120 -38 44 49.6 -23 52 00 52.1 -23 35 125.23 -86.46 F474 65 62 99 50.5 -55 58 00 52.7 -55 41 302.57 -61.43 F150 129 -55 35 50.6 53 00 52.9 -50 35 302.37 -66.51 F195 -84 -46 248 50.7 -47 08 00 53.0 -46 51 302.15 -70.26 F195 -89 155 253 | 51.4 -47 53 00 53.7 -47 36 301.86 -69.51 F195 -82 115 246 2 51.6 -80 32 00 52.7 -80 15 302.87 -36.87 F013 -86 -34 250 1 51.8 -39 31 00 54.2 -39 14 300.44 -77.87 F295 -4 26 168 1 52.0 -51 15 00 54.2 -50 58 301.85 -66.14 F195 -71 -65 235 52.1 -40 06 00 54.4 -39 49 300.31 -77.28 F295 -1 -5 165 1 | 52.8 -49 13 00 55.1 -48 56 301.34 -68.17 F195 -67 44 231 53.6 -24 23 00 56.0 -24 06 142.19 -86.81 F474 113 33 51 54.2 -27 47 00 56.6 -27 30 231.70 -88.79 F474 118 -149 46 54.2 -27 47 00 56.6 -27 30 03 281.70 -88.79 F411 92 -17 72 54.4 -39 04 00 56.7 -38 47 297.84 -78.28 F295 23 51 141 | 56.7 -29 58 00 57.1 -29 41 277.38 -87.15 F411 98 3 66 56.3 -34 36 00 58.7 -34 19 291.21 -82.63 F351 90 23 74 56.3 -41 01 00 58.6 -40 44 297.18 -76.30 F295 42 -54 122 56.6 -21 16 00 59.1 -20 59 139.17 -83.63 F541 -83 -67 247 56.9 -29 19 00 59.3 -29 02 261.27 -87.41 F411 125 36 39 | | = | 17
17
17
15
15 | 17
17
16
16 | 17 17 17 17 17 17 17 | 17
17
17
15 | 16
17
17
17 | 17,17 | 15
17
17
17 | 111111111111111111111111111111111111111 | 177 | 17 17 17 17 17 17 17 17 17 17 17 17 17 1 | |----------------|---|--|--|--|---|---|---|--|--|--| | Q | R 0 0 4 0 | ω ω ω ω α 4 | വവയയയ | ოდდღი | ουουα | 992199 | രമവവന | งมงมง | စဖစစသစ | ഴഴവഴവ | | z R | 00444 | 1
1
2
2
0
(0.0268) 0 | 00100 | 2
1
2
2
1
0.0250 0 | 0 1110 | 0.0241 0
0 11 | 00440 | 0
0
0.0667 1 | | (0.0317) 0
0
2
1
0 | | Previous | DR | B
BDQ | 8 | m O | | יט בע | | Ω | ø | E GE | | Obs | 00000 | 100000 | 23222 | 92229 | 10, 10
10
10
20 | 10000 | 999999 | 00000 | 10,10
10,10
20,10 | 22222 | | m_{10} | 17.8
18.5
18.9
15.6 | 18.7
18.8
19.5
16.4 | 19.3
18.1
18.6
16.5
17.7 | 17.8
18.0
18.0
19.4 | 16.8:
19.2
18.9
18.0 | 19.3
14.1
17.7
18.6
18.6 | 15.4
17.7
17.8
18.6
18.0 | 18.1
17.7
19.3
17.6
17.6 | 18.0
17.6
19.0:
19.3 | 17.4
19.1
17.6
18.3
18.6 | | m ₃ | 16.8
18.1
17.6
15.4 | 18.1
18.0
18.5
15.7 | 18.9
17.4
17.3
15.7
16.5 | 16.5
17.5
17.6
18.5
13.8 | 16.4:
18.1
18.1:
17.7 | 18.3
13.2
16.6
17.9 | 14.9
16.7
16.8
18.0 | 17.1
17.0
18.2
16.1
17.6 | 17.5
16.5
18.4:
18.8 | 16.0
18.2
17.0:
18.0 | | m_1 | 14.6
17.4
17.2
14.8
17.6 | 16.8?
17.3
18.0
15.3 | 16.8
16.5
15.4:
15.4 | 15.4
17.0:
17.5
17.9 | 15.8
17.6
17.7:
15.5 | 18.1
11.4:
16.0
17.5
16.8 | 14.4
16.0
16.0?
17.7
16.8 | 16.8
16.1
17.8
15.0: | 16.9
15.5:
18.1
18.0
16.4 | 13.5
16.87
16.5:
17.4 | | C | 30
45
75
64: | 53:
66:
85:
43?
41: | 32
87
39
43
43 | 82
92
335
335 | 92?
71
61
79
37 | 30
32
37
37 | 36
32
34
37 | 945
95
91: | 57
66
36
36
62 | 44
3 8 8 8 8 9 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | | T_{B-M} | | II-II
III-III
I | | 1-11
111-111
111-111: | ı
IIIIIII | III
I-II
II-III?
II-III? | !!
!!
!!-!!!? | | HÄÄÄÄ | 1
111-111
111-111
111-111 | | T_A | HERRI | HRRHH | ж.
н н н н | IR
RI
RI | R H K K H | H R H H H H H H H H H H H H H H H H H H | ннжин | I I I I I I I I I I I I I I I I I I I | RRRRR | RITI | | Abell | 2851
2852
2853
2854
2854 | 2856
2857
2858
2859
2860 | 2861
2862
2863
2864
2864 | 2866
2867
2868
2869
2870 | 2871
2872
2873
2874
2874 | 2876
2877
2878
2879
2880 | 2881
2882
2883
2884
2884 | 2886
2887
2888
2889
2890 | 2891
2892
2893
2894
2895 | 2896
2897
2899
2899
2900 | | ng nx | 298 128
105 170
102 195
180 124
139 209 | | 150 69
170 325
143 233
69 41
258 101 | 153 284
256 259
180 111
81 197
118 317 | 234 56
71 247
67 220
287 133
45 105 | | 92 306
206 116
187 78
180 11
235 208 | | 204 268
139 41
42 101
52 277
50 45 | | | Ycen | -36
-40
-40
-40 | 57
-12
-53
117 | -95
161
123
-63 | 120
95
-53
153 | 108
83
-31 | 131
-65
-77
23 | 142
148
153
44 | 46
-82
163
-71 | 104
123
113 | 144
168
-17
-97 | | xcen. | -134
59
62
-16
25 | 77 7
77 7
38
38 | 14
21
951
-94 | 11
-92
-16
83
46 | -70 -
93
97
-123
119 | -67
105
-18
-42
71 | 72
-42
-23
-16 - | 101
-2
-29
107 | -40
122 -
1122 - | -25
-1
-62
152 | | Field | F412
F295
F295
F195 | F295
F295
F151
F051 | F195
F541
F195
F079 | F541
F352
F151
F243 | F352
F243
F243
F296 | F113
F243
F412
F352 | F541
F113
F352
F352
F352 | F195
F352
F113
F195
F541 | F296
F352
F195
F475 | F296
F113
F352
F080 | | ą | -86.22
-77.38
-77.84
-66.53 | 20000 | 44446 | -79.77
-82.43
-61.27
-72.78 | -79.78
-73.56
-73.07
-76.31 | | 860.00 | . 60 6 1 | -78.01
-78.69
-65.76
-82.56 | 8000.0 | | 1 | 295.26
295.26
299.20
296.20 | 93.11
93.90
99.80
01.35 | 98.09
40.64
96.80
00.91 | 143.53
278.77
298.56
293.30
294.81 | 284.00
292.12
292.26
288.93 | 98.22
93.14
45.98
79.91 | 48.48
98.41
78.48
80.76 | 93.06
76.33
96.63
92.52 | 8.15
6.03
7.24 | 75.00
95.55
68.34
98.02 | | RA (2000) Dec | 00 60.0 -30 24 01 00.1 -39 36 01 00.4 -39 08 01 01 01 01 01 01 01 01 01 01 01 01 01 | 01.6 -38
02.0 -39
02.1 -55
02.2 -67
04.1 -39 | 04.4 -51
05.2 -16
05.0 -48
04.7 -66 | 01 06.5 -17 29
01 06.4 -33 58
01 06.4 -55 43
01 07.3 -44 02
01 07.7 -46 54 | 01 07.9 -36 43
01 08.2 -43 13
01 08.6 -43 42
01 08.7 -40
01 08.2 -65 42 | 09.1 -57 1
09.8 -45 5
10.1 -29 4
10.6 -36 1 | 11.3 -17
12.0
-60
12.4 -36
13.1 -37 | 14.1 -48 5
14.4 -36 1
14.3 -56 4
14.8 -48 3
16.0 -21 0 | 16.8 -37
17.0 -37
17.1 -50
17.6 -22 | 18.2 -56
18.2 -56
18.7 -35
19.7 -64
21.0 -51 | | RA (1950) Dec | 00 57.6 -30 41
00 57.8 -39 53
00 58.1 -39 25
00 58.9 -44 12 | 59.3 -38 5
59.7 -40 1
000.0 -56 0
01.8 -40 0 | 01 02.2 -51 49
01 02.7 -17 00
01 02.8 +48 45
01 02.9 -67 12
01 03.8 -36 11 | 01 04.0 -17 46
01 04.0 -34 15
01 04.3 -56 00
01 05.0 -44 19
01 05.5 -47 11 | -37
-43
-40
-65 | 7.0 -57 3
7.6 -46 1
7.7 -29 5
8.3 -36 2
8.7 -49 3 | 8 -17 2
0 -60 5
1 -36 3
8 -37 5
6 -39 1 | 11.9 -49 0
12.1 -36 3
12.3 -56 5
12.6 -48 4
13.6 -21 1 | .5 -38 0
.7 -37 2
.0 -51 0
.2 -22 5 | 16.0 -37 2
16.2 -56 5
16.4 -35 2
17.9 -64 5 | | Abell | 2851
2852
2853
2854
2854 | 2857
2857
2858
2858
2859
2860 | 2861
2862
2863
2864
2864 | 2866
2867
2868
2869
2870 | 2871
2872
2873
2874
2875 | ~~~~~~~ | 2881
2882
2883
2884
2885 | 80 80 80 80 80 | 2891
2892
2893
2894
2895 | 2896
2897
2898
2899
2900 | | | 8 | 77.
77.
77. | 17.
17.
17. | 16.
17.
17.
17. | 71.
71.
71. | 71.71 | 17.
17.
17. | 17.
17.
16.
17. | 71.
71.
71. | 77.
77.
77. | 77.77 | |-----------|-------------------|--|--|--|--|--|--|--|--|--|--| | | Ω | 00000 | ७७७७७ | 4 10 10 10 10 | 00000 | 99299 | 00000 | ००२०० | 99999 | 99999 | 00000 | | | z R | 10100 | 01110 | (0.0202) 1 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 04444 | 10101 | 00177 | 1
2
2
1
0
0
1 | 44404 | 00100 | 00110 | | | Previous | œ | m
 | Д М | | Ф | æ | w | | ω α | m m | | | Obs | 20000 | 20
10
10,10 | 95556 | 22220 | 33333 | 98999 | 22222 | 10, 10
10, 10
10 | 10
30,10
10 | 10,10 | | | m ₁₀ | 18.9
19.2
18.9
19.0 | : 18.9
19.1
18.5
17.7
18.2 | 16.1
17.7
17.1:
18.0
16.7 | 18.6
18.6
18.9
18.9 | 18.6
18.1
16.8
18.0 | 17.7
19.0:
18.3
19.2
18.0 | 18.0
18.0
16.7
19.0 | 19.3
18.5
19.3
19.0 | 18.0
18.0
18.5
18.5 | 19.4
18.9
19.1
18.0 | | | m ³ | 17.7
18.2
17.8
18.5 | 18.2:
17.4
17.6
16.5 | 15.5
17.2
16.0
17.4 | 17.7
17.9
17.9
17.7
17.3 | 17.3
18.0
16.5
16.7 | 16.6
18.3
18.0
7 18.6
16.8 | 17.5
17.5
16.1
18.0 | 18.3
17.6
18.2
18.8
18.0 | 17.2
16.6
17.7
16.7
18.1 | 18.1
17.8
18.4
18.3
16.8 | | | m_1 | 17.9
17.9
17.6
17.8
17.9 | 17.4
16.2
17.4
16.3
17.4 | 14.6
16.5
15.5
17.0 | 17.4
16.8
17.6
15.7
16.7 | 16.8
15.4
14.4
17.1 | 16.0
16.8
17.3
17.4 | 16.1
16.9
15.8
17.0
17.5 | 17.9
17.1
17.8
18.0
18.0 | 17.0
14.9
17.3
15.0 | 17.5
17.3
18.0
14.5 | | | ٥ | 38
38
09
09
09 | 46
73
75
55: | 72
100
34
78
55: | 6 6 6 5 8 6 5 8 6 5 8 6 5 8 6 6 6 6 6 6 | 60
115:
50
49
68 | 61
86
73:
38 | 66
98
77
42
52 | 64
55
45
72 | 85
32
64:
37 | 48
67
59:
45 | | | T_{B-M} | III:
III-III:
III-III? | | 1-11
111-111
111-111 | III
III
III-III | I-II
I-II
II-III
I | 1-11
11-111
11-1111 | 11.
11.
11.
11.
11. | | | 11-11
11-11
11-11
11-11 | | | $T_{\mathcal{A}}$ | R
R
R
I | H RR H | REILI | HHHH | RRITA | RILLE | 12 12 12 12
12 12 12 12 12 | RRILI | RI
RI
I | RI
RI
I | | Continued | Abell | 2901
2902
2903
2904
2905 | 2906
2907
2908
2909
2910 | 2911
2912
2913
2914
2915 | 2916
2917
2918
2919
2920 | 2921
2922
2923
2924
2924 | 2926
2927
2928
2929
2930 | 2931
2932
2933
2934
2934 | 2936
2937
2938
2939
2940 | 2941
2942
2943
2944
2945 | 2946
2947
2948
2949
2950 | | TABLE 4— | xu yu | 215 210
224 130
65 108
39 187
198 96 | | | | 144 166
189 172
189 92
179 314
101 139 | 171 284
163 292
156 285
139 264
180 167 | | 196 293
265 84
261 300
199 314
251 165 | 135 261
162 56
269 49
199 103
247 308 | 178 177
172 143
279 273
150 33 | | | ycen | 4 မို လုံ ၄ နဲ
၈ 4 ၈ မ အ | 4 1 7 4 6 8
6 4 4 6 8 | 7 E H N O | 8 7 4 4
0 6 2 2 8 | 2
-72
150 | 120
100
3 | -64
35
13
75 | 129
136
150 | 97
-108
-115
-61 | 13
109
131
-94 | | | xcen | -51
99 - | -82 -1
-77
105
40 1 | | 21
-93
-18
-42 | 20
125
155
63 | | 1 | -132
-101
-97
-35
-87 | | -14
-115
114 -1 | | | Field | F244
F542
F151
F412 | F476
F476
F352
F352 | F296
F196
F352
F196 | F244
F152
F196
F413 | F476
F413
F413
F413 | F413
F413
F413
F413 | F413
F413
F413
F413 | F297
F245
F477
F543 | F152
F543
F414
F477 | F477
F477
F354
F477 | | | q | -72.19
-80.36
-60.89
-82.85 | 8.00.0 | 6.56.6.5 | 9,4,6,4,8 | -80.56
-80.68
-80.24
-80.69 | -80.56
-80.40
-80.29
-79.98 | 00497 | -75.04
-68.31
-76.97
-74.06 | -62.26
-76.15
-76.76
-76.94
-76.86 | -76.26
-76.32
-75.71
-76.16 | | | 1 | 285.11
170.46
294.17
232.48
286.65 | 4.7
7.3
6.4
6.9
7.9
7.9
7.9 | 71.27
88.80
56.58
85.11
27.95 | 4.16
0.36
6.61
6.48 | 200.47
230.66
239.32
214.18
280.82 | 217.80
216.80
217.61
219.92
253.61 | 5.90
6.07
8.10
7.87 | 259.25
278.02
193.78
176.40
204.84 | 285.52
193.54
237.54
210.92 | 205.42
208.11
239.56
216.96 | | | RA (2000) Dec | 01 21.3 -43 53
01 21.7 -20 25
01 21.7 -55 43
01 22.3 -29 18
01 23.1 -46 01 | -24
-33
-33 | 6.0 -37
6.8 -49
7.9 -34
8.5 -46
8.8 -29 | 01 29.0 -46 15
01 29.7 -53 18
01 30.1 -48 57
01 30.9 -27 05
01 31.5 -34 36 | 01 32.1 -24 43
01 32.3 -29 35
01 32.3 -31 05
01 33.2 -26 56
01 33.4 -45 12 | 01 33.9 -27 31
01 34.6 -27 21
01 35.1 -27 29
01 36.5 -27 59
01 36.9 -34 42 | 01 39.1 -30 56
01 40.2 -29 04
01 40.7 -54 33
01 41.2 -31 42
01 43.0 -23 21 | 01 43.3 -37 20
01 43.5 -46 12
01 44.7 -22 13
01 44.8 -17 01
01 45.3 -24 44 | 01 45.0 -53 00
01 47.8 -21 50
01 48.2 -31 55
01 49.6 -25 55
01 50.5 -27 05 | 01 51.4 -24 32
01 51.8 -25 10
01 52.2 -32 42
01 53.7 -27 14
01 53.9 -26 32 | | | RA (1950) Dec | 01 19.1 -44 09 0
01 19.3 -20 41 0
01 19.7 -55 59 0
01 20.0 -29 34 0 | 01 21.2 -27 20 0 21.2 1.7 -25 06 0 01 21.7 -35 06 0 01 21.7 -33 37 0 01 22.1 -37 39 0 01 23.6 -33 43 0 | 3.8 -38 14
4.7 -50 15
5.6 -34 18
6.4 -47 09
6.5 -29 16 | 44642 | 01 29.7 -24 59 0
01 30.0 -29 51 0
01 30.0 -31 21 0
01 30.9 -27 12 0
01 31.3 -45 28 0 | | 01 36.8 -31 12 0
01 37.9 -29 20
01 38.8 -54 49
01 38.9 -31 58
01 40.6 -23 37 | 01 41.1 -37 36
01 41.4 -46 28
01 42.3 -22 29
01 42.4 -17 17
01 43.0 -25 00 | 01 43.1 -53 16 0
01 45.4 -22 05 0
01 46.0 -32 10 0
01 47.3 -26 10 0
01 48.2 -27 20 0 | 01 49.1 -24 47 0
01 49.5 -25 25 0
01 50.0 -32 57 0
01 51.4 -27 29 0
01 51.6 -26 47 0 | | | Abell | 2901
2902
2903
2904 | 2906
2907
2908
2909
2910 | 2911
2912
2913
2914
2915 | 2916
2917
2918
2919
2920 | 51
50
50
50
50
50
50
50
50
50
50
50
50
50 | 2926
2928
2928
2939 | 2931
2933
2934
2934 | 2936
2937
2939
2940 | 2941
2942
2943
2944 | 2946
2947
2948
2949 | | E | 17.3
17.2
17.1
16.3 | 17.4
17.2
17.3
17.3 | 17.3
17.2
17.2
17.3 | 17.3
17.3
17.2
17.2 | 17.3
17.2
17.4
17.3 | 17.3
17.3
17.3
17.3 | 17.2
17.2
17.2
17.3 | 17.3
17.3
17.2
17.2 | 17.2
17.2
17.2 | 17.3
17.4
17.4 | |-----------------|--|--|--------------------------------------|--|--|--|--|--|--|--| | ۵ | ი Խ Խ 4 Խ | 99999 | စစညာစ | စညညစစ | 99999 | ของเออ | ഴവവഴവ | വരവരെ | νονου | 00000 | | z R | 00171 | 0000 | 0000 | 40004 | 00440 | ноои | 04440 | 0
(0.0649) 1
0 | 0
0
1
1
(0.0378) 1 | 00444 | | Previous | ρQ | ğoğ | Ф | Д | | æ | മ മ | ପୁର
ପୁର | | ¤ Q Q | | Obs | 99999 | 22222 | 22222 | 22222 | 22222 | 20200 |
30
10,10
10
10 | 22822 | 102200 | 10000
10000 | | m ₁₀ | 18.9
17.9:
17.8
16.1
16.9 | 19.3
18.4
18.4 | 18.0
17.0
17.5
18.9 | 18.2
18.1
17.6
17.3
18.1? | 18.0
17.7
19.1
18.7 | 18.8
18.9
18.0:
18.0 | 18.0
19.2
17.5
17.5 | 19.1
18.2
18.0:
19.2
17.5 | 18.1
17.0
19.5
19.1
17.8 | 18.6
19.3
18.8
19.1 | | m³ | 18.1
17.6
16.8
15.8 | 18.0
17.5
18.2
17.6 | 17.0
16.7
16.5
18.0
17.6 | 16.9
16.7
16.7
16.8 | 16.7
16.7
17.8
17.5 | 17.6
17.3
17.1:
16.8
17.9 | 16.3
18.6
17.1
16.7
17.6 | 18.2
16.9
17.1
17.6 | 17.3:
15.5
19.0:
17.7 | 17.4
18.2
17.7
18.1 | | m ₁ | 18.0
17.4
16.0
15.1 | 16.0
15.7
17.6
16.8? | 15.8
16.6
16.2
17.5 | 15.5:
16.1
16.1
16.0 | 16.5
16.1
16.6
16.1 | 17.4
16.7
16.2
15.8
16.0 | 15.7
17.8
17.0
15.4 | 17.6
16.1
15.6
17.1
15.6 | 16.5
14.5
18.5
16.8: | 16.1
18.0
17.5
17.5 | | 0 | 37
45
57
121
56: | 92
40
41
35
35 | 31
57
41
41: | 68
424
72 | 37
47
76
63
43 | 102
93
41
43 | 30
50
51
54 | 43
30
72
67
33 | 44
30
55
76
69: | 43
30
56
71 | | Тв-м | | 1-11 | 1
111-111
111-111 | 111-111
111-111
111-111 | 111
11-111
111-1111 | 111111 | 111-111
111
111-111 | 111
11-111
11-111
11-11 | II
II-III
III
I-II | III
III-III
III-III | | T_A | # H # H H | 1 H H H H | ж
н
н
н
н
н | нинин | ннин | **** | нанан | наянн | I KI | I K I I K | | Abell | 2951
2952
2953
2954
2955 | 2956
2957
2958
2959
2960 | 2961
2962
2963
2964
2965 | 2966
2967
2968
2969
2970 | 2971
2972
2973
2974
2975 | 2976
2977
2978
2979
2980 | 2981
2982
2983
2984
2985 | 2986
2987
2988
2989
2990 | 2991
2992
2993
2994
2995 | 2996
2997
2998
3000 | | ya | 250
113
219
72
311 | 207
186
196
165
255 | 86
266
99
147
128 | 98
245
301
92
115 | 64
306
298
218 | 123
110
48
79
260 | 26
308
254
311 | 235
235
38
283
128 | 109
63
68
94 | 64
243
241
183 | | nx. | 183
254
108
128
311 | 107
101
288
200
297 | 135
185
183
60
276 | 249
100
89
252
138 | 77
66
259
55
55 | 257
252
44
230
290 | 217
180
72
173
121 | 262
178
245
246
235 | 163
159
287
79
155 | 62
153
41
200
314 | | ycen | 86
-51
-92
147 | 22
32
1
9 | -78
102
-65
-17 | -66
81
137
-72
-49 | -100
142
-70
134
54 | -41
-54
-116
-85 | -138
144
90
-28 | 71
71
71
126
119
-36 | -55
-101
-96
-70
-2 | -100
160
79
77 | | x cen | -19
-90
56
36
-147 | 57
63
-124
-36 | 29
-21
-19
104 | -85
64
75
-88
26 | 87
98
-95
109 | -93
-88
120
-126 | 153
16
19
19 | -98
-14
-81
-82
-71 | 1
-123
85
9 | 102
11
123
-36
-150 | | Field | F114
F354
F013
F052 | F477
F013
F544
F197 | F414
F354
F354
F477 | F544
F414
F414
F298
F354 | F414
F414
F418
F414 | F478
F418
F414
F478 | F478
F298
F354
F298 | F415
F153
F246
F415 | F478
F478
F355
F544 | F197
F153
F197
F415 | | q | -57.12
-74.11
-38.01
-44.79 | -74.87
-37.38
-72.63
-63.96 | -74.49
-73.99
-72.82
-74.24 | -72.85
-74.16
-73.93
-69.64 | -73.34
-73.50
-73.21
-73.33 | -73.06
-73.01
-72.68
-72.71
-67.67 | -72.57
-70.54
-71.85
-68.88 | -72.15
-59.68
-64.40
-71.81 | -71.37
-71.42
-69.99
-69.98 | -60.91
-60.67
-63.20
-70.98 | | 7 | 287.92
249.39
299.20
182.67 | 204.62
299.21
189.18
277.91 | 32.40
38.14
48.27
09.38 | 95.84
21.18
17.39
60.84 | 233.01
217.14
213.62
217.72
222.89 | 211.84
212.68
233.56
214.82
263.13 | 218.24
248.64
236.94
256.54 | 21.87
78.83
69.72
19.05 | | 275.92
275.97
270.66
221.68 | | (2000) Dec | 3 -58 10
4 -35 41
1 -78 40
5 -71 28
0 -17 02 | 1 -23 59
9 -79 16
7 -19 09
3 -49 47
6 -38 01 | -31
-32
-35
-40 | -21
-28
-27
-41 | 2 -31 37
7 -27 06
5 -26 04
6 -27 15
6 -28 44 | 8 -25 32
2 -25 46
1 -31 54
9 -26 21
1 -42 57 | 0 -27 21
7 -37 04
9 -33 05
5 -40 16
9 -17 02 | | 6 -25 49
9 -26 40
9 -36 32
2 -21 05
2 -24 50 | 8 -51 37
7 -51 49
3 -48 16
3 -28 22
6 -19 25 | | RA (20 | 01 53.3
01 54.4
01 52.3
01 54.6 | 01 57.1
01 55.8
01 58.7
01 58.3 | 9999 | 01.
03.
03. | 02 05.02
02 06.52
02 06.53 | 02 06.8
02 07.3
02 08.1 | 02 10.0
02 10.0
02 10.0 | 02 12.0
02 12.0
02 12.0
02 13.4 | 02 14.6
02 14.6
02 14.9
02 15.3 | 02 14.6
02 15.3
02 16.3
02 17.0 | | 0) Dec | -58 25
-35 56
-78 55
-71 43 | -24 14
-79 31
-19 24
-50 02 | 20446 | -21 15
-28 30
-27 27
-41 20
-35 55 | -31 52
-27 21
-26 19
-27 30
-28 59 | -25 47
-26 01
-32 09
-26 36
-43 12 | -27 36
-37 19
-33 20
-40 31 | -28 41
-53 43
-47 22
-27 48 | -26 03
-26 54
-36 46
-21 19 | -51 51
-52 03
-48 30
-28 36
-19 39 | | RA (1950) | 01 51.6
01 52.2
01 52.2
01 53.5
01 54.6 | 01 54.8
01 56.2
01 56.3
01 56.4 | 57.8
58.4
58.6
58.8 | 01 59.4
02 00.6
02 01.5
02 01.5 | 02 03.0
02 04.3
04.3
04.3
04.3 | 02 04.5
02 05.9
02 05.9
02 06.6 | | | 02 12.3
02 12.6
02 12.6
02 12.9
02 12.9 | 02 13.0
02 14.4
02 15.1
02 15.1 | | | | 55
59
59
60 | | 2966
2967
2968
2969
2970 | 2971
2972
2973
2974
2975 | | | | | 2996
2997
2998
3000 | | | B | 17.3
17.3
17.4
16.8 | 17.2
17.4
17.3
16.3 | 17.3
17.3
17.3
17.3 | 4.7.1
17.3
17.3
17.3 | 17.2
17.4
17.4
17.3 | 17.4
16.3
17.4
17.3 | 4.7.1
17.3
17.4
17.4 | 17.3
17.2
17.3
17.3 | 17.3
17.3
17.4
16.9 | 17.3
17.0
17.4
17.4 | |----------|-----------------|---|--|--|--|---|--
--|--|--|--| | | | 00000 | R 0 0 4 0 | 00000 | 00000 | 00000 | 04000 | 00000 | 00000 | 00000 | ***** | | ı | <u>۳</u> | 2 0 10 0 | 00044 | 71017 | 10010 | 00010 | 00110 | 0000 | 3 | | 10001 | | | 23 | 0.0635 | 0.0631 | | | | | | 0.0923 | | | | | Previous | a a | | | മ മ | B DQ | | | αдд | m | ĕ | | | 0bs | 20000 | 22222 | 100000 | 100000 | 92999 | 10
20, 10
10 | 20000
20000 | 20
20
10, 10
10 | 20000 | 20222 | | .: | m ₁₀ | 18.2
18.5
19.3
16.6 | 17.9:
19.4
18.1
16.1
18.0 | 18.7
18.0
18.8
18.6
19.0 | 19.1
18.7:
18.2
19.4
18.9 | 17.6
19.4
19.5
18.3 | 19.2
16.1
18.8:
18.4 | 19.5
19.1
18.1
19.3 | 18.8
18.2
18.0
18.9 | 18.7
18.4
19.4
17.5 | 18.2
19.8
19.4
19.4 | | | m ₃ | 16.6
17.0
18.0
16.1
18.1: | 17.3:
19.0
17.4
15.5
17.2 | 17.0
17.6
17.5
17.7
18.1 | 18.7
18.7
17.5
18.5 | 16.7
18.8?
18.6
17.7
18.0 | 18.2
15.2?
18.0
17.3 | 18.1
18.3
16.8
18.6 | 18.0
16.8
17.1
18.1 | 17.5
16.8
18.5
16.7 | 17.8
16.1
19.2
18.1 | | | m_1 | 15.5:
15.4
16.4?
14.8 | 16.1:
18.1
16.0
13.9
15.8 | 15.5
16.1
16.7
17.3 | 18.2
17.4
16.8
18.1?
16.6 | 15.4
18.4
18.0
17.3 | 18.0
14.8?
17.3
16.7 | 17.8
17.7
15.3
18.0 | 17.4
16.0
16.5:
17.7: | 17.4
15.4
17.4
16.2
14.8 | 17.4
15.5
18.7
17.9 | | | C | 46
31
44
84 | 422:
39:
554: | 72:
62
46
51
88 | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 36
44
57
42 | 88
44
72
42 | 66
45
31:
51
40 | 62
30
60
71
69 | 62
77
61
32 | 51
110
110
50 | | | Тв-м | | 111
11-11
11-11
11-11 | II-II
II-II
II-II | 11.
11.
11.
11.
11.
11. | HHHH
HHHHH | | | :::::::::::::::::::::::::::::::::::::: | I-II
I
II-III
II | | | | T_A | нны ж
ж | няян | RIRE | HHHHH | ннннн | r i i i i i | нннжн | вини | RINIRI | ж ннж | | ontinued | Abell | 3001
3002
3003
3004 | 3006
3007
3008
3009
3010 | 3011
3012
3013
3014
3015 | 3016
3017
3018
3019
3020 | 3021
3022
3023
3024
3024 | 3026
3027
3028
3029
3030 | 3031
3032
3033
3034
3034 | 3036
3037
3038
3039
3040 | 3041
3042
3043
3044
3045 | 3046
3047
3048
3048
3050 | | | | | | · <u> </u> | | | | | | | | | ABLE. | _ | 87
00
59
00 | 90000 | 44000 | | 14
47
40
82 | 04H00 | 640
640
640 | 32
32
32
32 | 27
20
18
68
74 | ო ალი ⊓ | | IA | n an | 21112 | 8 96
11 255
17 149
11 230
6 223 | 59 5 7 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 315
8 49
2 203
3 88
5 151 | w 4 4 4 4 | 3 56
6 254
0 281
5 200 | m | 89 13
54 10
37 29
14 13 | 87 22
64 32
61 21
59 26 | 7 193
0 76
7 128
5 249
2 201 | | | llx 1 | 28 8 8 6 | 88
81
67
251
116 | | 132
288
92
313 | 219
263
68
267
57 | 11
24
17 | 278
100
24
242
276 | 04000 | аааа | 217
210
217
175
175 | | | Ycer | 123
-13
45
95
36 | -68
-15
-15
66
59 | 160
160
-68
-128
14 | 151
-115
39
-76
-13 | 150
19
83
76
118 | -108
90
117
58
36 | -69
-98
162
-144
-100 | -31
-58
127
91
-32 | 63
156
104
-90 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | Lcen | 119
-117
-17
-122 | 76
83
97
-87 | -85
37
-148
115
-61 | 32
-124
-149
-41 | -55
-99
-103 | 41
48
124
-76 | -114
64
140
-78
-112 | -125
10
-73
-113 | -23
0 8 8 7 9 7 | -53
-46
-11
-11 | | | Field | F544
F198
F198
F545 | F298
F478
F298
F198 | F545
F415
F299
F298 | F246
F299
F081
F154 | F053
F479
F299
F415 | F355
F355
F415
F299 | F154
F246
F416
F082 | F247
F003
F154
F356 | F416
F416
F416
F416 | F356
F247
F546
F154 | | | 9 | -67.87
-61.72
-70.64
-63.07 | -67.15
-69.34
-67.31
-62.28
-50.63 | -66.47
-69.51
-66.54
-65.91 | -65.74
-65.71
-50.09
-56.36 | -47.53
-68.05
-68.52
-66.84 | 67.05
67.82
67.95
66.24 | -55.97
-65.89
-64.09
-66.65 | -62.22
-30.90
-57.85
-65.81 | -65.71
-65.14
-65.22
-65.13 | -64.57
-60.42
-63.01
-56.48 | | | 7 | 527 | . 63
. 63
. 68
. 68 | 33 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | .83
.51
.05 | 4.00
3.22
8.00
8.00
8.00 | 1 2 6 | 900.19 | 888
011
88
89 | 8 8 4 9 8
8 9 9 9 9 | 0.000 | | | | 191
272
223
269
196 | 256
206
253
269
287 | 217
217
255
257
270 | 256
256
287
279
270 | 289
211
221
248
219 | 244
234
219
248
268 | 277
205
254
232
287 | 260.
272.
233.
275. | 223
223
223
269 | 236.
261.
204.
272. | | | 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 44
48
32
32 | 04
04
04
05 | 20
34
34 | 41
08
08 | 001
30
30
30
30
30 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 252
252
252
252
252
252 | 16
27
28
111
07 | | | (2000) D | 89 - 17
89 - 17
19 - 18 | 7 -41
1 -23
7 -40
1 -48
7 -63 | 9
1 - 1
1 - 4
1 - 4
1 - 4
2 - 4
3 - 4
4 - 4
5 5
5 - 4
5 - 5
5 5
5
5 - 5
5 5
5
5 - 5
5 5
5
5 - 5
5 | 4 - 4 2
0 - 6 4
6 - 5 6
3 - 5 0 | 9 -67
-28
-28
-28
-27 | 1 -36
5 -33
9 -27
9 -38 | 121
141
142
143
166 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 128 | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | RA (20 | 13.81
18.81
19.81 | 221.7 | 22.22.22 | 26.05 | 288.88 | 99999 | 31.5
34.7
36.1
36.5 | 36.9
28.8
37.9
40.2 | 4.1.4
4.1.4
4.1.4
4.1.4
4.1.4 | 45.2
45.1
45.3 | | | " | 88888 | 88888 | 00000 | 88888 | 88888 | 88888 | 88888 | 00000 | 22222 | 88888 | | | - 1 | | | 40400 | 488446 | 13
13
13
14
14
18 | 01
119
22
22 | 112
123
123
123 | 34
37
38 | 51
07
05
40 | 0 4 4 0 0 | | - 11 | ١ | 241112 | 91
91
10
10
10
10
10
10
10
10
10
10
10
10
10 | 10124 | 40444 | | | | | | | | | 50) Dec | -117
-250
-290
-1981
-1992 | 14011 | 141
142
149 | 444
50
50
50 | 128
128
128
128
128 | -37
-27
-27
-49 | 121
141
132
166 | 1.00 to t | 122
123
128
158
158 | 134
150
150
150 | | | (1920) | 44444 | 4444 | | | V 4 60 60 V | 28.0 -37
28.4 -33
28.7 -27
28.9 -38
28.9 -49 | 30.0 -56
32.4 -21
34.2 -41
34.4 -32
35.0 -66 | 35.1 -45
36.0 -86
36.3 -52
38.1 -33 | 39.2 -28
41.1 -27
41.5 -29
41.6 -28 | | | | RA (1950) Dec | 5.4 -17 4
6.4 -50 1
6.7 -29 1
7.0 -48 1
7.5 -19 2 | 7.7 -41 1
8.8 -23 1
9.7 -40 1
0.3 -48 4 | 0.5 -17
1.3 -27
1.5 -41
2.0 -42
3.2 -49 | 3.4 - 42
3.9 - 42
5.0 - 56
5.5 - 50 | 5.9 -67
6.1 -24
6.3 -28
6.3 -38
7.2 -27 | 0.88.0 | 04440 | 48.0.08 | 21.12 | 3.4
3.4
3.8
1.9
1.9
1.9
1.9
1.9 | | pan | |-------| | ontin | | 1 | | LE, | | TAB | | | | a | 17.3
17.2
17.3
17.2 | 17.4
17.3
17.4
17.2
17.3 | 17.3
17.3
17.3
17.4 | 17.3
17.3
17.3
17.3 | 17.4
17.3
17.2
16.6
17.4 |
17.3
17.2
17.0
17.4 | 17.4
17.3
17.4
17.4 | 17.3
17.3
17.3
15.8 | 17.3
17.3
16.4
16.3 | 17.2
17.4
16.9
17.3 | |-----------------|--|---|--|--|--|--|--|---|--|--| | D | വവഴവഴ | ουουο | 99999 | 20000 | စေသသစစ | စစညညစ | 99999 | 00040 | 00444 | ₹ 0 € | | R | 00100 | 00100 | 00448 | 00101 | 00000 | 00000 | 07071 | 00000 | 10000 | 00000 | | z | | | | | | 0.0600 | | | 0.0585 | | | Previous | | œ | BD Q | ۵۵ | 8 | BD | | ğ | O %% | Ω | | Obs | 10,10
10,10
10 | 10
10
10
10 | 10000 | 10000 | 10
10
20,10
10,10 | 00000 | 10
10
10
2C, 10 | 10
10
10,10
10,10 | 00000 | 00000 | | m ₁₀ | 18.9
17.5
18.4
17.0 | 19.3
18.3
19.4
17.4 | 18.8
18.1
18.0
19.4 | 19.1
18.0
18.6
18.1
17.5 | 19.4
18.8
18.1:
16.3: | 18.6
17.2
16.8
19.3
18.1 | 19.2
18.7
19.5
19.0 | 18.6
18.5
18.6
15.6 | 18.1
18.0
16.2
16.1 | 17.6
19.1
16.7
18.8
15.9 | | m ₃ | 18.4
15.9
17.6
16.1 | 17.4
17.3
18.3
16.0 | 18.0
16.8
17.6?
18.3 | 18.0
17.4
17.5
17.8
16.5 | 18.3
18.1
17.0
15.2
18.9 | 17.4
16.7
15.5
18.1
17.2 | 18.0
18.1
19.3
18.5 | 17.6
17.5
17.6
15.1
17.8 | 17.4
17.4
15.6
15.4
15.4 | 16.5
18.1
15.4
17.6 | | m | 17.7
15.6
17.5
16.0 | 16.1
16.5
17.9
15.4 | 17.1
16.6
17.3
17.9 | 17.8
17.1
15.6:
16.5
15.3 | 17.8
18.0
16.5
14.4
18.0 | 17.1
15.5
14.6
17.8 | 16.2
16.1
18.1
17.5 | 16.7
16.1
16.8
15.0
17.3 | 15.97
17.1
15.0
14.2
14.6 | 16.1
17.5
14.6
16.9 | | C | 444
440
400
400 | 813
31
54
42 | 444
67
47
80 | 44
88
61:
53 | 40
37
31: | 94
94
96
96
96 | 37
91
40
58
56 | 8 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | 56
40
80
49: | 35.
38
469
5. | | T_{B-M} | 111111111111111111111111111111111111111 | 1
1117
1117
11-11 | HI-III
HI-III
R HI-III | | | | 1-11
11-111
1-11 | | 111-111
11-111-111-111-111-111-111-111- | 111
111
111-111
1 | | T_A | HRRE | ***** | иння ж | RIRRI | RE RI | IR IR I | RHI | I RI: | E E E E E | IRRII | | Abell | 3051
3052
3053
3054
3055 | 3056
3057
3058
3059
3060 | 3061
3062
3063
3064
3065 | 3066
3067
3068
3069
3070 | 3071
3072
3073
3074
3075 | 3076
3077
3078
3079
3080 | 3081
3082
3083
3084
3085 | 3086
3087
3088
3089
3090 | 3091
3092
3093
3094 | 3096
3097
3098
3099
3100 | | na nx | 79 278
115 284
196 210
100 274
288 271 | | | | | 83 151
182 78
178 57
60 186
146 98 | 444 | 86 172
168 167
155 226
228 62
107 250 | | | | Ycen | 1114
120
110
107 | 86,39 | -30
103
72
67 | 41
37
26
115 | 152
149
-68
111 | -13
-86
107
22
-66 | -62
1118
1130
49 | 86
102
86 | 42
1129
1111 | 30
30
108
108 | | x cen | 8 4 6 1 1 2 4 8 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 225
222
722
722
722 | 1-19
12-19
12-19 | 1 | 18
101
104
18 | • | 6 1 0 4 7 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | , , | 00100 | | Field | F115
F416
F356
F416
F199 | F416
F199
F154
F247 | 8 8 5 5 5 T | 12124 | 24219
481548 | F247
F199
F199
F247 | F300
F417
F480
F357 | F480
F417
F417
F357 | F417
F082
F199
F481 | F248
F082
F300
F116 | | p | -53.43
-64.31
-64.22
-64.04 | | 88708 | 40040 | 400000 | -58.97
-55.73
-55.45
-58.87
-46.24 | 60600 | | -59.64
-46.03
-56.10
-58.92 | · · · · · · · · · · · · · · · · · | | 1 | 277.41
220.65
235.42
221.13
263.04 | 21.6
63.8
73.3
60.0 | 84.
141.
141. | 4.6.6.6. | 22006 | 256.65
266.91
267.39
255.16
284.69 | 48.7
211.6
111.3
40.7 | | 24.7
883.4
20.7 | 66696 | | RA (2000) Dec | 02 46.1 -57 38
02 47.4 -27 33
02 47.4 -33 57
02 48.3 -47 48 | 49.6 -27 5
49.2 -48 2
50.3 -54 5
51.0 -46 1 | 51.0 -64 4 52.2 -36 4 53.3 -33 2 53.3 3 53.3 53.3 53.3 53.3 53.3 53. | 51.4 -79 0
54.6 -54 0
55.3 -44 1
55.9 -22 3
56.6 -24 4 | 56.9 -46 5
57.3 -47 3
58.2 -21 0
57.9 -52 4
59.0 -23 0 | 02 58.8 -45 03 02 59.9 -51 27 03 00.5 -51 50 03 01.0 -44 23 03 00.5 -66 03 | 02.1 -40 5
03.3 -27 3
04.0 -22 2
04.1 -36 5
03.8 -48 5 | 04.8 - 24
05.9 - 29
07.0 - 28
08.2 - 36
08.4 - 48 | 09.3 -29 0 08.1 -65 3 10.9 -47 2 11.4 -26 5 1 | 12.1 -44
12.0 -63
13.7 -38
13.3 -58 | | RA (1950) Dec | 02 44.7 -57 51
02 45.2 -27 46
02 45.3 -34 10
02 46.6 -28 01 | 2 47.4 - 28 1
2 47.5 - 48 3
2 48.8 - 55 0
2 49.2 - 46 3
2 49.9 - 46 3 | 50.0 -64
50.2 -25
50.2 -36
51.2 -33 | 52.8 -79 1
53.1 -54 1
53.5 -44 3
54.4 -22 5 | 55.2 -47 1
55.6 -47 4
55.9 -21 1
56.8 -52 5 | 02 57.0 -45 15
02 58.3 -51 39
02 58.9 -52 02
02 59.2 -44 35
02 59.7 -66 15 | 00.2 -41 1
01.2 -27 4
01.8 -22 3
02.1 -37 0 | | 3 07.2 -29
3 07.3 -65
3 09.2 -47
3 09.3 -27 | 10.3 -44
11.1 -63
11.8 -38
12.1 -58 | | Abell | 3051
3052
3053
3054
3055 | 3056
3057
3058
3059
3060 | 3061
3062
3063
3064
3065 | 3066
3067
3068
3068
3069 | 3071
3072
3073
3075 | 3076
3077
3078
3079
3080 | 3081
3082
3083
3084
3085 | 3086
3087
3088
3089
3090 | 88888 | 88883 | | pani | |-------| | ontir | | 2 | | LE 4 | | [AB] | | 8 | 17.4
17.3
17.3
16.2 | 17.2
17.0
16.2
17.0 | 16.3
16.1
17.2
17.3 | 17.2
17.2
17.2
17.3 | 17.3
15.8
16.2
17.3 | 17.0
17.4
15.3
17.2 | 17.3
17.2
16.2
17.2 | 17.2
17.3
17.4
17.3 | 16.8
16.9
17.3
15.8 | 17.2
17.4
17.2
17.4
17.4 | |---------------|--|---|--|--|--|--|--|--|--|--| | Ω | 00040 | បល្ងស្ង | 44000 | വഴവവ | 04464 | ช ณ ๓ ษ ณ | ∿ Ν 4 Ν Ν | യയയയ | សស 🛧 ស | 9999 | | æ | 70001 | 04400 | 00171 | 。。。。。。 | 00000 | 01351 | 21010 | 0000 | 3 0 10 10 | 00000 | | 8 | | 0.0645
0.0632
0.0673
0.0755 | 0.0703 | 0.0696 | 0.0650 | 0.0862 | | 0.1203 | 0.042 | | | Previous | | ο ο | | DS | Q Q | DdKS | ø | врб | | α | | Obs | 22222 | 2665 | 10
20
10
20,10 | 10
10
10
10 | 10000 | 10
10, 10
10, 10 | 700
100
100
100 | 0
10
10
10 | 22222 | 10
10,10
10,10 | | m_{10} | 19.5
18.0
16.0
18.7 | 17.5
16.8
16.0
16.8 | 16.1
15.9
17.6
18.1 | 17.8
18.0
17.7
18.0
17.3 | 18.0
15.6
16.0
18.2 | 16.8
19.5
15.1:
17.8 | 18.0
: 18.2:
: 16.0:
17.8 | 17.9
18.3
19.2
19.6
18.2 | 16.6
16.7
18.1
15.6
17.8 | 17.1
19.2
17.4
19.3 | | m3 | 19.2
17.3
16.8
15.6 | 16.4
15.9
15.7
15.6
15.7 | 15.4
15.5
17.3
17.6
17.8 | 16.7
16.7
16.5
17.3 | 16.6
15.2
17.5
14.8 | 16.2
18.4
14.6
16.8 | 16.7
17.0
15.3
16.0
15.1 | 16.7
16.7
18.4
18.5
18.5 | 15.6
15.5
17.3
15.0 | 16.8
18.0
16.4
18.2 | | m_1 | 19.0
16.2
15.4?
16.1 | 15.4
15.4
13.9
14.6 | 15.1
14.7
16.7
15.9 | 15.4
15.9
15.8
15.8 | 15.4
14.5
15.8
15.8 | 15.9
15.9*
16.3 | 15.0?
15.8?
15.1:
15.6 | 16.0
16.0
18.1
17.9?
16.1 | 14.9
14.6
15.3
14.6 | 16.1
17.3
15.5
17.4
18.0 | | υ | 110
33
37
37
52 | 44
61:
73
32: | 54
116:
55
45 | 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 38
100
37
39
46 | 75
93
1407
55
36 | 31
56
33:
50
111 | 68
46
32
100
45 | 55
78
32
36: | 35
47
83:
31
55 | | Тв-м | 111
11-11
11-11 | | 1-11
1-11
11-11 | 1-11
111
111-111
1 | | | HIIIH
HIIHH | | | 11.11.11.11.11.11.11.11.11.11.11.11.11. | | T_A | RHIRI | RRHRR
R | # # # # # | RHIRR | H H H H H | R R I | жння | жннж | 11 11 11 11 11 11 11 11 11 11 11 11 11 | I
RI?
R | | Abell | 3101
3102
3103
3104
3105 | 3106
3107
3108
3109
3110 | 3111
3112
3113
3114
3115 | 3116
3117
3118
3119
3120 | 3121
3122
3123
3124
3124 | 3126
3127
3128
3129
3130 | 3131
3132
3133
3134
3134 |
3136
3137
3138
3139
3140 | 3141
3142
3143
3144
3144 | 3146
3147
3148
3149
3150 | | xu yu | 163 304
199 177
241 197
197 134
197 291 | 145 258
188 276
314 280
176 218
42 104 | 165 118
164 198
288 217
286 200
68 114 | 153 267
205 50
84 198
210 258
247 84 | 202 130
241 83
238 47
112 182
101 287 | 97 117
197 303
76 286
136 126
167 312 | 166 99
295 197
280 103
130 113 | 150 58
128 259
199 182
235 227
100 121 | 74 263
94 166
138 78
282 156
81 261 | 44444 | | Ycen | 140
133
137 | 42146 | 4 4 6 6 6
4 4 6 6 6 | 103
34
94 | -34
-81
117
123 | 139
139
148 | -65
-61
-51
-51 | 106
95
18
63 | 2 4 8 8 2 | 91
112
117
15
89 | | xcen 1 | -31
-31
-33
-33 | 125
125
122
122 | -1-
124
96 | 44006 | -38
-77
-74 -:
52 | 1.883. | -2
111
116
34 | 41 86 - 1
135 - 1
140 - 1 | 20 20 81 8
83 8 6 | | | Field 4 | F2357
F248
F248 | 9 8 9 8 6 | 1.1 | | F054 - F200 - F248 F155 | F155
F155
F155
F200 | F200
F249 -1
F301
F301 | | F418
F301
F054
F156 -1 | F358
F083 -
F358
F358 | | q | -58.69
-56.58
-43.16
-56.30 | 9.00.47 | 5.24.6 | -56.28
-40.83
-57.16
-43.46 | -41.78
-56.08
-52.34
-55.09 | -49.88
-52.22
-51.11
-54.91 | -51.53
-53.64
-53.08
-54.15 | -40.18
-51.31
-54.33
-52.71 | -53.49
-53.65
-40.24
-53.62 | ~ ~ ~ ~ ~ ~ ~ ~ | | 1 | 254.00
255.00
255.30
255.32
255.32 | 74.06
50.64
58.88
52.41 | 55.48
52.94
60.47
43.87 | | 287.20
247.55
264.74
2552.89 | 269.31
206.27
264.74
228.34
256.35 | 262.41
251.64
254.43
245.90
242.85 | 87.67
08.28
35.19
17.03 | 224.24
244.09
287.11
267.52
241.06 | 22
12
12
98 | | RA (2000) Dec | 03 14.3 -32 11
03 14.2 -44 37
03 12.9 -69 11
03 14.3 -45 24
03 14.5 -42 29 | 14.5 -58
15.4 -42
15.2 -47
16.7 -43
16.5 -50 | 17.8 -45
17.9 -44
17.8 -48
18.3 -39
19.1 -20 | 03 19.0 -42 56
03 19.1 -71 58
03 21.5 -34 11
03 19.9 -68 05
03 21.9 -51 19 | 03 20.5 -70 29
03 22.3 -41 20
03 23.0 -52 01
03 23.3 -44 30
03 27.4 -53 30 | 03 28.7 -55 42
03 29.8 -17 16
03 30.2 -52 33
03 31.7 -30 35
03 31.6 -47 05 | 03 31.6 -51 03
03 32.2 -44 11
03 32.7 -45 56
03 33.3 -40 46
03 34.0 -39 00 | 03 32.2 -71 49
03 35.3 -18 06
03 35.1 -34 32
03 36.6 -23 39
03 36.3 -40 38 | 03 37.0 -28 03 03 36.7 -39 48 03 35.2 -71 28 03 37.1 -55 01 03 37.9 -38 01 | 38.4 -33
37.2 -62
38.7 -32
37.0 -69 | | RA (1950) Dec | 03 12.3 -32 23 0
03 12.5 -44 49 0
03 12.5 -69 23 0
03 12.6 -45 36
03 12.7 -42 41 0 | .3 -58 17
.6 -42 57
.6 -47 49
.9 -44 02
.0 -51 05 | | 60000 | 03 20.4 -70 40 03 20.5 -41 31 0 03 21.5 -52 12 0 03 21.6 -44 41 0 03 26.0 -53 41 0 | 03 27.4 -55 53 0
03 27.5 -17 27 0
03 28.8 -52 44 0
03 29.7 -30 46 0
03 30.0 -47 16 0 | 03 30.1 -51 14 0
03 30.5 -44 22
03 31.1 -46 07
03 31.2 -40 57
03 32.2 -39 10 | 03 32.4 -72 00 03 33.0 -18 16 003 33.2 -34 42 003 34.4 -23 49 003 34.5 -40 48 0 | 03 34.9 -28 13 0
03 34.9 -39 58 0
03 35.3 -71 38 0
03 35.8 -55 11 0
03 36.0 -38 11 0 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | Abell | 3101
3102
3103
3104
3105 | 3106
3107
3108
3109
3110 | 3111
3112
3113
3114
3114 | 3116
3117
3118
3119
3120 | 3121
3122
3123
3124
3124 | 3126
3127
3128
3128
3139 | 3131
3132
3133
3134
3134 | 3136
3137
3138
3139
3140 | 3141
3142
3143
3144
3145 | 44445 | | | B | 16.0
17.0
17.0
16.3 | 17.3
17.3
15.8
17.1 | 16.4
17.3
17.3
15.7 | 17.2
17.4
17.4
17.2
17.3 | 17.2
17.3
17.0
17.3 | 17.3
17.3
17.4
17.3 | 17.3
17.2
17.1
17.4 | 17.2
17.3
17.1
17.4 | 17.2
17.2
15.6
16.7
16.8 | 17.3
17.2
17.3
17.3 | |-----------|-----------------|--|--|---|--|---|--|---|--|---|--| | | ۵ | 40040 | ው ወ 4 የ ይ ው | 40040 | ଡଥବର | 6655 | 00000 | งอนขอ | ଡ୍ଡ୍ରେଡ୍ର | មាយមាយ | 20000 | | | R | 44400 | 10001 | 04000 | 44664 | 17011 | 40408 | 71077 | 4444 | 00000 | 04408 | | | 8 | | 0.209 | 0.0611 | | | | | | 0.0340 | | | | Previous | oo | Ow | œ | œ | | Q | aaa | BDQ | 8000 | α | | | Obs | 10,13
100
100
100
10 | 10001 | 1000 P | 0 0 C P 0 0 | 00000 | 10
10
10 | 17
17
10
10
10
10 | 70
10
10
10 | 10 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P | 10
17
17
18 | | | m ₁₀ | 15.9
16.8
16.8
16.1 | 18.6
18.6
15.6
16.9
18.7 | 16.2
18.8
18.9
15.5 | 17.3
19.2
19.3:
17.4 | 17.5
18.2
16.8
18.6 | 18.6
18.2
19.1
18.0 | 18.2
17.3
17.0
: 19.6 | 18.3
18.8
17.0
19.6 | 17.2
17.1
15.4
16.5 | 18.0
17.5
18.3
18.8 | | | m ₃ | 15.4
16.1
16.1
16.8 | 18.3
17.5
14.7
16.4 | 16.0
17.6
18.0
15.1 | 16.1
18.8
7 18.7:
16.7 | 16.7
17.0
16.0
17.7 | 18.1
17.7
18.0
17.3 | 17.5
16.9
15.8
19.1 | 16.9
17.9
14.9
18.5 | 16.8
14.6
15.4
15.4 | 2 17.4
16.8
17.4
18.3
17.0 | | | m ₁ | 15.0
15.4
15.9
15.1 | 18.1
17.0
13.7
15.4
17.5 | 14.7
17.1
14.0
16.6 | 15.9
17.2
18.47
15.9 | 15.9
16.7
15.3
16.6 | 17.3
16.3
17.3
16.8
17.4 | 17.0
16.5
15.2
18.1 | 16.8
17.4
14.8
17.6
16.9 | 15.8
16.4
13.0
15.1 | 15.8
16.5
17.6
16.4 | | | Ö | 888 88 88 88 88 88 88 88 88 88 88 88 88 | 77
106
85
98
59 | 36
43
33
31 | 79
51
(100)
101
53 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 62
49
52
41
110 | 71
52
40
96
80 | 62
67
65
85 | 33
141
41
83
30 | 41
62
50
46
91 | | | Тв-м | | | :::::::::::::::::::::::::::::::::::::: | 1
11-11
11-11
111 | 1
111
111-111
11-111 | !!-!!
!!-!!
!!! | III-III
III-III | 1-11
111
111:
11:-11 | | 11
11
111-111 | | | T_{A} | HHHH | няяян | ı ı ı ı ı | нннжн | RHIRKI | I I I I I I I I I I I I I I I I I I I | R I I I | RRIAR | R | 1212 | | Continued | Abell | 3151
3152
3153
3154 | 3156
3157
3158
3159
3160 | 3161
3162
3163
3164
3164 | 3166
3167
3168
3169
3170 | 3171
3172
3173
3174
3176 | 3176
3177
3178
3179
3180 | 3181
3182
3183
3184
3185 | 3186
3187
3188
3189
3190 | 3191
3192
3193
3194
3195 | 3196
3197
3198
3199
3200 | | 4 - | | | | | | | | | | | | | TABLE | ı yıı | 3 227
0 288
3 198
3 315
3 151 | 1 108
1 162
9 232
9 281 | 1 122
5 190
9 73
3 51
6 212 | 9 274
7 242
3 330
2 238 | 9 207
9 216
2 224
7 292
4 263 | 9 300
7 255
5 159
7 232
7 215 | 6 121
0 104
9 51
9 279 | 1 205
4 264
8 317
6 179
1 30 | 5 270
9 163
2 33
5 149 | 4 159
5 136
4 286
5 217
7 95 | | | TI. | 33
140
133
1133 | 274
264
239
99
129 | 91
245
49
213
226 | 69
217
93
52
50 | 49
239
42
207
204 | 179
327
185
247
197 | 146
140
139
179 | 281
104
98
146
101 | 65
89
192
85 | 84
75
64
205
67 | | | ycen | 63
124
34
151
-13 | -56
-2
-8
117
118 | -42
26
-91
-113
48 | 110
78
166
74
59 | 43
52
60
128
99 | 136
91
-5
68
68 | -43
-113
115 | 41
100
153
15 | 106
-131
-15
-15 | 122
122
53 | | | Lcen | 131
24
114
118 | -110
-100
-75
65
35 | 73
-81
115
-49
-62 | 95
-53
71
112
-36 | 115
-75
122
-43
-40 | -15
-163
-21
-83
-33 | 24
25
-15
21 | -117
60
66
18
18
63 | 28
75
79
30 | 80
89
100
-41 | | | Field | F418
F358
F358
F358 | F419
F419
F156
F358
F482 | F358
F419
F200
F156 | F358
F419
F482
F358 | F358
F358
F358
F549 | F419
F483
F549
F201 | F419
F419
F419
F302 | F032
F419
F302
F549 | F083
F419
F201
F419 | F549
F419
F419
F419 | | | q | -52.82
-53.20
-53.12
-52.84
-40.78 | -52.62
-52.32
-48.92
-52.44 | -52.33
-51.90
-49.31
-47.16 | -51.88
-51.20
-49.64
-51.58 | -51.54
-51.42
-51.41
-47.81 | -50.34
-49.36
-48.29
-50.64 | -50.22
-50.11
-50.20
-47.05 | -37.67
-49.05
-48.77
-49.64 | -43.32
-49.05
-47.22
-48.98 | -46.49
-48.85
-48.25
-47.37 | | | - | 225.51
231.90
234.72
231.08
285.35 | 229.26
227.66
265.06
232.17
215.97 | 237.01
226.87
261.80
269.46
226.34 | 232.41
225.44
215.26
233.52
264.91 | 234.43
242.22
233.94
209.38 | 223.94
217.58
213.05
257.06
242.20 | 229.25
229.79
231.35
240.30 | 288.63
225.41
223.92
243.16
217.18 | 275.91
228.27
262.05
228.70
236.32 | 213.96
229.11
224.94
219.54 | | | (2000) Dec | -28 42
-32 34
-34 15
-32 03
-70 05 | -30 56
-29 56
-53 38
-32 41 | -35 38
-29
24
-51 30
-57 02
-29 01 | -32 48
-28 25
-21 45
-33 28
-53 49 | -34 02
-38 53
-33 43
-17 29
-18 01 | -27 21
-23 08
-19 58
-48 36 | -30 41
-31 01
-32 01
-37 44
-18 29 | -74 00
-28 03
-27 02
-39 36
-22 22 | -62 49
-29 54
-52 20
-30 10 | -19 58
-30 25
-27 36
-23 52
-31 09 | | | RA (20 | 03 40.5
03 40.4
03 41.0
03 42.0 | 03 42.6
03 43.5
03 43.0
03 44.1 | 03 44.9
03 45.1
03 45.7
03 45.8 | 03 46.8
03 47.8
03 48.1
03 48.3 | 03 48.6
03 48.8
03 49.2
03 50.1
03 50.3 | 03 50.9
03 51.1
03 51.7
03 52.3 | 03 53.7
03 54.4
03 54.5
03 54.5
03 54.5 | 03 52.3
03 57.4
03 57.8
03 57.8 | 03 57.0
03 58.7
03 58.2
03 59.2
03 59.2 | 03 59.8
03 60.0
04 00.7
04 00.9 | | | Dec | 8 52 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 06
0 06
2 51
2 51 | 9 4 8 9 4 4 9 4 4 9 1 1 2 9 1 1 2 9 1 1 2 9 1 1 2 9 1 1 1 1 | 33 23 23 23 23 23 23 23 23 23 23 23 23 2 | 4 12
9 03
3 53
8 11 | 7 30
3 17
0 07
9 05 | 0 50
1 10
2 10
8 38 | 8 12 7 111 2 3 3 3 3 1 | 2 2 2 8 2 1 3 2 8 2 1 3 3 2 8 2 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0 07
0 34
7 45
1 18 | | | (1950) I | 44406 | 91719 | 8 7 3 12 3 | 8 L Q 4 Q | 08307 | 80880 | 7 4 2 7 8 8 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | 10731 | 32973 | 3777 | | | RA (19 | 888.
66.
66. | 011122 | 4 4 4 4 4
6 6 4 4 4 4 | 44.55.94 | 47.67.84
47.84
48.0 | 500
500
500
500
500
500
500 | 52.4
52.6
52.6 | 55.33 | 56.3
56.7
57.2 | 58.88.88 | | | H. | 22222 | 888888 | 00000 | 88888 | 00000 | 88888 | 00000 | 00000 | 00000 | 00000 | | | Abell | 3151
3152
3153
3154
3154 | 3156
3157
3158
3159
3160 | 3161
3162
3163
3164
3164 | 3166
3167
3168
3169
3170 | 3171
3172
3173
3174
3174 | 3176
3177
3178
3178
3180 | 3181
3182
3183
3184
3185 | 3186
3187
3188
3189 | 3191
3192
3193
3194
3195 | 3196
3197
3198
3199 | | TABLE 4—Continued | | |-------------------|--| | | | | - | B | 17.
15.
17. | 17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
15.
15. | 17.
17.
16. | 7777 | 11111 | 11111 | 111111 | |-----------|-----------------|---|---|--|---|---|---|---|---|---|---| | | Ω | ស4. ស បេ បេ | 00000 | 00000 | 2000 | 0 0 C 0 4 | ναννο | 99999 | 00000 | | 99999 | | | æ | 01001 | 01701 | 01110 | 84444 | 00000 | 4440 | 6 | 11071 | 40404 | 44400 | | | 22 | 0.0388 | 0.212 | | | 0.0433 | | (0.0570) | | | | | | Previous | ø | α | | D D | Д | Ω Ω | O 8 | | Ω | | | | Obs | 10000
19000 | 100C | 18
10,18
10,18 | 1C, 10
10
1C
1C, 10 | 10, 10
10, 10
10
10, 10 | 10
10
10,10 | 1000 4 | 10, 14
10
10
10, 14 | 10
10
10,13 | 99999 | | | m ₁₀ | 18.6
15.6:
18.8
17.7 | 18.0
19.2
19.3
19.3 | 18.8
18.0
19.2
19.1
18.0 | 18.0
18.8
19.4
18.7 | 19.3
19.4
15.4
15.3 | 18.1
19.3
18.8
2 16.8
18.0 | 18.2
18.0
19.4
17.3 | 18.8
18.7
18.2
7 18.4
18.8 | 17.7
17.8
17.8
18.7
18.0 | 18.1
7.77
? 18.1
19.3 | | | m ₃ | 18.0
15.4:
17.7
16.9 | 17.3
17.6
18.1
18.6
17.3 | 18.3
17.0
18.8
18.0
17.3 | 17.4
18.0
18.5
17.9 | 18.2
18.5
14.7
18.6
14.7 | 17.4
18.1
? 17.5
? 15.8 | ? 17.2
17.5
18.2
16.5
17.5 | 18.3
17.5
17.2
: 17.4 | ? 16.2
16.2
18.0
17.5 | 17.5
16.8
7 17.6
18.3 | | | m ₁ | 17.5
15.3
17.4
16.2 | 16.5
17.4
17.8
16.8 | 18.0
16.5
18.3
17.7
15.6 | 17.0
17.3
18.0
17.4 | 16.8
14.5
13.0 | 16.8
17.8
15.4
14.0 | 16.2
17.3
17.5
15.1 | 16.9
16.4
15.9
16.6 | 15.07
15.2
17.7
17.1 | 17.3
16.4
17.5
16.1 | | | 0 | 657
80
32
54 | 32
77
81
32
61 | 37
95
597
39 | 92
54
62
53 | 44
102:
100:
40 | 64
52
60
42? | 65
70
31
69 | 64
43
81
71 | 54
67
34
647 | 50:
52
67
38: | | | Тв-м | II-III
III
III-III
II-III | 11-111
111-111
1111
1-11 | III-III
III-III
III-III | | III-III
III-III
III | | | II
III-III
III-III? | ::
::::::::::::::::::::::::::::::::::: | 111-111
111-111
11-1 | | | T_A | ннннн | RI R | RRRI | RI:
R R R I | ri Rir
R | IR
RI
RI
RI | H IR I | R
IR? | R H H K | нннн | | Continued | Abell | 3201
3202
3203
3204
3204 | 3206
3207
3208
3209
3210 | 3211
3212
3213
3214
3215 | 3216
3217
3218
3219
3220 | 3221
3222
3223
3224
3224 | 3226
3227
3228
3228
3239 | 3231
3232
3233
3234
3234 | 3236
3237
3238
3238
3240 | 3241
3242
3243
3244
3244 | 3246
3247
3248
3249
3250 | | ,
1 | | | | | | | | | | | | | IABLE | xu yu | 65 176
103 231
168 260
276 59
43 328 | 01 m 01 | m € | 80 142
65 128
25 52
68 124
26 226 | 144 303
143 290
140 113
135 293
186 177 | 06 264
88 152
80 219
64 228 | 93
98
99
99
99 | 159 94
272 308
132 292
210 217
129 147 | 215 168
216 234
113 297
221 113
110 154 | 227 1 | | | Ycen | 112
64
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 00000 | -22 2
-36 2
-112 1
-40 2 | 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 | 100 2
-12 1
55 1
64 2 | -125
-125
-124
-534
1111
124
11111 | -70
144
128
138
1-17 | 70 70 70 70 70 70 70 70 70 70 70 70 70 7 | 0 to 0 to 0 | | | xcen y | 99
61
-4
112 -1 | 67.76
11. 1 | 2 d d 0 u | -116 -
-101 -
39 -1
-104 - | -80 1
-79 1
-76 - | -42 1
-24 -
84 -
100 -1 | | 108 1
32 1
-46 1 | 4847 4 | | | | Field | F549
F156
F359
F250 - | F015
F419
F156 | F419
F359
F483
F302 | F084 -
F420 -
F483 -
F084 - | F420
F420
F420
F420 | F420
F250
F201
F118 - | F084
F360 -
F250
F250 | F250
F360 -
F250
F303 | F084
F084
F250
F118 | F250
F250
F084
F551 - | | | 9 | 16.07
16.52
18.78
18.07 | 4.7.66 | . 6. 6. 6. 6. | -41.51
-47.48
-46.60
-41.16 | 36.766 | | | 5.85
5.85
5.85
5.85 | 000.40 | 44004 | | | 1 | 213.66 -4
263.75 -4
233.14 -4
253.90 -4 | 93.20
24.48
24.48
63.38 | # M # 10 N | 278.28
229.58
224.47
278.62
292.75 | 224.99 -4
225.31 -4
230.06 -4
225.28 -4
271.04 -4 | 226.21 -4
251.03 -4
256.40 -4
274.83 -4
275.98 -4 | 277.07 -4
236.79 -4
251.03 -4
252.08 -4 | 252.51 -4
232.38 -4
247.13 -4
242.03 -4
251.00 -4 | 277.00 -4
275.53 -4
246.99 -4
272.01 -4 | 51.92
52.69
77.08
14.97
34.07 | | | RA (2000) Dec | 01.2 -19 38
00.2 -53 39
01.6 -33 03
01.4 -46 48
02.3 -26 48 | 0 -78 5
9 -27 1
0 -27 1
7 -53 3
6 -56 1 | 3.7 -27
3.9 -33
4.3 -27
4.8 -41 | 04.1 -65 12
06.5 -30 32
07.7 -26 58
06.0 -65 36
03.9 -78 40 | 08.5 -27 18
08.6 -27 31
08.6 -30 49
09.2 -27 28
09.3 -59 36 | 11.6 -28
11.2 -45
11.1 -48
11.1 -62
11.6 -63 | 11.9 -64 36
13.8 -35 20
13.6 -45 09
13.5 -45 53
14.1 -45 33 | 14.2 -46 12
16.4 -32 12
16.9 -42 29
17.5 -38 56
17.5 -45 12 | 22 | 1.1 -45
1.2 -46
1.0 -65
2.9 -18
2.7 -33 | | | | 7 8 4 7 7
4 4 4 4 4 4 | ~ 0000 | 25074 | 221
411
04
06
04
44
04
49
04 | 26 04
39 04
36 04
44 04 | 09 04
14 04
59 04
49 04 | 44 04
28 04
117 04
41 04 | 0 0 0 4 0
4 4 4 4 4 4 | 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | w w o r o | | | 50) Dec | -19 4
-53 4
-46 5
-26 5 | | 44460 | -65
-30
-27
-65 | 127 2
127 2
127 2
127 3
15 4 | 1 4 4 5 5 1 6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 164
145
145
146
146
146 | 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 0 6 4 7 7 7 | | | RA (1950) | 03 59.0
03 59.0
03 59.7
03 59.9
04 00.2 | 04 00.8
04 00.8
04 00.9
04 01.5 | 04 01.6
04 02.0
04 02.2
04 03.1 | 04 03.7
04 04.5
04 05.6
04 05.6
04 06.2 | 04 06.4
04 06.6
04 06.6
04 07.2
04 08.4 | 04 09.6
04 09.6
04 09.7
04 10.5 | 04 11.4
04 11.9
04 12.0
04 12.0
04 12.0 | 04 12.7
04 14.5
04 15.3
04 15.7
04 15.7 | 04 16.5
04 16.7
04 17.2
04 17.8
04 17.9 | 04 19.6
04 19.7
04 20.6
04 20.7
04 20.8 | | | | | 206
207
209
210 | | 0 L 8 0 0 | 40040 | 0 L @ @ O | H 21 22 4 12 | 0 L 80 0 0 | 242
242
243
244
245 | 50
50
50
50 | | pa | | |-------|--| | ıtinu | | | Ĉ | | | 4 | | | LE | | | TAB | | | | 目 | 17.3
17.3
17.2
17.2 | 17.2
17.3
17.4
17.2 | 17.3
17.3
17.3
16.7 | 15.5
17.3
17.2
16.8 | 17.3
17.3
17.3
17.3 | 17.3
17.3
17.2
17.2 | 17.3
17.3
17.4
17.4 | 17.2
17.3
17.2
17.2
17.3 | 17.3
17.3
17.3
17.2 | 17.1
17.1
17.3
17.2
17.2 | |-----------|---
--|--|--|---|--|--|--|--|--|--| | | Δ | ဖေသသဖဖ | စေသစစသ | വവഴഴയ | ഴവവഴന | იდდდ | စကကစစ | 20000 | សាធាតា | വവഴഴ | വവഴവവ | | | 띰 | 10100 | 0 2 4 8 0 | 21211 | 10001 | 44000 | 44404 | 44040 | 44000 | 01011 | 10101 | | | z | | | | 0.0594 | | | | | | | | | Previous | Q ## | | ф | DS
B | Ω | Ω | ш ш | | BD | Ω | | | Obs | 10,1A
10,1A
10,1A
10,1A | 10
10,13
10,13 | 00000 | 10
10
10
10
10 | 00000 | 00000 | 99999 | 00000 | 02000 | 200CC | | | m_{10} | 18.7
17.8
17.8
18.3 | 17.4
18.0
19.4
17.9 | 18.9
19.0
18.1
16.5
17.5 | 15.3
18.4
17.3
16.6 | 18.0
18.6
18.0
18.0 | 18.2
18.3
17.8
17.7
18.3 | 18.8
18.3
19.1
19.1 | 18.9
19.0
18.0
17.6 | 18.5
18.7
19.3
18.0 | 17.8
17.1
19.2
18.0
18.8 | | | m ₃ | 17.9
16.6
17.6 | 16.1
17.5
19.0
16.8
18.0 | 18.1
18.2
17.5
16.2
16.1 | 14.8
17.4
16.6
15.9 | 17.3
17.6
16.2
17.8
16.4 | 17.5
17.8
17.1
16.2 | 18.1
17.1
18.3
18.3 | 17.6
17.8
16.9
16.5 | 17.8
17.4
18.4
17.5 | 16.8
16.2
18.3
17.1
18.0 | | | \mathfrak{m}_1 | 17.4
17.8
15.8
16.8 | 13.9
16.1
18.3
16.2
16.4 | 17.7
18.1
17.1
15.4 | 15.3
15.3
15.9
16.5 | 16.4
17.4
15.7
17.7
15.5 | 16.0
16.8
15.5
15.8 | 17.3
16.6
17.5
15.7
15.4 | 17.0
17.5
15.9
15.1 | 17.6
16.8
18.1
17.1: | 16.1
15.8
18.1
15.9
17.6: | | | C | 74
800:
70
444
3: | 43
94
53
130
42 | 86
94
71 | 91
81
88:
36: | 74
65
33
44
1: | 70
58
68
64
64 | 54
41
64
30 | 63
74
48
40 | 63
63
63 | 61
112
58
39
55 | | | T_{B-M} | | | | 111111111111111111111111111111111111111 | | 1-11
111-111
111-1117
111-1111 | I-II
II II I | :::::::::::::::::::::::::::::::::::::: | 11-11
1-11
11-11
1 11: | I-II
III
II-III: | | | T_A | I
RI?
RI | ı Kı Kı | RILI | RIERIE | ниня | I I I I I I I I I I I I I I I I I I I | R RI
I R II | нннан | RI
RI
I: | RI
IR:
RI: | | Continued | Abell | 3251
3252
3253
3254
3254 | 3256
3257
3258
3259
3260 | 3261
3262
3263
3264
3264 | 3266
3267
3268
3269
3270 | 3271
3272
3273
3274
3274 | 3276
3277
3278
3279
3280 | 3281
3282
3283
3284
3284 | 3286
3287
3288
3289
3290 | 3291
3293
3293
3294
3294 | 3296
3297
3298
3299 | | | | | | | | | | | | | | | IABLE 4 | x Bu | 79 223
71 98
71 94
71 94
39 81 | | | 140 80
88 209
89 127
85 288 | | 63 214
58 122
106 264
195 103 | 236 252
166 151
80 240
163 158
23 302 | 117 177
64 63
42 265
121 241
166 167 | | | | IABLE 4 | ll x | 179 22
71 9
171 9
56 6
39 8 | 144
142
32
91
228 | 23 152
23 116
99 71
34 165
92 97 | 140
88
89
85
241 | 151
130
79
76
77 | 63
106
195
109 | 3 236 2
3 166 1
5 166 1
5 163 1 | 217 1 64 1 221 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 8 166 1
13 81 1
7 133 1
52 244
60 124 3 | 108 9
198 15
212 28
226 15
289 17 | | IABLE 4- | | 20000 | -62 144
47 142
12 32
98 91
-58 228 | -23 152
-123 116
99 71
34 165
-92 97 | | 21 151
10 130
-60 79
-26 76
-44 77 | | 88 236 2
-13 166 1
76 80 2
-6 163 1
138 223 3 | 3 13 217 1
0 -101 64
2 101 42 2
7 77 221 2
8 3 106 1 | 8 166 1
13 81 1
7 133 1
-152 244
160 124 3 | 6 -70 108 9
4 -10 198 15
8 119 212 28
2 -14 226 15
5 14 289 17 | | IABLE 4- | cen Ycen XII | 59 179 22
-66 71 91
-70 171 9-
-99 56 66 | 360 20 -62 144
360 22 47 142
250 132 12 32
353 73 98 91
551 -64 -58 228 | 118 12 -23 152
360 48 -123 116
303 99 71
202 -1 34 165
360 67 -92 97 | 118 24 -84 140
360 76 45 88
360 75 -37 89
360 79 124 85
251 -77 -49 241 | 202 13 21 151
118 34 10 130
360 88 -26 79
360 87 -44 77 | 50 63
-42 58
100 106
-61 195
50 109 | 2 88 236 2
2 -13 166 1
4 76 80 2
1 -6 163 1
9 138 223 3 | 485 -53 13 217 1
118 100 -101 64
551 122 101 42 2
361 -57 3 106 1 | 304 -2 8 166 1
251 83 13 81 13
361 31 7 133 1
19 -80 -152 244
361 40 160 124 3 | 361 56 -70 108 9
422 -34 -10 198 15
119 -48 119 212 28
001 -62 -14 226 15
486 -125 14 289 17 | | IABLE 4 | ield xcen ycen x11 | 0.30 F084 -15 59 179 22.
4.38 F250 93 -66 71 99
4.15 F350 -7 0 171 9-
4.01 F250 108 -99 56 63 | 3.66 F360 20 -62 144
3.42 F360 22 47 142
3.78 F250 132 12 32
3.61 F313 -74 -58 228
0.03 F551 -64 -58 228 | 0.72 F118 12 -23 152
3.21 F360 48 -123 116
3.24 F303 93 99 71
2.73 F202 -1 34 165
2.83 F366 67 -92 97 | 0.15 F118 24 -84 140
2.41 F360 76 45 88
2.60 F360 75 -37 89
2.18 F361 77 -49 241
2.79 F251 -77 -49 241 | 2.43 F202 13 21 151
0.50 F118 34 10 130
2.45 F360 85 -60 79
2.34 F360 87 -44 77 | 1.95 F360 101 50 63
2.02 F360 106 -42 58
1.54 F118 58 100 106
1.72 F202 55 50 109 | 1.20 F304 -72 88 236 2
1.41 F251 -2 -13 166 1
1.23 F202 84 76 80 2
1.36 F251 1 -6 163 1
0.87 F304 -59 138 223 3 | 8.13 F485 -53 13 217 1
8.72 F18 100 -101 64
5.80 F551 122 101 42 2
9.84 F361 -57 77 221 2
0.29 F251 58 3 106 1 | 0.03 F304 -2 8 166 1
9.84 F251 8 13 81 13 1
8.45 F361 31 7 133 1
7.49 F119 -80 -152 244 7.80 F961 40 160 124 324 | 8-19 F361 56 -70 108 9
6-41 F422 -34 -10 198 15
7-65 F119 -48 119 212 28
7-93 F001 -62 -14 226 15
4-63 F486 -125 14 289 17 | | IABLE 4- | Field xcen ycen x11 | .30 F084 -15 59 179 22
.38 F250 93 -66 71 9
.15 F360 -7 -70 171 9
.01 F250 108 -99 56 6
.75 F250 125 -83 39 8 | 38.13 -43.66 F360 20 -62 144
35.32 -43.42 F360 22 47 142
49.99 -43.78 F250 132 12 32
40.95 -43.61 F303 73 98 91
18.43 -40.03 F551 -64 -58 228 | 0.84 -40.72 F118 12 -23 152
9.72 -43.21 F360 48 -123 116
6.30 -43.24 F303 93 99 71
6.30 -42.73 F302 -1 34 165
8.97 -42.83 F360 67 -92 97 | .15 F118 24 -84 140
.41 F360 76 45 88
.60 F360 75 -37 89
.18 F360 75 -17 89
.79 F251 -77 -49 241 | 56.57 -42.43 P202 13 21 151
69.88 -40.50 P118 34 10 130
38.20 -42.45 P360 85 -60 79
37.80 -42.34 P360 87 -44 77 | .02 F360 101 50 63
.02 F360 106 -42 58
.54 F118 58 100 106
.73 F251 -31 -61 195
.72 F202 55 50 109 | 1.44 -41.20 F304 -72 88 236 2
0.60 -41.41 F251 -2 -13 166 1
0.01 -41.23 F202 84 76 80 2
0.21 -40.87 F304 -59 138 223 3
0.21 -40.87 F304 -59 138 223 | 24.18 -38.13 F485 -53 13 217 1
71.96 -38.72 F118 100 -101 64
16.33 -35.80 F551 122 101 42 2
55.55 -59.84 F351 -57 77 221 2
56.17 -40.29 F251 58 3 106 1 | 3.53 -40.03 F304 -2 8 166 1
9.92 -39.84 F251 83 13 81 17 125 13 7 13 1
7.25 -38.45 F361 31 7 133 1
2.51 -37.49 F119 -80 -152 244 3.72 -37.80 7361 80 160 124 3 | 9.15 -38.19 F361 56 -70 108 9
1.80 -36.41 F422 -34 -10 198 15
6.47 -37.65 F119 -48 119 212 28
1.86 -27.93 F001 -62 -14
226 15
5.41 -34.63 F486 -125 14 289 17 | | IABLE 4 | b Field xcen ycen x11 | 22.6 -63 48 275.49 -40.30 F084 -15 59 179 22. 23.7 -46 06 252.10 -44.38 F250 93 -66 71 99 25.4 -36 13 238.28 -44.15 F350 -7 -70 171 9. 25.5 4 4 252.94 -44.01 F250 128 -99 56 6. 27.2 -46 24 252.44 -43.75 F250 128 -89 39 | 27.8 -36 04 238.13 -43.66 F360 20 -62 144
28.0 -34 01 235.32 -43.42 F360 22 47 142
27.7 -44 38 249.99 -43.78 F250 132 12 32
28.8 -38 06 240.95 -43.61 F303 73 98 91
30.4 -21 00 218.43 -40.03 F551 -64 -58 228 | 29.3 -60 19 270.84 -40.72 F118 12 -23 152 30.5 -37 11 239.72 -43.21 F360 48 -123 116 30.7 -38 04 240.94 -43.24 F303 93 99 71 31.5 -49 18 256.30 -42.73 F202 -1 34 165 32.5 -36 36 238.97 -42.83 F360 67 -92 97 | 31.2 -61 28 272.19 -40.15 F118 24 -84 140 32.9 -34 02 235.52 -42.41 F360 76 45 88 32.8 -35 34 237.58 -42.60 F360 75 -37 89 33.0 -32 34 233.56 -42.18 F360 79 124 85 33.0 -45 50 251.57 -42.79 F251 77 -49 241 | 33.1 -49 32 256.57 -42.43 P202 13 21 151
32.6 -59 41 269.88 -40.50 P118 34 10 130
33.8 -36 00 238.20 -42.45 F360 85 -60 79
34.0 -35 22 237.35 -42.34 F360 87 -44 77 | 35.1 -33 56 235.47 -41.95 F360 101 50 63 35.7 -35 38 237.76 -42.02 F360 106 -42 58 35.7 -57 59 267.59 -40.54 F118 58 100 106 37.9 -46 04 251.80 -41.93 F251 -31 -61 195 37.9 -48 59 255.71 -41.72 F202 55 50 109 | 41.1 -38 18 241.44 -41.20 F304 -72 88 236 2 41.0 -45 11 250.60 -41.41 F251 -2 -13 166 1 41.1 -48 30 255.01 -41.23 F202 84 76 80 2 41.3 -45 03 250.42 -41.36 F251 1 -6 163 1 42.4 -37 21 240.21 -40.87 F304 -59 138 223 323 | 44.0 -24 42 224.18 -38.13 F485 -53 13 217 1
43.1 -61 42 271.96 -38.72 F118 100 -101 64
44.9 -18 01 216.33 -35.80 F551 122 101 42 2
45.0 -33 28 235.25 -39.84 F361 -57 77 221 2
47.4 -44 52 250.17 -40.29 F251 58 3 106 1 | 47.8 -39 47 243.53 -40.03 F304 -2 8 166 1
49.9 -44 40 249.92 -39.84 F251 83 13 81 1
52.8 -34 47 237.25 -38.45 F361 31 7 133 1
51.8 -62 44 27.21 -37.49 F119 -80 -152 244
53.5 -31 56 233.72 -37.80 F361 40 160 124 | 55.2 -36 13 239.15 -38.19 F361 56 -70 108 9 58.3 -30 08 231.80 -36.41 F422 -34 -10 198 15 58.3 -57 41 266.47 -37.65 F119 -48 119 212 28 10.7 -88 44 301.86 -27.93 F001 -62 -14 226 15 60.0 -24 39 225.41 -34.63 F486 -125 14 289 17 | | IABLE 4 | Dec RA (2000) Dec l b Field xeen yeen x11 | 3 55 04 22.6 -63 48 275.49 -40.30 F084 -15 59 179 22.6 13 04 23.7 -46 06 252.10 -44.38 F250 93 -66 71 99 65 20 04 25.4 -36 13 238.28 -44.15 F360 -7 -70 171 96 51 04 25.5 -46 44 252.94 -44.01 F250 108 -99 56 66 31 04 27.2 -46 24 252.44 -43.75 F250 125 -83 39 88 | 11 04 27.8 -36 04 238.13 -43.66 F360 20 -62 144
4 08 04 28.0 -34 01 235.32 -43.42 F360 22 47 142
4 45 04 27.7 -44 38 249.99 -43.78 F250 132 12 32
8 13 04 28.8 -38 06 240.95 -43.61 F303 73 98 91
1 07 04 30.4 -21 00 218.43 -40.03 F551 -64 -58 228 | 0 26 04 29.3 -60 19 270.84 -40.72 FI18 12 -23 152 7 18 04 30.5 -37 11 239.72 -43.21 F360 48 -123 116 8 11 04 30.7 -38 04 256.30 -42.74 F303 93 99 71 9 25 04 31.5 -49 18 256.30 -42.73 F202 -1 34 165 6 43 04 32.5 -36 36 238.97 -42.83 F360 67 -92 97 | 1 35 04 31.2 -61 28 272.19 -40.15 F118 24 -84 140 4 09 04 32.9 -34 02 235.52 -42.41 F360 76 45 88 5 41 04 32.8 -35 34 23.55 -42.60 F360 75 -37 89 241 04 33.0 -42 50 251.57 -42.78 F251 -77 -49 241 | 9 39 04 33.1 -49 32 256.57 -42.43 F202 13 21 151
9 48 04 32.6 -59 41 269.48 -40.50 F118 34 10 130
6 07 04 33.8 -36 00 238.20 -42.45 F360 85 -60 79
5 29 04 34.0 -35 22 237.35 -42.34 F360 87 -46 76
5 49 04 34.0 -35 42 237.80 -42.37 F360 87 -44 77 | 4 03 04 35.1 -33 56 235.47 -41.95 F360 101 50 63
5 45 04 35.7 -35 38 237.76 -42.02 F360 106 -42 58
8 06 04 35.7 -57 59 267.59 -40.54 F118 58 100 106
6 10 04 37.9 -46 04 251.80 -41.93 F251 -31 -61 195
9 05 04 37.9 -48 59 255.71 -41.72 F202 55 50 109 | 8 24 04 41.1 -38 18 241.44 -41.20 F304 -72 88 236 2
5 17 04 41.0 -45 11 250.60 -41.41 F251 -2 -13 166 1
8 36 04 41.1 -48 30 255.01 -41.23 F202 84 76 80 2
5 09 04 41.3 -45 03 250.04 2-41.36 F251 1 -6 163 1
7 27 04 42.4 -37 21 240.21 -40.87 F304 -59 138 223 3 | 4 8 04 44.0 -24 42 224.18 -38.13 F485 -53 13 217 1 48 04 43.1 -61 42 271.96 -38.72 F118 100 -101 64 8 07 04 44.9 -18 01 216.33 -35.80 F551 122 101 42 2 3 3 4 04 45.0 -38 28 255.25 -39.84 F361 -57 77 221 2 5 8 8 04 47.4 -44 52 256.17 -40.29 F251 58 3 106 1 | 4 46 04 47.8 -39 47 243.53 -40.03 F304 -2 8 166 1
4 46 04 49.9 -44 40 249.92 -39.84 F251 83 13 81 1
4 52 04 52.8 -34 47 237.25 -38.45 F361 31 7 133 1
2 5 04 51.8 -62 44 272.91 -37.49 F119 -80 -152 244
2 01 04 53.5 -31 56 233.72 -37.80 F361 40 160 124 | 6 18 04 55.2 -36 13 239.15 -38.19 F361 56 -70 108 9 0 13 04 58.3 -30 08 231.80 -36.41 F422 -34 -10 198 15 7 46 04 58.3 -57 41 266.47 -37.65 F119 -48 119 212 28 8 51 04 10.7 -88 44 301.86 -27.93 F001 -62 -i4 226 15 4 44 04 60.0 -24 39 225.41 -34.63 F486 -125 14 289 17 | | IABLE | RA (2000) Dec l b Field xeen yeen xll | 55 04 22.6 -63 48 275.49 -40.30 F084 -15 59 179 22. 13 04 23.7 -46 06 252.10 -44.38 F250 93 -66 71 99 20 04 25.4 -36 13 238.28 -44.15 F360 -7 -70 171 99 51 04 25.5 -46 44 452.24 -44.01 F250 108 -99 56 63 31 04 27.2 -46 24 252.44 -43.75 F250 125 -83 39 88 | 26.0 -36 11 04 27.8 -36 04 238.13 -43.66 F360 20 -62 144 26.1 -34 08 04 28.0 -34 01 235.32 -43.42 F360 22 47 142 26.2 -44 45 04 27.7 -44 38 249.99 -43.78 F250 132 12 32 27.0 -38 13 04 28.8 -38 80 5 40.95 -43.61 F303 73 98 91 28.2 -21 07 04 30.4 -21 00 218.43 -40.03 F551 -64 -58 228 | 28.5 -60 26 04 29.3 -60 19 270.84 -40.72 F118 12 -23 152 28.7 -37 18 04 30.5 -37 11 239.72 -43.21 F360 48 -123 116 28.9 -38 11 04 30.7 -38 04 240.94 +3.24 F303 93 99 71 30.1 -49 25 04 31.5 -49 18 256.30 -42.73 F202 -1 34 165 30.4 -36 43 04 32.2 -36 36 238.97 -42.83 F360 67 -92 97 | 30.5 -61 35 04 31.2 -61 28 272.19 -40.15 F118 24 -84 140 31.0 -34 09 04 32.9 -34 02 235.52 -42.41 F360 76 45 88 31.0 -35 41 04 32.8 -35 34 237.58 -42.60 F360 75 -37 89 31.1 -32 41 04 33.0 -32 34 233.56 -42.18 F360 79 124 85 31.5 -45 57 04 33.0 -45 62 251.57 -42.79 F251 -77 -49 241 | 31.8 -49 39 04 33.1 -49 32 256.57 -42.43 F202 13 21 151 151 8 -59 48 04 32.6 -59 41 269.88 -40.50 F118 34 10 130 32.0 -36 07 04 33.8 -36 00 238.20 -42.45 F360 85 -60 79 32.2 -35 29 04 34.0 -35 22 237.35 -42.34 F360 87 -46 76 32.2 -35 49 04 34.0 -35 42 237.80 -42.37 F360 87 -44 77 | 45 04 35.1 -33 56 235.47 -41.95 F360 101 50 63
45 04 35.7 -35 38 237.76 -42.02 F360 106 -42 58
06 04 35.7 -57 59 267.59 -40.54 F118 58 100 106
110 04 37.9 -46 04 251.80 -41.93 F251 -31 -61 195
05 04 37.9 -48 59 255.71 -41.72 F202 55 50 109 | 39.4 -38 24 04 41.1 -38 18 241.44 -41.20 F304 -72 88 236 2 39.5 -45 17 04 41.0 -45 11 250.60 -41.41 F251 -2 -13 166 1 39.7 -48 36 04 41.1 -48 30 255.01 -41.23 F202 84 76 80 2 39.8 -45 09 04 441.3 -45 03 250.42 -41.36 F251 1 -6 163 1 40.6 -37 27 04 42.4 -37 21 240.21 -40.87 F304 -59 138 223 323 | 41.9 -24 48 04 44.0 -24 42 224.18 -38.13 F485 -53 13 217 1 42.5 -61 48 04 43.1 -61 42 271.96 -38.72 F118 100 -101 64 42.7 -18 07 04 44.9 -18 01 216.33 -35.80 F551 122 101 42 2 45.1 -33 34 04 45.0 -32 235.25 -59.84 F361 -57 77 221 2 45.9 -44 58 04 47.4 -44 52 250.17 -40.29 F251 58 3 106 1 | 46.1 -39 53 04 47.8 -39 47 243.53 -40.03 F304 -2 8 166 1
48.4 -44 46 04 49.9 -44 40 249.92 -39.84 F251 31 13 81 13
51.0 -34 52 04 52.8 -34 47 237.25 -38.45 F361 31 7 133 1
51.3 -62 49 04 51.8 -62 44 272.19 -77.49 F19 -80 -152 244
51.6 -32 01 04 53.5 -31 56 233.72 -37.80 F361 40 160 124 | 53.4 - 36 18 04 55.2 - 36 13 239.15 - 38.19 F361 56 - 70 108 9 56.4 - 30 13 04 58.3 - 30 08 231.80 - 36.41 F422 - 34 - 10 198 15 57.4 - 57 46 04 58.3 - 57 41 266.47 - 37.65 F119 - 48 119 212 28 57.7 - 88 51 04 10.7 - 88 44 301.86 - 27.93 F001 - 62 - 14 226 15 57.9 - 24 44 04 60.0 - 24 39 225.41 - 34.63 F486 - 125 14 289 17 | | | Ħ | 15.
17.
17. | 17. | 17. | 17.
17.
17.
17. | 17.
17.
16.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 16.
17.
17.
17. | 14.
17.
17.
17. | 17.
17.
17. | |----|-----------------|---|--|---|---|--------------------------------------|--|---|---|--|---| | | ρ | വവവഴന | വവഴവവ | งกฉฉฉ | ഴവവവവ | ωυ4- υν | വവവവ | വവഗവവ | വഴവഴവ | o 22 22 25 | വവവവ | | | ۳ | 84448 | 71101 | 01110 | 0000 | 44000 | | 1,000 | 7 0 0 0 | 00000 | 00400 | | | z | | | | | | 0.0903 | 0.0953 | (0.0446 | | | | | Previous | | | Ω | | | œ | σд | | | | | | Obs | 20
10
10,10 | 22222 | 10
20
10
10 | 00000 | 00000 | 10
10
10
10,10 | 10
10
10
10 | 100000 | 10
10,20
10,10 | 10, 10
10
10
10, 10 | | | m ₁₀ | 15.4
19.5
17.6
18.8 | 18.0
17.8
19.5
18.4 | 18.5
17.1:
18.1
18.7 | 18.8
18.2
18.6
18.6 | 19.6
18.9
16.1
18.6
17.7 | 19.2
18.1
18.5
18.6 | 17.7
17.4:
19.4
16.9 | 16.6
19.1
17.3
19.6
18.4 | 14.6
18.9
19.0
19.3 | 19.0
18.2
18.4
17.8 | | | m ³ | 14.1
19.1
7 16.6
17.8 | 17.4
16.5
18.5
18.1 | 17.9
16.3:
17.6
18.0 | ? 18.1
17.5
17.9
17.7
19.0 | 19.3
18.0
15.4
17.5 | 18.0
16.5
17.5
17.5
15.8 | 16.5
18.2
16.2
17.8 | 15.4
18.5
16.9
19.2
17.3 | 14.1
17.3
17.8
17.4
18.7 | 17.8
17.9
17.3
17.3
17.5 | | | m_1 | 13.0
19.0
16.0
17.0 | 17.0
15.0
18.1
16.7 | 17.4
15.8
17.3
17.0 | 17.0
17.2
17.6
17.6
18.8 | 18.8
15.6
13.6
15.9 | 17.6
16.0
15.9
15.9 | 16.2
14.9
17.3
15.1 | 14.5
16.1
18.8
16.0 | 13.1
17.1
17.0
16.7
17.6 |
17.3
16.6
16.1
16.2
16.8 | | | ٥ | 172
55
77
70
85 | 108
63
65
46
71 | 49
118
64
52: | 63
74
55
40 | 74
75
42
37
32 | 65
62
58
58 | 3 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 33
30
31
55
87 | 85
64
69 | 86:
112
74
81:
30 | | | T_{B-M} | 1
111
111-111
11-111 | 11-1117
1
111
1-11
111 | 111-111
111-111
111-111
11-111 | 1-11?
111
111-111
111 | 111
1-11
11-11 | | 11
11
11-11
11-11 | I
III
III
I-II | 11.
11.
11.
11. | | | | T_A | KKKK
H | пиня | RR ^R RR | R I E I | H H H H | RRITRR | RRRRI | ж н н ж ж | R R I R I I R | IRRII I | | | Abell | 3301
3302
3303
3304 | 3306
3307
3308
3309
3310 | 3311
3312
3313
3314
3315 | 3316
3317
3318
3319
3320 | 3321
3322
3323
3324
3324 | 3326
3327
3328
3329
3330 | 3331
3332
3333
3334
3335 | 3336
3337
3338
3339
340 | 3341
3342
3343
3344 | 3346
3347
3348
3349 | | 11 | 1 | | | | | | | | | | | | | xn yn | 29 229
71 212
68 93
38 113 | 57 185
35 182
33 203
11 213 | 222 1
923 1 1
92 1 1 1 | 116 280
114 207
77 245
177 159
91 78 | 1427 | 78848 | - 21 | 466 - | 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 57 3
01 31
95 29
36 3 | | | Ycen | 65
48 1
-71 1
-51 2 | 21
18
19
19
19
10
20
20 | 4.0.0000 | 116 1
43 1
81 1
-5 1 | 40448 | 11
143
13 1 | 40004 | 90000 | 04470 | 0 0 0 0 0 0 | | | xcen | 135
-7
-4
126
-123 | 29
31
153
-107 | 22
42 -
-101
-39 | 48
50
87
-13 | -45
6
-149
-123 | 97
1
39
46 | -138
29 -
16
91
-26 | - 82
- 79
- 90
- 15 | 17
21
-107 - | -93
-37
-72
-6 | | | Field | F304
F203
F203
F361 | F203
F422
F422
F361 | F203
F158
F362
F252 | F203
F203
F422
F486 | F362
F252
F253
F253 | F203
F252
F252
F252 | 00040 | F205
F204
F204
F487 | F423
F2533
F2533
F2533
F2553 | F253
F204
F204
F253 | | | 9 | -37.41
-37.98
-37.86
-36.83 | -37.68
-35.14
-35.03
-35.06 | . 92.7.4 | 9,9,9,6,6 | າ ນຳ ຕຳ | -36.01
-34.95
-35.36 | 6.48
9.88
9.67 | -33.75
-34.48
-34.34
-29.98 | 331.0 | | | | - | 242
255.42
258.52
238.34
243.12 | 256.12
231.48
231.04
236.71
235.88 | 56.06
65.40
34.86
51.04 | 253.89
255.60
230.43
226.57
264.80 | 39.
31.
32. | 256.32
243.44
247.26
250.23 | 57.1
47.2
99.6
67.1 | 245.69
255.76
254.66
230.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3.3.3.6
6.2.2.5 | | | 10) Dec | -38 40
-51 16
-35 50
-39 12 | -49 31
-29 35
-29 12
-33 56
-33 13 | 0 0 0 0 D | -47 45
-49 07
-28 25
-25 02
-56 30 | ω τυ εκ 4 Ο | -49 41
-42 18
-44 43
03 | 21460 | -40 49
-49 11
-27 00 | 331 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | -47 21
-47 08
-47 37
-47 23
-49 55 | | | RA (2000) | 05 00.8
05 00.7
05 01.0
05 01.7 | 05 02.5
05 03.7
05 03.9
05 03.8 | 5 04.
5 03.
5 05.
5 05. | 05 06.9
05 07.3
05 08.7
05 09.1
05 08.0 | | 05 12.8
05 13.9
05 13.9
05 14.7 | 5 15.
5 16.
5 16.
5 18. | 05 21.5
05 22.1
05 22.6
05 24.8
05 25.4 | 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | Dec | -38 45
-49 07
-51 21
-35 55 | -49 36
-29 40
-39 17
-34 01 | 0 7 4 R 0 | -47 49
-49 11
-28 29
-25 06 | ω το σ + ο | -49 45
-39 13
-42 22
-44 47 | -50 24
-42 16
-86 46
-58 36 | -40 52
-49 14
-48 19
-27 03 | 70707 | -47 24
-47 11
-47 40
-47 26
-49 58 | | | RA (1950) | 04 59.1 -
04 59.4 -
04 59.8 -
04 59.9 -
05 00.2 - | 5 01.2
5 01.8
5 01.9
5 02.0 | 5 02.9
5 03.0
5 04.3
5 05.3 | 5 05.5
5 06.0
5 06.7
5 07.0 | 1 H 4 8 B | 5 11.5 12.2 13.2 13.2 | 5 14.0
5 15.0
5 16.0
5 17.2 | 5 2 2 3 3 5 2 3 5 2 3 5 5 5 5 5 5 5 5 5 | 5 24.0
5 24.5
5 24.5
5 24.5
5 24.5 | 5 2 2 5 2 5 2 5 2 5 2 5 2 5 2 6 2 5 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | Abell | 3301 0
3302 0
3303 0
3304 0 | 3306 0
3307 0
3308 0
3309 0 | 111
122
144
00
15 | 3316 0
3317 0
3318 0
3319 0 | 1 2 E 4 E | 3326
3327
3328
0328
03329 | 12 to 4 to | 3336
3337
3338
0339 | 3421
3421
3432
3443
3443
0 | 3346
3347
3348
3349
0 | | | 8 | 16.2
17.2
17.3
15.3 | 16.0
17.3
17.0
17.1 | 17. | 17.
15.
16.
16. | 17.
16.
17.
16. | 15.
17.
17.
16. | 14.
17.
17. | 7777 | 16.
17.
17. | 17.
16.
17.
17. | |-----|--|--|--|--|--|--|--|---|--|--|--| | | Ω | 40000 | ຈາດເດເດ | വവവവ | ის 4 იი | ស 4 ល4ល | 60044 | លលលលេខ | លេខបាល់ប | 46664 | വവവവ | | | R. | 01000 | 00040 | 00644 | 00000 | 30808 | 0 6 4 4 0 | 44800 | | 0 4 4 4 4 | 40404 | | | ы | | | | | | 0.0455 | 0.0282 | 0.0248 | 0.0531 | | | | Previous | | |
ВО | | | ਹ | ਰ | ðop | 8 BDO | | | | Obs | 10, 1C
20, 20
20 | 10000 | 10
10
20,10
30 | 99999 | 99999 | 99999 | 10
10, 10
10, 10 | 10
10
10,10 | 10
10
10
20,20 | 10,10
10,10
10 | | | m ₁₀ | 16.1
18.9
19.2
15.3 | 15.9
19.4
17.2
17.6 | 17.6
17.1
17.7
18.4
16.6 | 19.2
15.6
16.1
19.3 | 19.2
16.2
19.3
16.1 | 15.3
19.3
18.9
16.3 | 14.7
18.6
18.2:
19.3 | 19.3
19.1
19.5
14.5: | 2 16.1
15.5
19.3
19.0
15.9 | 18.6
16.9
19.2
18.6 | | | m³ | 15.8
17.9
18.4
14.1: | 15.2
18.6
16.1
16.2 | 16.8
16.1
16.8
17.3 | 17.8
14.7
15.6
17.6 | 18.9
15.7
18.7
14.6 | 15.0
18.0
15.9
14.4 | 14.4
16.8
17.5
18.8 | : 18.3
18.3
13.4
14.6 | 7 15.0
15.3
18.5
18.4
7 15.2 | 4* 18.0
4 15.6
2 17.9
6 18.1
0? 17.8 | | | m | 15.3
16.9
17.4
12.5 | 14.7
18.0
15.1
16.5
15.8 | 16.3
15.4
16.19
15.15 | 16.0
14.4
15.1
16.9 | 18.6
14.4
18.1
13.5 | 13.0
17.2
16.8
15.1 | 13.7
14.5
16.7
18.4 | 17.9
17.1
18.1
13.0 | 13.0 | 15.4
15.4
17.2
16.6 | | | S | 114
83
39
54: | 30
86
78
85 | 48
30
139
75
68 | 94
33
4
8
8
8 | 123
35
151
34
145 | 42
140
78
115 | 69
88
4
4
6
8
8
9 | 74
72
44
35 | 40
77
55
60
54 | 62
33
59
59 | | | T_{B-M} | | HHHHH | | 11-11
1-11
11-11
11-11 | 111
111
111
111-111 | 11-11 | iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | | | 111112 | | | T_A | R II II I | NI NI | RI RI S | 11211 | - H H H H | HHRRR | HHHAH | ннняй | RHIRR | RI:
I I RI:
RI | | | Abell | 3351
3352
3353
3354 | 3356
3357
3358
3359
3360 | 3361
3362
3363
3364
3365 | 3366
3367
3368
3368
3370 | 3371
3372
3373
3374
3375 | 3376
3377
3378
3379
3380 | 3381
3382
3384
3384 | 3386
3387
3388
3389 | 3391
3392
3393
3394 | 3396
3397
3398
3400 | | _ | | | | | | | | | | | | | 1 [| I | | | | | | | | | | | | | na nx | 247 251
158 295
54 217
39 244 | | | 4000 | | 2334 | | | 13200 | 195 74
178 46
173 296
112 247
97 110 | | | 1 1 | | 213
7 203
4 167
8 164
6 138 | 80
178
42
159
48 | 80
225 1
211 2
111 2 | 204
232
199
194 | 214
214
133
121
159 | 76
114
288
241 | 278
278
269
250 | 251
251
252
232
240 | 195 7
3 178 4
2 173 29
3 112 24
4 97 11 | | | n _x | 7 247
1 158
3 54
0 39 | 9 99 213
167 203
3 -34 167
0 -18 164
6 86 138 | 80
178
42
159
48 | 84 -68 80
61 30 225 1
47 133 211 2
53 52 111 2
80 145 244 3 | 92 204
13 232
101 199
-65 194 | 0 -1 214
1 -38 133
3 -14 121
8 28 159 | 88 77 76
50 119 114
124 60 288
-77 113 241
112 -108 276 | 114 128 278 79 -32 85 1105 97 269 -86 -124 173 175 -86 -86 -124 173 173 | 70 251
-24 152
115 232
-116 70
29 240 | 195 7
178 4
173 29
112 24
97 11 | | | Ycen XII | 3 87 247
6 131 158
5 80 39
5 143 199 | -49 99 213
-39 167 203
-3 -34 167
0 -18 164
26 86 138 | 204 84 98 80
120 -14 -91 178
204 122 108 42
424 5 -100 159
554 116 -104 48 | 84 -68 80
3 -61 30 225 1
3 -47 133 211 2
1 53 52 111 2
1 -80 145 244 3 | 555 -40 92 204
364 -68 13 232
555 -35 101 199
555 -30 -65 194
555 19 57 148 | 307 -50 -1 214
355 31 -38 133
364 43 -14 121
256 48 28 1159
256 48 28 1159 | 364 88 77 76
304 88 77 76
307 50 119 114
556 -124 60 288
556 -77 113 241
206 -112 -108 274 | 55 -114 128 278
89 79 -32 85
55 -105 97 269
87 -86 3 250
87 -9 -124 173 | 161 -87 70 251
365 12 -24 152
087 -68 115 232
565 94 -116 70 | -31 -90 195 7
-14 -118 178 4
-9 132 173 29
52 83 112 24
67 -54 97 11 | | | xcen Ycen XII | 31.38 F306 -83 87 247
32.68 F204 6 131 158
28.74 F423 110 53 54
28.34 F423 125 80 39 | 30.72 F306 -49 99 213 30.25 F306 -3 167 203 167 203 167 203 167 203 167 203 167 203 17 F253 26 86 138 164 | 1.30 F204 84 98 80
1.96 F120 -14 -91 178
0.57 F204 122 108 42
6.66 F424 5 -100 159
3.28 F554 116 -104 48 | 8.90 F306 84 -68 80
3.93 F488 -61 30 225 1
3.00 F488 -47 133 211 2
5.32 F364 -80 145 244 3 | 0.18 FS55 -40 92 204
5.84 F354 -40 32 204
0.03 F555 -35 101 199
1.15 FS55 -30 -65 194
9.41 FF55 -10 57 194 | 26.29 F307 -50 -1 214
24.02 F364 43 -14 121
25.85 F254 5 147 159
25.27 F305 48 28 115 | 2.70 F364 88 77 76
3.93 F307 50 119 114
7.26 F556 -124 60 288
6.08 F206 -17 113 241
6.08 F206 -17 -108 241 | 3.15 F255 -114 128 278 7.31 F429 -129 -32 85 1.14 F255 -105 97 269 7.50 F087 -86 3 250 98 F365 -10-4 173 | 5.16 F161 -87 70 251
5.83 F087 -68 115 232
4.89 F556 94 -116 70
5.13 F161 -76 29 240 | 24.35 F206 -31 -90 195 7
24.35 F206 -14 -118 178 4
25.68 F087 -9 132 173 29
22.20 F206 52 83 112 24
20.91 F255 67 -54 97 11 | | | Field xcen ycen x11 | 3.23 -31.38 F306 -83 87 247
3.98 -32.68 F204 6 131 158
2.82 -28.74 F423 110 53 54
5.55 -29.38 F363 -35 143 199 | 3.12 -30.72 F336 -49 99 213
1.75 -30.25 F336 -49 167 203
4.36 -24.97 F554 -3 -34 167
1.46 -31.50 F253 0 -18 164
9.34 -30.71 F253 26 86 138 | 4.87 -31.30 F204 84 98 80
0.78 -31.96 F120 -14 -91 178
4.73 -30.57 F204 122 108 42
5.55 -26.66 F424 5 -100 159
6.62 -23.28 F554 16 -104 48 | 7.23 -28.90 F306 84 -68 80 7.31 -23.93 F488 -61 30 225 1 7.44 -23.00 F488 -47 133 211 2 7.55 -24.97 F424 -53 52 111 2 7.95 -25.32 F424 -80 145 244 3 | 3.76 -20.18 F555 -40 92 204
3.60 -25.84 F364 -8 13 232
3.64 -20.03 F555 -35 101 199
6.75 -21.15 F555 -30 -65 194
6.77 -10.41 F655 -10 -65 194 | 6.53 - 26.29 F307 - 50 - 1 214
6.70 - 19.91 F555 31 - 38 133
1.80 - 24.02 F364 43 - 14 121
2.3 - 25.85 F254 5 147 159
7.13 - 27.27 F206 48 28 116 | 0.30 -22.70 F364 88 77 76
4.67 -23.93 F307 50 119 114
5.78 -17.26 F556 -124 60 288
5.73 -16.09 F556 -77 113 241
0.27 -26.08 F206 -112 -108 | 0.44 -23.15 F255 -114 128 278 3.39 -17.31 F489 9 -32 85 1.07 -23.14 F255 -105 97 269 47 0 -27.50 F087 -86 3 250 5.19 -20.98 F365 -10 -124 173 | .37 -25.16 F161 -87 70 251
.45 -19.97 F365 12 -24 152
.45 -26.83 F087 -68 115 232
.48 -26.13 F161 -76 29 240 | 7.91 -21.64 F308 -31 -90 195 7
1.94 -24.35 F206 -14 -118 178 4
2.35 -25.68 F087 -9 132 173 29
7.35 -22.20 F206 52 83 112 24
5.02 -20.91 F255 67 -54 97 11 | | | l b Field xcen ycen x11 | .23 -31.38 F306 -83 87 247
.98 -32.68 F204 6 131 158
.82 -28.74 F423 110 53 54
.55 -29.38 F363 -35 143 199 | 243.12 -30.72 F306 -49 99 213 241.75 -30.25 F306 -39 167 203 224.36 -24.97 F554 -3 -34 167 259.34 -30.71 F253 26 86 138 | 2 254.87 -31.30 F204 84 98 80
2 270.78 -31.96 F120 14 -91 178
6 254.73 -30.57 F204 122 108 42
3 236.95 -26.66 F424 5 -100 159
6 226.62 -23.28 F554 116 -104 48 | 2 247.23 - 28.90 F306 84 - 68 80 229.31 - 23.93 F488 - 61 30 225 1 2 227.44 - 23.00 F488 - 47 133 211 2 3 234.25 - 24.97 F424 83 52 111 2 8 2 37.92 - 25.32 F364 - 80 145 244 3 | 223.76 -20.18 F555 -40 92 204 240.60 -25.84 F364 -68 13 232 223.64 -20.03 F555 -35 101 199 226.75 -21.15 F555 -30 -65 194 224.87 -19.41 F555 -30 -65 194 | 246.23 -26.29 F307 -50 -1 214 226.70 -19.91 F855 31 -38 133 241.80 -24.02 F364 43 -14 121 249.23 -25.73 -25.73 -25.73 -27.27 -27 | 5 240.30 -22.70 F364 88 77 76 7 244.67 -23.93 F307 50 119 114 225.78 -17.26 F556 -124 60 288 7 7 255.23 -16.09 F556 -77 113 241 241 241 241 241 241 241 241 241 241 | 250.44 -23.15 F255 -114 128 278 233.39 -17.31 F255 -105 97 -32 85 251.07 -23.14 F255 -105 97 269 274.570 -27.50 F087 -86 3 250 245.19 -20.98 F3.65 -19 -124 173 | 262.37 -25.16 F161 -87 70 251 243.45 -19.97 F365 12 -24 152 272.45 -26.83 F087 -68 115 232 230.62 -14.89 F556 94 -116 70 263.18 -25.13 F161 -76 29 240 | 91 -21.64 F308 -31 -90 195 7
.94 -24.35 F206 -14 -118 178 4 .35 -25.68 F087 -9 132 173 29 .35 -22.20 F206 52 83 112 24 .02 -20.91 F255 67 -54 97 11 | | | Dec 1 b Field xcen ycen x11 | -38 21 243.23 -31.38 F306 -83 87 247 -47 33 253.98 -32.68 F204 6 131 158 -28 58 232.82 -28.74 F423 110 53 54 -28 30 232.38 -28.74 F423 125 80 39 -32 18 236.55 -29.38 F353 -35 143 199 | -36 80 241.75 -30.72 F306 -49 99 213 -36 53 241.75 -30.25 F306 -49 99 213 -20 37 224.36 -24.97 F554 -3 -34 167 -45 18 251.46 -31.50 F253 0 -18 164 -43 23 249.34 -30.71 F253 26 86 138 | -48 09 254.87 -31.30 F204 84 98 80 -61 42 270.78 -31.96 F120 -14 -91 178 -47 56 254.73 -30.57 F204 122 108 42 -31 53 236.55 -26.6 F42 4 5 -100 159 -23.28 F554 16 -104 48 | -41 15 247.23 -28.90 F306 84 -68 80 -24 28 229.31 -23.93 F488 -61 30 225 1 -22 32 227.44 -23.00 F488 -47 133 211 2 -29 13 237.92 -25.32 F484 53 52 111 2 -29 13 237.92 -25.32 F484 53 44 53 244 3 | -18 18 223.76 -20.18 P555 -40 92 204 -34 47 240.60 -25.84 P364 -68 13 232 -18 08 223.64 -20.03 P555 -35 101 199 -21 15 226.75 -21 15 P555 -36 194 -18 57 224.87 -19.41 P555 -30 -65 194 | -40 02 246.53 -266.29 F307 -50 -1 214
-40 45 226.70 -19.91 F555 31 -38 133
-35 18 241.80 -24.02 F364 43 -14 121
-42 17 249.23 -25.85 F254 5 147 159
-49 29 257.13 -27.27 | -33 35 240.30 -22.70 F364 88 77 76 -37 47 244.67 -23.93 F307 50 119 114 -18 54 225.78 -11.26 F556 -124 60 288 -17 25.01 26.27 -26.08 F206 -112 -108 276 | -42 37 23.39 -17.31 F255 -114 128 278 -25 37 23.39 -17.31 F8489 79 -32 85 -43 11 251.07 -23.14 F255 -105 97 269 -64 57 274.70 -27.50 F087 -86 3 250 -37 20 245.19 -20.98 F365 -10 -124 173 | -53 40 262.37 -25.16 F161 -87 70 251 -35 28 243.45 -19.97 F365 12 -24 152 -62 53 272.65 -19.97 F365 12 -24 152 -62 53 272.62 -14.89 F556 94 -116 70 -54 23 263.18 -25.13 F161 -76 29 240 | -41 44 249.91 -21.64 F308 -31 -90 195 7 -52 14 260.94 -24.35 F206 -14 -118 178 4 -62 37 272.35 -25.68 F087 -9 132 173 29 -48 29 257.35 -22.20 F206 52 83 112 24 -46 02 255.02 -20.91 F255 67 -54 97 11 | | | A (2000) Dec l b Field xcen yeen x11 | 38 21 243.23 -31.38 F306 -83 87 247 33 253.98 -32.68 F204 6 131 158 28 58 233.82 -28.74 F423 110 53 54 28 30 232.38 -28.34 F423 125 80 39 32 18 236.55 -29.38 F363 -35 143 199 | 5.0 -36 02 243.12 -30.72 F336 -49 99 213 6.0 -36 53 241.75 -30.25 F336 -49 167 203 8.2 -20 37 224.36 -24.97 F554 -3 -34 167 7.5 -45 18 251.46 -31.56 F253 0 -18 164 0.3 -43 23 249.34 -30.71 F253 26 86 138 | 0.9 -48 09 254.87 -31.30 F204 84 98 80
0.9 -61 42 270.78 -31.96 F120 -14 -91 178
5.1 -47 56 254.73 -30.57 F204 122 108 42
7.6 -31 53 236.25 -26.66 F424 5 -100 159
8.2 -21 56 226.62 -23.28 F554 116 -104 48 | 8.1 -41 15 247.23 -28.90 F306 84 -68 80 9.4 -24 28 229.31 -23.93 F488 -61 30 225 1 0.5 -22 32 227.44 -23.00 F488 -47 133 211 2 11.6 -29 03 234.25 -24.57 F424 53 52 111 2 4.9 -32 19 237.92 -25.32 F354 -80 145 244 3 | 6.2 -18 18 223.76 -20.18 FS55 -40 92 204 5.8 -34 47 240.60 -25.84 F364 -68 13 232 6.6 -18 08 223.64 -20.03 F555 -35 101 199 6.9 -21 15 226.75 -21.15 F555 -30 -65 194 6.9 -21 18 77 224.87 -19.41 F855 -10 -65 194 | 0.7 -40 02 246.53 -26.29 F307 -50 -1 214
1.7 -42 05 226.70 -19.91 F555 31 -38 133
5.9 -35 18 241.80 -24.02 F364 43 -14 121
6.1 -42 17 249.23 -25.85 F254 5 147 159
7.0 -49 29 257.13 -27.27 F205 48 28 115 | 9.9 -33 35 240.30 -22.70 F364 88 77 76 0.1 -37 47 244.67 -23.93 F307 50 119 114 0.7 -18 54 225.78 -17.26 F556 -124 60 288 4.3 -1.7 57 22.03 -16.09 F556 -77 113 241 7.7 -22.01 260.27 -26.08 F206 -112 -108 276 | 1.8 -42 38 250.44 -23.15 F255 -114 128 278 2.7 -25 37 233.39 -17.31 F489 79 -32 85 2.8 -43 11 251.07 -23.14 F255 -105 97 269 11.8 -64 57 274.70 -27.50 F087 -86 3 250 5.0 -37 20 245.19 -20.98 F365 -9 -124 173 | 6.3 -53 40 262.37 -25.16 F161 -87 70 251 7.1 -35 28 243.45 -19.97 F365 12 -24 152 5.7 -62 53 272.45 -26.83 F087 -68 115 232 7.9 -4.4.89 F556 94 -116 70 7.5 -54 23 263.18 -25.13 F161 -76 29 240 | 44 249.91 -21.64 F308 -31 -90 195 7 14 260.94 -24.35 F206 -14 -118 178 4 37 272.35 -25.68 F087 -9 132 173 29 257.35 -22.20 F206 52 83 112 24 02 255.02 -20.91 F255 67 -54 97 11 | | | (2000) Dec 1 b Field xcen ycen x11 | 05 31.8 -38 21 243.23 -31.38 F306 -83 87 247 05 32.3 -47 33 253.98 -32.68 F204 6 131 158 05 33.4 -28 58 232.82 -28.74 F423 110 53 54 05 34.7 -28 30 232.38 -28.34 F423 125 80 39 05 34.8 -32 18 236.55 -29.38 F363 -35 143 199 | 05 35.0 -38 08 243.12 -30.72 F306 -49 99 213 05 36.0 -36 53 241.75 -30.25 F306 -49 167 203 05 38.2 -20 37 224.36 -24.97 F554 -3 -34 167 05 33.5 -45 18 251.46 -31.50 F253 0 -18 164 05 40.3 -43 23 249.34 -30.71 F253 26 86 138 | 05 40.9 -48 09 254.87 -31.30 F204 84 98 80 05 40.9 -61 42 270.78 -31.96 F120 -14 -91 178 05 45.1 -47 56 254.73 -30.57 F204 122 108 42 05 44.7 6 -31 53 236.59 5-26.66 F424 5 -100 159 05 48.2 -21 56 226.62 -23.28 F554 16 -104 48 | 05 48.1 -41 15 247.23 -28.90 F306 84 -68 80 05 49.4 -24 28 229.31 -23.93 F488 -61 30 225 1 05 50.5 -22 32 227.44 -23.00 F488 -47 133 211 2 05 51.6 -29 03 234.25 -24.57 F424 53 52 111 2 05 54.9 -73 12 19 27.92 -25.32 F334 -80 145 244 3 | 05 56.2 -18 18 223.76 -20.18 F555 -40 92 204 05 55.8 -34 47 240.60 -25.84 F364 -68 13 232 05 56.6 -18 08 223.64 -20.03 F555 -35 101 199 05 56.9 -21 15 226.75 -21.15 F555 -30 -65 194 06 00.9 -18 57 22.4 87 -19.41 FF55 -19 57 145 | 06 07.0 -42 29 226.29 F307 -50 -1 214 06 05.9 -35 18 241.80 -24.02 F364 43 -14 121 06 07.0 -42 29 257.13 -25.85 F254 5 147 159 06 07.0 -42 29 257.13 -27.27 F205 48 29 115 | 06 09.9 -33 35 240.30 -22.70 F364 88 77 76 06 10.1 -37 47 244.67 -23.93 F307 50 119 114 06 10.7 -18 54 225.78 -17.26 F556 -124 60 288 06 11.3 -17 57 225.78 -15.09 F556 -77 113 241 06 17.7 -52 01 250.27 -26.08 F206 -112 -108 276 | 6 21.8 -42 38 250.44 -23.15 F255 -114 128 278 6 22.7 -25 37 233.39 -17.31 F489 79 -32 85 6 22.8 -43 11 251.07 -23.14 F255 -105 97 269 6 21.8 -64 57 274.70 -27.56 F087 -86 3 250 6 25.0 -37 20 245.19 -20.98 F365 -9 -124 173 | 6 26.3 -53 40 262.37 -25.16 F161 -87 70 251 6 27.1 -35 28 243.45 -19.97 F365 12 -24 152 6 25.7 -62 53 272.45 -26.83 F087 -68 115 232 6 27.5 -54 23 263.18 -25.13 F161 -76 29 240 | 8.9 -41 44 249.91 -21.64 F308 -31 -90 195 7
9.6 -52 14 260.94 -24.35 F206 -14 -118 178 4
5.5 -62 37 272.35 -25.68 F087 -9 132 173 29
7.3 -48 29 257.35 -22.20 F206 52 83 112 24
0.8 -46 02 255.02 -20.91 F255 67 -54 97 11 | | | ec RA (2000) Dec l b Field xeen yeen x11 | 8 24 05 31.8 -38 21 243.23 -31.38 F306 -83 87 247 7 36 05 32.3 -47 33 253.98 -32.68 F204 6 131 158 9 01 05 33.4 -28 58 232.82 -28.74 F423 110 53 54 8 32 05 34.7 -28 38 23.55 -28.34 F423 125 80 39 2 20 05 34.8 -32 18 236.55 -29.38 F353 -35 143 199 | 8 10 05 35.0 -38 02 243.12 -30.72 F306 -49 99 213 6 55 05 36.0 -36 53 241.75 -30.25 F306 -49 99 213 0 39 05 38.2 -20 37 224.36 -24.97 F554 -3 -34 167 52 0 05 37.5 -45 18 251.46 -31.50 F253 0 -18 164 53 25 05 40.3 -43 23 249.34 -30.71 F253 26 86 138 | 11 05 40.9 -48 09 254.87 -31.30 F204 84 98 80
1 44 05 40.9 -61 42 270.78 -31.96 F120 -14 -91 178
7 58 05 45.1 -47 56 254.73 -30.57 F204 122 108 42
154 05 47.6 -31 53 236.55 -26.66 F424 5 -100 159
1 57 05 48.2 -21 56 226.62 -23.28 F8554 116 -104 48 | 1 6 05 48.1 -41 15 247.23 -28.90 F366 84 -68 80 22 31 -23.93 F488 -61 30 225 12 33 05 50.5 -22 32 227.44 -23.00 F488 -47 133 211 2 9 04 05 51.6 -29 03 234.25 -24.45 F484 53 112 24 13 211 2 2 2 2 0 05 54.9 -32 19 237.92 -25.32 F364 -80 145 244 3 | 19 05 56.2 -18 18 223.76 -20.18 P555 -40 92 204 4 48 05 55.8 -34 47 240.60 -25.84 P364 -68 13 232 8 09 05 56.6 -18 08 223.64 -20.03 P555 -35 101 199 11 6 05 56.9 -21 15 226.75 -21.15 P555 -30 -65 194 8 58 06 00.9 -18 57 224.87 -19.41 PF55 -19 -65 194 | 0.3 06 00.7 -40 02 246.53 -26.29 F307 -50 -1 214
0.45 06 01.7 -20 45 226.70 -19.91 F555 31 -38 133
0.18 06 05.9 -35 18 241.80 -24.02 F364 43 -14 121
0.17 06 06.1 -42 17 249.23 -25.85 F254 5 147 159
0.29 06 07.0 -49 29 257.13 -27.27 F255 48 28 147 | 3 55 06 09.9 -33 35 240.30 -22.70 F364 88 77 76 74 75 75 75 76 76 10.1 -37 47 244.67 -23.93 F307 50 119 114 114 114 114 114 114 114 114 114 | 2 7 06 21.8 -42 38 250.44 -23.15 F255 -114 128 278 5 36 06 22.7 -25 37 233.39 -17.31 F489 79 -32 85 10 06 22.8 -43 11 251.07 -23.14 F255 -105 97 269 7 56 06 22.8 -43 12 251.07 -23.14 F255 -105 97 269 7 19 06 21.8 -64 57 274.70 -27.50 F087 -86 3 250 7 19 06 25.0 -37 20 245.19 -20.98 F345 -9 -124 173 | 39 06 26.3 -53 40 262.37 -25.16 F161 -87 70 251 27 06 27.1 -35 28 243.45 -19.97 F365 12 -24 152 12 06 27.7 -62 53 272.45 -26.83 F087 -68 115 232 12 06 27.5 -54 23 263.18 -25.13 F161 -76 29 240 | 42 06 28.9 -41 44 249.91 -21.64 F308 -31 -90 195 7 12 06 29.6 -52 14 260.94 -24.35 F206 -14 -118 178 4 35 06 35.5 -62 37 272.35 -25.68 F087 -9 132 173 29 27 06 37.3 -48 29 257.35 -22.20 F206 52 83 112 24 00 06 40.8 -46 02 255.02 -20.91 F255 67 -54 97 11 | | | Dec RA (2000) Dec l b Field x _{cen} y _{cen} x _{ll} | 1 -38 24 05 31.8 -38 21 243.23 -31.38 F306 -83 87 247 9 -47 36 05 32.3 -47 33 253.98 -32.68 F204 6 131 158 5 -29 01 05 33.4 -28 58 232.82 -28.74 F423 110 53 54 -28 32 05 34.7 -28 30 232.38 -28.34 F423 125 80 39 9 -32 20 05 34.8 -32 18 236.55 -29.38 F353 -35 143 199 | 3 -38 10 05 35.0 -38 08 243.12 -30.72 F306 -49 99 213 -36 55 05 36.0 -36 53 241.75 -30.25 F306 -49 99 213 1 -20 39 05 38.2 -20 37 224.36 -24.97 F554 -3 -34 167 1 -45 20 05 37.5 -48 18 251.46 -31.50 F253 0 -18 164 8 -43 25 05 40.3 4 43 23 249.34 -30.71 F253 26 86 138 | . 6 -48 11 05 40.9 -48 09 254.87 -31.30 F204 84 98 80 46 144 05 40.9 -61 42 270.78 -31.96 F120 -14 -91 178 8 -47 58 05 45.1 -47 56 254.73 -30.57 F204 122 108 42 7 -31 54 05 47.6 -31 32 256.56 F424 5 -100 159 12 157 05 48.2 -21 56 226.62 -23.28 F554 116 -104 48 | 5 -41 16 05 48.1 -41 15 247.23 -28.90 F306 84 -68 80 3 3 -24 29 05 49.4 -24 28 229.31 -23.93 F488 -61 30 225 1 4 -22 33 05 50.5 -22 32 227.44 -23.00 F488 -47 133 211 2 7 -29 04 05 51.6 -29 33 234.25 -24.97 F424 53 52 111 2 0 -32 20 05 54.9 -32 19 237.92 -25.32 F364 -80 145 244 3 | 0 -18 19 05 56.2 -18 18 223.76 -20.18 F555 -40 92 204 0 -34 48 05 55.8 -34 47 240.60
-25.84 F736 -68 13 232 44 -18 09 05 56.6 -18 08 223.64 -20.03 F555 -35 101 199 8 -21 16 05 56.9 -21 15 226.75 -21.15 F555 -30 -65 194 7 -18 58 06 00.9 -18 57 224.87 -19.41 F855 -19 67 14 | 1 -40 03 06 00.7 -40 02 246.53 -26.29 F307 -50 -1 214 0.0 0.0 0.0 0.0 0.0 246.53 -26.29 F307 -50 -1 214 121 0.0 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.0 0.0 | 1 -33 35 06 09.9 -33 35 240.30 -22.70 F364 88 77 76 4 -37 47 06 10.1 -37 47 244.67 -23.93 F307 50 119 114 55 -128 54 06 10.7 -18 54 225.78 F356 -124 60 288 1 -17 57 06 11.3 -17 57 25.23 -16.09 F556 -77 113 241 6 -25.00 06 17.7 -52.01 260.27 -26.08 F206 -112 -108 276 | 3 -42 37 06 21.8 -42 38 250.44 -23.15 F255 -114 128 278 77 -25 36 06 22.7 -25 37 233.39 -17.31 F489 79 -32 85 3 -43 10 06 22.8 -43 11 251.07 -23.14 F255 -105 97 269 6 -64 85 06 21.8 -64 57 274.70 -27.50 F087 -86 3 250 3 -37 19 06 25.0 -37 20 245.19 -20.98 F376 -9 -124 173 | 2 -53 39 06 26.3 -53 40 262.37 -25.16 F161 -87 70 251 3 -35 27 06 27.1 -35 28 243.45 -19.97 F365 12 -24 152 152 25 25 06 25.7 -62 53 272.45 -26.83 F087 -68 115 232 8 -22 12 06 27.9 -22 13 230.62 -14.89 F556 94 -116 70 5 -54 22 06 27.5 -54 23 263.18 -25.13 F161 -76 29 240 | 3 -41 42 06 28.9 -41 44 249.91 -21.64 F308 -31 -90 195 7 5 -52 12 06 29.6 -52 14 260.94 -24.35 F206 -14 -118 178 4 1 -62 35 06 35.5 -62 37 272.35 -25.68 F087 -9 132 173 29 0 -48 27 06 37.3 -48 29 257.35 -22.20 F206 52 83 112 24 4 -46 00 06 40.8 -46 02 255.02 -20.91 F255 67 -54 97 11 | | | ec RA (2000) Dec l b Field xeen yeen x11 | 30.1 -38 24 05 31.8 -38 21 243.23 -31.38 F306 -83 87 247 30.9 -47 36 05 32.3 -47 33 253.98 -32.68 F204 6 131 158 31.5 -29 01 05 33.4 -28 58 232.82 -28.74 F423 110 53 54 32.7 -28 32 05 34.7 -28 30 232.38 -28.34 F423 125 80 39 32.9 -32 20 05 34.8 -32 18 236.55 -29.38 F363 -35 143 199 | 33.3 -38 10 05 35.0 -38 02 243.12 -30.72 F336 -49 99 213 34.3 -36 55 05 36.0 -36 53 241.75 -30.25 F336 -49 99 213 36.1 -20 39 05 38.2 -20 37 224.36 -24.97 F554 -3 -34 167 36.1 -45 20 05 37.5 -45 18 251.46 -31.56 F253 0 -18 164 31.35 F253 26 86 138 | 39.6 -48 11 05 40.9 -48 09 254.87 -31.30 F204 84 98 80 40.4 -61 44 05 40.9 -61 42 270.78 -31.96 F120 -14 -91 178 43.8 -47 58 05 45.1 -47 56 254.73 -30.57 F204 122 108 42 45.7 -31 54 05 47.6 -31 53 236.25 -26.6 F424 5 -100 159 46.1 -21 57 05 48.2 -21 56 226.62 -23.28 F554 116 -104 48 | 46.5 -41 16 05 48.1 -41 15 247.23 -28.90 F306 84 -68 80 47.3 -24 29 05 49.4 -24 28 229.31 -23.93 F488 -61 30 225 1 48.4 -22 33 05 50.5 -22 32 227.44 -23.00 F488 -47 133 211 2 49.7 7-29 04 05 51.6 -29 3 234.25 -24.57 F424 53 52 111 2 55.0 -32 20 05 54.9 -32 19 237.92 -25.32 F3364 -80 145 244 3 | 54.0 -18 19 05 56.2 -18 18 223.76 -20.18 F555 -40 92 204 54.0 -34 48 05 55.8 -34 47 240.60 -25.84 F736 -68 13 232 54.4 -18 09 05 56.6 -18 08 223.64 -20.03 F555 -35 101 199 54.8 -21 16 05 56.9 -21 15 75.5 -30 -65 194 58.7 -18 58 06 00.9 -18 77 224.87 -19 41 F855 -30 -65 194 | 59.1 -40 03 06 00.7 -40 02 246.53 -26.29 F307 -50 -1 214 59.6 -20 45 06 01.7 -20 45 226.70 -19 91 F555 31 -38 133 104.1 -35 18 06 05.9 -35 18 241.80 -24.02 F364 43 -14 121 04.6 -42 17 06 06.1 -42 17 249.23 -25.85 F254 5 147 159 05.7 -49 29 06 07.0 -49 29 257.13 -27.27 F205 48 29 147 | 08.1 -33 35 06 09.9 -33 35 240.30 -22.70 F364 88 77 76 08.4 -37 47 06 10.1 -37 47 244.67 -23.93 F307 50 119 114 08.5 -18 54 06 10.7 -18 54 225.78 -17.26 F556 -124 60 288 12.1 -17 57 06 114.3 -17 57 225.23 -16.09 F556 -77 113 241 16.6 -52 00 06 17.7 -52 01 260.27 -26.08 F206 -112 -108 276 | 20.3 -42 37 06 21.8 -42 38 250.44 -23.15 F255 -114 128 278 20.7 -25 36 06 22.7 -25 37 233.39 -17.31 F489 79 -32 85 21.3 -43 10 06 22.8 -43 11 251.07 -23.14 F255 -105 97 269 21.6 -64 86 06 21.8 -64 87 274.70 -27.50 F087 -86 3 250 23.3 -37 19 06 25.0 -37 20 245.19 -20.98 F345 -9 -124 173 | 25.2 -53 39 06 26.3 -53 40 262.37 -25.16 F161 -87 70 251 25.3 -35 27 06 27.1 -35 28 243.45 -19.97 F365 12 -24 152 25.3 -52 52 06 27.1 -55 28 243.45 -19.97 F365 12 -24 152 25.8 -22 12 06 27.9 -62 53 272.45 -24.89 F556 94 -116 70 26.5 -54 22 06 27.5 -54 23 263.18 -25.13 F161 -76 29 240 | 27.3 -41 42 06 28.9 -41 44 249.91 -21.64 F308 -31 -90 195 7 28.5 -52 12 06 29.6 -52 14 260.94 -24.35 F206 -14 -118 178 4 35.1 -62 35 06 35.5 -62 37 272.35 -25.68 F087 -9 132 173 29 36.0 -48 27 06 37.3 -48 29 257.35 -22.20 F206 52 83 112 24 39.4 -46 00 06 40.8 -46 02 255.02 -20.91 F255 67 -54 97 11 | | | (1950) Dec RA (2000) Dec <i>l</i> b Field <i>x</i> _{cen} <i>y</i> _{cen} <i>x</i> _{II} | 0.1 -38 24 05 31.8 -38 21 243.23 -31.38 F306 -83 87 247 0.9 -47 36 05 32.3 -47 33 253.98 -32.68 F204 6 131 158 1.5 -29 01 05 33.4 -28 58 232.82 -28.74 F423 110 53 54 27 -28 32 05 34.7 -28 30 232.38 -28.34 F353 135 143 199 2.9 -32 20 05 34.8 -32 18 236.55 -29.38 F353 -35 143 199 | 5 33.3 -38 10 05 35.0 -38 08 243.12 -30.72 8306 -49 99 213 5 34.3 -36 55 05 36.0 -36 53 241.75 -30.25 87306 -49 99 213 5 36.1 -20 39 05 38.2 -20 37 224.36 -24.97 8554 -3 -34 167 5 36.1 -45 20 05 37.5 -45 18 251.46 -31.50 8253 0 -18 164 5 38.8 -43 25 05 40.3 -43 23 249.34 -30.71 87253 26 86 138 | 5 39.6 -48 11 05 40.9 -48 09 254.87 -31.30 F204 84 98 80 5 40.4 -61 44 05 40.9 -61 42 270.78 -31.96 F120 -14 -91 178 5 43.8 -47 58 05 45.1 -47 56 254.73 -30.57 F204 122 108 42 5 45.7 -31 54 05 47.6 -31 52 25.66 F424 5 -100 159 6 45.1 -21 57 05 48.2 -21 56 226.62 -23.28 F554 116 -104 48 | 5 46.5 -41 16 05 48.1 -41 15 247.23 -28.90 F306 84 -68 80 5 47.3 -24 29 05 49.4 -24 28 229.31 -23.93 F488 -61 30 225 1 5 48.4 -22 33 05 50.5 -22 32 227.44 -23.00 F488 -47 133 211 2 5 49.7 7 -29 04 05 51.6 -29 33 234.25 -24.97 F424 53 52 111 2 5 53.0 -32 20 05 54.9 -32 19 237.92 -25.32 F364 -80 145 244 3 | 05 54.0 -18 19 05 56.2 -18 18 223.76 -20.18 F555 -40 92 204 05 54.0 -34 48 05 55.8 -34 47 240.60 -25.84 F364 -68 13 232 05 54.4 -18 09 05 56.6 -18 08 223.64 -20.03 F555 -35 101 199 05 54.8 -21 16 05 56.9 -21 15 226.75 -21.15 F555 -30 -65 194 05 58.7 -18 58 06 00.9 -18 57 224.87 -19.41 F855 -19 67 14 | 5 59.1 -40 03 06 00.7 -40 02 246.53 -26.29 F307 -50 -1 214 5 59.6 -20 45 06 01.7 -40 24 5 26.70 -19.91 F555 3 1 -38 133 6 04.1 -35 18 06 05.9 -35 18 241.80 -24.02 F364 43 -14 121 6 04.6 -42 17 06 06.1 -42 17 24.02 F364 5 5 147 159 6 05.7 -49 29 06.1 -42 17 245.23 -25.85 F254 5 147 159 | 06 08.1 -33 35 06 09.9 -33 35 240.30 -22.70 F364 88 77 76 06 08.4 -37 47 06 10.1 -37 47 244.67 -23.93 F307 50 119 114 06 08.5 -18 54 06 10.7 -18 54 225.78 -17.26 F556 -124 60 288 06 12.1 -17 57 06 14.3 -17 57 25.23 -16.09 F556 -77 113 241 06 16.6 -52 00 06 17.7 -52 01 260.27 -26.08 F206 -112 -108 276 | 6 20.3 -42 37 06 21.8 -42 38 250.44 -23.15 F255 -114 128 278 6 20.7 -25 36 06 22.7 -25 37 233.39 -17.31 F489 79 -32 85 6 21.3 -43 10 06 22.8 -43 11 251.07 -23.14 F255 -105 97 269 6 21.6 -64 85 06 22.8 -6 21.8 -64 57 274.70 -27.50 F087 -86 3 250 6 23.3 -37 19 06 25.0 -37 20 245.19 -20.98 F345 -9 -124 173 | 6 25.2 -53 39 06 26.3 -53 40 262.37 -25.16 F161 -87 70 251 6 25.3 -35 27 06 27.1 -35 28 243.45 -19.97 F365 12 -24 152 6 25.3 -62 52 06 27.7 -62 53 272.45 -6.83 F087 -68 115 232 6 25.8 -22 12 06 27.9 -22 13 230.62 -14.89 F556 94 -116 70 6 26.5 -54 22 06 27.5 -54 23 263.18 -25.13 F161 -76 29 240 | 7.3 -41 42 06 28.9 -41 44 249.91 -21.64 F308 -31 -90 195 7 8.5 -52 12 06 29.6 -52 14 260.94 -24.35 F206 -14 -118 178 4 5.1 -62 35 06 35.5 -62 37 272.35 -25.68 F087 -9 132 173 29 6.0 -48 27 06 37.3 -48 29 257.35 -22.20 F206 52 83 112 24 9.4 -46 00 06 40.8 -46 02 255.02 -20.91 F255 67 -54 97 11 | © American Astronomical Society • Provided by the NASA Astrophysics Data System | Continued | |-----------| | 4—(| | BLE | | Ţ | | 8 | 17.2
17.1
17.0
17.0 | 17.0
15.3
15.5
16.9
17.3 | 17.3
17.3
17.3
17.3 | 17.3
17.3
17.3
17.4 | 17.3
17.4
17.3
17.4 | 17.4
17.5
17.1
16.9
17.4 | 17.4
17.2
17.2
17.2 | 17.2
17.5
17.5
17.5
17.5 | 17.4
17.4
16.6
17.5
17.5 | 17.4
17.2
17.2
17.5 | |--------------------|--|---|---|---|---|---|---|--|---|--| | | ហលលលល | ഴവനനാ | 00000 | 0 0 0 0 4 | 00000 | องบบอ | งกนกง | 00000 | οοαοο | οοαοο | | <u>بر</u> | 0000 | 01001 | 71017 | 10011 | 44444 | 10001 | 31213 | 31555 | 01010 | пппоп | | z | | | | | | | | | | | | S | | | | | | | | | | | | Previous | | | | | | | | Δ | | | | | | | | 10 | 10 | | | | | 21 01 | | Ops | 10000 | 99999 | 22222 | 55,555 | 22253 | 22222 | 22222 | 12222 | 12222 | 23,22,3 | | m ₁₀ | 19.2
18.8
17.6
17.1 | 18.3
15.4
15.6
17.8 | 19.3
19.4
19.0
18.6 | 18.7
18.6
18.1
19.3 | 18.9
19.1
18.9
19.1 | 19.2
19.3
17.3
16.6
18.6 | 18.1
17.3
17.9
18.9 | 17.4
19.5
19.4
19.1 | 17.9
18.6
16.4
19.5: | 19.2 | | m³ | 18.0
18.0
16.7
15.9: | 17.8
14.8
15.0
16.6 | 18.7
18.4
18.5
17.6 | 17.6
17.8
17.3
18.6
15.6 | 18.2
18.4?
18.0
18.2 | 18.0
18.8
16.1
15.2
16.5 | 17.8
16.1
17.0
17.6
18.0 | 16.4
18.8
17.8
18.6 | 17.0
17.9
15.8
18.6 | 18.1
17.4
17.4 | | m ₁ | 17.4
16.5
15.6
14.4? | 15.7*
13.6
13.3
16.0 | 17.7
17.9
18.1
17.1: | 17.4
16.9
16.3?
18.5 | 17.9
17.9?
17.5
17.8 | 17.4
18.6
13.4
14.5 | 16.8
15.3
16.5?
16.8 | 16.0
18.4
18.6
17.4 | 16.5
17.5
15.0
18.1 | 17.7
17.7
16.1
17.6 | | O | 50
44
35
35 | 42
57:
41
39
50 | 55
70
30
57: | 125
76?
47
94
50 | 53
60
74
94
73 | 80
110
46
35
56 |
152
56
105
55
169 | 88
115
111
56
155 | 45
59
109
57
81 | 64
63
63
64
7 | | M | H | 1 1 | | . 1 | 111 | II. | | 11 11 | | 111 1 | | T_{B-} | | | 11-111111111111111111111111111111111111 | II.
II.
IIIII | 111
111-111
11-111 | | | III.
III-III
III-III | | | | T_A | RIRRI | RIRI | R R I | RI?
R | ri:
RI:
RI: | r
RI
R | I RII I | ннжнн | I
RI
I | RELL | | Abell | 3401
3402
3403
3404
3405 | 3406
3407
3408
3409
3410 | 3411
3412
3413
3414
3415 | 3416
3417
3418
3419
3420 | 3421
3422
3423
3424
3424 | 3426
3427
3428
3429
3430 | 3431
3432
3433
3434
3435 | 3436
3437
3438
3439
3440 | 3441
3442
3443
3444
3445 | 3446
3444
34447
5448 | | 1 | | | | | | | | | | | | yn | 253
177
165
207
184 | | | | 217
299
280
310 | 133
302
244
179
302 | 215
283
108
163
93 | 84
178
258
48 | 93
117
251
57 | 12
242
228 | | ll x | 140
75
74
100
125 | 191
133
102
191
279 | 236
232
146
120 | 74
295
260
238
191 | 150
131
121
104
324 | 89
235
270
128
116 | 111
175
141
152
115 | 108
299
266
195
252 | 84
155
224
98
154 | 159
157
136
136 | | Ycen | 89
113
20 | 48
54
137
120 | 146
140
60
46
-53 | -29
-39
135
20 | 53
135
116
146
81 | -31
138
80
15
138 | 51
119
-56
-1
-71 | -80
14
94
-116
49 | -71
-47
-107
-107 | -152
-162
78
64 | | x cen | 24
99
39
40
39 | -27
31
62
-27 | -72
-68
-46
-46 | 90
-131
-96
-74 | 14
33
43
60
-160 | 75
-71
-106
36
48 | -111
-23
12
49 | -135
-102
-31
-88 | 8 6 9 80 | 28 9 7 2 | | Field | F087
F206
F206
F161 | F207
F207
F207
F562 | | F564
F565
F498
F498 | F434
F434
F434
F434 | F434
F499
F499 | F499
F374
F435
F374 | ###################################### | 567
500
375
500
436 | F375
F375
F375 | | -0 | 25.25
21.88
21.91
22.53 | | ***** | 19.16
19.67
19.49
20.07 | 17.09
18.49
18.35
18.96
21.86 | 16.77
23.79
15.86
23.42
25.29 | 24.14
17.54
19.04
16.08 | 19.06
21.32
22.82
23.87 | 28.77
25.32
19.49
25.08 | 16.47
16.31
20.29
20.07 | | , | .38 -2
.90 -2
.13 -2
.79 -2 | 12.21
18.49
1.1.49
1.1.49 | | .76
.53
.68
.45 | . 05
. 18
. 39
. 74 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | 92330 | | 93888 | | | 273
258
263
263
285 | 259
259
239
249 | 4444
1444
0 | 249
250
251
253
253 | 22990 | 262
265
265
265
265
265 | 0 9 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 265
265
265
265
265
265
265
265 | 61
66
68 | 274.
274.
271. | | Dec | 9 27
4 12
4 11
4 11 | 9 12
9 04
9 12
7 36
7 56 | 10001 | 0 44
2 44
5 5 3 | 9 17
7 42
8 04
7 30
3 41 | 0 2 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 17
3 02
1 16
5 15
1 35 | 1 44
9 58
7 25
9 20 | 1 35
6 09
7 15
9 47 | 8 10
8 22
3 52
4 08 | | (2000) 1 | 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 444444 | 77777 | 77777 | 0 0 0 0 4 | 6 | 2 | 88 4 9 2 | 1 -21
0 -26
1 -33
8 -27
4 -29 | 9,9,9,9 | | RA (3 | 06 40.
06 41.
06 41.
06 45. | 06 58.
07 05.
07 08.
08 24. | | 9 21 9 32 9 32 9 32 9 9 9 9 9 9 9 9 9 9 9 9 | 9 4 40.
9 4 2.
9 4 2. | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 05.
0 11.
0 14.
0 15. | 0 18.
0 19.
0 21.
0 24. | 0 27.
0 27.
0 29. | | | | | | 00000 | 66666 | 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | нанан | ппппп | | анан | | | 25
44
57
38 | 9 08
7 27
4 6 | P P 8 6 0 | 02222
00122
04464 | 29 04
27 29
27 51
27 17
23 28 | 22323 | 24 03
32 48
31 02
35 01 | 31 30
29 44
28 19
27 11
29 06 | 21 20
25 54
33 28
27 00
29 32 | 37 55
38 07
33 37
33 53 | |) Dec | m a a + + | 44444 | | | $ \gamma$ γ γ γ γ | TYTTY | 46666 | 24444 | 44444 | 2225 | | ДΙ | .3 -63
-4 -49
-649
-54
-74 | 0.7.0.1.
4.4.4.1. | r. ∞ • • • | | 60844 | 747.40 | 00000 | 0.04.0.0 | 7.7.65.1 | | | A (1950) D | 3 - 63
6 - 49
5 - 49
1 - 74 | 44411 | 39.5
46.6
02.4 | 13.3
17.0
19.5
26.2
29.9 | 36.
38.
40. | 41.
50.
57. | 9 58.
0 00.
0 01. | 0 03. | 0 15.
0 16.
0 21. | 2244
2644
266 | | bell RA (1950) Dec | 40.3 -63
40.4 -49
40.6 -49
44.5 -54 | 57.0 -4
03.7 -4
07.2 -4
22.0 -1
36.1 -1 | 08 39.5
08 39.8
08 46.6
09 02.4
09 09.6 | 0 6 9 7 3
9 6 9 7 3 | 98861 | 18078 | 58.
59.
00.
01. | 12.29.3 | 15.
16.
21.
22. | 446 10 24.8
447 10 24.9
448 10 26.8
449 10 26.8 | | p | |---------------| | inue | | ont | | $\frac{1}{1}$ | | 4 | | BLE | | ΙΨ | | | | | | | 目 | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
17. | 17.
17.
17. | 17.
17.
17.
16. | 17. | 17.
16.
17.
17. | |--------------|---------------------|---|--------------------------------------|---|--|---|--|---|--|--|--| | | Ω | νανν | 00000 | 00000 | 00000 | വവവയയ | 00000 | 00000 | 20000 | 00000 | 04000 | | | Ж | 40040 | 00000 | 10001 | 04444 | 24404 | 01011 | 0000 | 70007 | 00101 | 00100 | | | z | Previous | | m | | | | | ø. | ф | | | | | Pre | | | | | | | | | | | | | Obs | 22222 | 22222 | 22222 | 55555
5,55 | 22222 | 33333
37,33 | 0,0000 | 22222 | 22222 | 20000 | | | 0 | 00014 | 0 10 0 0 0 | ₽£406 | 976316 | 80000 | V4400 | 00000 | ∠ ₩ ₩ ₩ | 4647R | 4000 | | | m | 19.
18.
18.
17. | 18
19
19
18
18 | 18.
19.
19. | 17.
18.
18.
19. | 18.
19.
17. | 17.
18.
18.
19. | :
18:
19:
19:
19: | 18.
18.
17.
17. | 18.
17.
18.
17. | 18.
17.
18. | | | m ₃ | 19.2
17.5
18.3
18.0 | 17.3
18.6
17.9
17.9 | 17.7
17.9
18.4
18.0 | 17.0
17.8
17.6
17.7
18.6 | 17.8
17.3
17.7
16.4
16.8 | 16.9
17.6
16.8
18.6
17.6 | 17.0
16.6
18.2
17.4
18.8 | 18.1
17.4
17.2
16.2
16.0 | 17.3
16.0
17.4
16.8 | 17.9
15.3
16.8
17.3
15.4 | | | m_1 | 6 6 7 6 6
7 8 6 8 4 | 6.1
7.5
7.5
7.4 | 8.7.7.3
8.7.6.3
8.1.8 | 8.2
8.2 | 6.9 | 6.6. | 6.7: | 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 64600
60004 | 7.4.6
4.7.6
5.8
5.8 | | | | 0108010 | 110000 | 7 t 8 8 0 | 30
73
67:
63: | 03
77
77
52:
1 | u v u 4 u | 61:
333:
63 1: | 40444 | ##################################### | 449
666
3649
11 | | | 0 | 6.88.88 | 44044 | ωω 4.φ | 66673 | 10 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 40000 | 0 10 10 4 | ಬ 4400 | 40046 | 44900 | | | <i>W</i> − <i>W</i> | | -II
1
1
1-III | | 2226 | | I
I
I |
| | | | | | T_B | BABAI | TTHEE | | | ##### | 88884 | | İİLİL | нннн | HIHAI | | | T_A | : <u>R</u> | RHHHH | нннн | жнннн | ннннн | нняжі | RRRI | нняня | HHHHH | RHIRI | | חווחכח | Abell | 3451
3452
3453
3453
3454 | 3456
3457
3458
3459
3460 | 3461
3462
3463
3464
3465 | 3466
3467
3468
3469
3470 | 3471
3472
3473
3474
3475 | 3476
3477
3478
3479
3480 | 3481
3482
3483
3484
3485 | 3486
3487
3488
3489
3490 | 3493
3492
3493
3494
3594 | 3496
3497
3498
3499
3500 | | | | | | | | | | | | | | | <u> </u>
 | 1.1 | 40#04 | N 00 00 00 | . . | 10 m 0 m 10 | 00 B C 4 | 20408 | | N N A C O | , 20 d 4 2 | N M Q Q Q | | | ı yıı | 0 81
2 200
4 80
2 221 | 6 6 6 6 6 | 9000 | 0,000,00 | 6 172
6 169
3 248
9 267
3 234 | 1 5 18 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 26747 | 0 95
2 115
7 34
9 111 | 08788 | 44004 | | | 1x | 50
152
179
134 | - 4444 | 2222 | 44888 | 4 6 5 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 23 2 2 2 2 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 | 97.44.9 | 27
17
23
6 | 25.54.51 | 111 | | | Ycen | -83
-70
-84
57 | 153
88
129
-37 | 9 6 6 9 6 | -29
-51
158
164 | 8
84
103
70 | 118
21
-114
-49 | -103
124
-35
155 | -69
-49
-130
-53 | -68
96
127
-100
68 | 121
-59
-59
128
8 | | | xcen | 114
12
30
30 | 38
-134
-109
-88 | -54
-777
-26 | -115
-124
-484
-455 | 18
68
11
15
21 | 32
48
-75
-67 | -128
91
117
23
-63 | -106
-8
-73
95 | 112
-74
127
16 | -110
50
72
85
83 | | | Field | F436
F437
F376
F019 | F376
F502
F438
F438 | F438
F438
F438
F438 | F438
F438
F377
F377 | F438
F438
F265
F265 | F377
F570
F503
F503 | F439
F377
F570
F503 | F378
F439
F504
F439 | F378
F379
F504
F440 | F505
F440
F440
F440 | | | P | 98
90
90
90
90
90 | 130621 | 4.
08.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. | 96 1960 | 91
81
18
65 | 87
10
10 | 8 6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 5 6 8 4 7 7 4 7 4 7 4 4 7 4 4 9 4 9 9 9 9 9 9 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 30
21
21
57 | | | | 7,002,5 | 01 01 01 01 01 | 3 3 4 5 8 4 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 44444 | 22444 | | 26
37
36
38 | 00000 | 22 3 2 2 3 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ппппп | | | 1 | 71.54
73.09
77.15
98.48
76.57 | 6.44.04 | | 4.4.4.6.6. | 78.46
79.48
35.21
35.14 | 81.19
74.91
77.80
78.92
81.13 | 46.68.4 | 4.6.4.0.7 | 99999 | | | | | 00400 | 0.0000 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 09 27
111 27
22 28 28 28 28 28 28 28 28 28 28 28 28 2 | | ~~~~ | | 00000 | 00000 | | | Dec | 321
34
34
15
34
15
34 | 70735 | 2443
12443
1443
1941 | 32 2 2 3 4 1 2 2 3 4 1 2 2 2 2 2 4 4 1 2 2 2 2 4 4 4 4 4 4 | 0.000 | 2007 | 40004 | w 4444 | 00233
00233
00233 | 30 33 30 30 30 30 30 30 30 30 30 30 30 3 | | | (2000) | 40404 | 7.000 | . woww. | . w o o w u | 21,0000 | 60000 | 4 80 0 10 1 | 00,00 | ं नंधनंन्य | 11111 | | | RA (| 0 33
0 47
0 47
0 52 | 00000 | 00000 | 00444 | 11 15 11 16 1 | 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20000 | 11111
8 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 40000 | 00000 | | | | aaaaa | ннанн | . 4444 | ппппп | нана | ппппп | апапа | ппппп | ппппп | | | | Dec | 1 34
9 21
6 19
3 57 | 0 4 6 4 0 | | 01718 | 00000 | 2 50
9 37
5 05
7 09
0 56 | 12021 | 00004 | 9 11 11 11 19 | 40000 | | | (1950) I | 1 2 8 4 1 | 64464 | 64444 | 11111 | 0.484 | 9 6 6 6 6 | 0 4 2 0 7
E E E E E E | 2 2 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 44444 | 75777 | | | RA (19 | 311.
54.45
50. | 1.00.6 | 4 64 4 10 10 | | 1133. | 15.15.15.18.18.18.18.18.18.18.18.18.18.18.18.18. | e o u 4 4 | 2 2 2 4
3 8 8 5
5 2 5 | | | | | # | 22222 | 99999 | 11111 | 11111 | 11111 | ###################################### | 33333 | 2222 | 11111 | 11112 | | | Abell | 4 4 5 1 4 5 1 4 5 5 4 5 5 5 5 5 5 5 5 5 | 44444 | 4 6 5 4 6 5 4 6 5 4 6 5 4 6 5 5 6 5 5 6 5 5 6 5 6 | 4444 | 471
472
473
474 | 476
477
478
479
480 | 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 | 4 4 4 4 4 | 20000 | 00000 | | ١ | < | мыным | мммм | - ммммм | нини | 62 | нинин | м м м м м | н н н н н | - ммммм | - пийпп | | p | |-----| | ипе | | nti | | Ÿ | | 4 | | щ | | BI | | TA | | | | | В | 17.2
17.5
17.5
17.5 | 17.5
17.4
17.4
16.9
17.5 | 17.3
17.6
17.5
17.5 | 17.5
17.5
17.5
17.4 | 17.5
17.5
17.5
17.2 | 13.2
17.5
16.3
17.5 | 17.1
16.2
17.6
17.5
16.6 | 17.6
14.3
17.5
17.5
17.5 | 17.5
16.4
17.5
17.6 | 17.5 | |----------|-----------------|--|---|---------------------------------------|---|--|---|---|--|--|--| | | Q | W A A A 4 | ουουο | 20000 | οοοοο | ουουο | 00404 | rv 4. no no rv | 00000 | 0 4 0 0 0 | | | | R. | 04404 | 04000 | 01010 | 04004 | 00000 | 00100 | 00000 | 67 0 | 5) 0 | 04044 | | 1 | 8 | | | | | | 0.011 | | 0.016 | (0.038 | | | | Previous | | 80 | υ | | | DdK | в в | | | ш ш | | | Obs | 10000 | 10000
10000 | 10
10,10 | 10000 | 0
10
10
20
20
10 | 50
10
10
10 | 10000 | 10
10
10
10 | 99999 | 10000 | | | m ₁₀ | 16.8
18.5:
18.5
18.1 | 18.0
17.4
17.7
16.5
18.1 | 18.9
19.6
18.8
18.1 | 18.5
18.5
18.5
19.0 | 19.0
18.5
18.9
17.0 | 12.9
19.4
15.9
18.0 | 16.7
15.8
19.1
18.0
16.2 | 19.0
13.9
18.7
18.0
18.5 | 18.0
16.1
18.6
19.1
18.0 | 17.6
19.5
16.5
16.7
18.6 | | | m³ | 16.1
17.9
17.5
16.8
15.4 | 17.4
16.0
16.8
15.8 | 18.1
18.1
18.1:
16.9 | 17.3
17.4
17.3
18.3 | 18.1
18.0
18.0
16.2
18.0 | 11.6
18.8
14.6
16.8 | 16.0
14.8
18.1
16.8 | 18.6
13.1
17.2
17.3
17.3 | 16.5
15.6
17.3
18.1
17.3 | 16.5
18.5
15.6
15.9 | | | m_1 | 15.5
17.7
16.8
16.5 | 16.0
15.4
16.0
15.0: | 17.6
17.7
16.9?
16.7
16.1 | 16.1
16.9
16.8
17.9 | 18.0
16.6
15.9
15.0 | 10.5
18.0
13.6:
16.1 | 15.0
14.4?
16.1
16.4
15.1? | 17.1
11.7
16.9
15.4 | 15.4
13.8
16.8
16.7 | 15.7
18.0
14.9
15.9 | | | ٥ | 42
77
72:
35:
53 | 46
75:
43
41 | 74
56
59
32 | 35
57
77 | 34
34
36
32 | 8 4 7 4 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 | 8 8 4 8 8
4 4 4 6 8 | 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 024450
8477 | 39:
(50)
39
65
52 | | | T_{B-M} | 111111111111111111111111111111111111111 | I III II | I-II
II-III?
III
III | | 111-111
111-111
111-111 | I-II:
II
II-III
I-II | 1111
111-11
111-111 | 11:
11-11
11-111
11-111 | II-III
III
I-II
I-II | 1
11?
11-11
11-111 | | | T_A | REER | нинин | RIII | ннняя | RHIR | R K K K | нинни | нннщн | RILIR | RI
RI
I | | Onthrine | Abell | 3501
3502
3503
3504
3505 | 3506
3507
3508
3509
3510 | 3511
3512
3513
3514
3514 |
3516
3517
3518
3519
3520 | 3521
3522
3523
3524
3524 | 3526
3527
3528
3529
3530 | 3531
3532
3533
3534
3535 | 3536
3537
3538
3539
3540 | 3541
3542
3543
3544
3545 | 3546
3547
3548
3549
3550 | | · - |]] | | | | | | | | | | | | מכו | хи уп | 73 253
64 273
65 223
101 272
101 210 | 235 252
114 124
200 19
14 270
172 158 | | 44444 | | | 84488 | 160 248
323 316
150 93
123 299 | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4699 | | | ycen | 89
109
108
46 | 88
140
106
106 | | | 146
43
147
55
-67 | | 125
-5
72
97 | 84
152
135
161 | | 13
155
65
42
107 | | | Lcen | 91
100
99
63 | -71
50
-36 -
150 | 84
111
191
145 | 1 1 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -29
3
-120
111 | -142
-11
-124
-57 | -88
-27
-26
-83 | -159
114
32 - | -135
-71
-66
-45 | -171
111
60
-157
-41 | | | Field | F440
F440
F440
F379 | F441
F505
F441
F379 | 2022 | | F574
F574
F574
F381 | F323
F381
F443
F575 | 8 4 7 2 4
4 4 7 7 4 | F575
F382
F575
F575 | 33030 | F444
F323
F269
F444
F576 | | | q | 33.07
33.48
32.57
28.74
27.60 | 33.45
35.99
29.27
29.04
31.90 | 80000 | 64.64.8 | | | 9.246.4 | 44.09
30.39
41.20
45.00 | | 32.66
25.34
18.61
33.16 | | | 1 | 290.37
290.45
290.69
292.73
293.00 | 292.80
292.26
294.38
294.54 | 96.8 | 995.3 | ~ e e e e e e | 0 0 2 | 04.
04.
05. | 305.81
305.29
305.92
306.85 | 306.51
306.97
308.25
307.68 | 308.50
307.75
307.12
308.90
310.85 | | |) Dec | -28 37
-28 14
-29 10
-33 16 | -28 39
-26 04
-33 00
-33 15 | | 47424 | -17 34
-19 29
-17 32
-34 13 | 14000 | 20 20 20 20 | -18 44
-32 26
-21 37
-17 47
-33 16 | -24 15
-34 33
-23 30
-32 59 | -29 58
-37 19
-44 04
-29 26
-22 15 | | | (2000) | 03.5
04.2
08.2
 | 12.9
13.0
15.8
16.3 | 22.57 | 42.23 | 36.5
39.0
40.1 | | | 00.2
01.0
03.1 | | 133.1
13.33.1
14.45. | | | RA | 22222 | 22222 | | | | 00000 | 00000 | 55555 | 111111 | ដដដដដ | | | Dec | 28 21
27 58
28 54
33 00
34 10 | 28 23 25 48 32 59 59 09 | 6400A | -25 30
-17 34
-19 00
-38 07 | 17 18
19 13
17 16
33 57
21 15 | 41 02
36 29
28 45
17 53
30 05 | 20188
60041 | 18 28
32 10
21 21
17 31
33 00 | 23
34
32
32
44
33
44
49 | 29 43
37 04
43 49
29 11
22 00 | | | (1950) | 90004 | 6447 | 44840 | 84704 | 0.4.644 | 11.67.0 | 4.0044 | | 002.00 | 11111 | | | RA (| 12 00
12 01
12 01
12 06
12 06 | 12 10
12 10
12 13
12 13
12 13 | 44444 | 00000 | 12 33
12 36
12 36
12 37
12 45 | 44000 | 12 54
12 54
12 55
12 55
12 55 | 12 57
12 58
12 58
13 00
13 00 | 13 01
13 05
13 06
13 08
13 08 | 13 10
13 10
13 10
13 11 | | | Abell | 3501
3502
3503
3504
3504 | 3506
3507
3508
3509
3510 | 3511
3512
3513
3514
3515 | 3516
3517
3518
3519
3520 | 83
3522
3522
3524
3524
3524 | 3526
3527
3528
3529
3530 | 3531
3532
3533
3534
3534 | 3536
3537
3538
3539 | 3541
3542
3543
3544
3544 | 3546
3547
3548
3549
3550 | | | 8 | | 16.4
16.4 | | 15.1
15.7
15.1 | | 15.5
16.9 | ٠. 4. | | 17.5
17.3
15.8 | | 17.4
13.4
15.8 | 17.5
15.8
15.1 | 77 | 15.6 | | 17.5 | ::: | 17.6 | | 17.2 | • | |---|---|---|---|--|--|--|---|--|---|--|--|--|--|--|---|---|--|---|---|--|--|---| | ll l | | v v - | 44 | 4 ro | w 4• ω | 4 | വ | n 7 | 4 0 | 0 0 4 | 4 4 | 9 H 4 | 946 | 9 9 | m w w | φφ | 999 | 9 9 | φφ. | 4 O D | νουου | • | | | <u>۳</u> | 240 | _ | 00 | 4 | | 0 0 | | 7 | 0 | 0 0 | -00 | 777 | 0 7 | 010 | н н | 4 4 6 | 000 | 100 | 0 00 | 40040 | > | | | м | | (0.0153 | | 0.0482
0.0471
(0.0109) | | 0.0499 | 0.0109 | | 0.0372 | | 0.0141 | | | | | | | 0 | | | | | | Previous | æ | æ | Ф | æ | | В | ф | | ф | Ø. | BKQ | o g | | o | · | | | c | ×α | aa | | | 2 | Ops | 999 | 222 | 99 | 998 | 9 | 28 | ខ្លួ | 9 9 9 | 222 | 100 | 222 | 1000 | ខ្ព | 200 | 55 | 222 | 55 | 999 | 224 | 22222 |) | | | m ₁₀ | 17.2 | | | 14.7
15.3
14.7 | • | 15.1
16.8 | ຕິຕ | 5. | 17.5
15.5 | ີ ທີ່ ທີ່ | 13.0 | 18.0
15.4
14.7 | | 15.2:
18.1
17.4 | | 18.8
19.6
17.8 | 6.5 | 19.1 | | 17.0
16.8
19.2
18.0 | | | | m³ | 16.8 | ຸນຸດ | | 13.8
14.5
13.4 | ů, | 14.5 | 4. 4. | 4.0 | 16.1
14.4 | 44. | 11.8 | 17.8 | | 13.5
17.7
16.8 | 9 . | 17.5
19.1
17.5 | 18.
17. | 18.0 | | 16.0
16.0
18.0
17.4 | | | | # ₁ | 16.7 | 4.10 | 9.0 | 12.6 | • | 13.6 | 9.9 | 4.0. | 15.3
13.6 | 20.0 | 11.4 | 15.6 | . 5. | 12.4:
17.0
16.5 | 7. | 16.8
18.3
17.3 | | 17.5 | | 15.1
15.5
17.5
14.8? | | | ٦ | ا د | 126
60
36 | | 40 | 226
141
184 | 9 | 33 | യ വ |
50.0 | 31 | 126: | 31
49? | 103 | 50 | 42
72
48 | 59 | 68
40
40 | 41
85 | 70
31 | 885 | 64
46
121
58
31 | | | F. | 1B-M | 11-11 | 11-11 | I-II | ннн | H. | ii-iii | I, | 11-11 | | 1-I | H | 1
11-11 | 1, | 1
11-111
11-111 | 111 - 111 | III
III-III:
II | 1117
111: | 111-111 | 111
111-111 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | | | Ę | Y.T | 44 | RI
I | R. | * * * | H H | ¥äi | | RI | | a H a | RR | 88 11 | RI | IR I | I I | нён | ă L | HIH | нц | | | | A Pheli | T V V | 3551
3552
3553 | ນນ | വവ | 3558
3559
3560 | 3561 | 3563 | 3565 | 3566
3567 | າທທ | 3571 | 57 | 3576
3577
3578
3578 | 28 | 3581
3582
3583 | 28 | 3586
3587
3588 | 58 | 3591
3592
3593 | 20 | 3596
3597
3598
3599
3600 | 11 | - | | | 1 | - | 1 64
5 262
7 233 | | 2 9 8 2 2 2 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 | | | 3 235 | | 3 200
7 140
5 291 | 2 293
4 265 | 4 196
8 163
4 291 | 163
26
193 | 28 | ~ | 28 | 21 | 3 80 10 | 46 | 202
208
30
30 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 8 | | | 117 | 75 1 | 121 64
115 262
247 233 | 207 | 163
140
247 | 184 | | 218 168
193 235 | 68 1 | 143 200
127 140
255 291 | 01 44 | 64 196
188 163
14 291 | 63
93 | 5 24 | 33.6 | 28 | 23 | 53 86
125 37 | 94 3 | 224 205
209 298
273 39 | 00000 | 8 | | į | _ | 7 275 1 | 21
15 2
47 2 | 207 | | 184 | 180 | 1 218
1 193 | 168 1 | 43 2 27 1 55 2 2 | 9 72 | 404 | 5 163
1 26
2 193 | 179 28 | 33.6 | 63 17
9 249 28 | 7 246 23
5 158 18 | 53 8
125 3 | 202 1 | 42
40
20
20
20 | 22222 | 87 667 6 | | | cen Vcen III | -37 275 1
-84 266 | 0 121
8 115 2
9 247 2 | -75 207
74 198 | 24 40 140
83 110 247 | 20 131 184 | 65 -76 99 | 1 218
1 193 | -14 168 1
-62 159 1 | 143 2
127 1
255 2 | 92 129 72
00 101 64 | 2 64
1 188
7 14 | 145 163
221 26
182 193 | 15 122 179 28
49 82 115 24 | 5 63 6 | 14 63 17
14 63 17
119 249 28 | 82 67 246 23
6 16 158 18 | 1 303 23
8 53 8
7 125 3 | 38 18 202 1
30 158 194 3 | 41 224 2
34 209 2
25 273 | 7 149 19
9 128 22
5 119 29
81 25 | 87 667 671 | | | Leen yeen All | 444 -111 -37 275 1
444 -102 -84 266 | 43 -100 121
49 98 115 2
83 69 247 2 | 444 -43 -75 207 | 24 40 140
83 110 247 | 270 -20 131 184 | 444 65 -76 99
270 -16 147 180 | 54 4 218
29 71 193 | 383 -4 -14 168 1
383 5 -62 159 1 | 1 36 143 2
7 -24 127 1
1 127 255 2 | 383 92 129 72
383 100 101 64 | 00 32 64
24 -1 188
50 127 14 | 19 -1 145 163
57 -138 221 26
18 29 182 193 | 510 -15 122 179 28
510 49 82 115 24 | 01 -95 63 6
71 72 93 23 | 578 101 14 63 17
511 -85 119 249 28 | 511 -82 67 246 23
446 6 16 158 18 | -139 /1 303 23
111 -78 53 8
39 -127 125 3 | 511 -38 18 202 1
511 -30 158 194 3 | 60 41 224 2
45 134 209 2
09 -125 273 | 5 27 149 19 19 15 15 135 119 29 118 22 118 22 119 29 119 11 | 44/ -yo 120 20y 28 | | | ricia Leen Yeen All | 1.59 F444 -111 -37 275 1
0.70 F444 -102 -84 266 | 382 43 -100 121
382 49 98 115 2
444 -83 69 247 2 | 0.70 F444 -43 -75 207 | 444 1 -66 163
444 24 40 140
383 -83 110 247 | 9.36 F270 -20 131 184 | 0.35 F444 65 -76 99
9.64 F270 -16 147 180 | 383 -54 4 218
383 -29 71 193 | 6.32 F383 -4 -14 168 1
5.41 F383 5 -62 159 1 | 383 21 36 143 2
383 37 -24 127 1
325 -91 127 255 2 | 8.55 F383 92 129 72
8.01 F383 100 101 64 | 383 100 32 64
445 -24 -1 188
383 150 127 14 | 445 19 -1 145 163
510 -57 -138 221 26
510 -18 29 182 193 | 7.38 F510 -15 122 179 28
6.30 F510 49 82 115 24 | 510 101 -95 63 6
578 71 72 93 23 | 9.12 F578 101 14 63 17
6.04 F511 -85 119 249 28 | 511 -82 67 246 23
446 6 16 158 18 | 3.74 F271 111 -78 53 8
6.84 F446 39 -127 125 3 | 3.95 F511 -38 18 202 1
6.28 F511 -30 158 194 3 | 777 F579 -60 41 224 2
21 F579 -45 134 209 2
34 F009 -109 -125 273 | 579 15 27 149 19
579 36 59 128 22
579 45 135 119 29
511 83 89 81 25 | 87 6C7 C7T C6- /### T7:0 | | Field 7 11 | V FIGHT Leen yeen Lll | 09.67 31.59 F444 -111 -37 275 1
09.72 30.70 F444 -102 -84 266 | 5.36 F382 43 -100 121
9.03 F382 49 98 115 2
3.45 F444 -83 69 247 2 | 11.02 30.70 F444 -43 -75 207 | 0.74 F444 1 -66 163
2.60 F444 24 40 140
8.89 F383 -83 110 247 | 11.05 19.36 F270 -20 131 184 | 13.32 30.35 F444 65 -76 99 | 6.83 F383 -54 4 218
7.97 F383 -29 71 193 | 13.72 26.32 F383 -4 -14 168 1
13.69 25.41 F383 5 -62 159 1 | 7.12 F383 21 36 143 2
5.97 F383 37 -24 127 1
3.67 F325 -91 127 255 2 | 16.33 28.55 F383 92 129 72
16.34 28.01 F383 100 101 64 | 6.74 F383 100 32 64
0.94 F445 -24 -1 188
8.26 F383 150 127 14 | 0.73 F445 19 -1 145 163
2.99 F510 -57 -138 221 26
5.75 F510 -18 29 182 193 | 22.22 37.38 F510 -15 122 179 28
23.34 36.30 F510 49 82 115 24 | 2.85 F510 101 -95 63 6
0.33 F578 71 72 93 23 | 27.24 39.12 F578 101 14 63 17
26.63 36.04 F511 -85 119 249 28 | 22 35.11 F511 -82 67 246 23 70 29.56 F46 6 16 158 18 | .12 42.00 f.302 -139 /1 303 23
.64 13.74 F271 111 -78 53 8
.28 26.84 F446 39 -127 125 3 | 71 33.95 F511 -38 18 202 1
117 36.28 F511 -30 158 194 3 | 38.77 F579 -60 41 224 2
40.21 F579 -45 134 209 2
24.34 F009 -109 -125 273 | 27 37.92 F579 15 27 149 19 05 38.30 F579 36 59 128 22 06 39.49 F579 45 135 119 29 84 34.24 F511 83 89 81 25 05 31 19 19 19 19 19 19 19 19 19 19 19 19 19 | 87 667 67T 66- /881 T7:00 66:/7 | | Dec 1 h Rield 7 1 | Dec : 0 Field Len Hen All | 0 55 309.67 31.59 F444 -111 -37 275 1
1 48 309.72 30.70 F444 -102 -84 266 | 7 10 309.07 25.36 F382 43 -100 121
3 28 309.63 29.03 F382 49 98 115 2
8 58 310.63 33.45 F444 -83 69 247 2 | 1 39 311.02 30.70 F444 -43 -75 207 | 1 29 311.99 30.74 F444 1 -66 163 193 193 312.87 32.60 F444 24 40 140 140 313 312.59 28.89 F383 -83 110 247 | 2 51 311.05 19.36 F270 -20 131 184 | 1 40 313.32 30.35 F444 65 -76 99 | 5 13 312.76 26.83 F383 -54 4 218
3 58 313.55 27.97 F383 -29 71 193 | 5 33 313.72 26.32 F383 -4 -14 168 1
6 27 313.69 25.41 F383 5 -62 159 1 | 4 38 314.42 27.12 F383 21 36 143 2
5 45 314.49 25.97 F383 37 -24 127 1
7 54 314.84 23.67 F325 -91 127 255 2 | 2 51 316.33 28.55 F383 92 129 72
3 22 316.34 28.01 F383 100 101 64 | 4 40 316.03 26.74 F383 100 32 64 0 17 317.47 30.94 F445 -24 -1 188 2 52 317.50 28.26 F383 150 127 14 | 0 17 318,34 30,73 F445 19 -1 145 163
7 50 319,54 32,99 F510 -57 -138 221 26
4 43 321,49 35,75 F510 -18 29 182 193 | 2 59 322.22 37.38 F510 -15 122 179 28
3 43 323.34 36.30 F510 49 82 115 24 | 0 1 323.14 32.85 F510 101 -95 63 6 8 5 8 127.10 4 3.23 F578 71 72 93 23 23 19 25 60 97 91 878 878 978 978 978 978 978 978 978 978 | 2 59 327.24 39.12 F578 101 14 63 17
2 59 326.63 36.04 F511 -85 119 249 28 | 3 58 326.22 35.11 F511 -82 67 246 23 35 323.70 29.56 F446 6 16 158 18 | 2 | 4 53 326.71 33.95 F511 -38 18 202 1
2 16 328.17 36.28 F511 -30 158 194 3 | 9 28 329.80 38.77 F579 -60 41 224 2
7 44 331.10 40.21 F579 -45 134 209 2
6 55 304.38 -24.34 F009 -109 -125 273 | 9 44 331.27 37.92 F579 15 27 149 19 9 07 332.05 38.30 F579 36 59 128 22 7 42 333.06 39.49 F579 45 135 119 29 8 3 32 329.84 34.24 F511 83 89 81 25 75 75 75 75 75 75 75 75 75 75 75 75 75 | 87 667 67T 66- /##J T7:00 66:/70 66 / | | Dec 1 h Rield 7 1 | Dec : 0 Field Len Hen All | .2 -30 55 309.67 31.59 F444 -111 -37 275 1
.9 -31 48 309.72 30.70 F444 -102 -84 266 | .2 -37 10 309.07 25.38 F382 43 -100 121
.5 -32 28 309.03 29.38 F382 49 8 115 2
.8 -28 58 310.63 33.45 F444 -83 69 247 2 | 1 -31 39 311.02 30.70 F444 -43 -75 207 | 29 311.99 30.74 F444 1 -66 163 31 312.87 32.60 F444 24 40 140 140 141 31 312.59 28.89 F383 -83 110 247 | -42 51 311.05 19.36 F270 -20 131 184 | -31 40 313.32 30.35 F444 65 -76 99 -42 33 311.18 19.64 F270 -16 147 180 | 4 -35 13 312.76 26.83 F383 -54 4 218
7 -33 58 313.55 27.97 F383 -29 71 193 | 0 -35 33 313.72 26.32 F383 -4 -14 168 1
8 -36 27
313.69 25.41 F383 5 -62 159 1 | 2 -34 38 314.42 27.12 F383 21 36 143 2
7 -35 45 314.49 25.97 F383 37 -24 127 1
8 -37 54 314.84 23.67 F325 -91 127 255 2 | -32 51 316.33 28.55 F383 92 129 72
-33 22 316.34 28.01 F383 100 101 64 | 40 316.03 26.74 F383 100 32 64 17 317.47 30.94 F445 -24 -1 188 52 317.50 28.26 F383 150 127 14 | 8 -30 17 318.34 30.73 F445 19 -1 145 163
3 -27 50 319.54 32.99 F510 -57 -138 221 26
5 -24 43 321.49 35.75 F510 -18 29 182 193 | 7 -22 59 322.22 37.38 F510 -15 122 179 28
9 -23 43 323.34 36.30 F510 49 82 115 24 | 5 -27 01 323.14 32.85 F510 101 -95 63 6
5 -18 54 327.10 40.33 F578 71 72 93 23 | 9 -19 58 327.24 37.12 F578 101 14 63 17
1 -22 59 326.63 36.04 F511 -85 119 249 28 | 3 -23 58 326.22 35.11 F511 -82 67 246 23 8 -29 55 323.70 29.56 F446 6 16 158 18 | 7 - 46 4 317 64 13.74 F213 11 -78 53 69 -32 35 323.28 26.84 F446 39 -127 125 3 | 0 -24 53 326.71 33.95 F511 -38 18 202 1
6 -22 16 328.17 36.28 F511 -30 158 194 3 | 2 -19 28 329-80 38.77 7579 -60 41 224 2
17 44 331.10 40.21 7579 -45 134 209 2
4 -86 55 304.38 -24.34 7009 -109 -125 273 | 2 -19 44 331.27 37.92 F579 15 27 149 19 82 8 -19 07 332.05 38.30 F579 36 59 128 22 4 -17 42 333.06 39.49 F579 45 135 119 29 0. 7 -23 33 329.84 34.24 F511 83 89 81 25 0. 7 -23 35 20.00 10 10 10 10 10 10 10 10 10 10 10 10 1 | 87 607 G7T G6= /##J T7:00 C6:/70 CC /7= 0: | | I h Wield r | (2000) Dec | 18.2 -30 55 309.67 31.59 F444 -111 -37 275 1
18.9 -31 48 309.72 30.70 F444 -102 -84 266 | -37 10 309.07 25.36 F382 43 -100 121 37 28 29 29.03 132 43 -100 115 2 -28 58 310.63 33.45 F444 -83 69 247 2 | 3 24.1 -31 39 311.02 30.70 F444 -43 -75 207 7 24.9 -28 F2 311.71 33 42 F444 -34 74 108 | 9 -31 29 311.99 30.74 F444 24 40 169 169 -29 31 312.87 32.60 F444 24 40 140 140 140 140 140 140 140 140 140 | 3 33.3 -42 51 311.05 19.36 F270 -20 131 184 | 3 33.5 -31 40 313.32 30.35 F444 65 -76 99 3 33.7 -42 33 311.18 19.64 F270 -16 147 180 | 4 -35 13 312.76 26.83 F383 -54 4 218
7 -33 58 313.55 27.97 F383 -29 71 193 | 3 39.0 -35 33 313.72 26.32 F383 -4 -14 168 1
3 39.8 -36 27 313.69 25.41 F383 5 -62 159 1 | -34 38 314.42 27.12 F383 21 36 143 2
-35 45 314.49 25.97 F383 37 -24 127 1
-37 54 314.84 23.67 F325 -91 127 255 2 | 3 47.5 -32 51 316.33 28.55 F383 92 129 72 3 48.2 -33 22 316.34 28.01 F383 100 101 64 | -34 40 316.03 26.74 F383 100 32 64
-30 17 317.47 30.94 F445 -24 -1 188
-32 52 317.50 28.26 F383 150 127 14 | -30 17 318.34 30.73 F445 19 -1 145 163
-27 50 319.54 32.99 F510 -57 -138 221 26
-24 43 321.49 35.75 F510 -18 29 182 193 | 3 57.7 -22 59 322.22 37.38 F510 -15 122 179 28
4 02.9 -23 43 323.34 36.30 F510 49 82 115 24 | -27 01 323.14 32.85 F510 101 -95 63 6
-18 54 327.10 40.33 F578 71 72 93 23 | 4 10.9 -12 12 12 12 12 12 12 12 12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | -23 58 326.22 35.11 F511 -82 67 246 23 -29 55 323.70 29.56 F446 6 16 158 18 | 4 17.9 -3.0 -2.0 -2.1 | 4 18.0 -24 53 326.71 33.95 F511 -38 18 202 1
4 18.6 -22 16 328.17 36.28 F511 -30 158 194 3 | 2 -19 28 329-80 38.77 7579 -60 41 224 2
17 44 331.10 40.21 7579 -45 134 209 2
4 -86 55 304.38 -24.34 7009 -109 -125 273 | -19 44 331.27 37.92 F579 15 27 149 19 -19 07 332.05 38.30 F579 36 59 128 22 -17 42 333.06 39.49 F579 45 135 119 29 -23 33 329.84 34.24 F511 83 89 81 25 -25 53 75 75 75 75 75 75 75 75 75 75 75 75 75 | 87 AG7 G7T GA- /### T7:00 CK:/70 CC /7- 0:67 # | | RA (2000) Dec 1 h Rield r " r" | Tru (2000) Dec , teat Lead Jeen Lil | 40 13 18.2 -30 55 309.67 31.59 F444 -111 -37 275 1
33 13 18.9 -31 48 309.72 30.70 F444 -102 -84 266 | 55 13 19.2 -37 10 309.07 25.36 F382 43 -100 121 13 13 19.5 -8 13 10.63 31.65 13.00 13.45 F444 -83 69 247 2 43 13 20.8 -28 58 310.63 33.45 F444 -83 69 247 2 | 4 13 24.1 -31 39 311.02 30.70 F444 -43 -75 207 | 3 27.9 -31 29 311.99 30.74 F444 1 -66 163 3 29.9 -29 31 312.87 32.60 F444 24 40 140 3 31.8 -33 13 312.59 28.89 F383 -83 110 247 | 6 13 33.3 -42 51 311.05 19.36 F270 -20 131 184 | 5 13 33.5 -31 40 313.32 30.35 F444 65 -76 99 8 13 33.7 -42 33 311.18 19.64 F270 -16 147 180 | 3 34.4 -35 13 312.76 26.83 F383 -54 4 218
3 36.7 -33 58 313.55 27.97 F383 -29 71 193 | 8 13 39.0 -35 33 313.72 26.32 F383 -4 -14 168 1
2 13 39.8 -36 27 313.69 25.41 F383 5 -62 159 1 | 3 41.2 -34 38 314.42 27.12 F383 21 36 143 2
3 42.7 -35 45 314.49 25.97 F383 37 -24 127 1
3 46.8 -37 54 314.84 23.67 F325 -91 127 255 2 | 37 13 47.5 -32 51 316.33 28.55 F383 92 129 72 08 13 48.2 -33 22 316.34 28.01 F383 100 101 64 | 26 13 48.4 -34 40 316.03 26.74 F383 100 32 64 03 13 49.2 -30 17 317.47 30.94 F445 -24 -1 188 38 13 52.6 -32 52 317.50 28.26 F383 150 127 14 | 03 13 52.8 -30 17 318.34 30.73 F445 19 -1 145 163
36 13 54.3 -27 50 319.54 32.99 F510 -57 -138 221 26
29 13 57.5 -24 43 321.49 35.75 F510 -18 29 182 193 | 45 13 57.7 -22 59 322.22 37.38 F510 -15 122 179 28 29 14 02.9 -23 43 323.34 36.30 F510 49 82 115 24 | 4 07.5 -27 01 323.14 32.85 F510 101 -95 63 64 08.5 -18 54 327.10 40.37 F578 71 72 93 23 | 14 10.9 - 2 15 327.24 39.12 F578 101 14 63 17 14 16.9 18 18 18 18 18 18 18 18 18 18 18 18 18 | 4 14.3 -23 58 326.22 35.11 F511 -82 67 246 23 | 2 14 17.9 -3.2 2 22.12 43.00 F.303 13.9 73.9 14 15.7 4 15.7 4 15.7 4 15.7 4 15.7 4 15.7 4 15.7 5 15.8 53.8 52.84 F446 39 -127 125 3 | 0 14 18.0 -24 53 326.71 33.95 F511 -38 18 202 1
3 14 18.6 -22 16 328.17 36.28 F511 -30 158 194 3 | 19:2 - 19 28 329:80 38:77 7579 -60 41 224 24 20:4 - 17 44 331.10 40.21 7579 -45 134 209 2 4 32.4 -86 55 304.38 -24.34 7009 -109 -125 273 | 4 25.2 -19 44 331.27 37.92 F579 15 27 149 19 4 26.8 -19 07 332.05 38.30 F579 36 59 128 22 4 27.4 -17 42 333.06 39.49 F579 45 135 119 29 4 27.7 -23 33 329.84 34.24 F511 83 89 81 25 4 27.7 -23 33 329.84 34.24 F511 83 89 81 25 | 28 Y 23 CZ T CY - 1444 T2.US CY.35 CZ TZ CY - 185 T29 Z39 Z8 | | RA (2000) Dec 1 h Rield 7 " " 7" | Tru (2000) Dec , teat Lead Jeen Lil | -30 40 13 18.2 -30 55 309.67 31.59 F444 -111 -37 275 1 -31 33 13 18.9 -31 48 309.72 30.70 F444 -102 -84 266 | -36 bb 13 19.2 -37 10 309.07 25.36 F382 43 -100 121 -33 13 13 132 49 115 2 -28 43 13 20.8 -28 58 310.63 33.45 F444 -83 69 247 2 | 31 24 13 24.1 -31 39 311.02 30.70 F444 -43 -75 207 28 37 13 24.9 -28 52 311 71 33 42 F444 -44 74 198 | 4 13 27.9 -31 29 311.99 30.74 F444 1 -66 163 163 13 29.9 -29 31 312.87 32.60 F444 24 40 140 140 18 13 31.8 -33 13 312.59 28.89 F383 -83 110 247 | 2 36 13 33.3 -42 51 311.05 19.36 F270 -20 131 184 | 1 25 13 33.5 -31 40 313.32 30.35 F444 65 -76 99 2 18 13 33.7 -42 33 311.18 19.64 F270 -16 147 180 | 8 13 34.4 -35 13 312.76 26.83 F383 -54 4 218
3 13 36.7 -33 58 313.55 27.97 F383 -29 71 193 | 35 18 13 39.0 -35 33 313.72 26.32 F383 -4 -14 168 1
36 12 13 39.8 -36 27 313.69 25.41 F383 5 -62 159 1 | 3 13 41.2 -34 38 314.42 27.12 F383 21 36 143 2
0 13 42.7 -35 45 314.49 25.97 F383 37 -24 127 1
0 13 46.8 -37 54 314.84 23.67 F325 -91 127 255 2 | -32 37 13 47.5 -32 51 316.33 28.55 F383 92 129 72 -33 08 13 48.2 -33 22 316.34 28.01 F383 100 101 64 | -34 26 13 48.4 -34 40 316.03 26.74 F383 100 32 64 -30 03 13 49.2 -30 17 317.47 30.94 F445 -24 -1 188 -32 38 13 52.6 -32 52 317.50 28.26 F383 150 127 14 | -30 03 13 52.8 -30 17 318.34 30.73 F445 19 -1 145 163 -27 36 13 54.3 -27 50 319.54 32.99 F510 -57 -138 221 26 -24 29 13 57.5 -24 43 321.49 35.75 F510 -18 29 182 193 | -22 45 13 57.7 -22 59 322.22 37.38 F510 -15 122 179 28 -23 29 14 02.9 -23 43 323.34 36.30 F510 49 82 115 24 | 14 07.5 -27 01 323.14 32.85 F510 101 -95 63 6 14 08.5 -18 54 327.10 40.33 F578 71 72 93 23 14 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2 44 14 10.9 - 12 15 327.24 37.12 F578 101 14 63 17
2 46 14 14.1 - 22 59 326.63 36.04 F511 -85 119 249 28 | 23 45 14 14.3 -23 58 326.22 35.11 F511 -82 67 246 23 22 42 14 14.8 -29 55 323.70 29.56 F446 6 16 158 18 | 2 22 14 15.7 -46 42 312.16 43.74 F29.9 -15.9 71 303 43
2 22 14 15.7 -46 42 313.28 26.84 F446 39 -127 125 3 | 24 40 14 18.0 -24 53 326.71 33.95 F511 -38 18 202 1 | 2 | 1 14 25.2 -19 44 331.27 37.92 F579 15 27 149 19 4 14 26.8 -19 07 332.05 38.30 F579 36 59 128 22 9 14 27.4 -17 42 333.06 39.49 F579 45 135 119 29 0 14 27.7 -23 33 329.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.7 -23 37 29.84 34.24 F511 83 89 81 25 0 14 27.84 28.84 2 | 87 AG7 G7T GA- /***
T7:00 CA:/70 CC /7- 0:67 *T O* | | (1950) Dec RA (2000) Dec l h Kield r " r" | lle und food) Der i leid frem frem frem fill | 5.4 -30 40 13 18.2 -30 55 309.67 31.59 F444 -111 -37 275 1 | 24 - 3-6 55 13 19.2 - 37 10 309.07 25.36 F382 43 - 100 121 6.7 - 33 13 19.5 - 3 13 309.63 25.03 29.03 1332 49 8 115 2 8.0 - 28 43 13 20.8 - 28 58 310.63 33.45 F444 - 83 69 247 2 | 1.3 -31 24 13 24.1 -31 39 311.02 30.70 F444 -43 -75 207 2.1 -28 37 13 24.9 -28 52 311 71 33 42 F444 -34 74 108 | 5.1 -31 14 13 27.9 -31 29 311.99 30.74 F444 1 -66 163 17.1 -29 16 13 29.9 -29 31 312.87 32.60 F444 24 40 140 140 140 -32 58 13 31.8 -33 13 312.59 28.89 F383 -83 110 247 | 0.3 -42 36 13 33.3 -42 51 311.05 19.36 F270 -20 131 184 | 0.7 -31 25 13 33.5 -31 40 313.32 30.35 F444 65 -76 99 0.7 -42 18 13 33.7 -42 33 311.18 19.64 F270 -16 147 180 | 1.5 -34 58 13 34.4 -35 13 312.76 26.83 F383 -54 4 218 3.8 -33 43 13 36.7 -33 58 313.55 27.97 F383 -29 71 193 | 6.1 -35 18 13 39.0 -35 33 313.72 26.32 F383 -4 -14 168 1
6.9 -36 12 13 39.8 -36 27 313.69 25.41 F383 5 -62 159 1 | 8.3 -34 23 13 41.2 -34 38 314.42 27.12 F383 21 36 143 2
9.8 -35 30 13 42.7 -35 45 314.49 25.97 F383 37 -24 127 1
3.9 -37 40 13 46.8 -37 54 314.84 23.67 F325 -91 127 255 2 | 4.6 -32 37 13 47.5 -32 51 316.33 28.55 F383 92 129 72 5.3 -33 08 13 48.2 -33 22 316.34 28.01 F383 100 101 64 | 5.5 -34 26 13 48.4 -34 40 316.03 26.74 F383 100 32 64 6.3 -30 03 13 49.2 -30 17 317.47 30.94 F445 -24 -1 188 9.7 -32 38 13 52.6 -32 52 317.50 28.26 F383 150 127 14 | 9.9 -30 03 13 52.8 -30 17 318.34 30.73 F445 19 -1 145 163
1.5 -27 36 13 54.3 -27 50 319.54 32.99 F510 -57 -138 221 26
4.7 -24 29 13 57.5 -24 43 321.49 35.75 F510 -18 29 182 193 | 4.9 -22 45 13 57.7 -22 59 322.22 37.38 F510 -15 122 179 28
0.1 -23 29 14 02.9 -23 43 323.34 36.30 F510 49 82 115 24 | 4.6 -26 47 14 07.5 -27 01 323.14 32.85 F510 101 -95 63 6
5.7 -18 40 14 08.5 -18 54 327.10 40.33 F578 71 72 93 23 75 75 -20 04 14 10 4 -20 16 20 50 60 77 03 8578 71 72 93 23 | 8.1 -19 44 14 10.9 -12 15 327.24 39.12 1578 101 14 63 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1.5 -23 45 14 14.3 -23 58 326.22 35.11 F511 -82 67 246 23 1.9 -29 42 14 14.8 -29 55 323.70 29.56 F446 6 16 158 18 18 18 18 18 18 | 2.5 - 46 29 14 15.7 - 44 42 317.64 13.74 12.81 111 - 78 53 8
4.9 - 32 22 14 17.9 - 32 35 323.28 26.84 1446 39 - 127 125 3 | 5.1 -24 40 14 18.0 -24 53 326.71 33.95 F511 -38 18 202 1
5.8 -22 03 14 18.6 -22 16 328.17 36.28 F511 -30 158 194 3 | 24 - 12 12 14 19.2 - 19 28 329.80 38.77 F579 - 60 41 224 2
7.6 - 17 31 14 20.4 - 17 44 331.10 40.21 F579 - 45 134 209 2
8.0 -86 42 14 32.4 - 86 55 304.38 - 24.34 F009 - 109 - 125 273 | 2.4 -19 31 14 25.2 -19 44 331.27 37.92 F579 15 27 149 19 40 -18 54 14 26.8 -19 07 332.05 38.30 F579 36 59 128 22 4.6 -17 29 14 27.4 -17 42 333.06 39.49 F579 45 135 119 29 4.9 -23 20 14 27.7 -23 33 329.84 34.24 F511 83 89 81 25 4.9 -23 20 14 27.7 -23 33 329.84 34.24 F511 83 89 81 25 4.9 -23 20 14 27.7 -23 33 29.84 34.24 F511 83 89 81 25 4.9 1 27 4.0 1 20 0 27 53 27 63 20 20 20 20 20 20 20 20 20 20 20 20 20 | 92 627 GAT GA- /##4 T2:00 c6:120 c6 /2- 0.62 HT O# /2- T:0 | | RA (2000) Dec 1 h Rield r " r" | lle und food) Der i leid frem frem frem fill | 15.4 -30 40 13 18.2 -30 55 309.67 31.59 F444 -111 -37 275 1 16.1 -31 33 13 18.9 -31 48 309.72 30.70 F444 -102 -84 266 | -36 55 13 19.2 -37 10 309.07 25.36 F382 43 -100 121 .71 -33 13 13 19.5 -37 28 309.63 29.03 F444 -83 69 115 2 .0 -28 43 13 20.8 -28 58 310.63 33.45 F444 -83 69 247 2 | 3 21.3 -31 24 13 24.1 -31 39 311.02 30.70 F444 -43 -75 207 | 1 -31 14 13 27.9 -31 29 311.99 30.74 F444 24 40 140 140 -32 58 13 31.8 -33 13 312.59 28.89 F383 -83 110 247 | 30.3 -42 36 13 33.3 -42 51 311.05 19.36 F270 -20 131 184 | 30.7 -31 25 13 33.5 -31 40 313.32 30.35 F444 65 -76 99 30.7 -42 18 13 33.7 -42 33 311.18 19.64 F270 -16 147 180 | .5 -34 58 13 34.4 -35 13 312.76 26.83 F383 -54 4 218 .8 -33 43 13 36.7 -33 58 313.55 27.97 F383 -29 71 193 | 3 36.1 -35 18 13 39.0 -35 33 313.72 26.32 F383 -4 -14 168 1
3 36.9 -36 12 13 39.8 -36 27 313.69 25.41 F383 5 -62 159 1 | .3 -34 23 13 41.2 -34 38 314.42 27.12 F383 21 36 143 2
.8 -35 30 13 42.7 -35 45 314.49 25.97 F383 37 -24 127 1
.9 -37 40 13 46.8 -37 54 314.84 23.67 F325 -91 127 255 2 | 3 44.6 -32 37 13 47.5 -32 51 316.33 28.55 F383 92 129 72 3 45.3 -33 08 13 48.2 -33 22 316.34 28.01 F383 100 101 64 | .5 -34 26 13 48.4 -34 40 316.03 26.74 F383 100 32 64 3 -30 03 13 49.2 -30 17 317.47 30.94 F445 -24 -1 188 7 -32 38 13 52.6 -32 52 317.50 28.26 F383 150 127 14 | .9 -30 03 13 52.8 -30 17 318.34 30.73 F445 19 -1 145 163
.5 -27 36 13 54.3 -27 50 319.54 32.99 F510 -57 -138 221 26
.7 -24 29 13 57.5 -24 43 321.49 35.75 F510 -18 29 182 193 | 3 54.9 -22 45 13 57.7 -22 59 322.22 37.38 F510 -15 122 179 28
4 00.1 -23 29 14 02.9 -23 43 323.34 36.30 F510 49 82 115 24 | .6 -26 47 14 07.5 -27 01 323.14 32.85 F510 101 -95 63 6
77 -18 40 14 08.5 -18 54 327.10 40.33 F578 71 72 93 23 66 27 04 14 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 4 08:1 -19 44 14 10:9 -12 59 327.24 97:12 F578 101 14 63 17 4 11:3 -22 46 14 14:1 -22 59 326.63 36.04 F511 -85 119 249 28 | .5 -23 45 14 14.3 -23 58 326.22 35.11 F511 -82 67 246 23 9 -29 42 14 14.8 -29 55 323.70 29.56 F446 6 16 158 18 | 4 12.5 -46 29 14 15.7 -46 42 317.64 13.74 F273 13.9 53 44 12.5 -46 29 14 11.7 -32 35 323.28 26.84 F446 39 -127 125 3 | 4 15.1 -24 40 14 18.0 -24 53 326.71 33.95 F511 -38 18 202 1
4 15.8 -22 03 14 18.6 -22 16 328.17 36.28 F511 -30 158 194 3 | 78 - 19 13 14 20.4 - 19 28 329.80 38.77 F579 - 60 41 224 2
6 -17 31 14 20.4 1 44 313.10 40.21 F579 - 45 134 209 2
0 -86 42 14 32.4 -86 55 304.38 -24.34 F009 -109 -125 273 | .4 -19 31 14 25.2 -19 44 331.27 37.92 F579 15 27 149 19 20 -18 54 14 26.8 -19 07 332.05 38.30 F579 36 59 128 22 6 -17 29 14 27.4 -17 42 333.06 39.49 F579 45 135 119 29 -23 20 14 27.7 -23 33 329.84 34.24 F511 83 89 81 25 1 -27 40 14 20 0 -27 53 275 33 29.84 | 27 GZT GZT GK - 189 TZ:00 CK:/ZC CC /Z- O.6Z HT OR /Z- TS SQ SR | © American Astronomical Society • Provided by the NASA Astrophysics Data System | p | |----------| | ne | | ij | | on | | - | | 4 | | щ | | 품 | | Ā | | \vdash | | | B | 17.
17.
17. | 77. | 17. | 17. | 17.
17.
16. | 17.
13.
17.
17. | 17. | 17. | 17. | 17. | |-----------|-----------------|--|--|---|--|---|--|---|--|--|--| | | Ω | 00400 | 00000 | 20000 | 00000 | വവയയയ | ឧឧឧଧ | വവവവവ | വഴവവ | မှသမမည | വവവയയ | | | <u>بر</u> | 07011 | 13000 | 0000 | m0101 | 10000 | ε 4
04400 | 00100 | 00000 | 0000 | 03112 | | | Z | | | | | | 0.0143 | | | | | | | Previous | 0 | | | Φ | Δ | Ω | | | ø | | | | Obs | 10
10
10
10
10,10 | 22222 | 92259 | 22222 | 10
10
10,1A | 10, 10
10, 10
10 | 70
10
10
10 | 100000 | 10
10
10,1A
10,1A | 10,1A
10,1A
10 | | | m ₁₀ | 18.4
18.4
15.9
18.9 | 17.8
19.3
17.5
19.6
19.3 | 19.3
17.6
17.5
17.6
18.2 | 19.5
18.7
19.3
19.4 | 18.7
19.3
19.2
17.0 | 17.7
14.2:
18.0
18.0 | 17.9
18.8
18.4:
19.6 | 18.7
18.9
17.0
19.2
18.3: | 19.1:
19.4
19.5
17.6
19.0 | 19.6
19.1
18.9
18.5: | | | m ₃ |
17.8
17.7?
14.2
17.8 | 17.2
18.3
16.1
18.7 | 18.6
16.8
16.7
17.2 | 18.6
18.1
18.6
18.6
18.0 | 18.4
17.4
18.5
16.1: | 15.9
13.1
16.7
17.6 | 16.5
17.6
17.8:
18.3 | 18.0:
18.2
16.8
18.4 | 18.2:
18.4
18.6
17.1
18.5: | 19.0
18.2
17.5
17.6
16.8 | | | m_1 | 16.6
17.4?
14.1
17.5: | 16.8
16.4
15.5
17.8 | 17.5
16.5
15.7
16.6
15.9 | 17.9
18.0
17.7
16.7
17.6 | 17.2
15.6
15.8
15.8 | 15.3
12.4
15.6
16.1 | 15.4
16.9
18.9
18.1 | 17.1:
17.0
16.2
17.4? | 16.1:
18.2
17.8
16.3:
17.8 | 17.7
18.0
16.3
17.2
15.3 | | | ٥ | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 129
48
41
150
75 | 96
33
36
36 | 141
43
61
39
68 | 34
102
39:
38: | 33
597
32
30. | 36
49
64
38
139 | 185
34
84
80
45: | 46:
32
39:
47: | 83
60
67
135
42 | | | T_{B-M} | 11.
11.
11.
11.
1 | 111111111111111111111111111111111111111 | II-III
III-III
II:
I-II | 11-111
111
1-11
11-11 | | 1
1
1
1-11 | II
II:
II-II
II-III: | 1-11
11-111
1-11
1 111 | 1-11
11-11
11-111
11-111 | 1-11
11-11
11-11
11-111 | | | T_A | н
н
к
к | RHE | жжннн | RI RI | IR RI: | нннян | r RI | ннжжн | найна | I RI: | | Continued | Abell | 3601
3602
3603
3604 | 3606
3607
3608
3609
3610 | 3611
3612
3613
3614
3615 | 3616
3617
3618
3619
3620 | 3621
3622
3623
3624
3625 | 3626
3627
3628
3628
3629 | 3631
3632
3633
3634
3635 | 3636
3637
3638
3639
3640 | 3641
3642
3643
3644
3645 | 3646
3647
3648
3649
3650 | | 4 - | | | | | | | | | | | | | TABLE | x ıı yıı | 69 95
150 213
206 78
205 259
190 265 | 177 267
205 198
104 124
305 291
120 99 | 113 127
228 279
226 143
187 175
176 146 | 57 244
314 178
203 252
156 46
169 245 | 145 182
105 240
297 233
264 238
206 69 | 225 229
279 118
184 161
205 303
155 116 | .01 225
105 92
78 167
67 163 | 268 155
62 225
304 266
213 109
175 183 | 220 271
204 75
244 249
147 160
226 53 | 323 127
222 47
125 133
277 291
239 41 | | | ycen 3 | 669
669
01
12
12 | 103 1
34 2
-40 1
127 3 | -37 1
115 2
-21 2
11 1 | 80
14
88
18
18
11 | 118
76
10
10
10
10
10
10
10
10
10
10
10
10
10 | 2 | 61 1
-72 2
3 -1
145 2 | -9
61
19
19 | 107
-89
85
24
111 | -37
1117
-31
127 | | | Lcen ye | 95
142
141
120 | | 51 -
-64 1
-62 -
-23 - | 7 | 19
59
133
100 | -61
-115 -
-41 1 | 63
-41 -
86
97 | 104
102
140
-49 - | -56 1
-40 -
-80 -
17 -
-62 -1 | .159 -
-58 -1
39 -
-113 1 | | | Field | F579
F272
F447
F447 | F447
F512
F447
F448 - | F580
F448
F448
F022 | F448
F582 -
F449
F582 | F514
F582
F515 - | F009
F137 -
F009
F043 | F024
F281
F281
F183 | F282 -
F045 -
F233 - | F283
F142
F025
F185 | F339 -
F185
F283
F461 - | | | q | 35.66
14.88
26.27
29.30 | 29.15
32.02
26.15
28.28 | | 60.44.00 | 25.66
29.87
25.03
22.55 | 23.25
-7.26
18.05
22.86
18.99 | -25.74
-17.36
-19.10
-22.96 | 20.43
27.74
24.03
26.31
28.61 | 25.54
28.93
28.85
29.07 | -26.68
-29.57
-27.84
-24.18 | | | 1 | 331.94
321.39
326.98
328.70 | 329.34
332.16
329.36
332.30 | აით. 10.44
1 | | 342.55
347.61
345.05
308.03 - | 308.30 -
325.34 -
315.66 -
309.79 - | 315.36 -
349.21 -
351.53 -
341.52 - | 351.76 -
321.30 -
355.36 -
346.88 - | 355.85 -
335.12 -
344.69 -
314.09 - | 358.90 -
340.42 -
353.49 -
13.10 - | | | RA (2000) Dec | 14 31.6 -21 30
14 32.7 -44 20
14 33.5 -31 48
14 35.5 -28 25 | 14 36.1 -28 18
14 39.8 -24 37
14 42.5 -30 57
14 48.6 -21 25 | 4 4 4 4 5 4 6 4 6 4 7 4 8 6 7 | 15 09.3 -28 43
15 15.2 -19 54
15 20.1 -28 33
15 24.2 -32 24
15 26.7 -18 40 | 15 28.7 -24 52
15 31.8 -18 46
15 38.1 -23 54
15 56.7 -83 29
16 13.0 -86 48 | 16 21.6 -83 47
16 15.5 -60 54
16 31.0 -75 10
16 39.2 -82 28
16 39.7 -75 59 | 8 34.1
8 39.7
8 53.4
8 59.0 | 19 00.9 -45 05
19 17.0 -73 42
19 25.5 -42 57
19 28.0 -50 56
19 34.9 -79 34 | 19 34.1 -42 54
19 36.5 -61 37
19 42.2 -53 16
19 46.6 -79 58
19 43.8 -56 56 | 19 43.6 -40 31
19 44.4 -57 03
19 44.0 -45 28
19 49.8 -27 32
20 07.1 -86 48 | | | RA (1950) Dec | 14 28.8 -21 17
14 29.5 -44 07
14 30.5 -31 35
14 30.6 -28 12
14 32.1 -28 07 | 14 33.2 -28 05
14 36.9 -24 25
14 39.5 -30 45
14 45.4 -27 38
14 45.7 -21 13 | 14 46.3 -20 41
14 51.8 -27 52
14 51.8 -30 25
14 55.2 -29 49
14 55.7 -80 22 | 15 06.3 -28 32
15 12.3 -19 43
15 17.1 -28 23
15 21.1 -32 14
15 23.8 -18 30 | 15 25.7 -24 42
15 28.9 -18 36
15 35.1 -23 45
15 46.0 -83 21
15 53.4 -86 40 | 16 09.9 -83 40
16 11.2 -60 47
16 24.6 -75 04
16 28.9 -82 22
16 33.0 -75 54 | 18 26.0 -78 50
18 36.0 -46 22
18 49.9 -56
18 54.9 -55 00
18 55.2 -42 16 | 18 57.3 -45 10
19 10.8 -73 48
19 22.0 -43 03
19 24.2 -51 03
19 26.7 -79 41 | 19 30.6 -43 01
19 32.0 -61 44
19 38.3 -53 24
19 38.7 -57 04 | 19 40.2 -40 39
19 40.3 -57 11
19 40.4 -45 36
19 46.7 -27 40
19 46.7 -86 57 | | | Abell | 3601
3602
3603
3604
3605 | 3606
3607
3608
3609 | 3611
3612
3613
3614 | 3616
3617
3618
3619
3620 | 93 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3626
3627
3628
3629
3630 | 3631
3632
3633
3634
3635 | 3636
3637
3638
3639
3640 | 3641
3642
3643
3644
3644 | 3646
3647
3648
3649
3650 | | 8 | 15.4
17.1
16.9
17.2 | 13.6
17.1
17.1
17.1
17.3 | 17.1
17.1
17.3
17.1 | 17.2
15.4
17.1
17.3 | 17.1 | 17.2
16.9
17.2
17.3 | 17.
17.
17. | 17.
17.
17. | 16.6
17.1
16.9
17.1
16.2 | 16.8
17.2
15.0
17.2 | |------------------------------------|--|---|--|---|--|--
--|--|--|---| | | อดนณต | 6555 | សហសហស | വഴവന | വഴഴവ | ខេត្តបាច | ល4000 | ល4000 | សសលល4 | លលកលល | | z R | 0.0588 1
0 0.0475 0 | 0.0185 0 | 1
0
2
2
2
2
0.237
2
2
0.237 | 0.0530 2 | H 0 0 6 H | (0.0404) 0
(0.0330) 1
1
0 | 1
1
0
0
0
0
0
0
0 | 0.0759 0
1
0 | N0H0N | 40400 | | Previous | 00 g 0 | 0 | D D D | BDQ
B | S | | Ω | BDQ | 999 | a | | Obs | 10, 1 4
10, 10
10 | 10
10
10
10,13 | 2C
1C
1A
20,2A
20,1A | 20,1A
20
1C,10
1C | 99999 | 99999 | 99999 | 92999 | 99999 | 120000 | | m ₁₀ | 15.4
17.5
16.8
18.1
19.2 | 13.5
17.9
17.7
17.2 | 19.2
17.7
19.3
18.2:
19.0 | 18.6
15.3
17.6
19.2
18.7 | 17.5
18.6
19.6
19.3
18.6 | 18.1
16.8
18.1
19.5 | 17.4
16.2
18.0
17.5 | 18.3
16.3:
18.1
17.8 | 16.5
17.0
16.8
17.0 | 16.7
18.0
14.9
18.2
17.7 | | m ₃ | 15.1
16.8
15.6
17.7
18.1 | 13.0:
17.1
17.2
15.7 | 18.8
17.3
19.0
17.1
18.6: | 17.9
15.1
17.2
17.8
17.8 | 16.7
17.8
19.1
18.9
17.3 | 16.8
16.0
17.6
18.2
18.0 | 16.1
16.0
17.7
16.0
17.6 | 16.2
15.6
18.0
17.1 | 16.2
16.8
16.0
15.5 | 16.1
16.5
13.6
17.0 | | m ₁ | 13.9
16.5
14.6
17.4 | 12.5
17.0
16.6?
15.5
18.8 | 18.5
16.9
18.8
16.3 | 17.0
13.5
16.9
17.6 | 16.8
18.8
18.2
16.3 | 16.1
14.5
17.4
17.6 | 16.0
15.5
17.5
15.9 | 15.3
15.2
16.8
16.8 | 15.4
15.4
15.4
14.6 | 15.4
12.4
15.9
16.3 | | ٥ | 75:
31
42
110
34 | 35
75
56
139
32: | 74
39
84
64
120? | 80:
85:
96
42 | 55
38
40
161
54 | 33:
60?
44
44 | 33.4
30.2
30.2 | 36
46
31
42 | 115
46
77
41
123 | 58
71
43
43 | | T_{B-M} | | 11.111 | | | 1-11
111
111
111-111 | II-II
III
II-II | | 1-11
11-11
11-11
11-111 | | II
I-II
II-III | | T_A | HRHRH | ннёкк | E E E | жнжнк | RILI | H H H H | RRILIR | нинжц | RIRE | RIHIE | | Abell | 3651
3652
3653
3653
3654 | 3656
3657
3659
3669 | 3661
3662
3663
3664
3665 | 3666
3667
3668
3669
3670 | 3671
3672
3673
3674 | 3676
3677
3678
3679
3680 | 3681
3682
3683
3684
3685 | 3686
3687
3688
3689 | 3691
3692
3693
3694 | 3696
3697
3698
3699
3700 | | 11 1 | | | | | | | | | | | | n Yn | 5 154
6 228
0 317
0 162
18 | | | 7 109
9 58
9 78
4 254
8 172 | 3 185
9 74
6 60
12 157 | 40 44 | 3 241
4 52
5 285
3 247
3 79 | | | | | nx. | 165
166
160
210
276 | 154
137
128
128
52 | 97
89
90
88
88 | 259
259
24
258 | 273 1
219
46
182 1 | 165
176
110
39
32 | 7 153
2 144
1 145
3 258
113 | 204
188
101
93 | 72
157
88
84
84 | 78
83
156
43
323 | | Vcen XII | 1 -10 165
2 64 166
4 153 160
2 -146 276 | 0 73 154
7 39 137
6 24 128
6 -10 128
2 137 52 | 7 -109 97
5 -161 89
4 121 40
4 -46 90
4 89 288 | 7 -55 87
5 -106 259
5 -86 39
0 90 24
8 258 | 21 273 1
-90 219
-104 46
-7 182 1 | -25 165
81 176
-87 110
-33 39 | 77 153
-112 144
121 145
83 258
-85 113 | -83 204
98 188
-6 89
1 -21 93 | 98 72
-88 157
20 88
43 84
-51 84 | -2 78
-113 83
-21 156
132 43
39 323 | | xcen Ycen XII | 5 -1 -10 165
5 -2 64 166
5 -4 153 160
6 -46 -2 210
5 -112 -146 276 | 10 73 154
1 27 39 137
1 36 24 128
36 -10 128
5 112 137 52 | 67 -109 97
75 -161 89
124 121 40
74 -46 90
-124 89 288 | 77 -55 87 -95 -106 259 125 -86 39 140 24 8 258 | -109 21 273 1
-55 -90 219
118 -104 46
-18 -7 182 1 | -1 -25 165
-12 81 176
54 -87 110
125 -33 39
132 10 32 | 11 77 153
20 -112 144
19 121 144
-94 83 258
51 -85 113 | -40 -83 204
-24 98 188
75 -6 89
63 -63 101
71 -21 93 | 92 98 72
7 -88 157
76 20 88
80 43 84
80 -51 84 | 86 -2 78
81 -113 83
8 -21 156
121 132 43
-159 39 323 | | cen Vcen XII | F185 -1 -10 165
F105 -2 64 166
F185 4 153 160
F799 -46 -2 210
F026 -112 -146 276 | F339 10 73 154
F461 27 39 137
F461 36 24 128
F461 36 -10 128
F185 112 137 52 | F339 67 -109 97
F105 75 -161 89
F185 124 121 40
F025 74 -46 90
F186 -124 89 288 | F025 77 -55 87
F186 -95 -106 259
F339 125 -86 39
F339 140 90 24
F462 -94 8 258 | F340 -109 21 273 1
F340 -55 -90 219
F284 118 -104 46
F462 -18 -7 182 1
F186 -27 103 191 2 | F340 -1 -25 165
F400 -12 81 176
F462 54 -87 110
F073 132 10 32 | F400 11 77 153
F400 20 -112 144
F400 19 121 145
F026 -94 83 258
F186 51 -85 113 | F528 -40 -83 204
F106 -24 98 188
F340 75 -6 89
F186 3 -63 101
F400 71 -21 93 | F240 92 98 72
F234 7 -88 157
F400 76 20 88
F400 80 43 84
F400 80 -51 84 | F400 86 -2 78
F186 81 -113 83
F528 8 -21 156
F340 121 132 43
F401 -159 39 323 | | ield xcen Ycen XII | 30.49 F185 -1 -10 165
30.87 F105 -2 64 166
30.26 F185 4 153 160
28.28 F939 -46 -2 210
29.35 F026 -112 -146 276 | 139 F339 10 73 154
17 F461 27 39 137
42 F461 36 24 128
65 F461 36 10 128
29 F185 112 137 52 | 1.5 F339 67 -109 97 17 F105 75 -161 89 554 F185 124 121 40 60 F025 74 89 288 95 F186 -124 89 288 | 0.10 F025 77 -55 87
3.39 F186 -95 -106 259
2.11 F339 125 -86 39
1.65 F339 140 90 24
9.97 F462 -94 8 258 | 2.32 F340 -109 21 273 1
3.62 F340 -55 -90 219
4.33 F284 118 -104 46
4.76 F186 -27 103 191 2 | 4.43 F340 -1 -25 165
3.36 F400 -12 81 176
3.11 F462 54 -87 110
3.59 F073 125 -33 39
3.83 F073 125 10 32 | 33.80 F400 11 77 153
34.65 F400 20 -112 144
33.78 F400 19 121 145
31.66 F026 -94 83 258
36.11 F186 51 -85 113 | 35.46 F106 -24 98 188
35.46 F106 -24 98 188
35.80 F140 75 -6 89
36.27 F186 63 -63 101
35.27 F400 71 -21 93 | 35.78 F340 92 98 72
36.75 F234 7 -88 157
35.22 F400 76 20 88
35.20 F400 80 -51 84
35.55 F400 80 -51 84 | 35.46 F400 86 -2 78
36.67 F186 81 -113 83
33.31 F528 8 -21 156
36.19 F340 121 132 43
35.68 F401 -159 39 323 | | Field xcen ycen x11 | 0.49 F185 -1 -10 165
0.87 F105 -2 64 166
0.26 F185 4 153 160
8.28 F7399 -46 -2 210
9.35 F7026 -112 -146 276 | 1.96 -29.39 F339 10 73 154
2.25 -27.17 F461 27 39 137
2.10 -27.42 F461 36 24 128
1.33 -27.65 F461 36 10 128
6.26 -32.29 F185 112 137 52 | 58.34 -31.15 F339 67 -109 97 27.76 -32.17 F105 75 -161 89 45.94 -32.54 F185 124 121 40 13.06 F025 74 -46 90 45.24 -32.95 F186 -124 89 288 | .10 F025 77 -55 87 .39 F186 -95 -106 259 .11 F339 125 -86 39 .45 F339 140 90 24 8 258 .97 F462 -94 8 258 | 2 -32.32 F340 -109 21 273 17 -33.62 F340 -55 -90 219 5 -34.33 F284 118 -104 46 9 -31.43 F462 -18 -7 182 19 2 6 -34.76 F186 -27 103 191 29 | 88 -34.43 F340 -1 -25 165
-22 -33.36 F400 -12 81 176
-40 -33.11 F462 54 -87 110
-44 -33.59 F073 125 -33 39
-44 -33.83 F073 132 10 32 | 3.80 F400 11 77 153
4.65 F400 20 -112 144
3.78 F400 19 121 145
1.66 F026 -94 83 258
6.11 F186 51 -85 113 | .59 -32.76 F528 -40 -83 204
.11 -35.46 F106 -24 98 188
.55 -35.80 F340 75 -6 89
.71 -36.36 F186 63 -63 101
.33 -35.27 F400 71 -21 93 | 5.78 F340 92 98 72
6.75 F234 7 -88 157
5.22 F400 76 20 88
5.25 F400 80 -51 84 | .53 -35.46 F400 86 -2 78
.53 -36.67 F186 81 -113 83
.21 -33.31 F528 8 -21 156
.87 -36.19 F340 121 132 43
.94 -35.68 F401 -159 39 323 | | b Field xcen ycen XII | 2.80 -30.49 F185 -1 -10 165
2.75 -30.87 F105 -2 64 166
6.35 -30.26 F185 4 153 160
5.90 -28.28 F399 -46 -2 210
1.38 -29.35 F026 -112 -146 276 | 00.5 -38 31 1.96 -29.39 P339 10 73 154 01.6 -29 12 12.25 -27.17 F461 27 39 137 02.5 -29 24 12.10 -27.42 F461 36 24 128 02.6 -30 07 11.33 -27.65 F461 36 -10 128 05.8 -52 16 346.26 -32.29 F185 112 137 52 | 0 06.3 -41 56 358.34 -31.15 F339 67 -109 97 0 08.1 -67 54 327.76 -32.17 F105 75 -161 89 0 07.3 -52 33 345.94 -32.54 F185 124 121 40 0 14.0 -80 39 313.06 -30.06 F025 74 -46 90 0 9.8 -53 10 345.24 -32.95 F186 -124 89 288 | 12.86 -30.10 P025 77 -55 87
40.89 -33.39 F186 -95 -106 259
59.08 -32.11 F339 125 -86 39
2.95 -31.65 F339 140 90 24
12.57 -29.97 F462 -94 8 258 | 1.52 -32.32 F340 -109 21 273 1
59.27 -33.62 F340 -55 -90 219
53.05 -34.33 F284 118 -104 46
12.69 -31.43 F462 -18 -7 182 1
45.56 -34.76 F186 -27 103 191 2 | 25.3 -40 21 0.88 -34.43 F340 -1 -25 165 26.4 -33 21 9.22 -33.36 F400 -12 81 176 27.2 -31 31 11.40 -33.11 F462 54 -87 110 29.3 -70 24 324.44 -33.59 F073 125 -33 39 29.9 -69 31 325.44 -33.83 F073 132 10 32 | -33 25 9.26 -33.80 F400 11 77 153 -36 57 5.08 -34.65 F400 20 -112 144 -32 36 10.24 -33.78 F400 19 121 145 -78 05 15.58 -31.16 F026 -94 83 258 -56
25 341.21 -36.11 F186 51 -85 113 | 0 31.9 -26 24 17.59 -32.76 F528 -40 -83 204 0 33.4 -63 01 333.11 -35.46 F106 -24 98 188 0 32.8 -39 59 1.55 -35.80 F340 75 -6 89 0 33.8 -56 00 341.71 -36.36 F186 63 -63 101 0 33.9 -35 15 7.33 -35.27 F400 71 -21 93 | 0 34.1 -38 01 3.99 -35.78 F240 92 98 72 0 34.8 -51 30 34.29 -36.75 F234 7 -88 157 0 34.4 -34 29 8.28 -35.22 F400 76 20 88 0 34.7 -34 04 8.79 -35.20 F400 80 -51 84 0 34.8 -35 49 6.69 -35.55 F400 80 -51 84 | 0 35.2 -34 54 7.82 -35.46 F400 86 -2 78 0 36.6 -56 55 340.53 -36.67 F186 81 -113 83 0 36.0 -25 16 19.21 -33.31 F528 8 -21 156 0 36.7 -37 23 4.87 -36.19 F340 121 132 43 0 37.1 -34 03 8.94 -35.68 F401 -159 39 323 | | (2000) Dec l b Field xcen ycen x11 | 52.2 -55 05 342.80 -30.49 F185 -1 -10 165 52.8 -63 44 332.75 -30.87 F105 -2 64 166 52.6 -52 01 346.35 -30.26 F185 4 153 160 59.2 -34 54 55 -30.26 F185 4 153 160 60.0 62 14 311.38 -29.35 F026 -112 -146 276 | 57.2 -38 40 20 00.5 -38 31 1.96 -29.39 F339 10 73 154 58.5 -29 21 20 01.6 -29 12 12.25 -27.17 F461 27 39 137 59.4 -29 33 20 02.5 -29 24 12.10 -27.42 F461 36 24 128 59.5 -30 16 20 02.6 -30 07 11.33 -27.65 F461 36 -10 128 02.0 -52 25 -20 05.8 -52 16 346.26 -32.29 F185 112 137 52 | 0 02.9 -42 05 20 06.3 -41 56 358.34 -31.15 F339 67 -109 97 0 03.2 -68 03 20 08.1 -67 54 327.76 -32.17 F105 75 -161 89 0 03.5 -52 42 20 07.3 -52 33 345.94 -32.54 F185 124 121 40 0 05.7 -80 48 8 20 14.0 -80 39 311.06 -30.06 F025 74 -46 90 0 06.0 -53 19 20 09.8 -53 10 345.24 -32.95 F186 -124 89 288 | 0 16.2 -80 47 312.86 -30.10 F025 77 -55 87 0 12.5 -56 48 340.89 -33.39 F186 -95 -106 259 0 12.0 -41 29 359.08 -32.11 F339 125 -86 39 0 12.7 -38 09 2.95 -31.65 F339 140 90 24 0 14.3 -29 44 12.57 -29.97 F462 -94 8 258 | 0 14.9 -39 28 1.52 -32.32 F340 -109 21 273 10 20.1 -41 33 359.27 -33.62 F340 -55 -90 219 0 20.8 -46 45 353.05 -34.33 F284 118 -104 46 0 20.9 -30 0 2 12.5 69 -31.43 F46.2 -18 -7 182 10 21.9 -52 56 345.56 -34.76 F186 -27 103 191 2 | -40 31 20 25.3 -40 21 0.88 -34.43 F340 -1 -25 165 -33 31 20 26.4 -33 21 9.22 -33.36 F400 -12 81 176 -13 41 20 27.2 -31 31 11.40 -33.11 F462 54 -87 110 -70 34 20 29.3 -70 24 324.44 -33.59 F073 125 -33 39 -69 42 20 29.9 -69 1 325.44 -33.83 F073 132 10 32 | 0 29.5 -33 25 9.26 -33.80 F400 11 77 153 0 29.2 -36 57 5.08 -34.65 F400 20 -112 144 0 29.2 -32 36 10.24 -33.78 F400 19 121 145 0 33.0 -78 05 315.58 -31.66 F026 -94 83 258 0 32.2 -56 25 341.21 -36.11 F186 51 -85 113 | 28.9 - 26 35 20 31.9 - 26 24 17.59 - 32.76 F528 - 40 - 83 204 29.1 - 63 12 20 33.4 - 63 01 333.11 - 35.46 F106 - 24 98 188 29.5 - 40 10 20 32.8 - 39 59 1.55 - 35.80 F340 75 - 6 89 29.9 - 56 11 20 33.8 - 56 00 341.71 - 36.36 F186 63 - 63 101 30.7 - 35 26 20 33.9 - 35 15 7.33 - 35.27 F400 71 - 21 93 | 2 20 34.1 -38 01 3.99 -35.78 F340 92 98 72 2 20 34.8 -51 30 34.29 -36.75 F234 7 -88 157 2 2 20 34.4 -34 29 8.79 -35.22 F400 76 20 88 5 20 34.7 -34 04 8.79 -35.20 F400 80 -51 84 0 20 34.8 -35 49 6.69 -35.55 F400 80 -51 84 | 32.0 -35 05 20 35.2 -34 54 7.82 -35.46 F400 86 -2 78 32.7 -57 06 20 36.6 -56 55 340.53 -36.67 F186 81 -113 83 33.0 -25 27 20 36.0 -25 16 19.21 -33.31 F528 8 -21 156 33.5 -37 34 20 36.7 -37 23 4.87 -36.19 F340 121 132 43 33.5 -37 14 20 37.1 -34 03 8.94 -35.68 F401 -159 39 323 | | 8 | 17.3
17.3
16.5
17.1 | 16.2
17.2
17.2
17.2
17.3 | 17.2
17.1
17.3
17.3 | 15.0
17.3
17.2
17.4 | 17.4
17.3
17.3
17.4 | 17.3
17.3
17.1
17.2
17.3 | 17.2
17.4
15.6
17.2
17.3 | 17.3
17.4
17.4
17.3 | 17.0
15.3
17.4
14.7
17.4 | 17.3
15.2
17.2
17.2 | |---|--|---|---|--|--|--|---|---|--|--| | | വവവഴഴ | 4-00000 | စစစညည | စ္စုသူ | 00000 | ဖေသသဖစ | φαπου | 20000 | 91999 | မေသအအမ | | H | 77707 | 10170 | 40044 | 10711 | 40444 | 01110 | 00108 | 00000 | 00448 | 00448 | | z | 0.0708 | (0.0200) | | 0.0456 | | | 0.0386 | (0.0487) | (0.0165) | 0.0306 | | Previous | g 00 8 | œ | | ра _в 8 | | BQ | 1A | O | DQS
1A Q | | | Obs | 10,10
10,10 | 00000 | 100000 | 2C, 10
10
10
10 | 10
10
10,14 | 1C
2C,10
30,1A
1C
2C,10 | 10
10
10
10 | 10,1A
10,2C
10,1A
1C,10 | 20, 1A
1A
10
2C
1C, 10, | 10,1C
10
10
10 | | m ₁₀ | 19.1
19.4
16.4
17.7 | 16.1
18.4
19.0
18.9 | 18.9
17.8
19.1?
19.6 | 14.9
18.1
17.8
19.1 | 19.1
19.4
18.9
19.2 | 19.6
18.3?
17.5:
18.8 | 17.6
19.4
15.4
17.3 | 18.0
19.3
19.3
18.7 | 17.4
15.1
19.2
14.5: | 18.2
15.0
18.8
17.6
18.5 | | m³ | 18.0
18.8
15.8
16.0 | 15.4
17.6
18.6
17.1
17.8 | 17.4
17.2
18.4
19.0 | 13.9
17.4
7 17.0
18.6 | 18.1
18.4
18.1
118.5 | : 18.3
? 17.0
: 17.0
17.5
18.0 | 16.1
18.9
13.9
16.6
17.3 | 17.1
18.5
18.9
17.7 | 16.8
17.1
17.3
13.5
18.2? | 16.7
13.4
17.7
16.4
18.0 | | m ₁ | 17.5
18.6
15.1
16.4 | 15.4
17.5
18.1
16.4
17.2 | 16.7
16.7
17.8
18.4 | 13.6
16.5
16.7
17.5
17.5 | 17.8
18.0
17.8
18.1: | 18.1
16.7
15.8
17.1 | 15.4
18.0
13.8
15.6 | 16.8
18.0
17.5: | 15.5
13.4
16.0
13.1:
18.0? | 15.6
12.7
17.1
15.7
17.7 | | Ö | 75
54
52
40
100 | 41
84
37
73 | 53
40
35
75 | 66:
40
118
60
74 | 56
36
72
57 | 117
68
66
74
40 | 443
399
89: | 35
444
900
927 | 29
35
65
70? | 44
50
50
90
90 | | T_{B-M} | | 11
11-11
11-11
11-11 | 1-11
111
111-111
1 11-111 | 1-11:
11-111
111-111
111: | | III
III-III
II? | :::::::::::::::::::::::::::::::::::::: | | 1
11-11
11-11
11-111 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | | T_A | R IR | : нанн | RI
I
R | I K K K K K K K K K K K K K K K K K K K | I
I
RI? | HHH: | RI:
RI: | IR
RI?
RI | R IR I | RHHRR | | Abell | 3701
3702
3703
3704
3705 | 3706
3707
3708
3709
3710 | 3711
3712
3713
3714
3715 | 3716
3717
3718
3719
3720 | 3721
3722
3723
3724
3725 | 3726
3727
3728
3729
3730 | 3731
3732
3733
3734
3735 | 3736
3737
3738
3739
3740 | 3741
3742
3743
3744
3745 | 3746
3747
3748
3749
3750 | | | | | | | | | | | | | | _ | 8 23 50 H FC | 44040 | 78001 | ৰ ৰ ল ত ত | 6 6 8 5 G | ស្តេចខុន | 61004 | 40000 | ঠ ত ন ত ক | ក្នុក្សិស្ត
———————————————————————————————————— | | xu yu | 221 88
302 72
281 79
220 71
269 143 | 261 244
79 124
279 160
194 14
248 236 | | 219 274
134 294
181 161
238 279
228 313 | 228 256
281 76
221 248
212 293
210 322 | | | | | 239 100
114 234
150 245
102 109
77 174 | | | -76 221 88
-92 302 72
-85 281 79
-93 220 71 | 80 261 244
-40 79 124
-4 279 160
150 194 14
72 248 236 | 150
141
206
273
112 | 2 219
2 134
3 181
5 238
9 228 | | 137
76
232
131
70 | 62 66 226
-43 139 121
195 240 259
136 240 300
130 168 294 | | 159
136
189
306
129 | | | cen XII | 221
302
281
220
220 | 80 261
40 79
-4 279
50 194
72 248 | 4 23 150
3 -146 141
2 46 206
9 -119 273
2 -33 112 | 2 219
2 134
3 181
5 238
9 228 | 92 228
-88 281
84 221
129 212
158 210 | 161 137
-91 76
106 232
28 131
-16 70 | 62 66
-43 139
95 240
136 240
130 168 | 166
297
163
297
285 | 5 -128 159
8 -125 136
5 147 189
2 -35 306
5 130 129 | 239
1114
150
102 | | sen Ycen XII | -57 -76 221
138 -92
302
117 -85 281
-56 -93 220
105 -21 269 | 97 80 261
85 -40 79
115 -4 279
-30 -150 194
-84 72 248 | 14 23 150
23 -146 141
-42 46 206
-109 -119 273
52 -33 112 | 110 219
130 134
-3 181
115 238
149 228 | 92 228
-88 281
84 221
129 212
158 210 | 29 27 161 137
21 88 -91 76
21 -68 106 232
29 33 28 131
21 94 -16 70 | 98 62 66
25 -43 139
-76 95 240
-76 136 240
-4 130 168 | 86 -2 80 166
02 -133 105 297
86 1 64 163
42 -133 -84 297
42 -121 55 285 | 26 5 -128 159
86 28 -125 136
64 -25 147 189
35 35 130 129 | 5 -64 239
5 70 114
4 81 150
2 -55 102
7 | | xcen Ycen XII | 34.21 F074 -57 -76 221
36.40 F401 -138 -92 302
36.51 F144 -117 -85 281
35.86 F463 -56 -93 220
36.83 F401 -105 -21 269 | 37.40 F341 -97 80 261
34.77 F528 85 -40 79
37.79 F187 -115 -4 279
36.34 F001 -84 72 248 | 36,67 F463 14 23 150
37,48 F463 23 -146 141
37,80 F401 -42 46 206
36,38 F529 -109 -119 273
37,61 F463 52 -33 112 | 9.24 F187 -55 110 219
9.65 F341 30 130 134
0.35 F286 -74 115 238
0.45 F235 -74 115 238 | 0.53 F286 -64 92 228
7.27 F107 -117 -88 281
0.66 F286 -57 84 221
0.82 F286 -48 129 212
0.81 F235 -46 158 210 | 37.38 F529 27 161 137
40.59 F401 88 -91 76
30.95 F011 -68 106 232
38.21 F529 33 28 131
40.51 F401 94 -16 70 | 06 F341 98 62 66
27 F187 25 -43 139
64 F464 -76 95 240
63 F286 -4 130 168 | 70 F286 -2 80 166
83 F402 -133 105 297
75 F286 1 64 163
106 F342 -133 -84 297
06 F342 -121 55 285 | 1.41 F026 5 -128 159
2.15 F286 28 -125 136
0.37 F464 -25 147 189
0.15 F530 -142 -35 306
2.30 F235 35 130 129 | 2.28 F402 -75 -64 239
2.67 F286 50 70 114
3.44 F026 14 81 150
2.85 F286 62 -55 102
3.11 F235 87 10 77 | | Field xcen ycen x11 | 4.21 F074 -57 -76 221
6.40 F401 -138 -92 302
6.51 F144 -117 -85 281
5.86 F463 -69 29 259
6.83 F401 -105 -21 269 | 7.40 F341 -97 80 261
4.77 F528 85 -40 79
7.79 F187 -115 -4 279
6.54 F463 -30 -150 194
8.34 F001 -4 72 248 | 5.07 -36.67 F463 14 23 150
1.23 -37.48 F463 23 -146 141
9.52 -37.80 F401 -42 46 206
8.10 -36.38 F529 -109 -119 273
3.97 -37.61 F463 52 -33 112 | .24 F187 -55 110 219
.65 F341 30 130 134
.51 F187 -17 -3 181
.35 F286 -74 115 238
.45 F235 -64 149 228 | .53 F286 -64 92 228
.27 F107 -117 -88 281
.66 F286 -57 84 221
.82 F286 -48 129 212
.81 F285 -46 158 210 | 5.16 -37.38 F529 27 161 137
6.73 -40.59 F401 88 -91 76
6.01 -30.95 F011 -68 106 232
2.22 -38.21 F529 33 28 131
8.60 -40.51 F401 94 -16 70 | 6 F341 98 62 66
7 F187 25 -43 139
4 F464 -76 95 240
9 F464 -76 136 240
3 F286 -76 136 240 | 70 F286 -2 80 166
83 F402 -133 105 297
75 F286 1 64 163
106 F342 -133 -84 297
06 F342 -121 55 285 | .41 F026 5 -128 159
.31 F286 28 -125 136
.37 F464 -25 147 189
.15 F230 -142 -35 306
.30 F235 35 130 129 | .28 F402 -75 -64 239
.67 F286 50 70 114
.44 F026 14 81 150
.85 F286 62 -55 102
.11 F235 87 10 77 | | b Field xcen ycen x11 | 3.15 -34.21 F074 -57 -76 221
6.02 -36.40 F401 -138 -92 302
5.01 -36.51 F144 -117 -85 281
5.01 -35.81 F463 -56 -93 220
7.71 -36.83 F401 -105 -21 269 | 3.89 -37.40 F341 -97 80 261
19.30 -34.77 F528 85 -40 79
42.94 -37.79 F187 -115 -4 279
10.92 -36.54 F463 -30 -150 194
05.03 -28.34 F001 -84 72 248 | 46.5 - 29 25 15.07 - 36.67 F463 14 23 150 47.2 - 32 35 11.23 - 37.48 F463 23 - 146 141 47.5 - 33 58 9.52 - 37.80 F401 - 42 46 206 48.0 - 26 59 18.10 - 36.38 F529 - 109 - 119 273 49.9 - 30 29 13.97 - 37.61 F463 52 - 33 112 | 51.5 -52 42 345.57 -39.24 F187 -55 110 219 54.3 -37 25 5.41 -39.65 F341 30 130 134 55.9 -54 55 342.62 -39.61 F187 -17 -3 181 56.0 -42 39 358.62 -40.35 F236 -74 115 238 56.64 47 01 352.89 -40.45 F235 -64 149 228 | 358.06 -40.53 F286 -64 92 228
328.29 -37.27 F107 -117 -88 281
357.84 -40.66 F286 -57 84 221
353.07 -40.82 F286 -48 129 212
353.07 -40.81 F235 -46 158 210 | 59.3 -21 52 25.16 -37.38 F529 27 161 137 59.6 -36 31 6.73 -40.59 F401 88 -91 76 05.2 -82 44 310.01 -30.95 F011 -68 106 232 59.7 -24 20 22.22 -38.21 F529 33 28 131 00.0 -35 06 8.60 -40.51 F401 94 -16 70 | 3.96 -41.06 F341 98 62 66
41.49 -40.27 F187 25 -43 139
17.77 -39.64 F464 -76 95 240
18.72 -39.49 F464 -76 136 240
59.02 -41.63 F286 -4 130 168 | 03.3 -43 19 357.77 -41.70 F286 -2 80 166 03.2 -32 49 11.71 -40.83 F402 -133 105 297 03.6 -43 37 357.37 -41.75 F286 1 64 163 04.3 -41 23 0.37 -41.18 F342 -131 55 285 06.0 -38 48 3.84 -42.06 F342 -121 55 285 | 11.2 -82 09 310.47 -31.41 F026 5 -128 159 06.7 -47 08 352.60 -42.15 F286 28 -125 136 06.4 -27 06 19.25 -40.37 F464 -25 147 189 07.2 -25 28 21.39 -40.15 F530 -142 -35 306 07.7 -47 24 352.22 -42.30 F235 35 130 129 | 7.66 -42.28 F402 -75 -64 239
57.52 -42.67 F286 50 70 114
14.46 -33.44 F026 14 81 150
54.35 -42.85 F286 62 -55 102
49.12 -43.11 F235 87 10 77 | | (2000) Dec l b Field x_{cen} y_{cen} x_{ll} | 40.0 -71 16 323.15 -34.21 F074 -57 -76 221 38.5 -36 30 6.02 -36.40 F401 -138 -92 302 40.0 -61 20 335.01 -36.51 F144 -117 -85 281 40.4 -31 35 12.09 -35.86 F463 -56 -93 220 41.7 -35 14 7.71 -36.83 F401 -105 -21 269 | 42.2 -38 20 3.89 -37.40 F341 -97 80 261 42.3 -25 37 19.30 -34.77 F528 85 -40 79 43.2 -54 54 342.94 -37.79 F187 -115 -4 279 42.6 -32 39 10.92 -36.54 F463 -30 -150 194 05.9 -87 47 305.03 -28.34 F001 -84 72 248 | 43.5 - 29 37 20 46.5 - 29 25 15.07 - 36.67 F463 14 23 150 44.1 - 32 47 20 47.2 - 32 35 11.23 - 37.48 F463 23 - 146 141 44.4 - 34 10 20 47.5 - 33 58 9.52 - 37.80 F401 - 42 46 206 45.0 - 27 11 20 48.0 - 26 59 18.10 - 36.38 F529 - 109 - 119 273 46.8 - 30 41 20 49.9 - 30 29 13.97 - 37.61 F463 52 - 33 112 | 51.5 -52 42 345.57 -39.24 F187 -55 110 219 54.3 -37 25 5.41 -39.65 F341 30 130 134 55.9 -54 55 342.62 -39.61 F187 -17 -3 181 56.0 -42 39 358.62 -40.35 F236 -74 115 238 56.64 47 01 352.89 -40.45 F235 -64 149 228 | 56.9 -43 05 358.06 -40.53 F286 -64 92 228 58.5 -66 22 328.29 -37.27 F107 -117 -88 281 57.6 -43 15 357.84 -40.66 F286 -57 84 221 558.6 -42 24 358.97 -40.82 F286 -48 129 212 58.7 -46 52 353.07 -40.81 F235 -46 158 210 | 0 56.4 -22 04 20 59.3 -21 52 25.16 -37.38 F529 27 161 137 0 56.4 -36 43 20 59.6 -36 31 6.73 -40.59 F401 88 -91 76 0 56.4 -82 56 21 05.2 -82 44 310.01 -30.95 F011 -68 106 232 0 56.8 -24 32 20 59.7 -24 20 22.22 -38.21 F529 33 28 131 0 56.9 -35 18 21 00.0 -35 06 8.60 -40.51 F401 94 -16 70 | 00.9 -38 39 3.96 -41.06 F341 98 62 66 01.5 -55 40 341.49 -40.27 F187 25 -43 139 02.0 -28 03 17.77 -39.64 F464 -76 95 240 02.1 -27 18 1872 -39.49 F464 -76 136 240 03.0 -42 23 359.02 -41.63 F286 -4 130 168 | 03.3 -43 19 357.77 -41.70 F286 -2 80 166 03.2 -32 49 11.71 -40.83 F402 -133 105 297 03.6 -43 37 357.37 -41.75 F286 1 64 163 04.3 -41 23 0.37 -41.18 F342 -131 55 285 06.0 -38 48 3.84 -42.06 F342 -121 55 285 | 22 21 11.2 -82 09 310.47 -31.41 F026 5 -128 159 21 21 06.7 -47 08 352.60 -42.15 F286 28 -125 136 19 21 06.4 -27 06 19.25 -40.37 F464 -25 147 189 41 21 07.2 -25 28 21.39 -40.15 F530 -142 -35 30 37 21 07.7 -47 24 352.22 -42.30 F235 35 130 129 | 08.2 -36 00 7.66 -42.28 F402 -75 -64 239 08.7 -43 29 357.52 -42.67 F286 50 70 114 12.2 -78 13 314.46 -33.44 F026 14 81 150 10.2 -45 48 354.35 -42.85 F286 62 -55 102 14.0 -49 35 349.12 -43.11 F235 87 10 77 | © American Astronomical Society • Provided by the NASA Astrophysics Data System | В | 17.2
17.2
17.3
17.3 | 16.4
17.2
17.3
17.4
17.4 | 17.2
17.3
17.2
16.8 | 17.4
17.2
17.3
17.4
17.4 | 16.3
17.2
17.4
17.2 | 17.3
17.2
17.2
17.2 | 16.8
16.4
17.3
17.3 | 17.2
17.4
17.2
17.3 | 17.3
17.3
17.2
17.4 | 17.1
17.3
17.4
15.5 | |-----------------|---|--|--|---|--|--|---|---|---------------------------------------|--------------------------------------| | Q | വയയവവ | 40000 | ഴവവഴവ | ουουο | 40000 | ပေသသပ | 04004 | ୧୧ଅବଅ | വഴവഴ | 00000 | | z R | 00000 | 01010 | 04444 | 00000 | 0.0796 0 | ненем | 0.0557 0
0.1955 2
0.0775 0 | 0 1 1 1 0 | 00001 | 0.0756 0 | | Previous | Δ | 1A BQ
DQ | Q 88 | | Вроо | Q 8 8 | 00 g 00 00 00 00 00 00 00 00 00 00 00 00 | o g | ø | ОМ | | Obs | 22222 | 20,1C,
10,
10,
10, | 20
10
10,20 | 10
10
10
30,10 | 10000 | 10,20
10,20
10 | 10,10
10,10
10,10 | 10,000 | 20000 | 10,10
10,10 | | m ₁₀ | 17.0
17.3
18.1
18.0
16.9 | 16.2
17.8
18.1
19.4 | 18.0
19.1
18.2
16.6
19.6 | 19.1
17.4
19.3
19.0: | 16.1
17.0
19.1
17.2 | 19.1
19.3
17.4
18.8 | 16.6
16.1
18.5:
19.0 | 18.6
17.8
18.8 | 18.7
18.6
17.2
19.6
16.8: | 16.9
19.2
15.4 | | m ₃ | 16.1
16.0
16.1
16.8 | 15.1
16.6
17.3
18.1 | 17.3
18.1
17.3
15.9
19.1 | 18.4
16.8
18.3
18.5
17.3 | 15.5
16.7
18.3
16.1 | 18.2
18.5
16.5:
17.6
18.5 | 15.6
14.8
18.0
17.6
15.1 | 18.1
19.2
17.4
17.6 | 18.0
17.9
16.6
18.9: | 15.9
17.5
18.5
15.0: | | m ₁ | 15.1
15.3
16.1
15.3 | 14.8
15.4
16.7?
17.8 | 17.0
17.8
16.5
15.4
18.4 | 17.7
16.7
18.0
18.1: | 15.1
16.6
16.8
15.5
13.5 | 17.9
18.1
16.3
17.2 | 14.8
14.1
17.1:
17.4 | 16.0
19.0
17.2
16.3 | 15.04
17.7
15.9:
18.0: | 15.2:
16.4
17.6
14.8 | | 0 | 322 | 39
63
42
67
108 | 32
74:
52
53 | 84
944:
67? | 42
69
32
47: | 54
78
55
86 | 79
40
118:
58
45 |
32
100
64
51
38: | 88
33
51
51 | 46
68
37
50
48 | | Тв-м | !!-!!
!!-!!
!!-!! | | 11111
111-111
111-111 | R IIII | 111-111
11-111
111 | | 11-111
113
113
111-111 | ıiiiii
I | 11-111
111-111
111: | | | T_A | H I H I H | REFER | r
r
r
r
r | RILLI | H. H | R I I I | нажнн | I I I I I I I I I I I I I I I I I I I | ннннн | ннжнн | | Abell | 3751
3752
3753
3754
3754 | 3756
3757
3758
3759
3760 | 3761
3762
3763
3764
3764 | 3766
3767
3768
3769
3770 | 3771
3772
3773
3774
3775 | 3776
3777
3778
3779
3780 | 3781
3782
3783
3784
3785 | 3786
3787
3788
3789
3790 | 3791
3792
3793
3794
3795 | 3796
3797
3798
3799 | | yıı | 265
310
328
125
238 | | 65
34
36
36 | 190
279
-2
270
105 | 112
275
159
151 | 220
45
278
150 | 323
83
234
246 | 29
33
302
302 | 967 | 79
40
39 | | x_{ll} | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 42 2
285 1
147
90 2
261 1 | | 222
225
228
292
107 | | | | | | 116
183
87
181 | | ycen | 101
146
164
-39 | 1117
-102
-102
-41 | -99
-130
92 | 26
115
-166
-59 | -52
111
-5
-13
80 | 56
1114
-14 | 159
-81
115
70
82 | 131
138
138 | 103
129
129
-125 | -85
-124
-125 | | Lcen | 106
69
73
111 | 122
-121
17 | 75
-18
-9 . | -56
-41
-64
-128 | -36
-17
67
-3 | -104
-104
-104 | -61
-139
26
30
27 | -106
-36 -
-34
-34 | | | | Field | F286
F464
F286
F286 | F286
F287
F530
F402 | 44408 | F236
F287
F075
F403 | നയതയയ | F075
F236
F531
F011 | ~ 0 8 9 8 | F027
F403
F403
F075 | യെയെയ | ~ ~ ~ ~ ~ | | P | 13.70
12.08
13.78 | 13.98
14.35
13.38
14.72 | 0.0074 | 15.27
16.08
37.00
15.97 | 66.66.6 | 96407 | 0.67.00 | 32.24
17.88
17.89
10.50 | 8.6.6.8 | 6 | | - | 358.34 -4
19.78 -4
20.24 -4
354.73 -4
357.64 -4 | 358.70 -4
355.00 -4
20.74 -4
12.11 -4 | 30.00.0 | 349.10 -4
358.48 -4
319.48 -3
12.69 -4
29.20 -4 | 68.047 | 323.87 -3
344.99 -4
27.20 -4
307.20 -3
319.43 -3 | 25.94
31.73
58.38
19.08 | 309.94 -3
6.37 -4
12.97 -4
325.25 -4 | 57.97
51.30
44.54
21.39 | 44.00 | |) Dec | -42 52
-27 07
-26 47
-45 28 | -45 36
-45 14
-26 44
-70 32 | -76 35
-84 49
-87 12
-34 43 | -49 15
-42 39
-72 53
-20 52 | 44004 | -68 44
-52 01
-22 38
-85 02 | | -82 03
-37 14
-32 49
-67 15 | 00000 | -51 23
-27 06
-47 06
-72 43 | | RA (2000) | 21 14.3 . 21 14.5 . 21 15.5 . 21 15.4 . 21 15.4 . | 79976 | 04-186 | 21 27.2 .
21 27.2 .
21 28.9 .
21 27.9 . | 1 29.5
1 29.6
1 29.4
1 31.1 | 21 32.7
21 32.8
21 32.8
21 32.4
21 39.9 | 1 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 2 2 2 2 8 3 8 3 9 5 8 9 5 9 5 9 5 9 9 9 9 9 9 9 9 9 9 9 | 1 37.9
1 38.0
1 39.4
1 39.0 | 1 39.5
1 39.3
1 40.0 | |) Dec | -43 05
-27 20
-27 00
-45 41 | -42 49
-45 27
-26 57
-33 17 | -76 48
-85 03
-87 26
-34 56
-53 18 | -49 29
-42 53
-73 07
-33 02 | | -68 58
-52 15
-22 52
-85 16 | 04040 | | 8 2 8 2 8 | 2773 | | RA (1950) | 21 11.0 - 21 11.3 - 21 11.6 - 21 12.1 - 21 12.1 - 21 12.2 - 21 12.2 - 2 | 21 12.5
21 15.3
21 17.7
21 18.7 | 1 20.4
1 21.0
1 21.0
1 22.8 | 21 23.8 -
21 24.0 -
21 24.1 -
21 24.9 -
21 25.9 - | 26.1
26.4
27.9
27.9 | 4 4 0 0 0 | 30.5
30.7
30.8
31.0 | 21 31.1 -
21 32.8 -
21 34.1 -
21 34.1 - | 1 34.7
1 36.0
1 36.1
1 36.1 | 1 36.1
1 36.4
1 36.7
1 37.0 | | Abell | 52
53
54
55 | 557
59
59 | | 66
68
69
70 | 771
772
773
774 | | | 0 V 80 0 0 | | 796
797
798 | | þ | |----------| | ŝ | | z | | = | | 8 | | Ũ | | - 1 | | ᅶ | | ٧. | | щ | | ᆜ | | - 12 | | ⋌ | | \vdash | | 目 | 17.3
17.3
17.3
17.2 | 16.2
17.2
17.4
16.0 | 17.4
16.6
16.7
17.2 | 15.3
17.3
17.3
17.3 | 17.2
16.4
17.3
16.0 | 15.1
16.6
17.3
17.4 | 17. | 11111 | 11.22 | 17.7.1 | |-----------------|---|---|---|---|---|---|--|---|---|---| | Ω | ขนขขข | 41044 | ഴവവവഴ | ო ဖ ဖ ဖ ဖ | N 4 0 0 4 | 000 233 | 99299 | စည္စည္သ | 99969 | 00040 | | - H | 0444 | 84444 | 10001 | 11000 | 42444 | 46 | 0) 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00000 | 21211 | 8 0001 | | z | | 0.0747 | | 0.0352 | 0.0760 | 0.0993 | (0.0650 | | | 0.0678 | | Previous | | BDOS
B
DO | a | м Ом | D
BDOS
BDO | 8 | A A | BS | д д | Ω | | Obs | 10, 10
10, 10
10 | 30, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1 | 10
10
10 | 10000 | 10000 | 22022 | 12000 | 100000 | 10,10
10,10
10 | 10
10
10
30
30 | | m ₁₀ | 19.1
18.0
18.6
17.9 | 16.0:
18.3:
18.9:
15.9 | 19.6
16.4
16.8?
17.4
19.1 | 18.3
18.2
18.6
18.6 | 17.8
16.2:
18.5
19.1
15.8 | 14.9
16.4
19.0
19.3 | 19.0
18.0
17.6
18.2
18.2 | 17.2
17.5
19.1
17.7
17.7 | 18.3
18.2
18.9
16.8 | 19.0
19.3
18.8
15.8 | | m ₃ | * 18.0
? 17.3:
17.7
17.7
? 16.7 | 15.0:
17.5:
18.3:
15.3: | 118.9
15.7:
16.6
18.5 | 14.5
17.7
16.9:
17.7
18.0 | 17.2
15.6:
17.6
? 18.5
14.9 | : 14.1;
? 15.9
18.0
18.2 | 18.1
16.8
16.3:
7 17.4: | 16.5
16.0
17.6
17.1
16.8 | : 17.5
17.8
: 18.0:
16.0 | 18.3
* 18.0
17.8
: 15.1 | | m ₁ | 16.24
15.73
17.3
17.3 | 14.4
17.0
18.1
14.6 | 18.1
15.6
14.6
15.6 | 13.9
17.4
16.7
17.6 | 16.9
14.9
17.0
14.3 | 13.4
14.4
17.5
17.9 | 17.9
16.0
16.0
16.8 | 14.7
15.6
17.1
16.6 | 17.3
17.2
17.7
15.6
17.3 | 18.0
15.1
16.6
14.2 | | D | 39
58
77
66 | 115
50
52
73
76 | 70
30
32
112
65 | 39
85
118
66
66 | 75
113
50
60
77 | 62
100
40
88
72 | 81
48
40
154?
74 | 81
60
71
115
43 | 112
62:
105
52
72 | 69
0 64
2 4 4 2
2 7 4 5 | | T_{B-M} | | | 11?
111
11
11-111: | 1-11
11:
11:-111
11:-111: | III-III
III-III
III : III | II
III
IIII; | | 1
11-11
111-111
11-11 | | | | T_A | HIMHH | RIR? | RRI | нижин | RHHHH | нання | RI III | HHHH | жынн | HRRRR | | Abell | 3801
3802
3803
3804 | 3806
3807
3808
3809
3810 | 3811
3812
3813
3814
3815 | 3816
3817
3818
3819
3820 | 3821
3822
3823
3824
3824 | 3826
3827
3828
3829
3830 | 3831
3832
3833
3834
3834 | 3836
3837
3838
3839
3840 | 3841
3842
3843
3844
3844 | 3846
3847
3848
3849
3850 | | | | | | | | | | | | | | xıı yıı | 60 57
92 96
46 254
13 105
08 101 | 89 298
96 244
98 76
85 210
56 178 | 1 3
6 57
1 11
6 23 | 62 132
69 149
71 256
52 225
60 236 | 24 206
35 266
2 247
38 54
66 129 | 84000 | 2122 | 29
25
21
15 | 95 228
41
220
93 126
50 165
66 268 | 24
24
23 | | ycen 2 | 107 16
-68 29
90 4
-59 11 | 40004 | 91961 | -32 26
-15 26
-15 27
-15 26 | 0 00 | | | 26118 | 7 | 2 4 4 9 2 4 4 9 4 9 6 4 9 6 2 2 9 6 9 6 9 6 9 9 6 9 9 9 9 9 9 9 | | x cen | 128
118
51
56 | 75
68
66
-92 | 107 -
100
-62 -
-57 | -98
105
107
-88 | -60
129
162
-74 - | 1 | |)
തനനരുന | 69
23
71
98 | 126 -
109
117
103 | | Field | F011
F288 -1
F188 1
F531 | 10
23
10
10 | 288 4 4 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | F189 - F237 - FF237 - FF189 - FF237 FF257 | 6 2 3 5 8 | 189
146
146
146 | 288
467
237
344 | F237
F467
F467
F237 | F237
F344
F237
F404 1 | 533 -
601
237 -
189 | | q | -29.43
-48.94
-47.08
-48.64 | -45.77
-48.21
-48.95
-49.52 | 49.06
50.18
50.22
50.21 | -47.01
-48.88
-49.45
-47.91 | -50.61
-46.45
-51.38
-51.34 | 447.
500.
500. | 90000 | 50.96
54.10
54.40
52.20 | 52.46
54.81
51.84
55.52 | 1.4.2.1 | | 1 | 305.52 -
352.94 -
342.33 -
23.68 - | 4 6 8 8 8 8 8 4 8 | 351.22 -
13.44 -
14.96 -
16.61 -
12.33 - | 9.29
6.70
1.58 | 61
80
99
80 | 337.35 - 332.26 - 333.48 - 358.91 - 330.04 - 3 | 17.5
17.5
49.3 | 342.54 -
23.05 -
21.80 -
346.77 -
1.47 - | 347.19 -
3.37 -
344.27 -
10.28 -
348.10 - | | | RA (2000) Dec | 55.5 -86 45
45.7 -46 01
45.9 -53 21
45.6 -25 54
45.7 -25 58 | 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 47.7 -47 06
48.1 -32 43
48.6 -31 45
49.1 -30 42
49.7 -33 26 | 50.4 -55 18
51.2 -50 00
51.4 -48 02
52.4 -53 33
52.5 -48 23 | 53.1 -43 59
54.1 -57 50
53.6 -33 11
57.0 -26 52
58.4 -60 23 | 59.9 -56 09
01.7 -59 56
01.6 -20 20
02.8 -41 38
03.7 -61 35 | | 09.4 -51 49
09.2 -27 19
10.0 -28 05
10.5 -48 55
10.6 -39 52 | 11.4 -48 35
11.5 -38 44
11.9 -50 29
13.5 -34 45
14.5 -47 49 | -27
-17
-43
-51 | | | 22222 | 28911 | 16970 | 8875 | 8 21
2 21
2 21
2 21
2 21 | 22222 | 40408 | 44007 | 50 22 44 22 00 22 04 22 22 22 04 22 22 04 22 22 22 22 22 22 22 22 22 22 22 22 22 | 0 0 H B 0 | | RA (1950) Dec | 21 41.8 -87 0
21 42.5 -46 1
21 42.5 -53 3
21 42.7 -26 0
21 42.8 -26 1 | ~ ~ v + + | 21 44.5 -47 2
21 45.1 -32 5
21 45.7 -31 5
21 46.2 -30 5
21 46.7 -33 4 | 21 47.0 -55 3 21 47.9 -50 1 21 48.2 -48 1 21 49.0 -53 4 21 49.3 -48 3 | 21 50.0 -44 1
21 50.6 -58 0
21 50.7 -33 2
21 54.1 -27 0
21 54.8 -60 3 | 21 56.5 -56 2
21 58.2 -56 2
21 58.2 -20 3
21 59.7 -41 5
22 00.1 -61 5 | 00.2 -46
02.4 -30
02.6 -30
02.6 -47
02.9 -39 | 22 06.2 -52 0
22 06.4 -27 3
22 07.2 -28 2
22 07.3 -49 1
22 07.6 -40 0 | 22 08.3 -48 5
22 08.5 -38 5
22 08.7 -50 4
22 10.6 -35 0
22 11.4 -48 0 | 11.8 -2
11.8 -1
12.3 -4
13.2 -5 | | Abell | 3801
3802
3803
3804
3805 | 3806
3807
3808
3809
3810 | 3811
3812
3813
3814
3814 | 3816
3817
3818
3819
3820 | 3823
3823
3824
3824 | 3826
3827
3828
3829
3830 | | 3836
3837
3838
3839
3840 | 3841
3842
3843
3843
3844 | 3846
3847
3848
3849
3850 | | VARIETY VARIABLE | | Ħ | 17.3 | 17. | 17. | 17.
16.8
17. | 17. | 17.
17.
16.
16. | 17.
17.
17. | 16.
17.
17.
17. | 17.
17.
17.
17. | 17.
16.
17.
17. | |---|----------|----------------|--|-----------------------------|---|--------------------------------------|--|---|---------------------------------------|---------------------------------------|--------------------------------------|-------------------------------| | Alice Alic | | | 40000 | 9999 | ୧୯୧୯ | | | | | | | | | TABLE Continued Table | | <u>۳</u> | | 00110 | 70117 | v | 4444 | | 00000 | | 04000 | 44000 | | TABLE Actions Dec. | | 83 | | | | .039 | | (0.022 | | 0.075 | | | | Abel R. (1900) Dec R. (2000) Dec | | Previous | m | m m | BD | R
BD
DORS
D | D
DR | DR
DD
BO | ВО | BD
BD | BD 8 | Ω 🛱 | | About RA (1980) Dec RA (2000) Dec I 5 Field from Jan II II II II II II II | | Obs | 22222 | ٦, | 000000 | 1,0000 | 30000 | ٦, | 10
10
10 | L, | ۲, | 12111 | | TAME A Commond And Decoration of the Fried Earn Part 20 1910 Mail TA Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of
the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Earn Part 20 1910 Mail Ta Table Commond And Decoration of the Fried Ea | | | 15.
19.
18.
17. | | | | | | 18.7
19.2
17.4
18.6
19.1 | 16.0
18.5
17.6
19.4 | 17.0
17.9
18.6
19.0
15.5 | . 97.6 | | Abel Inc. (1900) Dec. | | m³ | 4.000.00 | | | | 67.78 | | 17.8
18.4:
16.9
17.8
18.2 | | 16.0
17.0
16.7
18.1 | 66.57 | | Abell BA (1990) Dec 1 5 Field Zear 10a 2a 10a 2a 1a 1a 4a 4a 4a 4a 4a 4 | | m ₁ | | | ~ ~ ~ ~ ~ | 63.7.6 | 8 8 9 7 . 4
8 4 8 7 . 4 | 6.00
7.00
7.04
7.04 | | 4.7.97.8 | | 70000 | | Abell R. (1900) Dec R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₁ Abell R. (2000) Dec I b Field z _c n V _{cn} z ₁₁ y ₁₂ Abell R. (2000) Dec I B B B B B B B B B | | C | 33
43
130
35 | 125
43
57
62
32 | 76
35
63
60
87 | 46
36
96
49
51 | 60
52
56
(69)
86 | 36
103
44
114
31 | ₩ ₩ ₩ ₩ ₩ | н | w r u u 4 4 | (78)
63
46
37:
35 | | Abell R. (1900) Dec R. (2000) Dec I b Fidd c _{an} V _{can} c _{an} | | lii | 1-11
111
111
11-111 | | 111
111
111-111
111 | | | 1
11-11
11-11
11 | 111-1117
111-1111
111-1111 | | | III-III
III-III | | Abell RA (1980) Dec RA (2000) Dec I b Field zens yens zir yir zir zir zir zir zir zir zir zir zir z | | T_A | ннянн | ж
п н н ж | IR R II | R
I
R
I
R | RREI | REER | n n n n n n n n n n n n n n n n n n n | H # # # # | RILL | яннян | | Abell RA (1980) Dec RA (2000) Dec I b Field zens yens zir yir zir zir zir zir zir zir zir zir zir z | ontinued | Abell | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~ | ~~~~~~ | 3866
3867
3868
3869
3870 | 3871
3872
3873
3874
3875 | 3876
3877
3878
3879
3880 | 3881
3882
3883
3884
3885 | 3886
3887
3888
3889 | 3891
3892
3893
3894 | ~~~~~~ | | Abell RA (1990) Dec RA (2000) Dec I 6 Field x _{con} y _{con} x _{ll} 1855 22 13.5 -52 50 22 16.7 -52 39 40.68 -51.66 Figs 107 114 55 185 22 13.5 -59 31 22 15.5 -59 31 22 15.5 -59 31 22 15.5 -79 31 22 15.5 | 4 - | | | | | | | | | | | | | Abell RA (1950) Dec RA (2000) Dec I b Field Zern Yern Jern Bis 2 2 13 5 - 5 2 5 0 2 16.7 - 5 2 16 5 16 5 19 107 114 2 185 2 2 13 5 - 5 2 10 2 16.5 - 19 19 3 6.9 5 - 5 1 16 5 19 107 114 2 185 2 2 13 15 - 19 3 1 22 16.5 - 19 19 3 6.9 5 - 5 1 16 5 19 107 114 2 185 2 2 13 15 - 19 3 1 22 16.5 - 19 19 3 6.9 5 - 5 1 16 5 19 107 114 2 185 2 2 13 15 - 19 3 1 22 16.5 - 19 19 3 6.9 5 - 5 1 16 5 19 107 114 2 185 2 2 13 15 - 19 3 1 22 16.5 - 19 19 3 6.9 5 - 5 1 17 18 10 107 114 2 185 2 2 15 15 - 19 2 10 2 2 10.5 - 19 0 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | TABLE | = | L 6 9 6 4 | | | | 444 | 2624 | | 4444 | | | | Abell RA (1960) Dec RA (2000) Dec I b Field Z _{cros} 1 185.1 22 13.5 -52 50 22 16.5 -152 18 340.68 -51.66 Field Z _{cros} 1985 22 13.5 -52 19 12 16.5 -152 18 18 -152 18 -152 1 | | | 0 00 | | കെസരസ | | | | ww/wa | | | 0 040 | | Abell RA (1960) Dec RA (2000) Dec I b Field a graph of the control | | | н 1 | 48 41 | 13 6 11 -12 -12 -12 | וחוח | 4 44 | | 1 41 | | 1 1 | 444 | | Abell RA (1950) Dec RA (2000) Dec I b b 1855 1 22 13.5 -525 50 22 16.7 -52 35 340.68 -51.66 1855 22 13.6 -39 34 22 16.3 -39 16 2.2 16.7 -57 13 18.5 -29 16 2.2 16.7 -57 13 18.5 -29 16 2.2 16.7 -39 16 2.2 18.6 -39 16 2.2 18.6 -39 18 22 18.6 -30 18 22 18.6 -39 18 22
18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 22 18.6 -39 18 | | * | 44 41 | 05814 | 1, 1, 4, 1, 1, | | | 11 14 | 1 4255 | '''' | , ,,444 | 15 4 2 8 | | Abell RA (1950) Dec RA (2000) Dec I 3851 22 13.5 -52 50 22 16.7 -52 35 340.68 -51. 3854 22 13.6 -19 34 22 16.3 -19 19 36.92 -53. 3855 22 13.6 -19 34 22 16.3 -19 19 5.2 19.6 -56. 3855 22 13.6 -19 34 22 16.3 -19 19 5.2 19.6 -56. 3856 22 15.5 -43 16 22 18.5 -43 00 35.59 -55. 3856 22 15.5 -43 16 22 18.5 -43 00 35.59 -55. 3856 22 16.3 -39 09 22 18.5 -34 00 35.59 -55. 3860 22 16.7 -37 21 2 2 19.2 -34 00 35.59 -56. 3861 22 16.7 -37 21 2 2 19.6 -37 00 35.59 -56. 3862 22 16.9 -49 20 22 20.0 -45 56 34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | Field | | | | 7777 | 11771 | | | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | F F F F F F | | | Abell RA (1950) Dec RA (2000) Dec I 3851 22 13.5 -193 50 22 16.7 -52 35 340.6 3853 22 13.6 -39 31 22 16.6 -39 16 22 13.6 -39 31 22 16.6 -39 16 22 13.6 -39 31 22 16.6 -39 16 22 13.6 -39 31 22 16.6 -39 16 22 13.6 -39 16 22 13.6 -39 16 22 13.6 -39 16 22 13.6 -39 16 22 13.6 -39 16 22 13.6 -39 16 22 15.5 -34 30 0 35.5 3854 22 15.3 -34 42 10.2 3859 22 16.7 -57 21 22 20.0 -57 05 334.0 23 865 22 16.7 -57 21 22 20.0 -45 56 334.0 40.2 3865 22 16.9 -46 12 22 20.0 -45 56 334.0 40.2 3865 22 10.7 -57 21 22 20.0 -45 56 340.4 345.5 3865 22 17.0 -52 44 22 20.0 -45 56 340.4 345.5 3867 22 16.9 -46 12 22 20.0 -45 56 340.4 345.5 3867 22 18.7 -55 21 22 20.0 -45 56 340.4 345.5 3867 22 18.7 -55 21 2 22 20.0 -45 30 332.1 3867 22 18.7 -55 21 2 22 20.0 -45 30 332.1 3867 22 18.7 -55 20 340.1 3877 22 20.1 -52 42 42 32 332.1 3877 22 20.1 -52 42 42 32 332.1 3877 22 20.1 -52 42 42 32 32 32 32 32 32 32 32 32 32 32 32 32 | | q | 151. | 9 5 5 5 5 5 | 152. | -56.
-53.
-51. | 149.
152.
157.
156. | 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -58.
-58.
-47. | 158. | 659.00 | 1.58
1.58
1.60
1.60 | | Abell RA (1950) Dec RA (2000) De
3851 22 13.5 -52 50 22 16.7 -52
3852 22 13.6 -39 31 22 16.6 -39
3854 22 14.8 -35 58 22 17.7 -35
3855 22 15.5 -43 16 22 18.5 -43
3856 22 16.3 -39 09 22 18.5 -34
3856 22 16.3 -39 09 22 18.5 -34
3856 22 16.9 -46 22 18.5 -37
3861 22 16.9 -46 22 19.6 -37
3862 22 16.9 -47 22 22.0 -45
3863 22 16.9 -48 22 22 20.0 -45
3864 22 16.9 -49 20 22 20.0 -45
3865 22 16.9 -49 20 22 20.0 -45
3866 22 16.9 -49 20 22 20.0 -45
3867 22 16.9 -49 20 22 20.0 -45
3868 22 16.9 -49 20 22 20.0 -45
3877 22 20.0 -57 55 22 20.0 -45
3878 22 21.0 -57 55 22 20.0 -45
3877 22 20.1 -52 42 22 20.0 -45
3877 22 20.1 -52 42 22 20.0 -45
3878 22 20.1 -52 42 22 20.0 -47
3877 22 20.1 -52 42 22 20.0 -47
3877 22 20.1 -52 42 22 20.0 -47
3878 22 20.1 -52 40 22 20.0 -47
3879 22 20.1 -52 40 22 20.0 -47
3886 22 20.1 -52 40 22 20.0 -47
3887 22 20.0 -42 10 22 26.3 -41
3888 22 20.1 -69 17 22 20.1 -69
3889 22 20.1 -69 17 22 20.1 -69
3881 22 22.0 -49 20 22 30.1 -48
3891 22 20.0 -49 20 22 30.1 -48
3892 22 20.0 -40 20 30.0 -27
3893 22 30.0 -30 60 22 30.0 -37
3894 22 35.1 -30 58 22 30.0 -37
3895 22 35.1 -30 58 22 30.0 -37
3896 22 35.1 -40 30 30.0 -37
3897 22 36.0 -40 22 30.0 -37
3898 22 37.1 -60 17 39 22 30.0 -37
3899 22 35.1 -40 30 30.0 -37
3899 22 35.1 -40 30 30.0 -37
3899 22 37.1 -60 17 39 22 30.0 -37
3899 22 37.1 -60 17 39 22 30.0 -37
3899 22 37.1 -60 17 39 22 30.0 -37 | | 1 | 36.9
36.9
55.4
55.4 | 7.7 | 50.5
50.5
17.5
17.4 | 33.24
36.55
36.55 | 32.1
20.1
33.5
33.2 | 446.9
15.1
19.6
19.6 | 12.3
6.53
6.53
18.8
18.8 | 35.8 | 28.3
117.9
31.5
35.0 | 3.4
25.2
1.8
31.8 | | Abell RA (1950) Dec RA (2000) 3851 22 13.5 -52 50 22 16.7 3852 22 13.6 -39 34 22 16.6 3854 22 13.6 -39 34 22 16.6 3855 22 13.6 -39 34 22 16.7 3856 22 15.8 -38 20 22 18.8 3857 22 16.3 -38 20 22 18.8 3868 22 16.7 -37 16 22 19.6 3869 22 16.7 -37 16 22 19.6 3861 22 16.9 -46 12 22 20.0 3862 22 16.9 -46 12 22 20.0 3863 22 16.9 -47 12 22 20.0 3864 22 16.9 -48 22 22 20.0 3865 22 16.9 -49 20 22 20.0 3867 22 16.9 -49 20 22 20.0 3868 22 16.9 -49 20 22 20.0 3877 22 20.0 -57 24 22 20.0 3878 22 10.0 -57 24 22 20.0 3879 22 10.0 -57 25 22 20.0 3877 22 20.0 -57 25 20.2 3877 22 20.0 -57 55 20 22 20.0 3878 22 20.0 -57 55 20 22 20.0 3887 22 20.0 -30 50 22 21.0 3888 22 27.1 -48 20 22 20.8 3889 22 20.1 -69 17 22 23.8 3899 22 20.1 -69 17 22 23.8 3891 22 26.8 -57 50 22 31.6 3892 22 32.0 -30 49 22 33.8 3893 22 32.0 -30 50 22 31.7 3893 22 32.0 -30 50 22 31.8 3894 22 32.0 -30 50 22 33.8 3895 22 32.0 -30 50 22 33.8 3897 22 32.0 -30 50 22 33.8 3898 22 32.0 -30 50 22 33.8 3899 22 32.0 -30 50 22 33.8 3891 22 34.0 -30 50 22 33.8 3892 22 35.1 -30 58 22 33.9 3893 22 35.1 -30 58 22 33.9 3894 22 36.1 -30 58 22 33.9 3895 22 37.4 -38 30 22 33.9 3897 22 36.6 -17 39 22 39.3 3898 22 37.4 -38 31.2 3899 22 37.4 -38 31.2 3899 22 37.4 -38 31.2 3899 22 37.4 -38 30.3 3899 22 37.4 -38 30.3 3899 22 37.4 -38 30.3 3899 22 37.5 -38 -39 30.3 3899 22 37.4 -38 30.3 3899 22 37.4 -38 30.3 3899 22 37.4 -38 30.3 3899 32 37.8 -39 30.3 3899 32 37.8 -39 30. | | ၁ခ | | | | | 2244 | 40000 | 6644 | 40400 | | | | Abell RA (1950) Dec RA (1951) B5 -52 50 22 16 3855 22 13.6 -39 31 22 15 8 3855 22 13.6 -39 31 22 15 8 3855 22 13.6 -39 31 22 15 8 3855 22 13.6 -39 31 22 15 8 3855 22 13.6 -39 31 22 15 8 3855 22 15.5 -43 16 22 15 8 3855 22 16.9 -49 20 22 18 8 4 2 2 16.9 -49 20 22 18 8 4 2 2 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 20 22 20 18 8 6 22 16.9 -49 10 22 20 38 77 22 20 1 -52 42 22 20 38 77 22 20 1 -52 42 22 20 38 77 22 20 1 -52 40 22 20 38 77 22 20 1 -52 40 22 20 38 77 22 20 1 -52 40 22 20 38 77 22 20 1 -52 40 20 20 20 38 8 6 22 20 1 -69 10 22 20 38 8 6 22 20 1 -69 10 22 20 38 8 6 22 20 1 -69 10 22 20 38 8 6 22 20 1 -69 10 22 20 38 8 6 22 20 1 -69 10 20 20 20 38 8 7 22 20 1 -69 10 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30 | | 00) D | 11111 | 2555 | . 64467 | 1 1 1 1 | 1111 | | | | | | | Abell RA (1950) Dec 3851 22 13.5 -52 50 22 3852 22 13.6 -39 34 22 3853 22 13.6 -39 34 22 3854 22 13.6 -39 34 22 3855 22 13.6 -39 09 22 3856 22 15.8 -35 58 22 3856 22 15.5 -49 16 22 3865 22 16.0 -49 20 22 3865 22 16.0 -49 20 22 3865 22 16.0 -49 20 22 3867 22 16.0 -49 20 22 3867 22 16.0 -49 20 22 3867 22 16.0 -49 20 22 3867 22 16.0 -49 20 22 3867 22 16.0 -49 20 22 3877 22 20.0 -57 55 30 22 3877 22 20.0 -57 55 30 22 3877 22 20.0 -57 55 30 22 3877 22 20.0 -57 55 30 22 3877 22 20.0 -57 55 30 22 3887 22 24.1 -69 10 22 3887 22 25.4 -30 49 22 3887 22 25.4 -30 49 22 3887 22 25.5 -63 04 22 3887 22 29.5 -59 50 22 38.9 5 23 36.0 22 35.1 -50 58 50 22 35.3 -24 10 22 3887 22 35.3 -24 10 22 3887 22 35.3 -24 10 28 3897 22 35.3 -24 10 28 3897 22 35.3 -24 10 28 3897 22 35.3 -24 10 28 3897 22 35.3 -24 10 3897 22 35.3 -24 10 3897 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 35.3 -24 10 3898 22 37.1 -36 51 22 36.0 -36 51 3898 22 37.1 -36 51 22 36.0 -36 51 3898 22 37.1 -36 51 22 36.0 -36 51 3 | | | 9.96.6 | 80000 | 90004 | | 4.4.4.4.4 | . 66. | 80044 | 4 6 4 4 7 | | 00000 | | Abell RA (1950) Dec 3851 22 13.5 -52 5 3853 22 13.6 -39 3 3854 22 13.6 -39 3 3854 22 13.6 -39 3 3855 22 13.6 -39 5 3857 22 12.14.8 -35 5 3858 22 14.8 -35 5 3858 22 14.8 -35 5 3860 22 14.8 -35 5 3860 22 14.8 -34 5 3860 22 14.8 -34 5 3860 22 14.8 -34 5 3860 22 14.8 -34 5 3860 22 14.8 -34 5 3860 22 14.8 -34 5 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 16.9 -49 2 3860 22 18.1 -55 2 3860 22 18.1 -55 2 3860 22 18.1 -55 2 3860 22 24.0 -30 1 -30
1 -30 | | R | 22222 | 22222 | 88888 | 22222 | 22222 | 77777 | | | | 00000 | | Abell RA (1950) 3851 3852 38552 38554 38554 222 13.5 38555 22 13.5 38556 22 13.5 38656 22 15.8 38657 22 15.8 38657 22 15.8 38657 22 16.7 38667 22 16.7 38667 22 16.7 38668 22 18.1 3877 22 22.1 3877 22 22.1 3887 22 22.2 3887 22 22.8 3888 22 23.2 3888 22 23.2 3888 22 23.2 3888 22 23.2 3889 | | ာ | 34
34
16
16 | 00
20
16 | 1 4 5 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 23 4
23 4
20 3 | 34 3 4 3 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17 10 00 10 10 10 10 10 10 10 10 10 10 10 | 44
74
74
75
75 | 0 4 5 6 6 6 6 | 10
10
10
10
10 | 05
39
51
06 | | Abell RA Abell RA 38851 388552 388554 388554 388554 388556 388556 388566 388567 388567 38867 38867 38867 38876 38877 38876 388776 388776 388776 388776 388776 388776 388776 388776 388776 388776 388776 388776 388776 388776 | | 30) D | 24 0 0 12 | - 38
- 34
- 34 | -37
-46
-52
-72 | -35
-57
-56
-55 | -58
-52
-29
-57 | 148
132
132
132 | _ ww 4 70 w | ഗനനഗ | 1240 | -38
-17
-62
-38 | | Abell | | | | 90000 | | | 90004 | | 68.76.5 | 8044 | 4.0.0.0.0 | 99.7.7 | | racksquare | | R.A | | | 00000 | | | | | 00000 | | 00000 | | m | | Abell | | 9 9 9 9 9 | | | 88888 | | | ~~~~~~~~ | | | | в | 17.4
17.3
17.3
17.3 | 17.3
17.1
17.2
17.4 | 17.1
15.8
17.2
17.4 | 17.2
17.4
17.3
17.3 | 16.9
17.2
17.3
17.3
16.4 | 17.3
17.3
17.3
17.4 | 17.2
17.2
17.4
17.4 | 17.2
17.4
17.3
17.2 | 17.3
17.3
17.4
17.3 | 17.3
17.3
17.4
17.3
17.3 | |--|---|--|--|--|---|---|---|---|--|--| | Ω | 00000 | വഴവവഴ | N 4 N 0 N | ουουα | N N O O 4 | 00000 | വഴഴവവ | စေလစလသ | 00000 | 00000 | | H | 40844 | 40040 | .0444 | 01011 | 00115 | 62444 | 70171 | 00000 | 00110 | 1000 | | z | | | (0.0381) | | 0.0516 | | 0.224 | | | | | Previous | щщ | BD
D | N M O | Ω | BDR
BDR
DR | m | Ω Ω | g Q | | er en | | Obs | 3C
10,1A
1C
10 | 1C
2C
10,1A
10 | 30
20
30
30 | 10,10
30
10
10 | 10
40
10
10,13 | 20
10
10
10 | 10
20
10
10 | 20, 18, 20, 18, 10, 18, 10 | 100000 | 100000 | | m ₁₀ | 19.3
18.5
19.0
18.8 | 18.0
17.4?
17.7
19.2
17.5 | 17.1:
15.6
18.5:
19.3
17.1: | 17.5:
19.3:
18.6
18.9 | 16.7
17.5:
18.0
18.8
16.2: | 18.8
18.5
18.1
19.1
18.9 | 17.5
17.6
19.0
19.3 | 18.0
19.3
18.3
17.5 | 18.3
19.3
19.3
19.4 | 18.9
18.0
18.9
18.4 | | m ₃ | 18.6
16.7:
18.4
18.1
18.1 | 17.6
16.5?
16.5:
18.0
16.7 | 16.3:
14.5
17.9
18.4
16.2: | 16.5
18.6
17.8
18.0 | 16.0
16.5:
17.1
18.1
15.2: | 18.0
17.9
17.5
18.5 | 16.8
16.1
18.0:
18.5
17.1 | 17.5
18.2
17.8
16.9
17.9? | 17.9
17.8
18.4
17.2 | 17.9
17.2
18.7
17.6
18.1 | | m ₁ | 18.1
16.3:
18.2
16.8 | 17.2
16.7?
15.9:
16.2
15.6 | 15.0:
14.2
17.4
17.9 | 15.8
18.3;
16.0
17.6 | 14.5
15.9:
16.7
18.0 | 17.6
17.6
16.9
18.2
17.3: | 16.7
15.9
17.5:
17.8
16.7 | 17.3
17.5;
17.0?
16.7
17.6 | 17.2
15.9
18.0
15.9: | 17.7
16.5
17.7
17.3
18.0 | | C | 74:
33
95
79 | 67
44
50
47 | 58
41
67:
57 | 68
68
68
68 | 93
58
38
38 | 171
91
63:
65 | 113
32
64
113
58 | 95:
129
92
88
105 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 | 4 4 4 8 4 4 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | ТВ-М | | III
III
III-III
III-III | 11-111
11:
11-1117
11-1111 | | 111-111
1111
111
111 | ::::::::::::::::::::::::::::::::::::::: | II-III
III-III
III-III | | II-III?
I-II
I-II
I-II: | | | T_A | RI:
I:: | нжннн | R R E | H H H H K | | жённн | RRHH | H K K H K | HREIL | HHRRR | | Abell | 3901
3902
3903
3904 | 3906
3907
3908
3909 | 3911
3912
3913
3914
3915 | 3916
3917
3918
3919 | 3921
3922
3923
3924
3925 | 3926
3927
3928
3929
3930 | 3931
3932
3933
3934
3935 | 3936
3937
3938
3940 | 3941
3942
3943
3944 | 3946
3947
3948
3949
3950 | | | | | | | | | | | | | | | 125283
449283 | 111
70
89
95 | 70
36
36
05
05 | 47
60
27
00 | 022
022
023
023 | 37
222
331
90 | 20
20
30
30 | 56
79
47
32 | 00
43
00
00
00 | 69
559
559 | | xu yu | 27
15
22
11 | 11
27
14
18
9 | 27
9
13
30 | 115 47
66 60
332 227
180 169
284 100 | 154 186
274 55
175 102
163 26
195 66 | 157 237
160 122
151 228
23 31
19 90 | | 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 7 7 | | | 7227 | 206 11
179 27
255 14
255 18
257 9 | 87 27
216 9
259 16
192 13 | 17 115
04 66
63 332 2
5 180 1
64 284 1 | | 157 23
160 12
151 22
23 3 | 306
226 2
139 1
137 2 | 8 132 1
5 172
6 272 1
3 141 2
2 139 1 | 4 140
2 211
4 245
5 210
6 199 | 7
122 2
287
291 1
234 | | nx | 265
294 27
110 15
265 22 | 2 -53 206 11
5 106 179 27
1 -15 255 14
1 25 255 18
3 -69 257 9 | 106 87 27
-69 216 9
5 259 16
-30 192 13
141 72 30 | 17 115
04 66
63 332 2
5 180 1
64 284 1 | 154 1
274
175 1
163 | 157 23
160 12
151 22
23 3 | 2 -109 306
2 94 226 2
5 15 139 1
7 56 137 2
5 -125 149 | -8 132 1
-85 172
-46 272 1
83 141 2
-32 139 1 | 4 -64 140
7 32 211
1 74 245
6 -15 210
5 36 199 | 7 -95 7
2 53 122 2
3 -105 287
7 -12 291 1
0 -79 234 | | cen Ycen XII | 01 -161 265
30 114 294 27
54 -12 110 15
01 65 265 265
63 -50 101 11 | 7 -42 -53 206 11
9 -15 106 179 27
0 -91 -15 255 14
0 -91 -69 257 9 | 0 77 106 87 27
6 -52 -69 216 9
2 -95 5 259 16
7 -28 -30 192 130
0 92 141 72 30 | 49 -117 115
98 -104 62
-168 63 33 2
-16 5 180 1
-120 -64 284 1 | 9 10 22 154 1
9 -110 -109 274
7 -11 -62 175 1
1 -138 163
0 -31 -98 195 | 7 73 157 23
4 -42 160 12
13 64 151 22
141 -133 23
145 -74 19 9 | 077 -142 -109 306
049 -62 94 226 2
406 25 15 139 1
147 15 -125 149 | 32 -8 132 1
-8 -85 172
-108 -46 272 1
23 83 141 2
25 -32 139 1 | 24 -64 140
-47 32 211
-81 74 245
-46 -15 210
-35 36 199 | 0 157 -95 7
42 53 122 2
5 -123 -105 287
4 -127 -12 291 1
1 -70 -79 234 | | xcen ycen x11 | 60.77 F406 -101 -161 265
59.53 F290 -130 114 294 27
62.07 F468 54 -12 110 15
59.67 F290 -101 65 265 22
53.54 F190 63 -50 101 11 | 0.19 F147 -42 -53 206 11
8.79 F109 -15 106 179 27
9.20 F290 -91 -15 255 14
9.54 F290 -91 -25 255 18
8.86 F290 -93 -69 257 9 | 5.42 F190 77 106 87 27 2.06 F406 -52 -69 216 9 0.05 F147 -28 -30 192 13 5.99 F190 92 141 72 30 | 42.13 F076 49 -117 115
52.88 F468 98 -104 66
51.32 F147 -16 5 180 1
51.35 F346 -120 -64 284 1 | 7.99 F109 10 22 154 1
6.41 F239 -110 -109 274
9.64 F147 -11 -62 175 1
9.48 F290 -31 -98 195 | 3.51 F406 7 73 157 23
5.98 F147 4 -42 160 12
3.60 F406 13 64 151 22
3.73 F468 141 -133 23 3
3.81 F468 145 -74 19 9 | 2.67 F077 -142 -109 306
1.53 F049 -62 94 226 2
3.71 F406 25 15 139 1
3.08 F406 27 56 137 2
0.00 F147 15 -125 149 | 3.77 F406 32 -8 132 1
3.97 F290 -8 -85 172 1
4.66 F191 -108 -46 272 1
2.88 F147 23 83 141 2
1.37 F147 25 -32 139 1 | 0.99 F147 24 -64 140
0.70 F049 -47 32 211
0.54 F469 -81 74 245
0.97 F346 -46 -15 210
0.48 F946 -35 36 199 | 1.43 F190 157 -95 7
2.78 F147 42 53 122 2
5.90 F535 -123 -105 287
5.28 F604 -127 -12 291 1
1.72 F191 -70 -79 234 | | Field xcen ycen x11 | 3.32 -60.77 F406 -101 -161 265
53.95 -59.53 F290 -130 114 294 27
19.35 -62.07 F468 54 -12 110 15
51.87 -59.67 F290 -101 65 265 22
32.81 -53.54 F190 63 -50 101 11 | 6.48 -50.19 F147 -42 -53 206 11
4.20 -48.79 F109 -15 106 179 27
9.05 -59.20 F290 -91 -15 255 14
0.37 -59.54 F290 -91 -25 255 18
7.33 -58.86 F290 -93 -69 257 9 | 6.64 -55.42 F190 77 106 87 27
6.42 -62.06 F406 -52 -69 216 9
6.68 -31.95 F147 -28 -30 192 13
7.37 -55.99 F190 92 141 72 30 | 15.30 -42.13 F076 49 -117 115
15.71 -62.88 F468 98 -104 66
22.67 -62.92 F469 -168 63 332
27.19 -51.32 F147 -16 5 180
56.27 -61.35 F346 -120 -64 284 1 | 22.03 -47.99 F109 10 22 154 1
37.46 -56.41 F239 -110 -109 274
25.67 -50.51 F147 -11 -62 175 1
23.68 -49.64 F147 1 -138 163
45.37 -59.48 F290 -31 -98 195 | 11.96 -63.51 F406 7 73 157 23 25.71 -50.98 F147 4 -42 160 12 11.49 -63.60 F406 13 64 151 22 14.44 -63.73 F468 141 -133 23 3 16.92 -63.81 F468 145 -74 19 9 | 5.16 -42.67 F077 -142 -109 306
3.99 -41.53 F049 -62 94 226 2
9.37 -63.71 F406 25 15 139 1
112 -63.85 F406 27 56 137 2
3.79 -50.00 F147 15 -125 149 | 8.40 -63.77 F406 32 -8 132 1
5.36 -59.97 F290 -8 -85 172
1.31 -54.66 F191 -108 -46 272 1
8.05 -52.88 F147 23 83 141 2
5.52 -51.37 F147 25 -32 139 1 | 24.81 -50.99 F147 24 -64 140
12.87 -40.70 F049 -47 32 211
23.32 -64.54 F469 -81 74 245
57.11 -62.97 F346 -46 -15 210
58.86 -63.48 F346 -35 36 199 | 29.85 -54.43 F190 157 -95 7 26.94 -52.78 F147 42 53 122 2 27.45 -64.90 F535 -123 -105 287 42.37 -63.28 F604 -127 -12 291 1 29.69 -54.72 F191 -70 -79 234 | | b Field xcen yeen x11 | 7 47 3.32 -60.77 F406 -101 -161 265 2 36 353.95 -59.53 F290 -130 114 294 27 0 03 19.35 -62.07 F468 54 -12 110 15 3 3 351.81 -59.57 F290 -101 65 265 22 5 37 332.81 -59.54 F190 63 -50 101 11 | 46 326.48 -50.19 F147 -42 -53 206 III
48 324.20 -48.79 F109 -15 106 179 27
02 349.05 -59.20 F290 -91 -15 255 14
17 350.37 -59.48 F290 -91 -55 255 18
59 347.33 -58.86 F290 -93 -69 257 9 | 43 336.64 -55.42 F190 77 106 87 27 05 6.42 -62.06 F406 -52 -69 216 9 22 306.28 -31.95 F102 -95 529 16 337.37 -55.99 F190 92 141 72 30 | 55 315.30 -42.13 F076 49 -117 115
44 15.71 -62.88 F468 98 -104 66
42 22.67 -62.92 F469 -168 63 332 2
40 32.19 -51.32 F147 -16 51 80 1
55 356.27 -61.35 F346 -120 -64 284 1 | 23 322.03 -47.99 F109 10 22 154 1
46 33.46 -56.41 F239 -110 -109 274
55 325.67 -50.51 F147 -11 -62 175 1
32 323.86 -49.64 F147 1 -138 163
35 345.37 -59.48 F290 -31 -98 195 | 23 11.96 -63.51 F406 7 73 157 23
34 325.71 -50.98 F147 4 -42 160 12
35 11.49 -63.60 F406 13 64 151 22
10 16.92 -63.81 F468 141 -133 23 3
10 16.92 -63.81 F468 145 -74 19 9 | 33 315.16 -42.67 F077 -142 -109 306
59 313.99 -41.53 F049 -62 94 226 2
30 9.37 -63.71 F406 25 15 139 1
43 11.12 -63.85 F406 27 56 137 2
07 323.79 -50.00 F147 15 -125 149 | 5 8.40 -63.77 F406 32 -8 132 1
5 21 345.36 -59.97 F290 -8 -85 172
5 34 331.31 -54.66 F191 -108 -46 272 1
8 11 328.06 -52.88 F147 23 83 141 2
7 21 325.52 -51.37 F147 25 -32 139 1 | 0 56 324.81 -50.99 F147 24 -64 140
4 08 312.87 -40.70 F049 -47 32 211
8 23 23.32 -64.54 F469 -81 74 245
0 00 357.10 -62.97 F346 -46 -15 210
9 05 358.86 -63.48 F346 -35 36 199 | 6 21 329.85 -54.43 F190 157 -95 7 8 44 326.94 -52.78 F147 42 53 122 2 6 40 27.45 -64.90 F535 -123 -105 287 9 58 42.37 -63.28 F604 -127 -12 291 1 6 13 329.69 -54.72 F191 -70 -79 234 | | Dec l b Field xcen yeen z _{ll} | 5 -37 47 3.32 -60.77 F406 -101 -161 265 9 -42 36 353.95 -59.53 F290 -130 114 294 27 5 -30 03 19.35 -62.07 F468 54 -12 110 15 7 -43 32 351.87 -59.67 F290 -101 65 265 22 0 -55 37 332.81 -53.54 F190 63 -50 101 11 | 1 -60 46 326.48 -50.19 F147 -42 -53 206 II
4 -62 48 324.20 -48.79 F109 -15 106 179 27
5 -45 02 349.05 -59.20 F290 -91 -15 255 14
7 -44 17 350.37 -59.54 F290 -91 -25 255 18
9 -45 59 347.33 -58.86 F290 -93 -69 257 9 | 1 -52 43 336.64 -55.42 F190 77 106 87 27 4 -36 05 6.42 -62.06 F406 -52 -69 216 9 3 -84 22 306.28 -31.95 F102 -95 5 559 16 5 -60 21 326.64 -50.69 F197 -28 -30 192 13 6 -52 03 337.37 -55.99 F190 92 141 72 30 | 3 -71 55 315.30 -42.13 F076 49 -117 115
3 -31 44 15.71 -62.88 F468 98 -104 66
8 -28 34 22.67 -62.92 F469 -168 63 332 2
3 -59 40 327.19 -51.32 F147 -16 5 180 1
1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | 8 -64 23 322.03 -47.99 F109 10 22 154 17 -51 46 337.46 -56.41 F239 -110 -109 274 0 -60 55 325.67 -50.51 F147 -11 -62 175 19 -62 1 323.86 -49.64 F147 1 -138 163 8 -46 35 345.37 -59.48 F290 -31 -98 195 | 8 -33 23 11.96 -63.51 F406 7 73 157 23
6 -60 34 325.71 -50.98 F147 4 -42 160 12
3 -33 35 11.49 -63.60 F406 13 64 151 22
4 -32 16 14.44 -63.73 F468 141 -133 23 3
6 -31 10 16.92 -63.81 F468 145 -74 19 9 | 6 -71 33 315.16 -42.67 F077 -142 -109 306 0 -72 59 313.99 -41.53 F049 -62 94 226 2 4 -34 30 9.37 -63.71 F406 25 15 139 1 6 -33 43 11.12 -63.85 F406 27 56 137 2 6 6 27 56 137 2 6 62 07 56 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 -34 55 8.40 -63.77 F406 32 -8 132 13 -46 21 345.36 -59.97 F290 -8 -85 172 0 -55 34 331.31 -54.66 F191 -108 -46 272 1 1 -58 11 328.06 -52.88 F147 23 83 141 2 6 6 6 21 325.52 -51.37 F147 25 -32 139 1 | 9 -60 56 324.81 -50.99 F147 24 -64 140
1 -74 08 312.87 -40.70 F049 -47 32 211
2 -28 23 23.32 -64.54 F469 -81 74 245
4 -40 00 357.10 -62.97 F346 -46 -15 210
6 -39 05 358.86 -63.48 F346 -35 36 199 | 9 -56 21 329.85 -54.43 F190 157 -95 7 2 -58 44 326.94 -52.78 F147 42 53 122 2 6 -26 40 27.45 -64.90 F535 -123 -105 287 8 -19 58 42.37 -63.28 F604 -127 -12 291 1 9 -56 13 329.69 -54.72 F191 -70 -79 234 | | l b Field xeen yeen x11 | -37 47 3.32 -60.77 F406 -101 -161 265 -42 36
353.95 -59.53 F290 -130 114 294 27 -30 03 19.35 -62.07 F468 54 -12 110 15 -43 32 351.87 -59.67 F290 -101 65 265 22 -55 37 332.81 -53.54 F190 63 -50 101 101 | 2 45.1 -60 46 326.48 -50.19 F147 -42 -53 206 11 2 45.4 -62 48 324.20 -48.79 F109 -15 106 179 27 2 45.5 -45 02 349.05 -59.20 F290 -91 -15 255 18 2 45.7 -44 17 350.37 -59.54 F290 -91 -25 255 18 2 45.9 -45 59 347.33 -58.86 F290 -93 -69 257 9 | 46.1 -52 43 336.64 -55.42 F190 77 106 87 27 46.4 -36 05 6.42 -62.06 F406 -52 -69 216 9 50.3 -44 22 20.5 F002 -95 5 529 16 47.5 -60 21 326.64 -50.69 F147 -28 -30 192 13 47.6 -52 03 337.37 -55.99 F190 92 141 72 30 | 2 48.3 -71 55 315.30 -42.13 F076 49 -117 115 2 48.3 -31 44 15.71 -62.88 F468 98 -104 66 2 48.8 -28 34 22.67 -62.92 F469 -168 63 332 2 49.3 -59 40 327.19 -51.32 F147 -16 5 180 12 49.1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | -64 23 322.03 -47.99 F109 10 22 154 1
-51 46 337.46 -56.41 F239 -110 -109 274
-60 55 325.67 -50.51 F147 -11 -62 175 1
-62 21 323.86 -49.64 F147 1 -138 163
-46 35 345.37 -59.48 F290 -31 -98 195 | -33 23 11.96 -63.51 F406 7 73 157 23 -60 34 325.71 -50.98 F147 4 -42 160 12 -33 35 11.49 -63.60 F406 13 64 151 22 -32 16 14.44 -63.73 F468 141 -133 23 3 -31 10 16.92 -63.81 F468 145 -74 19 9 | -71 33 315.16 -42.67 F077 -142 -109 306 -72 59 313.99 -41.53 F049 -62 94 226 2 -34 30 9.37 -63.71 F406 25 15 139 1 -33 43 11.12 -63.85 F406 27 56 137 2 -62 07 33.79 -50.00 F147 15 -125 149 | 2 54.0 -34 55 8.40 -63.77 F406 32 -8 132 12 54.3 -46 21 345.36 -59.97 F290 -8 -85 172 2 55.0 -55 34 331.31 -54.66 F191 -108 -46 272 12 55.1 -58 11 328.36 -52.88 F147 23 83 141 2 5 55.4 -60 21 325.52 -51.37 F147 25 -32 139 1 | -60 56 324.81 -50.99 F147 24 -64 140
-74 08 312.87 -40.70 F049 -47 32 211
-28 23 23.32 -64.54 F469 -81 74 245
-40 00 357.110 -62.97 F346 -46 -15 210
-39 05 358.86 -63.48 F346 -35 36 199 | -56 21 329.85 -54.43 F190 157 -95 7 -58 44 326.94 -52.78 F147 42 53 122 2 -26 40 27.45 -64.90 F535 -123 -105 287 -19 58 42.37 -63.28 F604 -127 -12 291 1 -56 13 329.69 -54.72 F191 -70 -79 234 | | Dec RA (2000) Dec l b Field xcen yeen x11 | 8 03 22 41.5 -37 47 3.32 -60.77 F406 -101 -161 265 25 22 41.9 -42 36 353.95 -59.53 F290 -130 114 294 27 0 19 22 44.5 -30 03 19.35 -62.07 F468 54 -12 110 15 3 48 22 44.7 -43 32 35.87 -59.57 F290 -101 65 265 22 55 3 22 45.0 -55 37 332.81 -53.54 F190 63 -50 101 11 | 1 02 22 45.1 -60 46 326.48 -50.19 F147 -42 -53 206 11 3 04 22 45.4 -62 48 324.20 -48.79 F109 -15 106 179 27 5 18 22 45.5 -45 02 349.05 -59.20 F290 -91 -15 255 14 4 3 22 45.7 -44 17 350.37 -59.54 F290 -91 25 255 18 6 15 22 45.9 -45 59 347.33 -58.86 F290 -93 -69 257 9 | 2 59 22 46.1 -52 43 336.64 -55.42 F190 77 106 87 27 6 21 22 46.4 -36 05 6.42 -62.06 F406 -52 -69 216 9 4 38 22 50.3 -84 22 306.58 -31.95 F002 -95 5 25 16 0 37 22 47.5 -60 21 326.64 -50.69 F147 -28 -30 192 13 2 19 22 47.6 -52 03 337.37 -55.99 F190 92 141 72 30 | 2 11 22 48.3 -71 55 315.30 -42.13 F076 49 -117 115 2 00 22 48.3 -31 44 15.71 -62.88 F468 98 -104 66 8 50 22 48.8 -28 34 22.67 -62.92 F1469 -168 63 332 2 9 56 22 49.3 -59 40 327.19 -51.32 F147 -16 5 180 1 11 22 49.1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | 4 39 22 49.8 -64 23 322.03 -47.99 F109 10 22 154 12 2 22 49.7 -51 46 337.46 -56.41 F239 -110 -109 274 11 1 22 50.0 -60 55 325.67 -50.51 F147 -11 -62 175 12 37 22 51.9 -62 21 323.86 -49.64 F147 1 1 38 163 51 2 51.8 -46 35 345.37 -59.48 F290 -31 -98 195 | 3 9 22 51.8 -33 23 11.96 -63.51 F406 7 73 157 23 0 50 22 52.6 -60 34 325.71 -50.98 F147 4 -42 160 12 3 51 22 52.3 -33 35 11.49 -65.60 F406 13 64 151 22 22 22.4 -32 16 14.44 -63.73 F468 141 -133 23 12 52.5.4 -32 16 16.92 -63.81 F468 145 -74 19 9 | 1 49 22 53.6 -71 33 315.16 -42.67 F077 -142 -109 306 315 22 54.0 -72 59 313.99 -41.53 F049 -62 94 226 2 4 46 22 53.4 -34 30 9.37 -63.71 F406 25 15 139 1 3 59 22 53.6 -33 43 11.12 -63.85 F406 27 56 137 2 2 23 25 54.3 -62 07 323.79 -50.00 F147 15 -125 149 | 5 11 22 54.0 -34 55 8.40 -63.77 F406 32 -8 132 1
6 37 22 54.3 -46 21 345.36 -59.97 F290 -8 -85 172
5 51 22 55.0 -55 34 331.31 -54.66 F191 -108 -46 272 1
8 28 22 55.1 -58 11 328.06 -52.38 F147 23 83 141 2
0 38 22 55.4 -60 21 325.52 -51.37 F147 25 -32 139 1 | 1 13 22 55.9 -60 56 324.81 -50.99 F147 24 -64 140 4 25 22 57.1 -74 08 312.87 -40.70 F049 -47 32 211 3 40 22 56.2 -28 23 23.32 -64.54 F469 -81 74 245 0 17 22 56.4 -40 00 357.10 -62.97 F346 -46 -15 210 3 2 2 57.6 -39 05 358.86 -63.48 F346 -35 36 199 | 38 22 57.9 -56 21 329.85 -54.43 F190 157 -95 7 9 01 22 58.2 -58 44 326.94 -52.78 F147 42 53 122 2 5 57 22 58.6 -26 40 27.45 -64.90 F535 -123 -105 287 0 15 22 58.8 -19 58 42.37 -63.28 F604 -127 -12 291 1 5 30 22 59.9 -56 13 329.69 -54.72 F191 -70 -79 234 | | Dec RA (2000) Dec l b Field xcen yeen x11 | 6 -38 03 22 41.5 -37 47 3.32 -60.77 F406 -101 -161 265 0 -42 52 22 41.9 -42 36 353.95 -59.53 F290 -130 114 294 27 7 -30 19 22 44.5 -30 03 19.35 -62.07 F468 54 -12 110 158 43 48 22 44.7 -43 32 351.87 -59.67 F290 -101 65 265 22 9 -55 53 22 45.0 -55 37 332.81 -53.54 F190 63 -50 101 11 | 9 -61 02 22 45.1 -60 46 326.48 -50.19 F147 -42 -53 206 11 -63 04 22 45.4 -62 48 324.20 -48.79 F109 -15 106 179 27 6 -45 18 22 45.5 -45 02 349.05 -59.20 F290 -91 -15 255 14 44 43 22 45.7 -44 17 350.37 -59.54 F290 -91 25 255 18 0 -46 15 22 45.9 -45 59 347.33 -58.86 F290 -93 -69 257 9 | 1 -52 59 22 46.1 -52 43 336.64 -55.42 F190 77 106 87 27 6 -36 21 22 46.4 -36 05 6.42 -62.06 F406 -52 -69 216 9 1 -84 38 22 50.3 -84 22 306.28 -31.95 F002 -95 5 259 16 3 -60 37 22 47.5 -60 21 326.64 -50.69 F147 -28 -30 192 136 6 -52 19 22 47.6 -52 03 337.37 -55.99 F190 92 141 72 30 | 7 -72 11 22 48.3 -71 55 315.30 -42.13 F076 49 -117 115 5 -32 00 22 48.3 -31 44 15.71 -62.88 F468 98 -104 66 0 -28 50 22 48.8 -28 34 22.67 -62.92 F469 -168 63 332 2 1 -59 56 22 49.3 -59 40 327.19 -51.32 F147 -16 5 180 1 2 -41 11 22 49.1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | 5 -64 39 22 49.8 -64 23 322.03 -47.99 F109 10 22 154 1 7 -52 02 22 49.7 -51 46 337.46 -56.41 F239 -110 -109 274 8 -61 11 22 50.0 -60 55 325.67 -50.51 F147 -11 -62 175 1 -62 37 22 51.9 -62 21 323188 -49.64 F147 1 -138 163 9 -46 51 22 51.8 -64 35 345.37 -59.48 F290 -31 -98 195 | 0 -33 39 22 51.8 -33 23 11.96 -63.51 F406 7 73 157 23 4 -60 50 22 52.6 -60 34 325.71 -50.98 F147 4 -42 160 12 55 -33 51 22 52.3 -33 35 11.49 -63.60 F406 13 64 151 22 6 -32 32 22 52.4 -32 16 14.44 -63.73 F468 141 -133 23 38 -31 26 25 2.6 -31 10 16.92 -63.81 F468 145 -74 19 99 | 1 -71 49 22 53.6 -71 33 315.16 -42.67 F077 -142 -109 306 4 -73 15 22 54.0 -72 59 313.99 -41.53 F049 -62 94 226 2 6 -34 46 22 53.4 -34 30 9.37 -63.71 F406 25 15 139 18 -35 59 22 53.6 -33 4 3 11.12 -63.85 F406 27 56 137 2 1 -62 23 22 54.3 62 07 323.79 -50.00 F147 15 -125 149 | 2 -35 11 22 54.0 -34 55 8.40 -63.77 F406 32 -8 132 1 4 -46 37 22 54.3 -46 21 345.36 -59.97 F290 -8 -85 172 0 -55 51 22 55.0 -55 34 331.31 -54.66 F191 -108 -46 272 1 3 -60 38 22 55.1 -58 11 328.06 -52.88 F147 23 83 141 2 3 -60 38 22 55.4 -60 21 325.52 -51.37 F147 25 -32 139 1 | 8 -61 13 22 55.9 -60 56 324.81 -50.99 F147 24 -64 140
4 -74 25 22 57.1 -74 08 312.87 -40.70 F049 -47 32 211
5 -28 40 22 56.2 -28 23 23.32 -64.54 F469 -81 74 245
6 -40 17 22 56.4 -40 00 357.10 -62.97 F346 -46 -15 210
8 -39 22 25.76 -39 05 358.86 -63.48 F346 -35 36 199 | 9 -56 38 22 57.9 -56 21 329.85 -54.43 F190 157 -95 7 1 -59 01 22 58.2 -58 44 326.94 -52.78 F147 42 53 122 2 9 -26 57 22 58.6 -26 40 27.45 -64.90 F535 -123 -105 287 1 -20 15 22 58.8 -19 58 42.37 -63.28 F604 -127 -12 291 1 9 -56 30 22 59.9 -56 13 329.69 -54.72 F191 -70 -79 234 | | ec RA (2000) Dec l b Field x_{cen} y_{cen} x_{ll} | 2 38.6 -38 03 22 41.5 -37 47 3.32 -60.77 F406 -101 -161 265 2 39.0 -42 52 22 41.9 -42 36 353.95 -59.53 F290 -130 114 294 27 2 41.7 -30 19 22 44.5 -30 03 19.35 -62.07 F468 54 -12 110 15 41.8 +43 48 22 44.7 -43 32 351.87 -59.67 F290 -101 65 265 22 2 41.9 -55 53 22 45.0 -55 37 332.81 -53.54 F190 63 -50 101 11 | 2 41.9 -61 02 22 45.1 -60 46 326.48 -50.19 F147 -42 -53 206 11 2 42.1 -63 04 22 45.4 -62 48 334.20 -48.79 F109 -15 106 179 27 2 42.6 -45 18 22 45.5 -45 02 349.05 -59.20 F290 -91 -15 255 14 2 42.8 -44 33 22 45.7 -44 17 350.37 -59.54 F290 -91 25 255 18 2 43.0 -46 15 22 45.9 -45 59 347.33 -58.86 F290 -93 -69 257 9 | 2 43.1 -52 59 22 46.1 -52 43 336.64 -55.42 F190 77 106 87 27 2 43.6 -36 21 22 46.4 -36 05 6.42 -62.06 F406 -52 -69 216 9 2 44.1 -84 38 22 50.3 34.2 2 50.28 -31.95 F002 -95 5 259 16 2 44.3 -60 37 22 47.5 -60 21 326.64 -50.69 F147 -28 -30 192 13 2 44.6 -52 19 22 47.6 -52 03 337.37 -55.99 F190 92 141 72 30 | 2 44.7 -72 11 22 48.3 -71 55 315.30 -42.13 F076 49 -117 115 2 45.5 -32 00 22 48.3 -31 44 15.71 -62.88 F468 98 -104 66 2 46.0 -28 50 22 48.8 -28 34 22.67 -62.92 F469 -168 63 332 2 46.1 -59 56 22 49.3 -59 40 327.19 -51.32 F147 -16 5 180 12 46.2 -41 11 22 49.1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | 2 46.5 -64 39 22 49.8 -64 23 322.03 -47.99 F109 10 22 154 12 46.7 -52 02 22 49.7 -51 46 337.46 -56.41 F239 -110 -109 274 2 46.8 -61 11 22 50.0 -60 55 325.67 -50.51 F147 -11 -62 175 12 48.7 -62 37 22 51.9 -62 21 323186 -49.64 F147 1 -138 163 163 248.9 -46 51 22 51.8 -46 35 345.37 -59.48 F290 -31 -98 195 | 2 49.0 -33 39 22 51.8 -33 23 11.96 -63.51 F406 7 73 157 23 2 49.4 -60 50 22 52.6 -60 34 325.71 -50.98 F147 4 -42 160 12 2 49.5 -33 51 22 52.3 -33 35 11.49 -63.60 F406 13 64 151 22 49.6 -32 32 22 52.4 -32 16 14.44 -63.73 F468 141 -133 23 3 2 9.8 -31 26 2 52.6 -31 10 16.92 -63.81 F468 145 -74 19 99 | 2 50.1 -71 49 22 53.6 -71 33 315.16 -42.67 F077 -142 -109 306 2 50.4 -73 15 22 54.0 -72 59 313.99 -41.53 F049 -62 94 226 2 2 50.6 -34 46 22 53.4 -34 30 9.37 -63.71 F406 25 15 139 1 2 50.8 -33 59 22 53.6 -33 43 11.12 -63.85 F406 27 56 137 2 51.1 -62 23 22 54.3 62 07 323.79 -50.00 F147 15 -125 149 | 2 51.2 -35 11 22 54.0 -34 55 8.40 -63.77 F406 32 -8 132 12 51.4 -46 37 22 54.3 -46 21 345.36 -59.97 F290 -8 -85 172 2 52.0 -55 51 22 55.0 -55 34 331.31 -54 66 F191 -108 -46 272 12 52.0 -58 28 22 55.1 -58 11 328.06 -52.88 F147 23 83 141 22 55.3 -60 38 22 55.4 -60 21
325.52 -51.37 F147 25 -32 139 1 | 52.8 -61 13 22 55.9 -60 56 324.81 -50.99 F147 24 -64 140 53.4 -74 25 22 57.1 -74 08 312.87 -40.70 F049 -47 32 211 53.5 -28 40 22 56.2 -28 23 23.32 -64 54 F469 -81 74 245 53.6 -40 17 22 56.4 -40 00 357.10 -62.97 F346 -46 -15 210 54.8 -39 22 22 57.6 -39 05 358.86 -63.48 F346 -35 36 199 | 2 54.9 -56 38 22 57.9 -56 21 329.85 -54.43 F190 157 -95 7 55.1 -59 01 22 58.2 -58 44 326.94 -52.78 F147 42 53 122 2 55.9 -26 57 22 58.6 -26 40 27.45 -64.90 F355 -123 -105 287 2 56.1 -20 15 22 58.8 -19 58 42.37 -63.28 F604 -127 -12 291 1 2 56.9 -56 30 22 59.9 -56 13 329.69 -54.72 F191 -70 -79 234 | | (1950) Dec RA (2000) Dec l b Field x _{cen} y _{cen} x _{ll} | 38.6 -38 03 22 41.5 -37 47 3.32 -60.77 F406 -101 -161 265 39.0 -42 52 22 41.9 -42 36 353.95 -59.53 F290 -130 114 294 27 41.7 -30 19 22 44.5 -30 03 19.35 -62.07 F468 54 -12 110 15 41.8 -43 48 22 44.7 -43 32 351.87 -59.67 F290 -101 65 265 22 45.0 -55 37 332.81 -53.54 F190 63 -50 101 10 | 22 41.9 -61 02 22 45.1 -60 46 326.48 -50.19 F147 -42 -53 206 11 22 42.1 -63 04 22 45.4 -62 48 324.20 -48.79 F109 -15 106 179 27 22 42.6 -45 18 22 45.5 -45 02 349.05 -59.20 F290 -91 -15 255 14 22 42.8 -44 33 22 45.7 -44 17 350.37 -59.45 F290 -91 25 255 18 22 43.0 -46 15 22 45.9 45 59 347.33 -58.86 F290 -93 -69 257 9 | 22 43.1 -52 59 22 46.1 -52 43 336.64 -55.42 F190 77 106 87 27 22 43.6 -36 21 22 46.4 -36 05 6.42 -62.06 F406 -52 -69 216 9 22 44.1 -84 38 22 50.3 -48 22 06.28 -31.95 F002 -95 5 29 16 22 44.3 -60 37 22 47.5 -60 21 326.64 -50.69 F147 -28 -30 192 13 22 44.6 -52 19 22 47.6 -52 03 337.37 -55.99 F190 92 141 72 30 | 44.7 -72 11 22 48.3 -71 55 315.30 -42.13 F076 49 -117 115 45.5 -32 00 22 48.3 -31 44 15.71 -62.88 F468 98 -104 66 46.0 -28 50 22 48.8 -28 34 22.67 -62.92 F469 -168 63 332 2 46.1 -59 56 22 49.3 -59 40 327.19 -51.32 F147 -16 5 180 146.2 -41 11 22 49.1 -40 55 356.27 -61.35 F346 -120 -64 284 1 | 46.5 -64 39 22 49.8 -64 23 322.03 -47.99 F109 10 22 154 1 46.7 -52 02 22 49.7 -51 46 337.46 -56.41 F239 -110 -109 274 46.8 -61 11 22 50.0 -60 55 325.67 -50.51 F147 -11 -62 175 1 48.7 -62 37 22 51.9 -62 21 323.86 -49.64 F147 1 -138 163 48.9 -46 51 22 51.8 -64 35 345.37 -59.48 F290 -31 -98 195 | 49.0 -33 39 22 51.8 -33 23 11.96 -63.51 F406 7 73 157 23 49.4 -60 50 22 52.6 -60 34 325.71 -50.98 F147 4 -42 160 12 49.5 -33 51 22 52.3 -33 35 11.49 -63.60 F406 13 64 151 22 49.6 -32 32 22 52.4 -32 16 14.44 -63.73 F468 141 -133 23 349.8 -31 26 22 52.6 -31 10 16.92 -63.81 F468 145 -74 19 99 | 2 25 50.1 -71 49 22 53.6 -71 33 315.16 -42.67 F077 -142 -109 306 22 52.50.4 -73 15 22 54.0 -72 59 313.99 -41.53 F049 -62 94 226 23 22 50.6 -34 46 22 53.4 -34 30 9.37 -63.71 F406 25 15 139 14 22 50.8 -33 59 22 53.6 -33 43 11.12 -63.85 F406 27 56 137 25 22 51.1 -62 23 22 54.3 62 07 323.79 -50.00 F147 15 -125 149 | 51.2 -35 11 22 54.0 -34 55 8.40 -63.77 F406 32 -8 132 15.4 -46 37 22 54.3 -46 21 345.36 -59.97 F290 -8 -85 172 52.0 -55 51 22 55.0 -55 34 331.31 -54.66 F191 -108 -46 272 152.0 -58 8 22 55.1 -58 11 328.06 -52.88 F147 23 83 141 25.3 -60 38 22 55.4 -60 21 325.52 -51.37 F147 25 -32 139 11 | 2 52.8 -61 13 22 55.9 -60 56 324.81 -50.99 F147 24 -64 140 2 53.4 -74 25 22 57.1 -74 08 312.87 -40.70 F049 -47 32 211 2 53.5 -28 40 22 56.2 -28 23 23.32 -64.54 F469 -81 74 245 2 53.6 -40 17 22 56.4 -40 00 357.10 -62.97 F346 -46 -15 210 554.8 -39 22 25.7.6 -39 05 358.86 -63.48 F346 -35 36 199 | 54.9 -56 38 22 57.9 -56 21 329.85 -54.43 F190 157 -95 7 55.1 -59 01 22 58.2 -58 44 326.94 -52.78 F147 42 53 122 2 55.9 -26 57 22 58.6 -26 40 27.45 -64.90 F535 -123 -105 287 56.1 -20 15 22 58.8 -19 58 42.37 -63.28 F604 -127 -12 291 1 56.9 -56 30 22 59.9 -56 13 329.69 -54.72 F191 -70 -79 234 | | ontinued | |----------| | BLE 4—C | | TAI | | | | 8 | 4.4.6.4. | 4444 | 44064 | ,,,,,, | | ww.u.4.4 | 40000 | 44 | ur44u | | |-----------------|--|--|---|--|---|--|--|---|---|--| | Q | 7,1,1,1 | 177 | 7777 | 177 | 717171 | 7777 | 71111 | 177 | 17 17 17 17 17 17 17 17 17 17 17 17 17 1 | 7777 | | R I | 05001 | 10000 | 0000 | 2220 | 01113 | 01111 | 20020 | 21012 | 21000 | 01001 | | z | | | 0.0890 | 0.0699 | | | | (0.0286) | | | | Previous | | ж
в в в | æ | в
рож | g, o | Ω κ | ω α | QQ @@ | в вр | m m | | Obs | 10
10
10
10,14 | 33 33 55 55 | 10
10,14
10,14 | 1C
1C
1C
10,1A
20,1A | 10, 1A
10, 1A
20
20 | 10
10
20
20
20 | 10
30
10
10 | 20
10
20
20
30 | 33333 | 10
10
10,10 | | m ₁₀ | 17.8
17.8
18.9
18.2 | 17.3
19.4
19.1
? 17.4: | 19.4
16.3
16.8
18.1 | 17.7
18.3
18.6
17.0 | 18.0
17.4
19.1
19.5
18.5 | 18.7
19.0
18.3
19.3 | 19.4
17.8
18.6
18.3 | 17.8
17.3
18.0
19.3 | 18.1
16.5
19.2
19.3 | 18.4
18.1
17.7
18.0
19.2: | | m³ | 17.3
16.7
18.6
17.6
18.7 | 16.0
18.8
17.8
16.4 | 18.7
18.3
16.0
16.6 | 16.7
18.0
17.8
16.6 | 17.4
16.8
18.0
18.6
17.9 | 18.1
18.1
17.7
19.0
18.6 | 18.7
16.3
18.0
17.6 | 16.5
15.7
17.2
18.5 | 17.7
15.4
18.7
118.1 | 18.0
17.4
16.3
16.8 | | m_1 | 16.1
16.1
17.8
17.3
17.3 | 15.7
18.4?
17.3
16.2?
17.5 | 17.9
18.0
14.9
15.8 | 16.3
17.9
17.6
16.0: | 16.7
16.0:
17.6
17.8
17.3 | 17.2
17.4?
16.9
18.5
17.8 | 18.4
15.5
17.4
17.2 | 15.6
15.0:
16.5
17.6 | 17.4
15.0
18.3:
17.7? | 17.5
16.6
15.4
16.3 | | C | 67
499
39
38 | 30:
56
37
69
73 | 09
8
9
9
8
9
8
9
8
9
8
9
8
8
9
8
8
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 44
60
44
0 | 136
64
65
35 | 73
61
58:
55 | 62
64
74
114
36 | 30
50
41
65
8 | 49
31
30
66
103 | 59
39
40
46: | | T_{B-M} | | I I-II
I I-II
II III II | | | II-III
II-III
II-III
III-III3 | III-III
II-III II-II | II-III
II-III
II-III | 1-11
11-111
11-111
11? | III
III
III-III? | 111-111
11-111
1111
11-11 | | T_A | HHHH | RI RI | R
RI:
R | RRHHRR | R
R
RI? | R
I
RI | E E E E | жинжи | RHIRR | H KI | | Abell | 3951
3952
3953
3954
3955 | 3956
3957
3958
3959
3960 | 3961
3962
3963
3964
3965 | 3966
3967
3968
3969
3970 | 3971
3972
3973
3974
3975 | 3976
3977
3978
3979
3980 | 3981
3982
3983
3984 | 3986
3987
3988
3989 | 3991
3992
3994
3994 | 3996
3997
3998
3999
4000 | | ий их | 282 224
117 109
117 134
104 94
109 241 | 23 19 23 | 0.4000 | | | 306 102
71 129
336 211
235 256
46 238 | 11 230
232 276
267 253
286 262
76 238 | | 00040 | 40.00 | | ycen | 60
-55
-70 | | | | ro ω 4+ αο rο | -62
-35
92
74 | 66
112
89
98
74 | 79
62
-45
104 | 10 00 00 12 13 | | | Lcen | 118
47
60 | 00001 | | 93 .
47 .
101 | 1001 | 142
93
172
-71 | 153
-68
103
122
88 |
22022 | -75
-141
-57 | 1 1 | | Field | F604 -1
F290
F290
F147
F290 | F290
F147
F469
F407 -1 | 4460 | ı | 70477 | 1 1 | F147 F17 F110 - F1347 - F535 | 4024 | | 4.0407 | | q | -62.96
-61.13
-61.38
-51.32 | 60000 | 64.
64. | 4.00.00 | -52.00
-62.73
-55.82
-46.72
-53.69 | -52.05
-65.23
-67.89
-46.58 | -54.35
-46.96
-50.74
-67.19 | -40.95
-61.99
-41.91
-68.40 | 70.01 | | | 1 | 45.31 .
345.33 .
346.15 .
323.96 . | 49.04
24.74
21.58
11.33 | 2.592 | 24.28
23.71
57.65
47.29 | 23.60
46.83
28.91
17.03 | 323.06
353.98
22.76
316.03
23.95 | 4.79
6.19
0.04
7.63 | 0.98
7.60
3.86 | 24.92
111.58
31.12
16.61 | 41.79
36.18
48.32
30.97
50.72 | | RA (2000) Dec | 22 59.7 -18 37 23 00.2 -45 46 23 01.0 -45 18 23 01.0 -41 18 23 00.8 -43 18 | 3 01.2 -43 3 02.2 -60 1 3 02.3 -29 1 3 02.4 -33 2 02.4 -32 02.4 -32 02.4 -32 02.4 -32 02.4 -32 02.4 -32 02.4 -32 02.4 -32 02.4 -32 0 | 3 03.1 - 37 5 3 03.8 - 44 1 1 9 5 0 0 5.4 - 19 5 0 0 5.4 - 19 5 0 0 5.4 - 53 0 0 0 5.4 - 53 0 0 0 5.4 - 53 0 0 0 0 5.4 - 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 05.6 160
3 05.6 160
3 05.6 139
3 05.6 139
1 05.8 144 | 3 06.0 -60
3 05.9 -44
3 07.7 -55
3 08.1 -67
3 08.0 -58 | 23 08.4 -60 51
23 10.1 -40 25
23 11.4 -28 47
23 13.3 -67 58
23 13.0 -28 21 | 23 13.5 -58 25
23 14.5 -67 35
23 14.5 -67 35
23 15.3 -37 47
23 16.0 -23 19 | 3 17.2 -74
3 16.8 -48
3 17.5 -73
3 18.1 -35
3 18.8 -67 | 3 18.9 -57 2
3 20.4 -73 1
3 20.1 -52 0
3 21.1 -66 0
3 21.6 -69 4 | 3 21.3 -22
3 21.3 -24
3 21.6 -41
3 22.8 -51
3 23.0 -40 | | RA (1950) Dec | 22 57.0 -18 54
22 57.3 -46 03
22 57.4 -45 35
22 57.9 -61 20
22 58.0 -43 35 | 2 58.4 -43 56
2 59.1 -60 27
2 59.6 -29 28
3 59.7 -33 40 | 3 00.3 -38 07
3 00.6 -39 26
3 01.0 -44 35
3 01.7 -20 11 | 3 02.6 -60 23
3 02.8 -60 55
3 02.8 -44 23
3 03.0 -45 29 | 3 03.0 -60 58
3 03.1 -44 38
3 04.8 -56 02
3 04.9 -67 45
3 05.0 -58 57 | 3 05.4 -61 08
3 07.3 -40 42
3 08.7 -29 04
3 10.2 -68 15
3 10.3 -28 38 | 23 10.6 ~58 42
23 11.4 -67 52
23 11.5 -63 19
23 12.6 -38 04
23 13.3 -23 36 | 3 13.8 -74 57
3 14.0 -48 33
3 14.2 -73 52
3 15.4 -35 57
3 15.7 -68 03 | 3 16.0 -57 42
3 17.2 -73 34
3 17.3 -52 24
3 18.1 -66 17
3 18.5 -69 58 | 3 18.7 -22 23 18.7 -24 27 18.9 -42 10 3 20.0 -52 04 3 20.3 -40 55 | | Abell | 3951
3952
3953
3954
3955 | 957
957
959 | 961
962
964
965 | 966
967
968
969 | | 9 ~ 8 6 0 | | | 9991
9991
994 | 996
997
999
000 | | | 8 | 17.
17.
17.
17. | 17.
17.
16.
17. | 17.
17.
17.
17. | 16.
17.
17.
17. | 17.
17.
17.
17. | 16.
17.
17.
17. | 17.
17.
17.
17. | 17.
17.
14.
17. | 17.
17.
17.
17. | 17.
17.
17.
15. | |--|------------------------------------|---|--|---|--|--|--|---|--|---|--| | | | 00000 | വവവവഴ | ७०७०० | စစသစည | 00000 | စညစစည | 00000 | 00000 | വവഴയ | ουοπο | | | ۳ | 71007 | 1015 | 00100 | 04044 | 0000 | 00100 | 70017 | 40044 | нонон | 71707 | | | z | | | | | | | | 0.0283 | | 0.0283 | | | Previous | Š. | 0 m m | m m | o g | ø | a O a | Ω | B
BKO
B | æ | a v | | | 0ps | 10
10
10
10 | 2C
1C
1C | 10
10
20 | 10
10
10 | 10
10
10
10 | 30
10,10
10,10 | 22222 | 10,2C
1C,10
2C,10 | 10
10
10
20,10 | 10,10
10,10
10,10 | | | m ₁₀ | 18.8
18.9
19.0
19.0 | 19.0
17.7:
16.7
17.6
16.7 | 18.2
19.2
18.9
17.6 | 16.4
19.6
17.5
18.9 | 17.2
18.6
19.2
19.3 | 16.4?
19.4
18.1
17.7
19.2 | 19.2
18.1
19.3
18.7 | 19.0
18.7
14.0
19.0 | 19.0
19.6
19.1
17.7 | 19.2
18.5
14.8 | | | m ³ | 17.9
18.3
18.0
18.1
17.9 | 18.1
16.7
16.3
17.3
? 16.1 | 2 17.2
18.4
2 18.1
16.8
7 17.13 | 15.4
19.0
16.6
18.0
16.7 | 16.3
17.3
18.6
18.1
17.2 | 15.8
18.3
17.0
16.1 | 18.0
18.0
18.1
17.5 | 17.8
18.0
13.4
19.2 | 18.9
19.0
18.0
17.3 | 18.0
17.6
13.8
18.2 | | | mı | 17.5
17.9
17.3
17.8
17.9 | 17.7
14.8
13.8
16.7
14.8 | 16.7
17.7
17.6
16.1
16.8 | 15.2
18.6
16.2
17.8
16.0 | 15.4
17.0
17.8
18.0 | 15.2
18.0
16.3
15.8 | 17.5
16.8
17.8
17.1
16.7 | 17.5
17.9
12.6
17.5
18.7 | 17.2
18.7
17.2
17.2
15.7 | 17.6
17.7
16.7
12.5
17.7 | | | ٥ | 79
79
39
91? | 86
100
66
36
67 | 35
35
36
36 | 34
65
60
51 | 52
4 4 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 44
68
44
33 | 55
40
41
67
83 | 61
118
117
63
56 | 72
35
53
53 | 8 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | Тв-м | II-II
III
III | 11-111:
11
1
1-11 | 11-1117
111-111
111
111-111 | | III-III
III-III | | I-II
III
II-III? | | i
III
III
I | | | | T_A | HHHHH | ннняя | I KI | ннннн | ннннн | ı RRI: | RHIH | RIJ | R I I I I I I I I I I I I I I I I I I I | H K K K K | | | Abell | 4001
4002
4003
4004
4005 | 4006
4007
4008
4009
4010 | 4011
4012
4013
4014
4015 | 4016
4017
4018
4019
4020 | 4021
4022
4023
4024
4025 | 4026
4027
4028
4029
4030 | 4031
4032
4033
4034
4035 | 4036
4037
4038
4039
4040 | 4041
4042
4043
4044
4045 | 4046
4047
4048
4049
4050 | | | | | | | | | | | | | | | | 1 | | | | | | | |
 | | | | yıı | 74
3 134
3 251
5 311 | 9 290
170
1 186
5 68 | 2 179
2 213
9 135
1 123 | 5 188
7 78
7 27
7 263 | 3 250
1 105
0 137
3 176
7 169 | 3 279
7 99
7 216
3 240
2 132 | 1 178
1 162
1 178
7 296
5 223 | | | | | | x11 y11 | 203 74
203 134
238 251
186 311
291 238 | 189 290
199 170
134 186
110 189
246 68 | 242 179
242 213
239 135
144 123
106 288 | 96248 | 48 250
121 105
190 137
108 176
107 169 | 288 279
167 99
97 216
258 240
62 132 | 254 178
221 162
261 178
127 296
75 223 | 262 266
184 243
180 253
62 81
62 266 | 331 214
166 58
324 79
327 311
169 195 | 187
226
183
133 | | | ycen XII | -90 203
-30 203 1
87 238 2
147 186 3
74 291 2 | | 15 242
49 242
-29 239
-41 144
124 106 | 18
7
2
26
19 | 86 48 2
-59 121 1
-27 190 1
12 108 1
5 107 1 | 88
67
97
62 | 54
21
61
75 | 102 262
79 184
89 180
-83 62
102 62 | 50 331
-106 166
-85 324
147 327
31 169 | -97 187
69 226
70 183
77 133
107 42 | | | en XII | 0 203
0 203 1
7 238 2
7 186 3
4 291 2 | 6 189
6 199
2 134
5 110
6 246 | 242
242
239
144 | 24 136 18
86 147 7
37 147 2
99 117 26
26 117 19 | 6 48 2
9 121 1
7 190 1
5 108 1 | 288
167
97
258
62 | 254
221
261
127
75 | 262
184
180
62 | 50 331
06 166
85 324
47 327
31 169 | 187
226
183
133 | | | cen Ycen XII | -90 203
-30 203 1
87 238 2
147 186 3
74 291 2 | 5 126 189
5 6 199
0 22 134
4 25 110
2 -96 246 | 3 15 242
3 49 242
5 -29 239
0 -41 144
3 124 106 | 8 24 136 18
7 -86 147 7
7 -137 147 2
7 99 117 26 | 6 86 48 2
3 -59 121 1
6 -27 190 1
6 12 108 1
7 5 107 1 | 8 -124 115 288
2 -3 -65 167
0 67 52 97
8 -94 76 258
0 102 -32 62 | 0 14 254
7 -2 221
7 14 261
7 132 127
9 59 75 | 98 102 262
20 79 184
16 89 180
02 -83 62
02 102 62 | 9 -167 50 331
1 -2 -106 166
9 -160 -85 324
9 -163 147 327
6 -5 31 169 | -97 187
69 226
70 183
77 133
107 42 | | | ield xcen ycen x11 | 2.64 F148 -39 -90 203
9.42 F110 -39 -30 203 1
9.99 F536 -74 87 238 2
9.42 F347 -22 147 186 3
9.42 F192 -127 74 291 2 | 52.10 F110 -25 126 189
46.45 F077 -35 6 199
69.18 F347 30 22 134
72.07 F470 54 25 110 | 1.41 F408 -78 15 242
1.61 F408 -78 49 242
1.18 F408 -75 -29 239
2.24 F536 20 -41 144
0.44 F347 58 124 106 | 6.34 F077 28 24 136 18
9.01 F110 17 -86 147 7
1.08 F240 17 -137 147 2
6.50 F148 47 99 117 26
6.48 F077 47 26 117 12 | 1.12 F347 116 86 48 2
2.52 F240 43 -59 121 1
1.68 F002 -26 -27 190 1
6.37 F240 55 12 108 1
3.62 F240 5 107 18 | 1.89 F348 -124 115 288
8.55 F192 -3 -65 167
1.71 F110 67 52 97
1.95 F348 -94 76 258
3.58 F240 3 -3 62 | 4.92 F537 -90 14 254
3.35 F606 -57 -2 221
1.27 F078 -97 14 261
2.06 F192 37 132 127
4.63 F408 95 95 75 | 2.82 F078 -98 102 262
5.74 F471 -20 79 184
5.86 F471 -16 89 180
3.77 F408 102 -83 62
8.24 F077 102 102 62 | 6.06 F409 -167 50 331
5.61 F471 -2 -106 166
5.75 F409 -160 -85 324
6.19 F409 -163 147 327
3.88 F606 -5 31 169 | 0.90 F348 -23 -97 187
7.70 F050 -62 69 226
3.01 F348 -19 70 183
6.71 F471 31 77 133
8.48 F077 122 107 42 | | | Field xcen ycen x11 | .64 F148 -39 -90 203
.42 F510 -39 -30 203 1
.99 F536 -74 87 238 2
.24 F347 -22 147 186 3
.42 F192 -127 74 291 2 | 5.10 F110 -25 126 189
6.45 F077 -35 6 199
9.18 F347 30 22 134
2.07 F408 -82 -96 246 | .41 F408 -78 15 242
.16 F408 -78 49 242
.18 F408 -75 -29 239
.24 F536 20 -41 144
.44 F347 58 124 106 | .34 F077 28 24 136 18
.01 F110 17 -86 147 7
.08 F240 17 -137 147 2
.50 F148 47 99 117 26
.50 F148 F077 47 26 117 26 | .12 F347 116 86 48 2
.52 F240 43 -59 121 1
.68 F002 -26 -27 190 1
.37 F077 56 12 108 1
.62 F240 5 107 108 1 | .89 F348 -124 115 288
.55 F192 -3 -65 167
.71 F110 67 52 97
.85 F348 -94 76 258
.86 F240 102 -32 62 | .92 F537 -90 14 254
.35 F606 -57 -2 221
.27 F078 -97 14 261
.06 F192 37 132 127
.63 F408 89 59 75 | .82 F078 -98 102 262
.74 F471 -20 79 184
.86 F471 -16 89 180
.27 F408 102 -83 62
.24 F077 102 02 62 | .06 F409 -167 50 331
.61 F471 -2 -106 166
.75 F409 -160 -85 324
.19 F409 -163 147 327
.88 F606 -5 31 169 | .70 F050 -62 69 226
.01 F348 -19 70 183
.71 F471 31 77 133
.48 F077 122 107 42 | | | b Field xcen ycen x11 | 20.10 -52.64 F148 -39 -90 203
16.63 -49.42 F110 -39 -30 203 1
19.73 -49.49 F536 -74 87 238 2
59.27 -69.24 F347 -22 147 186 3
28.16 -59.42 F192 -127 74 291 2 | 18.59 -52.10 F110 -25 126 189
13.58 -46.45 F077 -35 6 199
21.94 -66.18 F347 30 22 134
21.33 -72.07 F408 -54 25 110
59.05 -70.60 F408 -82 -96 246 | 4.90 -71.41 F408 -78 15 242
6.74 -71.61 F408 -78 49 242
2.40 -71.18 F408 -75 -29 239
33.76 -72.24 F536 20 -41 144
56.19 -70.44 F347 58 124 106 | 12.59 -46.34 F077 28 24 136 18
14.47 -49.01 F110 17 -86 147 7
27.25 -61.08 F240 17 -137 147 2
20.97 -56.50 F148 47 99 117 26
12.27 -46.48 F077 47 26 117 28 | 52.79 -71.12 F347 116 86 48 2
28.32 -62.52 F240 43 -59 121 1
04.66 -31.68 F002 -26 -27 190 1
11.92 -46.37 F077 56 12 108 1
29.57 -63.62 F240 55 107 108 1 | 53.52 -71.89 F348 -124 115 288 21.68 -58.55 F192 -3 -65 167 15.00 -51.71 F110 67 52 97 50.56 -71.95 F348 -94 76 258 27.10 -63.58 F240 102 -32 62 | 39.32 -74.92 F537 -90 14 254
55.63 -73.35 F606 -57 -2 221
14.09 -51.27 F078 -97 14 261
24.28 -62.06 F192 37 132 127
4.09 -74.63 F408 89 59 75 | 15.03 -52.82 F078 -98 102 262 24.42 -75.74 F471 -20 79 184 25.16 -75.86 F471 -16 89 180 474 -713.77 F408 102 -83 62 11.82 -48.24 F077 102 102 62 | 3 48.7 -28 47 22.45 -76.06 F409 -167 50 331 48.8 -31 46 10.38 -75.61 F471 -2 -106 166 3 48.9 -31 17 12.25 -75.75 F409 -160 -85 324 3 49.4 -26 59 29.97 -76.19 F409 -163 147 327 56.3 -19 11 59.20 -73.88 F606 -5 31 169 | 39.92 -70.90 F348 -23 -97 187
11.18 -47.70 F050 -62 69 226
47.47 -73.01 F348 -19 70 183
24.11 -76.71 F471 31 77 133
11.37 -48.48 F077 122 107 42 | | | (2000) Dec l b Field xcen ycen x11 | 2 23.4 -61 27 320.10 -52.64 F148 -39 -90 203 3 24.9 -65 20 316.63 -42 F110 -39 -30 203 1 24.7 -23 06 33.73 -49.42 F110 -39 -30 203 1 24.7 -23 06 33.73 -49.99 F536 -74 87 238 2 3 24.8 -36 57 359.27 -69.24 F347 -22 147 186 3 2 26.3 -53 20 328.16 -59.42 F192 -127 74 291 2 | 3 27.6 -62 24 318.59 -52.10 F110 -25 126 189 3 28.6 -68 55 313.58 -46.45 F077 -35 6 199 3 30.3 -39 19 351.94 -69.18 F347 30 22 134 3 30.5 -29 16 21.33 -72.07 F408 -82 26 246 3 31.2 -36 30 359.05 -70.60 F408 -82 -96 246 | 3 31.7 -34 26 4.90 -71.41 F408 -78 15 242 3 11.8 -33 49 6.74 -71.61 F408 -78 49 242 3 31.9 -35 16 2.40 -71.18 F408 -75 -29 239 3 32.4 -25 29 33.76 -72.24 F536 20 -41 144 3 32.5 -37 26 356.19 -70.44 F347 58 124 106 | 3 34.9 -69 19 312.59 -46.34 F077 28 24 136 18 3 55.1 -66 22 314.47 -49.01 F110 17 -86 147 7 3 35.4 -52 18 327.25 -61.08 F240 17 -137 147 2 3 36.4 -57 55 320.97 -56.50 F148 47 99 117 26 3 37.9 -69 17 312.27 -46.48 F077 47 26 117 18 | 3 8.2 - 38 06 352.79 -71.12 F347 116 86 48 2 3 38.4 -50 51 328.32 -62.52 F240 43 -59 121 1 3 40.3 -85 12 304.66 -31.68 F002 -26 -27 190 1 3 39.8 -69 29 311.92 -46.37 F077 55 12 108 1 3 39.8 -69 38 329.57 -63.62 F240 57 5 107 1 | 3 40.9 -37 31 353.52 -71.89 F348 -124 115 288 3 41.7 -55 58 321.68 -58.55 F192 -3 -65 167 3 43.2 -63 47 315.00 -51.71 F110 67 52 97 3 43.6 -38 16 350.56 -71.95 F348 -94 76 258 452.5 50 19 3 27.10 -63.58 F240 102 -32 62 | 3 45.4 -24 29 39.32 -74.92 F537 -90 14 254 3 46.2 -19 47 55.63 -73.35 F606 -57 -2 221 3 46.3 -64 25 314.09 -51.27 F078 -97 14 261 3 46.7 -52 18 324.28 -62.06 F192 37 132 127 46.7 -53 36 4.09 -74.63 F408 89 59 75 | 3 47.2 -62 46 315.03 -52.82 F078 -98 102 262 3 47.2 -28 19 24.42 -75.74 F471 -20 79 184 3 47.7 -28 08 25.16 -75.86 F471 -16 89 180 3 48.2 -36 16 344 -73.77 F408 102 -83 62 3 48.3 -67 311.82 -48.24 F077 102 102 62 | 3 48.7 -28 47 22.45 -76.06 F409 -167 50 331 48.8 -31 46 10.38 -75.61 F471 -2 -106 166 3 48.9 -31 17 12.25 -75.75 F409 -160 -85 324 3 49.4 -26 59 29.97 -76.19 F409 -163 147 327 56.3 -19 11 59.20 -73.88 F606 -5 31 169 | 3 50.4 -41 34 339.92 -70.90 F348 -23 -97 187 50.6 -68 26 311.18 -47.70 F050 -62 69 226 3 50.8 -38 25 347.47 -73.01 F348 -19 70 183 51.6 -28 22 24.11 -76.71 F471 31 77 133 3 52.2 -67 40 311.37 -48.48 F077 122 107 42 | 73 \odot American Astronomical Society $^{\bullet}$ Provided by the NASA Astrophysics Data System | 8 | 17.2
17.2
16.8
17.2 | 17.3
17.2
17.3
15.5
17.3 | 17.4
17.4
17.3
17.3 | 17.2
17.1
16.9
17.3 | 17.4
17.3
17.4
17.2 | 17.3 | |-----------------|---|---|---|--|---|---------------| | Ω | ຍວວວວ | စ က စ ည စ | 00000 | စစသသသ | မအစမစ | 9 | | H | 00444 | 00444 | 00101 | 04044 | 0000 | 7 | | 22 | | 0.0456 | | | | | | Previous | m m | BBD
BB | | BDR
D
B | æ | | | Obs | 10
10,
10,30
10,10 | 20
10
20,10
10 | 10
10,10
10,10 | 22222 | 10, 10
10
10
10
10, 10 | 10 | | m ₁₀ | 17.8
18.1
16.6
18.2: | 18.5
18.0
18.4
15.3 | 19.1
18.9
18.1
18.1 | 17.6
16.9
16.7
18.7 | 19.6
18.6
19.1
17.1
19.0 | 18.7 | | m ₃ | 16.3
17.5
15.6
17.3 | 17.6
17.4
17.4:
14.4
17.3 | 18.7
18.3
18.3
17.5 | 16.5
16.3:
15.3
17.3 | 18.9
17.5
18.0
16.3?
18.3 | 17.8 | | m ₁ | 15.4
15.2*
15.0:
17.0 | 17.3
16.5
17.5
12.0?
15.9* |
18.4
16.7
17.9:
17.0 | 15.6
15.9
14.8?
16.8 | 18.7
16.0
17.5
15.7
17.9 | 17.2 | | C | 36
39
64?
73: | 443
55
56
54 | 40
38
61
38
64: | 39
47
20
20
30
30 | 115
45
45
60
40 | 64 | | T_{B-M} | 1-11
111-111
111
113 | :::::::::::::::::::::::::::::::::::::: | | | | 111-11 | | T_A | IRRRI | r ir | RHRRHR | ниянн | R R R | н | | Abell | 4051
4052
4053
4054
4055 | 4056
4057
4058
4059
4060 | 4061
4062
4063
4064
4065 | 4066
4067
4068
4069
4070 | 4071
4072
4073
4074
4075 | 4076 | | | | | | | | | | ия | 270
206
277
231
88 | 295
183
63
167
179 | 1 228
5 138
5 273
1 151 | 63
116
177
175
1 75 | ** | 244 | | llx | 223
187
96
90
254 | 129
180
230
228
192 | 234
195
219
193
214 | 32
191
198
198 | 194
190
182
185 | 171 | | ycen | 106
42
113
67
-76 | 131
19
-101
15 | 64
109
-13
-80 | -101
-48
-89
-33 | 89
-74
-98
-87 | 80 | | ld xcen | -59
-23
-90 | 35
-16
-64
-28 | -70
-31
-55
-29 | 132
-27
74
-34 | -30
-26
-18
-21
-16 | -7 | | Field | F078
F012
F471
F471 | F348
F012
F349
F349 | F472
F078
F409
F1111 | F077
F111
F348
F538
F409 | F409
F538
F241
F349 | F193 | | 9 | -53.14
-37.76
-77.42
-77.49 | -74.51
-37.37
-75.00
-76.06 | -77.23
-50.97
-78.19
-55.92 | -45.02
-55.30
-73.64
-76.97
-78.33 | -78.65
-76.95
-68.14
-75.81 | -66.78 | | 1 | 313.94 - 27.21 - 23.21 - 54.85 - | 348.50
306.08
350.28
356.84 | 46.27 - 311.83 - 26.92 - 314.71 - 56.18 - | 308.79 -
314.20 -
340.71 -
56.30 -
13.79 - | 25.06 -
57.70 -
326.88 -
348.99 - | 324.25 -66.78 | | Dec | 22 44
17 40
11 11 | 17 17 17 16 37 16 40 28 | 13 32 13 14 44 15 15 15 15 15 15 15 15 15 15 15 15 15 | 11 30 40 23 22 22 22 22 22 22 22 22 22 22 22 22 | 28
21
20
24
26
33
44
44 | 18 14 | | RA (2000) Dec | 5 -62
1 -78
1 -78
2 -27
4 -21 | .0 -37
.5 -79
.6 -36
.7 -34 | 2 -23
7 -65
3 -27
6 -59 | 9 -71
0 -60
8 -39
0 -21 | 7 -28
7 -21
7 -46
8 -36 | .8 -48 | | RA (| 23 53.5
23 54.1
23 55.2
23 55.2
4.8 | 23 56.0
23 56.5
23 56.6
23 56.7
23 57.1 | 23 57.2
23 57.7
23 58.3
23 58.6
23 58.6 | 23 58.9
23 59.0
23 59.8
00 00.0 | 00 00.7
00 00.7
00 00.7
00 00.8 | 00 01.8 | | Dec | 53 01
79 16
87 57
88 49 | -37 34
-79 42
-36 54
-34 57 | -23 49
-65 30
-28 01
-60 16 | -71 47
-60 57
-39 45
-21 40 | -28 23
-21 23
-46 50
-36 41
-47 01 | 18 31 | | RA (1950) Dec | 9 -63
2 -27
6 -28
-21 | | | | | .2 -48 | | RA (| 23 52 50 50 50 50 50 50 50 50 50 50 50 50 50 | 23 53.4
23 53.8
23 54.0
23 54.1
23 54.1 | 23 54.6
23 55.1
23 55.7
23 56.0
23 56.0 | 23 56.3
23 56.4
23 57.2
23 57.5
23 57.7 | 23 57.8
23 58.1
23 58.1
23 58.2
23 58.5 | 23 59.2 | | | | 4056
4057
4058
4059
4060 | 4061
4062
4063
4064
4065 | 4066
4067
4068
4069
4070 | 4071
4072
4073
4074
4075 | 4076 | TABLE 5 SUPPLEMENTARY SOUTHERN CLUSTERS | | B | 17.1
16.1
17.0
17.2 | 15.6
17.5
17.1
16.2
17.4 | 17.4
15.3
17.4
17.5 | 17.5
17.3
17.3
17.2 | 16.1
17.5
17.4
17.4 | 17.4
17.3
15.8
16.7 | 17.4
17.3
17.3
17.4 | 17.3
16.2
17.3
17.4 | 15.5
17.3
17.4
16.4 | 17.1
17.2
17.3
17.2 | |-------------|-----------------|--|--|--|--|--|--|--|--|--|--| | | R D | 00000
04 W W 4 | 04000
w n w 4 n | 26636 | 0000
0000 | 01000
4000 | 2000
000
004
000 | 2000 | 0 0 0 1 0 | 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | | | z] | 0.0395 | 0.0270 | COMMO | | | | | | 0.0498 | | | | Previous | αΩ | Ω | BO | BD
D | ø | ଝ | щQ | Q | o g | M M | | | Obs | 00000 | 1000C | 99999 | 00000 | 10
10
10
50 | 01100
10000 | 10000 | 10000
10000 | 10
20
10
10 | 99999 | | | m ₁₀ | 16.9
15.9
16.8
17.7 | 15.4
20.3
17.0
16.0 | 19.5
15.1
20.1
20.2
16.8 | 20.6
18.0
18.3
17.7 | 16.0
20.2
19.4
19.3 | 19.7
18.1
15.6
16.5 | 19.3
18.6
18.0
19.6 | 18.1
15.9
18.1
19.7
18.6 | 15.3
18.1
18.0
19.9 | 16.9
17.1
18.1
17.1 | | | m ₃ | 15.0
14.7
15.3
15.9 | 14.2
19.1
15.9
15.1 | 19.3
14.0:
19.1
19.6 | 20.0
15.9
17.7
16.1 | 15.1
18.8
19.1
18.8 | 19.2
17.8
14.7
15.5 | 18.9
18.4
17.6
19.1 | 17.4
15.0
16.1
19.4
17.8 | 14.4
17.5
16.1
18.9
15.3? | 16.0
15.7
17.4
15.8 | | | m ₁ | 13.4
14.5
14.5
15.4
13.9 | 12.9
18.0:
14.8
15.9 | 19.2
13.6:
18.7?
19.3
16.1 | 19.4
15.6
16.5
15.4 | 14.3
18.5
18.7
16.7* | 18.9
16.0
14.6
15.4 | 17.6
15.4*
16.9
18.9 | 15.6*
13.9
15.6
18.4 | 13.6?
15.4
15.4
18.7
14.6? | 15.1*
15.4
15.9?
15.4 | | | ٥ | -8:
11:
11:
-8 | 7:
78
-18?
-12
28 | -11
3
(53)
(70) | (113)
-23
19
17
28 | 12
12
22
24 | 85
19
3
-8
-20? | 11
11
11
12 | 29
16
52
21 | 26
18
54
20 | 9
6:
29
-43
(78) | | | T_{B-M} | 1-11
11-11
11-11 | 1
11-11
1-11 | 1-11
11-111?
111
111:
11-111 | 111
111-111
111-111 | 111
1111
1111 | !!-!!
!!!
!!! | !!!
!!!-!!! | 11-111
1-11
11-11
11-1 | :::::::::::::::::::::::::::::::::::::: | 111
111-111
111: | | College | T_A | IRII | ниня | R I I R I I R | нинк | H H H H | RI
I
I
RI: | Винин | R I I I I I I I I I I I I I I I I I I I | H I I I I | нныны | | | Abell | \$0001
\$0002
\$0003
\$0004
\$0005 | \$0006
\$0007
\$0008
\$0009
\$0010 | S0011
S0012
S0013
S0014
S0015 | \$0016
\$0017
\$0018
\$0019
\$0020 | \$0021
\$0022
\$0023
\$0024
\$0024 | \$0026
\$0027
\$0028
\$0029
\$0030 | \$0031
\$0032
\$0033
\$0034
\$0035 | \$0036
\$0037
\$0038
\$0039
\$0040 | S0041
S0042
S0043
S0044
S0044 | \$0046
\$0047
\$0048
\$0049
\$0050 | | -
- | i | | | | | | | | | | | | TEMPINITY I | ng nx | 168 118
166 155
161 264
161 151
34 114 | 143 125
133 324
145 276
7 180
98 204 | 105 172
93 135
96 84
87 77
304 300 | 83 320
48 271
102 140
101 263
103 163 | 146 199
120 220
78 182
89 244
73 186 | 221 127
89 177
218 302
79 286
129 107 | 75 270
231 175
58 111
63 301
224 196 | 215 211
214 30
214 244
160 142
203 324 | 178 255
284 160
137 194
164 291
237 43 | 189 292
240 330
235 207
234 238
213 320 | | 1100 | Ycen | 100
100
130
150 | -39
112
160
40 | -29
-80
-87 | 156
107
-24
99 | 35
18
80
22 | -37
13
138
122
-57 | 106
11
137
137 | 47
134
80
-22
160 | 91
-4
30
127
121 | 128
166
43
74
156 | | | Lcen | 130 | 21
31
19
157
66 | 59
71
68
77
140 | 81
62
63
61 | 18
44
75
91 | -57
75
-54
85
35 | 89
106
101
-60 | -51
-50 -
-50 - | -14
120
27
-73 - | -25
-76
-71
-70 | | | Field | F409
F409
F409
F292 | F409
F538
F050
F292 | F293
F349
F193
F193 | F149
F293
F078
F050 | F002
F241
F078
F050 | F539
F050
F539
F050 | F050
F294
F078
F050 | F294
F294
F294
F539 | F350
F079 -
F539
F410 | F294
F150
F150
F150 | | | q | -78.75
-78.95
-79.27
-46.59
-69.30 | -79.24
-75.10
-48.90
-70.60 | -74.65
-77.82
-64.73
-64.69
-76.66 | -64.27
-76.74
-51.50
-48.93 | -32.98
-72.06
-52.39
-48.65 | -80.05
-47.42
-77.61
-49.44 | -49.18
-76.17
-51.20
-49.81 | -76.90
-73.85
-77.45
-80.63 | -81.86
-52.18
-80.13
-84.30
-59.80 | -78.46
-65.05
-62.80
-63.38 | | | 1 | 11.97
15.44
26.10
308.83 | 11.99
74.61
309.35
327.36
19.22 | 335.74
347.87
317.90
317.40
78.88 | 316.77
337.33
309.20
308.09 | 304.03
323.34
308.86
307.61 | 73.32
307.14
84.64
307.66 | 307.44
327.28
307.72
307.33 | 327.47
321.70
328.74
79.44 | 344.96
307.45
85.00
28.85
309.92 | 328.97
312.17
310.95
311.16 | | | RA (2000) Dec | 00 02.6 -30 37
00 02.8 -29 55
00 03.2 -27 53
00 03.8 -69 59
00 04.6 -45 37 | 00 04.8 -30 29
00 05.2 -16 46
00 06.9 -67 40
00 07.1 -44 22
00 08.5 -29 00 | 00 08.5 -39 37
00 09.3 -35 21
00 10.9 -51 12
00 12.1 -51 19
00 12.7 -17 13 | 00 12.8 -51 48
00 13.7 -37 45
00 14.2 -65 10
00 15.5 -67
50
00 16.5 -69 43 | 00 15.9 -84 04
00 17.3 -43 41
00 18.0 -64 21
00 18.2 -68 10
00 18.9 -64 17 | 00 19.1 -20 27
00 19.0 -69 26
00 19.4 -17 11
00 19.4 -67 23
00 19.7 -80 49 | 00 20.4 -67 40
00 22.1 -39 32
00 22.3 -65 39
00 22.3 -67 04
00 22.8 -39 08 | 00 23.7 -38 52
00 23.7 -42 15
00 23.8 -38 15
00 24.0 -20 10
00 24.9 -36 45 | 00 25.5 -33 01
00 25.5 -64 43
00 25.8 -19 12
00 25.8 -27 23
00 25.7 -56 58 | 00 26.1 -37 21
00 26.4 -51 37
00 26.6 -53 56
00 26.8 -53 21
00 27.2 -46 49 | | | RA (1950) Dec | 00 00.0 -30 54
00 00.2 -30 12
00 00.6 -28 10
00 01.3 -70 16
00 02.1 -45 54 | 00 02.2 -30 46
00 02.6 -17 03
00 04.4 -67 57
00 04.6 -44 39
00 06.0 -29 17 | 00 06.0 -39 54
00 06.8 -35 38
00 08.4 -51 29
00 09.6 -51 36
00 10.2 -17 30 | 00 10.3 -52 05
00 11.2 -38 02
00 11.8 -65 27
00 13.1 -68 07
00 14.1 -70 00 | 00 14.1 -84 21
00 14.8 -43 58
00 15.6 -64 38
00 15.8 -68 27
00 16.5 -64 34 | 00 16.6 -20 44
00 16.7 -69 43
00 16.9 -17 28
00 17.1 -67 40
00 17.7 -81 06 | 00 18.1 -67 57
00 19.6 -39 49
00 20.0 -65 56
00 20.0 -67 21
00 20.3 -39 25 | 00 21.2 -39 09
00 21.2 -42 32
00 21.3 -38 32
00 21.5 -20 27
00 22.4 -37 02 | 00 23.0 -33 18
00 23.2 -65 00
00 23.3 -19 29
00 23.3 -27 40
00 23.3 -57 15 | 00 23.6 -37 38
00 24.0 -51 54
00 24.2 -54 13
00 24.4 -53 38
00 24.8 -47 06 | | | Abell | \$0001
\$0002
\$0003
\$0004
\$0005 | \$0006
\$0007
\$0008
\$0009
\$0010 | \$0011
\$0012
\$0013
\$0014
\$0015 | \$0016
\$0017
\$0018
\$0019
\$0020 | \$0021
\$0022
\$0023
\$0024
\$0025 | \$0026
\$0027
\$0028
\$0029
\$0030 | \$0031
\$0032
\$0033
\$0034
\$0035 | \$0036
\$0037
\$0038
\$0039
\$0040 | S0041
S0042
S0043
S0044
S0045 | \$0046
\$0047
\$0048
\$0049
\$0050 | | | В | 17.0
17.2
17.3
17.4 | 16.9
17.3
16.7
17.0 | 17.2
17.4
17.2
16.8 | 16.8
17.5
17.4
17.0 | 17.4
17.4
17.2
15.9 | 17.4
17.0
16.1
17.2 | 16.9
16.7
17.2
17.2 | 16.6
17.4
17.2
17.2 | 17.4
16.4
17.3
17.4 | 16.6
17.1
17.3
16.9 | |---|----------------|--|--|---|--|---|---|--|--|--|--| | - | Ω | വഴഴവ | ຍນນຍນ | ស្លាស្ស | ນນູຍຄ | 0 0 W 4 0 | ∿ υ 4• υ υ | ស ស ស ស 🛧 | രവവരവ | 04000 | വയയവ | | | R | 00000 | 00001 | 04000 | 00000 | 04000 | 00000 | 00000 | 00000 | 40000 | 00000 | | | z | | | (0.0417) | | 0.0283 | | 0.11
(0.0196) | | | | | | Previous | Ω α | Q QQ | උසුසු දූ | ä | Ω | 88 a a | М | | Дσ | Ω | | | Obs | 22223 | 700
100
100
100 | 00000 | 10,10
10,10 | 99999 | 00000 | 99999 | 00000 | 20020 | 22222 | | | m_{10} | 16.8
17.5
18.6
17.9 | 16.7
18.3
16.5
20.2 | 17.6
20.1
17.0
16.6
18.6 | 16.6
21.0
20.0
16.8
17.3 | 19.3
19.7
17.5
15.7
18.1 | 19.3
16.8
15.9
17.5 | 16.7
16.5
17.0
17.4
? 16.0 | 16.4
19.1
17.5
17.3
18.6 | 20.1
16.2
18.6
20.0
18.6 | 16.4
16.9
18.0
16.7
17.5 | | | m ₃ | 16.3
18.3
19.1
15.9 | 15.4
17.5
15.6
15.6
19.5 | 15.7
119.4
115.8
115.4 | 15.7
20.0
19.3
15.9 | 18.7
18.9
16.8
15.3 | 18.8
15.4
15.1
15.0
17.2 | 16.1
15.1
15.7
17.0 | 15.7
18.9
16.0
16.0 | 19.5
15.4
18.0
19.5 | 15.4
17.0
15.6
15.8 | | | m | 14.6
15.6
16.1
18.8 | 14.6
16.5
14.9
15.3 | 15.4
18.8
14.1
17.0 | 15.0
18.6
13.5
15.3 | 18.0:
18.6:
15.5
17.3 | 16.8
13.1
15.1
15.3 | 15.6
15.8
15.4
13.7 | 15.11
15.3
13.0 | 19.1
15.1
16.5
19.2
18.0 | 14.3:
15.9
15.4 | | | O | 26:
26:
1
48
-40: | 112
20
1
7 4 4 7 3 | 21
(71)
-44
10 | 15
(93)
100
-5:
15: | 19
65
21
21:
26 | 1 2 9 9 8 1 4 9 9 8 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 26
111
112
111 | 4 2 9 8 8 8 8 8 | 68
27:
17
43 | 23
25
3
28 | | | T_{B-M} | 1
11
111-111
11-1 | II.
II.
R I.II
II.II | 11-111
11?
11.
11-11 | :::::::::::::::::::::::::::::::::::::: | 11-11
11-11
11 11 11 11 11 11 11 11 11 11 11 11 1 | II.
III | II-III
II III | 111111 | | II-III | | | T_A | HHHHH | # # # # # # # # # # # # # # # # # # # | HHHHH | HRRI | ##### | IR
II R II | HHHHH | RI
I
RI | I R IR IR | ннннн | | | Abell | \$0051
\$0052
\$0053
\$0054
\$0054 | \$0056
\$0057
\$0058
\$0059
\$0060 | \$0061
\$0062
\$0063
\$0064
\$0064 | \$0066
\$0067
\$0068
\$0069
\$0070 | \$0071
\$0072
\$0073
\$0074
\$0075 | \$0076
\$0077
\$0078
\$0079
\$0080 | \$0081
\$0082
\$0083
\$0084
\$0085 | \$0086
\$0087
\$0088
\$0089
\$0090 | \$0091
\$0092
\$0093
\$0094
\$0095 | \$0096
\$0097
\$0098
\$0099
\$0100 | | | | r 0 0 0 0 | | 90
00
00
00
00
00 | 440৭0 | 44
10
83
51 | ย พ.ศ. พ.ศ. | 6 6 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 | V 80 7 9 | 78699 | 0 2 4 4 | | | ı yıı | 1 32
6 19
3 19
1 5 | 77 24
62 10
44 19
66 1 | 40000 | 22 22
30 17
29 17
41 25 | 22112 | 1 115
8 162
0 243
9 175
5 236 | 0 19
3 19
6 17
0 29 | 9 267
7 138
9 210
9 282
0 206 | 3 14
8 24
7 18
7 18
5 11 | 7 330
1 103
8 161
0 181 | | | llx | 171
226
193
201
224 | 27
26
16
29 | 103
144
162
324
202 | 112
32
33
4 | 23 27 31 20 20 20 20 20 20 20 20 20 20 20 20 20 | 8
7
30
15 | 29
15
15
28 | 24 4 4 8 H | 84.67.41 | 83993 | | | , ycen | 163
29
28
1-114 | 1 79
31
1-147
62 | 32
129
137
144
126 | 60
10
1-167
97 | 80
46
113
-13 | -49
-2
79
111
72 | 33
-10
29
13
126 | 103
-26
46
118 | -15
85
-148
24
-47 | 166
-61
-3
17
50 | | | xcen | -62
-29
-37
-60 | -113
-98
120
-128 | 61
20
2
-160
-38 | 42
-166
-65
-137
-77 | -117
-75
-107
-147 | 83
86
-136
49 | -126
10
-19
-116 | -115
117
15
-25
-16 | 81
-84
127
87
139 | -73
43
-134
-66 | | | Field | F294
F150
F242
F194 | F079
F079
F242
F540 | F294
F194
F150
F295 | F150
F243
F474
F295 | F295
F351
F295
F195 | F150
F150
F195
F079 | F195
F079
F351
F411 | F195
F150
F351
F295
F295 | F474
F195
F1150
F112 | F195
F079
F541
F195 | | | 9 | -79.19
-62.59
-72.23
-64.86 | 53.76
51.27
47.97
69.20 | -77.49
-69.54
-64.77
-77.99
-54.69 | -63.45
-72.51
-87.61
-79.04 | -78.77
-83.01
-77.68
-67.16 | 61.49
62.37
68.87
52.60 | 68.01
52.21
82.86
87.56 | 69.32
61.97
83.20
79.60 | 87.86
68.96
59.71
57.86
61.60 | 70.45
51.26
82.62
67.67
88.07 | | | - 1 | 311 | 35 - 75 - 49 - 1 | 2000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 116 -
95 -
66 - | 003
522
732 | .39
.40
.75
.66 | 31 -
16 -
16 -
75 - | 62 -
10 -
31 -
13 -
59 - | 57 -
45 -
39 - | 1444
660
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1 |
329.
310.
316.
311. | 307.
306.
306.
312.
97. | 318.
310.
308.
314. | 306.
309.
14.
313.
8. | 311.
316.
309.
305. | 300
300
303
303 | 304.
303.
313. | 303.302.302. | 134
302
302
302 | 301.
302.
129.
301. | | | Dec | 64 42 42 42 42 42 42 42 42 42 42 42 42 42 | 3 3 3 10 3 10 8 3 6 11 8 3 6 8 3 6 8 3 6 8 9 6 1 8 9 6 | 9 07
7 19
2 11
2 23 | 64 7 7 8 6 7 8 6 8 6 2 8 6 2 8 6 2 8 6 2 8 6 2 8 6 2 8 6 2 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 | 8 13
9 2 25
8 56
4 9 | 0 4 8 4 8
7 4 4 4 6
7 4 4 4 4 4 | 9 06
4 54
4 14
9 31
7 22 | 7 48
5 09
3 55
7 31
8 57 | 5 01
8 09
7 24
9 15
5 31 | 6 39
5 51
9 47
9 26
8 48 | | Ì | (2000) | 8 L 8 L E | 1111 | 40844 | 8000H | 48270 | 2 L 2 4 L | 4.0 6.0 4 | 4 0 0 0 0 | 24 C C C C C C C C C C C C C C C C C C C | 401147 | | | RA (2 | 27.8
27.8
28.3 | 330.34 | 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4444 | 44444 | 46.
47.
48. | 8 8 8 4 4 4 6 9 9 9 9 9 | 50.0
51.8
52.3 | 533.7 | 554.8 | | | H. | 00000 | 88888 | 00000 | 88888 | 88888 | 88888 | 88888 | 88888 | 88888 | 88888 | | | oe ec | 28
32
10
16 | 27
5 58
1 18
7 48
53 | 4 0 8 8 9 4 4 0 8 8 9 4 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 53
46
07
10
19 | 30
38
13
06 | 54
31
41
41 | 23
111
31
39 | 05
12
14
14
14 | 18
41
41
48 | 56
05
05 | | | (1950) D | 136 | -63
-65
-47 | -39
-52
-62 | 153
128
128
128 | 138 | 2 4 4 8 C C C C C C C C C C C C C C C C C | -49
-34
-47 | 134
134
139 | -25
-57
-59
-59 | 446
120
129
129 | | | 4 (19 | 255.3
255.3
255.9 | 26.0
26.0
26.1
28.1
32.0 | 32.0
32.5
36.7 | 38.5
38.6
39.7 | 411.0
411.8
43.8 | 444.3
445.5
45.2
45.3 | 4446.0
46.0
7.0
6.0
7.0 | 47.7
48.7
49.4
49.8
50.5 | 50.9
51.1
51.1
51.6 | 52.5
52.6
53.9 | | | RA | 88888 | 88888 | 00000 | 88888 | 88888 | 88888 | 88888 | 88888 | 88888 | 88888 | | | Abell | \$0051
\$0052
\$0053
\$0054
\$0055 | \$0056
\$0057
\$0058
\$0059
\$0059 | \$0061
\$0062
\$0063
\$0064
\$0065 | \$0066
\$0067
\$0068
\$0069
\$0070 | \$0071
\$0072
\$0073
\$0074
\$0075 | \$0076
\$0077
\$0078
\$0079
\$0080 | \$0081
\$0082
\$0083
\$0084
\$0085 | \$0086
\$0087
\$0088
\$0089
\$0090 | \$0091
\$0092
\$0093
\$0094
\$0095 | \$0096
\$0097
\$0098
\$0099
\$0100 | | | a | 15.8
16.4
17.1
17.2 | 17.0
16.2
17.2
16.0 | 17.4
16.3
16.3
17.4 | 15.8
17.4
16.3
17.4 | 17.5
17.2
17.4
17.2 | 17.4
17.3
16.8
17.0 | 16.1
17.2
17.2
17.2 | 17.4
15.6
16.0
17.4 | 15.6
17.0
17.2
17.0 | 17.4
17.5
17.4
17.3
17.3 | |-----------|-----------------|---|--|--|---|---|---|---|---|---|--| | | О | 44000 | 24242 | 04400 | 40400 | വവഴവഴ | വഹവയയ | 40000 | ωω4ω Ω | ഴവവവന | 00000 | | | R | 00000 | 00000 | 5 0 0 | 00000 | 0000 | 00000 | 00000 | o o o o o | 06) 0 | 04404 | | | 2 | | 0.0316 | (0.032] | | | | | 0.0263 | (0.020 | | | | Previous | ø | O M D | B DQ | щ | | | Q | | BKR
D
D | | | | Obs | 70000
10000
10000 | 22222 | 28636 | 22222 | 22222 | 22222 | 22222 | 99999 | 22222 | 22222 | | | m ₁₀ | 15.6
16.3?
17.7
18.0
16.8 | 16.8
16.1
17.8
15.8 | 19.7
16.1
16.1
19.4
16.7 | 15.6
19.2
16.1
19.8
15.4 | 20.6
17.3
19.5
17.1 | 19.3
18.0
16.7
16.8
17.8 | 15.9
19.2
17.5
17.7 | 19.4
15.8
19.8
17.4 | 15.4
16.8
17.8
16.8 | 19.1
20.4
19.9
18.9 | | | m³ | 14.5
15.0
16.2
16.5 | 15.9
15.4
16.3
14.7 | 19.2
15.2
14.6
19.1 | 14.6
18.9
15.9
19.3 | 20.0
15.8
19.0
15.4 | 18.9
15.9
15.4
15.3 | 15.6
18.8
16.0
16.8 | 19.1
14.6
15.1
19.1
* 16.8 | 13.7
15.6
? 16.1
15.4 | 18.6
19.6
19.2
18.7 | | | m_1 | 13.8
14.5
15.7
16.1 | 15.3
13.0
15.3
13.8
15.7 | 18.9
14.6
12.9
17.1
13.8 | 12.6
16.6
15.1
19.2
14.0 | 19.4
15.1
15.4
15.2 | 18.1
15.4
14.8
15.1 | 15.4
16.9
15.4
16.1 | 18.0
13.2
14.7
18.0 | 11.9 | 18.3
19.2
18.8
17.8 | | | C | 26:
29:
19:
25 | 134
199
109
100 | 45
112
124
-24 | 25
18
-42
39
-17* | (98)
-35
27
-4
13: | -13
0
6 | -17
20
10
26
26 | 113
13
12
28 | 12
13
16
26:
(71) | 15
(60)
(56)
20
54 | | | T_{B-M} | 111-111
111-111 | 11-111
1-11
1-11
1-11 | 111
11-11
1-11 | 111
111-111
1-11 | 11:
I-II
III-III
I-III | | 1-11
11-11
11-111
111-111 | 1-11
11
11-11
11-11 | II
III-II | HÜHHH | | | T_A | 88811 | HILLIK | I KI I KI | REFER | I I I I I I I I I I I I I I I I I I I | RIBII | HHHH | HHIIK | RRITI | ннжнн | | Continued | Abell | S0101
S0102
S0103
S0104
S0105 | S0106
S0107
S0108
S0109
S0110 | S0111
S0112
S0113
S0114 | S0116
S0117
S0118
S0119 | S0121
S0122
S0123
S0124
S0125 | S0126
S0127
S0128
S0129
S0130 | S0131
S0132
S0133
S0134
S0135 | S0136
S0137
S0138
S0139
S0140 | S0141
S0142
S0143
S0144
S0144 | S0146
S0147
S0148
S0149
S0150 | | 5 | | | | | | | | | | | | | ABLE | ля | 155
289
155
168
199 | 262
199
179
30 | 219
51
137
187
167 | 52
272
305
194
-6 | 282
59
233
193 | 278
145
93
199
181 | 271
89
112
288
265 | 165
69
202
148
23 | 57
279
296
257
193 | 135
64
199
222
293 | | T/ | nx. | 226
150
104
251
73 | 142
90
63
65
206 | 166
102
101
282
173 | 172
172
199
265
73 | 111
53
46
135
133 | 247
27
216
111
108 | 91
102
172
170
90 | 161
206
71
143
76 | 139
59
256
194
93 | 282
84
84
269 | | | ycen | 125
125
-9
35 | 98
35
15
-64 | 55
-113
-27
23 | -112
108
141
30 | 118
-105
69
29
-61 | 114
-19
-71
35 | 107
-75
-52
124
101 | 1
-95
-16
-141 | -107
115
132
93
29 | -29
-100
35
58
129 | | | Lcen | -62
14
60
-87 | 22
74
101
99
-42 | -2
62
63
-118
-9 | -8
-8
-35
-101 | 53
111
118
29
31 | -83
137
-52
53
53 | 73
62
18
74 | 3
93
88 | 25
105
-92
-30
71 | 74
-118
80
155
-105 | | | Field | F195
F295
F002
F013 | F295
F002
F411
F411 | F243
F079
F295
F195 | F195
F195
F541
F412
F295 | F243
F295
F295
F195 | F113
F295
F013
F195 | F051
F195
F412
F412 | F412
F113
F541
F412
F195 | F412
F195
F080
F296 | F412
F196
F151
F195 | | | q | 77.19
9.68
12.38
17.56 | 9.16
13.25
17.35
15.99 | 3.32
0.30
6.76
16.89 | 15.19
19.26
19.64
16.72 | 74.35
75.18
78.32
77.72 | 9.41
76.65
16.09
17.77 | 9.32
14.42
15.62
18.90 | 55.42
50.49
54.34
54.41 | 13.30
19.06
14.63
17.76 | 13.36
55.03
52.63
57.80 | | | | 23
-6
15 -7
15 -7
75 -3
09 -8 | 57 -7
85 -3
14 -8
66 -8 | 62 -7
86 -5
27 -7
114 -8
63 -6 | 17 -6
00 -6
31 -7
71 -8
69 -7 | 35 -7.
56 -7.
66 -6.
13 -6. | 91 -5
18 -7
23 -3
46 -6 | 36 14
79 16
29 18
10 18 | 26 -8
66 -5
37 -8
55 -8 | 87 -8
12 -6
09 -5
74 -7 | 07 -8
221 -6
07 -6
07 -6 | | | 7 | 301.
298.
302.
302. | 297.
302.
274.
284. | 298.
295.
295.
298. | 299.
138.
252. | 294.
292.
288.
296. | 298.
302.
295. | 300.
295.
254.
218. | 244.
298.
155.
245. | 257.
292.
298.
277. | 20043 | | | Dec | 22 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 54
26
26
15
15 | 4 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 51
45
06
11
52 | 33
13
13
13 | 35
00
06
27 | 443
45
53
53 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 35
10
10 | 18
35
02
37 | | | (2000) D | 5 -49
8 -37
1 -84
7 -79
4 +29 | -37
-29
-52
-52 | 3 -43
6 -40
5 -29
7 -49 | 7 -51
8 -47
9 -17
0 -29
8 -42 | 0 -42
6 -41
7 -38
0 -49
4 -50 | 8 -57
9 -40
1 -81
1 -49 | 2 -67
1 -51
9 -30
1 -27
9 -47 | 9 -29
8 -61
9 -19
5 -30
4 -52 | 7 -31
6 -62
8 -38
7 -54 | 0 -30
1 -51
7 -54
1 -48
5 -47 | | | RA (20 | 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 56.6
54.4
57.3
57.3 | 58.5
58.4
00.0
01.1 | 01.7 | 04.0
05.0
06.0 | 06.8
06.1
08.8 | 90.01 | 111211 | 13.7
14.3
17.8 | 18.1
18.1
20.1 | | | | 88888 | 88888 | 88555 | 22222 | 22222 | 22222 | 22222 | 22222 | 22222 | 22222 | | | Dec | 0 12
7 41
5 01
9 50 | 8 11 9 4 0 9 1 1 1 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 | 4 01
7 05
0 30
9 35
9 59 | 2 08
9 23
3 09 | 2 50
1 56
8 41
9 30
1 10 | 7 52
0 18
1 17
9 22
9 43 | 7 59
11 25
11 01
7 43
8 09 | 0 00 00 00 00 00 00 00 00 00 00 00 00 0 | 2 01
7 51
8 132
4 26 | 0 34
11 51
4 18
8 53
7 35 | | | (1950) | 2 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 39932 | 4 4 4 4 4 | 7 4 4 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 | 44646 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01111 | 5 -30
9 -61
5 -19
1 -30
3 -52 | 44700 | 0 0 4
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | RA (1 | 0000
0000
0000
0000
0000 | 0 54.
0 54.
0 54. | 0 56.
0 58.
0 59. | 00 59. | 003 | 1 0 0 5 | 080.00 | 11009 | 12111 | 11 16. | | | | 0222 | 00 00
109 00
109 00 | 12 24 20
00000 | 6 6 6 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12548 | 0.000 | 1 2 2 4 3 5 4 4 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 | 6 01
8 01
0 01
0 01 | 12648
549010 | 6 01
0 01
0 01 | | | Abell | \$010
\$010
\$010
\$010
\$010 | \$010
\$010
\$010
\$010
\$011 | \$011
\$011
\$011
\$011
\$011 | S011
S011
S011
S012
S012 | \$012
\$012
\$012
\$012
\$012 | S012
S012
S012
S013
S013 | \$013
\$013
\$013
\$013
\$013 | S013
S013
S013
S013
S014 | S014
S014
S014
S014
S014 | \$014
\$014
\$014
\$015 | | | 日 | 17.5 | 17.0
17.4
16.8
17.1 | 17.3
15.8
16.0
16.3 | 16.7
17.2
17.2
17.2 | 17.7 | 16.4
17.4
17.4
17.4 | 17.4
16.8
17.2
17.0 | 16.2
17.3
17.1
17.1 | 16.7
17.2
17.1
17.1 | 17.2 | |-----------|-----------------|--|--|--|--|--|--|--|--|--|--| | | Ω | ଡଡରତର | വവവയ | 0.4040 | വവവവ | ของนณ | 4 6 6 6 7 | വവവവ | 4 0 0 10 0 | 40000 | งอเฉอก | | | z R | 04004 | 00000 | 00000 | 00000 | 00404 | 00400 | (0.0175)
0
0 | 00000 | 00004 | 0000 | | | Previous | ф | | DOR | BD BD | Ω | 8 0 | ۵ | Q | 8 | Ω | | | Obs | 100000 | 22222 | 33333 | 32228 | 22222 | 20
10
10
10
20,10 | 22222 | 22222 | 20
20,10
30
10 | 86668 | | i | m ₁₀ | 17.5
20.2
17.1
19.4 | 16.8
19.4
16.9
16.8 | 17.8
15.6
16.4
16.1 | 16.5
17.3
17.5
17.1
17.3 | 17.1
17.0
19.7
19.3 | 16.2
19.3
19.8
19.7
16.6 | 19.4
16.6
17.7
17.5
16.8 | 16.0
18.6
20.8
16.8 | 16.3
17.4
19.2
17.3
20.1 | 17.5
19.5
17.4
17.1 | | | g
g | 17.0
19.3
7 15.7
19.3 | 15.4
18.9
15.8
16.6 | 16.0
14.7
15.6
15.4
16.6 | 15.9
16.1
16.1
15.8
16.8 | 16.8
16.1
18.8
19.1 | 15.6
: 19.2
: 19.1
? 19.1 | 19.3
15.3
17.1
17.0
15.8 | 15.4
18.4
20.0
16.0 | 15.6
15.5
19.0
16.3 | 17.0
19.3
16.8
15.4 | | | m ₁ | 14.6
18.8
15.1
18.8 | 15.3
18.1
15.1
16.5 | 15.6
14.4
15.3
14.7 | 15.4
115.4
115.4 | 15.5
15.4
18.1
17.5 | 41
181
180
181
190
190
190
190
190
190
190
190
190
19 | 18.6
14.5
15.5
16.1 | 15.3
16.4
19.6
18.9 | 15.4
15.3
18.4
15.2 | 15.7
19.1
16.4
15.1
17.4 | | | 0 | 21
58
3
-10
70 | 25
44
21
74 | 17
22
23
-18 | 23
15:
12:
12: | 20
7 4
2 2 | 116
9 6 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14
27
-28
-68 | 9
8
(103)
-22?
21 | 4
13
5
25
(53) | 5;
-19
-11? | | | T_{B-M} | | | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 11.1111 | 11-111
111
112
111 | 111111 | !!!
!!-!!!
!!-!!! | !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 11
111
11-11 | HHHH | | | T_A | нннжн | RILBI | HHHH | RILI | ннжнн | RIRRI | 11121 | RREIL | I I II I | HHHHH | | Continued | Abell | S0151
S0152
S0153
S0154
S0154 | S0156
S0157
S0158
S0159
S0160 | S0161
S0162
S0163
S0164
S0164 | S0166
S0167
S0168
S0169
S0170 | S0171
S0172
S0173
S0174
S0175 | S0176
S0177
S0178
S0179
S0180 | S0181
S0182
S0183
S0184
S0185 | S0186
S0187
S0188
S0189
S0190 | S0191
S0192
S0193
S0194
S0195 | S0196
S0197
S0198
S0199
S0200 | | E 5— | | | | | | | | | | | | | TABLE | ii6 | 126
126
175
175
103 | 2 180
6 92
6 310
6 263 | 248
3 79
3 270
5 284 | 5 65
9 268
1 271
2 192
3 308 | 5 199
3 223
4 6
2 298
0 157 | 6 221
8 273
4 287
9 311
9 35 | 163
78
295
1 233 | 135
195
76
212
212
251 | 256
54
234
7262
106 | 1 43
2 267
1 181
7 327
5 179 | | | l'x | 55
258
147
304
183 | 222 | 79
168
47
228
215 | 165
209
164
142
45 | 21
21
7.
13
29 | 0320 | 223
110
85
254
245 | 101
318
137
30
176 | 274
73
284
57
111 | 214
33
142
107
105 | | | ycen | -38
-101
11
64
-61 | 16
-72
-72
146
99 | 84
-85
-126
106
120 | -99
104
107
28
144 | 35
59
-158
134 | 57
109
123
147
-129 | -1
-86
131
69
-103 | -29
31
-88
48
87 | 92
-110
70
98
-58 | -121
103
17
163
163 | | | xcen | 109
-94
-140
-19 | 52
-12
-61
-92 | 85
-4
117
-64
-51 | -45
-45
0
22
119 | -51
-49
90
32
-126 | 108
66
-90
-75 | -59
79
-90
-81 | 63
-154
27
134
-12 | -110
91
-120
107
53 | -50
131
22
57
59 | | | Field | F412
F196
F113
F413 | F296
F113
F013
F413 | F113
F196
F296
F052 | F413
F353
F413
F080 | F052
F052
F244
F413 | F029
F413
F543
F543 | F543
F353
F080
F114 | F353
F197
F152
F413 | F030
F353
F414
F080 | F114
F353
F052
F543 | | | 9 | -82.71
-64.88
-57.18
-82.96
-70.11 | -75.74
-56.89
-35.93
-81.56
-79.82 | -58.23
-64.61
-72.84
-48.87
-79.34 | -79.64
-79.10
-80.42
-52.25
-59.15 | -47.54
-47.95
-67.62
-79.84 | -43.17
-79.21
-75.15
-74.64
-71.80 | -76.15
-75.62
-53.84
-57.42
-54.39 | -76.09
-65.68
-59.14
-77.89 | -43.61
-74.79
-77.60
-53.07 | -53.84
-76.11
-46.82
-72.61 | | | 7 | 241.85
292.14
296.08
226.30
285.82 | 275.08
295.02
301.34
214.40
249.87 | 293.19
288.18
276.40
297.00
245.90 | 241.02
247.05
219.20
295.37 | 297.20
296.97
282.61
216.31 | 298.59
218.84
175.21
174.69
271.61 | 183.96
256.13
292.83
290.37 | 252.14
281.40
288.46
224.27
180.67 | 297.55
255.85
222.37
292.26
287.16 | 291.70
240.65
295.44
179.58
187.61 | | | RA (2000) Dec | 01 21.0 -30 27
01 20.9 -51 37
01 20.8 -59 33
01 22.7 -28 32
01 24.6 -45 54 | 01 25.7 -39 28
01 25.8 -59 42
01 24.9 -81 05
01 29.3 -27 01
01 30.2 -32 54 | 01 30.4 -58 09
01 31.7 -51 20
01 32.4 -42 06
01 32.9 -67 46
01 33.9 -32 31 | 01 34.4 -31 35
01 34.4 -32 49
01 34.5 -27 45
01 34.2 -64 14
01 34.6 -57 00 | 01 35.1 -69 05
01 35.6 -68 39
01 36.8 -47 40
01 37.1
-27 15
01 37.5 -19 56 | 01 36.6 -73 34
01 40.0 -27 42
01 40.5 -17 31
01 41.7 -17 04
01 42.0 -42 06 | 01 42.9 -19 50
01 43.4 -36 21
01 42.8 -62 15
01 43.2 -58 25
01 43.4 -61 39 | 01 44.2 -35 17
01 44.9 -49 08
01 45.1 -56 26
01 45.8 -28 51
01 46.5 -18 12 | 01 45.0 -72 57
01 47.0 -36 48
01 47.2 -28 28
01 48.0 -62 52
01 48.4 -55 52 | 01 48.2 -62 02
01 50.0 -32 49
01 50.4 -69 26
01 51.9 -16 47
01 52.3 -19 32 | | | RA (1950) Dec | 01 18.7 -30 43
01 18.8 -51 53
01 18.9 -59 49
01 20.3 -28 48
01 22.4 -46 10 | 01 23.5 -39 44
01 23.9 -59 58
01 25.0 -81 21
01 27.0 -27 17
01 27.9 -33 10 | 01 28.5 -58 25
01 29.7 -51 36
01 30.2 -42 22
01 31.4 -68 02
01 31.6 -32 47 | 01 32.1 -31 51
01 32.1 -33 05
01 32.2 -28 01
01 32.6 -64 30
01 32.7 -57 16 | 01 33.7 -69 21
01 34.2 -68 55
01 34.7 -47 56
01 34.8 -27 31
01 35.1 -20 12 | 01 35.6 -73 50
01 37.7 -27 58
01 38.1 -17 47
01 39.3 -17 20
01 39.9 -42 22 | 01 40.5 -20 06
01 41.2 -36 37
01 41.2 -62 31
01 41.4 -58 41
01 41.7 -61 55 | 01 42.0 -35 33
01 42.9 -49 24
01 43.3 -56 42
01 43.5 -29 06
01 44.1 -18 27 | 01 44.1 -73 12
01 44.8 -37 03
01 44.9 -28 43
01 46.4 -63 07
01 46.6 -56 07 | 01 46.6 -62 17
01 47.8 -33 04
01 49.2 -69 41
01 49.5 -17 02
01 49.9 -19 47 | | | Abell | \$0151
\$0152
\$0153
\$0153
\$0154 | 80156
80157
80158
80159
80160 | S0161
S0162
S0163
S0164 | \$0166
\$0167
\$0168
\$0169
\$0170 | \$0171
\$0172
\$0173
\$0174
\$0175 | \$0176
\$0177
\$0178
\$0179
\$0180 | S0181
S0182
S0183
S0184
S0185 | S0186
S0187
S0188
S0189
S0190 | S0191
S0192
S0193
S0194 | \$0196
\$0197
\$0198
\$0199
\$0200 | | - 11 | | | | | | | | | | | | |-------|---|---|--|--|--|--|---|--|---|---|---| | | yıı | 190
222
223
217
230 | 15
240
241
229
183 | 73
147
280
142
118 | 310
168
248
109
322 | 310
111
296
154
85 | 185
224
261
325
268 | 264
41
186
223
215 | 249
258
163
267
39 | 162
65
182
101
242 | 309
156
295
53
94 | | | u_x | 18
20
20
10
10
10 | 231
31
154
97
257 | 1115
248
67
281
278 | 277
94
171
169 | 52
135
222
43
93 | 283
80
4
178
79 | 252
247
47
64
299 | 279
283
214
35
249 | 140
177
176
96 | 166
81
123
210
246 | | | ycen | 28
23
66
66 | -149
76
77
65 | -91
-17
116
-22
-46 | 146
4
84
-55
158 | 146
-53
132
-10 | 21
60
97
161
104 | 100
-123
22
59
51 | 85
94
-1
103 | -99
18
18
78 | 145
-8
131
-111 | | | x cen | -20
70
104
-64 | 133
10
10
67 | 49
-84
97
-117 | -1113
70
-7
-5 | 112
29
-58
121
71 | -119
84
160
-14
85 | -88
-83
117
100
-135 | -115
-119
-50
129
-85 | -113
-12
68
14 | 83
441
-82 | | | Field | F245
F543
F354 -
F197 | F354
F543
F013
F081 | F013
F081
F477
F298 - | F298 -
F245
F197
F354 | F245
F197
F298
F245 | F415 -
F245
F298
F197 | F415
F415
F354
F197 | F053 -
F415
F197
F014 | F081
F415
F415
F415 | F415
F298
F081
F355 | | | q | 68.95
73.53
75.18
65.05
56.68 | 72.86
72.37
56.74
38.15
51.26 | 35.38
50.58
73.75
70.62 | 72.18
67.54
64.85
72.66
73.75 | 68.77
62.44
71.15
66.68
53.62 | 72.53
71.81
67.52
70.64
64.01 | 71.93
71.61
71.03
63.21
71.01 | 47.14
70.92
71.25
63.45
34.58 | 49.88
70.38
70.53
70.17 | 70.27
67.60
51.84
68.57
60.50 | | | 1 | 425
735
1111 | 38 -
72 -
17 -
90 - | 005 -
84 -
57 -
52 - | 05 -
70 -
33 - | 27 -
27 -
27 -
56 -
68 - | 96.
79.
73.
1. 1. 1. | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 78 -
90 -
17 -
81 -
56 - | 897
97
1.1.1
68
1.1.1.1 | 0 6 4 0 4
6 6 6 6
7 1 1 1 | | | | 271.
185.
242.
277. | 254.
186.
287.
298.
291. | 300.
291.
200.
259.
260. | 251.
268.
274.
247.
234. | 262.
277.
250.
267. | 224
238
262
247
247 | 220
233
240
271
238 | 291.
235.
226.
269. | 288.
231.
224.
214.
221. | 217.
253.
286.
245. | | | Dec | 14
18
13
13
14
18
18
18
18
18
18
18
18
18
18
18
18
18 | 37 32
18 23
58 19
78 28
54 23 | 31 23
55 04
22 36
40 08 | 37 01
14 39
18 14
35 48
31 50 | 12 01
50 47
37 17
14 54
51 12 | 29 22
33 39
42 52
36 45
47 50 | 27 54
32 04
34 22
48 40
33 49 | 58 09
32 59
29 49
47 49
32 00 | 64 49
31 39
29 27
25 57
28 21 | 27 05
39 54
52 21
36 51
51 06 | | | (2000) Dec | 55.33.33.33.33.33.33.33.33.33.33.33.33.3 | 10.48. | 20 20 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1.6 -3
2.1 -44
3.0 -3 | 20 80 1
4 1 1 1 1 | 24700 | 2 | 6.60.61 | 86440 | 2000 H | | | RA (| 01 52
01 53
01 53
01 55 | 01 56
01 58
01 57
01 55 | 01 55
01 58
02 00
02 00
02 01 | 02 01
02 01
02 02
02 03 | 02 05
02 05
02 06
02 07 | 02 10
02 10
02 10
02 10
02 11 | 02 12
02 13
02 13
02 13
02 14 | 02 14
02 15
02 16
02 16
02 13 | 02 17
02 19
02 19
02
20
02 20 | 02 20
02 20
02 20
02 21
02 21 | | | Dec | 53
53
67
747 | 44.
34.
38.
38.
38. | 38
51
51
51
50
50 | 16
1 54
2 03
0 05 | 2 16
1 02
7 32
5 09
1 27 | 9 37
3 54
3 07
7 00
8 05 | 3 09
1 37
1 54 | 23
13
03
14 | 5 03
1 53
9 41
6 11
8 35 | 7 19
0 08
2 35
7 05
1 20 | | | (1950) I | 2 -44
7 -18
1 -33
5 -58 | 0 -37
6 -18
7 -58
9 -78
2 -64 | 3 -81
0 -22
0 -40
0 -40 | 6 - 44
8 - 44
9 - 36
8 - 32 | 5 - 45
0 - 51
0 - 45
6 - 61 | 085 - 135 | 7 -28
9 -32
11 -34
9 -48
0 -34 | 3 - 168
9 - 133
0 - 48
0 - 82 | 88 - 131 | 5 - 127 | | | RA (1 | 1 50.
1 51.
1 53. | 1 55.
1 55.
1 55. | 1 56.
1 57.
1 58.
1 58. | 59. | 2 04.
2 04.
2 05. | 2 08.
2 08.
2 08. | 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 13. | 2 17.
2 17.
2 17. | 18.
18.
19. | | 2 | | 12643 | 00000 | 00000 | 610
610
610
610
610
610
610
610
610
610 | 21 02
22 02
23 02
24 02
25 02 | 26 02
27 02
28 02
29 02
30 02 | 31 02
32 02
33 02
34 02
35 02 | 17 02
19 02
10 02
02 02 | 41 02
42 02
43 02
44 02
45 02 | 46 02
47 02
48 02
49 02
50 02 | | Junua | Abell | \$020
\$020
\$020
\$020
\$020 | \$0206
\$0207
\$0208
\$0209
\$0210 | S021
S021
S021
S021
S021 | S0216
S0217
S0218
S0219
S0220 | \$022
\$022
\$022
\$022
\$022 | \$022
\$022
\$022
\$023 | \$023
\$023
\$023
\$023
\$023 | \$023
\$023
\$023
\$023
\$024 | S024
S024
S024
S024
S024 | \$024
\$024
\$024
\$024 | | ر ر | | | | | | | | | | | | | o i | | | | | | | | | | | | | 3 | 日 | 16.9
17.0
17.2
17.4 | 17.4
17.3
17.3
17.2 | 16.9
17.2
17.4
17.2
16.3 | 17.3
16.2
17.2
17.3 | 17.3
17.4
17.0
17.3 | 17.4
17.3
17.3
17.3
16.2 | 17.4
17.4
17.3
17.4
17.4 | 16.7
17.4
17.4
16.5 | 16.9
17.4
17.4
16.0 | 17.2
17.0
17.1
17.4 | | 3 | Ω | 5 16.
5 17.
5 17.
6 17. | 6 17.
6 17.
6 17.
5 17.
4 16. | 5 16.
5 17.
6 17.
5 17.
4 16. | 6 17.
4 16.
5 17.
6 17.
6 17. | 6 17.
6 17.
5 17.
6 17.
4 16. | 6 17.
6 17.
5 17.
6 17.
4 16. | 6 17.
6 17.
6 17.
6 17.
6 17. | 5 16.
6 17.
6 17.
5 16. | 5 16.
6 17.
6 17.
6 17. | 5 17.
5 17.
5 17.
6 17. | | 3 | 1 | 16.
17.
17.
17. | 17.
17.
17.
17.
16. | 16.
17.
17.
17. | 17.
16.
17.
17. | 16 0 6 17.
0 5 17.
0 5 17.
0 6 17. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
97) 0 4 16. | 17. | 0 5 16.
2 6 17.
0 6 17.
5 0 5 16. | 16.7 | 17.
17.
17.
17. | | 3 | Ω | 5 16.
5 17.
5 17.
6 17. | 6 17.
6 17.
6 17.
5 17.
4 16. | 5 16.
5 17.
6 17.
5 17.
4 16. | 6 17.
4 16.
5 17.
6 17.
6 17. | 6 0 6 17.
6 0 6 17.
0 5 17.
0 6 17. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
0 4 16. | 6 17.
6 17.
6 17.
6 17.
6 17. | 0 5 16.
0 6 17.
0 5 16.
0 5 17. | 5 16.
6 17.
6 17.
6 17. | 0 5 17.
0 5 17.
0 5 17.
2 6 17.
4 0 4 16. | | 3 | z R D | 5 16.
5 17.
5 17.
6 17. | 6 17.
6 17.
6 17.
5 17.
4 16. | 5 16.
5 17.
6 17.
5 17.
4 16. | 6 17.
4 16.
5 17.
6 17.
6 17. | .1716 0 6 17.
0 5 17.
0 6 17.
0 6 17. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
2197) 0 4 16. | 6 17.
6 17.
6 17.
6 17.
6 17. | 0 5 16.
2 6 17.
0 6 17.
0635 0 5 16. | 5 16.
6 17.
6 17.
6 17. | 0 5 17.
0 5 17.
0 5 17.
2 6 17. | | 3 | R D | 0 5 16.
0 5 17.
0 5 17.
0 6 17. | 0 6 17.
0 6 17.
0 6 17.
0 5 17. | 0 5 16.
0 5 17.
0 6 17.
0 8 17.
0 4 16. | 0 6 17.
0 4 16.
0 5 17.
0 6 17.
2 6 17. | 0 6 17.
0.1716 0 6 17.
0 5 17.
0 6 17.
0 4 16. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
(0.2197) 0 4 16. | 0 6 17.
0 6 17.
0 6 17.
2 6 17. | 0 5 16.
2 6 17.
0 0 635 0 6 17.
0 5 16. | 0 5 16.
1 6 17.
0 6 17.
0 6 17. | 0 5 17.
0 5 17.
0 5 17.
0 5 17.
0.0484 0 4 16. | | 3 | z R D | 0 5 16.
0 5 17.
0 5 17.
0 6 17. | 0 6 17.
0 6 17.
0 6 17.
0 5 17. | 0 5 16.
0 5 17.
0 6 17.
0 8 17.
0 4 16. | 0 6 17.
0 4 16.
0 5 17.
0 6 17.
2 6 17. | 0 6 17.
0.1716 0 6 17.
0 5 17.
0 6 17.
0 4 16. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
(0.2197) 0 4 16. | 0 6 17.
0 6 17.
0 6 17.
2 6 17. | 0 5 16.
2 6 17.
0 0 635 0 6 17.
0 5 16. | 0 5 16.
1 6 17.
0 6 17.
0 6 17. | 0 5 17.
0 5 17.
0 5 17.
0 5 17.
0.0484 0 4 16. | | 3 | Previous z R D | 0 5 16.
0 5 17.
B 0 5 17.
BQ 0 6 17. | 0 6 17.
0 6 17.
0 6 17.
BD . 0 4 16. | D 0 5 16. | B 0 6 17. BD 0 6 17. BD 0 6 17. | BDQ 0.1716 0 6 17. | 0 6 17.
0 6 17.
0 5 17.
0 6 17.
D (0.2197) 0 4 16. | 19.4 10 0 6 17.
19.3 10 0 6 17.
18.7 1C 0 6 17.
19.3 20 BQ 0 6 17.
20.1: 2C 5 17. | 0 DQ 0.0635 0 5 16. | DD 0 5 16. | 0 5 17.
0 D 0 5 17.
0 D 0 5 17.
0 B 0.0484 0 4 16. | | 3 | Obs Previous z R D | 6.7 10 0 5 16.
6.8 10 0 5 17.
7.7 1C B 0 5 17.
9.1 10 BQ 0 6 17.
8.6 10 0 6 17. | 9.4: 1C 0 6 17.
9.9 10 0 6 17.
8.6 10 0 6 17.
8.0 10 BD 0 4 16. | 6.8 20 0 5 16.
7.1 10 D 0 5 17.
9.4 10 0 6 17.
7.2 10 0 5 17.
6.1 10 0 4 16. | 8.0 10 B 0 6 17.
6.0: 10 S 0 4 16.
7.4 10 BDQ 0 5 17.
8.7 1C 0 6 17.
0.0 1C 2 6 17. | 8.3 20 BDQ 0.1716 0 6 17.
6.8 10 BDQ 0.1716 0 6 17.
8.3 20 0 5 17.
6.1 10 10 4 16. | 9.8 10 0 6 17.
8.7 1C 0 6 17.
7.9 10 0 6 17.
8.3 10 0 6 17.
6.0 10 D (0.2197) 0 4 16. | .4 10 0 6 17.
.3 10 0 6 17.
.3 20 BQ 0 6 17.
.1: 2C BQ 0 6 17. | .5 20 DQ 0 5 16.
.8 1C 2 6 17.
.5 10 0 0.0635 0 6 17.
.4 20 DQ 0.0635 0 5 167. | .7 10 BD 0 5 16.
.8 10 1 6 17.
.8 10 0 4 16.
.3 10 6 17. | 7.4 10 0 5 17.
6.8 10 0 5 17.
7.0 20 D 0 5 17.
0.0 1C 2 6 17.
6.1 10 B 0.0484 0 4 16. | | 3 | m ₁₀ Obs Previous z R D | 5.1 15.8 16.7 10 0 5 16.
5.6 16.0 16.8 10 0 5 17.
7.0 17.4 17.7 1C B 0 5 17.
8.0 18.9 19.1 10 BQ 0 6 17.
7.6 18.1 18.6 10 0 6 17. | 8.4 19.4: 1C 0 6 17.
9.7 19.9 10 0 6 17.
8.4 18.6 10 0 6 17.
5.9 16.1 10 BD 0 4 16. | 6.0 16.8 20 0 5 16.
6.5 17.1 10 D 0 5 17.
8.9 19.4 10 0 6 17.
6.1 17.2 10 0 5 17.
5.3 16.1 10 0 4 16. | 6.0 17.5 18.0 10 B 0 6 17.
5.3: 15.6: 16.0: 10 s 0 4 16.
5.5 15.9 17.4 10 BDQ 0 5 17.
5.1 19.5 20.0 1C 2 6 17. | 8.1 18.8 19.2 10 BDQ 0.1716 0 6 17.
8.1 18.8 19.2 10 BDQ 0.1716 0 6 17.
6.3 17.5 18.3 20 0 6 17.
6.4 15.5 16.1 10 0 6 17. | 9.4 19.8 10 0 6 17.
8.3 18.7 1C 0 6 17.
5.8 17.9 10 0 5 17.
5.7 16.0 10 D (0.2197) 0 4 16. | 7.5? 18.7 19.4 10 0 6 17.7 19.4 10 0 6 17.7 19.1 19.3 10 0 6 17.7 10.6 18.0? 18.7 1C 0 6 17.7 10.8 18.5: 19.3 20 BQ 0 6 17.7 17.9: 19.2 20.1: 2C 17.7 17.9 | 4.9 15.4 16.5 20 DQ 0 5 16. 8.5 18.9 19.8 1C 2 6 17. 8.1 18.8 19.5 10 0 6 17. 4.8 15.6 16.4 20 DQ 0.0635 0 5 16. 7.5 18.6 18.8 10 0 5 17. | 4.6 15.3 16.7 10 BD 0 5 16.7 8.1 19.0 19.8 10 1 6 17.9 9.1: 19.8 19.9 10 0 6 17.7 5.4 15.6 15.8 10 0 6 17.7 7.8 18.8 19.3 10 6 17.4 | 5.1 16.1 17.4 10 0 5 17.
6.9 15.9 16.8 10 0 5 17.
5.6 15.9 17.0 20 D 0 5 17.
8.7 19.3 20.0 1C 2 6 17.
3.5 14.7 16.1 10 B 0.0484 0 4 16. | | 3 | m ₃ m ₁₀ Obs Previous z R D | .1 15.8 16.7 10 0 5 16.
.6 16.0 16.8 10 0 5 17.
.0 17.4 17.7 1C B 0 5 17.
.0 18.9 19.1 10 BQ 0 6 17.
.6 18.1 18.6 10 0 6 17. | .4 18.4 19.4: 1C 0 6 175 19.7 19.9 10 0 6 171 18.4 18.6 10 0 6 172 15.9 16.1 10 BD 0 4 16. | .3 16.0 16.8 20 0 5 16.
.4 16.5 17.1 10 D 0 5 17.
.1 18.9 19.4 10 0 6 17.
.5 15.3 16.1 10 0 4 16. | 16.0 17.5 18.0 10 B 0 6 17.5 15.0 10 S 15.3 15.6 16.0 10 S 10.4 16.1 15.5 15.9 17.4 10 BDQ 0 5 17.1 17.3 17.8 18.7 10 10.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 1 | .7 17.4 18.3 20 BDQ 0.1716 0 6 171 18.8 19.2 10 BDQ 0.1716 0 6 172 15.4 16.8 10 BDQ 0.1716 0 6 173 17.5 18.3 20 6 177 15.5 16.1 10 BDQ 0.1716 0 6 17. | .2 19.4 19.8 10 0 6 17.
.6 18.3 18.7 1C 0 6 17.
.4 15.8 17.9 10 0 5 17.
.1 18.1 18.3 10 0 6 17.
.5 15.7 16.0 10 D (0.2197) 0 4 16. | 17.57 18.7 19.4 10 0 6 17.51 16.0* 19.1 19.3 10 0 6 17.51 17.6 18.0? 18.7 1C 0 6 17.51 16.0 18.5: 19.3 20 BQ 0 6 17.51 17.9: 19.2 20.1: 2C 17.51 | 14.9 15.4 16.5 20 DQ 0 5 16.1 18.5 18.9 19.8 1C 2 6 17.1 18.1 18.8 15.5 10 0 6 17.1 17.5 18.6 18.8 10 DQ 0.0635 0 5 16.1 | .6 15.3 16.7 10 BD 0 5 16.7 1.1
19.0 19.8 10 1 6 17.1 19.8 19.9 10 0 6 17.4 15.6 15.8 10 0 6 17.1 18.8 19.3 10 0 6 17.1 | .1 16.1 17.4 10 0 5 17.
.9 15.9 16.8 10 0 5 17.
.6 15.9 17.0 20 D 0 5 17.
.7 19.3 20.0 1C 2 6 17.
.8 14.7 16.1 10 B 0.0484 0 4 16. | | 3 | C m ₁ m ₃ m ₁₀ Obs Previous z R D | -59 15.1 15.8 16.7 10 0 5 16.
16 15.6 16.0 16.8 10 0 5 17.
28 17.0 17.4 17.7 1C B 0 5 17.
12 18.0 18.9 19.1 10 BQ 0 6 17.
7 17.6 18.1 18.6 10 0 6 17. | 2 17.4 18.4 19.4: 1C 0 6 17.
4 19.5 19.7 19.9 10 0 6 17.
8: 17.1 18.4 18.6 10 0 6 17.
9: 14.2 15.9 16.1 10 BD 0 4 16. | 15.3 16.0 16.8 20 0 5 16.
15.4 16.5 17.1 10 D 0 5 17.
18.1 18.9 19.4 10 0 6 17.
14.5 15.3 16.1 10 0 4 16. | 28: 16.0 17.5 18.0 10 B 0 6 17.
13: 15.3: 15.6: 16.0: 10 s 0 4 16.
-7 15.5 15.9 17.4 10 BDQ 0 5 17.
14 17.3 17.8 18.7 1C 0 6 17.
112 19.1 19.5 20.0 1C 2 6 17. | 16.7 17.4 18.3 20 BDQ 0.1716 0 6 17. 18.1 18.8 19.2 10 BDQ 0.1716 0 6 17. 14.2 15.4 16.8 10 6 17. 14.7 15.5 18.1 20 6 17. | 41 18.2 19.4 19.8 10 0 6 17.
8 17.6 18.3 18.7 1C 0 6 17.
-32 15.14 18.1 18.3 10 0 6 17.
10 15.5 15.7 16.0 10 D (0.2197) 0 4 16. | 7 17.57 18.7 19.4 10 0 6 17.
9 16.0* 19.1 19.3 10 0 6 17.
26 16.0 18.51 19.3 20 BQ 0 6 17.
(104) 17.9: 19.2 20.1: 2C BQ 2 6 17. | 26 14.9 15.4 16.5 20 DQ 0 5 16.7 20 120 18.57 18.9 19.8 1C 2 6 17.7 29 18.1 18.8 19.5 10 DQ 0.0635 0 6 17.1 14. 17.5 18.6 18.8 10 DQ 0.0635 0 5 17.3 | 14.6 15.3 16.7 10 BD 0 5 16.1 18.1 19.0 19.8 10 1 6 17.2 19.1: 19.8 19.9 10 0 6 17.2 17.8 18.8 19.3 10 0 6 17.2 | : 15.1 16.1 17.4 10 0 5 17.
: 14.9 15.9 16.8 10 0 5 17.
15.6 15.9 17.0 20 D 0 5 17.
18.7 19.3 20.0 1C 2 6 17.
13.5 14.7 16.1 10 B 0.0484 0 4 16. | | 3 | m ₁ m ₃ m ₁₀ Obs Previous z R D | 9 15.1 15.8 16.7 10 0 5 16.
15.6 16.0 16.8 10 0 5 17.
8 17.0 17.4 17.7 1C B 0 5 17.
2 18.0 18.9 19.1 10 BQ 0 6 17.
7 17.6 18.1 18.6 10 0 6 17. | 2 17.4 18.4 19.4: 1C 0 6 17.
4 19.5 19.7 19.9 10 0 6 17.
8: 17.1 18.4 18.6 10 0 6 17.
9: 14.2 15.9 16.1 10 BD 0 4 16. | 15.3 16.0 16.8 20 0 5 16.
15.4 16.5 17.1 10 D 0 5 17.
18.1 18.9 19.4 10 0 6 17.
14.5 15.3 16.1 10 0 4 16. | 16.0 17.5 18.0 10 B 0 6 17.5 15.0 10 S 15.3 15.6 16.0 10 S 10.4 16.1 15.5 15.9 17.4 10 BDQ 0 5 17.1 17.3 17.8 18.7 10 10.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 19.5 20.0 10 17.1 19.1 1 | 16.7 17.4 18.3 20 BDQ 0.1716 0 6 17. 18.1 18.8 19.2 10 BDQ 0.1716 0 6 17. 14.2 15.4 16.8 10 6 17. 14.7 15.5 18.1 20 6 17. | 18.2 19.4 19.8 10 0 6 17.
17.6 18.3 18.7 1C 0 6 17.
15.4 15.8 17.9 10 0 5 17.
15.1 18.1 18.3 10 D (0.2197) 0 4 16. | 17.57 18.7 19.4 10 0 6 17.51 16.0* 19.1 19.3 10 0 6 17.51 17.6 18.0? 18.7 1C 0 6 17.51 16.0 18.5: 19.3 20 BQ 0 6 17.51 17.9: 19.2 20.1: 2C 17.51 | 14.9 15.4 16.5 20 DQ 0 5 16.1 18.5 18.9 19.8 1C 2 6 17.1 18.1 18.8 15.5 10 0 6 17.1 17.5 18.6 18.8 10 DQ 0.0635 0 5 16.1 | 14.6 15.3 16.7 10 BD 0 5 16.1 18.1 19.0 19.8 10 1 6 17.2 19.1: 19.8 19.9 10 0 6 17.2 17.8 18.8 19.3 10 0 6 17.2 | : 15.1 16.1 17.4 10 0 5 17.
: 14.9 15.9 16.8 10 0 5 17.
15.6 15.9 17.0 20 D 0 5 17.
18.7 19.3 20.0 1C 2 6 17.
13.5 14.7 16.1 10 B 0.0484 0 4 16. | | 3 | -M C m ₁ m ₃ m ₁₀ Obs Previous z R D | I III -59 15.1 15.8 16.7 10 0 5 16.1 III I 12 18.0 17.1 10 BQ 0 5 17.1 III 12 18.0 18.9 19.1 10 BQ 0 6 17.1 III 7 17.6 18.1 18.6 10 BQ 0 6 17.1 | I II 22 17.4 18.4 19.4: 10 0 6 17. I III 34 19.5 19.7 19.9 10 0 6 17. IR III 26: 15.9 17.4 18.6 10 0 6 17. RI I -89 14.2 15.9 16.1 10 BD 0 4 16. | I II 0 15.3 16.0 16.8 20 0 5 16. I II 10 15.4 16.5 17.1 10 D 0 5 17. I II 1.1 24 14.9? 16.1 17.2 10 0 6 17. I II -10: 14.5 15.3 16.1 10 0 4 16. | I II-III 28: 16.0 17.5 18.0 10 B 0 6 17. RI I-II 13: 15.3: 15.6: 16.0: 10 S 0 4 16. RI I-II 14 17.3 17.4 10 BDQ 0 5 17. I I-II 14 17.3 18.8 18.7 1 II II-II 112 19.1 19.5 20.0 1C 2 6 17. | IR III 21 16.7 17.4 18.3 20 BDQ 0.1716 0 6 17. II III 23 18.1 18.8 19.2 10 BDQ 0.1716 0 6 17. IR II: 26 16.3 17.5 18.3 20 0 6 17. IR II: -10 14.7 15.5 16.1 10 0 6 17. | IR III: 41 18.2 19.4 19.8 10 0 6 17. I III: 2 15.4 15.8 17.9 10 0 6 17. I III-III 23 15.1 18.1 18.3 10 0 6 17. I II-III 10 15.5 15.7 16.0 10 D (0.2197) 0 4 16. | I II-III 7 17.57 18.7 19.4 10 0 6 17.51 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | IR I-II 26 14.9 15.4 16.5 20 DQ 0 5 16.7 17.1 120 18.57 18.9 19.8 1C 2 6 17.7 18.1 18.8 19.5 10 DQ 0.0635 0 6 17.7 18.1 11.1 14 17.5 18.6 18.8 10 DQ 0.0635 0 5 17.3 17.1 11.1 14 17.5 18.6 18.8 10 DQ 0.0635 0 5 17.3 17.3 | IR I-II 58 14.6 15.3 16.7 10 BD 0 5 16.7 10. II 58 18.1 19.0 19.8 10 1 6 17.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21: 15.1 16.1 17.4 10 0 5 17.
-15: 14.9 15.9 16.8 10 0 5 17.
4 15.6 15.9 17.0 20 D 0 5 17.
83 18.7 19.3 20.0 1C 2 6 17.
-3 13.5 14.7 16.1 10 B 0.0484 0 4 16. | | IABLE | T_{B-M} C m_1 m_3 m_{10} Obs Previous z R D | III -59 15.1 15.8 16.7 10 0 5 16.1 III 16 15.6 16.0 16.8 10 0 5 17.1 III 12 18.0 18.9 19.1 10 BQ 0 6 17.1 III 7 17.6 18.1 18.6 10 BQ 0 6 17. | II 22 17.4 18.4 19.4: 1C 0 6 17.
III 34 19.5 19.7 19.9 10 0 6 17.
III 26: 15.9 17.4 18.0 10 0 6 17.
I -89 14.2 15.9 16.1 10 BD 0 4 16. | II 0 15.3 16.0 16.8 20 0 5 16.
II 10 15.4 16.5 17.1 10 D 0 5 17.1 11 24 14.97 16.1 17.2 10 0 5 17.1 11 11 11 14.97 16.1 17.2 10 0 6 17.1 11 11 11 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 17.1 17.1 10 0 6 1 16.1 10 0 6 1 16.1 10.1 10 0 6 1 16.1 10.1 10 | III-III 28: 16.0 17.5 18.0 10 B 0 6 17. I-II 13: 15.3: 15.6: 16.0: 10 s 0 4 16. I-II 17 15.5 15.9 17.4 10 BDQ 0 5 17. II-III 112 19.1 19.5 20.0 1C 2 6 17. | III 21 16.7 17.4 18.3 20 BDQ 0.1716 0 6 17. III 23 18.1 18.8 19.2 10 BDQ 0.1716 0 6 17. III 28 14.2 15.4 18.8 10 BDQ 0.1716 0 6 17. III 26 13.3 17.5 18.3 20 0 6 17. III -10 14.7 15.5 16.1 10 | III 41 18.2 19.4 19.8 10 0 6 17. III: 8 17.6 18.3 18.7 1C 0 6 17. III: 23 15.4 15.8 17.9 10 0 6 17. III-III 23 15.7 16.0 10 D (0.2197) 0 4 16. | III-III 7 17.57 18.7 19.4 10 0 6 17.7 17.57 18.1 19.3 10 0 6 17.7 11.1 17 17.6 18.07 18.7 1C 0 6 17.7 1III 26 16.0 18.5: 19.3 20 BQ 0 6 17.7 1 1 (104) 17.9: 19.2 20.1: 2C 16.0 18.5 19.3 2C | III 120 18.57 18.9 19.8 1C 2 6 17.9 18.1 18.8 19.8 1C 2 6 17.1 1 2 0 18.1 18.8 19.5 10 10 10 10 10 10 10 10 10 10 10 10 10 | I-II 58 14.6 15.3 16.7 10 BD 0 5 16.7 10.1 III 58 18.1 19.0 19.8 10 1 6 17.1 III 30.1 19.1 19.8 19.0 10 0 6 17.1 III 20 17.8 18.8 19.3 10 0 6 17.1 | II 21: 15.1 16.1 17.4 10 0 5 17.
I-II -15: 14.9 15.9 16.8 10 0 5 17.
II 4 15.6 15.9 17.0 20 D 0 5 17.
II: 83 18.7 19.3 20.0 1C 2 6 17.
I-II -3 13.5 14.7 16.1 10 B 0.0484 0 4 16. | ${\small \circledcirc \textbf{ American Astronomical Society \bullet Provided by the NASA Astrophysics Data System}}$ | | - | 17
17
17
16
16 | 17
17
16
17 | 17
17
15
17 | 17
17
16
17 | 17
17
16
15
17 | 17
16
17
16 | 77777 | 17
17
16
17 | 17
17
17
17 | 16
17
17
17 | |-----------|-----------------|--|--|--|--|--|--|--|--|--|--| | | а | ഴവവയ | 00400 | മഴദാവ | 0 N 4 N 0 | 0 0 4 C R | N 4 0 N N | စ္စည္သည | 99299 | 9 9 9 9 9 | N 4 0 0 N | | | R | 00000 | 00001 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00010 | 00100 | | | z | | | (0.0574) | | 0.0309 | | (0.0212) | | | | | | Previous | | ø | Ω | | ø | ø | Ω Ω | | | ପପ ନ | | | Obs | 22222 | 10000 | 22222 | 10
10
10,10 | 10000 | 22222 | 22222 | 10000 | 12222 | 20
10
10
10 | | | m ₁₀ | 19.3
16.8
16.8
20.4 | 19.9
17.5
16.1
18.6
20.0 | 17.6
17.4
15.3
19.7 | 19.6
17.7
15.9
16.8
19.1: | 18.1
19.0
15.8
15.4 | 17.4
16.0
19.7:
16.7
16.8 | 16.9
16.8
16.8
18.0 | 18.8
16.5
18.1 | 18.6
17.0
18.0
20.1 | 16.4
16.1:
20.1
19.4 | | | m³ | 18.6
16.7
16.0
16.1 | 19.5
16.2
15.3
17.8 | 16.0
16.1
14.3
18.7 | 19.3
15.5
15.4
18.6 |
17.5
18.7
15.1
14.4 | 16.6
15.2
19.0:
15.2 | 16.1
16.5
15.4
16.8
17.1 | 18.4
19.7
15.8
18.0 | 18.1
15.6
17.8
19.3 | 15.7
15.5
19.5
19.1 | | | m | 18.0
13.5*
15.4
18.5 | 19.3
14.8
16.0 | 15.1
15.1
14.0
18.1 | 19.2
14.6
13.9
15.1 | 16.0
17.9
13.8
12.9 | 15.2
14.7
18.4:
14.6 | 15.4
13.7
16.2
16.7 | .0
18.9
15.3
17.3 | 16.1
15.4
16.5?
18.8? | 13.6
15.3
19.1
18.3 | | | O | 13
9:
6
6 | 44
12
8
73 | 18:
16:
23 | -16
15
21
21 | 113
123
144
14 | 29
-5
-10
-63 | 11
0
27
18 | 24 4 25 4 4 2 5 9 4 4 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 | 19
21
-16:
68
(85) | -15:
6
(68)
-10
-39 | | | ТВ-М | 111-111
111-111
111 1111 | | 11-11
11-111 | 111
1-11
11-11 | III
II-II | :::::::::::::::::::::::::::::::::::::: | | 11-11
11-11
11-11
111 | 1
1-11
11-111
111? | 11111 | | | T_{A} | нннна | RI
RI | ı E E E | ri | нинн | - 2 E E E | ннння | HHHH | жнйнж | RIARI | | Continued | Abell | S0251
S0252
S0253
S0254
S0254 | S0256
S0257
S0258
S0259
S0259 | S0261
S0262
S0263
S0264
S0264 | \$0266
\$0267
\$0268
\$0269
\$0270 | S0271
S0272
S0273
S0274
S0275 | S0276
S0277
S0278
S0279
S0280 | S0281
S0282
S0283
S0284
S0284 | \$0286
\$0287
\$0288
\$0289
\$0290 | S0291
S0292
S0293
S0294
S0295 | \$0296
\$0297
\$0298
\$0299
\$0300 | | TABLE 5— | | 117
215
173
26
203 | 132
213
173
203
108 | 246
226
236
97 | 223
36
311
50 | 212
38
279
264
113 | 173
177
272
285
173 | 70
95
137
198
81 | 160
129
307
54
275 | 206
286
290
259 | 296
56
300
83 | | TA | и пл | 105 11
153 21
149 17
115 2 | 116 1:
105 2:
102 1:
227 20 | 95 24
94 23
14 23
155 3 | 80 27
116 116 116 1161 1161 1161 1161 1161 1 | 248 27 245 139 27 165 1165 11 | 236 17
152 17
73 27
203 28
163 11 | 195
52
133
13
156
19
284 | 294 10
69 13
145 30
161 8 | 144 20
48 28
214 14
215 29
175 29 | 200 29
72 162 110 36 | | | ycen | -47
-51
9
138 | 132
139
156 | 82
62
72
32 | 59
-128
147
-130 | 48
115
100
-51 | 9
108
121
9 | -94
-27
-83 | -35
143
110 | 42
122
122
126
95 | 132
108
-89
136 | | | Lcen | 59
11
15
49 - | 62
62
62
1
63
1
5 | 69
70
150
9 | 84
48
2
1
1
1
1 | -84
-81 -
25
-21 | -72
12
-39
1 | -31
112
31
8
-120 | -130
95
19
3 - | 20
116
-50
-51 | -36
92 -
2
54
109 | | | Field | F153
F246
F246
F081 | F415
F081
F415
F115 | F081
F081
F478
F355 | F415
F246
F545
F545
F479 | F299
F299
F545
F115 | F014
F198
F355
F299 | F299
F081
F198
F115 | F247
F545
F115
F299 | F416
F198
F247
F356 | F247
F299
F154
F053 | | | q | -57.11
-65.07
-64.56
-47.42
-67.12 | -69.37
-50.36
-69.13
-54.20 | -50.80
-50.47
-68.21
-67.86 | -68.76
-62.53
-65.18
-67.16 | -66.31
-64.92
-65.08
-54.58
-59.64 | -36.51
-60.24
-66.90
-65.97 | -64.34
-47.98
-59.50
-53.29
-47.66 | -62.54
-64.97
-54.67
-63.65 | -64.93
-59.95
-61.07
-64.71 | -62.07
-62.13
-54.12
-46.14
-62.08 | | | 1 | 279.35
261.12
262.53
290.13 | 227.56
287.23
225.33
282.50
242.29 | 286.48
286.77
208.45
242.65
198.17 | 222.74
266.27
194.09
205.92
218.04 | 248.97
256.09
195.82
280.22
270.85 | 297.59
268.76
235.71
245.07
281.56 | 253.87
287.64
269.44
280.89 | 260.04
203.15
278.34
253.83
264.50 | 224.01
263.15
259.15
231.92
271.52 | 253.51
252.29
275.84
287.22
250.98 | | | RA (2000) Dec | 02 22.1 -55 40
02 23.2 -43 52
02 23.6 -44 39
02 23.2 -67 21
02 24.7 -19 03 | 02 24.6 -30 23
02 23.7 -63 51
02 25.8 -29 36
02 25.1 -59 03
02 25.8 -35 50 | 02 25.2 -63 13
02 25.4 -63 36
02 26.6 -23 25
02 27.0 -36 03
02 27.3 -19 10 | 02 27.5 -28 40
02 27.1 -47 12
02 29.7 -17 02
02 29.8 -22 12
02 29.8 -26 54 | 02 30.1 -38 53
02 30.0 -42 08
02 31.4 -17 38
02 31.2 -57 55
02 31.9 -50 45 | 02 29.3 -79 34
02 33.4 -49 34
02 34.5 -33 40
02 34.5 -37 31
02 34.3 -59 37 | 02 35.1 -41 33
02 34.3 -65 58
02 35.5 -50 18
02 35.3 -59 09
02 35.1 -66 18 | 02 36.6 -44 51
02 37.1 -20 26
02 36.8 -57 08
02 38.5 -41 51
02 39.6 -47 43 | 02 45.1 -29 02
02 44.7 -47 29
02 44.9 -45 13
02 45.8 -32 24
02 45.5 -53 01 | 02 46.6 -42 22
02 47.5 -41 49
02 47.1 -56 29
02 47.8 -67 16
02 49.0 -41 16 | | | RA (1950) Dec | 02 20.5 -55 54
02 21.3 -44 06
02 21.7 -44 53
02 22.2 -67 35
02 22.4 -19 17 | 02 22.4 -30 37
02 22.5 -64 05
02 23.6 -29 50
02 23.6 -59 17
02 23.7 -36 04 | 02 23.9 -63 27
02 24.2 -63 50
02 24.3 -23 39
02 24.9 -36 17
02 25.0 -19 24 | 02 25.3 -28 54
02 25.3 -47 26
02 27.3 -17 16
02 27.5 -22 26
02 27.6 -27 08 | 02 28.1 -39 07
02 28.1 -42 22
02 29.1 -17 52
02 29.7 -58 09
02 30.2 -50 59 | 02 30.5 -79 48
02 31.6 -49 48
02 32.4 -33 54
02 32.5 -37 45
02 32.9 -59 51 | 02 33.2 -41 47
02 33.3 -66 12
02 33.8 -50 32
02 33.9 -59 23
02 34.1 -66 32 | 02 34.7 -45 04
02 34.8 -20 39
02 35.3 -57 21
02 36.6 -42 04
02 37.8 -47 56 | 02 42.9 -29 15
02 42.9 -47 42
02 43.1 -45 26
02 43.7 -32 37
02 43.9 -53 14 | 02 44.7 -42 35
02 45.6 -42 02
02 45.7 -56 42
02 47.0 -67 29
02 47.1 -41 29 | | | Abell | S0251
S0252
S0253
S0254
S0255 | S0256
S0257
S0258
S0259
S0260 | S0261
S0262
S0263
S0264
S0265 | S0266
S0267
S0268
S0269
S0270 | \$0271
\$0272
\$0273
\$0274 | \$0276
\$0277
\$0278
\$0279
\$0280 | S0281
S0282
S0283
S0284
S0285 | \$0286
\$0287
\$0288
\$0289
\$0290 | S0291
S0292
S0293
S0294
S0295 | \$0296
\$0297
\$0298
\$0299
\$0300 | | | В | 14.9
17.4
17.0
17.4 | 17.2
16.1
16.7
16.4
17.4 | 17.0
16.4
17.4
17.2
16.3 | 15.7
17.2
17.4
17.5
17.3 | 17.2
16.7
17.4
16.9 | 17.2
16.7
17.2
17.0 | 17.3
15.8
15.8
16.2 | 16.1
16.3
17.2
15.5
16.6 | 16.9
17.3
17.3
17.3 | 16.2
17.4
17.2
16.8 | |-----------|----------------|--|--|--|--|--|--|--|--|--|--| | | a | ουαυσ | V 4 V 4 A | N 4 0 N 4 | 410000 | വവഴവവ | വവവവ | 04444 | 44000 | N 0 0 0 4 | 4.0000 | | | æ | 01001 | 00000 | 00000 | 00010 | 00400 | 00000 | 00000 | 4
6
0
0
0
0 | 00000 | 00000 | | | 2 | 0.0223 | | (0.0263) | (0.0201) | 0.0585 | 0.0531 | | 0.0744
(0.0384
0.0546 | | 0.0670 | | | Previous | BdK
9 | 8 | B | Q | | BD | Ω | dK | Ω | α 8 | | | Obs | 10000
10000 | 000000 | 000000 | 2C, 10
10
10, 1C
1C
10 | 30
20
10
10 | 10
20
20
20
20 | 00000 | 100000 | 00000
10000 | 10
10
10 | | | m_{10} | 14.7
19.7
16.8
19.3 | 17.5
15.9
16.5
16.2
19.3 | 16.8
16.2
19.3
17.7
16.1 | 15.5
17.3
19.4
20.6
18.4 | 17.5
16.6
19.9
16.7 | 17.4
16.5
17.2
16.8
17.0 | 18.0
15.6
15.6
16.0 | 15.9
16.1
17.1
15.3 | 16.8
18.9
18.1
18.1 | 16.0
19.9
17.5
16.6
18.1 | | | m ₃ | 13.0
18.57
15.7
19.1 | 16.1
15.4
15.5
15.6
18.8 | 16.3
15.5
18.7
16.5
15.6 | 14.7:
16.5
18.7
19.6 | 16.2
15.4
19.2
15.7 | 15.6
15.4
16.2
15.4 | 17.6
15.1
15.3
15.6
15.6 | 15.5
15.4
15.6
14.2 | 15.4
18.6
17.1
17.1
15.1 | 15.4
19.3
16.6
17.4 | | | m ₁ | 12.1
18.1
15.3:
18.0 | 15.2
15.3
14.7:
15.1 | 15.5
15.0
17.4
15.5 | 13.1
15.5
18.2
19.2? | 14.9
14.7
18.8
15.4 | 15.4
15.3
15.1
13.9 | 17.5
14.7
15.2
14.8 | 15.4
14.5
14.8
14.1
18.1 | 14.8
17.5:
16.0
14.9 | 14.7
19.1
15.6
14.7: | | | O | 65
5
65 | 17
5
2
16
17 | 15
13:
16:
12 | 6
26
29
(60)
24: | 19
28
3
3 | 14:
21
-3 | 22
-14
24
-99 | -10
-11
15
-99 | 23
23
9 | 8
108
18
0
28 | | | T_{B-M} | ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | | 1-11
111
111
1 | III
III:
I-II | iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | | ::-::::::::::::::::::::::::::::::::::: | 11
11
111-111 | 1-11
11-11
11-111 | | | | T_A | жннжн | нннян | HILIR | RRRI | IR II I | I RI: | I I I I I I | RI
III | REERE | RI
I
I
I | | Continued | Abell |
\$0301
\$0302
\$0303
\$0304
\$0305 | \$0306
\$0307
\$0308
\$0309
\$0310 | \$0311
\$0312
\$0313
\$0314
\$0315 | \$0316
\$0317
\$0318
\$0319
\$0320 | \$0321
\$0322
\$0323
\$0324
\$0325 | \$0326
\$0327
\$0328
\$0328
\$0339 | \$0331
\$0332
\$0333
\$0334
\$0335 | \$0336
\$0337
\$0338
\$0339
\$0340 | S0341
S0342
S0343
S0344
S0345 | \$0346
\$0347
\$0348
\$0349
\$0350 | | 2 | | | | u | · | | | | | | | | TABLE | yıı | 90
119
79
273 | 84
102
51
50
184 | 79
56
197
273 | 46
179
273
303 | 60
188
66
31
65 | 35
310
64
173
88 | 238
201
193
150
75 | 173
172
33
217
44 | 256
210
250
250
218 | 192
196
174
317 | | ř | nx. | 93
170
116
150
125 | 267
233 1
229
278
229 1 | 179
32
209
85
189 | 57
165
269
21
21 | 280
155
245
236
100 | 101
201
212
73 | 247
62
60
179 | 168
27
276
168 | 269
139
136
127 | 247
237
267
196
150 | | | ycen | -74
-45
-85
109 | -80
-62
-113
-114 | -85
-108
33
109
-64 | -118
15
109
139
-59 | -104
24
-98
-133 | -129
146
-100
9 | 74
37
29
-14
-89 | 9
8
-131
53
-120 | 92
46
86
136 | 28
32
10
153
27 | | | x cen | 71
-6
14
14
39 | 103
-69
-65
1114 | -15
132
-45
79 | 107
-1
-105
143
-3 | -116
-81
-72
-44 | 63
-48
91
93 | -83
102
104
-15 | 137
-112
-4
-1 | -105
25
28
37
37 | -83
-73
-103
-32 | | | Field | F416
F356
F053
F247
F154 | F300 -
F199
F116 - | F082
F115
F199
F247 | F356
F199
F347 ·
F356 | F248 -
F014
F155
F248
F199 | F199
F031
F248
F199 | F054
F300
F417
F248
F248 | F248
F417
F200
F155 | F200
F248
F248
F248 | F200
F418
F083
F054 | | | q | -63.96
-63.48
-42.84
-61.05 | -61.22
-56.76
-56.18
-49.74
-57.50 | -46.38
-49.78
-57.31
-59.93 | 61.14
56.44
58.27
61.08 | -57.22
-35.87
-51.71
-56.26 | -54.01
-41.24
-56.08
-54.88 | -43.74
-58.11
-58.38
-56.07 | -56.01
-57.78
-52.89
-51.96 | 54.39
55.71
55.88
55.54 | -53.57
-56.69
-45.52
-43.96 | | | 7 | 229.02 -
239.02 -
290.63 -
253.54 -
273.47 - | 250.31 -
267.11 -
268.48 -
281.16 -
264.67 - | 285.69 -
280.83 -
263.91 -
252.61 -
266.36 - | 241.13 -
263.70 -
202.84 -
230.95 -
248.45 - | 258.71 - 295.87 - 272.93 - 259.02 - 265.84 - | 266.67 - 289.56 - 257.71 - 262.37 - 264.77 | 285.88 - 244.13 - 225.36 - 254.60 - 256.85 - | 253.77 - 226.18 - 265.63 - 267.81 - 221.63 | 259.08 -
252.27 -
251.03 -
251.93 -
254.75 - | 260.74
225.72
280.81
283.48 | | | RA (2000) Dec | 2 49.6 -31 11
2 49.7 -35 38
2 48.6 -71 22
2 51.7 -42 47
2 52.0 -55 14 | 2 53.9 -41 16
2 54.0 -50 58
2 54.3 -51 55
2 53.8 -61 53
2 54.7 -49 27 | 02 54.4 -66 24
02 54.8 -61 42
02 57.0 -49 12
02 58.2 -42 47
02 59.2 -51 01 | 3 00.3 -37 02
3 01.9 -49 33
3 03.2 -17 48
3 03.1 -32 09
3 03.8 -40 55 | 3 05.3 -46 46
3 02.7 -79 23
3 08.7 -56 39
3 10.0 -47 19
3 09.8 -51 40 | 3 09.8 -52 14
13 09.4 -72 06
13 12.7 -46 43
13 12.6 -49 37
13 13.1 -51 14 | 3 12.3 -68 25
13 13.9 -39 05
13 15.2 -29 14
13 16.3 -45 07
13 17.1 -46 31 | 3 17.5 -44 42
3 18.1 -29 38
3 18.2 -52 15
3 19.3 -53 52
3 20.4 -27 06 | 3 20.1 -48 06
3 20.5 -43 59
3 20.8 -43 16
3 21.7 -43 51
3 21.8 -45 32 | 3 22.4 -49 19
3 23.0 -29 17
3 23.0 -64 33
3 22.9 -67 00
3 22.2 -74 19 | | | RA (1950) Dec | 02 47.5 -31 24 0
02 47.7 -35 51 0
02 48.3 -71 35 0
02 49.8 -43 00
02 50.5 -55 27 0 | 02 52.0 -41 29 0
02 52.4 -51 11 0
02 52.7 -52 08 0
02 52.7 -62 06 0
02 53.0 -49 40 0 | 02 53.6 -66 37 0
02 53.7 -61 55 0
02 55.3 -49 25 0
02 56.4 -42 59 0
02 57.6 -51 13 0 | 02 58.3 -37 14 0 03 00.3 -49 45 0 03 00.9 -18 00 0 03 01.0 -32 21 0 03 01.9 -41 07 | 03 03.6 -46 58 0
03 04.4 -79 35 0
03 07.4 -56 51 0
03 08.3 -47 31 0
03 08.3 -51 52 0 | 03 08.3 -52 26
03 09.4 -72 18
03 11.0 -46 55
03 11.0 -49 49
03 11.6 -51 26 | 03 11.8 -68 37 0
03 12.0 -39 17 0
03 13.1 -29 26 0
03 14.6 -45 18 0
03 15.4 -46 42 0 | 03 15.8 -44 53 0
03 16.0 -29 49 0
03 16.7 -52 26 0
03 17.9 -54 03 0
03 18.3 -27 17 0 | 03 18.5 -48 17 0
03 18.8 -44 10 0
03 19.0 -43 27 0
03 20.0 -44 02 0
03 20.1 -45 43 0 | 03 20.8 -49 30 0
03 20.9 -29 28 0
03 22.3 -64 44 0
03 22.4 -67 11 0
03 22.7 -74 30 0 | | | Abell | \$0301
\$0302
\$0303
\$0304
\$0305 | \$0306
\$0307
\$0308
\$0309
\$0310 | S0311
S0312
S0313
S0314
S0315 | \$0316
\$0317
\$0318
\$0319
\$0320 | 80323
80323
80323
80323
80324 | \$0326
\$0327
\$0328
\$0329
\$0330 | \$0331
\$0332
\$0333
\$0334
\$0335 | \$0336
\$0337
\$0338
\$0339
\$0340 | S0341
S0342
S0343
S0344
S0345 | \$0346
\$0347
\$0348
\$0349
\$0350 | | | a | 17.4
17.2
16.0
16.9 | 16.2
16.8
17.2
17.4 | 17.0
16.2
16.6
17.0 | 16.3
16.2
17.2
17.2 | 17.2
16.1
10.3
17.2
16.7 | 17.2
15.6
17.0
17.3 | 17.2
17.2
17.2
15.7 | 17.3
17.2
17.4
17.1 | 17.2 | 17.3
17.3
16.6
17.5 | |-----------|-----------------|--|--|--|--|--|--|--|--|--|--| | | | ៤ ៧4-៧៧ | 40004 | ស 4 ស ស ស | 44000 | №40 № № | വഴവനവ | ស ស ៤ • ស | വവഴവഴ | ភ ៧ 4 ៧ ៧ | ல வவல்ல | | | <u>۳</u> | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 40000 | 00004 | | | 8 | 0.0410 | | | 0.0598 | 0.0758 | 0.0425 | | 0.0605 | 0.0454 | 0.0394 | | | Previous | Ω | o Ω | BD | | | <u>a</u> 8 | Δ 00 | ø | α Д | œ | | | Obs | 10
10
10
20,10 | 00000 | 99999 | 00000 | 00000 | 20000 | 20
10
10
10 | 10
10
10
10 | 2 t 10 C C | 10011 | | | m ₁₀ | 19.3
17.5
15.8
16.7
17.2 | 16.0
16.6
17.1
19.5 | 16.8
16.0
16.4
16.8 | 16.1
16.0
17.2
17.5
16.7 | 17.1
15.9
10.1
17.4 | 17.1
15.4
16.8
18.0 | 18.0
17.4
17.8
7 15.5
: 16.6 | 18.1
17.0
? 19.9
17.1
16.5 | 20.1
17.1
16.1
17.7
16.8 | 18.0
18.0
17.6
16.4 | | | m ₃ | 18.6
16.8
15.3
15.6 | 15.1
15.5
16.8
19.3 | 16.0
15.9
15.6
15.6 | 15.3
14.7
15.9
16.6 | 16.0
15.3
9.6
16.8 | 7 15.4
14.6
15.9
17.5 | 17.4
16.2
16.2
14.8 | 17.1
15.9
18.5
15.4 | 19.2
16.7
14.9
16.9 | 16.8
17.1
17.3
16.1 | | | m ₁ | 16.6
15.8
15.2
15.4 | 14.6
14.5
18.9
15.0 | 14.5
15.3
15.3
14.5 | 14.8
15.4
15.4
15.6 | 15.7
14.5
9.4
16.4 | 13.1
13.7
15.5
15.5 | 16.8
15.7
13.4
15.0 | 17.0
15.4
18.1
14.9 | 18.6
14.5
16.2 | 15.8
16.6
15.1
19.2 | | | C | 17
19
26:
-42 | 10
26
13
12 | 27
-74
5
9: | -5
-13
12
23 | 4
7:
13 | 11:
19:
-67
-70 | 27
26
14 | 17
-35
(80)
-65 | 77
11
12
15: | 26
20
27
11
(79) | | | T_{B-M} | 1
111-111
111
11-11 | 1-11
11-111
111-111 | 1
11-11
11-111-11-11-11-11-11-11-11-11-1 | 111111 | 11-111
1-11
111
111 | | 1-11
11
11-111
1 | 111
111-1117
11-111 | 1117
1-11
11-111
11-111 | 11-111
11-111
11-111
1-11 | | | T_A | нини | нінн | HRIRK | IR IR I | RILIR | RILIR | R H H K K | HRIELI | ###################################### | 1 K 1 K K | | Continued | Abell | \$0351
\$0352
\$0353
\$0354
\$0354 | \$0356
\$0357
\$0358
\$0359
\$0359 | S0361
S0362
S0363
S0364
S0364 | \$0366
\$0367
\$0368
\$0369
\$0370 | S0371
S0372
S0373
S0374
S0375 | \$0376
\$0377
\$0378
\$0379
\$0380 | \$0381
\$0382
\$0383
\$0384
\$0385 | \$0386
\$0387
\$0388
\$0389
\$0390 | \$0391
\$0392
\$0393
\$0394
\$0395 | \$0396
\$0397
\$0398
\$0399
\$0400 | | 5 | | | | | | | | | | | | | TABLE | yn | 191
276
80
276
82 | 102
96
167
34
202 | 283
196
230
182
25 | 232
146
266
211
293 | 143
135
143
70 | 270
147
180
191 | 288
102
61
92
327 | 109
77
174
107
212 | 235
195
172
172
66 | 180
87
97
224
72 | | T | nx | 304
294
210
52
234 | 55
34
160
149 | 213
211
210
114 | 303
262
190
257
176 | 246
280
162
93 | 48
254
168
15
85 | 148
151
86
267
64 | 219
183
324
88
207 | 96
84
140
199 | 124
143
80
148
233 | | | Ycen | 27
112
-84
112
-82 |
-62
-68
-130
38 | 119
32
66
18
-139 | 68
-18
102
47
129 | -21
-31
-21 | 106
-17
16
27
-13 | 124
-62
-103
-72
163 | -55
-87
-57
-57 | 71
31
-35
-98 | 16
-77
-67
-60
-92 | | | Lcen | -140
-130
-46
-70 | 109
130
4
15
13 | 54-
146
50
52 | -139
-98
-26
-93 | -82
-116
2
71
71 | 116
-90
-4
149
79 | 16
13
78
-103 | -55
-19
-160
-43 | 68
80
24
-35 | 40
21
84
16
-69 | | | Field | F358
F358
F200
F116 | F248
F481
F200
F548 | F358
F083
F301
F301 | F156
F249
F358
F117 | F117
F156
F358
F200 | F301
F156
F083
F548 | F083
F083
F362
F358 | F419
F117
F359
F003 | F482
F054
F249
F419 | F083
F419
F249
F156 | | | q | -56.29
-56.07
-52.13
-48.97 | -53.59
-54.40
-51.89
-52.99
-51.98 | -54.55
-44.86
-54.54
-54.05 | -50.03
-52.83
-54.14
-47.46
-53.87 | -46.67
-48.94
-53.63
-50.57 | -53.03
-48.58
-44.03
-49.76
-37.62 | -44.80
-42.95
-52.19
-51.77 | -51.59
-45.05
-51.81
-30.39 | -50.15
-40.90
-50.55
-51.08 | -43.32
-50.57
-49.33
-47.28 | | | 1 | 234.88 - 232.07 - 263.46 - 272.09 - 282.35 | 254.74 - 220.61 - 260.48 - 214.55 - 259.35 - | 231.97 -
279.56 -
233.66 -
243.67 - | 265.72 - 252.97 - 232.51 - 272.87 - 231.68 - | 274.38 - 268.05 - 236.73 - 260.38 - 262.38 | 240.68 - 267.43 - 279.28 - 211.23 - 290.21 | 276.65 - 280.69 - 238.88 - 245.97 - 230.81 | 229.40 - 275.12 - 235.36 - 265.26 - 265.26 | 217.89 - 284.07 - 252.71 - 227.48 - 261.79 - | 278.66
230.24
253.24
264.36 | | | RA (2000) Dec | 03 25.7 -34 19
03 26.4 -32 45
03 27.8 -57 43
03 27.8 -57 43
03 28.0 -66 21 | 03 29.6 -45 58
03 31.3 -26 05
03 32.3 -49 48
03 33.7 -22 16
03 33.3 -49 07 | 03 34.0 -32 40
03 32.8 -64 14
03 34.2 -33 39
03 34.8 -39 30
03 35.2 -42 25 | 03 34.9 -53 35
03 35.5 -45 10
03 36.0 -32 58
03 35.7 -58 57
03 37.2 -32 28 | 03 36.9 -60 14
03 37.2 -55 25
03 38.5 -35 27
03 40.2 -50 13
03 40.4 -51 36 | 03 41.0 -37 50
03 40.7 -55 12
03 40.2 -64 33
03 44.1 -19 19
03 41.1 -75 00 | 03 43.5 -62 33
03 43.3 -66 00
03 45.5 -36 47
03 45.8 -41 10
03 47.1 -31 48 | 03 47.4 -30 55
03 46.2 -61 29
03 47.4 -34 37
03 35.9 -85 37
03 47.0 -54 01 | 03 48.0 -23 31
03 45.9 -69 14
03 48.3 -45 32
03 49.1 -29 40
03 48.7 -51 39 | 03 48.0 -64 33
03 52.4 -31 21
03 54.8 -46 08
03 54.5 -53 48
03 55.6 -36 34 | | | RA (1950) Dec | 03 23.7 -34 30
03 24.9 -32 56
03 24.9 -51 35
03 26.6 -57 54
03 27.4 -66 32 | 03 28.0 -46 09
03 29.2 -26 16
03 30.8 -49 59
03 31.5 -22 27
03 31.8 -49 18 | 03 32.0 -32 50
03 32.1 -64 25
03 32.2 -33 49
03 33.0 -39 40
03 33.5 -42 35 | 03 33.6 -53 45
03 33.8 -45 20
03 34.0 -33 08
03 34.6 -59 07
03 35.2 -32 38 | 03 35.9 -60 24
03 36.0 -55 35
03 36.6 -35 37
03 38.7 -50 23
03 39.0 -51 46 | 03 39.1 -38 00
03 39.5 -55 22
03 39.6 -64 43
03 41.9 -19 29
03 42.0 -75 10 | 03 42.7 -62 43
03 42.8 -66 10
03 43.6 -36 57
03 44.0 -41 20
03 45.1 -31 58 | 03 45.4 -31 05
03 45.4 -61 39
03 45.5 -34 47
03 45.5 -85 47
03 45.7 -54 11 | 03 45.8 -23 41
03 45.8 -69 24
03 46.7 -45 42
03 47.1 -29 50
03 47.3 -51 49 | 03 47.4 -64 43
03 50.4 -31 30
03 53.2 -46 17
03 53.2 -53 57
03 53.7 -36 43 | | | Abell | \$0351
\$0352
\$0353
\$0353
\$0354 | \$0356
\$0357
\$0358
\$0359
\$0359 | \$0361
\$0362
\$0363
\$0364
\$0364 | \$0366
\$0367
\$0368
\$0368
\$0369 | \$5
\$5
\$7
\$037
\$7
\$037
\$7 | \$0376
\$0377
\$0378
\$0379
\$0380 | S0381
S0382
S0383
S0384
S0384 | \$0386
\$0387
\$0388
\$0389
\$0390 | S0391
S0392
S0393
S0394
S0395 | \$0396
\$0397
\$0398
\$0399
\$0400 | | | B | 17.2
16.8
17.6
15.7
16.9 | 17.2
17.4
17.2
17.2 | 16.1
16.3
17.2
17.4 | 16.8
17.3
15.4
17.4 | 17.4
17.5
17.0
16.9 | 15.6
17.5
17.1
16.1 | 17.2
16.8
16.5
16.8
17.5 | 17.2
17.2
17.3
17.4 | 17.5
17.0
17.6
17.4 | 17.2
17.3
17.2
15.9 | |-----------|-----------------|---|--|--|--|--|---|--|--|--|---| | | Q | ღ | N 0 N N 4 | 44000 | വഴനാവ | വവവയ | ₩ ₩ ₩ ₩ | ഴെവവവ | N N O O 4 | വഴഴവഴ | ស | | | R | 00100 | 00000 | 00010 | 00000 | 01000 | 01007 | 00001 | 00000 | 0000 | 00000 | | | z | 0.0365 | | 0.0380
0.0467
(0.0370) | 0.0648 | 0.0589 | | 0.0668 | | | | | | Previous | ø | Ω Ω | DB Q | моо м | | D BD | Q | | | vo | | | Obs | 10
20
40
40 | 10
10,10
10,10 | 99999 | 00 50 0
10 0 0 | 00000 | 00000 | 100000 | 99999 | 100000 | 10, 14
10
10
20
10 | | | m ₁₀ | 17.5
16.6
21.4
15.5
16.8 | 17.3
19.3
18.0:
17.0 | 15.9
16.1
17.1
19.7
15.4 | 16.6
18.0
15.2
19.2
16.6 | 19.2
20.2
16.8
16.7
17.1 | 15.4
20.8:
17.6
15.9
20.1 | 17.4
16.7
16.3
16.6
20.9 | 17.1
17.4
18.0
20.0
16.2 | 20.4
16.8
21.6
19.9
16.6 | 17.3
18.1
17.8
15.7
16.8 | | | m³ | 16.7
15.9
20.5
15.3 | 16.5
19.2
16.8
16.0 | 15.3
15.7
15.4
19.1 | 15.1
17.6
14.4:
* 18.9 |
18.7
19.6
16.1
15.5 | 15.4
19.3
16.0
15.3 | 16.8
15.8
15.3
15.3 | 15.4
17.1
19.2
15.9 | 19.7
15.8
20.8
19.5 | 16.3
15.8
15.9
15.3 | | | m ₁ | 15.6
15.4
20.1
13.7
14.9 | 15.5
18.7
16.3
15.1 | 13.8
15.6
14.8
18.6 | 14.7
16.0
13.4:
16.8; | 18.0
19.1
15.7
15.2
14.8 | 14.1
15.2
15.3
14.5 | 15.3
13.9
15.3
18.8 | 15.3
14.7
16.8
19.0 | 19.0
15.4
20.1
19.1
15.2 | 15.2
16.7
15.7
14.8 | | | C | 10
-56?
(61)
23 | 12
1
29
8
-29 | -17
-1
-7
07 | -13
19
12
15 | 20
13
12
11: | -18
73
20
-3
91 | 16
-70
2
7
58 | 0
-8
3:
96 | 102
-48
0*
49: | 27
28
0
-16 | | | T_{B-M} | 111-111
111:
111:
11-11 | | I-II
III-III
III-III | 1-11
11:
11:
11:
11:
11: | | 1
111-111
111
111: | 1-11
11
11
113 | | 11
11-11
111?
1111 | | | | T_A | IRREI | HRRHH | нинын | # | # # # H | # # H # H | ннжнн | нннн | R
R
I
I
I | H H H H H | | Continued | Abell | \$0401
\$0402
\$0403
\$0404
\$0405 | \$0406
\$0407
\$0408
\$0409
\$0410 | S0411
S0412
S0413
S0414
S0415 | S0416
S0417
S0418
S0419
S0420 | \$0421
\$0422
\$0423
\$0424
\$0425 | \$0426
\$0427
\$0428
\$0429
\$0430 | \$0431
\$0432
\$0433
\$0434
\$0435 | \$0436
\$0437
\$0438
\$0439
\$0440 | S0441
S0442
S0443
S0444
S0444 | S0446
S0447
S0448
S0449
S0450 | | 5- | | | | | | | | | | | | | ABLE | y. | 213
200
195
34 | 210
152
66
242
179 | 153
322
216
193
111 | 19
99
73
44 | 9 8 8 4 4
9 8 8 3 9
9 8 8 2 6 | 00
00
76
63 | 40
40
40
40
40
40 | 09
01
885
71 | 34
81
37
57 | 1110
1118
224
232 | | 1/ | nx i | 23772 | 66 2
190 1
107
278 2
100 1 | 36 2 1 64 1 64 1 1 69 1 69 1 1 69 1 69 1 1 69 1 | 26 2
32 2
32 2 | 51 2
24 1
24 2
39 1 | 38 1
219 2
224 1
38
286 2 | 65 2
02 1
55 1
37 2 | 115 3
116 2
117 96 1 | 89 2
77 1
85 2
80 1 | 78 1
65 1
56 2
53 2 | | | ycen | 31 5 1 2 3 1 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 | w ca co co | 182281 | 555 2
655 2
09 1
20 2 | 32 33 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2
98 8 2 2
9 2 2 2 | 70
28 2
50
1
30 1 | 45 1
37 1
27 1
07 1 | 70
83 2
93 1
11 1 | 54
46
60
15
15
15 | | | cen ye | 2 C E E E E E E E E E E E E E E E E E E | 41.67.1 | 50 811 | 0 4 4 8 8
1 1 L | 44 , | 9 20 9 2 | 17080 | 9 1
8 1
1 1 | 0.07.00 | 11 - | | | Field x_c | F117 4
F249 9
F359 -6
F156 3 | F083 9
F201 -2
F117 5
F055 -11 | 083 11
117 9
083 12
483 | 250 -8
083 12
302 10
201 3 | 420 -87
550 -76
250 -60
250 -60
1117 125 | 117 12
550 -5
032 -6
117 12
118 -12 | F201 9
F201 10
F250 2
F550 6 | 250 4
250 4
250 4
250 4
550 6 | F550 7
F202 -9
F550 8
F250 7
F032 -1 | F250 86
F420 99
F360 -26
F420 108
F055 11 | | | 9 | 7.4.0
6.96.0
7.4.0
7.4.0
7.4.0
7.4.0 | 2.73 F
7.78 F
3.71 F
0.53 F | 1.94 F
2.23 F
6.71 F
3.48 F | 7.94 F
1.20 F
8.08 F
7.12 F | 6.65 F
7.39 F
7.48 F
3.29 F | 2.94 F
3.97 F
6.30 F
3.78 F | 5.87 F
8.83 F
5.16 F
1.33 F | 54
12
12
13
15
15
15 | 1.44 F
4.14 F
1.85 F
5.75 F | 4.52 F
3.83 F
3.14 F | | | | 44446 | 44444 | 44444 | 44444 | 44444 | 44644 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 - 45
2 - 45
3 - 45
4 - 41. | 44446 | 44446 | | | 1 | 271.20
250.26
234.76
264.32
296.42 | 277.21
258.88
274.43
282.31
271.75 | 278.22
268.02
276.69
220.46
272.94 | 249.39
279.19
241.93
255.20
254.13 | 225.12
217.90
250.17
248.67
271.72 | 272.63
214.07
288.97
273.38
268.90 | 255.88
282.58
258.99
247.73 | 246.68
249.55
252.62
215.34
226.53 | 214.39
259.60
216.77
247.99
288.09 | 251.81
230.63
234.85
226.62
281.20 | | |)
ec | 2 2 4 4 1 1 2 2 3 5 2 1 3 5 2 | 3 56
0 07
1 41
3 20
9 35 | 5 53 47 18 18 48 48 | 3 50
5 57
8 51
7 50
7 06 | 7 25
1 26
2 25
0 04 | 0 49
9 13
5 01
7 59 | 3 32 47 54 54 54 54 54 54 54 54 54 54 54 54 54 | 2 11
4 12
6 22
7 52 | 3 34
0 23
1 41 | 5 5 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | (2000) D | 1 | 6 -63
6 -50
2 -61
5 -68
6 -59 | 3 -64
7 -56
7 -63
1 -24
-60 | 2 - 4
0 - 4
2 - 4
7 - 4 | 9 -27
11 -22
5 -44
6 -43
0 -60 | 5 -60
0 -19
7 -75
8 -61
2 -57 | 8 -48
6 -69
5 -50
1 -17 | 7 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 -18
3 -51
3 -20
9 -43
6 -74 | 0 -45
8 -30
7 -33
3 -27
1 -68 | | | RA (20 | 55.5 | 57.6
58.6
58.2
57.5 | 00.8
01.7
02.7
04.4
03.7 | 04.8
03.7
06.0 | 07.9
08.1
07.5
08.0 | 08.5
06.7
10.0 | 12.6
14.6
16.6 | 18.8
18.8
19.9 | 20.5 | 2233 | | | H | 33333 | 00000 | 00000
44444 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | | Dec | 06
20
20
22 | 05
16
29
44 | 07
02
56
27
57 | 59
00
59
15 | 33
34
12 | 57
21
09
34 | 30
30
35
35 | 19
20
31
00 | 45
34
16
49 | 00
54
51
45 | | | (1950) D | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | -64
-50
-68
-59 | -65
-57
-24
-60 | -43
-39
-47 | -27
-22
-44
-43
-60 | -60
-19
-75
-61
-58 | -48
-69
-50
-43 | 144
146
119
128 | -18
-51
-43
-74 | -46
-33
-27
-68 | | | 4 (19 |
54.2
54.3
55.1
56.0 | 57.0
57.2
57.4
57.7 | 00.3
00.6
02.1
02.3 | 03.2
03.3
04.2
04.5 | 05.9
05.9
06.0 | 07.7
07.8
07.8
08.1 | 11.4
12.7
13.2
14.9 | 17.1
17.2
17.2
17.5 | 18.2
19.0
19.1
20.3 | 21.5
21.8
21.8
22.3
23.1 | | | RA | 88888 | 00000 | 44444 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 44444 | | | Abell | \$0401
\$0402
\$0403
\$0404
\$0405 | \$0406
\$0407
\$0408
\$0409
\$0410 | S0411
S0412
S0413
S0414
S0415 | S0416
S0417
S0418
S0419
S0420 | \$0421
\$0422
\$0423
\$0424
\$0425 | S0426
S0427
S0428
S0429
S0430 | \$0431
\$0432
\$0433
\$0434
\$0435 | S0436
S0437
S0438
S0439 | S0441
S0442
S0443
S0444
S0445 | S0446
S0447
S0448
S0449
S0449 | | | B | 17.4
16.8
17.0
16.7
17.0 | 17.4
17.1
17.2
16.3
17.5 | 16.8
17.2
15.3
16.1
15.3 | 17.2
16.6
16.7
17.2
16.8 | 16.9
17.0
16.8
17.1 | 16.1
16.6
16.3
16.2
17.1 | 16.6
17.5
17.2
16.1
17.1 | 16.9
15.2
16.8
16.0 | 16.9
16.9
16.9
17.3 | 15.8
17.4
17.2
14.9 | |-----------|-----------------|--|--|--|--|--|--|--|--|---|---| | | Ω | വവവവയ | δ τυ τυ 4 . 0 | ででしょ し | വവവവവ | വവവവവ | 40440 | លេសល4ល | ល ម ល 4 ល | ໙໙໙໙໙ | 44000 | | | R | 40000 | 0000m | 00000 | 00000 | 00000 | | 0000 | 00000 | 00000 | 0000 | | | 8 | | | 0.0539 | 0.0675 | | 0.0363 | | 0.0372 | | 0.0329 | | | Previous | | ф | дS | Ω | | ø | Ω | | | BD | | | Obs | 100000 | 10000 | 22222 | 22222 | 99999 | 99998 | 22222 | 99999 | 22222 | 99999 | | | m ₁₀ | 20.1
16.6
16.8
16.5 | 19.8
16.9
17.2
16.1 | 16.6
17.4
15.1
15.9 | 17.3
16.5
16.5
18.9 | 16.7
16.8
16.7
17.5 | 15.9
16.4
16.1
16.0 | 16.4
20.4
17.2
15.9 | 16.7
15.0
16.6
15.8 | 16.6
16.8
16.8
19.6 | 15.6
15.6
19.3
18.6 | | | m³ | 19.5
15.9
15.0
15.0 | 19.5
15.9
16.4:
15.4 | 16.0
17.0
13.7
14.7 | 15.9
15.9
15.4
15.3 | 15.6
15.9
15.3
16.8 | 15.5
15.5
15.4
16.8 | 15.4
19.6
16.8
14.7 | 15.4
14.2
16.0
15.2 | 15.8
15.5
18.5
18.6 | 15.4
14.8
18.4
17.1 | | | m | 19.2
15.7
15.3
13.8 | 19.4
15.1
15.4
15.1 | 14.61
13.3
12.2
12.6 | 16.17
15.4
16.6 | 14.1
15.1
16.0
16.0 | 14.8 | 41
119
119
119
119
119
119
119
119
119
1 | 14.8
13.3
15.0
13.8 | 15.4
15.4
18.0 | 15.1
13.4
16.6
15.5 | | | Ö | (78)
-17:
29:
-15 | 41
-29
20
0
(133) | 12
24
26
27: | 17
-50:
1
20
13 | 22
-41
2
26: | 12440 | (50)
26
5 | 22
3
13; | -16
-3
-29:
0 | -10
-22
27
27
-11? | | | T_{B-M} | | 111.
111-111
111: | | 11.11 | | !!
!!
!!
!!-!!! | 111111111111111111111111111111111111111 | 11-11 | | 11
11-111
11-111 | | | T_A | RI:
IR | H I I I I I I I I I I I I I I I I I I I | RI RE | I I I I I I I I I I I I I I I I I I I | HHHHH | II. | I R II. | нини | RI IR | THLHL | | Continued | Abell | \$0451
\$0452
\$0453
\$0454
\$0455 | \$0456
\$0457
\$0458
\$0459
\$0460 | \$0461
\$0462
\$0463
\$0464
\$0465 | \$0466
\$0467
\$0468
\$0469
\$0470 | \$0471
\$0472
\$0473
\$0474
\$0475 | \$0476
\$0477
\$0478
\$0479
\$0480 | \$0481
\$0482
\$0483
\$0484
\$0484 | \$0486
\$0487
\$0488
\$0489
\$0490 | \$0491
\$0492
\$0493
\$0494
\$0495 | \$0496
\$0497
\$0498
\$0499
\$0500 | | 5—C | | | | | | | | | | | | | TABLE | yu. | 28
233
245
45
33 | 115
208
173
263
304 | 132
278
221
71
178 | 281
324
100
117
67 | 245
108
29
146
133 | 178
181
75
84
117 | 206
107
263
126
256 | 141
180
182
55
325 | 275
94
63
90 | 110
175
13
205
293 | | Ţ | nx. | 124
37
163
214 | 42
206
286
277
150 | 194
125
134
1117
241 | 240
1114
253
220 | 195
318
150
145 | 282
1118
164
1113 | 157
314
278
272 | 173
172
126
253
115 | 250 ;
69
65
59 | 214
118
201
51 | | | Ycen | 119
66
120
81
79 | 44
99
140 | -32
114
57
-93 | 1117
160
-64
-47 | 81
-135
-18
-18 | 114
117
180
180 | 124
138
138
138 | -23
16
18
-109 | 111
-70
-101
-74 | -54
11
-151
41
129 | | | x cen | 40
127
120
-50 | 122
-122
-113
14 | -30
39
47
-77 | -76
-89
-32
-56 | -31
-154
14
19 | -118
46
0
51
-14 | 7
-150
-114
-108 | 0 1 1 8 4
0 8 8 9 0 | -86
95
105
17 | -50
46
-37
113 | | | Field | F303
F420
F360
F250 | F250
F202
F421 -
F084 | F202
F360
F157
F360 | F421
F055
F251
F551 | F421
F361 -
F551
F551 | F304 - F421 F202 F004 | F421
F158 -
F361 -
F361 - | F251
F421
F361
F421 | F361
F551
F551
F551
F251 | F361
F251
F361
F421 | | | q | -44.20
-42.97
-43.65
-44.16 | -43.89
-43.49
-42.86
-42.31 | -43.08
-42.96
-42.35
-43.21
-42.02 | -41.56
-38.40
-43.00
-39.41 | -40.91
-42.03
-39.11
-38.35 | -42.16
-41.81
-40.96
-41.46 | -40.36
-40.68
-40.82
-41.13 | -41.55
-41.53
-39.90
-40.95 | 40.27
37.31
37.41
37.14 | -40.09
-40.52
-40.09
-38.44 | | | 1 | 40.35
27.93
33.40
48.23
55.29 | 251.57 -
256.18 -
229.61 -
227.43 -
273.40 - | 58.06
33.67
62.43
38.97
29.74 | 227.20 -
278.83 -
251.95 -
218.41 - | 28.36
38.12
20.78
18.16
57.79 | 43.16
56.57
32.60
58.97
99.07 | 29.48
64.76
34.46
37.86
85.69 | 250.83 -
249.87 -
230.22 -
239.65 -
226.89 - | 34.32 -
19.87 -
20.62 -
53.57 - | 38.44
49.97
40.83
30.05 | | | 16 | 71087 | 46
07
08
18
2 | 200000 | 84.0 / 8 | 04000 | 86048 | 114
022
032
037
037
037 | 2 | 20
112
114
117
26
26
26
27 | 2 2 4 4 7 | | |) Dec | -32 4
-43 2
-43 2
-48 2 | 445
4621
4629
4629 | 132 4
132 4
136 4
136 4 | -22
-46
-20
-31
-44 | -2283
-2255
-201
-201 | -39
-39
-31
-51
-85
-85 | -29
-33
-33
-73
-73 | 1445
12443
1365
1270 | -212-
-212-
-2114- | -35
-37
-29
-62
-62
-62 | | | (2000) | 6.0 | 7.9
6.9
6.9
7.6
7.6 | 8 8 8 0 4
6 4 5 6 6 | 7 2 7 6 2 | | 6.6
6.9
6.9
7.8
7.9 | 8.8
8.1
9.9
7.6 | 24482 | 4.0 6.0 4 | 6.15 | | | RA | 44444
24444 | 9 9 9 9 9
9 4 4 4 4 | 44444 | 0 0 0 0
4 4 4 4 4 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0000
0000
00000 | 0000
04444 | 44444 | 44444 | 44444 | | | | 4449
445
445
445 | 53
114
25
25 | 24 55 3 9
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 55
01
13
55 | 37
22
37
37 | 444
32
52
55 | 20
58
08
15 | 444
02
06
06 | 56
118
223
32 | 01
20
33 | | | 0) Dec | 122
132
132
132
132
132
132
132
132
132 | 1 1 1 1 1 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 | 1 | -27
-67
-20
-31 | 1778 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 133 | -445
-239
-27 | -32
-21
-21
-47 | 134 | | | (1950) | 0.4444 | 8 6 6 5 5 2 | 98979 | 9.7
0.1
0.7
1.3 | 84444
80478 | 46.000 | 6.8
8.0
8.3
8.5 | 88000
70400 | 0.5 | C 4 4 2 3
C 8 8 2 5 | | | RA | 00000
44444
44444 | 00000
44444 | 2 2 2 2 2
2 2 2 2 2
2 2 2 2 2 2 | 0000
4440
0000
0000 | 00000
44444
60000 | 00400 | 004 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 00000
44444 | 0
4
4
4
4
4
4
4
4
4
4
4
4 | | | Abell | \$0451
\$0452
\$0453
\$0453
\$0455 | \$0456
\$0457
\$0458
\$0459
\$0460 | \$0461
\$0462
\$0463
\$0464
\$0465 | \$0466
\$0467
\$0468
\$0469
\$0470 | S0471
S0472
S0473
S0474
S0475 | \$0476
\$0477
\$0478
\$0479
\$0480 | \$0481
\$0482
\$0483
\$0484
\$0485 | \$0486
\$0487
\$0488
\$0488
\$0490 | \$0491
\$0492
\$0493
\$0494
\$0495 | \$0496
\$0497
\$0498
\$0499
\$0500 | | | | | | | | 84 | | | | | | | | Ħ | 17.0
17.3
17.5
17.3 | 17.4
17.3
17.1
16.9
17.1 | 17.1
15.9
16.6
17.1
16.0 | 17.4
17.3
17.1
17.3 | 14.6
16.9
17.3
15.2 | 17.3
16.5
16.6
17.1
17.1 | 17.1
16.7
17.1
16.0
15.5 | 14.8
15.8
15.6
17.3 | 16.3
15.7
17.1
17.3
15.6 | 16.6
16.7
17.1
16.6
15.6 | |-----------|---
---|--|---|--|---|---|---|---|---|--| | ŀ | Q | N 0 0 0 4 | വവവഴഴ | ល4លល4 | စစည္စစ | 20985 | വവവവ | ღ ო 4 ო | 04m9m | 44000 | មេខាធាធា | | | 굞 | 00100 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00010 | 00000 | 00000 | | | z | 0.0768 | | | | 0.0150 | | | 0.0358 | 0.0519 | 0.0403 | | | Previous | Д | | | | Q Q | ဝိဝဝ | | Œ | ВО | | | | Obs | 20000 | 100000 | 100000 | 10
10
10
10
10 | 55555 | 10,10
20
10,10
10 | 22222 | 20000 | 10000 | 20000 | | | m ₁₀ | 16.9
19.1
20.4:
19.9 | 21.0
19.4
17.1
16.8
17.3 | 17.4
15.8
16.5
17.1 | 20.9
19.8
17.2
20.1 | 14.5
16.8
19.8
15.1 | 19.3
16.4
16.5
17.1 | 17.5
16.6
17.3
15.9 | 14.7
15.7
15.5
19.7
15.3 | 16.2
15.6
17.4
19.4 | 16.5
16.7
17.3
16.5
15.5 | | | m ₃ | 15.6
18.8
19.7
19.4 | 20.3
19.0
16.4
15.8 | 16.7
15.4
15.9
15.9 | 20.0
19.0
16.1
19.0: | 12.9
15.6
19.1
13.5 | 18.8
15.5
15.5
15.7
16.1 | 17.3
15.7
16.0
15.3 | 13.8
15.4
15.1
19.1 | 15.8
15.1
15.9
18.6 | 15.1
16.1
16.1
14.5 | | | m ₁ | 13.5*
18.3
19.2:
19.2: | 19.9
18.8
15.4
15.1 | 15.2
13.7
15.2
15.7
15.7 | 19.3
18.2:
15.4:
19.4 | 12.1
15.1
18.4:
12.9 | 17.8
15.0
15.1
15.1 | 15.8
14.6
15.5
13.3 | 12.7
15.0
14.4
18.7
12.8 | 15.1
13.8
15.4
17.5 | 14.8
115.9
115.3 | | | ت
ا | 2
21
(67)
86
-12 | (121)
0
22
-51
20 | 15
21
-52
-23?
16 | (93)
85
29
86
(83) | 0
19
17
24 | 19:
21:
25:
11 | 112
122
124
17 | -22
-11:
74: | -97
-111
28
28 | 23
-54?
-57: | | | Тв-м | | | !!
!!!!
!!!!! | | 1
1-11
11-111
11-111 | 11-11 | IIIIIII | 11-11 | | | | | T_A | HHHH | пиния | HHHHH | r
r
r
r | HILI | R
IR
IR
I | ннннн | нанна | RI I I | R I I I | | Continued | Abell | \$0501
\$0502
\$0503
\$0504
\$0505 | \$0506
\$0507
\$0508
\$0509
\$0510 | S0511
S0512
S0513
S0514
S0515 | S0516
S0517
S0518
S0519
S0520 | S0521
S0522
S0523
S0524
S0524 | \$0526
\$0527
\$0528
\$0529
\$0530 | S0531
S0532
S0533
S0534
S0535 | \$0536
\$0537
\$0538
\$0539
\$0540 | S0541
S0542
S0543
S0544
S0544 | S0546
S0547
S0548
S0549
S0550 | | | | | | | | | | | | | | | TABLE 5 | RA (1950) Dec RA (2000) Dec l b Field xcen ycen x11 y11 | 501 04 48.9 -51 13 04 50.1 -51 07 258.30 -39.57 F202 156 -68 8 96 850.2 04 49.2 -37 39 04 50.9 -37 33 240.72 -39.20 F304 32 127 132 291 853 04 50.1 -47 42 04 51.5 -47 37 253.73 -39.54 F203 90 124 254 288 504 04 54.1 -55 16 04 55.1 -55 11 263.39 -38.41 F158 -23 -14 187 150 505 04 56.7 -46 41 04 58.1 -46 36 252.42 -38.42 F252 -110 -90 274 74 | 506 04 59.0 -24 29 05 01.1 -24 24 225.21 -34.32 F486 -111 28 275 192 507 04 59.4 -34 31 05 01.2 -34 26 237.20 -36.69 F361 124 24 40 188 508 05 01.7 -38 52 05 03.4 -38 47 242.65 -36.92 F305 -108 61 2.72 225 509 05 03.1 -37 17 05 04.8 -37 12 240.75 -36.42 F305 -95 146 259 310 510 05 05.1 -39 31 05 06.8 -39 27 243.56 -36.36 F305 -72 27 236 191 | 1 05 06.6 -62 03 05 07.1 -61 59 271.56 -35.90 F085 -12 160 176 324 3 05 07.3 -37 49 241.64 -35.69 F305 -50 115 214 279 3 05 09.9 -37 49 241.75 -35.85 F305 -25 -150 186 14 4 05 10.2 -42 45 47.75 -35.50 F305 -19 -18 183 146 5 05 11.3 -41 46 246.59 -35.48 F305 -8 -97 172 67 | 6 05 13.3 -27 12 05 15.3 -27 08 229.44 -32.05 F486 61 -118 103 46
7 05 14.2 -25 19 05 16.2 -25 15 227.40 -31.29 F486 72 -21 92 143
8 05 14.2 -25 03 8 05 15.4 -50 34 257.42 -35.60 F204 -136 -36 300 128
9 05 14.2 -22 41 05 17.0 -22 37 224 56 -30.29 F486 84 125 80 289
0 05 15.4 -54 35 05 16.4 -54 31 262.27 -35.41 F158 142 16 22 180 | 1 05 17.3 -37 09 05 19.0 -37 05 241.19 -33.61 F305 56 154 108 318 2 05 17.5 -56 17 05 18.4 -56 13 264.34 -35.05 F159 -96 -68 260 96 3 05 18.4 -56 20 05 20.4 -26 26 229.03 -30.75 F486 123 -80 41 84 4 05 19.8 -61 20 05 20.4 -61 7 270.45 -34.45 F120 -146 -75 310 89 5 05 20.2 -49 59 05 21.5 -49 56 256.67 -34.62 F204 -86 1 250 165 | 6 05 21.8 -46 06 05 23.2 -46 03 252.00 -34.07 F252 124 -60 40 104
7 05 23.6 -32 45 05 25.5 -32 42 236.43 -31.39 F423 16 -146 148 18
8 05 24.1 -45 01 05 25.6 -44 58 250.76 -33.55 F253 -113 -3 277 161
9 05 24.4 -55 21 05 25.4 -55 13 263.79 -34.10 F159 -46 -17 210 147
0 05 25.3 -56 16 05 26.2 -56 13 264.29 -33.97 F159 -38 -66 202 98 | 1 05 25.6 -49 30 05 26.9 -49 27 256.15 -33.72 F204 -39 28 203 192 2 05 25.7 -51 18 05 26.9 -51 15 258.31 -33.81 F204 -37 -68 201 96 3 05 29.1 -50 29 257.41 -33.42 F204 -37 -68 201 96 4 05 29.6 -49 17 05 30.9 -49 14 255.95 -33.06 F204 -5 40 169 204 5 05 31.6 -36 23 05 33.3 -36 20 241.01 -30.65 F363 -48 -74 212 90 | 6 05 32.5 -30 50 05 34.4 -30 48 234.87 -29.05 F423 119 -45 45 119 7 05 33.5 -59 26 05 34.2 -59 24 268.07 -32.84 F120 -61 32 225 196 8 05 34.2 -45 50 05 33.7 -42 48 248.50 -31.44 F306 -39 -151 203 13 9 05 34.6 -39 48 05 36.2 -39 46 245.04 -30.81 F306 -36 12 200 176 0 05 38.5 -40 52 05 40.1 -40 50 246.42 -30.29 F306 4 -45 160 119 | 1 05 39.5 -59 44 05 40.2 -59 42 268.42 -32.08 F120 -20 16 184 180
2 05 43.7 -48 07 05 45.0 -48 05 254.90 -30.61 F204 120 101 44 265
3 05 44.6 -47 12 05 46.0 -47 10 253.87 -30.33 F204 131 149 33 313
4 05 44.8 -29 53 05 46.7 -29 51 234.73 -26.24 F424 -4 8 168 172
5 05 44.9 -32 36 05 46.8 -32 34 237.64 -27.03 F363 101 127 63 291 | 546 05 46.7 -32 41 05 48.5 -32 40 237.85 -26.69 F364 -151 125 315 289 547 05 46.8 -47 26 05 48.2 -47 25 254.20 -30.00 F205 -121 137 285 301 548 05 47.5 -42 57 05 49.0 -42 56 249.16 -29.07 F254 -163 109 327 273 549 05 48.8 -32 17 05 50.7 -32 16 237.57 -26.15 F424 40 -121 124 43 550 05 49.1 -34 48 05 50.9 -34 47 240.29 -26.81 F364 -122 12 286 176 | | | B | 17.2
16.2
17.3
17.2 | 17.1
17.1
14.9
15.1 | 15.8
16.1
16.1
16.4 | 15.7
16.9
16.4
16.5 | 16.2
16.0
16.0
15.4 | 16.7
17.1
16.1
17.1 | 16.0
17.4
17.1
16.0
14.8 | 17.1
17.1
16.9
16.4
17.2 | 16.1
17.3
15.0
17.2
15.9 | 17.1
15.8
17.0
15.7
17.2 | |-----------|-----------------|---|--
--|--|--|--|---|--|--|--| | | Ω | N40N4 | ຕອຕຕອ | 44440 | 40404 | 44460 | បល404 | 40040 | ប ស ស 4 ស | 40004 | N 4 N 4 N | | | H. | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 04000 | 00000 | | | Z | | | | 0.0405 | (0.0140) | | 0.0473 | | | | | | Previous | | Ω | | α | | | | ВО | a | æΩ | | | Obs | 22222 | 99999 | 99999 | 20000 | 22222 | 32228 | 22222 | 22222 | 33333 | 99999 | | | m ₁₀ | 18.1
16.1
19.1
19.7 | 17.2
17.4
14.8
15.0 | 15.7
16.1
16.1
16.4 | 15.6
16.8
16.4
16.0 | 16.2
16.0
16.0
15.4 | 16.7
18.0
16.1
18.0 | 16.1
20.8
19.2
16.0 | 17.5
17.3
17.2
16.5
19.8 | 16.2
: 20.6
15.1
20.1
16.0 | 19.5
16.0
17.1
15.7
19.3 | | | m ₃ | 17.6
15.1
18.6
19.1 | 16.0
16.0
13.8
14.0 | 14.6
15.6
15.4
15.4 | 15.3
15.9
14.6
15.2 | 15.7
15.3
15.4
15.0 | 15.9
16.8
15.4
17.8 | 15.5
19.8
18.6
15.5 | 16.4
15.9
15.6
15.2 | 14.6
19.3
13.7
19.1 | 15.1
15.2
15.2
18.8 | | | m_1 | 17.5
14.4:
16.0
17.7
13.4 | 15.4
13.6
13.9
13.9 | 14.0
15.8
15.0
15.0 | 15.1
15.3
13.9
13.1 | 14.1
14.6
14.6
14.5 | 15.2
16.1
14.8
17.5
13.8 | 15.0
19.3
17.7
15.1
12.3 | 16.1
15.3
13.4
14.6 | 12.6
19.0
13.5
18.7 | 18.7
15.1
14.7
17.4 | | | C | 22
24
26
26 | 29
114
17
-10 | -30:
-30:
19: | 7
-26:
-13
-13 | -17
-10
-9:
19: | -52:
27
-17
15 | 18
(99)
29
1 | 0
12
7
13
13 | -24
(63)
0
(48) | 4:
-32:
-18 | | | Тв-м | III-II
III-II |
 | 111111 | 11-11 | 11-11 | | 111111 | 111111 | | | | | T_A | RHHR | RI
I I I | H H H H H | RI II | RI
I RI
RI | HHHH | нннан | ннняя | RELEGI | жняян | | Continued | Abell | \$0551
\$0552
\$0553
\$0553
\$0554 | \$0556
\$0557
\$0558
\$0558
\$0559 | \$0561
\$0562
\$0563
\$0564
\$0564 | \$0566
\$0567
\$0568
\$0569
\$0570 | \$0571
\$0572
\$0573
\$0574
\$0575 | \$0576
\$0577
\$0578
\$0579
\$0580 | S0581
S0582
S0583
S0584
S0585 | S0586
S0587
S0588
S0589
S0590 | S0591
S0592
S0593
S0594
S0595 | S0596
S0597
S0598
S0599
S0600 | | 5.5 | | | | | | | | | | | | | TABLE | yn | 182
319
208
133
34 | 227
321
169
219
236 | 129
284
288
286
143 | 156
281
299
292
28 | 264
219
274
161
234 | 188
211
205
174
64 | 236
276
92
236
159 | 64
53
301
327 | 168
222
286
225
62 | 44
275
286
138
160 | | | nx | 257
106
283
203
215 | 242
200
63
208
40 | 253
147
162
129 | 150
81
176
90 | 325
107
50
99
305 | 80
100
323
42 | 144
266
90
15 | 21
170
136
193 | 74
152
78
136
212 | 211
170
202
280
280
189 | | | Ycen | 18
155
44
-31
-130 | 63
157
5
5
55
72 | -35
120
124
-21 | -8
117
135
128
-136 | 100
55
110
-3
70 | 24
47
41
10
-100 | 72
112
-72
72
-5 | -100
-111
147
137
163 | 58
122
122
61
-102 | -120
111
122
-26
-4 | | | xcen. | -93
-119
-39
-51 | -78
-36
101
-44 | 1117
-89
17
17
35 | 14
12
10 | -161
57
114
65
-141 | 84
148
64
-159 | 20
-102
74
149
169 | 158
143
-6
-28
-29 | 90
86
84
48 | -47
-6
-38
-116
-25 | | | Field | F205
F120
F307
F555 | F254
F205
F120
F307 | F120
F425
F364
F254
F205 | F254
F086
F425
F205
F425 | F364
F364
F364
F364
F366 | F254
F364
F425
F308
F205 | F489
F087
F489
F160 | F033
F160
F365
F365 | F365
F161
F308
F087 | F366
F366
F058
F162 | | | q | -29.91
-30.57
-27.33
-21.05 | -27.73
-28.38
-29.84
-25.92
-29.40 | -29.53
-22.28
-23.72
-26.02
-27.65 | -26.36
-29.05
-20.81
-26.46 | -22.21
-25.33
-22.08
-25.40 | -24.95
-21.80
-20.12
-23.30 | 17.61
27.47
17.65
25.62
27.43 | -28.13
-26.14
-19.19
-18.65 | 18.40
23.42
18.30
25.22
17.04 | -17.15
-14.79
-25.22
-21.56 | | | 1 | 6.84
5.27
6.04 | 2.53
2.67
2.25 | 69.52 -
33.78 -
38.95 -
58.10 - | 2.42
2.11
5.07
5.18 | 9.95
1.33
2.54
0.64 | 252.08 -
241.22 -
236.35 -
247.17 -
260.04 - | 11.06 -
72.40 -
14.09 -
72.16 - | 87.80 -
65.90 -
40.16 -
50.27 - | 13.45
13.14
13.93
16.33 | 5.66
5.48
0.28 | | | | 0 2 2 2 8 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 | 50 250
51 255
50 256
36 249 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 111 25
448 27
330 23
33 235
33 235 | 07 23
59 25
64 25
40 24
24 | 34
10
16
16
17
12
12
12
12
12
13 | 22 27 23 25 27 25 25 27 25 27 25 27 27 27 27 27 27 27 27 27 27 27 27 27 | 33 26
29 26
59 24 | 56 24
57 26
57 26
57 27
00 24 | 20 24
01 24
48 27
32 26
09 27 | | |) Dec | -49 4
-57 0
-39 1
-37 2 | 143
159
159
158
158
158 | 122
132
142
150
150 | -45 1
-62 4
-47 3
-32 3 | 1413 | 440-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | -23
-53
-53
-64
-64 | -76 3
-32 1
-41 5 | -34 5
-53 5
-63 5
-37 0 | -37 2
-33 0
-67 4
-65 3 | | | (2000) | 6.2 | 8.0 | 0.04.00.0 | 07.1 -
06.1 -
09.2 -
11.0 - | 9505 | 4.0.0.0.0 | 23.2.8 | 40000 | 48048
60484 | ເບລະໝຸດເບ
ເບລະໝຸດເບ | | | RA | 05
05
05
05
05
05
05
05
05
05
05
05
05
0 | 00000 | 99999 | 90000 | 88888 | 88888 | 8 | 88888 | 00000
00000
00000
00000 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | | | ာ့ | 41
07
13
37
29 | 25
20
36
36 | 2 4 4 4 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 | 111
48
30
37 | 07
59
64
40 | 33
06
15
47
50 | 221
24
54 | 32
58
16
27
57 | 54
54
54
57 | 17
58
45
29
06 | | | 50) Dec | -49
-57
-39
-20 | 1.59
1.59
1.59
1.58 | -27
-32
-42
-50 | -45
-27
-47
-32 | - 143
- 145
- 145
- 145
- 145 | -44
-34
-29
-59 | -23
-26
-53
-64 | -76
-56
-32
-41 | -34
-53
-63
-63 | -37
-32
-67
-55
-60 | | | RA (1950) | 49.4
50.3
52.4
54.1
55.5 | 56.1
56.1
57.4
59.6 | 000.3
001.6
04.3 | 05.7
05.7
07.2
08.3 | 09.8
10.0
10.2
11.1 | 13.0
13.5
13.6
14.9 | 15.7
19.7
20.4
21.9
22.2 | 22.5
23.0
23.6
26.7
29.0 | 32.5
37.8
38.4
41.5 | 43.8
47.5
48.9
54.3 | | | ם | 05
05
05
05 | 00000 | 99999 | 99999 | 99999 | 99999 | 98888 | 99999 | 99999 | 90000 | | | Abell | \$0551
\$0552
\$0553
\$0553
\$0554 | S0556
S0557
S0558
S0559
S0559 | \$0561
\$0562
\$0563
\$0564
\$0564 | \$0566
\$0567
\$0568
\$0569
\$0570 | \$0571
\$0572
\$0573
\$0574
\$0575 | S0576
S0577
S0578
S0579
S0580 | \$0581
\$0582
\$0583
\$0584
\$0585 | \$0586
\$0587
\$0588
\$0589
\$0590 | \$0591
\$0592
\$0593
\$0594
\$0595 | \$0596
\$0597
\$0598
\$0599
\$0600 | | | | | | | | | | | | | | | B | 16.0
16.3
17.1
16.6 | 16.5
17.2
16.8
17.0 | 16.9
17.0
16.8
17.5 | 17.5
15.6
17.2
17.4 | 17.4
16.1
17.1
15.8
17.5 | 17.2
17.3
15.1
17.4 | 15.6
17.2
17.3
17.3 | 13.4
17.5
14.7
16.1 | 17.1
16.2
17.7 | 16.7
17.3
17.3
16.6 | |-----------------|--|---|--|---|--
---|--|---|---|--| | ρ | 44000 | សសសស4 | ນອນນນ | വരവാര | 04040 | വഴനാവ | യയവവന | 10024 | ωυ 4 ω ω | ហេហហេហ | | <u>بر</u> | 00000 | 0000 | 00000 | 0000 | 00004 | 00000 | 00044 | 04400 | 00010 | 00000 | | 22 | 0.0441 | | | | | | | 0.0087 | | | | Previous | | | | | | | | KS
B | | × | | Obs | 20202 | 10000 | 22222 | 10,10
10,10
10 | 22222 | 99999 | 00000 | 10
10,10
10 | 00000 | 200000 | | m ₁₀ | 16.1
16.4
18.2
16.7
17.8 | 16.8
18.0
17.5
17.5 | 17.3
17.8
16.8
20.1 | 20.8
15.4?
17.5
20.0 | 19.6
16.0
16.8
15.7
19.8 | 17.4
19.4
15.1
19.4
17.0 | 15.6
17.4
16.9
19.8 | 13.2
20.0
20.0
14.8
15.8 | 19.9
16.7
19.8
20.8 | 16.4
17.5
16.7
16.7
17.0 | | m ₃ | 15.4
15.6
17.3
15.9 | 15.6
16.5
16.1
16.9
15.9 | 16.1
17.0
16.0
19.3 | 20.0
14.2:
15.9
19.4 | 18.9
15.3
15.9
14.8 | 17.9
19.1
14.7
18.9
15.8 | 14.1
16.0
16.0
18.9 | 12.1
19.5
19.3
13.6 | 19.5
15.3
15.4
19.0 | 15.6
16.1
16.0
15.9
15.9 | | m ₁ | 14.3
15.4
16.8
15.1 | 15.4
15.9
15.7
16.1 | 15.5
15.7
15.1
19.1
15.3 | 19.5
12.6
15.6
19.2 | 18.5
14.7
13.7
14.6
18.8 | 15.5
18.3
13.1
18.6 | 13.0
15.7
15.1
18.0 | 11.7
19.3
18.5
12.7
13.2: | 18.8
13.7
18.8
19.1? | 13.67
15.8
15.1
15.1 | | ٥ | 16
25
25
25 | 22
22
0
-53 | 18
10
103 | (113)
23
-41
(76)
-6 | 114
-132
-13
59 | 16
127
18
18 | -15
25
77
76 | 94
64
14
10 | 21
6
-13
55
127 | 25
25
-52
15 | | ТВ-М | 1-11
111
111-111 | 11-11
111-11
11-111
1 | 111111111111111111111111111111111111111 | III:
III: | III.
III.
III | | I
II-II
II-III
III: | | | | | T_A | жнны | RHHHH | RILI | RIIRRR | RILI | RI I I I I I I I I I I I I I I I I I I | ннйнн | ннжён | ннны | пннян | | Abell | \$0601
\$0602
\$0603
\$0604
\$0605 | \$0606
\$0607
\$0608
\$0609
\$0610 | S0611
S0612
S0613
S0614
S0615 | S0616
S0617
S0618
S0619
S0620 | \$0621
\$0622
\$0623
\$0624
\$0625 | \$0626
\$0627
\$0628
\$0629
\$0630 | \$0631
\$0632
\$0633
\$0634
\$0635 | \$0636
\$0637
\$0638
\$0639
\$0640 | S0641
S0642
S0643
S0644
S0645 | S0646
S0647
S0648
S0649
S0650 | | | | | | | | | | | | | | yıı | 184
159
239
174 | -3
148
292
1184
315 | 169
265
276
311 | 59
159
204
139 | 281
64
64 | 323
149
190
311 | 179
221
84
241
258 | 164
208
228
115 | 261
304
145
211
264 | 214
294
27
139 | | ll x | 167
95
37
286
143 | 196
280
281
184 | 158
103
192
32 | 173
58
139
88
255 | 200
183
29
153
270 | 138
132
102
103
85 | 66
254
211
92
128 | 126
74
26
219
208 | 249
67
247
270
256 | 169
190
162
143 | | ycen | 20
75
10 | .167
-16
128
20
151 | 101
112
147
154 | -105
-25
-43 | 117
-158
63
104
-100 | 159
-15
26
147
83 | 15
57
77
94 | 0 4 4 4 4 0
8 4 4 8 0 | 97
140
-19
47 | 50
130
-137
-25
108 | | Lcen | -3
69
127
122 | -32
-71
-20 | 61
-28
132 | 106
25
76
-91 | -36
-19 -
135
11 | 26
32
62
61
79 | -98
-47
72
36 | 38
90
138
-55 | -85
97
-83
-92 | -26
-34
-21 | | Field | F207
F207
F034
F208 - | F209
F006 -
F124
F018 - | F562
F562
F496
F565 - | F498
F434
F434
F499 | F374
F374
F566
F316 | F374
F374
F316
F374 | F316
F375
F375
F436 | F375
F436
F375
F264
F437 | F376
F214
F318
F569 - | F437
F376
F318
F502 | | 9 | -18.89
-17.78
-24.75
-16.16 | -12.34
-25.81
-13.74
-23.24
6.24 | 10.48
12.32
12.71
22.35
19.41 | 17.79
23.31
17.09
16.82
21.05 | 17.22
13.43
28.06
13.42
26.11 | 18.56
16.12
12.85
18.79
18.09 | 13.09
18.72
17.04
24.55 | 19.19
24.37
21.21
10.91
24.42 | 22.15
9.84
16.11
34.30 | 26.06
23.24
14.58
30.98 | | - | 259.90 . 260.83 . 284.78 . 260.38 . 297.38 | 267.01 .
297.67 .
271.49 .
292.31 . | 242.07
241.13
247.52
248.10
252.22 | 257.71
253.19
260.37
261.97
259.46 | 266.14
269.73
256.48
269.87
259.14 | 266.55
268.77
271.55
267.23
267.23 | 272.23
270.21
272.43
268.97
271.86 | 272.96
269.81
273.91
280.54
272.79 | 274.27
281.60
278.38
266.26 | 272.65
274.98
280.28
274.27
285.23 | | Dec | 9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 16
5 05
7 45
9 38
7 21 | 20 03
18 16
23 06
17 29
22 19 | 7
0 20
0 20
0 44
0 24 | 3 04
8 11
9 03
2 05 | 2 2 4 3 1 6 4 2 4 4 0 4 0 4 4 0 | 2 4 4 5 6 4 4 5 6 4 4 5 6 4 4 5 6 6 6 6 6 | 5 19
9 23
6 11
6 48 | 3 27
7 37
9 25
8 27 | 9 20
2 50
5 46
8 17 | | (2000) 1 | 4-17-7 | 7 4 4 4 5 5 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 0.0400 | 7777 | 2 - 1
2 - 1
2 - 3
2 - 3 | 6.4.1.2.
E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E. | 96133 | 1000 | 7 -33
9 -47
4 -40
2 -19
2 -18 | 20178 | | RA (| 07 01.
07 09.
07 08.
07 17. | 07 57.
07 49.
08 04.
08 10.
08 26. | 08 26.
08 31.
08 48.
09 21.
09 23. | 09 33.
09 37.
09 39.
09 43. | 09 59.
10 00.
10 01.
10 01. | 10
04.
10 05.
10 06.
10 07. | 10 09.
10 18.
10 22.
10 29. | 10 30.
10 32.
10 39.
10 40. | 10 42.
10 42.
10 44.
10 45. | 10 46.
10 48.
10 49.
11 02. | | မ္မ | 40
05
04
04
53 | 08
37
12 | 54
06
55
07 | 00
07
17
48 | 50
49
03
51 | 02
16
30
26 | 42
00
35
33 | 33
33
33 | 12
22
10
12
12 | 05
35
30
01 | | (1950) Dec | 1 1 4 9
1 1 1 3 0
1 1 4 9
1 4 9 | -84
-84
-57
-79 | -19
-118
-17 | -27
-29
-30 | -32
-37
-18
-38 | 13295 | 134 | -35
-33
-30 | -33
-47
-19
-18 | 132 | | RA (19 | 06 59.8
07 08.2
07 09.4
07 16.4 | 07 56.4
07 57.8
08 03.1
08 12.6
08 24.3 | 08 24.7
08 28.9
08 45.9
09 19.3 | 09 31.3
09 35.6
09 37.3
09 41.6
09 46.7 | 09 57.0
09 58.6
09 58.7
09 59.1 | 10 02.4
10 03.2
10 04.0
10 05.5 | 10 07.5
10 16.1
10 19.9
10 27.3 | 10 27.8
10 29.7
10 36.7
10 38.4
10 40.4 | 10 40.4
10 40.7
10 42.2
10 42.8
10 43.8 | 10 43.8
10 45.7
10 46.9
11 00.3 | | Abell | \$0601
\$0602
\$0603
\$0604
\$0605 | \$0606
\$0607
\$0608
\$0609
\$0610 | S0611 C
S0612 C
S0613 C
S0614 C | S0616 C
S0617 C
S0618 C
S0619 C
S0620 C | S0621
S0622
S0623
S0623
S0624
S0625 | \$0626 1
\$0627 1
\$0628 1
\$0629 1 | \$0631
\$0632
\$0632
\$0633
\$0634 | S0636 1
S0637 1
S0638 1
S0639 1 | S0641 1
S0642 1
S0643 1
S0644 1 | S0646 1
S0647 1
S0648 1
S0649 1 | | | | | | | 87 | | | | | | | | В | 17.4
17.4
17.6
16.7 | 17.5
17.6
17.5
17.5
17.5 | 17.6
17.6
17.2
17.0 | 17.4
17.0
17.2
15.9
16.8 | 17.2
17.6
16.1
17.5
17.1 | 17.3
16.4
16.6
17.3 | 17.1
17.6
16.5
17.4 | 17.6
16.3
17.6
15.9 | 4.71
17.6
17.0
17.0 | 17.4
17.5
17.4
17.1 | |-----------|-----------------|--|--|--|--|--|--|--|---|--|--| | | Ω | ოიდდდ | 20000 | លេលលេ4 | A N R 4 N | ₩ 4 Φ ₩ | 0 4 10 0 10 | 9999 | 04040 | 00000 | 00000 | | | 24 | 00000 | 0000 | 00000 | 00000 | 04000 | 00000 | 00000 | 00000 | 00000 | 00000 | | | z | | | 0.0318 | | | | | | | | | | Previous | | | | | | | | φ | | | | | Obs | 10000 | 22222 | 22222 | 22222 | 22222 | 22222 | 20
10,10
10 | 28299 | 99999 | 20000 | | | m ₁₀ | 17.1
18.6
19.8
16.7 | 19.7
20.0
18.0
19.0 | 16.8
19.9
17.3
16.9 | 17.5
16.7
16.8
16.0 | 17.3
19.8
16.0
18.1
16.7 | 17.3
16.0
16.3
17.5 | 17.9
20.0
16.1
17.5
18.0 | 19.7
15.9
19.3
15.8
17.5 | 17.8
19.4
16.7
18.0 | 17.5
18.6
17.5
16.9
17.0: | | | m3 | 16.1
18.0
18.8
15.7 | 18.3
18.9
16.3
18.6
15.9 | 16.0
19.3
15.7
15.6
14.9 | 16.0
15.2
16.0
15.5 | 16.3
19.3
15.6
17.5 | 15.6
14.7
15.6
16.8 | 17.3
19.4
15.7
16.0 | 19.1
14.4
18.3
15.1 | 16.0
18.9
16.0
17.5 | 16.1
18.1
16.1
16.0 | | | m_1 | 14.6
16.1
17.9
15.3 | 17.7
18.3
16.0
17.5 | 15.9
18.7
15.1
15.0
13.3 | 15.1
14.6
15.4
15.3 | 15.1
19.1
14.7
16.5 | 15.2
14.5
15.4
16.0 | 15.8
19.3
14.5
15.3 | 18.8
14.0
18.1
14.7 | 15.2
17.8
14.6
16.8 | 15.3
15.8
14.6
15.1 | | | O | 26
23
94
19 | 123
111
19
12
16 | 12
95
1
7 | 29
-16
-3
20 | 26
12
18
29 | -15
-15
15
26
23: | 14
84
10:
19 | 30
19
26: | 11
13
22
-62 | 20
20
20
10: | | | T_{B-M} | 1-11
11-11
11 |

 | II.II.I | 11-11 | | | | | | I-II
II-II | | | T_A | HKKKH | KILLIL | I I I I I I I I I I I I I I I I I I I | HHHH | RI
I
RI | I K K I I | ııkı. | RIERIE | HHHH | RI II: | | Continued | Abell | S0651
S0652
S0653
S0654
S0655 | \$0656
\$0657
\$0658
\$0659
\$0669 | \$0661
\$0662
\$0663
\$0664
\$0665 | \$0666
\$0667
\$0668
\$0669
\$0670 | \$0671
\$0672
\$0673
\$0674
\$0675 | \$0676
\$0677
\$0678
\$0679
\$0680 | \$0681
\$0682
\$0683
\$0684
\$0685 | \$0686
\$0687
\$0688
\$0689
\$0690 | \$0691
\$0692
\$0693
\$0694
\$0695 | \$0696
\$0697
\$0698
\$0699
\$0700 | | <u>5</u> | | | | | | | | | | | | | TABLE | Уш | 287
255
309
123 | 41
239
221
276
215 | 133
176
72
170
157 | 288
295
225
139
37 | 211
241
88
132
88 | 296
239
278
98 | 134
31
85
127
118 | 183
270
56
90
137 | 123
238
180
145
68 | 183
219
265
265
236 | | | x_{ll} | 106
237
162
200
198 | 146
135
46
250
163 | 141
24
116
326
42 | 121
64
112
167
211 | 199
246
186
193 | 68
229
302
297
198 | 37
167
154
146
245 | 51
249
164
101 | 212
257
28
15
15 | 278
106
108
187
55 | | | Ycen | 123
91
145
-41
-86 | -123
75
57
112
51 | -31
-92
-7 | 124
131
61
-25 | 47
77
-76
-32
-76 | 132
-119
75
114
-66 | -30
-133
-79
-37
-46 | 106
-108
-74
-27 | 147
47
196 | 19
55
101
101
72 | | | x cen | -73
-36
-34 | 18
29
118
-86 | 23
140
48
-162
122 | 43
100
52
-3 | -35
-82
108
-29 | 96
-138
-133 | 127
-3
10
18
-81 | 113
129
-85
0
63 | -48
-93
149
156 | -114
58
56
-23
109 | | | Field | F502
F377
F438
F265 | F438
F438
F502
F503 | F319
F438
F319
F266 | F503
F319
F503
F216 | F266
F504
F266
F439
F504 | F378
F440
F379
F379 | F266
F572
F440
F440 | F572
F440
F573
F267 | F441
F380
F321
F321 | F574
F380
F506
F268
F380 | | | q | 33.90
24.53
30.07
13.32 | 25.70
29.15
33.36
34.81
20.11 | 18.86
28.91
17.95
15.17 | 35.99
22.17
34.98
10.18
13.40 | 16.57
36.14
14.44
29.72
33.75 | 28.15
28.58
27.31
28.03
29.70 | 16.00
38.37
29.68
30.46
20.81 | 41.66
33.56
39.59
15.63 | 31.14
28.48
22.61
22.01
20.61 | 42.67
28.44
39.30
19.38
28.86 | | | 1 | 273.83
279.44
276.91
285.28
285.63 | 279.64
278.07
275.72
276.46
284.04 | 285.06
280.79
285.96
287.40
283.89 | 279.04
285.29
279.83
290.34 | 289.54
282.63
290.44
285.78 | 287.68
288.21
288.76
288.66
288.57 | 292.96
286.71
289.54
289.47
293.20 | 288.49
291.10
290.68
295.78 | 293.77
295.19
297.28
297.65
298.01 | 296.02
298.41
298.16
300.07
299.44 | | | Dec | 23 01
23 35
27 37
16 04
16 55 | -32 36
-28 53
-24 13
-23 11 | 10 51
20 04
12 00
15 05
23 | .22 58
.37 49
.24 09
.50 44
47 38 | 14 24 24 24 49 49 45 | 32 48
33 52
33 09
13 31 | 45 47
22 45
31 45
30 59
41 08 | 19 55
28 16
22 18
5 48 | 11 04
13 53
19 57
10 35 | 19 54
13 25
13 24
13 54 | | | (2000) | 44000 | 6 4 4 6 8 | 46446 | 04044 | 4,44,4 | 81.603 | 48980 | 127710 | 80400
E E E 4 4 | 15328 | | | RA (| 11 07.
11 08.
11 09.
11 10. | 11 11.
11 12.
11 12.
11 17. | 11 21.
11 21.
11 23.
11 25.
11 25. | 11 28
11 28
11 28
11 32
11 37 | 11 39.
11 40.
11 40.
11 42. | 11 47.
11 50.
11 50.
11 51. | 11 56.
11 56.
11 56.
11 57.
12 03. | 12 05.
12 06.
12 10.
12 11. | 12 14.
12 18.
12 24.
12 25. | 12 29.
12 32.
12 35.
12 36. | | | ږ | 45
119
48
39 | 20
37
57
55 | 35
44
07
07 | 228
228
22 | 08
37
33
29 | 32
15
36
15 | 31
23
52
52 | 3 4 4 2 0 0 9 2 4 4 2 0 0 9 2 4 4 5 0 0 9 9 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 48
37
41
45
45 | 388998 | | | 30) Dec | -22
-33
-45
-45 | 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 140
144
135 | -22
-37
-23
-50 | 123
130
130
130 | 132
132
132
133 | -45
-31
-30 | -128
-28
-46
-25 | -30
-33
-41
-41 | -13
-23
-33
-33 | | | A (1950) | 04.9
05.8
07.5
08.5 | 08.9
09.8
09.9
15.1 | 18.7
19.3
21.2
23.1
23.4 | 25.5
25.7
26.4
29.7
35.0 | 36.5
37.5
37.8
39.5
41.9 | 44.8
47.5
48.1
50.3 | 53.6
54.1
54.7
00.4 | 03.1
04.1
08.1
11.4 | 12
16.0
21.5
22.9
23.9 | 27.2
332.7
34.0 | | | RA | ===== | 11111 | 44444 | 77777
77777 | | 11111 | 77777 | 12222 | 22222 | 22222 | | | Abell | \$0651
\$0652
\$0653
\$0654
\$0654 | \$0656
\$0657
\$0658
\$0659
\$0669 | \$0661
\$0662
\$0663
\$0664
\$0664 | \$0666
\$0667
\$0668
\$0669
\$0670 | \$0671
\$0672
\$0673
\$0674
\$0675 | \$0676
\$0677
\$0678
\$0679
\$0680 | \$0681
\$0682
\$0683
\$0684
\$0685 | \$0686
\$0687
\$0688
\$0689
\$0699 | \$0691
\$0692
\$0693
\$0694
\$0695 | \$0696
\$0697
\$0698
\$0699
\$0700 | | | | | | | | 88 | | | | | | | Continued | |-----------| | 5 | | LE | | TAB | | | a | 17.3
16.9
17.3
17.5 |
17.6
15.3
17.6
16.6
17.0 | 17.5
15.7
16.4
13.8 | 17.4
17.2
16.4
16.3 | 16.3
17.2
16.8
17.4 | 17.1
17.1
16.9
16.9 | 16.4
17.4
16.9
16.7 | 17.4
16.9
17.0
17.0 | 16.4
15.8
16.3
17.1 | 16.1
16.7
17.3
17.6
17.6 | |-----------|------------------------|--|--|---|---|---|---|---|---|---|--| | | Ω | 0.000.0 | വവയന | 0 4 4 L C | 0 W 4 4 W | 4 12 12 10 10 | ນຄອນຄ | 40004 | აიიიი | 44400 | 40000 | | | 8 | 00040 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | | 2 | | | | | | 0.0590 | 0.0503 | 0.0336 | (0.0315) | | | | Previous | | | | | 0 | м ж | B B | Q | Q | Ω | | | Obs | 00000
10000 | 99999 | 00000 | 00000 | 20,1C
10
10
10
10 | 00000 | 10
10
10
10
10 | 00000
00000 | 00000 | 100000 | | | m ₁₀ | 17.3
16.7
17.3
19.8 | 19.6
15.1
19.4
16.4 | 18.1
15.5
16.0
13.4 | 17.3
16.8
16.0
15.9 | 16.0
16.8
16.6
17.6 | 16.7
16.8
16.5
16.6
16.7 | 16.1
17.0
16.6
16.4 | 17.3
16.6
16.8
16.7
15.4 | 16.0
15.5
16.0
16.7 | 15.8
16.9
20.2
17.4 | | | m ₃ | 16.5
15.4
16.1
19.3? | 19.1
13.6
19.1
16.1
15.7 | 17.1
14.8
15.4
12.6
15.6 | 17.0
15.4
15.5
15.3 | 15.1:
15.4
14.8
15.7 | 15.4
15.6
15.0
15.0 | 14.9
15.5
15.7
15.6
14.1 | 15.9
15.4
16.3
15.6 | 14.4
14.8
14.6
15.9 | 15.3
15.7
15.3
19.3: | | | m_1 | 15.3;
13.5
15.6
18.9 | 18.0
12.2:
17.3
15.2
15.1 | 16.0
13.4
14.9
11.3 | 16.1
15.3
15.0
14.6
14.5 | 13.5
14.5
13.8
15.3 | 14.6
15.0
15.0
13.7 | 14.5
15.4
15.3
14.9 | 13.1
14.6
15.4
15.3
12.8 | 13.8
14.6
14.4
14.4 | 14.8
14.9
18.6
18.4? | | | C | 28
-8
17
63 | 111
2
0 | -23
3
-7 | 16
-1:
16
-7 | 26
-5
-12
7
21: | 12
3
27:
19: | 29
-21:
8 | 25
17
17
2 | 110
-13:
23: | 8
4
-8?
103 | | | T_{B-M} | 1-11
1
11
111
111 | III-II
II III | 11-111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11-111
1
11
11 | | 11.
11-111
11-1111 | | | 11-11
11-11
111 | | | | T_A | RI
13 | I K I I I I I I I I I I I I I I I I I I | I
RI:
R: | n n n n n | RI:
IR: | I
RI?
RI | R H H H H | RI
RI
RI: | HILLI | RRIR | | Continued | Abell | S0701
S0702
S0703
S0704
S0705 | \$0706
\$0707
\$0708
\$0709
\$0710 | S0711
S0712
S0713
S0714 | S0716
S0717
S0718
S0719
S0720 | S0721
S0722
S0723
S0724
S0725 | S0726
S0727
S0728
S0729
S0730 | S0731
S0732
S0733
S0734
S0735 | S0736
S0737
S0738
S0739
S0740 | S0741
S0742
S0743
S0744
S0745 | S0746
S0747
S0748
S0749
S0750 | |) TE 3- | yn | 150
304
191
242
250 | 65
90
63
81 | 22478 | 286
6
248
205
178 | 41
166
192
291
168 | 254
124
54
138
71 | 187
122
59
119 | 283
175
164
181
275 | 188
217
184
332
99 | 180
118
317
212
269 | | IABL | x _{II} | 57 15
173 30
42 19
154 24 | 273 26
118 29
236 26
89 36 | 96 18
61 22
72 4
80 10
63 3 | 234 28
103
64 24
117 20
111 17 | 260 4
75 16
145 19
184 29 | 63 28
53 12
92 13 | 77 18
45 11
50 11
78 11 | 126 20
102 17
139 10
124 18 | 36 18
05 2
57 18
68 | 48
113
43
83 | | ł | ycen | -14
140
27
78
1 | - 19 o e e | 0 0 0 0 0 | 28444 | w 0/ 80 12 44 | 00098 | ~ ~ 10 10 <i>~</i> | 11011 | 4.608.8 | 16
46
53
05 1 | | | añ
E | 76209 | 9 10
2 12
9 14
9 14 | 1 -13.6 | 0 12
1 -15
0 8
7 4 | 6 -12
9 2
12
6 12 | 10
20
11
10
10
10
10
10
10
10
10
10
10
10
10 | 7 4 4 7 7 7 9 4 7 9 9 9 9 9 9 9 9 9 9 9 | 2028 | 9 6 4 4 9 8 | 14 4 | | | # L | 0121 | -10
-7-
11 | -132
103
-108
-16 | -70
61
100
47
53 | 68469 | 86.48 | 1116 | 12426 | 9 10 90 90 | 121217 | | | Field | F380
F380
F322
F322 | F381
F268
F381
F268 | F575
F268
F575
F507 | F575
F507
F381
F575 | F382
F575
F269
F382 | 6 F382
3 F324
0 F508
8 F382
0 F508 | F382
F382
F324
F576 | F324
F324
F383
F383 | F577
F383
F383
F383 | F383
F383
F384
F384 | | | ٩ | 27.23
20.13
28.03
23.96
19.13 | 29.45
19.91
29.43
20.26
41.06 | 43.05
18.80
40.33
36.42
35.18 | 44.83
34.63
29.17
43.26
42.74 | 25.20
42.47
17.97
29.70
32.42 | 28.96
21.53
35.10
26.68 | 27.55
36.25
25.12
21.22
41.10 | 34.02
22.02
16.79
26.72
23.56 | 41.37
27.29
21.77
29.24
25.00 | 26.38
25.20
28.72
26.80
22.93 | | | 1 | 299.59
300.28
299.83
300.12 | 300.46
301.39
301.25
301.94
301.99 | 302.30
302.59
302.86
302.95
303.39 | 303.91
304.73
304.92
306.87 | 306.15
307.88
306.27
308.22
308.76 | 308.59
308.83
310.93
309.77 | 310.24
312.20
310.50
310.30 | 313.48
312.00
311.47
314.73 | 319.51
315.28
314.23
316.52 | 316.26
316.21
317.65
317.15 | | | ا ا | 10000 | 89296 | O 44 O/ D 41 | 02
13
40
31 | 35
15
46
56 | 38
00
18
47
58 | 52
01
14
07
56 | 02
04
18
58 | ထထက္ထထ | 58
07
23
20 | | ļ | Dec | W 4 4 M 4 | 4 C C C C | 19 49
44 04
22 32
26 27
27 41 | 88760 | | | | | 4 1 2 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | (2000) De | .8 -35 3
.1 -34 4
.2 -38 5
.2 -38 5 | .5 -42 5
.4 -42 5
.4 -42 5
.4 -42 3 | .4 -19
.6 -44
.2 -22
.5 -26
.1 -27 | 3 -18
1 -28
7 -33
6 -19 | .1 -37
.0 -20
.3 -44
.3 -32 | 2 -33
5 -41
9 -27
5 -35
0 -26 | .0 -34
.7 -26
.9 -37
.9 -41 | .0 -28
.0 -45
.0 -45
.9 -34 | .0 -19
.6 -34
.3 -39
.5 -32 | .0 -34
-0 -34
-0 -34
-0 -34
-34
-34
-34 | | | RA (2000) De | 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 - 33 2 4 - 21 4 4 2 3 4 4 4 4 2 3 4 4 4 4 4 4 4 4 4 4 | 4 -19
6 -44
2 -22
5 -26
1 -27 | 3 -18
1 -28
7 -33
6 -19
1 -20 | 1 -37
0 -20
3 -44
3 -32
-30 | -33
-27
-35
-26 | 0 -34
7 -26
9 -37
9 -41
5 -20 | 0 - 1 - 28
0 - 1 - 40
0 - 1 - 45
1 - 38 | 0 -19
6 -34
3 -34
5 -32
2 -36 | 6 - 1 - 3 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | | | RA (2000) | 16 12 36.8 -35 3
24 12 37.8 -42 4
29 12 38.1 -34 4
34 12 38.2 -38 5
25 12 39.5 -43 4 | 06 12 41.1 -33 2
40 12 43.5 -42 5
09 12 44.4 -33 2
20 12 46.4 -42 3
32 12 48.4 -21 4 | 33 12 49.4 -19
48 12 49.6 -44
16 12 51.2 -22
11 12 51.5 -26
25 12 53.1 -27 | 46 12 54.3 -18
57 12 58.1 -28
24 12 59.7 -33
15 13 03.6 -19
46 13 04.1 -20 | 19 13 06.1 -37
59 13 07.0 -20
31 13 09.3 -44
41 13 13.3 -32
56 13 14.2 -30 | 23 13 15.2 -33
45 13 20.5 -41
03 13 20.9 -27
32 13 21.5 -35
43 13 22.0 -26 | 1 37 13 23.0 -34
5 46 13 24.7 -26
5 59 13 25.9 -37
0 52 13 27.9 -41
0 41 13 28.5 -20 | 47 13 31.0 -28
49 13 35.4 -40
03 13 38.0 -45
43 13 42.9 -34
56 13 43.5 -38 | 33 13 44.0 -19
03 13 44.6 -34
39 13 46.3 -39
54 13 47.5 -32
14 13 48.2 -36 | 44 13 49.8 -34
53 13 51.0 -36
09 13 52.6 -32
07 13 53.0 -34 | | | Dec RA (2000) | 6 12 36.8 -35 3
4 12 37.8 -42 4
9 12 38.1 -34 4
4 12 38.2 -38 5
12 39.5 -43 4 | 4 -33 06 12 41.1 -33 2
7 -42 40 12 43.5 -42 5
-33 09 12 44.4 -43 3
6 -42 20 12 46.4 -42 3
7 -21 32 12 48.4 -21 4 | 3 12 49.4 -19
8 12 49.6 -44
6 12 51.2 -22
1 12 51.5 -26
5 12 53.1 -27 | -17 46 12 54.3 -18
-27 57 12 58.1 -28
-33 24 12 59.7 -33
-19 15 13 03.6 -19
-19 46 13 04.1 -20 | 3 -37 19 13 06.1 -37
3 -19 59 13 07.0 -20
4 -44 11 13 09.3 -44
5 -32 41 13 13.3 -32
4 -29 56 13 14.2 -30 | -33 23 13 15.2 -33
-40 45 13 20.5 -41
-37 03 13 20.9 -27
-35 32 13 21.5 -35
-26 43 13 22.0 -26 | -34 37 13 23.0 -34
-25 46 13 24.7 -26
-36 59 13 25.9 -37
-40 52 13 27.9 -41
-20 41 13 28.5 -20 | -27 47 13 31.0 -28
-39 49 13 35.4 -40
-45 03 13 38.0 -45
-4 43 13 42.9 -34
-37 56 13 43.5 -38 | -19 33 13 44.0 -19 -34 03 13 44.6 -34 -34 13 47.5 -35 -36 14 13 48.2 -36 | -34 44 13 49.8 -34
-35 53 13 51.0 -36
-32 09 13 52.6 -32
-34 07 13 53.0 -34
-38 06 13 53.6 -38 | | | A (1950) Dec RA (2000) | 34.1 -35 16 12 36.8 -35
3 35.1 -42 24 12 37.8 -34 4 35.4 -34 29 12 38.1 -34 8 35.5 -38 34 12 38.2 -38 5 36.8 -43 25 12 39.5 -43 4 | 38.4 -33 06 12 41.1 -33 2 40.7 -42 40 12 43.5 -42 5 44.4 -33 2 43.6 -42 20 12 46.4 -42 3 45.7 -21 32 12 48.4 -21 4 | 46.8 -19 33 12 49.4 -19
46.8 -43 48 12 49.6 -44
48.5 -22 16 12 51.2 -22
48.8 -26 11 12 51.5 -26
50.4 -27 25 12 53.1 -27 | 51.7 -17 46 12 54.3 -18
55.4 -27 57 12 58.1 -28
55.0 -33 24 12 59.7 -33
00.9 -19 15 13 03.6 -19
01.4 -19 46 13 04.1 -20 | 03.3 -37 19 13 06.1 -37
04.3 -19 59 13 07.0 -20
06.4 -44 31 13 09.3 -44
10.5 -32 41 13 13.3 -32
11.4 -29 56 13 14.2 -30 | 12.4 -33 23 13 15.2 -33
17.6 -40 45 13 20.5 -41
18.1 -27 03 13 20.9 -27
18.7 -35 32 13 21.5 -35
19.2 -26 43 13 22.0 -26 | 20.2 -34 37 13 23.0 -34
21.9 -25 46 13 24.7 -26
23.0 -36 59 13 25.9 -41
25.0 -40 52 13 27.9 -41
25.8 -20 41 13 28.5 -20 | 28.2 -27 47 13 31.0 -28
32.5 -39 49 13 35.4 -40
35.0 -45 03 13 38.0 -45
40.0 -34 43 13 42.9 -34
40.6 -37 56 13 43.5 -38 | 41.3 -19 33 13 44.0 -19
41.7 -34 03 13 44.6 -34
43.3 -39 39 13 46.3 -39
44.6 -31 54 13 47.5 -32
45.3 -36 14 13 48.2 -36 | 46.9 -34 44 13 49.8 -34 48.1 -35 53 13 51.0 -36 49.7 -32 09 13 52.6 -32 50.1 -34 07 13 53.0 -34 50.6 -38 06 13 53.6 -38 | | | (1950) Dec RA (2000) | 4.1 -35 16 12 36.8 -35 3
5.1 -42 24 12 37.8 -42 4
5.4 -34 29 12 38.1 -34 4
5.5 -38 34 12 38.2 -38 5
6.8 -43 25 12 39.5 -43 4 | 8.4 -33 06 12 41.1 -33 2
0.7 -42 40 12 43.5 -42 5
0.7 -33 09 12 44.4 -43 3
3.6 -42 20 12 46.4 -42 3
5.7 -21 32 12 48.4 -21 4 | 6.8 -19 33 12 49.4 -19
6.8 -43 48 12 49.6 -44
8.5 -52 16 12 51.2 -22
8.8 -26 11 12 51.5 -26
0.4 -27 25 12 53.1 -27 | 7 -17 46 12 54.3 -18
4 -27 57 12 58.1 -28
6 -13 14 12 59.7 -33
9 -19 15 13 03.6 -19
4 -19 46 13 04.1 -20 | 3.3 -37 19 13 06.1 -37
4.3 -19 59 13 07.0 -20
6.4 -44 31 13 09.3 -44
0.5 -32 41 13 13.3 -32
1.4 -29 56 13 14.2 -30 | 2.4 -33 23 13 15.2 -33
7.6 -40 45 13 20.5 -41
8.7 -35 32 13 21.5 -35
9.2 -26 43 13 22.0 -26 | 0.2 -34 37 13 23.0 -34
1.9 -25 46 13 24.7 -26
3.0 -36 59 13 25.9 -37
5.0 -40 52 13 27.9 -41
5.8 -20 41 13 28.5 -20 | 8.2 -27 47 13 31.0 -28
2.5 -39 49 13 35.4 -40
5.0 -45 03 13 38.0 -34
0.0 -34 43 13 42.9 -34
0.6 -37 56 13 43.5 -38 | 1.3 -19 33 13 44.0 -19
1.7 -34 03 13 44.6 -34
3.3 -39 39 13 46.3 -39
4.6 -31 54 13 46.5 -32
5.3 -36 14 13 48.2 -36 | 6.9 -34 44 13 49.8 -34
8.1 -35 53 13 51.0 -36
9.7 -32 09 13 52.6 -32
0.1 -34 07 13 53.0 -34
0.6 -38 06 13 53.6 -38 | | | B | 17.5
16.5
13.9
16.4 | 16.2
15.9
15.8
17.4 | 15.8
17.5
17.3
17.4 | 17.5
17.3
17.5
17.5
16.3 | 17.2
16.7
17.4
16.9
15.6 | 17.2
17.3
14.8
17.5 | 17.6
17.5
17.6
17.6
17.0 | 17.4
16.6
17.0
17.1 | 16.8
17.0
17.0
15.6
17.0 | 16.8
15.7
17.1
17.2 | |-----------|-------------------|--|--|--|--|--|--|--|--|--|--| | | Д | 0 R L 4 0 | 44400 | 40000 | 00004 | നവഴവവ | 00000 | 00000 | രവവവര | വനവവ | 04004 | | | 8 | 00000 | 00001 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | | 8 | 0.0140 | | | | | 0.0237 | | | | | | | Previous | 90 B | 00 | | | | BK | | | O O O | Ω Ω | | | Obs | 99999 | 22222 | 33333 | 22222 | 99999 | 110011 | 22228 | 22222 | 100001
100001 | 22222 | | | m ₁₀ | 18.6
16.1
16.1
16.1 | 15.8
15.6
15.5
17.0
20.1 | 15.4
20.4:
17.1?
17.0 | 19.9
17.9
20.1
19.7
16.1 | 17.7
16.6
17.5
16.7
16.7 | 17.6
17.5
14.6
19.4
20.0 | 20.1
19.8
20.0
19.3
17.2 | 18.0
16.6
17.6
18.0 | 16.9
17.4
17.4
15.7
17.1 | 16.8
15.8
18.1
20.0
16.2 | | | m ₃ | 18.1
14.5
12.4?
14.1 | 14.2
15.0
14.8
15.7 | 14.8
15.8
15.6
15.0 | 19.4
17.3
19.4
14.6 | 16.1
15.5
15.7
15.6 | 16.1
17.2
19.3
19.4 | 19.7
18.7
19.4
18.6 | 17.8
15.6
16.1
16.1 | 16.1
16.7
16.8
15.1 | 16.3
15.4
16.5
18.5? | | | m I | 17.8
11.1
12.9 | 13.65
13.65
15.1
15.1 | 12.9
19.3
15.0
14.9 | 18.9
16.0
18.5
18.9
13.8 | 15.2
14.5
15.3
12.9 | 15.5
16.3
11.8
19.1
17.8 | 19.5
18.0
19.1
18.0 | 16.7
14.9
15.4
15.7
18.0 | 15.4
15.6
15.6
14.2 | 15.1
14.3
16.0
17.9
13.8 | | | C | 26
118
198
3 | 13
10
11
11
11
13 | (44)
0*
-22 | 74
25
172
102
-8? | 23 44
11
11
6: | 24:
1
4
-17
116 | 82
130
131
28
13 | 29
111
24
26
-15? | 12
16
-31
-32 | -13
25
(80) | | | Тв-м | 11.11 | I-II
II?
II-II | HHHHH | | 1-11
1-11
11-111 | | | | | II
III-III
II3 | | | $T_{\mathcal{A}}$ | RRRRR | IRRI
IR | Hiii | ж ёнжн | ннн | нйнйи | нёнан | "#### | нанна | нннн | | Continued | Abell | S0751
S0752
S0753
S0754
S0755 | \$0756
\$0757
\$0758
\$0759
\$0760 | S0761
S0762
S0763
S0764
S0765 | \$0766
\$0767
\$0768
\$0769
\$0770 | S0771
S0772
S0773
S0774
S0775 | S0776
S0777
S0778
S0779
S0780 | S0781
S0782
S0783
S0784
S0785 | S0786
S0787
S0788
S0789 | S0791
S0792
S0793
S0794
S0795 | S0796
S0797
S0798
S0799
S0800 | | E 5 – | | | | | | | | | | | | | TABLE | ñ. | 139
199
233
189 | 291
278
213
305 | 46
109
242 | 44
300
70
231
286 | 53
53
53
818
84
84 | 307
1115
36
309
274 | 279
157
270
125 | 246
1195
272
204 | 51
51
76
93 | 141
138
179
57
314 | | T | nx | 224
264
159
307 | 79
64
63
226
193 | 191
258
327
103 | 196
80
177
139 | 221
208
132
122 | 97
238
109
93 | 242
162
230
191 | 242
242
258
241
281 | 164 :
91
232
197 | 132
103
178
147 | | | Ycen | 135
25
133
133 | 127
114
49
141 | -118
150
-55
67
78 | -120
136
-94
67 | 75
-111
54
-6
120 | 143
-49
145
110 | 115
-7
106
-39
-23 | 82
31
92
108
40 | -41
-113
-65
-88
-71 | -23
-26
-107
150 | | | x cen | -60
-100
113
-143 | 85
100
101
-62 | -27 -
-94
-163
61 | -132
-134
-605 | 157
144
132
142
142 | 67
-74
55
71
-83 | -78
-66
-27
72 | -15
-78
-94
-77
-117 | 1440
1383 | 32
-14
17 | | | Field | F510
F578
F384
F325 | F578
F384
F511
F511 | F511
F272
F447
F511 | F447
F385
F447
F447 | F327
F327
F580
F327 | F327
F448
F386
F386 | F581
F448
F581
F582
F008 | F515
F009
F009
F009 | F009
F023
F023
F102 | F044
F102
F024
F071 | | | q | 35.03
40.79
26.55
20.82 | 41.19
26.75
25.63
36.22
22.52 | 31.55
17.43
27.79
34.04
24.49 | 25.57
25.34
26.52
28.24
19.97 | 19.17
15.96
35.80
17.16 | 19.24
24.85
18.94
23.26
35.07 | 35.10
24.80
34.83
29.29 | 23.78
-23.30
-22.47
-22.58
17.38 | -25.32
-23.44
-23.30
-17.11 | -22.65
-18.72
-24.59
-23.49 | | | 1 | 320.23
322.84
319.63
318.23 | 327.92
321.84
321.41
327.32 | 325.73
320.23
325.04
329.20 | 326.90
326.87
327.86
329.72 | 325.42
324.04
337.33
326.06 | 328.23
331.64
328.70
331.61 | 341.09
333.39
341.21
344.57 | 347.02
307.52
308.41
308.86 | 307.04
310.56
311.69
325.72 | 318.20
327.99
313.98
322.47
317.06 | | -1 | RA (2000) Dec | 13 54.1 -25 43
13 54.9 -19 36
14 06.3 -39 58
14 06.3 -39 49
14 09.3 -25 27 | 14 09.5 -17 52
14 12.3 -33 08
14 12.4 -34 19
14 16.0 -22 36
14 18.4 -37 10 | 14 18.8 -27 25
14 21.7 -42 23
14 22.9 -31 07
14 26.1 -23 57
14 33.3 -33 46 | 14 34.7 -32 28
14 34.7 -32 41
14 36.1 -31 14
14 39.4 -28 57
14 41.7 -37 57 | 14 41.9 -38 49
14 43.0 -42 17
14 47.5 -19 12
14 49.4 -40 21
14 51.4 -37 59 | 14 53.7 -37 33
14 53.8 -31 07
14 56.5 -37 36
14 57.5 -32 30
14 59.6 -18 09 | 14 59.9 -18 04
15 00.3 -30 20
15 00.9 -18 14
15 24.8 -20 55
15 44.5 -85 26 | 15 47.6 -23 39
16 04.6 -84 21
16 03.4 -83 11
16 15.6 -82 57
16 41.8 -19 21 | 17 10.5 -85 54
17 05.4 -82 11
17 16.0 -81 12
17 28.6 -66 41
17 33.2 -76 22 | 17 53.2 -75 27
17 52.4 -65 29
18 03.9 -79 45
18 22.2 -71 59
18 28.2 -77 10 | | | RA (1950) Dec | 13 51.3 -25 29
13 52.2 -19 22
14 00.7 -33 44
14 03.3 -39 35
14 06.5 -25 13 | 14 06.7 -17 38
14 09.3 -32 54
14 09.4 -34 05
14 13.2 -22 23
14 15.4 -36 57 | 14 15.9 -27 12
14 18.6 -42 10
14 20.0 -30 54
14 23.2 -23 44
14 30.3 -33 33 | 14 31.4 -32 15
14 31.7 -32 28
14 33.1 -31 01
14 36.4 -28 45
14 38.6 -37 45 | 14 38.8 -38 37
14 39.8 -42 05
14 44.7 -19 00
14 46.2 -40 09
14
48.3 -37 47 | 14 50.6 -37 21
14 50.8 -30 55
14 53.3 -37 24
14 54.4 -32 18
14 56.8 -17 58 | 14 57.1 -17 53
14 57.3 -30 09
14 58.1 -18 03
15 21.9 -20 45
15 30.8 -85 17 | 15 44.6 -23 30
15 52.4 -84 13
15 52.9 -83 03
16 05.1 -82 50
16 38.9 -19 16 | 16 53.0 -85 50
16 55.0 -82 07
17 06.4 -81 09
17 23.5 -66 39
17 26.1 -76 20 | 17 46.3 -75 27
17 47.4 -65 29
17 55.2 -79 45
18 16.2 -72 01
18 20.8 -77 12 | | | Abell | S0751
S0752
S0753
S0754
S0755 | S0756
S0757
S0758
S0759
S0760 | S0761
S0762
S0763
S0764
S0765 | S0766
S0767
S0768
S0769
S0770 | \$0771
\$0772
\$0773
\$0774
\$0775 | S0776
S0777
S0778
S0779
S0780 | S0781
S0782
S0783
S0784
S0785 | S0786
S0787
S0788
S0789
S0790 | S0791
S0792
S0793
S0794
S0795 | \$0796
\$0797
\$0798
\$0799
\$0800 | | - 11 | 9 | 70000 | ល 4 4 0 ប | ഴവവവവ | ညစစ္စည | രവപവര | សសសសស | ბ സ സ സ 4 | ი ი ა ი ი | 00040 | ນຄວານ | |-----------|-----------------|--|--|--|--|--|--|--|--|--|--| | | E | 00440 | 00000 | 00001 | 00000 | 00000 | 00000 | 00000 | 0000 | 00031 | 00000 | | | и | 0.0511 | | 0.0688 | | 0.0518 | | 0.0470 | 0.0426
0.0152 | 0.0405 | | | | Previous | D Dds | 0 20 0 | Q | | BDQ | ΩΩ | α | ⊲ දීරී | 8 | 8° | | | Obs | 10,10
10,10
10 | 99999 | 10100 | 22222 | 10
10,1A
10,10 | 100000 | 10
10
20
10
10,1A | 10
20
10
20,1A
20,1A | 22222 | 12000 | | | m ₁₀ | 15.5
16.9
20.2
20.2 | 17.1
19.1
16.1
17.8 | 16.6
18.9
17.8
17.5
20.1 | 19.0
19.7
20.1
19.5: | 20.6
17.4
15.4
17.1 | 18.7
18.6:
16.6
17.1
20.0 | 19.3
17.9
17.3
17.8 | 14.8
17.3
20.1
15.1 | 19.9
19.9:
19.9
16.2 | 18.8
17.9
18.0
16.4 | | | m3 | 15.1
15.6
19.6
19.7 | 15.9
18.8
15.3
17.4 | 15.6
15.8
17.4
16.0 | 17.9
19.3
19.7
18.0 | 19.7
16.8
15.2
15.7
18.7 | 18.5
18.4:
15.4:
16.7 | 18.6
17.5
16.1
16.6
15.2 | 14.5
16.1
19.7:
14.9 | 19.2
19.6:
19.4
15.7 | 17.7
17.4
17.0
15.6 | | | mı | 12.9
14.7:
19.3
12.0 | 15.1?
17.2
14.2
16.7
15.1 | 15.3
15.6
17.1
14.8
19.2: | 17.5
19.1
18.0
17.2 | 19.4
15.3
15.0
15.3 | 17.1:
17.5
15.3
16.0
19.2 | 16.1
17.2
15.4
15.8
13.9 | 12.6
15.9
19.5
14.3 | 18.6
19.4:
19.2
13.9 | 17.3;
16.6?
15.3
14.2 | | | O | -30
8?
(55)
(92)
8 | -36:
29
29 | -24:
-17
21
3
(66) | 13
74
105
24
18 | (87)
23
21
7 | -9
-10
19
23
(128) | 21
15
15
26: | -1
13
131
17
15 | 76
155
88
14
23 | 7
10
10
10
10 | | | T_{B-M} | II
II-III?
II-III | 111111 | !!!
!!!! | | !!!!
!!!-!!!
!!! | 11-11
11-11
11-11
11-11 | I
II:
III-III
III | :::::
:-::::
:-:::: | | | | ĺ | T_{A} | RRHH | H 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ı Kı | RIBHI | RITITION | RRRR | жнннн | RII. | ннин | HHHHH | | Continued | Abell | \$0801
\$0802
\$0803
\$0804
\$0805 | \$0806
\$0807
\$0808
\$0809
\$0810 | S0811
S0812
S0813
S0814
S0815 | S0816
S0817
S0818
S0819
S0820 | S0821
S0822
S0823
S0824
S0824 | \$0826
\$0827
\$0828
\$0828
\$0829
\$0830 | S0831
S0832
S0833
S0834
S0835 | S0836
S0837
S0838
S0839
S0840 | S0841
S0842
S0843
S0844
S0845 | \$0846
\$0847
\$0848
\$0849
\$0849 | | 5- | | | | | | | | | | | | | TABLE | хи уп | 219 81
315 55
106 7
66 278
31 245 | 125 169
199 304
193 209
214 30
88 142 | 183 298
101 145
254 212
214 97
191 19 | 92 231
85 49
82 78
30 110
68 177 | 154 113
185 85
265 255
159 125
127 273 | 50 317
98 268
102 321
92 251
61 217 | 298 307
214 94
324 220
225 169
112 283 | 25 283
01 242
54 220
89 267
80 105 | 96 126
106 194
92 95
41 253
38 283 | 75 170
69 82
110 136
290 187
24 207 | | | eu | | | | 67 2
-86 2
-54 2 | -51 1
-79 1
91 2
-39 1 | 153 2
104
157 2
87
53 | 143 2
-70 2
56 3
5 2
119 1 | 119 2
78 1
56 1
103
-59 | -38
30 1
-69
89
119 | -82
-28
-28
-23
-23
-23
-23 | | | n yo | 55 -83
51 -109
58 -157
98 114 | 9 5
5 140
9 45
0 -134
6 -22 | 9 134
3 -19
0 48
0 -67
7 -145 | , | 72110 | | | 661
63
775
10
84
10 | | | | | # ce | '7 7 | 39
-29
-50
-50 | -19
-90
-27 | -128
-21
-118
-66 | ' 7 | -86
66
-38
103 | -134
-50
-160
-61 | • | 68
58
72
123
126 | 89
95
-126
140 | | | Field | F230
F281
F071
F071 | F183
F010
F231
F025 | F184
F197
F142
F338 | F105
F232
F073
F142
F338 | F232
F283
F185
F283 | F073
F283
F185
F283
F398 | F399
F339
F011
F399 | F399
F339
F185 | F105
F339
F105
F185 | F105
F461
F399
F186 | | | 9 | -17.41
-15.72
-24.52
-23.65 | 21.90
27.36
21.60
27.57 | 24.98
20.96
24.180
26.99 | 28.50
27.04
28.94
28.41
24.57 | 27.38
26.94
28.43
27.25
28.66 | 29.95
27.75
29.46
27.95
25.92 | 26.00
28.84
29.08
27.97 | 27.43
29.10
29.42
31.66 | 32.15
30.43
32.22
32.59 | 32.51
29.10
30.20
32.88 | | | 1 | 343.36
347.82
321.76
327.30 | 341.28 -
311.61 -
347.66 -
311.50 - | 344.89 -
3.05 -
337.99 -
357.43 -
345.09 - | 332.83 -
345.75 -
323.91 -
355.89 - | 347.19 -
352.25 -
344.75 -
353.17 - | 328.98 -
356.40 -
346.31 -
356.08 -
6.31 - | 8.35 -
358.71 -
310.43 -
5.94 - | 8.27 -
310.15 -
1.60 -
345.44 -
341.89 - | 330.47 -
1.34 -
329.79 -
345.25 - | 331.46 -
10.26 -
5.88 -
343.78 - | | | RA (2000) Dec | 8 27.5 -51 32
8 27.9 -46 56
8 33.3 -72 52
8 37.2 -67 45
8 47.2 -63 19 | 8 51.5 -54 51
9 06.3 -82 17
9 00.7 -49 05
9 12.6 -82 23
9 12.7 -75 18 | 9 17.2 -52 25 25 2 29.4 -58 59 28.9 -41 09 30.4 -52 38 | 9 31.4 -63 35
9 31.4 -52 04
9 33.4 -71 25
9 32.6 -60 54
9 33.4 -39 40 | 9 35.0 -50 52
9 37.6 -46 22
9 39.5 -53 10
9 40.4 -45 38
9 48.1 -82 50 | 9 44.3 -66 59
9 46.5 -42 56
9 47.4 -51 57
9 47.2 -43 15
9 48.7 -33 55 | 9 51.6 -32 11
9 54.5 -41 11
0 04.3 -83 06
9 57.8 -34 47
9 58.5 -52 37 | 9 58.0 -32 39
0 06.9 -83 20
0 00.3 -38 50
0 01.3 -52 55
0 03.4 -55 57 | 0 05.6 -65 37
0 05.1 -39 16
0 06.7 -66 11
0 07.4 -53 08
0 07.6 -52 34 | 0 08.4 -64 45
0 07.8 -31 26
0 08.3 -35 24
0 09.1 -54 23
0 10.0 -53 58 | | | RA (1950) Dec | 18 23.5 -51 34 18 24.2 -46 58 18 27.1 -72 55 11 18 31.9 -67 48 11 18 42.5 -63 23 1 | 18 47.4 -54 55
18 55.8 -82 22
18 56.9 -49 10
19 02.0 -82 28
19 06.1 -75 23 | 19 13.3 -52 31 19 18.0 -35 21 1 19 25.1 -59 06 1 19 25.4 -41 16 1 19 26.5 -52 45 1 | 19 26.8 -63 42 1
19 27.5 -52 11 1
19 27.8 -71 32 1
19 28.2 -61 01 1
19 30.0 -39 47 1 | 19 31.2 -50 59 1
19 34.0 -46 29 1
19 35.6 -53 17 1
19 36.8 -45 45 1
19 37.5 -82 58 1 | 19 39.4 -67 07
19 43.0 -43 04
19 43.6 -52 05
19 43.7 -43 23
19 45.5 -34 03 | 19 48.4 -32 19 11 19 51.1 -41 19 11 19 53.7 -83 15 2 19 54.6 -34 56 1 19 54.7 -52 46 1 | 19 54.8 -32 48 1
19 56.0 -83 29 2
19 57.0 -38 59 2
19 57.5 -53 04 2
19 59.4 -56 06 2 | 20 00.9 -65 46 2 20 01.8 -39 25 2 2 20 02.0 -66 20 2 20 03.6 -53 17 2 20 03.8 -52 43 2 | 20 03.8 -64 54 2 20 04.7 -31 35 2 20 05.1 -35 33 2 20 05.2 -54 37 2 20 06.1 -54 07 2 | | i | Abell | S0801
S0802
S0803
S0804
S0805 | \$0806
\$0807
\$0808
\$0809
\$0810 | S0811
S0812
S0813
S0814
S0815 | S0816
S0817
S0818
S0819
S0820 | S0821
S0822
S0823
S0824
S0825 | \$0826
\$0827
\$0828
\$0828
\$0839 | S0831
S0832
S0833
S0834
S0835 | \$0836
\$0837
\$0838
\$0838
\$0839
\$0840 | S0841
S0842
S0843
S0844
S0845 | S0846
S0847
S0848
S0849
S0850 | | | Ħ | 13.5
16.8
17.1
15.7 | 17.2
17.3
17.3
16.5 | 16.8
17.1
17.1 | 15.2
16.9
16.8
16.9 | 17.1
17.1
17.1 | 16.9
17.2
17.2
17.3 | 17.1
16.2
17.1
16.1 | 17.1
17.1
16.0
15.0 | 16.5 | 17.3
16.9
16.9 | |-----------|-----------------|---|---|--|--|--|--|---|--
---|--| | | | ⊔ N N 4 N | മവവവ | വഴവഴവ | ชม ฌพ | ນູດທູນ | ഴവവവ | N 4 N N 4 | សសស4.ಒ | 64 N 4 N | സ 4∗ സ w 2 | | | H | 0000 | 00000 | 00000 | 0000 | 0
71) 0
0 | 00000 | 0000 | 37 0 | 54)
03
09
0 | 24) 0
82) 0
43 0 | | | 22 | 0.0100 | | | 0.018 | (0.0371) | | (0.0290) | 0.0437 | (0.0254)
0.0503
0.0409 | (0.0224)
(0.0282)
0.0243 | | | Previous | ဖ | 8 | BD | Δ | MО | | | BD | S D S | μ | | | Obs | 99999 | 22222 | 89999 | 83333 | 22222 | 99999 | 20000 | 98999 | 22222 | 99999 | | | m ₁₀ | 13.4
16.7
17.0
15.6 | 18.0
17.1
18.6
16.4 | 16.4
19.3
17.1
20.1
18.1 | 15.1
16.8
16.7
16.8
19.3 | 18.6
17.5
17.3
20.2: | 16.8
18.1
18.4
19.3 | 17.5
16.1
16.6
17.5
16.0 | 17.8
17.5
17.1
15.9 | 15.4
16.0
16.6
15.9 | 18
15.6
16.8
14.5 | | | m³ | 11.7
15.5
15.4
15.3 | 17.3
2 16.0
18.1
15.4
16.1 | 15.3
18.6
15.6
19.5
16.6 | 13.6
15.9
15.1
16.2 | 18.4
16.5
15.9
19.6 | 15.4
17.4
17.1
18.6 | 16.4
14.7
16.0
16.7
14.6 | 16.1
16.4
15.4
14.8
15.0 | 15.3
15.5
15.8
15.0 | 16.8
15.1
15.2
15.2 | | | m_1 | 10.1
14.5
13.7
13.7 | 17.0:
15.2?
18.0
15.3 | 14.4
17.8
15.4
19.4 | 12.6
14.6
14.8
15.8 | 18.0
15.7
13.8
18.7
15.8 | 15.1
15.1
15.6
17.3 | 15.9
13.8
15.4
15.5 | 15.4
15.4
15.1
14.7 | 14.2
14.6
14.8
13.7
15.6 | 15.9
12.9
13.7
11.2 | | i | C | 9 7 9 4 9 | 27
115
22 | 14
120
120
26 | 23
13
25
25 | 9
28
-29?
127
15 | 22.2
23.3
24.4
24.4 | 11
11
20
22: | 9 4 1 1 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2:
-65
-42 | 28
25:
3 | | | T_{B-M} | 1
11
11
11-1 | 11-11
11-11
1-11 | R: I-II
IR I-III
IR I-III
II III II | | R II-III
II-III
II-II | 11-11
11-11
11-11 | II-II
II-II
II-I | | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 11-111
1-11
1 | | | T_A | HHHHH | RIR | #### ₊ | HI HI H | жжннн | H
H
RI | # # # # # | RI
H
I: | IR
IR
RI | RIRRI | | Continued | Abell | S0851
S0852
S0853
S0853
S0854 | \$0856
\$0857
\$0858
\$0859
\$0860 | \$0861
\$0862
\$0863
\$0864
\$0865 | \$0866
\$0867
\$0868
\$0869
\$0870 | S0871
S0872
S0873
S0874
S0875 | S0876
S0877
S0878
S0879
S0880 | S0881
S0882
S0883
S0884
S0885 | \$0886
\$0887
\$0888
\$0889
\$0889 | \$0891
\$0892
\$0893
\$0894
\$0895 | S0896
S0897
S0898
S0899
S0990 | | 5 - | | | | | | | | | | | | | ABLE | ii. | 246
210
309
323 | 143
23
186
74
79 | 279
250
199
307
248 | 171
105
108
59
113 | 86
71
235
284
302 | 235
226
250
102
169 | 301
239
120
279 | 67
308
265
255 | 1115
280
239
82
82 | 157
240
148
217
263 | | I | llx | 112
87
102
24
82 | 57
249
252
188
233 | 216
287
229
203
243 | 268
201
142
130
247 | 231
265
182
121
273 | 206
1117
188
94
71 | 53
165
53
148
48 | 256
34
26
310
277 | 182
267
222
64
129 | 228
207
139
196
196 | | | Ycen | 82
46
145
-105 | -141
-141
-90
-85 | 115
86
35
143
84 | 7
-59
-105
-51 | -78
-93
71
120
138 | 71
62
86
-62
5 | 137
75
78
-44
115 | -97
144
101
91
-13 | -49
116
75
-82
85 | -7
76
-16
53 | | | x cen | 52
77
62
140
82 | 107
-85
-24
-69 | -123
-65
-39
-79 | -104
-37
22
34
-83 | -101
-18
-18
-109 | 447
70
70
93 | 111
111
111
116 | -92
130
138
-146 | -18
-103
-58
100
35 | -64
-35
-25 | | | Field | F233
F233
F233
F185 | F105
F186
F596
F143 | F186
F026
F340
F462
F400 | F234
F340
F596
F143 | F234
F047
F400
F462
F026 | F234
F186
F234
F340 | F143
F285
F143
F234 | F463
F340
F143
F187 | F597
F341
F047
F528 | F341
F341
F463
F341 | | | 9 | 2.64
2.68
3.24
9.80 | 2.91
3.53
13.72
13.72
18.66 | 1.19
13.09
13.14 | 4.68
3.87
9.10
4.78
0.68 | 5.38
1.95
3.30
1.87 | 5.84
6.13
6.16
5.85
6.04 | 6.45
6.93
6.93 | 5.21
6.33
6.97
7.48 | 7.21
7.21
5.28
5.28 | 8.17
8.42
7.03
8.66 | | | 1 | 9 3 4 4 1 3 9 9 9 9 9 4 4 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 85 -3
60 -3
80 -3
80 -2
80 -2 | 93 - 33 | 49 -3
000 -3
90 -2
75 -3
87 -3 | 56 -3
47 -3
96 -3
71 -3 | 98 -3
60 -3
35 -3
16 -3 | 000
33 - 3
66 - 3 | 85 -3
19 -3
31 -3
67 -3 | 76 -3
54 -3
96 -3 | .92
.94
.23
.23
.23
.51
.51 | | | | 350.
352.
340. | 330.
340.
335.
306. | 345.
315.
15. | 349.
0.
334.
312. | 347.
317.
8.
15. | 350.
344.
351.
0. | 340.
357.
348.
348. | 339.
345. | 24.
320.
18. | 4.64. | | | Dec | 8 23
7 12
6 44
1 54 | 5 14
7 28
9 28
1 31
6 11 | 2 41
7 58
9 13
7 12
3 16 | 9 42
0 59
0 56
1 48
0 37 | 1 18
6 29
7 41
7 02 | 8 31
3 41
1 01
9 41 | 7 17
3 26
8 18
0 40
7 37 | 1 38
7 09
7 51
3 03
0 04 | 0 44
7 39
3 25
6 25
8 14 | 9 58
0 09
8 51
7 59 | | | (2000) | 9 6 9 4 9 | .6 -65
.6 -57
.2 -19
.8 -61 | .8 -52
.7 -77
.2 -39
.1 -27
.5 -33 | .9 -49
.0 -20
.9 -61
.7 -80 | .0 -51
.9 -76
.9 -33
.0 -27 | 2 -48
2 -53
4 -41
2 -59 | .5 -57
.5 -43
.1 -58
.8 -50 | 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | 7 -2
3 -7
6 -2
8 -1 | E 4 4 4 7 . | | | RA (| 20 09.
20 10.
20 10.
20 11.
20 10. | 20 13
20 13
20 14
20 16 | 20 18
20 22
20 19
20 19
20 20 | 20 21.
20 21.
20 23.
20 25.
20 29. | 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20 | 20 29.
20 31.
20 31.
20 32.
20 34. | 20 35
20 35
20 35
20 35
20 35 | 20 37.
20 37.
20 39.
20 40. | 20 20 20 20 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40 | 20 45
20 47
20 47
20 48
20 48 | | | Dec | 32
10
21
53 | 23
38
38
21 | 51
23
22
26 | 52
09
06
58
47 | 28
39
43
13 | 22
22
22
22
22
23 | 28
37
29
51 | 49
02
14
15 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 09
36
03
11 | | | (1950) D | 3 - 48
3 - 48
- 56
- 32 | 0 -65
6 -57
3 -19
5 -61
3 -86 | 0 -52
8 -78
9 -39
1 -27
3 -33 | 2 -49
5 -41
1 -21
7 -61
7 -80 | 3 -51
6 -76
7 -33
0 -27
9 -77 | 6 -48
4 -53
6 -48
1 -41
1 -59 | 6 -57
1 -43
1 -58
2 -50
6 -57 | 1 -31
4 -37
7 -58
3 -53
2 -40 | 8 -20
5 -37
9 -73
6 -26
0 -18 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | RA (19 | 06.
07.
07. | 08.
09.
11.
12. | 15.
15.
15.
16. | 18.
18.
20.
21. | 22. | 25.
27.
29.
30. | 32.
32.
32. | 34.
35.
36. | 37.
38.
39.
40. | 2444
24444
24444
2446 | | | | 51 20
52 20
53 20
54 20
55 20 | 56 20
57 20
58 20
59 20
60 20 | 61 20
62 20
63 20
64 20
65 20 | 66 20
67 20
68 20
69 20
70 20 | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 76 20
77 20
78 20
79 20
80 20 | 81 20
83 20
84 20
85 20 | 20200 | 91 20
93 20
94 20
95 20 | 2000 | | | Abell | 8085
8085
8085
8085 | 808
808
808
808
808
808
808
808
808 | 808
808
808
808
808
808
808 | \$086
\$086
\$086
\$086
\$086 | 208
208
208
208
208
208
208
208
208
208 | \$087
\$087
\$087
\$087
\$088 | S S S S S S S S S S S S S S S S S S S | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 808
808
808
808
808
808
808 | 808
808
808
808
808
808
808
808 | | | 8 | 17.1
17.3
17.3
16.6
17.3 | 15.9
16.0
17.2
15.5 | 17.2
17.4
17.3
17.2 | 16.0
15.6
15.5
15.8 | 15.4
15.3
17.2
15.9
17.2 | 17.0
16.2
17.0
16.3 | 17.4
16.9
17.1
17.1 | 17.4
17.4
17.4
17.1 | 17.2
16.9
17.4
17.4 | 17.5
16.3
17.4
16.9 | |--------|---|--|--
---|--|---|--|---|--|---|---| | | Ω | ουου | 44000 | വവംഗവ | 46649 | ധ ല വ 4 വ | 0 4 N 4 N | ຍນນນຍ | 00004 | စစစညည | 04000 | | | ~ | 00000 | 0000m | 00000 | 00000 | 00000 | 00000 | нооон | 00110 | 30100 | 70007 | | | z | | 0.0467 | | 0.0487 | 0.0290
0.0306
(0.0165) | 0.0602 | | | | | | | Previous | Ω | 00 00 00 00 00 00 00 00 00 00 00 00 00 | | а _ш 8 | 0 2 0 | 80 p | O O | | Q Ö | o BK | | | Obs | 00000 | 2C, 10
10
10
1A
1C | 10,1A
1C
1C
10 | 99999 | 10,1A
10,1C
10
10 | 10000 | 20000 | 10000 | 20202 | 10, 10
10, 10
10 | | | m ₁₀ | 17.3
20.1
19.7
16.4
20.1 | 15.7
15.8
17.6
15.3
21.1 | 17.4
19.8
19.8
17.5 | 15.8
15.4
15.3
15.6 | 15.3
15.1
17.4
15.7
17.2 | 16.9
15.9
16.8
16.1: | 19.7
16.8
16.9
17.1 | 20.1
20.1
20.1
16.9
15.9 | 17.6
16.7
19.7
19.3
20.1 | 20.3
16.1
19.7
16.8 | | | m ₃ | 16.0
18.9
19.5
15.3 | 14.6:
15.1
16.8
14.8 | 16.8
19.1
18.7
15.1 | 15.6
14.4
13.8
14.6
19.0 | 13.9:
14.5
16.1
13.5 | 16.2
14.7:
16.0
13.8: | 19.1
16.0
16.6
15.1
19.3 | 19.73
19.0
18.7
15.4 | 16.7;
15.4′
19.0
17.7
19.3 | 19.9
14.8
19.1
15.9 | | | m | 15.5
18.1
18.5
15.1 | 13.9
13.4
15.6
14.7
20.3 | 16.2
18.2
18.0
13.8 | 14.2
13.3
13.5
12.9
18.0 | 13.3
13.8
15.3
12.1 | 15.0
14.1
13.8:
12.9: | 18.6
14.9
14.2
14.3
18.9 | 19.67
18.4
18.5
14.5 | 16.1
14.8
18.3
17.5 | 19.5
13.9
19.1
14.9 | | | S | 11
98
90
-2 | 29:
3
28
25
132 | 26
109
3
-14 | 3
18
7
6
45 | 27
24
28
13
14 | 7
29
10:
-29?
25 | 53
11
24:
-4: | 127
53
(51)
-4 | 11
-2:
60
14
137 | 55
9:
40
-50
102 | | | T_{B-M} | 1-11
11-11
11-11
11 11 | 11.111111111111111111111111111111111111 | III-III
I III-III | II-II
II II II | II
II-III
I I-II | | HIIH | III?
III-III
II II | II-II
III-III | ::
!!!!
!-!! | | | T_A | ннжнн | HILE | u Ki i ki | IRRI | ERREE. | I I I I I | : KK K :: | il a K K | ığığı | R K K K K | | | 급 | 01
03
04
05 | 00
00
00
00
00
00
00
00
00 | 112 | 16
17
18
19 | 2222 | 25
25
30
30 | 33
33
34
35
35 | \$38
\$38
\$0 | 12544 | 44
44
50
50 | | | Abell | 3090
8090
9090
9090 | \$0906
\$0907
\$0908
\$0909
\$0910 | 8091
8091
8091
8091
8091 | \$091
\$091
\$091
\$091
\$092 | S0921
S0922
S0923
S0924
S0925 | S0926
S0927
S0928
S0929
S0930 | S0931
S0932
S0933
S0934
S0935 | \$0936
\$0937
\$0938
\$0939
\$0940 | S0941
S0942
S0943
S0944
S0945 | S094
S094
S094
S094
S095 | | • | | | | | | | 0, 0, 0, 0, 0, | | | 02 02 02 02 02 | | | , _ | | | | | | | | | | | | | ,
- | | | | | | | | | | | | | ·
 | yn | 92
56
205
273 | 50
257
285
232
170 | 263
139
311
215
101 | 234
261
238
279 | 163
174
267
36
316 | 315
181
119
5
249 | 215
296
131
151 | 230
265
67
95 | 144
1259
107
258 | 44
238
209
217 | | - | xu yu | 9
20
27
12 | 50
257
285
232
170 | 20000 | 0000 | 3 163
9 174
4 267
5 36
8 316 | 315
181
119
5
249 | 0 215
0 296
5 131
7 151
6 181 | 24 80
57 230
05 265
57 67
76 95 | 3 85
5 144
2 107
9 259 | 000 | | | n x | 187 9
169 5
249 20
279 27
228 12 | 4 261 50
3 253 257
1 126 285
8 241 232
6 50 170 | 212
199 1
126 3
256 2
69 1 | 7 62
0 57 2
7 43 2
4 148 2
5 105 2 | 1 133 163
0 9 174
3 124 267
8 125 36
2 148 316 | 1 137 315
295 181
5 290 119
9 244 5
5 264 249 | 1 30 215
80 296
3 275 131
3 187 151
7 246 181 | 24 80
157 230
105 265
257 67
176 95 | 9 213 85
0 165 144
5 129 259
7 232 107
4 229 258 | 0 221
5 48
3 3 2
5 178 2
3 160 2 | | | | 9
20
27
12 | 50
257
285
232
170 | 20000 | 62
57 2
43 2
148 2 | 133 163
9 174
124 267
125 36
148 316 | 137 315
295 181
290 119
244 5
264 249 | 0 215
0 296
5 131
7 151
6 181 | 24 80
57 230
05 265
57 67
76 95 | 213 85
165 144
129 259
232 107
229 258 | 221
48
33 2
178 2
160 2 | | | xcen Ycen XII | -23 -72 187 9
-5 -108 169 25
-85 49 20
-115 109 279 27
-64 -36 228 12 | -97 -114 261 50
-89 93 253 257
38 121 126 285
-77 68 241 232
114 6 50 170 | -48 99 212 2
-35 -25 199 1
38 147 126 3
-92 51 256 2
95 -63 69 1 | 102 -87 62
107 70 57 2
121 97 43 2
16 74 148 2
59 115 105 2 | 155 10 9 174
155 10 9 174
40 103 124 267
19 -128 125 36
16 152 148 316 | 27 151 137 315
-131 17 295 181
-126 -45 290 119
-80 -159 244 5
-100 85 264 249 | 134 51 30 215
84 132 80 296
-111 -33 275 131
-23 -13 187 151
-82 17 246 181 | 140 -84 24 80
7 66 157 230
59 101 105 265
-93 -69 126 95 | -49 -79 213 85
-1 -20 165 144
35 95 129 259
-68 -57 232 107
-65 94 229 258 | -57 -120 221
116 -85 48
131 74 33 2
-14 45 178 2
4 53 160 2 | | | cen Ycen XII | 23 -72 187 9
-5 -108 169 20
85 109 279 27
64 -36 228 12 | 97 -114 261 50
89 93 253 257
38 121 126 285
77 68 241 232
14 6 50 170 | 8 99 212 2
5 -25 199 1
8 147 126 3
2 51 256 2
5 -63 69 1 | -87 62
70 57 2
97 43 2
74 148 2
115 105 2 | 5 10 9 174
5 10 9 174
6 103 124 267
9 -128 125 36
6 152 148 316 | 27 151 137 315
31 17 295 181
26 -45 290 119
80 -159 244 5 | 34 51 30 215
84 132 80 296
11 -33 275 131
23 -13 187 151
82 17 246 181 | 0 -84 24 80
7 66 157 230
9 101 105 265
2 -69 176 95 | 9 -79 213 85
1 -20 165 144
5 95 129 259
6 94 229 258 | 7 -120 221
6 -85 48
1 74 33 2
4 45 178 2
4 53 160 2 | | | xcen Ycen XII | .01 F341 -23 -72 187 9
.04 F529 -85 41 249 20
.59 F286 -115 109 279 27
.80 F529 -64 -36 228 12 | 45 F235 -97 -114 261 50
.06 F286 -89 93 253 257
.80 F341 38 121 126 285
.29 F286 -77 68 241 232
.66 F106 114 6 50 170 | 84 F286 -48 99 212 2
74 F235 -35 -25 199 1
23 F074 38 147 126 3
54 F464 -92 51 256 2
21 F341 95 -63 69 1 | .36 F341 102 -87 62
.20 F341 107 70 57 2
.39 F341 121 97 43 2
.02 F286 16 74 148 2
.54 F144 59 115 105 2 | 30 F286 31 -1 133 163
-29 F341 155 10 9 174
-46 F286 40 103 124 267
-35 F286 39 -128 125 36
-08 F464 16 152 148 316 | .24 F026 27 151 137 315
.22 F185 -131 17 295 181
.22 F287 -126 -45 290 119
.25 F188 -100 85 264 249 | .04 F235 134 51 30 215
.78 F047 84 132 80 296
.52 F287 -111 -33 275 131
.19 F011 -23 -13 187 151
.17 F188 -82 17 246 181 | .89 F235 140 -84 24 80
.51 F107 7 66 157 230
.50 F402 59 101 105 265
.71 F287 -93 -97 257 67
.43 F599 -12 -69 176 95 | .23 F188 -49 -79 213 85
.32 F599 -1 -20 165 144
.20 F107 35 95 129 259
.19 F465 -68 -57 232 107
.35 F236 -65 94 229 258 | 55 F465 -57 -120 221
53 F342 116 -85 48
74 F342 131 74 33
2
02 F011 -14 45 178 2
21 F465 4 53 160 2 | | | Field xcen ycen x11 | 01 F341 -23 -72 187 9
87 F074 -5 -108 169 5
04 F529 -85 129 279 27
80 F529 -64 -36 228 12 | 45 F235 -97 -114 261 50
06 F286 -89 93 253 257
80 F341 38 121 126 285
29 F286 -77 68 241 232
66 F106 114 6 50 170 | 84 F286 -48 99 212 2
74 F235 -35 -25 199 1
23 F074 38 147 126 3
54 F464 -92 51 256 2
21 F341 95 -63 69 1 | 36 F341 102 -87 62
20 F341 107 70 57 2
39 F341 121 97 43 2
02 F36 16 74 148 2
54 F144 59 115 105 2 | 30 F286 31 -1 133 163
29 F341 155 10 9 174
46 F286 40 103 124 267
35 F286 39 -128 125 36
08 F464 16 152 148 316 | 24 F026 27 151 137 315
40 F145 -131 17 295 181
73 F599 -80 -159
25 F188 -100 85 264 249 | 04 F235 134 51 30 215
78 F047 84 132 80 296
52 F287 -111 -33 275 131
19 F011 -23 -13 187 151
17 F188 -82 17 246 181 | 89 F235 140 -84 24 80
51 F107 7 66 157 230
50 F402 59 101 105 265
71 F287 -93 -97 257 67
43 F599 -12 -69 176 95 | 3 F188 -49 -79 213 85
2 F599 -1 -20 165 144
8 F107 35 95 129 259
9 F465 -68 -57 232 107
5 F236 -65 94 229 258 | F465 -57 -120 221
F342 116 -85 48
F342 131 74 33 2
F011 -14 45 178 2
F465 4 53 160 2 | | | Field xcen ycen x11 | 39.01 F341 -23 -72 187 9
34.87 F074 -5 -108 169 5
36.04 F529 -85 1249 20
39.59 F286 -115 109 279 27
36.80 F529 -64 -36 228 12 | 52 -39.45 F235 -97 -114 261 50
.08 -40.06 F286 -89 93 253 257
.23 -39.80 F334 38 121 126 285
.48 -40.29 F286 -77 68 241 232
.40 -37.66 F106 114 6 50 170 | 25 -40.84 F286 -48 99 212 2
53 -40.74 F235 -35 -25 199 1
32 -37.23 F074 38 147 126 3
62 -39.54 F464 -92 51 256 2
87 -41.21 F341 95 -63 69 1 | 1.36 F341 102 -87 62
11.20 F341 107 70 57 2
11.39 F341 121 97 43 2
2.02 F286 16 74 148 2
0.54 F144 59 115 105 2 | 42.30 F286 31 -1 133 163
42.29 F341 155 10 9 174
42.46 F286 40 103 124 267
41.08 F464 16 152 148 316 | 34.24 F026 27 151 137 315
41.40 F145 -131 17 295 181
44.22 F287 -126 -45 290 119
41.73 F599 -80 -159 244
53.25 F188 -100 85 264 249 | 04 -44.04 F235 134 51 30 215
49 -36.78 F047 84 132 80 296
77 -44.52 F287 -111 -33 275 131
42 -30.19 F011 -23 -13 187 151
30 -43.17 F188 -82 17 246 181 | 3 89 F235 140 -84 24 80
0.51 F107 7 66 157 230
4.50 F402 59 101 105 265
4.71 F287 -93 -97 257 67
2.43 FS99 -12 -69 176 95 | 65 -43.23 F188 -49 -79 213 85
63 -42.32 F599 -1 -20 165 144
00 -41.20 F107 35 95 129 259
00 -45.19 F465 -68 -57 232 107
86 -45.35 F236 -65 94 229 258 | 70 -45.55 F465 -57 -120 221
00 -46.53 F342 116 -85 48
60 -46.74 F342 131 74 33 2
25 -31.02 F011 -14 45 178 2
48 -46.21 F465 4 53 160 2 | | | b Field xcen yeen x11 | 45 -39.01 F341 -23 -72 187 9
68 -34.87 F074 -5 -108 169 5
72 -36.04 F529 -85 41 249 20
45 -39.59 F286 -115 109 279 27
17 -36.80 F529 -64 -36 228 12 | 52 -39.45 F235 -97 -114 261 50
08 -40.06 F286 -89 93 253 257
23 -39.80 F341 38 121 126 285
48 -40.29 F286 -77 68 241 232
40 -37.66 F106 114 6 50 170 | 25 -40.84 F286 -48 99 212 2
53 -40.74 F235 -35 -25 199 1
32 -37.23 F074 38 147 126 3
62 -39.54 F464 -92 51 256 2
87 -41.21 F341 95 -63 69 1 | 30 -41.36 F341 102 -87 62
18 -41.20 F341 107 70 57 2
89 -41.39 F341 121 97 43 2
62 -42.02 F286 16 74 148 2
74 -40.54 F144 59 115 105 2 | 72 -42.30 F286 31 -1 133 163
73 -42.29 F341 155 10 9 174
38 -42.46 F286 40 103 124 267
54 -42.35 F286 39 -128 125 36
62 -41.08 F464 16 152 148 316 | 72 -34.24 F026 27 151 137 315
04 -41.40 F145 -131 17 295 181
50 -44.22 F287 -126 -45 290 119
71 -41.73 F599 -80 -159 244 5
06 -43.25 F188 -100 85 264 249 | 04 -44.04 F235 134 51 30 215
49 -36.78 F047 84 132 80 296
7-44.52 F287 -111 -23 275 131
42 -30.19 F011 -23 -13 187 151
30 -43.17 F188 -82 17 246 181 | 53 -43.89 F235 140 -84 24 80
58 -40.51 F107 7 66 157 230
52 -44.50 F402 59 101 105 265
03 -44.71 F287 -93 -97 257 67
39 -42.43 F599 -12 -69 176 95 | -43.23 F188 -49 -79 213 85 -42.32 F599 -1 -20 165 144 -41.20 F107 35 95 129 259 -45.19 F465 -68 -57 232 107 -45.35 F236 -65 94 229 258 | 70 -45.55 F465 -57 -120 221
00 -46.53 F342 116 -85 48
60 -46.74 F342 131 74 33 2
25 -31.02 F011 -14 45 178 2
48 -46.21 F465 4 53 160 2 | | | l b Field xcen ycen x11 | 0.45 -39.01 F341 -23 -72 187 9
22.08 -34.87 F074 -5 -108 169 5
21.72 -36.04 F529 -85 415 109 279 27
20.17 -36.80 F529 -64 -36 228 12 | 346.52 -39.45 F235 -97 -114 261 50
358.08 -40.06 F286 -89 93 253 257
5.23 -39.80 F341 38 121 126 285
357.48 -40.29 F286 -77 68 241 232
330.40 -37.66 F106 114 6 50 170 | 358.25 -40.84 F286 -48 99 212 2 348.53 -40.74 F235 -35 -25 199 1 327.32 -37.23 F074 38 147 126 3 16.62 -39.54 F464 -92 51 256 2 0.87 -41.21 F341 95 -63 69 1 | 0.30 -41.36 F341 102 -87 62
4.18 -41.20 F341 107 70 57 2
4.89 -41.39 F341 121 97 43 2
5.357.62 -42.02 F286 16 74 148 5
9.338.74 -40.54 F144 59 115 105 2 | 9 355.72 -42.30 F286 31 -1 133 163
8 2.73 -42.29 F341 155 10 9 174
1 358.38 -42.46 F286 40 103 124 267
0 352.54 -42.35 F286 39 -128 125 36
0 19.62 -41.08 F464 16 152 148 316 | 5 315.72 -34.24 F026 27 151 137 315
4 336.04 -41.40 F145 -131 17 295 181
6 354.50 -44.22 F287 -126 -45 290 119
6 357.11 -41.73 F599 -80 -159 244 5
2 344.06 -43.25 F188 -100 85 264 249 | 350.04 -44.04 F235 134 51 30 215
320.49 -36.78 F047 84 132 80 296
354.77 -44.52 F287 -111 -33 275 131
307.42 -30.19 F011 -23 -13 187 151
342.30 -43.17 F188 -82 17 246 181 | 5 330.58 -43.89 F235 140 -84 24 80
8 12.22 -44.50 F107 7 66 157 230
6 353.03 -44.51 F27 -93 -97 257
5 28.39 -42.43 F599 -12 -69 176 95 | 339.65 -43.23 F188 -49 -79 213 85
29.63 -42.32 F599 -1 -20 165 144
331.00 -41.20 F107 35 95 129 259
15.30 -45.19 F465 -68 -57 232 107
350.86 -45.35 F236 -65 94 229 258 | 3 13.70 -45.55 F465 -57 -120 221
3.00 -46.53 F342 116 -85 48
5 4.60 -46.74 F342 131 74 33 2
6 308.25 -31.02 F011 -14 45 178 2
2 18.48 -46.21 F465 4 53 160 2 | | | Dec l b Field xcen ycen x11 | 1 10 0.45 - 39.01 F341 - 23 - 72 187 9 1 53 322.08 - 34.87 F074 - 5 - 108 169 5 4 05 21.72 - 36.04 F529 - 85 45 358.45 - 39.59 F286 - 115 109 279 27 5 30 20.17 - 36.80 F529 - 64 - 36 228 12 | 1 57 346.52 -39.45 F235 -97 -114 261 50
3 03 358.08 -40.06 F286 -89 93 253 257
7 34 5.23 -39.80 F341 38 121 126 285
3 31 374.48 -40.29 F286 -77 68 241 232
4 39 330.40 -37.66 F106 114 6 50 170 | 42 57 358.25 -40.84 F286 -48 99 212 2
50 18 348.53 -40.74 F235 -35 -25 199 1
67 07 327.32 -37.23 F074 38 147 126 3
28 53 16.62 -39.54 F464 -92 51 256 2
40 59 0.87 -41.21 F341 95 -63 69 1 | 1 25 0.30 -41.36 F341 102 -87 62 8 30 4.18 -41.20 F341 107 70 57 2 9 5.84 1 121 97 43 2 9 5.84 1 121 97 4 18 2 9 35.42 -40.20 F286 16 74 148 2 9 338.74 -40.54 F144 59 115 105 2 | 49 355.72 -42.30 F286 31 -1 133 163
38 2.73 -42.29 F341 155 10 9 174
51 358.38 -42.45 F286 40 103 124 267
00 15.54 -42.65 F286 40 103 124 267
00 15.62 -41.08 F464 16 152 148 316 | 76 55 315.72 -34.24 F026 27 151 137 315
59 24 336.04 -41.40 F145 -131 17 295 181
45 36 354.50 -44.22 F287 -126 -45 290 119
52 46 25.71 -41.73 F599 -80 -159 244 5
53 12 344.06 -43.25 F188 -100 85 244 249 | 8 48 350.04 -44.04 F235 134 51 30 215
2 18 320.49 -36.78 F047 84 132 80 296
5 23 354.77 -44.52 F287 -111 -33 275 131
5 01 342.74 2 -30.19 F011 -23 -13 187 151
4 28 342.30 -43.17 F188 -82 17 246 181 | 51 19 346.53 -43.89 F235 140 -84 24 80
63 35 330.58 -40.51 F107 7 66 157 230
32 58 12.22 -44.50 F402 59 101 105 265
41 05 28.30 -44.71 F287 -93 -97 257 67
41 05 28.39 -42.43 F599 -12 -69 176 95 | 6 19 339.65 -43.23 F188 -49 -79 213 85
0 11 29.63 -42.32 F599 -1 -20 165 144
3 02 331.00 -41.20 F107 35 95 129 259
0 54 350.30 -45.19 F465 -68 -57 232 107
8 01 350.86 -45.35 F236 -65 94 229 258 | 2 03 13.70 -45.55 F465 -57 -120 221
9 31 3.00 -46.53 F342 116 -85 48
8 25 4.60 -46.74 F342 131 74 33 2
3 56 308.25 -31.02 F011 -14 45 178 2
8 52 18.48 -46.21 F465 4 53 160 2 | | | Dec l b Field xcen ycen x11 | 2 -41 10 0.45 -39.01 F341 -23 -72 187 9
5 -71 53 322.08 -34.87 F074 -5 -108 169 5
1 -24 05 21.72 -36.04 F529 -85 41 249 20
8 -42 45 358.45 -39.59 F286 -115 109 279 27
8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 4 -51 57 346.52 -39.45 F235 -97 -114 261 50
3 -43 03 358.08 -40.06 F286 -89 93 253 257
0 -37 34 5.23 -39.40 F741 38 121 126 285
5 -43 31 357.48 -40.29 F286 -77 68 241 232
4 -64 39 330.40 -37.66 F106 114 6 50 170 | 6 -42 57 358.25 -40.84 F286 -48 99 212 2
7 -50 18 348.53 -40.74 F235 -35 -25 199 1
6 -67 07 327.32 -37.23 F074 38 147 126 3
6 -28 53 16.62 -39.54 F464 -92 51 256 2
0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 7 -41 25 0.30 -41.36 F341 102 -87 62 7 -38 30 4.18 -41.20 F341 107 70 57 2 9 -37 59 4.89 -41.39 F341 121 97 43 2 6 -57 39 338.74 -40.54 F144 59 115 105 2 | 8 -44 49 355.72 -42.30 F286 31 -1 133 163
9 -39 38 2.73 -42.29 F341 155 10 9 174
5 -42 51 358.38 -42.46 F286 40 103 124 267
9 -47 10 352.54 -42.35 F286 99 -128 125 36
8 -27 00 19.62 -41.08 F464 16 152 148 316 | 7 -76 55 315.72 -34.24 F026 27 151 137 315
0 -59 24 336.04 -41.40 F145 -131 17 295 181
0 -45 36 354.50 -44.22 F287 -126 -45 290 119
8 -22 46 5.71 -41.73 F599 -80 -159 244 5
0 -53 12 344.06 -43.25 F188 -100 85 264 249 | 1 -48 48 350.04 -44.04 F235 134 51 30 215
0 -72 18 320.49 -36.78 F047 84 132 80 296
6 -45 23 354.77 -44.52 F287 -111 -33 275 131
5 -85 28 342.30 -43.17 F188 -82 17 246 181 | 8 -51 19 346-53 -43.89 F235 140 -84 24 80
6 -63 35 330.58 -40.51 F107 7 66 157 230
7 -32 58 12.22 -44.50 F402 59 101 105 265
4 -46 353 03 -44.71 F287 -93 -97 257 67
2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | 4 -56 19 339.65 -43.23 F188 -49 -79 213 85
0 -20 11 29.63 -42.32 F599 -1 -20 165 144
2 -63 02 331.00 -41.20 F107 35 95 129 259
4 -30 54 15.30 -45.19 F465 -68 -57 232
107
3 -48 01 350.86 -45.35 F236 -65 94 229 258 | 3 -32 03 13.70 -45.55 F465 -57 -120 221
9 -39 31 3.00 -46.53 F342 116 -85 48
0 -38 25 4.60 -46.74 F342 131 74 33 2
3 -83 56 308.25 -31.02 F011 -14 45 178 2
7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | A (2000) Dec l b Field xcen yeen x11 | 49.2 -41 10 0.45 -39.01 F341 -23 -72 187 9 51.5 -71 53 322.08 43.87 F074 -5 -108 169 5 50.1 -24 05 21.72 -36.04 F529 -85 41 249 20 51.8 -42 45 358.45 -39.59 F286 -115 109 279 27 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 52.4 -51 57 346.52 -39.45 R235 -97 -114 261 50
54.3 -43 03 358.08 -40.06 R286 -89 93 253 257
55.0 -37 34 5.23 -39.80 R341 38 121 126 285
55.5 -43 31 37.48 -40.29 R286 -77 68 241 232
57.4 -64 39 330.40 -37.66 R106 114 6 50 170 | 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 01.7 -41 25 0.30 -41.36 F341 102 -87 62 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 02.9 -37 59 4.89 -41.39 F341 121 97 43 2 05.1 43 26 25.62 -42.02 F286 16 74 148 2 06.6 -57 39 338.74 -40.54 F144 59 115 105 2 | 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163 06.9 -39 38 2.73 -42.29 F341 155 10 9 174 07.5 -42 51 358.38 -42.46 F286 40 103 124 267 07.9 -47 10 19.62 -41.35 F286 39 -128 125 36 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 15.7 -76 55 315.72 -34.24 F026 27 151 137 315 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181 18.0 -45 36 354.50 -44.22 F287 -126 -45 290 119 17.8 -22 46 25.71 -41.73 F599 -80 -159 244 519.0 -53 12 344.06 -43.25 F188 -100 85 244 249 | 19.1 -48 48 350.04 -44.04 F235 134 51 30 215 21.0 -72 18 320.49 -36.78 F047 84 132 80 296 19.6 -45 23 354.77 -44.52 F287 -111 -33 275 131 27.5 -85 01 307.42 -30.19 F011 -23 -13 187 151 20.5 -54 28 342.30 -43.17 F188 -82 17 246 181 | 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80 21.6 -63 35 330.58 -40.51 F107 7 66 157 230 20.4 -45 58 12.22 -44.50 F402 59 101 105 265 21.4 -46 28.39 -44.71 F287 -93 -97 257 67 23.2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | -56 19 339.65 -43.23 F188 -49 -79 213 85 -20 11 29.63 -42.32 F599 -1 -20 165 144 -63 02 331.00 -41.20 F107 35 95 129 259 -30 54 15.30 -45.19 F465 -68 -57 232 107 -48 01 350.86 -45.35 F236 -65 94 229 258 | 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 28.9 -39 31 3.00 -46.53 F342 116 -85 48 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | (2000) Dec 1 b Field xeen yeen x11 | 9.2 -41 10 0.45 -39.01 F341 -23 -72 187 9
1.5 -71 53 322.08 34.87 F074 -5 -108 169 5
0.1 -24 05 21.72 -36.04 F229 -85 41 249 20
1.8 -42 45 358.45 -39.59 F286 -115 109 279 27
1.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 2.4 -51 57 346.52 -39.45 F235 -97 -114 261 50
4.3 -43 03 358.08 -40.06 F286 -89 93 253 257
5.5 -37 34 5.23 -39.80 F341 38 121 126 285
5.5 -43 31 330.48 -40.29 F286 -77 68 241 232
7.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 8.6 -42 57 358.25 -40.84 F286 -48 99 212 2
9.7 -50 18 348.53 -40.74 F235 -35 -25 199 1
0.6 -67 07 327.32 -37.23 F074 38 147 126 3
0.6 -28 53 16.62 -39.54 F464 -92 51 256 2
1.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 7 -41 25 0.30 -41.36 F341 102 -87 62 7 -38 30 4.18 -41.20 F341 107 70 57 2 9 -37 59 4.89 -41.39 F341 121 97 43 2 6 -57 39 338.74 -40.54 F144 59 115 105 2 | 6.8 -44 49 355.72 -42.30 F286 31 -1 133 163
6.9 -39 38 2.73 -42.29 F341 155 10 9 174
7.5 -42 51 358.38 -42.46 F286 40 103 124 267
7.9 -47 10 19.62 -41.08 F464 16 152 148 316
9.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 5.7 -76 55 315.72 -34.24 F026 27 151 137 315
7.0 -59 24 336.04 -41.40 F145 -131 17 295 181
8.0 -45 36 354.50 -44.22 F287 -126 -45 290 119
7.8 -22 46 25.71 -41.73 F599 -80 -159 244 5
9.0 -53 12 344.06 -43.25 F188 -100 85 244 249 | 1 -48 48 350.04 -44.04 F235 134 51 30 215
0 -72 18 320.49 -36.78 F047 84 132 80 296
6 -45 23 354.77 -44.52 F287 -111 -33 275 131
5 -85 28 342.30 -43.17 F188 -82 17 246 181 | 0.8 -51 19 346.53 -43.89 F235 140 -84 24 80
1.6 -63 35 330.58 -40.51 F107 7 66 157 230
7 -32 58 12.22 -44.50 F402 59 101 105 265
1.4 -46 36 353.03 -44.71 F287 -93 -97 257 67
3.2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | 4.4 -56 19 339.65 -43.23 F188 -49 -79 213 85
4.0 -20 11 29.63 -42.32 F599 -1 -20 165 144
6.2 -63 05 331.00 -41.20 F107 35 95 129 259
6.4 -30 54 315.30 -45.19 F465 -68 -57 232 107
6.3 -48 01 35.86 -45.35 F236 -65 94 229 258 | 6.3 -32 03 13.70 -45.55 F465 -57 -120 221
8.9 -39 31 3.00 -46.53 F342 116 -85 48
0.0 -38 25 4.60 -46.74 F342 131 74 33 2
6.3 -83 56 308.25 -31.02 F011 -14 45 178 2
1.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | RA (2000) Dec l b Field xcen yeen x11 | 0 49.2 -41 10 0.45 -39.01 F341 -23 -72 187 9 0 51.5 -71 53 322.08 -34.87 F074 -5 -108 169 5 0 50.1 -24 05 21.72 -36.04 F529 -85 41 249 20 0 51.8 -42 45 358.45 -39.59 F286 -115 109 279 270 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 0 52.4 -51 57 346.52 -39.45 F235 -97 -114 261 50 0 54.3 -43 03 358.08 -40.06 F286 -89 93 253 257 0 55.0 -37 34 5.23 -39.80 F341 38 121 126 285 0 55.5 -43 31 37.48 -40.29 F286 -77 68 241 232 0 57.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 0 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 0 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 1 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 1 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 1 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 1 01.7 -41 25 0.30 -41.36 F341 102 -87 62 1 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 1 02.9 -37 59 4.89 -41.39 F341 121 97 43 2 1 05.1 -43 26 357 62 -42.02 F286 1 74 148 2 1 06.6 -57 39 338.74 -40.54 F144 59 115 105 2 | 1 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163
1 06.9 -39 38 2.73 -42.29 F341 155 10 9 174
1 07.5 -42 51 358.38 -42.46 F286 40 103 124 267
1 07.9 -47 10 35.54 -42.35 F286 39 -128 125 36
1 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 1 15.7 -76 55 315.72 -34.24 F026 27 151 137 315 1 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181 1 18.0 -45 36 354.50 -44.22 F287 -126 -45 290 119 1 17.8 -22 46 5.71 -41.73 F599 -80 -159 244 5 1 19.0 -53 12 344.06 -43.25 F188 -100 85 264 249 | 1 19.1 -48 48 350.04 -44.04 F235 134 51 30 215
1 21.0 -72 18 320.49 -36.78 F047 84 132 80 296
1 19.6 -45 23 354.77 -44.52 F287 -111 -33 275 131
1 27.5 -85 01 307.42 -30.19 F011 -23 -13 187 151
1 20.5 -54 28 342.30 -43.17 F188 -82 17 246 181 | 1 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80
1 21.6 -63 35 330.58 -40.51 F107 7 66 157 230
1 20.7 -32 58 12.22 -44.50 F402 59 101 105 265
1 21.4 -46 36 33.03 -44.71 F287 -93 -97 257 67
1 23.2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | 1 24.4 -56 19 339.65 -43.23 F188 -49 -79 213 85
1 24.0 -20 11 29.63 -42.32 F599 -1 -20 165 144
1 26.2 -63 02 331.00 -41.20 F107 35 95 129 259
1 25.4 -30 54 15.30 -45.19 F465 -68 -57 232 107
1 26.3 -48 01 310.86 -45.35 F236 -65 94 229 258 | 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 28.9 -39 31 3.00 -46.53 F342 116 -85 48 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | Dec RA (2000) Dec l b Field xeen yeen xtt | 1 2 2 0 49.2 -41 10 0.45 -39.01 F341 -23 -72 187 9 2 05 20 51.5 -71 53 322.08 -34.87 F074 -5 -108 169 5 2 0 50.1 -24 05 2 1.72 -36.04 F529 -85 415 109 279 27 57 20 51.8 -42 45 358.45 -39.59 F286 -115 109 279 27 5 42 20 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 52 09 20 52.4 -51 57 346.52 -39.45 F235 -97 -114 261 50
43 15 20 54.3 -43 03 358.08 -40.06 F286 -89 93 253 257
37 46 20 55.0 -37 34 5.23 -39.80 F341 38 121 126 285
43 43 20 55.5 -43 31 350.48 -40.29 F286 -77 68 241 232
64 51 20 57.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 43 09 20 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 50 30 20 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 67 19 21 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 29 05 21 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 41 11 21 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 41 37 21 01.7 -41 25 0.30 -41.36 F341 102 -87 62 38 42 21 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 38 11 21 02.9 -37 59 48 9 -41.39 F341 121 97 43 2 43 38 21 05.1 -43 26 35.62 -42.02 F286 6 16 74 148 2 57 52 21 06.6 -57 39 338.74 -40.54 F144 59 115 105 2 | 02 21 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163
51 21 06.9 -39 38 2.73 -42.29 F341 155 10 9 174
04 21 07.5 -42 51 358.38 -42.46 F286 40 103 124 267
23 21 07.9 -47 10 35.54 -42.35 F286 39 -128 125 36
13 21 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 77 08 21 15.7 -76 55 315.72 -34.24 F026 27 151 137 315 59 37 21 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181 22 59 21 18.0 -45 36 354.50 -44.22 F287 -126 -45 290 119 22 59 21 17.8 -22 46 25.71 -41.73 F599 -80 -159 244 55 59 21 19.0 -53 12 344.06 -43.25 F188 -100 85 244 249 | 49 01 21 19.1 -48 48 350.04 -44.04 F235 134 51 30 215
72 31 21 21.0 -72 18 320.49 -36.78 F047 84 132 80 296
45 36 21 19.6 -45 23 354.77 -44.52 F287 -111 -33 275 131
85 14 21 27.5 -85 01 307.42 -30.19 F011 -23 -13 187 151
54 41 21 20.5 -54 28 342.30 -43.17 F188 -82 17 246 181 | 51 32 21 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80 63 48 21 21.6 -63 35 330.58 -40.51 F107 7 66 157 230 73 11 21 20.7 7 25 8 12.22 -44.50 F402 59 101 105 265 44 59 12 12.4 -46 36 353.03 -44.71 F287 -93 -97 257 67 21 18 21 23.2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | 5 2 2 1 24.4 -56 19 339.65 -43.23 F188 -49 -79 213 85 0 24 21 24.0 -20 11 29.63 -42.32 F599 -1 -20 165 144 3 15 21 26.2 -63 0 2 31.00 -41.20 F107 35 95 129 259 1 0 7 21 25.4 -30 54 350.00 -45.19 F465 -68 -57 232 107 1 21 26.3 -48 01 350.86 -45.35 F236 -65 94 229 258 | 17 21 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 45 21 28.9 -39 31 3.00 -46.53 F342 116 -85 48 8 39 21 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 4 10 21 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 9 06 21 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | Dec RA (2000) Dec l b Field xeen yeen xtt | .9 -41 22 20 49.2 -41
10 0.45 -39.01 F341 -23 -72 187 9 4 -72 05 20 51.5 -71 53 322.08 -34.87 F074 -5 -108 169 5 2 -24 17 20 50.1 -24 05 21.72 -36.04 F529 -85 415 109 279 27 5 -42 57 20 51.8 -42 45 358.45 -39.59 F286 -115 109 279 279 8 -25 42 20 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | .8 -52 09 20 52.4 -51 57 346.52 -39.45 F235 -97 -114 261 50 .0 -43 15 20 54.3 -43 03 358.08 -40.06 F286 -89 93 253 257 .0 -43 15 20 54.3 -43 04 5.23 -39.80 F341 38 121 126 285 .2 -43 43 20 55.5 -43 31 37.48 -40.29 F286 -77 68 241 232 .1 -64 51 20 57.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 3 -43 09 20 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 2 -50 30 20 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 2 -67 19 21 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 6 -29 05 21 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 7 -41 11 21 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | .4 -41 37 21 01.7 -41 25 0.30 -41.36 F341 102 -87 62 5 -38 42 21 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 7 2 1 2 1 2 1 2 2 2 3 3 2 3 4 3 5 4 4 2 2 2 0 5 1 2 2 3 3 5 4 4 3 5 4 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 | .5 -45 02 21 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163
.7 -39 51 21 06.9 -39 38 2.73 -42.29 F341 155 10 9 174
.2 -43 04 21 07.5 -42 51 358.38 -42.46 F286 40 103 124 267
.5 -47 23 21 07.9 -47 10 35.54 -42.35 F286 39 -128 125 36
.8 -27 13 21 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | .9 -77 08 21 15.7 -76 55 315.72 -34.24 F026 27 151 137 315
.2 -59 37 21 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181
.7 -45 49 21 180 -45 23 35 45.04 -41.25 F287 -126 -45 290 119
.9 -22 59 21 17.8 -22 46 25.71 -41.73 F599 -80 -159 244 5
.5 -53 25 21 19.0 -53 12 344.06 -43.25 F188 -100 85 264 249 | 7 - 49 01 21 19.1 - 48 48 350.04 - 44.04 F235 134 51 30 215
2 - 72 31 21 21.0 - 72 18 320.49 - 36.78 F047 84 132 80 296
3 - 45 56 21 19.6 - 45 23 354.77 - 44.52 F287 - 111 - 23 275 131
6 - 85 14 21 27.5 - 85 01 37.42 - 30.19 F011 - 23 - 13 187 151
9 - 54 41 21 20.5 - 54 28 342.30 - 43.17 F188 - 82 17 246 181 | .3 -51 32 21 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80 .6 -63 48 21 21.6 -63 35 330.58 -40.51 F107 7 66 157 230 .7 -33 11 21 20.7 -32 58 12.22 -44.50 F402 59 101 105 265 .1 -46 49 21 21.4 -46 36 35.33 -44.71 F287 -93 -97 257 67 4 -21 18 21 23.2 -21 105 28.39 -42.43 F599 -12 -69 176 95 | .8 -56 32 21 24.4 -56 19 339.65 -43.23 F188 -49 -79 213 85 .2 -20 24 21 24.0 -20 11 29.63 -42.32 F599 -1 -20 165 144 .3 -63 15 21 26.2 -63 02 331.00 -41.20 F107 35 95 129 259 .4 -31 07 21 25.4 -30 54 15.30 -45.19 F465 -68 -57 232 107 0 -48 15 21 26.3 -48 0 3 50 50 6 -45.35 F236 -65 94 229 258 | .3 -32 17 21 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 8 -39 45 21 28.9 -39 31 3.00 -46.53 F342 116 -85 48 8 -39 -38 39 21 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 3 -84 10 21 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 8 -29 06 21 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | (1950) Dec RA (2000) Dec <i>l b</i> Field <i>x_{cen} y_{cen} x_{tl}</i> | 45.9 -41 22 20 49.2 -41 10 0.45 -39.01 F341 -23 -72 187 9 46.4 -72 05 20 51.5 -71 53 322.08 -34.87 F074 -5 -108 169 5 47.2 -24 17 20 50.1 -24 05 21.72 -36.04 F529 -85 41 249 20 48.5 -42 57 20 51.8 -42 45 358.45 -39.59 F286 -115 109 279 27 48.8 -25 42 20 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 48.8 -52 09 20 52.4 -51 57 346.52 -39.45 F235 -97 -114 261 50 51.0 -43 15 20 54.3 -43 03 358.08 -40.06 F286 -89 93 253 257 51.8 -37 46 20 55.0 -37 34 5.23 -39.80 F341 38 121 126 285 52.2 -43 43 20 55.5 -43 31 357.48 -40.29 F286 -77 68 241 232 53.1 -64 51 20 57.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 55.3 -43 09 20 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 56.2 -50 30 20 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 56.2 -67 19 21 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 57.6 -29 05 21 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 57.7 -41 11 21 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | 58.4 -41 37 21 01.7 -41 25 0.30 -41.36 F341 102 -87 62 58.5 -38 42 21 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 59.7 -38 11 21 02.9 -37 59 4.89 -41.39 F341 121 97 43 2 01.8 -43 38 21 05.1 -43 26 35.62 -42.02 F286 16 74 148 2 02.8 -57 52 21 06.6 -57 39 338.74 -40.54 F144 59 115 105 2 | 03.5 -45 02 21 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163 03.7 -39 51 21 06.9 -39 38 2.73 -42.29 F341 155 10 9 174 04.2 -43 04 2 107.5 -42 51 358.38 -42.46 F286 40 103 124 267 06.5 -47 23 21 07.9 -47 10 35.54 -42.35 F286 39 -128 125 36 06.8 -27 13 21 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 09.9 -77 08 21 15.7 -76 55 315.72 -34.24 F026 27 151 137 315 13.2 -59 37 21 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181 14.7 -454 49 21 18.0 -45 36 354.50 -44.25 F287 -126 -455 29 119 14.9 -22 59 21 17.8 -22 46 25.71 -41.73 F599 -80 -159 244 5 15.5 -53 25 21 19.0 -53 12 344.06 -43.25 F188 -100 85 244 249 | 15.7 -49 01 21 19.1 -48 48 350.04 -44.04 F235 134 51 30 215 16.2 -72 31 21 21.0 -72 18 320.49 -36.78 F047 84 132 80 296 16.3 -45 36 21 19.6 -45 23 354.77 -44.52 F287 -111 -33 275 131 16.3 -45 14 21 27.5 -85 01 307.42 -30.19 F011 -23 -13 187 151 16.9 -54 41 21 20.5 -54 28 342.30 -43.17 F188 -82 17 246 181 | 17.3 -51 32 21 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80 17.6 -63 48 21 21.6 -63 35 330.58 -40.51 F107 7 66 157 230 17.7 -32 58 12.22 -44.50 F402 59 101 105 265 18.1 -46 49 21 21.4 -46 36 353.03 -44.71 F287 -93 -97 257 67 20.4 -21 18 21 23.2 -21 05 28.39 -42.43 F599 -12 -69 176 95 | 20.8 -56 32 21 24.4 -56 19 339.65 -43.23 F188 -49 -79 213 85 21.2 -20 24 21 24.0 -20 11 29.63 -42.32 F599 -1 -20 165 144 22.3 -63 15 21 26.2 -63 02 331.00 -41.20 F107 35 95 129 259 254 -31 07 21 25.4 -30 54 13.30 -45.19 F465 -68 -57 232 107 23.0 -48 15 21 26.3 -48 01 350.86 -45.35 F236 -65 94 229 258 | 25.3 -32 17 21 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 25.8 -39 45 21 28.9 -39 31 3.00 -46.53 F342 116 -85 48 26.9 -38 39 21 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 27.3 -84 10 21 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 28.8 -29 06 21 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | | Dec RA (2000) Dec l b Field xeen yeen xtt | 5.9 -41 22 20 49.2 -41 10 0.45 -39.01 F341 -23 -72 187 9 6.4 -72 05 20 51.5 -71 53 322.08 -34.87 F074 -5 -108 169 5 7.2 -24 17 20 50.1 -24 05 21.72 -36.04 F529 -85 41 249 20 8.5 -42 57 20 51.8 -42 45 358.45 -39.59 F286 -115 109 279 279 8.8 -25 42 20 51.8 -25 30 20.17 -36.80 F529 -64 -36 228 12 | 8.8 -52 09 20 52.4 -51 57 346.52 -39.45 F235 -97 -114 261 50
1.0 -43 15 20 54.3 -43 03 358.08 -40.06 F286 -89 93 253 257
1.8 -37 46 20 55.0 -37 34 5.23 -39.40 F741 38 121 126 285
2.2 -43 43 20 55.5 -43 31 357.48 -40.29 F286 -77 68 241 232
3.1 -64 51 20 57.4 -64 39 330.40 -37.66 F106 114 6 50 170 | 5.3 -43 09 20 58.6 -42 57 358.25 -40.84 F286 -48 99 212 2 6.2 -50 30 20 59.7 -50 18 348.53 -40.74 F235 -35 -25 199 1 6.2 -67 19 21 00.6 -67 07 327.32 -37.23 F074 38 147 126 3 7.6 -29 05 21 00.6 -28 53 16.62 -39.54 F464 -92 51 256 2 7.7 -41 11 21 01.0 -40 59 0.87 -41.21 F341 95 -63 69 1 | .4 -41 37 21 01.7 -41 25 0.30 -41.36 F341 102 -87 62 5 -38 42 21 01.7 -38 30 4.18 -41.20 F341 107 70 57 2 7 2 1 2 1 2 1 2 2 2 3 3 2 3 4 3 5 4 4 2 2 2 0 5 1 2 2 3 3 5 4 4 3 5 4 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 | .5 -45 02 21 06.8 -44 49 355.72 -42.30 F286 31 -1 133 163
.7 -39 51 21 06.9 -39 38 2.73 -42.29 F341 155 10 9 174
.2 -43 04 21 07.5 -42 51 358.38 -42.46 F286 40 103 124 267
.5 -47 23 21 07.9 -47 10 35.54 -42.35 F286 39 -128 125 36
.8 -27 13 21 09.8 -27 00 19.62 -41.08 F464 16 152 148 316 | 9.9 -77 08 21 15.7 -76 55 315.72 -34.24 F026 27 151 137 315 33.2 -59 37 21 17.0 -59 24 336.04 -41.40 F145 -131 17 295 181 4.7 -45 49 21 18.0 -45 36 354.50 -44.22 F287 -126 -45 29 119 4.5 -22 59 21 17.8 -22 46 5.71 -41.73 F599 -80 -159 244 5 5.5 -53 25 21 19.0 -53 12 344.06 -43.25 F188 -100 85 264 249 | 6.2 -72 31 21 19.1 -48 48 350.04 -44.04 F235 134 51 30 215 6.2 -72 31 21 21.0 -72 18 320.49 -36.78 F047 84 132 80 296 6.3 -45 36 21 19.6 -45 23 354.77 -44.52 F287 -111 -33 275 131 6.5 -85 14 21 27.5 -85 3 34.77 -34.52 F281 -13 187 151 6.9 -54 41 21 20.5 -54 28 342.30 -43.17 F188 -82 17 246 181 | 7.3 -51 32 21 20.8 -51 19 346.53 -43.89 F235 140 -84 24 80
7.6 -63 48 21 21.6 -63 35 330.58 -40.51 F107 7 66 157 230
7.7 -33 11 21 20.7 -32 58 12.22 -44.50 F402 59 101 105 265
8.1 -46 49 21 21.4 -46 36 353.03 -44.71 F287 -93 -97 257 67
0.4 -21 18 21 23.2 -21 05 28.19 -42.43 F599 -12 -69 176 95 | 0.8 -56 32 21 24.4 -56 19 339.65 -43.23 F188 -49 -79 213 85
1.2 -20 24 21 24.0 -20 11 29.63 -42.32 F599 -1 -20 165 144
2.3 -63 15 21 26.2 -63 02 331.00 -41.20 F107 35 95 129 259
2.4 -31 07 21 25.4 -30 54 15.30 -45.19 F465 -68 -57 232 107
3.0 -48 15 21 26.3 -48 01 350.86 -45.35 F236 -65 94 229 258 | 3.3 -32 17 21 26.3 -32 03 13.70 -45.55 F465 -57 -120 221 5.8 -39 45 21 28.9 -39 31 3.00 -46.53 F342 116 -85 48 6.9 -38 39 21 30.0 -38 25 4.60 -46.74 F342 131 74 33 2 7.3 -84 10 21 36.3 -83 56 308.25 -31.02 F011 -14 45 178 2 8.8 -29 06 21 31.7 -28 52 18.48 -46.21 F465 4 53 160 2 | | a | |---------| | ž | | Ž. | | 11 | | ō. | | \circ | | | | 5 | | Щ | | ij | | g | | TA | | | B | 16.3
16.2
16.9
17.4 | 17.4
16.2
16.6
15.7
17.1 | 17.4
17.4
15.2
16.2
17.2 | 17.4
17.2
15.4
17.4 | 16.1
17.4
17.3
15.3 | 16.8
17.2
16.7
17.5
16.2 | 14.7
17.0
16.3
17.2 | 17.5
16.0
16.0
15.5
16.8 | 17.4
17.3
17.2
17.3 | 17.4
15.6
17.4
16.3 | |------------|-----------------|--|--|--|--|--|--|--
--|--|--| | | Q | 44000 | 0 4 N 4 N | ტ ტ ტ 4 დ | ୧୧ ୯ ୧ ୧ | 40000 | ភេ ភេស ១ ។ | 4 W 4 W W | 0 4 4 W W | ດຄບຄຄ | ი ს ბ 4 ღ | | | R | 00000 | 00000 | 00000 | 310016 | 0 0 0 0 0 | 00000 | 00000 | 0000 | 00000 | 00100 | | | Z | 0.0569 | 0.0640 | | 0.0534 | 0.0324 | 0.0543 | 0.0347 | 0.0405 | | (0.1611) | | | Previous | 0 | o gg | д д | 8 | BDKO | D M | SO O | ×00 | | | | | Obs | 10000 | 10
10
50
10
10 | 10
10,20
10,20 | 10
10
10
10 | 10000 | 99999 | 10000 | 20220 | 22222 | 10111 | | | m ₁₀ | 16.1
16.0
16.8
19.7
17.2 | 19.8
16.0:
16.4
15.5 | 20.0
20.0
14.9:
16.0 | 19.9
17.5
15.3
19.8 | 15.9
19.7
19.7
15.1 | 16.6
17.4
16.5
20.3
16.1 | 14.5
16.8
16.1
17.1 | 20.5
15.8
15.8
15.3 | 20.1
18.5
17.4
19.3 | 19.7
15.4
19.9
16.1 | | | m ₃ | 15.5
14.8:
16.0 | 19.3
15.2
15.8
15.6 | 19.8
14.8
15.2 | 19.5 | 19.1
19.1
19.2
18.0 | 15.3
16.8
15.9
19.9 | 13.5
15.8
15.8
15.8 | 119.3 | 19.6
18.0
16.6
18.7
16.1 | 19.2
13.7
19.5
14.9 | | | m ₁ | 15.1
13.9
14.7
18.6
15.4 | 18.9
14.5
13.2
15.2
15.1 | 19.3
13.0
14.8
15.5 | 19.1
13.1
18.9 | 12.1
18.2
13.6
15.6 | 14.6
16.0
15.2
19.3 | 13.2
15.4
15.4
16.1 | 19.1
12.9
14.1
13.3 | 19.2
16.7
15.6
17.5 | 18.8
12.7
19.3
14.6 | | | ٥ | -12
23
6
34: | 127
12
20
7
7 | 47
26
10
-5 | (98)
19
20
(53)
179 | 0
(180)
-17
18
12 | 163
163
163 | 21
-64
-31
29 | 88
20
16
25
-68 | 96
27
19
25
17 | 92
78
78
-8 | | | T_{B-M} | 11
11
11-11
11-111 | :::::::::::::::::::::::::::::::::::::: | | :::::::::::::::::::::::::::::::::::::: | 1-11
11-111?
111-111:
1-111: | 1-11
11-11
11:11
11:11 | | | | 111111111111111111111111111111111111111 | | | T_A | HHHH | жнннн | н инин | I
IR?
IR? | I R I I I | жннжн | RI I | # H H # H | i k k k k | йнкнн | | ominuea | Abell | \$0951
\$0952
\$0953
\$0954
\$0955 | \$0956
\$0957
\$0958
\$0959
\$0960 | \$0961
\$0962
\$0963
\$0964
\$0964 | \$0966
\$0967
\$0968
\$0969
\$0970 | S0971
S0972
S0973
S0974
S0975 | \$0976
\$0977
\$0978
\$0979
\$0980 | S0981
S0982
S0983
S0984
S0985 | \$0986
\$0987
\$0988
\$0989
\$0990 | \$0991
\$0992
\$0993
\$0994
\$0994 | \$0996
\$0997
\$0998
\$0999
\$1000 | | <u>_</u> - | | | | | | | | | | | | | LABLE | ya | 171
144
304
-1
242 | 302
286
91
43
265 | 8
288
216
216 | 237
287
66
286
171 | 68
0
75
98
279 | 178
89
17
73
310 | 118
128
196
62
242 | 172
23
253
148
253 | 327
252
193
145 | 170
146
305
105
223 | | | nx. | 66
242
289
172
173 | 135
126
126
109
265 | 200
197
179
165 | 315
282
282
66
300
94 | 28
91
158
270
127 | 249
115
85
0
200 | 224
196
239
178
233 | 85
215
227
227
158
158 | 53
202
191
135
148 | 195
100
187
108
71 | | | ycen | 7
-20
140
-165
78 | 138
122
-73
-121
101 | -156
-159
124
52
52 | 73
123
-98
122
7 | -96
-164
-89
-66 | 14
-75
-147
-91 | -46
-36
-102
-102 | -141
-141
89
-16
89 | 163
88
29
-19
17 | 6
-18
141
-59
59 | | | x cen | 98
-78
-125
-8 | 29
38
38
55
-101 | -36
-33
-15
-15
120 | -151
-118
-118
-136 | 136
73
-106 | -85
49
79
164
-36 | -60
-32
-75
-14
-69 | 79
-51
-63
-63 | 111
-38
-27
29
16 | -31
-23
56
93 | | | Field | F599
F403
F048
F145 | F188
F188
F188
F287 | F531
F531
F531
F343
F287 | F288
F108
F236
F288
F403 | F287
F403
F011
F288 | F108
F600
F343
F188 | F189
F108
F601
F108 | F075
F601
F146
F237
F108 | F075
F344
F011
F048 | F146
F404
F146
F601
F404 | | | q | -43.88
-47.06
-37.80
-42.15 | -45.79
-45.84
-44.84
-47.36
-37.70 | -47.33
-47.41
-46.54
-49.34 | -49.05
-43.42
-47.57
-49.48 | -48.93
-49.94
-29.67
-49.37 | -42.85
-48.20
-50.51
-46.96
-39.17 | -47.60
-43.16
-50.02
-42.73
-49.85 | -41.04
-51.41
-47.56
-50.88 | -43.08
-53.74
-53.82
-30.85 | -47.31
-54.59
-48.75
-52.87 | | | 1 | 31.14
9.36
320.13
330.62 | 344.60
344.11
339.12
351.83
319.06 | 20.53
20.47
28.14
3.93 | 357.01
330.53
344.81
358.34 | 352.17
5.42
305.79
352.81 | 327.70
30.90
357.98
337.60 | 338.50
325.90
34.98
324.24 | 321.01
30.35
334.33
345.58 | 323.92 -
4.60 -
2.71 -
306.58 - | 331.90 -
9.68 -
335.06 -
33.66 -
12.16 - | | | RA (2000) Dec | 21 31.8 -19 38
21 32.1 -35 11
21 34.4 -72 02
21 34.9 -62 54
21 39.5 -83 20 | 21 34.7 -52 13
21 35.6 -52 32
21 36.3 -56 11
21 37.5 -47 02
21 39.4 -72 48 | 21 37.9 -27 42
21 38.2 -27 45
21 39.9 -22 28
21 43.4 -38 50
21 43.8 -43 46 | 21 43.9 -43 22
21 45.1 -62 25
21 45.6 -51 36
21 45.6 -42 27
21 45.7 -34 39 | 21 46.2 -46 31
21 46.2 -37 51
21 55.9 -86 25
21 48.2 -46 01
21 47.9 -17 38 | 21 49.4 -64 30
21 49.1 -21 10
21 51.3 -42 32
21 53.3 -56 23
21 56.1 -72 02 | 21 55.7 -55 34
21 58.4 -65 27
22 00.0 -19 12
22 01.7 -66 42
22 00.6 -18 20 | 22 02.4 -69 38
22 01.9 -22 25
22 04.5 -58 07
22 04.4 -50 04
22 05.6 -63 08 | 22 05.9 -66 41
22 05.7 -38 08
22 06.7 -39 14
22 12.9 -85 06
22 09.6 -74 27 | 22 09.3 -59 40
22 09.0 -35 07
22 10.6 -57 07
22 10.5 -20 54
22 11.5 -33 41 | | | RA (1950) Dec | 1 29.0 -19 52
1 29.1 -35 25
1 29.8 -72 16
1 31.0 -63 08
1 31.2 -83 34 | 1 31.3 -52 27
1 32.2 -52 46
1 32.7 -56 25
1 34.2 -47 16
1 34.7 -73 02 | 1 35.0 -27 56
1 35.3 -27 59
1 37.1 -22 42
1 40.3 -39 04
1 40.6 -44 00 | 1 40.7 -43 36
1 41.3 -62 39
1 42.2 -51 50
1 42.5 -42 41
1 42.7 -34 53 | 1 43.0 -46 45
1 43.2 -38 05
1 43.4 -86 40
1 45.0 -46 15
1 45.1 -17 52 | 1 45.6 -64 44
1 46.3 -21 24
1 48.2 -42 47
1 49.8 -56 38
1 51.7 -72 17 | 1 52.3 -55 49
1 54.6 -65 42
1 57.3 -19 27
1 57.8 -66 57
1 57.9 -18 35 | 1 58.3 -69 53
1 59.1 -22 40
2 01.1 -58 22
2 01.2 -50 19
2 02.0 -63 23 | 2 02.1 -66 56
2 02.7 -38 23
2 03.7 -39 29
2 04.1 -85 21
2 05.1 -74 42 | 2 05.8 -59 55
2 06.1 -35 22
2 07.2 -57 22
2 07.7 -21 09
2 08.6 -33 56 | | | Abell | \$0951 2
\$0952 2
\$0953 2
\$0954 2
\$0955 | S0956 2
S0957 2
S0958 2
S0959 2
S0960 2 | S0961
S0962
S0963
S0964
S0964
S0965 | S0966 2
S0967 2
S0968 2
S0969 2
S0970 2 | \$0971
\$0972
\$0973
\$0974
\$0975 | \$0976 21
\$0977 21
\$0978 21
\$0979 21
\$0980 21 | S0981 21
S0982 21
S0983 21
S0984 21
S0985 21 | \$0986 2:
\$0987 2:
\$0988 2:
\$0989 2: | \$0991 27
\$0992 27
\$0993 27
\$0994 27
\$0995 27 | \$0996 25
\$0997 25
\$0998 25
\$0999 25
\$1000 25 | | | | | | | | | | | | | | | Continued | |-----------| | Ī | | Ś | | H | | Ą | | Ţ | | a | 17.4
17.3
16.3
17.1 | 4.71
17.4
17.1
17.1 | 17.0
17.3
17.3
15.5 | 17.1
17.5
17.4
17.4
15.9 | 17.4
17.0
16.1
17.2 | 17.4
17.0
17.5
16.7
17.0 | 17.3
17.4
17.3
17.5 | 16.9
17.4
16.9
16.4 | 17.4
16.9
16.9
17.4 | 17.2
16.8
17.4
17.2
15.7 | |---|---|--|---|---|--
--|--|--|---|---| | Ω | 004124 | 0 2 0 0 0 | ቀግ | 00004 | ου4υο | വവഴവഴ | 00000 | υ ο το 4 ο | ຍຍາມຄ | លល់សល់4 | | H | 40000 | 0400 | 6000 | 01170 | 00000 | 40400 | 00000 | 00000 | 0000 | 00000 | | z | 0.0426 | | (0.0426) | 0.035 | 0.0936 | | | 0.0554 | | | | Previous | M D D | | | D DORS | BDS
DO | 9 99 | Ω | D KO | Q | a a | | Obs | 22222 | 33333 | 22222 | 22222 | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | 22229 | 22222 | 92922 | 20020 | 99999 | | m ₁₀ | 19.7
18.1
16.1
16.9 | 19.6
19.8
20.9
17.3 | 16.8
19.0
18.0
15.4 | 16.9
21.0
20.0
20.0
15.7 | 19.7
: 17.0:
15.9
18.1
20.2 | 20.1
16.8
20.7
: 16.5 | 18.9
19.7
18.1
20.8
21.1: | 16.7
19.8
16.7
16.2? | 20.0
16.7
16.7
20.0
18.0 | 17.0
16.6
19.8
17.6 | | m³ | 19.0
17.4
15.4
15.5 | 19.5
19.3
19.9
16.1 | 15.6
18.3
15.9
14.3 | 15.3
20.2
19.4
: 19.2
? 14.5 | 19.1
16.2
14.9
17.1 | 19.50
19.50
15.51
15.61 | 18.1:
7.18.9
17.7
19.8
: 20.7: | 15.7
19.2
15.7
15.1
: 19.6 | 19.3
15.4
15.1
19.4 | 16.8
16.0
19.3
16.0 | | m ₁ | 18.2
17.2
14.8
14.9 | 18.0
18.9
19.6
19.6 | 14.7
18.2
15.4
13.8
15.8 | 14.9
19.2
13.5
13.4 | 19.0
15.6
14.3
16.6
18.4 | 19.1
15.8
19.3
14.7 | 17.9
18.1?
17.3
19.2 | 15.0
19.1
14.4
18.3 | 19.0
14.4
19.3 | 16.1
18.2
15.4
14.0 | | υ | 70
25
-10
-3 | -19
75
(106)
5
(82) | 3
29
16
21 | -10
85
(96)
66 | 25
4?
27
18
96 | (73)
4
93
12
-11 | 21
85
24
(159) | 3
86
4
24
(125) | (60)
5
-3
126
27 | 3
13:
(108)
16
(26) | | Тв-м | 111-111
111-111
11 | | 1
111111111111111111111111111111111111 | II-III
III
II?
II-III | 1 111
111
111
111-111 | 111
111
1111?
1111 | | 11-111
111
1-11
1-11: | !!!!
!-!!!
!!! | 11
11
111-111 | | T_A | น ีนนั้นน | жжённ | нннян | нааан | RHHHH | ниция | R R R R | н ж н н ж
ж н н ж н | RI RI | ннжнн | | Abell | \$1001
\$1002
\$1003
\$1004
\$1005 | \$1006
\$1007
\$1008
\$1009
\$1010 | \$1011
\$1012
\$1013
\$1014
\$1015 | S1016
S1017
S1018
S1019
S1020 | \$1021
\$1022
\$1023
\$1024
\$1025 | \$1026
\$1027
\$1028
\$1029
\$1030 | \$1031
\$1032
\$1033
\$1034
\$1035 | \$1036
\$1037
\$1038
\$1039
\$1040 | \$1041
\$1042
\$1043
\$1044
\$1045 | S1046
S1047
S1048
S1049
S1050 | | | | | | | | | | | | | | | | 10-1 | 10 | | 01 10 -11 10 m | ~ 10 10 | 10.5.01.5.0 | | 0-1-010 | * 10 C 10 C | | ı yu | 2 41
7 123
4 317
7 238
6 60 | 0 306
4 91
1 94
9 158
7 60 | 4 305
1 73
6 264
0 141
8 14 | 8 222
5 75
5 78
8 45
5 67 | 2 282
6 185
5 104
4 216
7 193 | 0 27
5 225
4 96
7 208
0 75 | 0 286
2 247
3 152
2 157
2 299 | 6 181
5 318
9 169
9 284
6 239 | 2 149
7 221
2 187
1 250
5 256 | 1 188
3 196
3 150
0 246
1 89 | | na na | 172
307
104
297
46 | 30
144
251
119
237 | 64
241
36
190
38 | 298 22
245 7
185 7
178 4
255 6 | 202
296
245
184 | 140
75
154
217
190 | 130
202
113
252
292 | 176
155
169
179
216 | 72
157
292
131
145 | 71
143
-3
120
31 | | = | | | | 27 7 4 9 | 118 202
21 296
-60 245
52 184
29 177 | | | | | | | na xII | 172
307
104
297
46 | 30
144
251
119
237 | 64
241
36
190
38 | 298 22
245 7
185 7
178 4
255 6 | 202
296
245
184 | 140
75
154
217
190 | 130
202
113
252
292 | 176
155
169
179
216 | 72
157
292
131
145 | 71
143
-3
120
31 | | cen Yoen XII | F146 -8 -123 172
F289 -143 -41 307
F108 60 153 104
F289 -133 74 297
F404 118 -104 46 | F601 134 142 30
F146 20 -73 144
F533 -87 -70 251
F011 45 -6 119
F533 -73 -104 237 | F108 100 141 64
F405 -77 -91 241
F344 128 100 36
F027 -26 -23 190
F344 126 -150 38 | F345 -134 58 298 22
F238 -81 -89 245 7
F533 -21 -86 185 7
F190 -91 -97 255 6 | F405 -38 118 202
F109 -132 21 296
F190 -81 -60 245
F027 -20 52 184
F602 -13 29 177 | 4 -137 140
9 61 75
0 -68 154
3 44 217
6 -89 190 | F405 34 122 130 F190 -38 83 202 F405 51 -12 113 F468 -88 -7 252 F147 -128 135 292 | F345 -12 17 176
F238 9 154 155
F076 -5 5 169
F190 -15 120 179
F468 -52 75 216 | F405 92 -15 72
F345 7 57 157
F534 -128 23 292
F345 19 92 145 | F289 93 24 71
F345 21 32 143
F533 167 -14 -3
F345 44 82 120
F405 133 -75 31 | | eld x cen ycen x11 | 6.34 F146 -8 -123 172
3.56 F289 -143 -41 307
6.51 F108 60 153 104
4.37 F289 -133 74 297
5.54 F404 118 -104 46 | 7.34 F146 20 -73 144
5.75 F533 -87 -70 251
1.23 F011 45 -6 119
6.10 F533 -73 -104 237 | 7.03 F108 100 141 64
6.71 F405 -77 -91 241
6.84 F344 128 100 36
4.81 F027 -26 -23 190
6.07 F344 126 -150 38 | 6.89 F345 -134 58 298 22
3.08 F238 -81 -89 245 7
6.59 F533 -21 -86 185 7
7.26 F533 -14 -119 178 4
0.69 F190 -91 -97 255 6 | 7.72 F405 -38 118 202
6.17 F109 -132 21 296
11.20 F190 -81 -60 245
5.99 F027 -21 13 29 177 | 7.99 F533 24 -137 140
7.93 F048 89 61 75
7.37 F405 10 -68 154
7.57 F106 -53 44 217
7.57 F076 -26 -89 190 | 9.07 F405 34 122 130
3.35 F190 -38 83 202
9.26 F405 51 -12 113
9.42 F468 -88 -7 252
1.39 F147 -128 135 292 | 6.64 F238 9 154 155
6.64 F238 9 154 155
3.13 F076 -5 5 169
4.14 F190 -5 75 216 | 0.03 F405 92 -15 72
9.48 F345 7 57 157
9.56 F534 -128 23 292
6.49 F238 19 92 145 | 8.12 F289 93 24 71
9.63 F345 21 32 143
0.23 F533 167 -14 -3
0.23 F345 44 82 120
0.64 F405 133 -75 31 | | Field xcen yeen x11 | -46.34 F146 -8 -123 172 -53.56 F289 -143 -41 307 -46.51 F108 60 153 104 -54.37 F289 -133 74 297 -55.54 F404 118 -104 46 | -52.90 F601 134 142 30
-47.34 F146 20 -73 144
-55.75 F533 -87 -70 251
-56.10 F533 -73 -104 237 | -47.03 F108 100 141 64
-56.71 F405 -77 -91 241
-56.84 F344 128 100 36
-34.81 F027 -26 -23 190
-56.07 F344 126 -150 38 | -56.89 F345 -134 58 298 22
-53.08 F238 -81 -89 245 7
-56.99 F533 -21 -86 185 7
-57.26 F533 -14 -119 178 4
-50.69 F190 -91 -97 255 6 | -57.72 F405 -38 118 202
-46.17 F109 -132 21 296
-51.20 F190 -81 -60 245
-55.77 F602 -13 29 177 | -57.99 F533 24 -137 140
-39.93 F048 89 61 75
-58.37 F405 10 -68 154
-55.70 F190 -26 154
-41.57 F076 -26 -89 190 | -59.07 F405 34 122 130
-53.35 F190 -38 83 202
-59.26 F405 51 -12 113
-59.42 F468 -88 -7 252
-51.39 F147 -128 135 292 | -58.97 F345 -12 17 176
-56.64 F238 9 154 155
-43.13 F076 -5 5 169
-54.14 F190 -51 120 179
-59.99 F468 -52 75 216 | 1 -60.03 F405 92 -15 72
4 -59.48 F345 7 57 157
2 -59.56 F534 -128 23 292
5 -59.83 F345 19 92 145 | -58.12 F289 93 24 71
-59.63 F345 21 32 143
-60.23 F533 167 -14 -3
-60.23 F345 44 82 120
-60.64 F405 133 -75 31 | | Field xcen yeen x11 | 328.64 -46.34 F146 -8 -123 172 352.05 -53.56 F289 -143 -41 307 355.44 -54.37 F289 -133 74 297 6.82 -55.54 F404 118 -104 46 | 40.31 -52.90 F601 134 142 30
329.29 -47.34 F146 20 -73 144
25.77 -55.75 F933 -47 -70 251
306.58 -31.23 F011 45 -6 119
24.77 -56.10 F533 -73 -104 237 | 327.87 -47.03 F108 100 141
64
7.07 -56.71 F405 -77 -91 241
4.50 -56.84 F344 128 100 36
310.09 -34.81 F027 -26 -23 190
356.16 -56.07 F344 126 -150 38 | 2.97 -56.89 F345 -134 58 298 22
341.66 -53.08 F238 -81 -89 245 7
25.63 -56.99 F533 -21 -86 185 7
24.50 -57.26 F533 -14 -119 178 4
334.41 -50.69 F190 -91 -97 255 6 | 14.14 -57.72 F405 -38 118 202
324.87 -46.17 F109 -132 21 296
335.12 -51.20 F190 -21 -60 245
311.07 -35.99 F027 -20 184
38.25 -55.77 F602 -13 29 177 | 24.07 -57.99 F533 24 -137 140
315.41 -39.93 F048 89 61 75
7.48 -58.37 F405 10 -68 154
337.24 -52.70 F190 -53 44 217
317.16 -41.57 F076 -26 -89 190 | 14.29 -59.07 F405 34 122 130
338.07 -53.35 F190 -38 83 202
9.35 -59.26 F405 51 -12 113
19.62 -59.42 F468 -88 -7 252
332.37 -51.39 F147 -128 135 292 | 0.69 -58.97 F345 -12 17 176
347.45 -56.64 F238 9 154 155
318.41 -43.13 F076 -5 5 169
338.65 -54.14 F190 -15 120 179
22.54 -59.99 F468 -52 75 216 | 9.11 -60.03 F405 92 -15 72
1.94 -59.48 F345 7 57 157
30.52 -59.56 F534 -128 23 292
344.97 -56.49 F238 33 86 131
3.15 -59.83 F345 19 92 145 | 351.54 -58.12 F289 93 24 71
0.97 -59.63 F345 21 32 143
29.52 -60.23 F533 167 -14 -3
2.61 -60.23 F345 44 82 120
6.75 -60.64 F405 133 -75 31 | | Dec 1 b Field xeen yeen x11 | 04 328.64 -46.34 F146 -8 -123 172 28 352.05 -53.56 F289 -143 -41 307 25 328.73 -46.51 F108 60 153 104 20 355.44 -54.37 F289 -133 74 297 42 6.82 -55.54 F404 118 -104 46 | 09 40.31 -52.90 F601 134 142 30
08 329.29 -47.34 F146 20 -73 144
03 25.77 -55.75 F33 -47 -70 251
40 24.77 -56.10 F533 -73 -104 237 | 05 327.87 -47.03 F108 100 141 64
27 7.07 -56.71 F405 -77 -91 241
50 4.50 -56.84 F344 128 100 36
10 310.09 -34.81 F027 -26 -23 190
30 356.16 -56.07 F344 126 -150 38 | 39 2.97 -56.89 F345 -134 58 298 22
24 341.66 -53.08 F238 -81 -89 245 7
21 25.63 -56.99 F533 -21 -86 185 7
20 24.50 -57.26 F533 -14 -119 178 4
28 334.41 -50.69 F190 -91 -97 255 6 | 35 14.14 -57.72 F405 -38 118 202
14 324.87 -46.17 F109 -132 21 296
49 35.12 -51.20 F190 -81 -60 245
5 311.07 -35.99 F027 -20 22 184
18 38.25 -55.77 F602 -13 29 177 | 7 20 24.07 -57.99 F533 24 -137 140
3 2 315.41 -39.93 F048 89 61 75
6 04 7.48 -58.37 F405 10 -68 154
5 5 337.24 -52.70 F190 -53 44 217
1 26 317.16 -41.57 F076 -26 -89 190 | 30 14.29 -59.07 F405 34 122 130
09 338.07 -53.35 F190 -38 83 202
01 9.35 -59.26 F405 51 -12 113
07 19.62 -59.42 F468 -88 -7 252
08 332.37 -51.39 F147 -128 135 292 | 27 0.69 -58.97 F345 -12 17 176 52 347.45 -56.64 F238 9 154 155 40 318.41 -31.31 F076 -5 5 169 22 22.54 -59.99 F468 -52 75 216 | 6 04 9.11 -60.03 F405 92 -15 72
8 43 1.94 -59.48 F345 7 57 157
8 420 30.52 -55.56 F334 -128 23 292
8 10 344.97 -56.49 F238 33 86 131
8 03 3.15 -59.83 F345 19 92 145 | 16 351.54 -58.12 F289 93 24 71
10 0.97 -59.63 F745 21 32 143
58 29.52 -60.23 F533 167 -14 -3
14 2.61 -60.23 F745 44 82 120
09 6.75 -60.64 F405 133 -75 31 | | Dec 1 b Field xeen yeen x11 | .5 -62 04 328.64 -46.34 F146 -8 -123 172 .2 -45 28 352.05 -53.56 F289 -143 -41 307 .4 -61 55 328.73 -46.51 F108 60 153 104 65 -43 20 355.44 -54.37 F289 -133 74 297 .1 -36 42 6.82 -55.54 F404 118 -104 46 | 4 -17 09 40.31 -52.90 F601 134 142 30
3 -61 08 329.29 -47.34 F146 20 -73 144
7 -26 03 25.77 -55.75 F533 -87 -70 251
8 -84 48 306.58 -31.23 F011 45 -6 119
8 -26 40 24.77 -56.10 F533 -73 -104 237 | 0 -62 05 327.87 -47.03 F108 100 141 64
9 -36 27 7.07 -56.71 F405 -77 -91 241
3 -37 50 4.50 -56.84 F344 128 100 36
2 -80 10 310.09 -34.81 F027 -26 -23 190
1 -42 30 356.16 -56.07 F344 126 -150 38 | 2. 2 - 38 39 2. 97 - 56. 89 F 345 - 134 58 298 22 2. 5 - 51 24 341. 66 - 53. 08 F 238 - 81 - 89 245 7 3. 1 - 26 21 25. 53 - 56. 99 F 533 - 21 86 185 7 3. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 -32 35 14.14 -57.72 F405 -38 118 202
3 -64 14 324.87 -46.17 F109 -132 21 296
6 -55 49 335.12 -51.20 F190 -81 -60 245
5 -78 45 311.07 -35.99 F0.27 -20 52 184
8 -19 18 38.25 -55.77 F602 -13 29 177 | .9 -27 20 24.07 -57.99 F533 24 -137 140
.4 -73 32 315.41 -39.93 F048 89 61 75
.0 -38 04 7.48 -58.37 F405 10 -68 154
.7 -53 55 337.24 -52.70 F190 -53 44 217
.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 3 -32 30 14.29 -59.07 F405 34 122 130 6 -53 09 338.07 -53.35 F190 -38 83 202 9 -35 01 9.35 -59.26 F405 51 -12 113 3 -29 47 19.62 -59.26 F468 -88 -7 252 8 -57 08 332.37 -51.39 F147 -128 135 292 | 9 -39 27 0.69 -58.97 F345 -12 17 176
11 -46 52 347.45 -56.64 F238 9 154 155
11 -69 40 318.41 -43.13 F076 -5 5 169
9 -52 7 338.65 -54.14 F190 -15 120 179
5 -28 22 22.54 -59.99 F468 -52 75 216 | 6 -35 04 9.11 -60.03 F405 92 -15 72
8 -38 43 1.94 -59.48 F345 7 57 157
4 -4 20 30.52 -95.56 F234 -128 23 292
8 -48 10 344.97 -56.49 F238 33 86 131
9 -38 03 3.15 -59.83 F345 19 92 145 | .1 -44 16 351.54 -58.12 F289 93 24 71 .1 -39 10 0.97 -59.63 F345 21 32 143 .8 -24 58 29.52 -60.23 F533 167 -14 -3 .2 -38 14 2.61 -60.23 F345 44 82 120 .3 -36 09 6.75 -60.64 F405 133 -75 31 | | l b Field xeen yeen x11 | 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 12.2 -45 28 352.05 -53.56 F289 -143 -41 307 13.4 -61 55 328.73 -46.51 F108 60 153 104 13.6 -43 20 355.44 -54.37 F289 -133 74 297 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | 16.4 -17 09 40.31 -52.90 F601 134 142 30 17.3 -61 08 329.29 -47.34 F146 20 -73 144 17.7 -26 03 25.77 -55.75 F533 -47 -70 251 23.8 -84 48 306.58 -31.23 F011 45 -6 119 18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | 20.0 -62 05 327.87 -47.03 F108 100 141 64
19.9 -36 27 7.07 -56.71 F405 -77 -91 241
21.3 -37 50 4.50 -56.84 F344 128 100 36
22.1 -62 10 310.09 -34.81 F027 -26 -23 190
22.1 -42 30 356.16 -56.07 F344 126 -150 38 | 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 23.1 -26 21 25.63 -56.99 F533 -21 -86 185 7 23.8 -27 00 24.50 -57.26 F533 -14 -119 178 4 24.3 -56 28 334.41 -50.69 F190 -91 -97 255 6 | 25.3 -64 14 324.87 -46.17 F109 -132 21 296 25.3 -64 14 324.87 -46.17 F109 -132 21 296 25.6 -55 49 335.12 -51.20 F190 -81 -60 245 27.8 45 311.07 -35.99 F027 -20 52 184 25.8 -19 18 38.25 -55.77 F602 -13 29 177 | 26.9 -27 20 24.07 -57.99 F533 24 -137 140 28.4 -73 32 315.41 -39.93 F048 89 61 75 28.0 -36 04 7.48 -58.37 F405 10 -68 154 29.7 53 55 337.24 -52.70 F190 -53 44 217 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 30.3 -32 30 14.29 -59.07 F405 34 122 130 11.6 -53 09 338.07 -53.35 F190 -38 83 202 31.9 -35 01 9.35 -59.26 F405 51 -12 113 32.3 32.3 -29 47 19.62 -59.42 F468 -88 -7 252 33.8 -57 08 332.37 -51.39 F147 -128 135 292 | 33.9 -39 27 0.69 -58.97 F345 -12 17 176 34.1 -46 52 347.45 -56.64 F238 9 154 155 35.1 -69 40 318.41 -43.13 F076 -5 5 169 35.5 -52 27 338.65 -54.14 F190 -15 120 179 35.5 -28 22 22.54 -59.99 F468 -52 75 216 | 2 35.6 -35 04 9.11 -60.03 F405 92 -15 72 2 35.8 -38 43 1.94 -59.48 F345 7 57 157 2 36.4 -24 20 3.52 -59.56 F534 -128 23 292 2 36.8 -48 10 34.97 -56.49 F238 33 86 131 2 36.9 -38 03 3.15 -59.83 F345 19 92 145 | 2 37.1 -44 16 351.54 -58.12 F289 93 24 71 2 37.1 -39 10 0.97 -59.63 F345 21 32 143 2 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 2 39.2 -38 14 2.61 -60.23 F345 44 82 120 2 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | (2000) Dec 1 b Field xeen yeen x11 | 9 22 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 3 22 12.2 -45 28 352.05 -53.56 F289 -143 -41 307 0 22 13.4 -61 55 328.73 -46.51 F108 60 153 104 5 2 22 13.6 -43 20 355.44 -54.37 F289 -133 74 297 7 22 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | 4 22 16.4 -17 09 40.31 -52.90 F601 134 142 30
3 22 17.3 -61 08 329.29 -47.34 F146 20 -73 144
9 22 17.7 -26 03 25.77 -55.75 F53.3 -87 -70 25.1
4 22 18.8 -84 48 306.58 -31.23 F011 45 -6 119
6 22 18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | 1 22 20.0 -62 05 327.87 -47.03 F108 100 141 64
5 22 19.9 -36 27 7.07 -56.71 F405 -77 -91 241
6 22 21.3 -37 50 4.50 -56.84 F344 128 100 36
6 22 22.1 -42 30 356.16 -56.07 F344 126 -150 38 | 5 22 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 22.2 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 22 23.1 -26 21 25.63 -56.99 F533 -21 -86 185 7 6 22 23.8 -27 00 24.50 -57.26 F533 -14 -119 178 4 22 24.3 -56 28 334.41 -50.69 F190 -91 -97 255 6 | 1 22 24.0 -32 35 14.14 -57.72 F405 -38 118 202 25.3 -64 14 324.87 -46.17 F109 -132 21 296 22 25.6 -55 49 335.12 -51.20 F190 -81 -60 245 1 22 25.6 -55 79 311.07 -35.99 F0.07 -20 52 184 2 22 25.8 -19 18 38.25 -55.77 F602 -13 29 1777 | 8 22 28.4 -73 32 315.41 -39.93 F048 89 61 75 60 22 28.0 -36 04 77.48 -58.37 F405 10 -68 154 22 29.7 -53 53 337.24 -52.70 F190 F33 44 217 22 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 5 22 30.3 -32 30 14.29 -59.07 F405 34 122 130
5 22 31.6 -53 09 338.07 -53.35 F190 -38 83 202
7 22 23.9 -35 01 9.35 -59.26 F405 51 -12 113
2 22 33.2 -29 47 19.62 -59.42 F468 -88 -7 252
4 22 33.8 -57 08 332.37 -51.39 F147 -128 135 292 | 2 2 33.9 -39 27 0.69 -58.97 F345 -12 17 176 2 2 34.1 -46 52 347.45 -56.64 F238 9 154 155 5 2 35.1 -69 40 318.41 -43.13 F076 -5 5 169 3 22 35.1 -69 40 318.65 -54.14 F190 -15 120 179 3 22 35.5 -28 22 2.54 -59.99 F468 -52 75 216 | 0 22 35.6 -35 04 9.11 -60.03 F405 92 -15 72 52 35.8 -38 43 1.94 -59.48 F345 7 57 157 6 22 36.4 -24 20 34.97 -56.49 F238 33 86 131 6 22 36.9 -38 03 3.15 -59.83 F345 19 92 145 | 2 22 37.1 -44 16 351.54 -58.12 F289 93 24 71 6 22 37.1 -39 10 0.97 -59.63 F345 21 32 143 4 22 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 0 22 39.2 -38 14 2.61 -60.23 F345 44 82 120 5 22 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | Dec RA (2000) Dec 1 b Field xeen yeen x11 | 62 19 22 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 45 43 22 12.2 -45 28 352.05 -55.56 F289 -143 -41 307 62 10 22 13.4 -61 55 328.73 -46.51 F108 60 153 104 43 52 22 13.4 -61 30 355.44 -54.37 F289 -133 74 297 36 57 22 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | 7 24 22 16.4 -17 09 40.31 -52.90 F601 134 142 30
1 23 22 17.3 -61 08 329.29 -47.34 F146 20 -73 144
5 19 22 17.7 -26 03 25.77 -55.75 F533 -87 -70 251
5 04 22 23 8 -84 83 306.58 -31.23 F011 45 -6 119
5 6 22
18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | 2 1 22 20.0 -62 05 327.87 -47.03 F108 100 141 64 64 3 22 19.9 -36 27 7.07 -56.71 F405 -77 -91 241 8 06 22 21.3 -37 50 4.50 -56.84 F344 128 100 36 22 46 22 22.1 -80 30 356.16 -56.07 F344 126 -150 38 | 8 55 22 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 140 22 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 | 25 51 22 24.0 -32 35 14.14 -57.72 F405 -38 118 202 64 30 22 25.3 -64 14 324.87 -46.17 F109 -132 21 296 50 5 22 25.6 -55 49 335.12 -51.20 F190 -81 -60 245 79 01 22 27.5 -78 45 311.07 -35.99 F027 -20 25 184 19 34 22 25.8 -19 18 38.25 -55.77 F602 -13 29 177 | 7 36 22 26.9 -27 20 24.07 -57.99 F533 24 -137 140
8 48 22 28.4 -73 32 315.41 -39.93 F048 89 61 75
8 20 22 28.0 -36 04 7.48 -58.37 F405 10 -68 154
1 11 22 29.7 -53 55 337.24 -52.70 F190 -53 44 217
1 42 22 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 2 46 22 30.3 -32 30 14.29 -59.07 F405 34 122 130 3 25 22 31.6 -53 09 338.07 -53.35 F190 -38 83 202 51.7 22 31.9 -35 01 9.15 -59.26 F405 51 -12 113 72 32 32.3 -29 47 19.65 -59.26 F468 -88 -7 252 7 24 22 33.8 -57 08 332.37 -51.39 F147 -128 135 292 | 9 43 22 33.9 -39 27 0.69 -58.97 F345 -12 17 176 7 08 22 34.1 -46 52 347.45 -56.64 F238 9 154 155 9 56 22 35.1 -69 40 318.41 -43.13 F076 -5 5 169 8 38 22 35.9 -52 27 338.65 -54.14 F190 -15 120 179 8 38 22 35.5 -28 22 22.54 -59.99 F468 -52 75 216 | 8 59 22 35.6 -35 04 9.11 -60.03 F405 92 -15 72 8 59 22 35.8 -38 43 1.94 -59.48 F345 7 57 157 8 5 22 36.4 -24 20 30.52 -59.56 F534 -128 23 292 8 22 36.8 -48 10 344.97 -56.49 F238 33 86 131 8 19 22 36.9 -38 03 3.15 -59.83 F345 19 92 145 | 4 32 22 37.1 -44 16 351.54 -58.12 F289 93 24 71 9 26 22 37.1 -39 10 0.97 -59.63 F345 21 32 143 5 14 22 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 8 30 22 39.2 -38 14 2.61 -60.23 F345 44 82 120 6 25 22 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | Dec RA (2000) Dec 1 b Field xeen yeen x11 | .0 -62 19 22 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 172 145 43 22 12.2 -45 28 352.05 -53.56 F289 -143 -41 307 19 -45 21 0.2 13.4 -61 55 328.73 -46.51 F108 60 153 104 65 -43 35 22 13.6 -43 20 355.44 -54.37 F289 -133 74 297 2.36 57 22 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | .7 -17 24 22 16.4 -17 09 40.31 -52.90 F601 134 142 30 8 -61 23 22 17.3 -61 08 329.29 -47.34 F146 20 -73 144 9.9 -26 19 22 21.7.7 -26 03 25.77 -55.75 F53.3 -87 -70 251 9 -85 04 22 23.8 48 48 306.58 -31.23 F011 45 -6 119 0 -26 56 22 18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | .5 -62 21 22 20.0 -62 05 327.87 -47.03 F108 100 141 64 0.0 -36 43 22 19.9 -36 27 7.07 -56.71 F405 -77 -91 241 0.0 36 0.0 -36 62 22 1.3 -37 50 4.50 -56.84 F344 128 100 36 0.0 -36 0.0 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | .3 -38 55 22 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 1 -51 40 22 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 3 -26 23.1 -26 21 25.65 99 F533 -21 -86 185 7 2 22.3 -27 00 24 50 -57.26 F533 -14 -119 178 4 0 -56 44 22 24.3 -56 28 334.41 -50.69 F190 -91 -97 255 6 | .1 -32 51 22 24.0 -32 35 14.14 -57.72 F405 -38 118 202 8 -64 30 22 25.3 -64 14 324.87 -46.17 F109 -132 21 296 14 -75 05 22 25.6 -55 49 315.12 -12.0 F110 -81 -60 245 17 -79 01 22 27.5 -78 45 313.0.7 -35.99 F027 -20 52 184 1 -19 34 22 25.8 -19 18 38.25 -55.77 F602 -13 29 177 | .1 -27 36 22 26.9 -27 20 24.07 -57.99 F533 24 -137 140 23 -73 48 22 28.4 -73 32 315.41 -39.93 F048 89 61 75 11.35 20 22 28.0 -36 04 74.8 -58.37 F405 10 -68 154 5 -54 11 22 29.7 -53 55 33.24 -52.70 F190 -53 44 217 5 -71 42 22 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | .5 -32 46 22 30.3 -32 30 14.29 -59.07 F405 34 122 130 .5 -53 25 22 31.6 -53 09 338.07 -53.35 F190 -38 83 202 .0 -35 17 22 31.9 -35 01 8.35 -59.26 F405 51 -12 113 .5 -30 03 22 32.3 -29 47 19.62 -59.42 F468 -88 -7 252 .6 -57 24 22 33.8 -57 08 332.37 -51.39 F147 -128 135 292 | 0 -39 43 22 33.9 -39 27 0.69 -58.97 F345 -12 17 176 1.47 08 22 34.1 -46 52 347.45 -56.64 F238 9 154 155 4 -69 56 22 35.1 -69 40 318.41 -43.13 F076 -5 5 169 179 176 179 179 179 179 179 179 179 179 179 179 | .8 -35 20 22 35.6 -35 04 9.11 -60.03 F405 92 -15 72 .9 -38 59 22 35.8 -38 43 1.94 -59.48 F345 7 57 157 .7 -24 36 22 36.4 -24 20 344.97 -56.49 F238 33 86 131 .0 -38 19 22 36.9 -38 03 3.15 -59.83 F345 19 92 145 | .1 -44 32 22 37.1 -44 16 351.54 -58.12 F289 93 24 71 .2 -39 26 22 37.1 -39 10 0.97 -59.63 F345 21 32 143 .1 -25 14 22 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 .3 -38 30 22 39.2 -38 14 2.61 -60.23 F345 44 82 120 .5 -36 25 22 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | RA (2000) Dec 1 b Field xeen yeen x11 | 2 09.0 -62 19 22 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 2 09.0 -62 19 22 12.2 -45 28 352.05 -53.56 F289 -143 -41 307 2 09.9 -62 10 22 13.4 -61 55 328.73 -46.51 F108 60 153 104 2 10.6 -43 35 22 13.6 -43 20 355.44 -54.37 F289 -133 74 297 2 11.2 -36 57 22 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | 2 13.7 -17 24 22 16.4 -17 09 40.31 -52.90 F601 134 142 30 2 13.8 -61 23 22 17.3 -61 08 329.29 -47.34 F146 20 -73 144 2 144.9 -26 19 22 17.7 -26 03 25.77 -55.75 F933 -47 -70 251 2 15.9 -85 04 22 23.8 -84 48 306.58 -31.23 F011 45 -6 119 2 16.0 -26 56 22 18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | 16.5 -62 21 22 20.0 -62 05 327.87 -47.03 F108 100 141 64 17.0 -36 43 22 19.9 -36 27 7.07 -56.71 F405 -77 -91 241 18.4 -38 06 22 21.3 -37 50 4.50 -56.84 F34 128 100 36 18.9 -80 6 22 24.2 -80 10.09 -34.81 F027 -26 -23 190 19.1 -42 46 22 22.1 -42 30 356.16 -56.07 F344 126 -150 38 | 19.3 -38 55 22 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 20.1 -51 40 22 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 21 -25.6 3 -56.99 F533 -21 -86 185 7 22 23.8 -27 00 24.50 -57.26 F533 -14 -119 178 4 21.0 -56 44 22 24.3 -56 28 334.41 -50.69 F190 -91 -97 255 6 | 2 21.1 -32 51 22 24.0 -32 35 14.14 -57.72 F405 -38 118 202 21.8 -64 30 22 25.3 -64 14 324.87 -46.17 F109 -132 21 296 22 22.4 -56 05 22 25.5 -55 49 355.12 -120 F100 -81 -60 245 22.7 -79 01 22 27.5 -78 41 8 38.25 -55.77 F602 -13 29 177 | 2 24.1 -27 36 22 26.9 -27 20 24.07 -57.99 F533 24 -137 140 2 24.3 -73 48 22 28.4 -73 32 315.41 -39.93 F048 89 61 75 2 25.1 -36 20 22 28.0 -36 04 748 -58.37 F405 10 -68 154 2 26.5 -54 11 22 29.7 -53 55 337.24 -52.70 F190 -53 44 217 2 26.5 -71 42 22 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 27.5 -32 46 22 30.3 -32 30 14.29 -59.07 F405 34 122 130 28.5 -53 25 22 31.6 -53 09 338.07 -53.35 F190 -38 83 202 29.0 -35 17 22 31.9 -35 01 9.35 -59.26 F405 51 -12 113 29.5 -30 03 22 33.3 -29 47 19.6 -55 59.2 F468 -88 -7 252 30.6 -57 24 22 33.8 -57 08 332.37 -51.39 F147 -128 135 292 | 31.0 -39 43 22 33.9 -39 27 0.69 -58.97 F345 -12 17 176 31.1 -47 08 22 34.1 -46 52 347.45 -56.64 F238 9 154 155 31.4 -69 56 22 35.1 -69 40 318.41 -47.13 F076 -5 5 169 31.8 -52 43 22 34.9 -52 2.5 338.65 -54.14 F190 -15 120 179 32.7 -28 38 22 35.5 -28 22 22.54 -59.99 F468 -52 75 216 | 32.8 -35 20 22 35.6 -35 04 9.11 -60.03 F405 92 -15 72 32.9 -38 59 22 35.8 -38 43 1.94 -59.48 F345 7 57 157 33.7 -24 36 22 36.4 -24 20 30.52 -95.56 F234 -128 23 292 33.8 -48 26 22 36.8 -48 10 344.97 -56.49 F238 33 86 131 34.0 -38 19 22 36.9 -38 03 3.15 -59.83 F345 19 92 145 | 34.1 -44 32 22 37.1 -44 16 351.54 -58.12 F289 93 24 71 34.2 -39 26 22 37.1 -39 10 0.97 -59.63 F345 21 32 143 36.1 -25 14 22 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 36.3 -38 30 22 39.2 -38 14 2.61 -60.23 F345 44 82 120 36.5 -36 25 22 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | (1950) Dec RA (2000) Dec <i>l</i> b Field <i>x</i> _{cen} y _{cen} <i>x</i> _{II} | 09.0 -62 19 22 12.5 -62 04 328.64 -46.34 F146 -8 -123 172 09.1 -45 43 22 12.2 -45 28 352.05 -53.56 F289 -143 -41 307 09.9 -62 10 22 13.4 -61 55 328.73 -46.51 F108 60 153 104 10.6 -43 35 22 13.6 -43 20 355.44 -54.37 F289 -133 74 297 11.2 -36 57 22 14.1 -36 42 6.82 -55.54 F404 118 -104 46 | 13.7 -17 24 22 16.4 -17 09 40.31 -52.90 F601 134 142 30 13.8 -61 23 22 17.3 -61 08 329.29 -47.34 F146 20 -73 144 14.9 -26 19 22 17.7 -26 03 25.77 -55.75 F53 -87 -70 251 15.9 -85 04 22 23.8 -84 48 306.58 -31.23 F011 45 -6 119 16.0 -26 56 22 18.8 -26 40 24.77 -56.10 F533 -73 -104 237 | 6.5 -62 21 22 20.0 -62 05 327.87 -47.03 F108 100 141 64 7.0 -36 43 22 19.9 -36 27 7.07 -56.71 F405 -77 -91 241 84 -38 06 22 21.3 -37 50 4.50 -56.84 F344 128 100 36 8.9 -80 26 22 22 2.8 -37 50 36.9 -34.81 F027 -26 -23 190 9.1 -42 46 22 22.1 -42 30 356.16 -56.07 F344 126 -150 38 | 9.3 -38 55 22 22.2 -38 39 2.97 -56.89 F345 -134 58 298 22 0.1 -51 40 22 23.2 -51 24 341.66 -53.08 F238 -81 -89 245 7 2.3 -2 23.1 -26 21 25.63 -56.99 F533 -21 -86 185 7 1.0 -27 16 22 23.8 -27 00 24.50 -57.26 F533 -14 -119 178 4 1.0 -56 44 22 24.3 -56 28 334.41 -50.69 F190 -91 -97 255 6 | 21.1 -32 51 22 24.0 -32 35 14.14 -57.72 F405 -38 118 202 21.8 -64 30 22 25.3 -64 14 324.87 -46.17 F109 -132 21 296 22.4 -65 05 22 25.6 -55 49 315.12 -12.2 F100 -81 -60 245 22.7 -79 01 22 27.5 -78 45 311.07 -35.99 F027 -20 22 184 23.1 -19 34 22 25.8 -19 18 38.25 -55.77 F602 -13 29 177 | 24.1 -27 36 22 26.9 -27 20 24.07 -57.99 F533 24 -137 140 24.3 -73 48 22 28.4 -73 32 315.41 -39.93 F048 89 61 75 25.1 -36 20 22 28.0 -36 04 748 -88.37 F048 89 61 75 26.5 -54 11 22 29.7 -53 55 337.24 52.70 F190 -53 44 217 26.5 -71 42 22 30.4 -71 26 317.16 -41.57 F076 -26 -89 190 | 7.5 -32 46 22 30.3 -32 30 14.29 -59.07 F405 34 122 130 8.5 -53 25 25 31.6 -53 09 338.07 -53.35 F190 -38 83 202 9.0 -35 17 22 31.9 -35 01 9.35 -59.26 F405 51 11 11 9.5 -30 03 23 22 32 | 1.0 -39 43 22 33.9 -39 27 0.69 -58.97 F345 -12 17 176 11.1 -47 08 22 34.1 -46 52 347.45 -56.64 F238 9 154 155 169 11.4 -69 56 22 35.1 -69 40 318.41 -43.13 F076 -5 5 169 11.8 -52 43 23 44.9 -52 23 318.65 -54.14 F190 -15 120 179 2.7 -28 38 22 35.5 -28 22 22.54 -59.99 F468 -52 75 216 | 2.8 -35 20 25.56 -35 04 9.11 -60.03 F405 92 -15 72 2.9 -38 59 -38 43 1.94 -59.48 F345 75 157 3.7 -24 36.4 -24 20 30.52 -59.56 F934 -138 23 292 3.8 -48 26 25 36.8 -48 10 344.97 -56.49 F238 F338 86 131 4.0 -38 19 22 36.9 -38 03 3.115
-59.83 F345 19 92 145 | 4.1 -44 32 22 37.1 -44 16 351.54 -58.12 F289 93 24 71 42 -39 26 22 37.1 -39 10 0.97 -59.63 F345 21 32 143 6.1 -25 14 22 38.8 -24 58 29.52 -60.23 F533 167 -14 -3 6.3 -38 30 22 39.2 -38 14 2.61 -60.23 F345 44 82 120 6.5 -36 25 22 39.3 -36 09 6.75 -60.64 F405 133 -75 31 | | - 11 | | ааааа | | | | | | | ~~~~ | | 00000 | |-----------|-----------------|---|---|--|--|---|--|--|--|--|--| | | Ω | ოდდიი | R4044 | R R O O 4 | N 4 0 0 N | 00000 | 2000 | 00000 | 00000 | សសសភាស | សហហហភ | | | R | 00000 | 00000 | 00100 | 00000 | 04000 | 0000 | 0 6 0 0 4 | 00711 | 00001 | 00000 | | | z | 0.0322 | 0.0331 | 0.0723 | 0.0496 | 0.0642 | 0.312 | | | | | | | Previous | D BD | Q | ø | Ω | | œ | DR | д д | o m | Ф | | | Obs | 55555 | 99999 | 10
10,1A
20,1A | 10, 1A
10, 1A
2C
10
10 | 00000 | 100000 | 10,10
10,10
10 | 100000 | 10000 | 00000
00000 | | | m ₁₀ | 16.9
17.5
18.1
19.5 | 17.1
16.1
18.6
16.1 | 16.8
17.5
19.7
19.2:
15.6 | 16.8
15.9:
20.2
19.2 | 16.5
20.0:
20.1
21.4?
17.1 | 21.4
19.7
18.1
20.1: | 16.8
20.1
20.2
17.5 | 16.7
18.5
19.9
20.0 | 17.4
17.2
17.1
19.7
20.1 | 17.6
17.4
16.8
17.0
20.0 | | | m ₃ | 16.6
15.9
17.2
18.5
15.1 | 16.8
15.4
18.1
15.1 | 15.9
16.4
19.0
18.4 | 16.3:
14.8
19.7
18.5 | 15.3
18.8:
19.1
20.8
15.5 | 20.9
18.7
15.9
19.3: | 15.5
19.5
19.2
16.7 | 15.4
17.9
19.1
18.7 | 16.1
15.9
15.8
19.0 | 16.1
17.1
15.8
16.5 | | | i u | 15.3
15.4
17.0
17.6 | 15.0
13.1
16.8
14.9 | 15.4
14.8
18.6
17.9 | 15.8:
13.8
19.3
18.1 | 14.4
18.4:
18.4
19.9 | 20.2
18.1:
15.5
18.9 | 15.0
18.27
18.4
15.5: | 15.1
17.3
18.6
18.9
17.9: | 15.3
15.6
15.2:
18.4: | 15.7
16.7
14.5
16.1 | | | ٥ | 224
244
0 | 11-
11-
14-
22: | -62
21
74
27
-17: | 25:
20
(88)
26
12 | -12
73*
48
0* | (90)
92
-14
43
21 | -1?
158
41
20:
70 | -2
21
94:
51 | 24
24
60
60 | 28
29
-62
17:
85 | | | T_{B-M} | | 1-11
11-111
11-111 | II
I-II
II-II
II-III? | 11-1117
1117
1117
11-111 | 1-11
III-III:
III-III? | 11.
11.
11.
11.
11. | 1-11
111?
111
111. | 1-11
11:
11:
11:
11:
11: | 1
111
111-111
1113 | 1-11
11-111
11-111 | | | T_A | HHRHH | HHHHH | I
II
RI?
RI | I RI:
I I | I K K I | R:
RR:
I R | ннана | R I R II | жнннж | HIHHH | | Continued | Abell | \$1051
\$1052
\$1053
\$1054
\$1055 | \$1056
\$1057
\$1058
\$1059
\$1060 | \$1061
\$1062
\$1063
\$1064
\$1065 | \$1066
\$1067
\$1068
\$1069
\$1070 | \$1071
\$1072
\$1073
\$1074
\$1075 | \$1076
\$1077
\$1078
\$1079
\$1080 | \$1081
\$1082
\$1083
\$1084
\$1085 | \$1086
\$1087
\$1088
\$1089
\$1090 | \$1091
\$1092
\$1093
\$1094
\$1095 | \$1096
\$1097
\$1098
\$1099 | | 5 | | | | | | | | | | | | | TABLE | xu yu | 7 267
1 132
3 284
1 222
0 158 | 1 269
2 80
0 217
6 218
2 96 | 8 185
0 278
4 177
2 267
2 84 | 2 83
6 134
6 314
6 314
6 214 | 8 279
0 228
3 132
6 170 | 8 106
9 162
3 229
2 209 | 9 150
0 224
0 293
9 215 | 4 11
8 230
8 274
2 224 | 6 84
0 89
6 209
131 | 4 199
7 241
9 249
9 249 | | | | 2211 | 02222 | 78
250
224
184
12 | 128601 | 2222 | 18
7
7
23
10 | 279
161
210
80
149 | 101 | 8 4 9 4 4 | 64
154
109
129 | | | Ycen | 103
-32
120
58
-6 | 105
-84
53
-68 | 21
114
13
103
120 | -81
-30
150
145 | 115
64
-32
-52 | 52
12
12
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | -14
67
60
129
51 | -153
66
-111
110
60 | -80
152
-75
-33 | 35
77
47
85 | | | x cen | -147
-49
-47
84 | 103
42
-86
-82
-78 | 86
-86
-60
-20
152 | -48
-42
-120
-12 | 76
-106
-59
-42
-54 | -24
85
119
-69 | -115
-46
84
15 | 20
-101
46
56
92 | 78
16
18
15 | 100
10
-103
55 | | | Field | F345
F290
F109
F345 | F345
F076
F049
F290 | F011
F049
F290
F406 | F290
F290
F406
F469 | F603
F191
F239
F239 | F346
F406
F076
F191 | F077
F239
F191
F290 | F469
F077
F239
F346 | F011
F604
F049
F604 | F469
F291
F535 | | | -0 | 60.37
58.13
48.56
47.73
60.61 | 61.40
42.49
40.64
59.90
58.97 | 32.14
41.59
59.97
63.04
62.35 | 9.39
9.90
3.45
1.06 | 1.32
6.09
8.04
8.71
5.08 | 3.04
4.78
5.37
2.24 | 44.51
60.08
56.87
63.31
60.09 | 66.31
45.89
58.64
61.35
65.88 | 30.79
64.43
39.45
65.41 | 7.94
1.96
3.98
7.46 | | | | 44464 | 11111 | 11111 | 84747
1111 | 3 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 6 4 6 6 | 78220 | 11111 | 00/00 | 2 -67
-67
-67
-67 | | | 1 | 3.25.3
3.25.3
3.25.3
5.0 | 315.9
313.9
351.2 | 306.4
314.7
13.2.2 | 346.1
347.7
15.1
26.2
349.9 | 46.0
333.9
338.4
339.1 | 355.0
8.3
316.9
333.1 | 315.7
340.1
332.4
351.1 | 13.0
316.3
333.9
340.1 | 304.8
51.2
310.4
47.0
328.6 | 21.9
312.2
346.4
37.6 | | | Dec | 7 21 21 21 22 29 22 22 22 22 22 22 22 22 22 22 22 | 7 47
11 19
3 43
6 01 | 4 08
2 35
4 31
7 29 | 6 16
5 20
1 58
7 03
3 50 | 17 38
53 30
50 21
49 40
30 44 | 0 51
8 37
3 30
3 59 | 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 37
11 50
7 42
8 39 | 56 57
58 510
58 54
52 52 | 2 13 19 06 23 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17 | | | (2000) | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 7 1 1 1 3 1 1 3 1 4 1 4 1 4 1 4 1 | 0 4 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 44694 | 00044 | 0 0 0 0 0 0 4 4 6 0 0 0 4 | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 -32
0 -68
6 -51
2 -47
9 -38 | 40648
81111 | 04460
11410 | | | RA (2 | 39.
39.
40. | 446.
466.
466. | 4 4 4 4 6 9 | 50.
53. | 54.
56.
58. | 58.
58.
00.
01. | 933. | 04.
07.
09. | : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 12222 | | | | 22222 | 00000 | 22222 | 22222 | 22222 | 33335 | 00000 | 73333 | 73333 | 22333 | | |) se | 8 07 2 34 3 5 8 0 0 0 8 8 0 0 8 9 9 9 9 9 9 9 9 9 9 9 | 8 03
1 35
3 59
4 01
6 17 | 4 24 24 24 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 | 6 32
2 34
7 19
4 06 | 7 54
3 47
0 38
9 57
1 01 | 08
03
54
147 | 90
94
37
06 | 54
11
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13 | 6 14
7 10
6 27
9 11
5 39 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | (1950) D | 0 0 0 4 | 90 - 30
- 73
- 73
- 73
- 74
- 44 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 2 8 0 0 0 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 - 15
12 - 15
13 - 15
13 - 15
13 - 15
13 - 15
13 - 15
13 - 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 7 -41
1 -35
2 -68
6 -53
8 -44 | 4 -70
3 -48
5 -53
9 -49 | 1 -32
8 -68
7 -52
4 -47
1 -38 | 3 -86
4 -17
7 -76
8 -19
6 -55 | 009 | | | ∢ | 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 47.8
48.3
50.3 | 51.3
53.3
55.3 | 55.7
57.8
58.8 | 90000 | 02.1
03.8
05.7
07.1 | 07.7
07.7
07.8 | 99.001 | | | # | 22222 | 00000 | 22222 | 22222 | 77777 | 22222 | 33332 | 23333 | 23333 | 23333 | | | Abell | \$1051
\$1052
\$1053
\$1054
\$1055 | \$1056
\$1057
\$1058
\$1059
\$1060 | \$1061
\$1062
\$1063
\$1064
\$1065 | \$1066
\$1067
\$1068
\$1069
\$1070 | \$1071
\$1072
\$1073
\$1074
\$1075 | \$1076
\$1077
\$1078
\$1079
\$1080 | \$1081
\$1082
\$1083
\$1084
\$1085 | \$1086
\$1087
\$1088
\$1089
\$1090 | \$1091
\$1092
\$1093
\$1094
\$1095 | \$1096
\$1097
\$1098
\$1099
\$1100 | | | | | | | | un. | | | | | | | | | 22222 | 22222 | 27777 | 77,17, | 22222 | 22222 | 22222 | ***** | 22222 | 22222 | |-----------|-----------------|--
--|--|--|--|---|--|--|--|---| | | Ω | 400000 | 00000 | 40000 | 99199 | 96999 | 00040 | စေလစလ | 20000 | 04000 | 44000 | | | ۳ | 00000 | 0 1 1 1 1 | 00000 | 40000 | 10004 | 00000 | 00000 | 00000 | 0000 | 00000 | | | z | 0.0564 | (0.0346) | | | | 0.0358 | | 0.0682 | 0.0701 | 0.0705 | | | Previous | BQRS
QR
D | BQR | BOQRS | ex ex | | # 0 # | ø | m m | о д | BR | | | Obs | 10,2C
10
10
10 | 10, 10
10, 10
10
10 | 10, 10
10
10
10 | 20000 | 20000 | 100000 | 00000 | 10, 1C
1C
1C
10
10 | 00000 | 10
20
20
20
20 | | | m ₁₀ | 16.3
19.4
18.0
17.6 | 17.3
20.9
20.9
19.7
21.0 | 15.4:
21.1:
17.5
17.3
21.3 | 20.1
18.6
16.6
18.1 | 20.0
17.5
19.4
18.0 | 19.3
17.7
20.2
16.1
18.8 | 16.5
20.8:
19.8
17.9
20.1: | 16.7
19.6
20.6
19.1
16.5 | 19.7
15.5
18.2
19.3 | 15.9
16.3:
20.1
17.4 | | | m3 | 15.3
18.8
17.0
17.1 | 16.2
19.8
19.8
19.1
20.0 | 14.5:
20.5
16.8
16.8 | 18.8?
16.1
17.0
17.4
17.5: | 19.6
16.7
18.6
17.0 | 18.9
16.1
19.7
15.2
17.9 | 15.4
19.3:
18.0:
17.3 | 15.4
19.1
20.0
18.6
15.5 | 19.3
14.3
17.7
18.8
16.7 | 15.3
15.5
19.2?
16.5 | | | m | 14.0
18.3
16.8
16.5 | 15.3:
19.1
19.2
18.8
19.3 | 14.0
20.2:
16.6
16.0
20.2 | 18.1:
16.0
15.9
17.3 | 18.1
15.1?
17.3
15.3
18.6 | 18.0
15.4
19.5
13.9 | 15.1
18.7:
17.5
16.1
19.2: | 14.4
18.3
19.5
17.3 | 19.1
14.1
15.1
17.4 | 14.9
15.0
18.8?
15.4 | | | S | 30 50 88 | -23
(69)
(79)
(75)
(73) | 25
0
21
0 | 29
66
29
6 | (81)
22
24
24
3 | 6
28
(47)
3 | -3
0
20
26
93) | 21
25
(103)
15 | 84
20
13
27 | -9
(36)
21
95: | | | ТВ-М | III-III
III-III | 11-111
11-111
1111
1111? | | 1-11:
111
111-111 | I.I.
II-III
III | | :::::::::::::::::::::::::::::::::::::: | !!!-!!!:
!!!-!!! | |
 | | | T_A | жнннн | RILIRI | нядня | жнннн | RHHHH | R 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 | наянн | R 1 % 1 K | RILLI | RHERT | | Continued | Abell | \$1101
\$1102
\$1103
\$1104
\$1105 | \$1106
\$1107
\$1108
\$1109
\$1110 | \$1111
\$1112
\$1113
\$1114
\$1115 | S1116
S1117
S1118
S1119
S1120 | \$1121
\$1122
\$1123
\$1124
\$1125 | S1126
S1127
S1128
S1129
S1130 | \$1131
\$1132
\$1133
\$1134
\$1134 | S1136
S1137
S1138
S1139
S1140 | S1141
S1142
S1143
S1144
S1144 | S1146
S1147
S1148
S1149
S1150 | | 5. | | | | | | | | | | | | | TABLE | Ni. | 272
186
188
209
149 | 266
54
285
83
257 | 41
198
196
203 | 196
266
86
154
221 | 86
67
57
172
246 | 58
197
218
91
308 | 209
205
262
229
33 | 63
76
56
151
97 | 227
144
196
295
96 | 244
45
70
202
118 | | T | n _x | 253
124
221
135
137 | 218
43
28
128
21 | 239
87
295
121
67 | 217
258
239
181 | 181
62
153
217
155 |
139
137
8
119
163 | 247
-3
120
323
76 | 46
302
63
118 | 263
249
62
277
139 | 247
204
86
219
66 | | | ycen | 108
22
24
45 | 102
-110
121
-81 | -123
34
39
-3 | 32
102
-78
-10
57 | -78
-97
-107
8 | -106
33
54
-73
144 | 45
41
98
65
-131 | -101
-88
-108
-13 | 63
-20
32
131
-68 | 80
-94
-94
-46 | | | x cen | -89
40
-57
29 | -54
121
136
36
143 | -75 ·
77
-131
43 | -53
-94
-75
-17 | -17
102
111 · | 25 -
156
45 | -83
167
-159
88 | 1118 ·
101 ·
46 · | -99
-85
102
-113 | 183
140
155
155 | | | Field | F291
F191
F291
F049 | F291
F239
F239
F407 | F347
F191
F536
F049 | F110
F536
F240
F470 | F347
F027
F470
F240 | F470
F470
F191
F470
F605 | F012
F191
F347
F292 | F470
F471
F347
F240 | F471
F471
F240
F078 | F537
F292
F110
F028 | | | 9 | -64.81
-57.53
-64.45
-41.64 | 65.30
59.67
62.67
68.25 | -65.96
-58.18
-69.21
-41.67 | -50.37
-69.58
-60.84
-70.74 | -67.39
-35.17
-71.05
-62.31 | -71.33
-71.58
-59.44
-71.77 | -37.52
-59.40
-70.02
-67.43 | -73.04
-73.20
-68.91
-63.22 | -74.29
-74.33
-64.54
-53.20 | 74.71
66.40
49.63
42.39 | | | 1 | 348.35 -
329.42 -
344.56 -
311.43 - | 347.33 -
332.13 -
338.67 -
2.23 - | 348.49 -
328.73 -
36.13 -
311.05 - | 317.94 -
40.23 -
331.45 -
19.46 -
354.94 - | 348.90 -
306.76 -
13.79 -
333.03 - | 13.71 -
21.85 -
327.15 -
15.48 -
56.73 - | 307.76 -
326.51 -
355.22 -
341.53 - | 13.14 -
13.74 -
344.32 -
329.46 - | 23.49 -
17.42 -
328.81 -
315.78 - | 331.42 -6
331.92 -6
312.94 -4
308.83 -4 | | | RA (2000) Dec | 23 14.0 -42 43
23 14.5 -54 19
23 17.1 -44 17
23 17.6 -73 54
23 17.7 -75 01 | 23 17.5 -42 50
23 17.5 -51 48
23 18.0 -47 27
23 18.3 -36 17
23 19.0 -47 59 | 23 19.1 -42 05
23 19.3 -54 05
23 20.1 -24 07
23 21.4 -74 00
23 22.0 -54 46 | 23 22.7 -64 05
23 23.2 -22 49
23 24.3 -51 11
23 24.6 -29 55
23 24.7 -38 40 | 23 25.2 -41 12
23 26.8 -81 19
23 26.9 -31 44
23 27.2 -49 36
23 27.7 -38 13 | 23 28.2 -31 43
23 28.3 -29 07
23 29.1 -53 38
23 29.9 -31 06
23 29.9 -17 06 | 23 30.9 -78 50
23 30.7 -53 52
23 31.3 -37 55
23 34.4 -43 28
23 36.0 -42 11 | 23 36.2 -31 36
23 36.8 -31 24
23 37.1 -41 44
23 38.5 -49 59
23 39.5 -45 58 | 23 40.6 -28 35
23 41.3 -30 13
23 44.9 -49 06
23 45.0 -62 14
23 45.5 -56 02 | 23 46.0 -23 15
23 46.4 -46 58
23 46.6 -66 13
23 47.6 -74 00
23 47.8 -35 35 | | |) Dec | -43 00
-54 36
-44 34
-74 11 | -43 07
-52 05
-47 44
-36 34
-48 16 | -42 22
-54 22
-24 24
-74 17
-55 03 | -64 22
-23 06
-51 28
-30 12
-38 57 | -41 29
-81 36
-32 01
-49 53 | -32 00
-29 24
-53 55
-31 23 | -79 07
-54 09
-38 12
-43 45 | -31 53
-31 41
-42 01
-50 16 | 28 52
30 30
49 23
62 31
56 19 | 23 32
47 15
66 30
74 17
35 52 | | | RA (1950) | 23 11.2 -
23 11.6 -
23 14.3 -
23 14.3 -
23 14.3 - | 23 14.7 - 23 15.2 - 23 15.2 - 23 15.6 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 23 16.2 - 24 16. | 23 16.4
23 17.5
23 17.4
23 18.2 | 23 19.7
23 20.6
23 21.5
23 21.9 | 23 22 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 23 25.5
23 25.6
23 26.3
23 27.2
23 27.3 | 23 27.6
23 27.9
23 28.6
23 31.7 | 23 33.6
23 34.2
23 35.4
23 35.4
23 35.8
1 1 1 | 23 38.0
23 42.2
23 42.2
23 42.3
23 42.3 | 233 4 4 3 2 3 4 4 4 3 3 4 4 3 3 4 4 3 3 4 4 5 3 3 4 4 5 3 3 4 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | Abell | \$1101
\$1102
\$1103
\$1104
\$1105 | \$1106
\$1107
\$1108
\$1109
\$1110 | S1111
S1112
S1113
S1114 | \$1116
\$1117
\$1118
\$1119
\$1120 | \$1121
\$1122
\$1123
\$1124
\$1125 | \$1126
\$1127
\$1128
\$1129
\$1130 | S1131
S1132
S1133
S1134
S1135 | S1136
S1137
S1138
S1139
S1140 | S1141
S1142
S1143
S1144
S1145 | S1146
S1147
S1148
S1149
S1150 | | | | | | | | 07 | | | | | | | п | 17.4
17.4
17.4
17.4
15.6 | 17.4
14.9
17.2
17.3 | 16.5
17.2
16.1
16.6
15.7 | 17.2
17.4
17.3
16.9 | 16.1
16.3
15.5
17.4 | |-------------------|---|---|--|---|---| | D | neeee | 6 6 7 1 2 6 7 | លសេងបង | വയയവ | 4400 | | R | 40000 | 00004 | 00000 | 04000 | 0000 | | 7 | 0.226 | 0.0456 | 0.0299 | | 0.0500 | | Previous | | α | 8 0 8 | ۵ | s
OR | | Obs | 10, 10
10, 10
10 | 50
10
10
10
10 | 10
10
10,10 | 10000 | 10
10,10 | | m ₁₀ | 19.7
19.5
19.5
19.2 | 19.3
14.7
17.5
18.6
20.6 | 16.3
17.4
15.9
16.4
15.5 | 17.1
20.0
18.1
16.7 | 15.9
16.1
15.4
19.4 | | m³ | 19.4
19.3
19.1
18.6
14.3 | 19.1
13.2:
16.3
18.4
19.9 | 15.7
16.7
14.8
15.1
13.7 | 15.8
19.5
17.5
16.4 | 13.7
15.4
14.6
19.3 | | m ₁ | 18.7
17.9:
16.7
18.3 | 18.0
12.8
15.4
18.1 | 15.5
14.9?
14.5
13.6 | 15.4
19.2
17.3
15.1 | 12.7
13.8
13.6
17.6 | | ပ | 218
20:
-1:
12 | 19
10
10
10
66) | 71 2 8 4 E | -46
78
22
12
26 | 8
27
15 | | Тв-м | HIIII | :::::::::::::::::::::::::::::::::::::: | III-III
II-III | | III
IIII I | | $T_{\mathbf{A}}$ | * # * H H | RI I I | HHHHH | нннн | rrii. | | Abell | S1151
S1152
S1153
S1153 | S1156
S1157
S1158
S1159
S1160 | S1161
S1162
S1163
S1164
S1165 | S1166
S1167
S1168
S1169
S1170 | \$1171
\$1172
\$1173
\$1174 | | | | | | | | | ın | 211
210
279
250
202 | 184
180
99
190 | 225
279
282
159 | 316
151
170
74
323 | 283
219
207
315 | | ux | 172
186
18
18
247
312 | 239
288
89
219
246 | 245
251
97
219
213 | 181
194
182
73
182 | 183
179
177
174 | | Ycen | 47
46
115
86
38 | 20
16
18
18 | 61
115
85
118
-5 | 152
-13
-90
159 | 119
55
43
151 | | x cen | -22
-22
146
-83 | -124
75
-55
-82 | -81
-87
-55
-49 | -17
-30
-18
-18 | -15
-13 | | Field | 717
92
78
09 | | | | | | | F477
F246
F074 | F078
F192
F078
F241 | F349
F472
F606
F293 | F050
F538
F111
F292
F293 | F409
F293
F241
F293 | | q | | | | | | | q 1 | 21.99 -75.96 F4
335.95 -68.99 F2
329.62 -66.26 F3
314.42 -52.62 F0
21.39 -76.37 F4 | 313.51 -51.52 F078
359.57 -75.30 F349
319.23 -59.27 F192
313.03 -51.74 F078
332.98 -69.26 F241 | 1.07 -76.32 F349
49.68 -76.59 F472
65.08 -74.40 F606
346.78 -74.56 F293
16.61 -78.10 F409 | 310.70 -49.44 F050
61.58 -76.28 F538
314.55 -56.31 F111
327.06 -68.28 F292
347.46 -75.59 F293 | 27.95 -78.88 F409
341.73 -74.35 F293
330.46 -70.42 F241
346.59 -75.62 F293 | | RA (2000) Dec 1 b | -75.96
-68.99
-66.26
-52.62
| -51.52
-75.30
-59.27
-51.74 | -76.32
-76.59
-74.40
-74.56 | -49.44
-75.28
-56.31
-68.28 | -78.88
-74.35
-70.42
-75.62 | | 1 | 48.3 -28 54 21.99 -75.96
48.5 -43 33 335.95 -68.99
49.3 -47 31 329.62 -66.26
49.5 -63 06 314.42 -52.62
50.2 -29 01 21.39 -76.37 | 50.3 -64 20 313.51 -51.52
51.9 -34 25 359.57 -75.30
52.1 -55 56 319.23 -59.27
53.6 -64 14 313.03 -51.74
54.0 -44 22 332.98 -69.26 | 55.6 -33 39 1.07 -76.32
55.8 -22 35 49.68 -76.59
56.0 -18 10 65.08 -74.40
57.6 -37 37 346.78 -74.56
58.7 -29 51 16.61 -78.10 | 59.7 -66 54 310.70 -49.44
000.3 -19 59 61.58 -75.28
00.4 -59 39 314.55 -56.31
00.8 -46 24 327.06 -68.28
01.1 -36 50 347.46 -75.59 | 01.4 -27 32 27.95 -78.88
01.4 -38 46 341.73 -74.35
01.8 -43 57 330.46 -70.42
01.9 -36 59 346.59 -75.62 | TABLE 5—Continued | | B | 17.2
17.3
17.2
16.5
15.2 | 17.2
17.4
17.3
16.7 | 17.4
17.2
17.3
17.2 | 17.3
15.9
15.8
15.8
17.0 | 16.3
17.3
17.2
17.2
16.0 | 17.2
17.2
17.4
16.5
17.4 | 17.3
17.3
17.4
17.3 | 17.2
17.2
17.2
17.2
17.2 | 17.4
17.3
17.4
17.4
17.4 | 17.4
17.2
17.3
17.3 | |-------------|---|--|---|---|--|---|--|--|---|--|---| | | Ω | നവവഴവ | 00000 | വവഴവയ | 04440 | 40004 | စသစသသ | 99999 | വവവവ | 99999 | 00000 | | | ا ۳ | 00000 | нчеое | mm040 | 44000 | 04000 | 40044 | поппп | 04460 | 44444 | 04484 | | | 8 | 0.0640 | 0.121 | 0.1087 | 0.0610
0.1086 | 0.0566 | 0.0604 | 0.152 | | | | | | Previous | | | | | | | | | | | | | Obs | 10,10
10,10
20,10
10,10 | 10, 10
10, 10
10 | 10,1C
1C
1C
2C,10 | 20
10
10
10 | 10
10
10
10
20,10 | 10,10
10,10
20
20 | 99999 | 10,20
10
10
10 | 99999 | 50000
50000 | | | m ₁₀ | 17.9
18.5:
17.8
16.3 | 17.1
18.8:
18.0
16.5 | 19.0:
17.8
18.1
17.8
16.9 | 18.7
15.8
15.6
15.6 | 16.1
18.0
17.7
17.1
15.9 | 17.4
18.0
19.1
16.4
19.0 | 18.1
18.5
19.2
18.4
18.6 | 17.9:
17.6
17.5
17.2 | 19.1
18.7
19.1
19.1 | 19.7
17.8
18.6
18.5 | | | m ₃ | 16.8
17.8
17.0
15.6
14.3: | 16.6
17.3?
17.6
15.1
18.6 | 17.9
? 16.7
? 17.5
: 17.0
16.0 | 17.8
15.0
15.2
14.8 | 15.5
17.6
? 15.9
? 15.9
15.3 | 16.5
18.8
18.6
15.4 | 16.4
18.3
18.4
17.2 | 16.3;
16.7
16.2
16.6 | 18.3
17.7
17.8
18.0
19.2 | 19.4
16.8
18.1
17.9 | | | ı, | 16.2:
17.4
16.0
15.4 | 15.9
16.9
16.2
18.0 | 17.3
16.00
17.00
15.3 | 17.5
14.4
15.1
15.1
15.3 | 14.01
15.8
15.4
16.6 | 15.8
16.0
17.6
14.0 | 15.4
18.0
17.2
16.1 | 15.93
16.93
16.0 | 17.5
16.4
16.8
16.8 | 19.1
16.7
16.7
16.3 | | | Ö | 58
76:
96:
29 | 52
66:
192
46
139 | 146
141
29
77
34 | 67
50
32
41: | 27
72
28
34
30 | 77
81:
41:
60 | 79
449
76
55 | 40
64
92
29 | 74
65
98
66: | 203
59
59
80:
77: | | | T_{B-M} | . II
II:
III-III | | | | :::::::::::::::::::::::::::::::::::::: | II-II
II-II
II -III
II: | | :::
:::::::::::::::::::::::::::::::::: | | 11-1117
1-11
11-111
11:
1-11 | | S. | T_A | RI?
R
R
RI: | 8 1 8 8 8 8 | жжжнн | нннжн | нанян | ж ж ж н | яндыя | RRRR | * K K K | RRRRR | | TE CLUSTERS | Abell | 2708
2712
0002
0013 | 0015
0020
0022
0027
0033 | 0035
0042
0047
0050
0051 | 0061
0074
0080
0086
0088 | 0093
0097
0099
0107 | 0118
0122
0127
0133
0135 | 0140
0141
0144
0155 | 0183
0185
0187
0197
0199 | 0206
0210
0214
0215
0235 | 0238
0264
0273
0283 | | ZONE | | | | | | | | | | | | | | 1 1 | | | | | | | | | | | | | yıı | 314
250
167
178
210 | 93
276
112
112
177 | 224
194
229
223 | 248
297
167
55 | 228
247
289
188 | 75
80
232
49
280 | 206
171
102
158
107 | 46
74
194
252
271 | 117
98
92
233
292 | 255
110
228
306
170 | | OVERLAP Z | ng nx | 115 314
109 250
94 167
291 178
282 210 | 278 93
227 276
213 112
149 112
119 177 | 118 68
117 224
93 194
83 299
79 223 | 39 248
257 297
240 167
188 55
208 94 | 170 228
175 247
147 289
92 188
53 57 | 58 75
35 80
270 232
202 49
227 280 | 213 206
201 171
156 102
148 158
247 107 | 223 46
220 74
216 194
162 252
157 271 | 186 117
143 98
117 92
105 233
258 292 | 34 255
172 110
146 228
109 306
63 170 | | | ycen x11 | 15
09
91
82 | 21117 | 2292 | 39
40
88
08 | 64 170
83 175
125 147
24 92
-107 53 | -89 58
-84 35
68 270
-115 202
116 227 | | | | | | | "x " | 49 150 115
55 86 109
70 3 94
27 14 291
18 46 282 | 278 9
227 27
213 11
149 11 | 6 118 6
0 117 22
0 93 19
5 83 29
9 79 22 | 84 39
33 257
3 240
09 188
70 208 | 4 170
3 175
5 147
7 53 | 9 58
4 35
8 270
5 202
6 227 | 213
201
156
148
247 | 18 223
90 220
30 216
88 162
07 157 | 186
143
117
105
258 | 1 34
4 172
4 146
2 109
6 63 | | | ycen x11 | 9 150 115
5 86 109
0 3 94
7 14 291
8 46 282 | -71 278 9
112 227 27
-52 213 11
-52 149 11
13 119 17 | 6 -96 118 6
7 60 117 22
1 30 93 19
1 135 83 29
5 59 79 22 | 5 84 39
3 133 257
6 3 240
4 -109 188
4 -70 208 | 64 170
83 175
125 147
24 92
-107 53 | -89 58
-84 35
68 270
-115 202
116 227 | 42 213
7 201
-62 156
-6 148
-57 247 | -118 223
-90 220
30 216
88 162
107 157 | -47 186
-66 143
-72 117
69 105
128 258 | 91
34
3 -54 172
8 64 146
5 142 109
1 6 63 | | | d xcen ycen x11 | 5.40 F538 49 150 115
6.36 F538 55 86 109
7.60 F538 70 3 94
8.46 F539 -127 14 291
1.19 F473 -118 46 282 | 1.81 F473 -114 -71 278 9
1.53 F473 -63 112 227 27
2.94 F473 -49 -52 213 11
1.19 F539 15 -52 149 11
0.57 F539 45 13 119 17 | 2.19 F539 46 -96 118 6
4.43 F473 47 60 117 22
4.43 F473 81 135 83 29
4.34 F473 85 59 79 22 | 4.54 F473 125 84 39
4.42 F474 -93 133 257
6.51 F474 -76 3 240
4.31 F540 -24 -109 188
7.82 F474 -44 -70 208 | 1.25 F540 -6 64 170
5.86 F474 -11 83 175
0.18 F540 17 125 147
2.15 F540 72 24 92
4.57 F540 111 -107 53 | 8.84 F474 106 -89 58
8.42 F474 129 -84 35
5.90 F475 -106 68 270
4.16 F541 -38 -115 202
4.72 F475 -63 116 227 | 5.69 F475 -49 42 213
5.98 F475 -37 7 201
2.90 F541 8 -62 156
5.28 F475 16 -6 148
1.08 F542 -83 -57 247 | 1.38 F542 -59 -118 223
1.01 F542 -56 -90 220
9.34 F542 -5 30 216
7.91 F542 7 107 157 | 1.56 F476 -22 -47 186
0.81 F476 21 -66 143
0.36 F476 47 -72 117
9.45 F476 59 69 105
5.16 F543 -94 128 258 | 8.07 F476 130 91 34
6.41 F477 -8 -54 172
5.43 F477 18 64 146
4.27 F477 55 142 109
4.22 F477 101 6 63 | | | Field xcen ycen x11 | .40 F538 49 150 115
.36 F538 55 86 109
.60 F538 70 3 94
.46 F539 -127 14 291
.19 F473 -118 46 282 | 53 -81.81 F473 -114 -71 278 9
10 -81.53 F473 -63 112 227 27
8-82.94 F473 -49 -52 213 11
13 -81.19 F539 15 -52 149 11
58 -80.57 F539 45 13 119 17 | 18 -82.19 F539 46 -96 118 6
76 -83.78 F473 47 60 117 22
83 -84.43 F473 81 135 83 29
86 -83.30 F473 85 59 79 22 | 42 -84.54 F473 125 84 39
08 -84.42 F474 -93 133 257
38 -86.51 F474 -76 3 240
00 -84.31 F540 -24 -109 188
89 -87.82 F474 -44 -70 208 | 25 F540 -6 64 170
86 F474 -11 83 175
118 F540 17 125 147
15 F540 17 2 24 92
57 F540 111 -107 53 | 15 -88.84 F474 106 -89 58
90 -88.42 F474 129 -84 35
68 -85.90 F475 -106 68 270
65 -84.16 F541 -138 -115 202
58 -84.72 F475 -63 116 227 | 83 -85.69 F475 -49 42 213
67 -85.98 F475 -37 7 201
37 -82.90 F541 8 -62 156
57 -85.28 F475 16 -6 148
42 -81.08 F542 -83 -57 247 | 55 -81.38 F542 -59 -118 223
59 -81.01 F542 -56 -90 220
59 -73.34 F542 -5 30 216
01 -77.91 F542 2 88 162
23 -77.52 F542 7 107 157 | 56 F476 -22 -47 186
81 F476 21 -66 143
36 F476 47 -72 117
16 F543 -94 128 258 | .07 F476 130 91 34
.41 F477 -8 -54 172
.43 F477 18 64 146
.27 F477 55 142 109
.22 F477 101 6 63 | | | b Field xcen ycen x11 | 77 -75.40 F538 49 150 115
05 -76.36 F538 55 86 109
71 -77.60 F538 70 3 94
27 -78.46 F539 -127 14 291
51 -81.19 F473 -118 46 282 | 3 -81.81 F473 -114 -71 278 9
0 -81.53 F473 -63 112 227 27
8 -82.94 F473 -49 -52 213 11
3 -81.19 F539 15 -52 149 11
8 -80.57 F539 45 13 119 17 | 8 -82.19 F539 46 -96 118 6
6 -83.78 F473 47 60 117 22
3 -84.43 F473 71 30 93 19
6 -83.30 F473 81 135 83 29
9 -84.34 F473 85 59 79 22 | -84.54 F473 125 84 39
-84.42 F474 -93 133 257
-86.51 F474 -76 3 240
-84.31 F540 -24 -109 188
-87.82 F474 -44 -70 208 | 7 -81.25 F540 -6 64 170
8 -85.86 F474 -11 83 175
0 -80.18 F540 17 125 147
1 -82.15 F540 72 24 92
4 -84.57 F540 111 -107 53 | 5 -88.84 F474 106 -89 58
0 -88.42 F474 129 -84 35
8 -85.90 F475 -106 68 270
5 -84.16 F541 -115 202
8 -84.72 F475 -63 116 227 | 3 -85.69 F475 -49 42 213
7 -85.98 F475 -37 7 201
7 -85.29 F475 16 -6 148
2 -81.08 F542 -83 -57 247 | 5 -81.38 F542 -59 -118 223
9 -81.01 F542 -56 -90 220
9 -79.34 F542 -52 30 216
1 -77.91 F542 7 107 157 | 0 -81.56 F476 -22 -47 186
6 -80.81 F476 21 -66 143
1 -80.36 F476 47 -72 117
2 -79.45 F476 59 69 105
7 -75.16 F543 -94 128 258 | 8 -78.07 F476 130 91 34
0 -76.41 F477 -8 -54 172
4 -75.43 F477 18 64 146
8 -74.27 F477 55 142 109
2 -74.22 F477 101 6 63 | | | Dec l b Field xcen ycen x11 | 6 53 75.17 -75.40 F538 49 150 115
8 06 72.05 -76.36 F538 55 86 109
9 39 67.71 -77.60 F538 70 3 94
9 30 72.27 -78.46 F539 -127 14 291
3 53 52.51 -81.19 F473 -118 46 282 | 6 02 38.53 -81.81 F473 -114 -71 278 9 2 3 9 63.10 -81.53 F473 -63 112 227 27 5 4 3 42.68 -82.94 F473 -49 -52 213 11 0 4 3 78.13 -81.19 F539 15 -52 149 11 0 9 30 85.58 -80.57 F539 45 13 119 17 | 33 77.18 -82.19 F539 46 -96 118 6
38 65.76 -83.78 F473 47 60 117 22
10 63.83 -84.43 F473 81 135 83 29
38 69.89 -84.34 F473 85 59 79 22 | 10 78.42 -84.54 F473 125 84 39
18 92.08 -84.42 F474 -93 133 257
39 77.38 -86.51 F474 -76 3 240
47 102.00 -84.31 F540 -44 -109 188
03 61.89 -87.82 F474 -44 -70 208 | 3 2 111.57 -81.25 F540 -6 64 170
3 11 104.58 -85.86 F474 -11 83 175
7 23 115.30 -80.18 F540 17 125 147
9 16 121.11 -82.15 F540 77 24 92
1 43 129.14 -84.57 F540 111 -107 53 | 5 22 173.15 -88.84 F474 106 -89 58 51 180.90 -88.42 F474 129 -84 35 15 16 180.50 -88.42 F475 -106 68 270 15.2 149.65 -84.16 F541 -138 -115 202 27 154.58 -84.72 F475 -63 116 227 | 3 58 166.83 -85.69 F475 -49 42 213
4 38 175.67 -85.98 F475 -37 7 201
53 152.37 -82.90 F541 8 -62 156
4 53 185.57 -85.28 F475 16 -6 148
1 02 171.42 -81.08 F542 -83 -57 247 | 56 177.55 -81.38 F542 -59 -118 223
28 175.59 -81.01 F542 -56 -90 220
12 166.59 -79.34 F542 -55 30 216
10 167.01 -77.91 F542 2 88 162
46 166.23 -77.52 F542 7 107 157 | 5 39 205.00 -81.56 F476 -22 -47 186
6 00 208.26 -80.81 F476 21 -66 143
6 06 209.31 -80.36 F476 47 -72 117
3 28 195.12 -79.45 F476 59 69 105
7 25 174.67 -75.16 F543 -94 128 258 | 3 01 195.58 -78.07 F476 130 91 34
5 47 210.70 -76.41 F477 -8 -54 172
3 35 202.34 -75.43 F477 18 64 146
2 07 197.98 -74.27 F477 55 142 109
4 39 207.82 -74.22 F477 101 6 63 | | | Dec l b Field xcen ycen x11 | 53 75.17 -75.40 F538 49 150 115
06 72.05 -76.36 F538 55 86 109
39 67.71 -77.60 F538 70 3 94
30 72.27 -78.46 F539 -127 14 291
53 52.51 -81.19 F473 -118 46 282 | 1 -26 02 38.53 -81.81 F473 -114 -71 278 9
7 -22 39 63.10 -81.53 F473 -63 112 227 27
5 -25 43 42.68 -82.94 F473 -49 -52 213 11
9 -20 43 78.13 -81.19 F539 15 -52 149 11
2 -19 30 85.58 -80.57 F539 45 13 119 17 | 4 -21 33 77.18 -82.19 F539 46 -96 118 6 6 -23 38 65.76 -83.78 F473 47 60 117 22 6 -24 10 63.83 -84.43 F473 81 135 83 29 7 -23 38 69.89 -84.34 F473 85 59 79 22 | .8 -23 10 78.42 -84.54 F473 125 84 39 .1 -22 18 92.08 -84.42 F474 -93 133 257 .5 -24 43 17.02 -084.31 F540 -24 -109 188 .0 -26 03 61.89 -87.82 F474 -44 -70 208 | .2 -18 32 111.57 -81.25 F540 -6 64 170
.8 -23 11 104.58 -85.86 F474 -11 83 175
.0 -17 23 115.30 -80.18 F540 17 125 147
.0 -19 16 121.11 -82.15 F540 77 24 92
.0 -21 43 129.14 -84.57 F540 111 -107 53 | 4 -26 22 173.15 -88.84 F474 106 -89 58 4 -26 16 180.90 -88 42 F474 129 -84 35 0 -23 30 151.68 -85.90 F475 -106 68 270 149.65 -84.16 F541 -38 -115 202 4 -22 35 154.58 -84.72 F475 -63 116 227 | 58 166.83 -85.69 F475 -49 42 213
38 175.67 -85.98 F475 -37 7 201
53 152.37 -82.90 F541 8 -62 156
53 185.57 -85.28 F475 16 -6 148
02 171.42 -81.08 F542 -83 -57 247 | 6 177.55 -81.38 F542 -59 -118 223
8 175.59 -81.01 F542 -56 -90 220
2 166.59 -79.34 F542 -5 30 216
167.01 -77.91 F542 2 88 162
6 166.23 -77.52 F542 7 107 157 | 39 205.00 -81.56 F476 -22 -47 186 00 208.26 -80.81 F476 21 -66 143 06 209.31 -80.36 F476 47 -72 117 28 195.12 -79.45 F476 59 69 105 25 174.67 -75.16 F543 -94 128 258 | 0 -23 01 195.58 -78.07 F476 130 91 34
9 -25 47 210.70 -76.41 F477 -8 -54 172
0 -23 35 202.34 -75.43 F477 18 64 146
1 -22 07 197.98 -74.27 F477 55 142 109
8 -24 39 207.82 -74.22 F477 101 6 63 | | | l b Field xcen ycen x11 | -16 53 75.17 -75.40 F538 49 150 115
-18 06 72.05 -76.36 F538 55 86 109
-19 39 67.71 -77.60 F538 70 3 94
-19 30 72.27 -78.46 F539 -127 14 291
-23 53 52.51 -81.19 F473 -118 46 282 | -26 02 38.53 -81.81 F473 -114 -71 278 9
-22 39 63.10 -81.53 F473 -63 112 227 27
-25 43 42.68 -82.94 F473 -49 -52 213 11
-20 43 78.13 -81.19 F539 15 -52 149 11
-19 30 85.58 -80.57 F539 45 13 119 17 | -21 33 77.18 -82.19 F539 46 -96 118 6 -23 38 65.76 -83.78 F473 47 60 117 22 -24 10 63.83 -84.43 F473 81 135 83 29 -22 13 78.86 -83.30 F473 85 59 79 22 | -23 10 78.42 -84.54 F473 125 84 39
-22 18 92.08 -84.42 F474 -93 133 257
-24 39 77.38 -86.51 F474 -76 3 240
-21 47 102.00 -84.31 F540 -24 -109 188
-26 03 61.89 -87.82 F474 -44 -70 208 | -18 32 111.57 -81.25 F540 -6 64 170
-23 11 104.58 -85.86 F474 -11 83 175
-17 23 115.30 -80.18 F540 17 125 147
-19 16 121.11 -82.15 F540 72 24 92
-21 43 129.14 -84.57 F540 111 -107 53 | -26 22 173.15 -88.84 F474 106 -89 58 -26 16 180.90 -88.42 F474 129 -84 35 -23 30 151.68 -85.90 F475 -106 68 270 -21 52 149.65 -84.16 F541 -38 -115 202 -22 35 154.58 -84.72 F475 -63 116 227 | -23 58 166.83 -85.69 F475 -49 42 213 -24 38 175.67 -85.98 F475 -37 7 201 -20 53 152.37 -85.29 F475 16 -6 156 -24 53 185.57 -85.28 F475 16 -6 148 -21 02 171.42 -81.08 F542 -83 -57 247 | -21 56 177.55 -81.38 F542 -59 -118 223 -21 28 175.59 -81.01 F542 -56 -90 220 -19 12 166.59 -79.34 F542 -52 30 216 -18 10 167.01 -77.91 F542 2 88 162 -17 46 166.23 -77.52 F542 7 107 157 | -25 39 205.00 -81.56 F476 -22 -47 186 -26 00 208.26 -80.81 F476 21 -66 143 -25 00 195.11 -90.35 F476 47 -72 117 -23 28 195.12 -79.45 F476 59 69 105 -17 25 174.67 -75.16 F543 -94 128 258 | -23 01 195.58 -78.07 F476 130 91 34
-25 47 210.70 -76.41 F477 -8 -54 172
-23 35 202.34 -75.43 F477 18 64 146
-22 07 197.98 -74.27 F477 55 142 109
-24 39 207.82 -74.22 F477 101 6 63 | | | RA (2000) Dec l b Field x cen yeen x ll | 0 06.5 -16 53 75.17 -75.40 F538 49 150 115
0 07.1 -18 06 72.05 -76.36 F538 55 86 109
0 08.2 -19 39 67.71 -77.60 F538 70 3 94
0 13.6 -19 30 72.27 -78.46 F539 -127 14 291
0 15.1 -23 53 52.51 -81.19 F473 -118 46 282 | 15.1 -26 02 38.53 -81.81 F473 -114 -71 278 9 19.7 -22 39 63.10 -81.53 F473 -63 112 227 27 20.5 -25 43 42.68 -82.94 F473 -49 -52 213 11 24.9 -20 43 78.13 -81.19
F539 15 -52 149 11 27.2 -19 30 85.58 -80.57 F539 45 13 119 17 | 27.4 -21 33 77.18 -82.19 F539 46 -96 118 6 28.6 -23 38 65.76 -83.78 F473 47 60 117 22 30.5 -24 10 63.83 -84.43 F473 81 135 83 29 31.7 -22 13 78.86 -83.30 F473 85 59 79 22 | 0 34.8 -23 10 78.42 -84.54 F473 125 84 39 0 39.1 -22 18 92.08 -84.42 F474 -93 133 257 0 40.5 -24 39 77.38 -86.51 F474 -76 3 240 0 42.7 -13 1 7 102.00 -84.31 F540 -24 -109 188 0 43.0 -26 03 61.89 -87.82 F474 -44 -70 208 | 44.2 -18 32 111.57 -81.25 F540 -6 64 170
45.8 -23 11 104.58 -85.86 F474 -11 83 175
46.0 -17 23 115.30 -80.18 F540 17 125 147
50.4 -19 16 121.11 -82.15 F540 72 24 92
54.0 -21 43 129.14 -84.57 F540 111 -107 53 | 0 55.4 -26 22 173.15 -88.84 F474 106 -89 58 0 57.4 -26 16 180.90 -88.42 F474 129 -84 35 10.00 -23 30 151.68 -85.90 F475 -106 68 270 1 02.7 -21 52 149.65 -84.16 F541 -38 -115 202 1 03.4 -22 35 154.58 -84.72 F475 -63 116 227 | 04.5 -23 58 166.83 -85.69 F475 -49 42 213 05.5 -24 38 175.67 -85.98 F475 -37 7 201 06.3 -20 53 152.37 -82.90 F475 16 -6 148 20.0 -21 02 171.42 -81.08 F542 -83 -57 247 | 21.7 -21 56 177.55 -81.38 F542 -59 -118 223 22.1 -21 28 175.59 -81.01 F542 -56 -90 220 22.5 -19 12 166.59 -79.34 F542 -52 30 216 26.7.2 -18 10 167.01 -77.91 F542 2 88 162 27.2 -17 46 166.23 -77.52 F542 7 107 157 | 1 28.6 -25 39 205.00 -81.56 F476 -22 -47 186
1 32.3 -26 00 208.26 -80.81 F476 21 -66 143
1 34.3 -26 06 209.31 -80.36 F476 47 -72 117
1 35.3 -23 28 195.12 -79.45 F476 59 69 105
1 40.1 -17 25 174.67 -75.16 F543 -94 128 258 | 41.0 -23 01 195.58 -78.07 F476 130 91 34 51.9 -25 47 210.70 -76.41 F477 -8 -54 172 54.0 -23 35 202.34 -75.43 F477 18 64 146 57.1 -22 07 197.98 -74.27 F477 55 142 109 00.8 -24 39 207.82 -74.22 F477 101 6 63 | | | Dec RA (2000) Dec l b Field xcen ycen x11 | -17 10 00 06.5 -16 53 75.17 -75.40 F538 49 150 115
-18 23 00 07.1 -18 06 72.05 -76.36 F538 55 86 109
-19 56 00 08.2 -19 39 67.71 -77.60 F538 70 3 94
-19 47 00 13.6 -19 30 72.27 -78.46 F539 -127 14 291
-24 10 00 15.1 -23 53 52.51 -81.19 F473 -118 46 282 | -26 19 00 15.1 -26 02 38.53 -81.81 F473 -114 -71 278 9 -22 56 00 19.7 -22 39 63.10 -81.53 F473 -63 112 227 27 -26 00 00 20.5 -25 43 42.68 -82.94 F473 -49 -52 213 11 -21 00 00 24.9 -20 43 78.13 -81.19 F539 15 -52 149 11 -19 47 00 27.2 -19 30 85.58 -80.57 F539 45 13 119 17 | -21 50 27.4 -21 33 77.18 -82.19 F539 46 -96 118 6 -23 55 00 28.6 -23 38 65.76 -83.78 F473 47 60 117 22 -24 27 00 30.5 -24 10 63.83 -84.43 F473 71 30 93 19 -22 30 03 31.7 -22 13 78.86 -83.30 F473 81 135 89 29 79 22 -23 55 03 31.7 -23 38 69.89 -84.34 F473 85 59 79 22 | -23 27 00 34.8 -23 10 78.42 -84.54 F473 125 84 39 -22 35 00 39.1 -22 18 92.08 -84.42 F474 -93 133 257 -24 56 00 40.5 -24 39 77.38 -86.51 F474 -76 3 240 -25 04 04.5.7 -21 47 102.00 -84.31 F540 -24 -109 188 -26 20 00 43.0 -26 03 61.89 -87.82 F474 -44 -70 208 | -18 49 00 44.2 -18 32 111.57 -81.25 F540 -6 64 170 -23 28 00 45.8 -23 11 104.58 -85.86 F474 -11 83 175 -17 40 00 46.0 -17 23 115.30 -80.18 F540 17 125 147 -12 33 00 50.4 -19 16 121.11 -82.15 F540 77 2 4 92 -22 00 00 54.0 -21 43 129.14 -84.57 F540 111 -107 53 | -26 39 00 55.4 -26 22 173.15 -88.84 F474 106 -89 58 -26 33 00 57.4 -26 16 180.90 -88.42 F474 129 -84 35 -23 47 01 0.0 -23 30 151.68 -88.90 F475 -106 68 270 -22 09 01 02.7 -21 52 149.65 -84.16 F541 -38 -115 207 -22 52 01 03.4 -22 35 154.58 -84.72 F475 -63 116 227 | -24 15 01 04.5 -23 58 166.83 -85.69 F475 -49 42 213 -24 55 01 05.5 -24 38 175.67 -85.98 F475 -37 7 201 -21 10 06.3 -20 31 152.37 -85.28 F475 -37 7 201 -25 09 09 -24 53 185.57 -85.28 F475 16 -6 148 -21 18 01 20 -21 02 171.42 -81.08 F542 -83 -57 247 | -22 12 01 21.7 -21 56 177.55 -81.38 F542 -59 -118 223 -21 44 01 22.1 -21 28 175.59 -81.01 F542 -56 -90 220 -19 28 01 22.5 -19 12 166.59 -79.34 F542 -52 30 216 -18 26 01 26.7 -18 10 167.01 -77.91 F542 2 88 162 -18 02 01 27.2 -17 46 166.23 -77.52 F542 7 107 157 | -25 55 01 28.6 -25 39 205.00 -81.56 F476 -22 -47 186 -26 16 01 32.3 -26 00 208.26 -80.81 F476 21 -66 143 -26 22 01 34.3 -26 06 209.31 -80.35 F476 47 -72 117 -23 44 01 35.3 -23 28 195.12 -79.45 F476 59 69 105 -17 41 01 40.1 -17 25 174.67 -75.16 F543 -94 128 258 | -23 17 01 41.0 -23 01 195.58 -78.07 F476 130 91 34 -26 02 01 51.9 -25 47 210.70 -76.41 F477 -8 -54 172 -23 50 01 54.0 -23 35 202.34 -75.43 F477 18 64 146 -22 22 01 57.1 -22 07 197.98 -74.27 F477 55 142 109 -24 54 02 00.8 -24 39 207.82 -74.22 F477 101 6 63 | | | (1950) Dec l b Field x_{cen} y_{cen} x_{ll} | 17 10 00 06.5 -16 53 75.17 -75.40 F538 49 150 115
18 23 00 07.1 -18 06 72.05 -76.36 F538 55 86 109
19 56 00 08.2 -19 39 67.71 -77.60 F538 70 3 94
19 47 00 13.6 -19 30 72.27 -78.46 F539 -127 14 291
24 10 00 15.1 -23 53 52.51 -81.19 F473 -118 46 282 | 26 19 00 15.1 -26 02 38.53 -81.81 F473 -114 -71 278 9 22 56 00 19.7 -22 39 63.10 -81.53 F473 -63 112 227 27 26 00 00 20.55 -25 43 42.68 -82.94 F473 -49 -52 21 31 11 10 47 00 24.9 -20 43 78.13 -81.19 F539 15 -52 149 11 19 47 00 27.2 -19 30 85.58 -80.57 F539 45 13 119 17 | 21 50 00 27.4 -21 33 77.18 -82.19 F539 46 -96 118 6 23 55 00 28.6 -23 38 65.76 -83.78 F473 47 60 117 22 22 22 30 03.13 -22 13 78.86 -83.30 F473 81 135 83 29 23 55 00 31.7 -23 38 69.89 -84.34 F473 85 59 79 22 | 22 37 00 34.8 -23 10 78.42 -84.54 F473 125 84 39 22 35 00 39.1 -22 18 92.08 -84.42 F474 -93 133 257 24 56 00 40.5 -24 39 77.38 -86.51 F474 -93 133 257 24 56 00 42.7 -21 47 102.00 -84.31 F540 -24 -109 188 26 20 00 43.0 -26 03 61.89 -87.82 F474 -44 -70 208 | 3 49 00 44.2 -18 32 111.57 -81.25 F540 -6 64 170
3 28 00 45.8 -23 11 104.58 -85.86 F474 -11 83 175
40 00 46.0 -17 23 115.30 -80.18 F540 17 125 147
5 33 00 50.4 -19 16 121.11 -82.15 F540 77 24 92
5 00 00 54.0 -21 43 129.14 -84.57 F540 111 -107 53 | 26 39 00 55.4 -26 22 173.15 -88.84 F474 106 -89 58 26 33 00 57.4 -26 16 180.90 -88.42 F474 129 -84 35 22 49 01 02.7 -21 52 149.65 -84.16 F541 -138 -115 20 22 52 01 03.4 -22 35 154.58 -84.72 F475 -63 116 227 | 24 15 01 04.5 -23 58 166.83 -85.69 F475 -49 42 213 21 01 05.5 -24 38 175.67 -85.98 F475 -37 7 201 21 10 01 06.3 -26 39 185.37 -85.28 F475 16 -6 186 25 09 01 09.9 -24 53 185.57 -85.28 F475 16 -6 148 21 18 01 20.0 -21 02 171.42 -81.08 F542 -83 -57 247 | 22 12 01 21.7 -21 56 177.55 -81.38 F542 -59 -118 223 21 44 01 22.1 -21 28 175.59 -81.01 F542 -56 -90 220 19 28 01 22.5 -19 12 166.59 -79.34 F542 -55 30 216 18 26 01 26.7 -18 10 167.01 -77.91 F542 2 88 162 18.07 27.2 -17 46 166.23 -77.52 F542 7 107 157 | 25 55 01 28.6 -25 39 205.00 -81.56 F476 -22 -47 186 26 16 01 32.3 -26 00 208.26 -80.81 F476 21 -66 143 26 22 01 34.3 -26 06 209.31 -80.36 F476 47 -72 117 23 34 40 135.3 -23 28 195.12 -79.45 F476 59 69 105 17 41 01 40.1 -17 25 174.67 -75.16 F543 -94 128 258 | 23 17 01 41.0 -23 01 195.58 -78.07 F476 130 91 34 26 02 01 51.9 -25 47 210.70 -76.41 F477 -8 -54 172 23 50 01 54.0 -23 35 202.34 -75.43 F477 18 64 146 22 2 01 57.1 -22 07 197.98 -74.27 F477 55 142 109 24 54 02 00.8 -24 39 207.82 -74.22 F477 101 6 63 | | | Dec RA (2000) Dec l b Field xcen ycen x11 | 5 -17 10 00 06.5 -16 53 75.17 -75.40 F538 49 150 115
5 -18 23 00 07.1 -18 06 72.05 -76.36 F538 55 86 109
719 56 00 08.2 -19 39 67.71 -77.60 F538 70 3 94
119 47 00 13.6 -19 30 72.27 -78.46 F539 -127 14 291
6 -24 10 00 15.1 -23 53 52.51 -81.19 F473 -118 46 282 | 2.6 -26 19 00 15.1 -26 02 38.53 -81.81 F473 -114 -71 278 9 7.2 -22 56 00 19.7 -22 39 63.10 -81.53 F473 -63 112 227 27 8.0 -26 00 00 24.9 -26 43 48.18 48.19 45.39 15 -52 149 111 4.7 -19 47 00 27.2 -19 30 85.58 -80.57 F539 45 13 119 17 | 4.9 -21 50 00 27.4 -21 33 77.18 -82.19 F539 46 -96 118 6 6.1 -23 55 00 28.6 -23 38 65.76 -83.78 F473 47 60 117 22 8.0 -24 27 00 31.5 -24 10 63.83 184.73 71 30 93 19 8.8 -22 30 31.7 -23 38 69.89 -84.34 F473 85 59 79 22 | 2.3 -23 27 00 34.8 -23 10 78.42 -84.54 F473 125 84 39 6.6 -22 35 00 39.1 -22 18 92.08 -84.42 F474 -93 133 257 8.0 2.4 4.5 7.3 8-65.51 F474 -76 3 240 9.2 -22 0.4 0.4 2.7 1.4 7 -76 1.8 9.2 -2.5 20 0.4 3.7 1.2 1.0 1.8 9 -84.31 F540 -24 -109 1.8 9.5 -26 20 0.4 3.0 -26 0.3 61.89 -87.82 F474 -44 -70 208 | 1.7 -18 49 00 44.2 -18 32 111.57 -81.25 F540 -6 64 170 3.3 -23 28 00 45.8 -23 11 104.58 -85.86 F474 -11 83 175 5.5 -17 40 00 46.0 -17 23 115.30 -80.18 F540 17 125 147 7.9 -19 33 00 50.4 -19 16 121.11 -82.15 F540 77 24 92 1.5 -22 00 00 54.0 -21 43 129.14 -84.57 F540 111 -107 53 | 3.0 -26 39 00 55.4 -26 22 173.15 -88.84 F474 106 -89 58 55.0 -26 33 00 57.4 -26 16 180.90 -88.42 F474 129 -84 35 00 57.4 -20 16 180.90 -88.42 F474 129 -84 35 00 31 -22 32 47 01 00.00 -23 30 1549.65 -84.16 F541 -138 -115 202 1.0 -22 52 01 03.4 -22 35 154.58 -84.72 F475 -63 116 227 | 2.1 -24 15 0.1 04.5 -23 58 166.83 -85.69 F475 -49 42 213 3.1 -24 55 175.67 -85.98 F475 -37 7 201 3.9 -21 10 010 06.3 -24 53 155.77 -85.28 F475 -37 7 201 7.5 -25 09 01 09.9 -45 53 185.57 -85.28 F475 16 -6 148 7.6 -21 18 01 20.0 -21 02 171.42 -81.08 F542 -83 -57 247 | 9.3 -22 12 01 21.7 -21 56 177.55 -81.38 F542 -59 -118 223 9.7 -21 44 01 22.1 -21 28 175.59 -81.01 F542 -56 -90 220 01 -19 28 01 22.5 -19 12 166.59 -79.34 F542 -5 30 216 4.3 -18 26 01 26.7 -18 10 167.01 -77.91 F542 2 88 162 4.8 -18 02 01 27.2 -17 46 166.23 -77.52 F542 7 107 157 | 6.2 -25 55 01 28.6 -25 39 205.00 -81.56 F476 -22 -47 186 9.9 -26 16 01 32.3 -26 00 208.26 -80.81 F476 21 -66 143 2.0 -26 22 01 34.3 -26 06 209.31 -80.36 F476 47 -72 117 2.9 -23 44 01 35.3 -23 28 195.12 -79.45 F476 59 69 105 7.7 -17 41 01 40.1 -17 25 174.67 -75.16 F543 -94 128 258 | 8.6 -23 17 01 41.0 -23 01 195.58 -78.07 F476 130 91 34 9.6 -26 02 01 51.9 -25 47 210.70 -76.41 F477 -8 -54 172 1.7 -23 50 01 54.0 -23 35 202.34 -75.43 F477 18 64 146 4.8 -22 22 01 57.1 -22 07 197.98 -74.27 F477 55 142 109 8.5 -24 54 02 00.8 -24 39 207.82 -74.22 F477 101 6 63 | | R D m | 6 17.3
6 17.3
5 17.2
6 17.3
6 17.3 | 6 17.3
6 17.3
5 17.2
6 17.4 | 0 6 17.3
1 5 17.1
3 5 17.0
1 6 17.4 | 0 6 17.4
0 4 16.2
0 5 16.5
1 6 17.3
3 6 17.3 | 2 6 17.3
2 5 17.0
2 6 17.3
2 5 17.2
3 5 17.2 | 0 6 17.3
2 6 17.3
2 5
17.2
1 6 17.3 | 5 17.2
6 17.3
6 17.3
7 17.3 | 1 4 15.9
0 6 17.3
0 6 17.3
2 5 17.2
1 4 16.1 | 1 5 17.1
0 3 15.6
2 5 17.2
2 6 17.3
2 5 17.3 | 2 2 14.6
1 5 16.8
3 5 17.1
1 5 16.8
2 6 17.4 | |--|---|--|--|---|---|---|--|--|--|--| | z | 22161 | 44666 | 0.1160 | 0.0406 | 0.1050 | OHNNH | 00010 | 0.0666 | 0.0472 | 0.041 | | Previous | | | | | | | | | | | | Obs | 30000 | 10
20,10
10
10,10 | 2C
1C
10
1C,20
2C,10 | 10,1C
20
1C,10
20
20 | 00000 | 10, 10
10, 20
10, 20
10, 10 | 00000 | 10,10
10,10
10,10 | 10
30
10
10,20 | 10
10
10,10 | | m ₁₀ | 18.3
19.0
17.8
18.6 | 18.4
18.7
17.3
19.2
17.2 | 18.5
16.9
16.8
19.8 | 19.2
16.0
16.4
18.2 | 19.0
16.8
18.1
17.8 | 18.5
18.3
18.8
18.1 | 17.1
17.6
18.7
18.1
18.8 | 15.8
20.0
19.4
18.0 | 17.7
15.5
18.5
19.2 | 14.6
16.8
18.8
17.5 | | m³ | 18.3
18.6
17.5
17.6: | 17.1
18.1
16.0
18.6
16.5 | 17.8
16.5
16.0
19.3 | 18.6
14.6
15.6:
17.7
17.8 | 18.5
16.2
17.3
16.6
17.1 | 18.0
17.0
17.6
17.5
17.5 | 15.7
17.0
18.1
16.9
17.5 | 15.1
19.1:
18.5:
17.3 | 16.4
14.7
17.5
18.5: | 13.5
15.8
18.3
16.5 | | mı | 17.5
17.5
16.0
17.5:
16.9 | 16.2
16.8
15.3
17.9 | 17.5
16.2
15.1
18.8
18.0 | 18.4
14.3
15.1
16.4: | 17.8
14.8:
16.1
16.1 | 16.7
16.5:
17.0
16.8?
15.7: | 15.1
16.4
17.7
16.7: | 14.8
18.7
17.9?
17.1 | 16.2
14.4
17.2
17.6 | 13.3
15.6
17.6
16.2 | | C | 93
106
68
149:
65 | 58
73
101
85
82: | 25
50
133
58:
57 | 44
28
32
61
136: | 91:
90
105
89
133 | 36
73
102
124
72: | 0
93
48
78
91 | 58
33
95
60
60 | 74
37
84
92 | 92
50
143
62
98 | | Тв-м | 11
11-11
12-11 | 11-111
11
113
1113 | | 1-11
11-11
11-11 | 11-111
11
11
11 | 11
1-11
11-11
1-111 | 117
111-111
1
1111
1-11 | 11-111
111-111:
111-111 | III-III | 1-11
11-11
11-111
11-111 | | T_A | E E E E | H K K K K K K K K K K K K K K K K K K K | нижжи | r
R
R
IR | R. IIR | R R I I | RI
R: | RRI | RRI | RIIR | | Abell | 0397
0302
0327
0325
0343 | 0341
0353
0367
0368
0380 | 0385
0386
0389
0402 | 0416
0419
0428
0453
0456 | 0457
0458
0459
0462
0464 | 0463
0467
0469
0472
0473 | 0474
0487
0490
0495
0499 | 0500
0507
0510
0511
0514 | 0524
0533
0540
0543
0543 | 0548
0550
0551
0551
0823 | | | | | | | | | | | | | | Уш | 119
164
91
137 | 320
40
186
72
86 | 53
306
156
39 | 333
222
201
156 | 149
196
141
281 | 70
34
38
310 | 334
195
121
136 | 46
238
137
136 | 175
189
125
112 | 131
108
131
133 | | x_{ll} y_{ll} | 48 119
273 164
183 91
180 137
34 51 | 27 320
192 40
74 186
152 72
68 86 | 198 53
171 306
249 156
76 39
57 175 | 218 333
42 222
104 201
274 156
264 116 | 263 149
122 196
257 141
226 281
217 274 | 216 70
201 34
182 38
33 310
292 292 | 198 334
204 195
270 121
119 84
142 136 | 121 46
330 238
291 102
184 137
272 136 | 146 175
274 289
249 125
262 31
182 112 | 254 131
243 108
224 287
208 311
182 133 | | = | 48 11
73 16
83 9
80 13 | 27 32
92 4
74 18
52 7
68 8 | 8 5
1 30
9 15
6 3 | 600444 | 14
19
14
28
27 | 16 7
01 3
82 3
33 31 | 33
12
13
13 | 21
30
24
72 | 47 4 6 8 8 2 4 6 8 2 8 9 4 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9 9 9 9 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | Xcen Ycen XII | 5 48 11
0 273 16
3 183 9
7 180 13 | 56 27 32
24 192 4
22 74 18
92 152 7
78 68 8 | 1 198 5
2 171 30
8 249 15
5 76 3 | 9 218 3
8 42 2
7 104 2
8 274 1
8 264 1 | 5 263 14
2 122 19
3 257 14
7 226 28
0 217 27 | 94 216 7
30 201 3
26 182 3
46 33 31
28 292 29 | 0 198 33
1 204 19
3 270 12
0 119 8
142 13 | 8 121
2 291
7 184
8 272 | 11 146
25 274
39 249
33 262
52 182 | 254
243
224
208
182 | | cen Ycen XII | 16 -45 48 11
09 0 273 16
19 -73 183 9
16 -27 180 13
30 -113 34 5 | 37 156 27 32
28 -124 192 4
90 22 74 18
12 -92 152 7
96 -78 68 8 | 4 -111 198 5
7 142 171 30
5 -8 249 15
8 -125 76 3
7 11 57 17 | 54 169 218 3
22 58 42 2
60 37 104 2
10 -8 274 1
00 -48 264 1 | 99 -15 263 14
42 32 122 19
93 -23 257 14
62 117 226 28
53 110 217 27 | 2 -94 216 7
7 -130 201 3
8 -126 182 3
1 146 33 31 | 4 170 198 33
0 31 204 19
6 -43 270 12
5 -80 119 8
2 -28 142 13 | 3 -118 121
5 74 330
7 -62 291
0 -27 184
3 -28 272 | 3 11 146
125 274
5 -39 249
3 -133 262
3 -52 182 | -33 254
9 -56 243
0 123 224
4 147 208
-31 182 | | Xcen Ycen XII | 4.11 F477 116 -45 48 11
3.20 F478 -109 0 273 16
1.80 F478 -19 -73 183 9
1.60 F478 -16 -27 180 13
9.43 F544 130 -113 34 5 | .27 F544 137 156 27 32
68 F545 -28 -124 192 4
68 F475 90 22 74 18
.39 F479 12 -92 152 7
.79 F479 96 -78 68 8 | 63.09 F546 -34 -111 198 5
60.91 F546 -7 142 171 30
63.03 F480 -85 -8 249 15
60.97 F546 88 -125 76 3
59.91 F546 107 11 57 17 | 6.95 F547 -54 169 218 3
9.02 F480 122 58 42 2
5.89 F547 60 37 104 2
9.88 F549 -110 -8 274 1
9.94 F549 -100 -48 264 1 | 9.73 F549 -99 -15 263 14
0.82 F482 42 32 122 19
9.66 F549 -93 -23 257 14
8.21 F549 -62 117 226 28
8.10 F549 -53 110 217 27 | 49.34 F549 -52 -94 216 7
49.26 F549 -37 -130 201 3
48.91 F549 -18 -126 182 3
44.65 F549 131 146 33 31
44.63 F550 -128 128 292 29 | 42.66 F550 -34 170 198 33
42.64 F484 -40 31 204 19
40.69 F551 -106 -43 270 12
41.62 F851 22 -28 142 13
38.34 F551 22 -28 142 13 | 36.31 F552 -166 74 330
36.32 F552 -166 74 330
37.75 F852 -127 -62 291
37.75 F885 -20 -27 184
35.97 F552 -108 -28 272 | 33.72 F486 -110 125 274 29.48 F487 -85 -39 249 27.27 28.36 F487 -18 -52 182 28.36 F487 -18 -52 182 | 24.84 F488 -90 -33 254
21.94 F555 -79 -56 243
20.30 F555 -60 123 224
15.19 F556 -44 147 208
18.66 F498 -18 -31 182 | | Field xcen ycen x11 | .11 F477 116 -45 48 11
.20 F478 -109 0 273 16
.80 F478 -19 -73 183 9
.60 F478 -16 -27 180 13
.43 F544 130 -113 34 5 | 27 F544 137 156 27 32
68 F545 -28 -124 192 4
8 F545 90 22 14 18
39 F479 12 -92 152 7
79 F479 96 -78 68 8 | 0.09 F546 -34 -111 198 5
91 F546 -7 142 171 30
0.03 F480 -85 -8 249
15
97 F546 88 -125 76 31
91 F546 107 11 57 17 | 95 F547 -54 169 218 3
02 F480 122 58 42 2
89 F547 60 37 104 2
88 F549 -110 -8 274 1
94 F549 -100 -48 264 1 | .73 F549 -99 -15 263 14
.82 F482 42 32 122 19
.66 F549 -93 -23 257 14
.21 F549 -62 117 226 28
.10 F549 -53 110 217 27 | 9.34 F549 -52 -94 216 7
9.26 F549 -37 -130 201 3
8.91 F549 -18 -126 182 3
4.65 F549 131 146 33 31
4.63 F550 -128 128 292 29 | 6 F550 -34 170 198 33
4 F484 -40 31 204 19
7 F551 -106 -43 270 12
2 F484 2 -80 119 8
4 F551 22 -28 142 13 | 8.50 F551 43 -118 121
6.31 F552 -166 74 330
6.52 F552 -127 -62 291
7.75 F485 -20 -27 184
5.97 F552 -108 -28 272 | 3.49 F552 18 11 146
3.72 F486 -110 125 274
9.48 F487 -85 -39 249
7.27 F554 -18 -52 182
8.36 F487 -18 -52 182 | 84 F488 -90 -33 254
94 F555 -79 -56 243
30 F555 -60 123 224
19 F556 -44 147 208
66 F498 -18 -31 182 | | Dec l b Field xcen yeen x11 | 5 36 211.45 -74.11 F477 116 -45 48 11 45 209.00 -73.20 F478 -109 0 273 16 6 08 214.50 -71.80 F478 -19 -73 183 9 5 17 211.86 -71.60 F478 -16 -27 180 13 1 52 202.92 -69.43 F544 130 -113 34 5 | 6 51 190.62 -67.27 F544 137 156 27 32 2 05 205.17 -67.68 F545 -28 -124 192 4 9 21 21 217.51 -64.68 F545 90 22 124 18 6 8 6 30 217.51 -66.39 F479 12 -92 152 7 6 16 217.49 -64.79 F479 96 -78 68 8 | 1 53 208.13 -63.09 F546 -34 -111 198 5
7 10 199.15 -60.91 F546 -7 142 171 30
4 56 215.15 -63.03 P480 -85 -8 249 15
2 09 210.06 -60.97 F546 88 -125 76 31
9 39 205.44 -59.91 F546 107 11 57 17 | 6 42 201.69 -56.95 F547 -54 169 218 3 3 41 214.30 -59.02 F480 122 58 42 2 9 02 212.12 -55.89 F549 -100 -8 274 10 45 213.49 -49.94 F549 -100 -48 264 1 | 0 10 212.64 -49.73 F549 -99 -15 263 14
4 16 218.83 -50.82 F482 42 32 122 19
0 17 212.87 -49.66 F549 -93 -23 257 14
7 40 209.44 -48.21 F549 -62 117 226 28
7 48 209.71 -48.10 F549 -53 110 217 27 | 1 37 215.19 -49.34 F549 -52 -94 216 7 2 17 216.29 -49.26 F549 -37 -130 201 3 2 13 216.32 -48.91 F549 -18 -126 182 3 7 07 210.59 -44.65 F549 131 146 33 31 7 25 211.06 -44.63 F550 -128 128 292 29 | 6 41 211.03 -42.66 F550 -34 170 198 33
4 19 221.98 -42.64 F484 -40 31 204 19
0 43 217.75 -40.69 F551 -106 -43 270 12
6 22 22.52.21 -41.62 F484 45 -80 119 8
0 27 218.41 -38.34 F551 22 -28 142 13 | 2 07 220.58 -38.50 F551 43 -118 121
8 28 216.68 -36.31 F552 -166 74 330
10 219.96 -36.52 F552 -127 -62 291
5 27 225.31 -37.75 F485 -20 -27 184
0 25 219.41 -35.97 F552 -108 -28 272 | 9 42 219.56 -33.49 F552 18 11 146
2 37 223.18 -33.72 F486 -110 125 274
2 54 225.64 -27.27 F554 -98 -13 262
5 57 229.35 -28.36 F487 -18 -52 182 | 5 37 230.30 -24.84 F488 -90 -33 254
1 04 226.19 -21.94 F555 -79 -56 243
7 44 223.05 -20.30 F555 -60 123 224
7 15 224.84 -15.19 F556 -44 147 208
5 51 256.59 18.66 F498 -18 -31 182 | | (2000) Dec l b Field x cen yeen x ll | 2.1 -25 36 211.45 -74.11 F477 116 -45 48 11
5.5 -24 45 209.00 -73.20 F478 -109 0 273 16
2.9 -26 08 214.50 -71.80 F478 -19 -73 183 9
3.2 -25 17 211.86 -71.60 F478 -16 -27 180 13
9.0 -21 52 202.92 -69.43 F544 130 -113 34 5 | 9.2 -16 51 190.62 -67.27 F544 137 156 27 32 73 -22 05 205.17 -67.68 F545 -28 -124 192 4 619 21 20.72 -64.68 F545 90 22 174 18 74 -26 30 217.51 -66.39 F479 12 -92 152 74 4.5 -26 16 217.49 -64.79 F479 96 -78 68 8 | 7.8 -21 53 208.13 -63.09 F546 -34 -111 198 5 9.9 -17 10 199.15 -60.91 F546 -7 142 171 30 1.4 -24 56 215.12 -63.03 F480 -85 -8 249 15 1.5 -2.09 210.06 -60.97 F546 88 -125 76 38 8.9 -19 39 205.44 -59.91 F546 107 11 57 17 | 7.2 -16 42 201.69 -56.95 F547 -54 169 218 3 8.2 -23 41 214.30 -59.02 F480 122 58 42 2 6.2 -19 05 207.15 -55.89 F549 -10 -8 274 164 2 6.4 -20 05 212.29 48.88 F549 -110 -8 274 15.4 -20 45 213.49 -49.94 F549 -100 -48 264 1 | 5.5 -20 10 212.64 -49.73 F549 -99 -15 263 14 5.7 -24 16 218 83 -50.82 F482 42 32 122 19 6.0 -20 17 212.87 -49.66 F549 -93 -23 257 14 6.5 -14 0 209.44 -48.21 F549 -62 117 226 28 9.3 -17 48 209.71 -48.10 F549 -53 110 217 27 | 9.3 -21 37 215.19 -49.34 F549 -52 -94 216 7 0.5 -22 17 216.29 -49.26 F549 -37 -130 201 3 2.0 -22 13 216.32 -48.91 F549 -18 -126 182 3 3.7 -17 07 210.59 -44.65 F549 131 146 33 31 4.3 -17 25 211.06 -44.63 F550 -128 128 292 29 | 1.9 -16 41 211.03 -42.66 F550 -34 170 198 33 2.9 -24 19 221.98 -42.64 F484 -40 31 204 19 7.0 -20 43 217.75 -40.69 F551 -106 -43 270 12 0.0 -26 22 225.21 -41.62 F484 45 -80 119 87.2 -20 27 218.41 -38.34 F551 22 -28 142 13 | .8 -22 07 220.58 -38.50 F551 43 -118 121 .3 -18 28 216.68 -36.31 F552 -166 74 330 .3 -21 25 21 25 21 -62 291 .3 -25 27 225.31 -37.75 F485 -20 -27 184 .9 -20 25 219.41 -35.97 F552 -108 -28 272 | 8.0 -19 42 219.56 -33.49 F552 18 11 146
1.3 -22 37 223.18 -33.72 F486 -110 125 274
5.3 -25 43 228.64 -29.48 F487 -85 -39 249
0.6 -22 26 255.56 -27.27 F554 -98 -133 262
0.9 -25 57 229.35 -28.36 F487 -18 -52 182 | 6.9 -25 37 230.30 -24.84 F488 -90 -33 254
2.9 -21 04 226.19 -21.94 F555 -79 -56 243
4.6 -17 44 223.05 -20.30 F555 -60 123 224
7.1 -17 15 224.84 -15.19 F556 -44 147 208
2.9 -25 51 256.59 18.66 F498 -18 -31 182 | | Dec l b Field xcen yeen x11 | .1 -25 36 211.45 -74.11 F477 116 -45 48 11 5 -24 45 209.00 -73.20 F478 -109 0 273 16 5 -26 08 214.50 -71.80 F478 -19 -73 183 9 2 -25 17 211.86 -71.60 F478 -16 -27 180 13 0 -21 52 202.92 -69.43 F544 130 -113 34 5 | .2 -16 51 190.62 -67.27 F544 137 156 27 32 .3 -22 05 205.17 -67.68 F545 -28 -124 192 4 .4 -19 21 200.27 -66.58 F545 90 22 74 18 .4 -68 30 217.51 -66.39 F479 12 -92 152 77 .5 -26 16 217.49 -64.79 F479 96 -78 68 8 | .8 -21 53 208.13 -63.09 F546 -34 -111 198 5
.9 -17 10 199.15 -60.91 F546 -7 142 171 30
.4 -24 56 215.12 -63.03 F480 -85 -8 249 15
.5 -25 09 210.06 -60.97 F546 88 -125 76 31
.9 -19 39 205.44 -59.91 F546 107 11 57 17 | -16 42 201.69 -56.95 F547 -54 169 218 3 -23 41 214.30 -59.02 F480 122 58 42 2 -20 65 212.29 -49.88 F549 -110 -8 274 1 -20 45 213.49 -49.94 F549 -100 -48 264 1 | -20 10 212.64 -49.73 F549 -99 -15 263 14 -24 16 218.83 -50.82 F482 42 32 122 19 -17 212.87 -49.66 F5549 -93 -23 257 14 -17 40 209.44 -48.21 F549 -62 117 226 28 -17 48 209.71 -48.10 F549 -53 110 217 27 | 3 -21 37 215.19 -49.34 F549 -52 -94 216 7 5 -22 17 216.29 -49.26 F549 -37 -130 201 3 0 -22 13 216.32 -48.91 F549 -18 -126 182 3 7 -17 07 210.59 -44.65 F549 131 146 33 31 3 -17 25 211.06 -44.63 F550 -128 128 292 29 | 9 -16 41 211.03 -42.66 F550 -34 170 198 33
9 -24 19 221.98 -42.64 F484 -40 31 204 19
0 -20 43 217.75 -40.69 F551 -106 -43 270 12
0 -26 22 225.21 -41.62 F484 45 -80 119 8
2 -20 27 218.41 -38.34 F551 22 -28 142 13 | -22 07 220.58 -38.50 F551 43 -118 121
-18 28 216.68 -36.31 F552 -166 74 330
-21 01 219.96 -36.52 F552 -127 -62 291
-25 27 225.31 -37.75 F445 -20 -27 184
-20 25 219.41 -35.97 F552 -108 -28 272 | 0 -19 42 219.56 -33.49 F552 18 11 146
3 -22 37 223.18 -33.72 F486 -110 125 274
3 -25 43 228.64 -29.48 F487 -85 -39 249
6 -22 26 225.56 -27.27 F554 -98 -133 262
9 -25 57 229.35 -28.36 F487 -18 -52 182 | -25 37 230.30 -24.84 F488 -90 -33 254 -21 04 226.19 -21.94 F555 -79 -56 243 -17 44 223.05 -20.30 F555 -60 123 224 -17 15 224.84 -15.19 F556 -44 147 208 -25 51 256.59 18.66 F498 -18 -31 182 | | Dec RA (2000) Dec <i>l b</i> Field x_{cen} y_{cen} z_{ll} | 5 51 02 02.11 -25 36 211.45 -74.11 F477 116 -45 48 11 6 00 02 05.5 -24 45 209.00 -73.20 F478 -109 0 273 16 5 23 02 12.9 -26 08 214.50 -71.80 F478 -19 -73 183 9 5 32 02 13.2 -25 17 211.86 -71.60 F478 -16 -27 180 13 2 06 02 19.0 -21 52 202.92 -69.43 F544 130 -113 34 5 | 05 02 19.2 -16 51 190.62 -67.27 F544 137 156 27 32 19 02 27.3 -22 05 205.17 -67.68 F545 -28 -124 192 4 13 02 37.6 -19 21 200.72 -64.68 F545 90 22 77 14 18 18 02 37.4 -26 30 217.51 -66.39 F479 12 -92 152 74 18 18 02 37.4 -26 16 217.49 -64.79 F479 96 -78 68 8 | 06 02 47.8 -21 53 208.13 -63.09 F546 -34 -111 198 5 2 3 02 49.9 -17 10 199.15 -60.91 F546 -7 142 171 30 2 51.4 -24 56 215.12 -63.03 F480 -85 -8 249 15 1 02 57.6 -22 09 210.06 -60.97 F546 88 -125 76 31 02 58.9 -19 39 205.44 -59.91 F546 107 11 57 17 | 5 54 03 07.2 -16 42 201.69 -56.95 F547 -54 169 218 3 53 03 08.2 -23 41 214.30 -59.02 F480 122 58 42 2 17 03 16.2 -19 05 207.115 -55.89 F549 -110 -8 274 104 2 10 03 44.6 -20 00 212.29 -49.88 F549 -110 -8 274 10 55 03 45.4 -20 45 213.49 -49.94 F549 -100 -48 264 1 | 20 03 45.5 -20 10 212.64 -49.73 F549 -99 -15 263 14 26 03 45.7 -24 16 218.83 -50.82 F482 42 32 122 19 27 03 46.0 -20 17 212.87 -49.66 F5549 -93 -23 257 14 209.44 -48.21 F549 -62 117 226 28 58 03 49.3 -17 48 209.71 -48.10 F549 -53 110 217 27 | 47 03 49.3 -21 37 215.19 -49.34 F549 -52 -94 216 7 27 03 50.5 -22 17 216.29 -49.26 F549 -37 -130 201 3 2 2 03 52.0 -22 13 216.32 -48.91 F549 -18 -126 182 3 3 3 4 04 04.3 -17 25 211.06 -44.65 F549 13 128 292 29 | 6 49 04 11.9 -16 41 211.03 -42.66 F550 -34 170 198 33 4 26 04 22.9 -24 19 221.98 -42.64 F484 -40 31 204 19 0 50 04 27.0 -20 43 217.75 -40.69 F551 -106 -43 270 12 6 29 04 30.00 -25.21 216.41 -38.34 F551 22 -28 142 13 | 2 13 04 38.8 -22 07 220.58 -38.50 F551 43 -118 121 8 34 04 43.3 -18 28 216.68 -36.31 F552 -166 74 330 10 70 04 46.3 -21 01 219.96 -36.52 F552 -127 -62 291 5 33 04 46.7 -25 27 225.31 -37.75 F485 -20 -27 184 0 31 04 47.9 -20 25 219.41 -35.97 F552 -108 -28 272 | 9 47 04 58.0 -19 42 219.56 -33.49 F552 18 11 146 2 42 05 01.3 -22 37 223.18 -33.72 F486 -110 125 274 2 46 05 25.3 -25 43 228.64 -29.48 F487 -85 -39 249 2 29 05 30.6 -22 26 225.56 -27.27 F554 -98 -133 262 6 00 05 30.9 -25 57 229.35 -28.36 F487 -18 -52 182 | 39 05 46.9 -25 37 230.30 -24.84 F488 -90 -33 254 05 05 52.9 -21 04 226.19 -21.94 F555 -79 -56 243 45 05 54.6 -17 44 223.05 -20.30 F555 -60 123 224 14 06 17.1 -17 15 224.84 -15.19 F556 -44 147 208 38 09 32.9 -25 51 256.59 18.66 F498 -18 -31 182 | | (1950) Dec RA (2000) Dec <i>l b</i> Field <i>x</i> _{cen} <i>y</i> _{cen} <i>x</i> _{ll} | 8 -25 51 02 02.1 -25 36 211.45 -74.11 F477 116 -45 48 11 2 -25 00 02 05.5 -24 45 209.00 -73.20 F478 -109 0 273 16 6 -26 23 02 12.9 -26 08 214.50 -71.80
F478 -19 -73 183 9 9 -25 32 02 13.2 -25 17 211.86 -71.60 F478 -16 -27 180 13 7 -22 06 02 19.0 -21 52 202.92 -69.43 F544 130 -113 34 5 | .8 -17 05 02 19.2 -16 51 190.62 -67.27 F544 137 156 27 32 0.2 27.3 -22 05 205.17 -67.68 F545 -28 -124 192 4 13. 19.5 0.2 27.3 -22 05 205.17 -67.68 F545 -28 -124 192 4 18. 2 1.3 -19.5 0.2 37.4 -19.1 2.0 1.2 -64.5 10.2 17.51 -66.39 F479 12 -92 152 77 326.29 0.2 44.5 -26 16 217.49 -64.79 F479 96 -78 68 8 | .5 -22 06 02 47.8 -21 53 208.13 -63.09 F546 -34 -111 198 5 6 -17 23 02 49.9 -17 10 199.15 -60.91 F546 -7 142 171 30 13 02 49.9 -17 10 199.15 -60.91 F546 -7 142 171 30 14 -22 10 25 51.4 -24 56 215.12 -63.03 F480 -85 -8 249 15 16 4 -22 21 02 57.6 -22 09 210.06 -60.97 F546 88 -125 76 31 6 -19 51 02 58.9 -19 39 205.44 -59.91 F546 107 11 57 17 | .9 -16 54 03 07.2 -16 42 201.69 -56.95 F547 -54 169 218 3 0.0 -23 53 03 08.2 -23 41 214.30 -59.02 F480 122 58 42 2 19 -19 17 03 16.2 -19 05 212.29 -49.88 F549 -10 -8 274 104 2 2 -20 55 03 45.4 -20 45 213.49 -49.94 F549 -100 -48 264 1 | 3 -20 20 03 45.5 -20 10 212.64 -49.73 F549 -99 -15 263 14 6 -24 26 03 45.7 -24 16 218.83 -50.82 F482 42 32 122 19 8 -20 27 03 46.0 -20 17 212.87 -49.66 F549 -93 -23 257 14 1 7 50 03 48.6 -17 40 209.44 -48.21 F549 -62 117 226 28 0 -17 58 03 49.3 -17 48 209.71 -48.10 F549 -53 110 217 27 | .1 -21 47 03 49.3 -21 37 215.19 -49.34 F549 -52 -94 216 7 3 -22 27 03 50.5 -22 17 216.29 -49.26 F549 -37 -130 201 3 -22 27 03 50.5 -22 17 216.29 -49.26 F549 -37 -136 201 3 -4 -17 16 04 03.7 -17 07 210.59 -44.65 F549 131 146 33 31 0 -17 34 04 04.3 -17 25 211.06 -44.63 F550 -128 128 292 292 | .6 -16 49 04 11.9 -16 41 211.03 -42.66 F550 -34 170 198 33 .8 -24 26 04 22.9 -24 19 221.98 -42.64 F484 -40 31 204 19 .8 -20 50 04 27.0 -20 43 217.75 -40.69 F551 -106 -43 270 12 .9 -26 29 04 30.0 -26 22 22.5.21 -41.62 F484 45 -80 119 8 .0 -20 33 04 37.2 -20 27 218.41 -38.34 F551 22 -28 142 13 | .7 -22 13 04 38.8 -22 07 220.58 -38.50 F551 43 -118 121 1 -18 34 04 43.3 -18 28 216.68 -36.31 F552 -166 74 330 1 -121 07 04 46.3 -21 01 219.96 -36.52 F552 -127 -62 291 6.5 -25 33 04 46.7 -25 27 225.31 -77.75 F485 -20 -27 184 7 -20 31 04 47.9 -20 25 219.41 -35.97 F552 -108 -28 272 | .8 -19 47 04 58.0 -19 42 219.56 -33.49 F552 18 11 14622 42 05 01.3 -22 37 223.18 -33.72 F486 -110 125 27422 24 05 05 30.3 -22 43 228.64 -29.48 F487 -85 -39 24922 29 05 30.6 -22 26 225.56 -27.27 F554 -98 -133 26226 00 05 30.9 -25 57 229.35 -28.36 F487 -18 -52 182 | .9 -25 39 05 46.9 -25 37 230.30 -24.84 F488 -90 -33 254 .8 -21 05 05 52.9 -21 04 226.19 -21.94 F555 -79 -56 243 .4 -17 45 05 54.6 -17 44 223.05 -20.30 F555 -60 123 224 .9 -17 14 06 17.1 -17 15 224.84 -15.19 F556 -44 147 208 .7 -25 38 09 32.9 -25 51 256.59 18.66 F498 -18 -31 182 | | Dec RA (2000) Dec <i>l b</i> Field x_{cen} y_{cen} z_{ll} | -25 51 02 02.1 -25 36 211.45 -74.11 F477 116 -45 48 11 15 0 02 05.5 -24 45 209.00 -73.20 F478 -109 0 273 16 -26 23 02 12.9 -26 08 214.50 -71.80 F478 -19 -73 183 9 -25 32 02 13.2 -25 17 211.86 -71.60 F478 -16 -27 180 13 -22 06 02 19.0 -21 52 202.92 -69.43 F544 130 -113 34 5 | 8 -17 05 02 19.2 -16 51 190.62 -67.27 F544 137 156 27 32 05 -22 19 02 27.3 -22 05 205.17 -67.68 F545 -28 -124 192 4 13 150 23 6.6 -19 21 22 -64.68 F545 90 22 74 18 2 -26 43 02 37.4 -26 30 217.51 -66.39 F479 12 -92 152 7 3 3 -26 29 02 44.5 -26 16 217.49 -64.79 F479 96 -78 68 8 | 5 -22 06 02 47.8 -21 53 208.13 -63.09 F546 -34 -111 198 5 6 -17 23 02 49.9 -17 10 199.15 -60.91 F546 -7 142 171 30 2 -25 09 02 51.4 -24 56 215.12 -63.03 F480 -85 -8 249 15 4 -22 21 02 57.6 -22 09 210.06 -60.97 F546 88 -125 76 31 6 -19 51 02 58.9 -19 39 205.44 -59.91 F546 107 11 57 17 | 9 -16 54 03 07.2 -16 42 201.69 -56.95 F547 -54 169 218 3 0 -23 53 03 08.2 -23 41 214.30 -59.02 F480 122 58 42 2 9 -19 17 03 16.2 -19 05 210.15 -55.89 F549 10 -8 274 104 2 4 -20 10 03 44.6 -20 00 212.29 -49.88 F549 -110 -8 274 1 2 -20 55 03 45.4 -20 45 213.49 -49.94 F549 -100 -48 264 1 | -20 20 03 45.5 -20 10 212.64 -49.73 F549 -99 -15 263 14 -24 26 03 45.7 -24 16 218.83 -50.82 F482 42 32 122 19 12 20 27 03 46.0 -20 17 212.97 -49.66 F559 -93 -23 257 14 -17 50 03 48.6 -17 40 209.44 -48.21 F549 -62 117 226 28 -17 58 03 49.3 -17 48 209.71 -48.10 F559 -53 110 217 27 | -21 47 03 49.3 -21 37 215.19 -49.34 F549 -52 -94 216 7 -22 27 03 50.5 -22 17 216.29 -49.26 F549 -37 -130 201 3 52.5 0 5 52.0 -22 13 216.32 -48.91 F5549 -18 -126 182 3 17 16 04 03.7 7 07 210.59 -44.65 F949 131 146 33 31 -17 34 04 04.3 -17 25 211.06 -44.63 F550 -128 128 292 29 | 6 -16 49 04 11.9 -16 41 211.03 -42.66 F550 -34 170 198 33 8 -24 26 04 22.9 -24 19 221.98 -42.64 F484 -40 31 204 19 8 -20 50 04 27.0 -20 43 217.75 -40.69 F551 -106 -43 270 12 9 -26 29 04 30.0 -26 22 225.21 -41.62 F484 45 -80 119 8 0 -20 33 04 37.2 -20 27 218.41 -38.34 F551 22 -28 142 13 | 7 -22 13 04 38.8 -22 07 220.58 -38.50 F551 43 -118 121 1-18 34 04 43.3 -18 28 216.68 -36.31 F552 -166 74 330 1-21 07 04 46.3 -21 01 219.96 -36.52 F552 -127 -62 291 6 -25 33 04 46.7 -25 27 225.31 -37.75 F485 -20 -27 184 7 -20 31 04 47.9 -20 25 219.41 -35.97 F552 -108 -28 272 | 8 -19 47 04 58.0 -19 42 219.56 -33.49 F552 18 11 146 2 -22 42 05 01.3 -22 37 223.18 -33.72 F486 -110 125 274 3 -25 46 05 25.3 -25 43 228.64 -29.48 F487 -85 -39 249 5 -22 29 05 30.6 -22 26 225.56 -27.27 F554 -98 -133 262 9 -26 00 '05 30.9 -25 57 229.35 -28.36 F487 -18 -52 182 | 9 -25 39 05 46.9 -25 37 230.30 -24.84 F488 -90 -33 254 8 -21 05 05 52.9 -21 04 226.19 -21.94 F555 -79 -56 243 4 -17 45 05 54.6 -17 44 223.05 -20.30 F555 -60 123 224 9 -17 14 06 17.1 -17 15 224.84 -15.19 F556 -44 147 208 7 -25 38 09 32.9 -25 51 256.59 18.66 F498 -18 -31 182 | TABLE 6—Continued | | в | 17.2
17.3
17.4
17.4 | 13.0
17.2
17.4
17.4 | 17.4
17.4
17.6
17.5 | 17.5
17.6
17.6
17.2 | 17.4
17.6
17.6
17.5 | 17.6
17.5
17.5
17.3 | 16.1
17.1
17.5
17.5 | 17.6
17.5
15.3
17.6
17.5 | 17.4
17.2
17.4
17.5 | 17.5
17.4
17.6
17.6 | |--------|-----------------|---|--|--|--|--|---|---|---|---|---| | | a | 00000 | 0 6 6 6 5 0 | 99999 | 00000 | 99999 | 99999 | 40004 | 99999 | 9 9 9 9 9 | 00000 | | | H H | 01021 | 00061 | 48484 | 1000 | 10269 | 70110 | 00000 | 01710 | 40000 | 04466 | | | z | | 0.0114 | | | | | 0.0449 | 0.035 | | | | | Previous | | | | | | | | | | | | | Obs | 10,10
20,10
10,10 | 1C, 10
2C
2C
2C, 10
2C, 10 | 00000 | 10001 | 10,10
10,10
10,10 | 10,10
10,20,10
10,10 | 99999 | 10, 10
10, 10
10, 20
10 | 10, 1C
10
10
10 | 010104 | | | m ₁₀ | 17.1
18.0
18.9
18.6 | 12.7:
16.8
17.3:
17.7 | 17.8:
17.8
19.2
18.7
19.3 | 18.7
19.4
18.8
16.8 | 17.7:
19.1
19.0
18.9
17.5 | 19.3
18.0
18.3
16.9 | 15.7
16.7
18.0
18.0 | 18.9
18.6
14.9
19.3 | 17.5:
16.8
17.5
18.4
18.8 | 18.0
17.5
17.6
19.4
17.8 | | | m ₃ | 2 16.5
2 17.0
17.9
2 17.9 | 11.8
16.0
16.6
17.0 | 7 17.0?
7 17.0
7 18.9
18.0 | 7 17.9
18.9
18.4
15.5 | 16.8
18.4
18.0
18.4 | 18.7
16.8
17.6
16.3 | 14.5
15.9
17.4
7 17.3 | 18.5
18.3
13.9
18.7 | 7 17.0:
16.4
16.1
* 18.0 | *
16.6
17.0
17.5
18.1 | | | m | 14.61
16.11
17.5
17.61 | 11.5
15.6
15.6
15.8
18.4 | 16.67
16.17
17.87
17.7 | 17.37
18.6
18.3
15.1
18.9 | 16.3
17.7
17.2
17.9
15.9 | 18.3
16.7
17.0
16.0
18.1 | 13.5
15.1
16.0
15.83 | 18.0
17.0
13.0
18.5
17.5 | 16.11
15.5
15.4
16.3 | 12.9
15.9
18.6
15.0 | | | C | 33
83
84
65 | 39
25
32*
162:
68 | 53
85
50
89
73 | 69
25
47: | 60
44
83
155
97 | 49:
53:
12 | 92:
13
88
114
0 | 30:
116
104:
50
40 | 69:
92
93
85 | 35
73
83
85 | | | T_{B-M} | :::::::::::::::::::::::::::::::::::::: | III
III-III
II
III | !!!
!!-!!
!!-!! | I-II
II:
II:
III | !!
!!
!!
!!
!! | 11-11
11-11
11-11-1 | I
II
III-III
III-III | 111111111111111111111111111111111111111 | 1
1
1
1
1
1
1
1 | | | 1 | T_A | R R I II | RI
R
IR: | R H R H | R
RI:
RI | M M M M M | RI:
R I R | R R R I | HIRI | RI
RI
R | RI. | | | Abell | 0842
0857
0916
0955
0966 | 1060
1088
1090
1146 | 1161
1163
1165
1181
1217 | 1233
1300
1311
1347
1352 | 1418
1440
1450
1451 | 1537
1584
1604
1625 | 1644
1648
1664
1699
1709 | 1727
1732
1736
1757
1757 | 1791
1794
1802
1816 | 1846
1853
1857
1883
1924 | | -
1 | | | | | | | | | | | | | | yı. | 124
304
212
212
1206 | 43
206
269
33
235 | 66
1 96
1 194
2 193 | 1 236
1 184
7 228
1 153
5 100 | 253
253
3 271
1 96
5 220 | 3 135
7 253
4 279
3 137
4 104 | 7 319
2 91
5 215
8 67
0 101 | 2 13
5 165
9 57
8 270
1 110 | 7 155
5 104
6 85
4 106
9 157 | 5 156
0 190
0 193
9 267
0 48 | | | n _x | 55
69
261
231
190 | 209
277
265
69
286 | 281
274
121
232
250 | 74
211
57
224
85 | 175
264
233
81
176 | 213
137
274
273
154 | 197
92
35
238
190 | 122
110
279
208
208
101 | 287
265
256
204
169 | 1337 | | | 1 Yeen | 140
140
181
181
181 | -121
42
105
-131 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 72
20
20
11
11
-64 | 102
102
107
107
107
56 | -29
7 89
115
6 -27
0 -60 | 3 155
2 -73
9 51
4 -97
6 -63 | 2 -151
4 1
5 -107
4 106
3 -54 | 3 -9
1 -60
2 -79
0 -58 | 9 -8
4 26
4 29
5 103
4 -116 | | | x cer | 109
95
-97
-67 | -45
-113
-101
95
-122 | -117
-110
43
-68
-86 | 90
-47
107
-60
79 | -11
-100
-69
83
-12 | -49
-110
-109
10 | 1227 | 4.2.1.4.0 | -123
-101
-92
-40
-5 | 9 11 3 5 | | | Field | F565
F498
F567
F500 | F501
F569
F569
F569 | F570
F570
F502
F570 | F570
F571
F503
F504 | F572
F505
F505
F572 | F506
F574
F507
F575 | F575
F507
F507
F576 | F576
F576
F509
F509 | F510
F510
F510
F510 | F510
F518
F510
F511 | | | 9 | 22.96
22.41
28.27
25.77
25.51 | 26.50
34.18
35.25
33.49 | 34.47
35.03
32.25
36.98
32.94 | 39.05
39.17
35.42
34.72
38.58 | 42.30
37.99
38.23
39.96
42.87 | 36.71
44.18
39.72
42.07
36.46 | 45.45
36.22
38.51
40.46 | 39.18
41.95
35.04
38.57
35.21 | 35.64
34.61
34.23
34.32
35.03 | 34.65
39.78
34.96
35.60 | | | 1 | 253.77
255.75
257.24
262.82 | 269.59
266.15
265.61
272.17
270.87 | 272.82
272.58
274.53
272.38
277.52 | 275.28
278.58
280.94
283.77
282.15 | 285.02
288.11
288.79
288.33
291.72 | 295.97
299.47
300.70
302.85
303.59 | 304.91
305.01
306.42
310.09
311.39 | 312.65
313.58
312.63
315.33
316.89 | 318.91
319.08
319.14
320.42 | 322.88
325.84
324.38
326.90
331.41 | | | A (2000) Dec | 8.4 -20 58
2.2 -22 39
3.8 -19 21
2.9 -24 29
6.2 -25 24 | 6.7 -27 30
4.6 -19 28
5.6 -18 20
1.2 -22 43
5.2 -18 58 | 5.4 -22 07
5.8 -21 32
66.2 -24 45
9.2 -19 45
7.6 -25 15 | 11.8 -18 57
11.9 -19 54
13.3 -24 05
11.8 -25 32
20 -21 28 | 55.9 -18 37
000.7 -23 24
03.2 -23 18
03.5 -21 32
16.7 -19 14 | 26.6 -25 49
40.9 -18 37
43.9 -23 07
51.2 -20 48
53.8 -26 24 | 57.2 -17 24
58.9 -26 37
03.4 -24 17
14.9 -22 04
18.8 -21 26 | 24.1 -23 04
25.1 -20 13
27.1 -27 09
33.5 -23 17
42.2 -26 17 | 48.8 -25 26
50.6 -26 23
51.3 -26 44
55.7 -26 21
58.6 -25 24 | 03.8 -25 24
05.6 -19 46
08.4 -24 41
15.7 -23 18
31.5 -22 24 | | | | £ 4044 | 64400
64100 | 9999H | 01 W W 44 44 | | | | | | | | | RA | 000 | 10 44
11 44
11 05 | 11111 | 11111 | 112 112 112 112 112 112 112 112 112 112 | 1222 | 111111 | 55555 | 22222 | 44444 | | | (1950) Dec | 36.1 -20 45 09 3
39.9 -22 26 09 4
01.4 -19 07 10 0
10.6 -24 15 10 1
13.9 -25 10 10 1 | 34.3 -27 15 10 3
42.2 -19 13 10 4
43.2 -18 05 10 4
58.8 -22 27 11 0
02.7 -18 42 11 0 | 02.9 -21 51 11 0
03.3 -21 16 11 0
03.8 -24 29 11 0
06.7 -19 29 11 0
15.1 -24 59 11 1 | 19.3 -18 41 11
29.4 -19 38 11
30.8 -23 49 11
39.3 -25 16 11
39.5 -21 12 11 | 53.3 -18 21 1 58.1 -23 08 1 00.6 -23 02 1 00.9 -21 16 1 14.1 -18 58 1 | 24.0 -25 33 1
38.3 -18 21 1
41.3 -22 51 1
48.5 -20 32 1
51.1 -26 08 1 | 54.6 -17 08 1
56.2 -26 21 1
00.7 -24 01 1
12.2 -21 49 1
16.1 -21 11 1 | 21.4 -22 49 1
22.4 -19 58 1
24.3 -26 54 1
30.8 -23 02 1
39.4 -26 02 1 | 46.0 -25 12 1
47.8 -26 09 1
48.5 -26 30 1
52.9 -26 07 1
55.8 -25 10 1 | 01.0 -25 10 1
02.8 -19 32 1
05.6 -24 27 1
12.9 -23 05 1
28.7 -22 11 1 | | | Dec | 6.1 -20 45 09 3
9.9 -22 26 09 4
1.4 -19 07 10 0
0.6 -24 15 10 1
3.9 -25 10 10 1 | 4.3 -27 15 10 3
2.2 -19 13 10 4
3.2 -18 05 10 4
8.8 -22 27 11 0
2.7 -18 42 11 0 | 2.9 -21 51 11 0
3.3 -21 16 11 0
3.8 -24 29 11 0
6.7 -19 29 11 0
5.1 -24 59 11 1 | 9.3 -18 41 11
9.4 -19 38 11
0.8 -23 49 11
9.3 -25 16 11
9.5 -21 12 11 | 3.3 -18 21 1
8.1 -23 08 1
0.6 -23 02 1
0.9 -21 16 1
4.1 -18 58 1 | 4.0 -25 33 1
8.3 -18 21 1
1.3 -22 51 1
8.5 -20 32 1 | 4.6 -17 08 1
6.2 -26 21 1
0.7 -24 01 1
2.2 -21 49 1
6.1 -21 11 1 | 1.4 -22 49 1
2.4 -19 58 1
4.3 -26 54 1
0.8 -23 02 1
9.4 -26 02 1 | 6.0 -25 12 1
7.8 -26 09 1
8.5 -26 30 1
2.9 -26 07 1
5.8 -25 10 1 | 1.0 -25 10 1
2.8 -19 32 1
5.6 -24 27 1
2.9 -23 05 1
8.7 -22 11 1 | | - | | | | | | | | | | | | |---|---|---|--|---|---
---|---|--|---|---|---| | | a | 17.6
17.6
17.4
17.5 | 17.1
17.1
17.1
17.2 | 17.4
17.2
17.2
17.3 | 17.2
17.3
17.4
17.2 | 17.3
17.4
17.4
16.8 | 17.2
17.3
16.9
17.2 | 17.3
17.2
15.8
17.4 | 16.3
17.4
17.3
17.3 | 17.4
17.3
17.3 | 17.3
17.3
17.0
17.4 | | | Δ | 99999 | വവവവവ | വഴവവഴ | വായയവ | വവരെയ | വവവയവ | 0040 0 | 40000 | 99299 | 99299 | | | æ | 00000 | 00001 | 00000 | 04400 | 04000 | 44004 | 00100 | 04444 | 40004 | 44844 | | | 22 | | 0.1470 | | 0.1128
0.1447
0.1196 | | 0.0943 | | 0.0735 | 0.324 | | | | Previous | | | | | | | | | | | | | Obs | 100000 | 10,2C | 20, 30
10, 30
10 | 10
10
10,10
10,10 | 22222 | 10,10
10
10
20
20 | 2C, 10
20
10
10 | 10
10
10
10 | 10000 | 99999 | | | m ₁₀ | 18.8:
18.5:
17.7
18.3
18.0 | 17.3
17.5
18.0
18.7
17.5 | 19.1
18.4
18.9
18.4 | 17.4
18.0
19.1
17.6 | 18.1
19.2
19.1
16.8 | 17.6
18.7
16.7
17.8 | 18.6
17.8
15.6
19.4 | 16.1
19.3
18.5
18.9 | 19.8
18.5
17.4
18.5 | 18.4
16.8
19.1 | | | m³ | 17.2:
17.8
17.2
16.8
17.5 | 16.0
16.8
17.0
18.6
16.8 | 18.5
17.8
18.0
17.6
16.8 | 16.8
16.8?
18.0
16.8
17.0 | 17.5
18.1
18.6
16.0 | 17.0
17.5
16.4
17.4 | 17.8
16.0
15.1
17.8 | 16.0
18.5
17.3
17.9? | 19.1
18.0
15.9
18.1 | 17.5
17.8
16.0
16.8 | | | m ₁ | 15.2
17.8
17.0
16.8
15.7 | 15.3
15.9
16.7
17.7 | 18.0
17.3
17.8
17.3 | 15.8
16.3
16.1
15.8 | 16.7
15.5*
18.0
15.6 | 16.5
16.1
15.4
17.1 | 17.4
15.4
14.5
16.7 | 15.3
17.9
16.7?
17.3? | 18.7
16.8
14.9
17.3 | 17.3
16.1
15.0
16.1 | | | C | 94
94
98
98
98 | 47
46
102?
36
55 | 111
121?
111
35
45 | 26
52
45
55
55 | 45
59
21
31
42 | 59
60
8
72 | 44624
44664
448 | 65
65
65
65
65 | (53)
39
32
37
108 | 72
64
108
55: | | | T_{B-M} | II
III-III
I | 11-11 | ii:
ii:
ii:-iii? | III-III
III III | 111-111
111-111 | | III-III
II II II II I | 1-11
112
111-111
1112 | !!-!!!
!-!!
!-!! | H_H_H | | | T_A | IR:
RI | X | яяйнн | RRI'S RI | RIRRI | RIS
RIS | RHHR | жанна | 8 1 8 1 1 | RRRRR | | | Abell | 1935
1945
1977
1981
1996 | 2325
2328
2332
2332
2333 | 2334
2335
2335
2337
2333 | 2339
2341
2344
2347
2357 | 2364
2365
2369
2370
2372 | 2371
2375
2378
2383
2384 | 2385
2394
2401
2403
2405 | 2412
2416
2417
2418
2427 | 2444
2461
2462
2466
2474 | 2477
2478
2480
2481
2481 | | | | 8 E E B E | ∞ ⊣ ≀ 0 4 | 991
900
94 | 78182 | 97130 | 0 80 10 90 | 81181 | 9 6 9 1 9 | 44400 | 04040 | | | xn yn | 283 205
225 53
53 201
39 209
256 233 | 27 15
85 27
31 4
07 31
91 19 | 78 1
255
09
42 2 | 04 75
35 252
45 111
98 32
18 247 | 03 136
90 223
67 241
65 177
62 153 | 15 200
52 198
36 152
78 86
72 176 | 89 228
31 191
60 147
51 248
44 271 | 188 76
143 141
113 186
92 96
280 209 | 29 214
75 94
76 294
58 102
26 143 | 215 306
208 274
187 276
179 64
133 230 | | | e e | 1176 | 9 994 | аааа | 244 2 | 24444 | ннн | 0 000 | N | 40000 | | | | 20 | 44649 | 100
119
30 | 733 | 9 8 6 6 8 | 113 728 | 22134 | 64
27
27
07 | 8 4 4 6 4
8 6 4 8 6 | 26375 | 401109
001009 | | - | cen | 19 4
61 -11
11 3
25 4
92 6 | 63 -6
79 107
67 -119
43 155
27 30 | 86 -22
39 -106
55 -73
23 132
22 -70 | .40 -89
29 88
19 -53
66 -132
54 83 | 39 -28
26 59
-3 77
-1 13
2 -11 | 49 36
12 34
28 -12
86 -78
92 12 | 25
33
96 -
87 - | 24 -88
21 -23
51 22
72 -68
16 45 | 35 50
11 -70
12 130
94 -62
62 -21 | 51 142
44 110
23 112
15 -100
31 66 | | | ield x | -119 4
-61 -11
111 3
125 4
-92 6 | 28 -63
97 79
98 -67 -
98 -43 | 23
23
23
23
25
25
25
25
25
25
25
25
25
25
25
25
25 | - 40 - 29 - 19 - 66 - 1 | 600 -39 -
600 -26
600 -3
600 -1 | 49
12
28
86
92 | -125
133
-96 -
-87 - | -24 -
21 -
51 -
72 - | 533 35
603 -111
603 -112
603 -94
603 -62 | -51
-23
-15 - | | | Field | 05 F580 -119 4
00 F580 -61 -11
69 F512 111 3
66 F512 125 4
58 F513 -92 6 | 95 F528 -63
56 F597 79
08 F598 -67 -
76 F598 -43
87 F598 -27 | 5 F529 86
7 F598 39 -
7 F598 55
4 F530 -23
7 F530 22 | 4 F599 -40 -
1 F530 29
9 F599 19 -
1 F599 66 -1
6 F531 -54 | 0 9 6 4 6 | 00000 | 125
133
-96 -
-87 | 1 F601 -24 -
7 F532 21 -
6 F532 51 -
9 F533 -116 | 1 F533 35
2 F603 -111
8 F603 -112
6 F603 -94
9 F603 -62 | 4 F603 -51
5 F603 -44
8 F603 -23
6 F534 31 | | | ield x | 37.05 F580 -119 4
34.00 F580 -61 -11
30.69 F512 111 3
30.66 F512 125 4
30.58 F513 -92 6 | -31.95 F528 -63
-33.56 F597 79
-37.08 F598 -67 -
-35.76 F598 -43
-36.87 F598 -27 | -39.45 F529 86
-38.88 F598 39 -
-38.97 F598 55
-41.54 F530 -23
-43.27 F530 22 | -42.04 F599 -40 -
-42.71 F530 29 -42.89 F599 19 -
-44.21 F599 66 -1 -46.06 F531 -54 | -46.36 F600 -39 -46.04 F600 -26 -46.32 F600 -3 -46.78 F600 2 -46.99 F600 2 - | -48.20 F531 49
-46.87 F600 12
-47.44 F600 28
-48.86 F600 86
-48.42 F600 92 | -49.74 F532 -125
-49.03 F600 133
-49.94 F601 -96 -
-49.48 F601 -87
-49.44 F601 -80 1 | -51.61 F601 -24 -
-52.77 F532 21 -
-53.16 F532 51 -
-53.89 F532 72 -
-54.79 F533 -116 | -57.51 F533 35
-59.32 F603 -111
-57.98 F603 -112
-59.56 F603 -94
-59.89 F603 -62 | -58.94 F603 -51
-59.32 F603 -44
-59.65 F603 -23
-61.18 F603 -15 -
-62.26 F534 31 | | | Field | 7.05 F580 -119 4
4.00 F580 -61 -11
0.69 F512 111 3
0.66 F512 125 4
0.58 F513 -92 6 | 31.95 F528 -63
33.56 F597 79
37.08 F598 -67 -
35.76 F598 -43
36.87 F598 -27 | 9.45 F529 86
8.88 F598 39 -
8.97 F598 55
1.54 F530 -23
3.27 F530 22 | 2.04 F599 -40 -
2.71 F530 29
2.89 F599 19 -
4.21 F599 66 -1
6.06 F531 -54 | 6.36 F600 -39 -
6.04 F600 -26
6.32 F600 -3
6.78 F600 -1 | 8.20 F531 49
6.87 F600 12
7.44 F600 28
8.86 F600 86
8.42 F600 92 | 9.74 F532 -125
9.03 F600 133
9.94 F601 -96 -
9.48 F601 -87
9.44 F601 -80 1 | 51.61 F601 -24 -
52.77 F532 21 -
53.16 F532 51
53.89 F532 72 -
54.79 F533 -116 | 57.51 F533 35
59.32 F603 -111
57.98 F603 -112
59.56 F603 -94
59.89 F603 -62 | 58.94 F603 -51
59.32 F603 -44
59.65 F603 -23
61.18 F603 -15 -
62.26 F534 31 | | | Dec l b Field x | 9 25 334.19 37.05 F580 -119 4 2 18 333.61 34.00 F580 -61 -11 4 31 335.11 30.69 F512 111 3 4 24 335.43 30.66 F512 125 4 3 55 336.65 30.58 F513 -92 6 | 4 58 19.07 -31.95 F528 -63
7 48 28.78 -33.56 F597 79
20 2 24.82 -37.08 F598 -67 -6
5 55 30.99 -35.76 F598 -43
9 15 28.41 -36.87 F598 -27 | 5 17 21.41 -39.45 F529 86
1 47 25.88 -38.88 F598 39 -
1 10 26.75 -38.97 F598 55
2 22 26.19 -41.54 F530 -23
6 06 21.60 -43.27 F530 22 | 1 27 27.70 -42.04 F599 -40 -
3 12 25.50 -42.71 F530 29
2 15 27.46 -44.21 F599 66 -1
3 15 26.75 -46.06 F531 -54 | 0 19 31.33 -46.36 F600 -39 -
8 41 33.57 -46.04 F600 -26
8 31 34.33 -46.32 F600 -1
9 33 32.71 -46.78 F600 -1
9 59 32.15 -46.99 F600 2 - | 4 12 26.16 -48.20 F531 49
9 09 33.38 -46.87 F600 12
0 00 32.35 -47.44 F600 28
1 12 31.13 -48.86 F600 86
9 32 33.57 -48.42 F600 92 | 3 4 27.75 -49.74 F532 -125
9 14 34.38 -49.03 F600 133
0 06 33.45 -49.94 F601 -96 -
8 13 36.29 -49.48 F601 -87
7 48 36.96 -49.44 F601 -80 1 | 1 26 32.10 -51.61 F601 -24 -
5 15 26.15 -52.77 F532 21 -
5 06 25.09 -53.16 F532 72 -
6 06 25.09 -53.89 F532 72 -
3 55 29.27 -54.79 F533 -116 | 3 49 30.62 -57.51 F533 35
1 04 37.06 -59.32 F603 -111
0 56 37.49 -59.56 F603 -12
0 11 39.29 -59.89 F603 -62 | 07 45.03 -58.94 F603 -51
44 44.05 -59.32 F603 -44
42 44.41 -59.65 F603 -23
39 37.02 -61.18 F603 -15 -
32 33.53 -62.26 F534 31 | | | (2000) Dec 1 b Field x | 6 -19 25 334.19 37.05 F580 -119 4 3 -22 18 333.61 34.00 F580 -61
-11 3 -24 31 335.11 30.69 F512 111 3 4 -24 24 335.43 30.66 F512 125 4 5 -23 55 336.65 30.58 F513 -92 6 | .1 -24 58 19.07 -31.95 F528 -63
.2 -17 48 28.78 -33.56 F597 79
.7 -22 02 24.82 -37.08 F598 -67 -
6 16 55 30.99 -35.76 F598 43
.8 -19 15 28.41 -36.87 F598 -27 | 2 -25 17 21.41 -39.45 F529 86
2 -21 47 25.88 -38.88 F598 39 -
5 -21 10 26.75 -38.97 F598 55
5 -22 22 26.19 -41.54 F530 -23
8 -26 06 21.60 -43.27 F530 22 | .9 -21 27 27.70 -42.04 F599 -40 -
7 -23 12 25.50 -42.71 F530 29
.6 -22 15 29.42 -44.21 F599 66 -1
.7 -23 15 26.75 -46.06 F531 -54 | .0 -20 19 31.33 -46.36 F600 -39 -
.0 -18 41 33.67 -46.04 F600 -26
.1 -18 21 34.33 -46.32 F600 -3
.0 -19 33 32.71 -46.78 F600 -1
.3 -19 59 32.15 -46.99 F600 2 - | .3 -24 12 26.16 -48.20 F531 49
.0 -19 09 33.38 -46.87 F600 12
.3 -20 00 32.35 -47.44 F600 28
.0 -21 12 31.13 -48.86 F600 86
.4 -19 32 33.57 -48.42 F600 92 | .0 -23 34 27.75 -49.74 F532 -125
.6 -19 14 34.38 -49.03 F600 133
.4 -20 06 33.45 -49.94 F601 -96 -
.1 -18 13 36.29 -49.48 F601 -87
.6 -17 48 36.96 -49.44 F601 -80 1 | 4.1 -21 26 32.10 -51.61 F601 -24 -4.9 -25 15 26.15 -52.77 F532 21 -5.4 25 27.72 -53.16 F532 51 -5.2 26 06 25.09 -53.89 F532 72 -5.4 4 -23 55 29.27 -54.79 F533 -116 | 8 -23 49 30.62 -57.51 F533 35
2 -21 04 37.06 -59.32 F603 -111
2 -17 20 43.76 -57.98 F603 -112
5 -20 56 37.49 -59.56 F603 -94
1 -20 11 39.29 -59.89 F603 -62 | .0 -17 07 45.03 -58.94 FG03 -51
.6 -17 44 44.05 -59.32 FG03 -44
.2 -17 42 44.41 -59.65 FG03 -23
.8 -21 39 37.02 -61.18 FG03 -15 -
.4 -23 32 33.53 -62.26 F534 31 | | | Dec l b Field x | -19 25 334.19 37.05 F580 -119 4 -22 18 333.61 34.00 F580 -61 -11 -24 31 335.11 30.69 F512 111 3 -24 24 335.43 30.66 F512 125 4 -23 55 336.65 30.58 F513 -92 6 | 1 -24 58 19.07 -31.95 F528 -63
2 -17 48 28.78 -33.56 F597 79
7 -22 02 24.82 -37.08 F598 -67 -6
6 -16 55 30.99 -35.76 F598 -43
8 -19 15 28.41 -36.87 F598 -27 | -25 17 21.41 -39.45 F529 86 -21 47 25.88 -38.88 F598 39 -21 10 26.75 -38.97 F598 55 -22 22 22 26.19 -41.54 F530 -23 -26 06 21.60 -43.27 F530 22 | 9 -21 27 27.70 -42.04 F599 -40 -
7 -23 12 25.50 -42.71 F530 29
7 -20 15 27.46 -44.21 F599 66 -1
7 -23 15 26.75 -46.06 F531 -54 | -20 19 31.33 -46.36 F600 -39 -
-18 41 33.67 -46.04 F600 -26 -18 21 34.33 -46.32 F600 -3 -19 33 32.71 -46.78 F600 -1 -19 59 32.15 -46.99 F600 2 - | 3 -24 12 26.16 -48.20 F531 49
0 -19 09 33.38 -46.87 F600 12
3 -20 00 32.35 -47.44 F600 28
0 -21 12 31.13 -48.86 F600 86
4 -19 32 33.57 -48.42 F600 92 | -23 34 27.75 -49.74 F532 -125
-19 14 34.38 -49.03 F600 133
-20 06 33.45 -49.94 F601 -96 -
-18 13 36.29 -49.48 F601 -87
-17 48 36.96 -49.44 F601 -80 1 | -21 26 32.10 -51.61 F601 -24 -25 15 26.15 -52.77 F532 21 -24 25 27.72 -53.16 F532 51 -26 06 25.09 -53.89 F532 72 -23 55 29.27 -54.79 F533 -116 | -23 49 30.62 -57.51 F533 35
-21 04 37.06 -59.32 F603 -111
-20 56 37.49 -59.56 F603 -94
-20 11 39.29 -59.89 F603 -62 | 0 -17 07 45.03 -58.94 F603 -51
6 -17 44 44.05 -59.32 F603 -44
2 -17 42 44.41 -59.65 F603 -23
8 -21 39 37.02 -61.18 F603 -15 -
4 -23 32 33.53 -62.26 F534 31 | | | RA (2000) Dec l b Field x | 12 14 35.6 -19 25 334.19 37.05 F580 -119 4 0.6 14 40.3 -22 18 333.61 34.00 F580 -61 -11 19 14 52.3 -24 31 335.11 30.69 F512 111 3 12 14 53.4 -24 24 335.43 30.66 F512 125 4 43 14 57.5 -23 55 336.65 30.58 F513 -92 6 | 0 30.1 -24 58 19.07 -31.95 F528 -63
0 48.2 -17 48 28.78 -33.56 F597 79
0 57.7 -22 02 24.82 -37.08 F598 -67 -
0 59.6 -16 55 30.99 -35.76 F598 -43
1 00.8 -19 15 28.41 -36.87 F598 -27 | 04.2 -25 17 21.41 -39.45 F529 86 06.2 -21 47 25.88 -38.88 F598 39 -07.5 -21 10 26.75 -38.97 F598 55 17.5 -22 22 26.19 -41.54 F530 -23 20.8 -26 06 21.60 -43.27 F530 22 | 40 21 20.9 -21 27 27.70 -42.04 F599 -40 -
25 21 21.7 -23 12 25.50 -42.71 F530 29
20 21 25.7 -22 15 27.46 -44.21 F599 66 -1
29 21 36.7 -23 15 26.75 -46.06 F531 -54 | 33 21 42.0 -20 19 31.33 -46.36 F600 -39 -55 21 43.0 -18 41 33.67 -46.04 F600 -26 21 44.8 -19 31 34.33 -46.32 F600 -1 3 47 21 45.0 -19 33 32.71 -46.78 F600 -1 13 21 45.3 -19 59 32.15 -46.99 F600 2 - | 26 21 45.3 -24 12 26.16 -48.20 F531 49
23 21 46.0 -19 09 33.38 -46.87 F600 12
14 21 47.3 -20 00 32.35 -47.44 F600 28
27 21 52.0 -21 12 31.13 -48.86 F600 86
47 21 52.4 -19 32 33.57 -48.42 F600 92 | 49 21 53.0 -23 34 27.75 -49.74 F532 -125
29 21 55.6 -19 14 34.38 -49.03 F600 133
21 21 58.4 -20 06 33.45 -49.94 F601 -96 -
28 21 59.1 -18 13 36.29 -49.48 F601 -87
03 21 59.6 -17 48 36.96 -49.44 F601 -80 1 | 2 04.1 -21 26 32.10 -51.61 F601 -24 - 2 04.9 -25 15 26.15 -52.77 F532 21 - 2 07.5 -24 25 27.72 -53.16 F532 21 - 2 09.2 -26 06 25.09 -53.89 F532 72 - 2 15.4 -23 55 29.27 -54.79 F533 -116 | 2 27.8 -23 49 30.62 -57.51 F533 35
2 39.2 -21 04 37.06 -59.32 F603 -111
2 39.2 -17 20 43.76 -57.98 F603 -112
2 40.5 -20 56 37.49 -59.56 F603 -94
2 43.1 -20 11 39.29 -59.89 F603 -62 | 44.0 -17 07 45.03 -58.94 F603 -51
44.6 -17 44 44.05 -59.32 F603 -44
46.2 -17 42 44.41 -59.65 F603 -23
46.8 -21 39 37.02 -61.18 F603 -15 -
49.4 -23 32 33.53 -62.26 F534 31 | | | Dec RA (2000) Dec l b Field x | 12 14 35.6 -19 25 334.19 37.05 F580 -119 4 0.6 14 40.3 -22 18 333.61 34.00 F580 -61 -11 19 14 52.3 -24 31 335.11 30.69 F512 111 3 12 14 53.4 -24 24 335.43 30.66 F512 125 4 43 14 57.5 -23 55 336.65 30.58 F513 -92 6 | 20 30.1 -24 58 19.07 -31.95 F528 -63
20 48.2 -17 48 28.78 -37.56 F597 79
20 57.7 -2 02 24.82 -37.08 F598 -67 -
20 59.6 -16 55 30.99 -35.76 F598 -43
21 00.8 -19 15 28.41 -36.87 F598 -27 | 9 21 04.2 -25 17 21.41 -39.45 F529 86
0 21 06.2 -21 47 25.88 -38.88 F598 39 -
3 21 07.5 -21 10 26.75 -38.97 F598 55
5 21 17.5 -22 22 26.19 -41.54 F530 -23
9 21 20.8 -26 06 21.60 -43.27 F530 22 | 40 21 20.9 -21 27 27.70 -42.04 F599 -40 -
25 21 21.7 -23 12 25.50 -42.71 F530 29
20 21 25.7 -22 15 27.46 -44.21 F599 66 -1
29 21 36.7 -23 15 26.75 -46.06 F531 -54 | 3 21 42.0 -20 19 31.33 -46.36 F600 -39 -
5 21 43.0 -18 41 33.57 -46.04 F600 -26
5 21 44.8 -18 21 34.33 -46.32 F600 -1
7 21 45.0 -19 33 32.71 -46.78 F600 -1
3 21 45.3 -19 59 32.15 -46.99 F600 2 - | 6 21 45.3 -24 12 26.16 -48 20 F531 49
3 21 46.0 -19 09 33.38 -46.87 F600 12
4 21 47.3 -20 00 32.35 -47.44 F600 28
7 21 52.0 -21 12 31.13 -48 86 F600 86
7 21 52.4 -19 32 33.57 -48.42 F600 92 | 9 21 53.0 -23 34 27.75 -49.74 F532 -125
9 21 55.6 -19 14 34.38 -49.03 F600 133
1 21 58.4 -20 06 33.45 -49.94 F601 -96 -
8 21 59.1 -18 13 36.29 -49.48 F601 -87
3 21 59.6 -17 48 36.96 -49.44 F601 -80 1 | 1 22 04.1 -21 26 32.10 -51.61 F601 -24 - 0 22 04.9 -25 15 26.15 -52.77 F532 21 - 2 2 07.5 -24 6 27.72 -53.16 F532 51 - 1 22 09.2 -26 06 25.09 -53.89 F532 72 - 0 22 15.4 -23 55 29.27 -54.79 F533 -116 | 5 22 27.8 -23 49 30.62 -57.51 F533 35
0 22 39.2 -12 04 37.06 -59.32 F603 -111
6 22 39.2 -17 20 43.76 -57.98 F603 -112
2 2 40.5 -20 56 37.49 -59.56 F603 -94
7 22 43.1 -20 11 39.29 -59.89 F603 -62 | 3 22 44.0 -17 07 45.03 -58.94 F603 -51
0 22 44.6 -17 44 44.05 -59.32 F603 -44
8 22 46.2 -17 42 44.41 -59.65 F603 -23
5 22 46.8 -21 39 37.02 -61.18 F603 -15 -
8 22 49.4 -23 32 33.53 -62.26 F534 31 | | | Dec RA (2000) Dec l b Field x | 8 -19 12 14 35.6 -19 25 334.19 37.05 F580 -119 4 -22 06 14 40.3 -22 18 333.61 34.00 F580 -61 -11 3 4 -24 19 14 52.3 -24 31 335.11 30.69 F512 111 3 5 -24 12 14 53.4 -24 24 335.43 30.66 F512 125 4 6 -23 43 14 57.5 -23 55 336.65 30.58 F513 -92 6 | .1 -25 09 20 30.1 -24 58 19.07 -31.95 F528 -63
.4 -18 00 20 48.2 -17 48 28.78 -33.56 F597 79
-2.2 14 20 57.7 -22 02 24.82 -37.08 F598 -67 -8
.8 -17 07 20 59.6 -16 55 30.99 -35.76 F598 -43
.0 -19 27 21 00.8 -19 15 28.41 -36.87 F598 -27 | .3 -25 29 21 04.2 -25 17 21.41 -39.45 F529 86 .3 -22 00 21 06.2 -21 47 25.88 -38.88 F598 39 -6 -21 23 21 07.5 -21 10 26.75 -38.97 F598 55 .6 -22 35 21 17.5 -22 22 26.19 -41.54 F530 -23 -26 19 21 20.8 -26 06 21.60 -43.27 F530 22 | .1 -21 40 21 20.9 -21 27 27.70 -42.04 F559 -40 -8 -23 25 21 21.7 -23 12 25.50 -42.71 F530 29 -21 00 21 25.7 047 29.03 -42.89 F559 19 -8 -22 29 21 29.6 -22 15 27.46 -44.21 F559 66 -1 9 -23 29 21 36.7 -23 15 26.75 -46.06 F531 -54 | .2 -20 33 21 42.0 -20 19 31.33 -46.36 F600 -39 -32 -18 55 21 43.0 -18 41 34.57 -46.04 F600 -26 -20 -18 35 21 44.8 -18 21 34.33 -46.32 F600 -3 -2 -19 47 21 45.0 -19 33 32.71 -46.78 F600 -1 -5 -20 13 21 45.3 -19 59 32.15 -46.99 F600 2 - | .5 -24 26 21 45.3 -24 12 26.16 -48.20 F531 49 .2 -19 23 21 46.0 -19 09 33.38 -46.87 F600 12 .5 -20 14 21 47.3 -20 00 32.35 -47.44 F600 28 .2 -21 27 21 52.0 -21 12 31.13 -48.86 F600 86 .6 -19 47 21 52.4 -19 32 33.57 -48.42 F600 92 | .2 -23 49 21 53.0 -23 34 27.75 -49.74 F532 -125 .8 -19 29 21 55.6 -19 14 34.38 -49.03 F600 133 .6 -20 21 21 58.4 -20 06 33.45 -49.94 F601 -96 -4 -18 28 21 59.1 -18 13 36.29 -49.48 F601 -87 .9 -18 03 21 59.6 -17 48 36.96 -49.44 F601 -80 1 | .3 -21 41 22 04.1 -21 26 32.10 -51.61 F601 -24 -
1 -25 30 22 04.9 -25 15 26.15 -52.77 F532 21 -
-24 40 22 07.5 -24 25 27.72 -53.16 F532 51 -
-4 -26 21 22 09.2 -26 06 25.09 -53.89 F532 72 -
6 -24 10 22 15.4 -23 55 29.27 -54.79 F533 -116 | .0 -24 05 22 27.8 -23 49 30.62 -57.51 F533 35
.5 -21 20 22 39.2 -21 04 37.06 -59.32 F603 -111
.8 -21 12 22 40.5 -20 56 37.49 -59.56 F603 -94
.4 -20 27 22 43.1 -20 11 39.29 -59.89 F603 -62 | .3 -17 23 22 44.0 -17 07 45.03 -58.94 F603 -51
.9 -18 00 22 44.6 -17 44 44.05 -59.32 F603 -44
.5 -17 58 22 46.2 -17 42 44.41 -59.65 F603 -23
.1 -21 55 22 46.8 -21 39 37.02 -61.18 F603 -15 -
.7 -23 48 22 49.4 -23 32 33.53 -62.26 F534 31 | | | RA (2000) Dec l b Field x | 4 32.8 -19 12 14 35.6 -19 25 334.19 37.05 F580 -119 4 37.4 -22 06 14 40.3 -22 18 333.61 34.00 F580 -61 -11 4 49.4 -24 19 14 52.3 -24 31 335.11 30.69 F512 111 3 4 50.5 -24 12 14 53.4 -24 24 335.43 30.66 F512 125 4 54.6 -23 43 14 57.5 -23 55 336.65 30.58 F513 -92 6 | 0 27.1 -25 09 20 30.1 -24 58 19.07 -31.95 F528 -63 85.4 45.4 -18 00
20 48.2 -17 48 28.78 -33.56 F597 79 0 54.8 -22 14 20 57.7 -22 02 24.82 -37.08 F598 -67 0 56.8 -17 07 20 59.6 -16 55 30.99 -35.76 F598 -43 0 58.0 -19 27 21 00.8 -19 15 28.41 -36.87 F598 -27 | 01.3 -25 29 21 04.2 -25 17 21.41 -39.45 F529 86 03.3 -22 00 21 06.2 -21 47 25.88 -38.88 F598 39 -04.6 -21 23 21 07.5 -21 10 26.75 -38.97 F598 55 14.6 -22 35 21 17.5 -22 22 26.19 -41.54 F530 -23 17.9 -26 19 21 20.8 -26 06 21.60 -43.27 F530 22 | 18.1 -21 40 21 20.9 -21 27 27.70 -42.04 F599 -40 - 21.8 8 -23 25 21 21.7 -23 12 25.50 -42.71 F530 29 22.9 -21 00 21 25.7 -20 47 29.03 -42.89 F599 66 -1 26.8 -22 29 21 29.6 -22 15 27.46 -44.21 F599 66 -1 33.9 -23 29 21 36.7 -23 15 26.75 -46.06 F531 -54 | 1 39.2 -20 33 21 42.0 -20 19 31.33 -46.36 F600 -39 -1 42.2 -18 55 21 43.0 -18 41 34.57 -46.04 F600 -26 142.0 -18 35 21 44.8 -18 21 34.33 -46.32 F600 -3 142.2 -19 47 21 45.0 -19 33 32.71 -46.78 F600 -1 42.5 -20 13 21 45.3 -19 59 32.15 -46.99 F600 2 - | 1 42.5 -24 26 21 45.3 -24 12 26.16 -48.20 F531 49 1 43.2 -19 23 21 46.0 -19 09 33.38 -46.87 F600 12 1 44.5 -20 14 21 47.3 -20 00 32.35 -47.44 F600 28 1 49.2 -21 27 21 52.0 -21 12 31.13 -48.86 F600 86 1 49.6 -19 47 21 52.4 -19 32 33.57 -48.42 F600 92 | 50.2 -23 49 21 53.0 -23 34 27.75 -49.74 F532 -125 52.8 -19 29 21 55.6 -19 14 34.38 -49.03 F600 133 55.6 -20 21 21 58.4 -20 06 33.45 -49.94 F601 -96 -56.4 -18 28 21 59.1 -18 13 36.29 -49.48 F601 -87 56.9 -18 03 21 59.6 -17 48 36.96 -49.44 F601 -80 1 | 2 01.3 -21 41 22 04.1 -21 26 32.10 -51.61 F601 -24 - 2 02.1 -25 30 22 04.9 -25 15 26.15 -52.77 F532 21 - 2 04.7 -24 6.21 22 075 -24 65 27.72 -53.16 F532 51 - 2 06.4 -26 21 22 09.2 -26 06 25.09 -53.89 F532 72 - 2 12.6 -24 10 22 15.4 -23 55 29.27 -54.79 F533 -116 | 2 25.0 -24 05 22 27.8 -23 49 30.62 -57.51 F533 35 35 35.5 -17 20 22 39.2 -21 04 37.06 -59.32 F603 -111 2 36.5 -17 36 22 39.2 -17 20 43.76 -57.98 F603 -112 2 37.8 -21 12 2 40.5 -20 56 37.49 -59.56 F603 -94 2 40.4 -20 27 22 43.1 -20 11 39.29 -59.89 F603 -62 | 2 41.3 -17 23 22 44.0 -17 07 45.03 -58.94 F603 -51 2 41.9 -18 00 22 44.6 -17 44 44.05 -59.32 F603 -44 2 43.5 -17 58 22 46.2 -17 42 44.41 -59.65 F603 -23 2 44.1 -21 55 22 46.8 -21 39 37.02 -61.18 F603 -15 -2 46.7 -23 48 22 49.4 -23 32 33.53 -62.26 F534 31 | | | RA (1950) Dec RA (2000) Dec l b Field x | 32.8 -19 12 14 35.6 -19 25 334.19 37.05 F580 -119 4 37.4 -22 06 14 40.3 -22 18 333.61 34.00 F580 -61 -11 49.4 -24 19 14 52.3 -24 31 335.11 30.69 F512 111 3 50.5 -24 12 14 53.4 -24 24 335.43 30.66 F512 125 4 54.6 -23 43 14 57.5 -23 55 336.65 30.58 F513 -92 6 | 27.1 -25 09 20 30.1 -24 58 19.07 -31.95 F528 -63 45.4 -18 00 20 48.2 -17 48 28.78 -33.56 F529 79 54.8 -22 14 20 57.7 -22 02 24.82 -37.08 F598 -67 56.8 -17 07 20 59.6 -16 55 30.39 -35.76 F598 -43 58.0 -19 27 21 00.8 -19 15 28.41 -36.87 F598 -27 | 1.3 -25 29 21 04.2 -25 17 21.41 -39.45 F529 86
3.3 -22 00 21 06.2 -21 47 25.88 -38.88 F598 39 -
4.6 -21 23 21 07.5 -21 10 26.75 -38.97 F598 55
4.6 -22 35 21 17.5 -22 22 26.19 -41.54 F530 -23
7.9 -26 19 21 20.8 -26 06 21.60 -43.27 F530 22 | 8.1 -21 40 21 20.9 -21 27 27.70 -42.04 F599 -40 -8.8 -23 25 21 21.7 -23 12 25.50 -42.71 F530 29 2.9 -21 0.2 25.50 -42.71 F599 6.9 6.8 -22 29 21 25.7 -22 15 27.46 -44.21 F599 66 -13.9 -23 29 21 36.7 -23 15 26.75 -46.06 F531 -54 | 39.2 -20 33 21 42.0 -20 19 31.33 -46.36 F600 -39 -40.2 -18 55 21 43.0 -18 41 33.67 -46.04 F600 -26 42.2 -19 47 21 45.0 -19 33 32.71 -46.78 F600 -1 42.5 -20 13 21 45.3 -19 59 32.15 -46.99 F600 2 - | 42.5 -24 26 21 45.3 -24 12 26.16 -48.20 F531 49 43.2 -19 23 21 46.0 -19 09 33.38 -46.87 F600 12 44.5 -20 14 21 47.3 -20 00 32.35 -47.44 F600 28 49.2 -21 27 21 52.0 -21 12 31.13 -48.86 F600 86 49.6 -19 47 21 52.4 -19 32 33.57 -48.42 F600 92 | 0.2 -23 49 21 53.0 -23 34 27.75 -49.74 F532 -125 2.8 -19 29 21 55.6 -19 14 34.38 -49.03 F600 133 5.6 -20 21 21 58.4 -20 06 33.45 -49.94 F601 -96 -6.4 -18 28 21 55.1 -18 13 36.29 -49.48 F601 -87 6.9 -18 03 21 59.6 -17 48 36.96 -49.44 F601 -80 1 | 01.3 -21 41 22 04.1 -21 26 32.10 -51.61 F601 -24 -02.1 -25 30 22 04.9 -25 15 26.15 -52.77 F532 21 -04.7 4 0 22 07.5 -24 25 27.72 -53.16 F532 51 06.4 -26 21 02 09.2 -26 06 25.09 -53.89 F532 72 -12.6 -24 10 22 15.4 -23 55 29.27 -54.79 F533 -116 | 25.0 -24 05 22 27.8 -23 49 30.62 -57.51 F533 35 36.55 -21 20 22 39.2 -21 04 37.06 -59.32 F603 -111 36.22 39.2 -17 20 43.76 -57.98 F603 -112 37.8 -21 12 22 40.5 -20 56 37.49 -59.56 F603 -94 40.4 -20 27 22 43.1 -20 11 39.29 -59.89 F603 -62 | 41.3 -17 23 22 44.0 -17 07 45.03 -58.94 F603 -51
41.9 -18 00 22 44.6 -17 44 44.05 -59.32 F603 -44
43.5 -17 58 22 46.2 -17 42 44.41 -59.65 F603 -23
44.1 -21 55 22 46.8 -21 39 37.02 -61.18 F603 -15
46.7 -23 48 22 49.4 -23 32 33.53 -62.26 F534 31 | | | В | 17.4
16.3
17.3
17.3 | 17.3
17.4
17.4
17.3 | 17.2
17.3
17.4
17.2 | 17.4
17.3
16.1
16.5 | 17.3
17.2
17.2
17.3 | 17.3
17.3
17.2
17.2 | 17.1
16.9
16.6
17.2 | 17.4
17.3
17.2
17.3 | 17.2
17.3
17.4
17.2 | 17.2
17.1
16.8
17.3 | |---|--|--|--|--|---|--|--|---|---|---|---| | | Ω | 0 4 0 0 0 | വെയയയ | อดอดด | 00400 | ω υυ ω 4 | ပေသသပပ | งฉฉฉฉ | 99299 | ပသမမည | യ യ വ വ വ | | | H | 44000 | 44008 | 20044 | 01010 | 04480 | 22244 | пппоп | 00710 | 01101 | 0 1 7 1 0 | | | Z | | 0.2306
0.1351
0.1359 | 0.0955 | 0.1976
0.1971
0.0817
0.1735 | 0.1603
0.1018
0.1119
0.1492 | 0.1543
0.1060
0.1385 | 0.0865
0.1271
0.0821
0.1398 | | | | | | Previous | | | | | | | | | | | | | Obs | 00000 | 10
20,10
20
10
10,10 | 10
10
10
10,10 | 10,10
10,10
10,10
10,10 |
10
10,10
10,10 | 10, 10
10, 10
10, 10
10, 10 | 10
10
10
20,10
20,20 | 20,20
20,20
20
20
20 | 10,10
10,10
10,10 | 10,10
10,10
10 | | | m ₁₀ | 19.1
16.1
18.3
18.6 | 18.1
19.4
19.3
18.0 | 17.1
18.6
19.4
17.2
18.6 | 18.9
18.7
15.9
16.3 | 18.3
17.5
17.9
18.2
16.1 | : 18.3
18.7
17.2
: 17.8
: 18.8 | 16.9
16.7
16.4
17.9 | 19.4
18.0
17.4
18.3 | 17.4
18.1
19.1
17.6 | 17.0
17.0
16.6
18.6
18.4 | | | m ₃ | 18.0
15.4
16.7
18.1 | 17.3
18.4
19.1
16.9
17.3 | 16.0
18.1
19.2
16.1
17.5 | 17.7
17.9
15.3
15.3
16.8 | * 17.0
* 16.7
16.9
17.6 | 17.6
18.1
16.3
17.1 | 16.0
16.2
15.9
17.0
18.1 | 18.8
16.8
16.3
17.1 | 16.7
16.6
18.3
16.7 | 16.1
16.0
15.6
17.5
18.0 | | | m ₁ | 17.3
14.7
15.9
16.8 | 15.9
17.3
17.5
16.3 | 15.6
16.0
17.5
15.3 | 16.0
17.3
14.9
15.2 | 13.7*
15.3*
16.8
17.1 | 16.5
17.5
15.7
16.0
17.0 | 14.6:
16.0
15.2?
15.8 | 17.4:
16.0
15.6:
15.1: | 16.5
16.4
17.5?
16.4? | 15.5
15.5
15.4
16.7 | | | Ö | 61
62
34
35
48 | 56
61:
31
43
85 | 84
26
72
60 | 126
58
83
52
46 | 44
76
62
127
38 | 84:
83
100:
63: | 65
67
42
56 | 40:
48
81:
77
45* | 49
50
39
50 | 4 08 04
0 4 4 6
3 4 4 6 | | | T_{B-M} | 11.1.11 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | II-II
II-II
II: | 11?
11-111?
11-111
111 | 11-111
11-11
1117
111-111 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | I
III
III-III | 111
11-11
11-111 | !!!
!!!!
!!!-!! | 1-11
111
11-111
1-111 | | | T_A | нжннн | RHHRI | R I R I I | R?
RI?
R
I | I KI | R KI: | жнннж | IR IR I | жнннж | RILI | | | Abell | 2487
2492
2493
2497
2499 | 2500
2509
2514
2518
2521 | 2523
2526
2527
2528
2538 | 2534
2536
2538
2539
2540 | 2542
2541
2546
2547
2547 | 2550
2553
2554
2555
2555 | 2556
2565
2566
2568
2568 | 2575
2577
2579
2580
2581 | 2583
2585
2587
2586
2595 | 2596
2600
2599
2601
2603 | | | | | | | | | | | | | | | - | yn | 99
193
146
96 | 121
57
244
196 | 122
132
75
60 | 272
286
156
33 | 177
259
275
89 | 56
70
31 | 62
87
125
31 | 41
256
67
245
316 | 129
79
287
132 | 235
288
211
180 | | | xu yu | 45 9
32 19
18 9
24 14
93 9 | 85 121
41 57
268 244
263 196
247 41 | 31 12
19 19
06 13
05 7
88 6 | 178 272
177 286
168 156
166 69
158 33 | 149 177
145 259
141 275
141 89
135 125 | 130 56
121 152
122 70
116 31
111 311 | 113 62
79 87
74 125
62 31
29 284 | 290 41
288 256
272 67
279 245
268 316 | 260 129
258 79
256 287
246 132
224 122 | £ 60 H 60 H | | | n _x | 5 145 9
9 132 19
1 118 9
8 124 14
8 93 9 | 43 85 12
07 41 5
80 268 24
32 263 19
23 247 4 | 42 231 12
34 219 19
32 206 13
89 205 7
04 188 6 | 178 27
177 28
168 15
166 6
158 3 | 13 149 17
95 145 25
11 141 27
75 141 8
39 135 12 | 8 130 5
2 121 15
4 122 7
3 116 3 | 113
79
74 1
62
29 2 | 90
72
79
68
3 | 35 260 1
85 258
23 256 2
32 246 1
42 224 1 | 2 5 5 2 3 2 1 8 2 1 2 8 | | | ycen x11 | 145 9
132 19
118 9
124 14 | 79 -43 85 12
23 -107 41 5
04 80 268 24
99 32 263 19
83 -123 247 4 | 7 -42 231 12
5 34 219 19
2 -32 206 13
1 -89 205 7
4 -104 188 6 | 1 108 178 27
3 122 177 28
4 -8 168 15
2 -95 166 6
6 -131 158 3 | 3 149 17
5 145 25
1 141 27
5 141 8
9 135 12 | 130 5
121 15
122 7
116 3 | 60460
1 0 | 5 -123 290
1 92 288 2
3 -97 272
5 81 279 2
1 152 268 3 | 96 -35 260 1
94 -85 258
92 123 256 2
82 -32 246 1
60 -42 224 1 | 71 71 235 23
51 124 215 28
49 47 213 21
48 16 212 18
35 -35 199 12 | | | xcen ycen XII | 19 -65 145 9
32 29 132 19
46 -71 118 9
40 -18 124 14
71 -68 93 9 | 34 79 -43 85 12
03 123 -107 41 5
35 -104 80 268 24
35 -99 32 263 19
04 -83 -123 247 4 | 04 -67 -42 231 12
35 -55 34 219 19
35 -42 -32 206 13
04 -41 -89 205 7
04 -24 -104 188 6 | -14 108 178 27
-13 122 177 28
-4 -8 168 15
-2 -95 166 6
6 -131 158 3 | 5 15 13 149 17
5 19 95 145 25
5 23 111 141 27
4 23 -75 141 8
4 29 -39 135 12 | 34 -108 130 5
43 -12 121 15
42 -94 122 7
48 -133 116 3
53 147 111 31 | 604 51 -102 113
604 85 -77 79
604 90 -39 74 1
604 102 -133 62
535 135 120 29 2 | 5 -126 -123 290
6 -124 92 288 2
5 -108 -97 272
6 -115 81 279 2
5 -104 152 268 3 | 5 -96 -35 260 1
6 -94 -85 258
6 -92 123 256 2
5 -82 -32 246 1
5 -60 -42 224 1 | 6 -71 71 235 23
6 -51 124 215 28
6 -49 47 213 21
6 -48 16 212 18
6 -35 -35 199 12 | | | cen Ycen XII | 9 -65 145 9
2 29 132 19
6 -71 118 9
0 -18 124 14
1 -68 93 9 | 9 F534 79 -43 85 12 6 F603 123 -107 41 5 6 F535 -104 80 268 19 3 F535 -99 32 263 19 0 F604 -83 -123 247 4 | 1 F604 -67 -42 231 12
2 F535 -55 34 219 19
9 F535 -42 -32 206 13
5 F604 -41 -89 205 7
3 F604 -24 -104 188 6 | F535 -14 108 178 27
F535 -13 122 177 28
F604 -4 -8 168 15
F604 -2 -95 166 6
F604 6 -131 158 3 | R F535 15 13 149 17 7 F535 19 95 145 25 6 F535 23 111 17 141 27 3 F604 23 -75 141 8 F604 29 -39 135 12 | 9 F604 34 -108 130 5
6 F535 43 -12 121 15
7 F604 42 -94 122 7
1 F604 48 -133 116 3
1 F604 53 147 111 31 | 0 F604 51 -102 113
2 F604 85 -77 79
8 F604 90 -39 74 1
5 F604 102 -133 62
9 F535 135 120 29 2 | 8 F605 -126 -123 290
8 F536 -124 92 288 2
6 F605 -108 -97 27 27
9 F536 -115 81 279 2
3 F605 -104 152 268 3 | 5 F605 -96 -35 260 1
5 F536 -94 -85 258
9 F506 -92 123 258
9 F605 -60 -42 244 1 | 4 F536 -71 71 235 23
1 F536 -51 124 215 28
6 F536 -49 47 213 21
1 F536 -48 16 212 18
2 F536 -35 -35 199 12 | | | xcen ycen XII | 61.57 F603 19 -65 145 9
61.19 F603 32 29 132 19
63.08 F534 46 -71 118 9
61.65 F603 40 -18 124 14
63.54 F534 71 -68 93 9 | 63.59 F534 79 -43 85 12
63.66 F603 123 -107 41 5
64.65 F535 -104 80 268 24
64.93 F535 -99 32 263 19
64.70 F604 -83 -123 247 4 | 63.21 F604 -67 -42 231 12
65.72 F535 -55 34 219 19
66.19 F535 -42 -32 206 13
65.25 F604 -41 -89 205 7
65.63 F604 -24 -104 188 6 | 66.11 F535 -14 108 178 27
66.06 F535 -13 122 177 28
65.39 F604 -2 -95 166 6
66.35 F604 6 -131 158 3 | 67.08 F535 15 13 149 17
66.77 F535 19 95 145 25
66.37 F604 23 -75 141 8
66.18 F604 29 -39 135 12 | 66.69 F604 34 -108 130 5
67.66 F535 43 -12 121 15
67.11 F604 48 -131 116 3
65.11 F604 53 147 111 31 | 67.00 F604 51 -102 113
67.42 F604 85 -77 79
67.28 F604 90 -39 74 18
68.69 F535 135 120 29 2 | 68.58 F605 -126 -123 290 69.08 F536 -124 92 288 2 68.76 F605 -108 97 272 66.29 F605 -104 152 268 3 | 8.55 F605 -96 -35 260 1
0.25 F536 -94 -85 258
9.49 F536 -92 123 258
8.78 F605 -82 -32 246 1
9.19 F605 -60 -42 224 1 | 0.14 F536 -71 71 235 23
0.21 F536 -51 124 215 28
0.66 F536 -49 47 213 21
0.81 F536 -48 16 212 18
1.22 F536 -35 -35 199 12 | | | b Field xcen ycen x11 | 1.57 F603 19 -65 145 9
1.19 F603 32 29 132 19
3.08 F534 46 -71 118 9
1.65 F603 40 -18 124 14
3.54 F534 71 -68 93 9 | 3.59 F534 79 -43 85 12
3.66 F603 123 -107 41 5
4.65 F535 -104 80 268 24
4.93 F535 -99 32 263 19
4.70 F604 -83 -123 247 4 | 10 -63.21 F604 -67 -42 231 12
09 -65.72 F535 -55 34 219 19
24 -66.19 F535 -42 -32 206 13
54 -65.25 F604 -41 -89 205 7
12 -65.63 F604 -24 -104 188 6 | 6.11 F535 -14 108 178 27
6.06 F535 -13 122
177 28
6.00 F604 -4 -8 168 15
6.03 F604 -2 -95 166 6
6.35 F604 6 -131 158 3 | 7.08 F535 15 13 149 17
6.77 F535 19 95 145 25
6.38 F604 23 -75 141 28
6.18 F604 29 -39 135 12 | 6.69 F604 34 -108 130 5
7.66 F535 43 -12 121 15
6.79 F604 42 -94 122 7
7.11 F604 48 -133 116 3
5.11 F604 53 147 111 31 | 36 -67.00 F604 51 -102 113
01 -67.42 F604 85 -77 79
75 -68.05 F604 90 -39 74 1
75 -68.05 F604 102 -133 62
49 -68.69 F535 135 120 29 2 | 64 -68.58 F605 -126 -123 290 32 -69.08 F536 -124 92 288 2 1-68.76 F605 -108 92 28 2 18 6 -69.29 F536 -115 81 279 2 34 -66.93 F605 -104 152 268 3 | 24 -68.55 F605 -96 -35 260 1
31 -70.25 F536 -94 -85 258
30 -69.49 F605 -92 123 256 270 -68.78 F605 -60 -42 24 1 | 94 -70.14 F536 -71 71 235 28 03 -70.21 F536 -51 124 215 28 95 -70.66 F536 -49 47 213 21 25 -70.81 F536 -48 16 212 18 52 -71.22 F536 -35 -35 199 12 | | | Field xcen ycen x11 | 4 -61.57 F603 19 -65 145 9
4 -61.19 F603 32 29 132 19
3 -63.08 F534 46 -71 118 9
4 -61.65 F603 40 -18 124 14
4 -63.54 F534 71 -68 93 9 | 2 -63.59 F534 79 -43 85 12
8 -63.66 F603 123 -107 41 5
-64.65 F535 -104 80 268 24
8 -64.93 F535 -99 32 263 19
4 -64.70 F604 -83 -123 247 4 | 63.21 F604 -67 -42 231 12
65.72 F535 -55 34 219 19
66.19 F535 -42 -32 206 13
65.25 F604 -41 -89 205 7
65.63 F604 -24 -104 188 6 | 4 -66.11 F535 -14 108 178 27
5 -66.06 F535 -13 122 177 28
6 -66.39 F604 -4 -8 168 15
1 -66.00 F604 -2 -95 166 6
4 -66.35 F604 6 -131 158 3 | 2 -67.08 F535 15 13 149 17
6 -66.77 F535 19 95 145 25
6 -66.37 F604 23 111 141 27
0 -66.33 F604 23 -75 141 8
8 -66.18 F604 29 -39 135 12 | 3 -66.69 F604 34 -108 130 5
0 -67.66 F535 43 -12 121 15
2 -67.11 F604 42 -13 116 3
8 -65.11 F604 53 147 111 31 | 6 -67.00 F604 51 -102 113
1 -67.42 F604 85 -77 79
8 -67.28 F604 90 -39 74 1
5 -68.05 F604 102 -133 62
9 -68.69 F535 135 120 29 2 | 4 -68.58 F605 -126 -123 290 2 -69.08 F536 -124 92 288 2 -68.76 F605 -108 -97 272 6 -69.29 F536 -115 81 279 2 4 -66.93 F605 -104 152 268 3 | 4 -68.55 F605 -96 -35 260 1
1 -70.25 F536 -94 -85 258
0 -69.49 F536 -92 123 256 2
0 -68.78 F605 -82 -32 246 1
8 -69.19 F605 -60 -42 224 1 | 4 -70.14 F536 -71 71 235 23
3 -70.21 F536 -51 124 215 28
5 -70.66 F536 -49 47 213 21
5 -70.81 F536 -48 16 212 18
2 -71.22 F536 -35 -35 199 12 | | | b Field xcen ycen x11 | 8.74 -61.57 F603 19 -65 145 9
2.34 -61.19 F603 32 29 132 19
8.23 -63.08 F534 46 -71 118 9
0.74 -61.65 F603 40 -18 124 14
8.54 -63.54 F534 71 -68 93 9 | 9.62 -63.59 F534 79 -43 85 12
8.48 -63.66 F603 123 -107 41 5
5.55 -64.65 F535 -104 80 268 24
3.58 -64.93 F535 -99 32 263 19
8.54 -64.70 F604 -83 -123 247 4 | 9.10 -63.21 F604 -67 -42 231 12
4.09 -65.72 F535 -55 34 219 19
1.24 -66.19 F535 -42 -32 206 13
0.54 -65.25 F604 -41 -89 205 7
0.12 -65.63 F604 -24 -104 188 6 | 7.84 -66.11 F535 -14 108 178 27
8.45 -66.06 F535 -13 122 177 28
4.46 -65.39 F604 -4 -8 168 15
0.81 -66.00 F604 -2 -95 166 6
9.44 -66.35 F604 6 -131 158 3 | 3.82 -67.08 F535 15 13 149 17
7.66 -66.77 F535 19 95 145 25
8.44 -66.76 F604 23 111 127
2.10 -66.33 F604 23 -75 141 8
3.78 -66.18 F604 29 -39 135 12 | 0.73 -66.69 F604 34 -108 130 5
2.90 -67.66 F535 43 -12 121 15
1.44 -66.79 F604 42 -94 122 7
9.92 -67.11 F604 48 -133 116 3
1.88 -65.11 F604 53 147 111 31 | 1.36 -67.00 F604 51 -102 113
3.01 -67.42 F604 85 -77 79
4.78 -67.28 F604 90 -39 74 1
0.75 -68.05 F604 102 -133 62
0.49 -68.69 F535 135 120 29 2 | 1.64 -68.58 F605 -126 -123 290
9.32 -69.08 F536 -124 92 288 2
12 -68.76 F605 -108 -97 272
8.86 -69.29 F536 -115 81 279 2
4.34 -66.93 F605 -104 152 268 3 | 6.24 -68.55 F605 -96 -35 260 1
0.31 -70.25 F536 -94 -85 258
0.00 -69.49 F506 -92 123 258
6.70 -68.78 F605 -82 -32 246 1
6.68 -69.19 F605 -60 -42 224 1 | .03 -70.14 F536 -71 71 235 23 .03 -70.21 F536 -51 124 215 28 .95 -70.66 F536 -49 47 213 21 .25 -70.81 F536 -48 16 212 18 .52 -71.22 F536 -35 -35 199 12 | | | (2000) Dec 1 b Field x _{cen} y _{cen} x _{II} | 2 49.5 -20 59 38.74 -61.57 F603 19 -65 145 9
2 50.5 -19 14 42.34 -61.19 F603 32 29 132 19
2 50.8 -26 05 28.23 -63.08 F534 46 -71 118 9
2 51.2 -20 07 40.74 -61.65 F603 40 -18 124 14
2 52.9 -26 01 28.54 -63.54 F534 71 -68 93 9 | 2 53.5 -25 33 29.62 -63.59 F534 79 -43 85 12 2 57.9 -21 44 38.48 -63.66 F603 123 -107 41 5 3 00.5 -23 14 35.58 -64.65 F555 -104 80 2.68 24 3 00.8 -24 07 35.58 -64.65 F555 -104 80 2.68 24 3 00.8 -24 07 35.58 -64.93 F555 -99 32 2.63 19 3 02.2 -22 01 38.54 -64.70 F604 -83 -123 247 4 | 3 03.6 -17 10 49.10 -63.21 F604 -67 -42 231 12 3 04.4 -24 05 34.09 -65.72 F535 -55 34 219 19 3 05.4 -25 19 31.24 -66.19 F535 -42 -32 206 13 3 05.6 -21 23 40.54 -65.25 F604 -41 -89 205 7 3 06.9 -21 40 40.12 -65.63 F604 -24 -104 188 6 | 3 07.7 -22 42 37.84 -66.11 F535 -14 108 178 27 3 07.8 -22 27 38.45 -66.06 F535 -13 122 177 28 3 08.8 -219 34 44.46 -65.39 F604 -4 -8 168 15 3 08.8 -21 31 40.81 -66.00 F604 -2 -95 166 6 3 09.5 -22 09 39.44 -66.35 F604 6 -131 158 3 | 3 10.1 -24 29 33.82 -67.08 F535 15 13 149 17 3 10.4 -22 57 37.66 -66.77 F535 19 95 145 25 3 10.7 -22 39 38.44 -66.76 F535 23 111 141 27 3 10.9 -21 08 42.10 -66.33 F604 29 -75 141 8 3 11.3 -20 27 43.78 -66.18 F604 29 -39 135 12 | 3 11.6 -21 46 40.73 -66.69 F604 34 -108 130 5
3 12.3 -24 57 32.90 -67.66 F535 43 -12 121 15
3 12.4 -21 32 41.44 -66.79 F604 42 -94 122 7
3 12.9 -22 12 39.92 -67.11 F604 48 -133 116 3
3 13.0 -16 58 51.88 -65.11 F604 53 147 111 31 | 3 13.2 -21 38 41.36 -67.00 F604 51 -102 113
3 15.7 -21 10 43.01 -67.42 F604 85 -77 79
3 16.2 -20 29 44.78 -67.28 F604 90 -39 74 13
3 17.1 -22 11 40.75 -68.05 F604 102 -133 62
3 19.6 -22 28 40.49 -68.69 F535 135 120 29 2 | 3 19.7 -22 02 41.64 -68.58 F605 -126 -123 290 20 20.7 -22 59 39.32 -69.08 F536 -124 92 288 2 2 21.2 -21 35 43.12 -68.76 F605 -108 -97 27 2 2 21.4 -23 12 38.86 -69.29 F536 -115 81 279 2 3 21.7 -16 59 54.34 -66.93 F605 -104 152 268 3 | 3 22.1 -20 27 46.24 -68.55 F605 -96 -35 260 1
3 23.0 -26 17 30.31 -70.25 F536 -94 -85 258
3 23.3 -22 26 41.30 -69.49 F536 -92 123 258
3 23.3 -20 23 46.70 -68.78 F605 -82 -32 246 1
3 24.9 -20 33 46.68 -69.19 F605 -60 -42 224 1 | 3 25.0 -23 24 38.94 -70.14 F536 -71 71 235 28 26.6 -22 25 42.03 -70.21 F536 -51 124 215 28 3 26.8 -23 51 37.95 -70.66 F536 -49 47 213 21 3 26.9 -24 26 36.25 -70.81 F536 -48 16 212 18 3 27.9 -25 23 33.52 -71.22 F536 -35 -35 199 12 | 103 TABLE 6—Continued | į | RA (2000) Dec | 1 | q | Field | Lcen | ycen | ıı nı | Abell | T_{A} | T_{B-M} | O | m_1 | m ₃ | m_{10} | Obs | Previous | z | æ | D m | |---|--|--|--------------------------------------|------------------------------|----------------------------|---|---|--|---------|-------------------------------------|-------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------------|----------|--------|---|--------------------------------------| | 23 28.4
23 29.1
23 29.4
23 30.3
23 30.3 | -22 34
-23 25
-21 08
-26 08 | 41.98 -7
46.26 -7
31.44 -7
-95 -7 | -70.65
-71.05
-70.38
-71.87 | F536
F536
F605
F605 | -23
-21
-21
-5 | 116
70
-76
-76 | 193 280
185 234
168 88
169 88
158 62 | 2605
2605
2605
2609
2609
2609 | RILIRI | 11-11
11-11
11-11 | 44
42
73
73 | 17.3?
15.3
17.3?
15.9 | | 18.7:
17.4
19.2
17.8
18.2 | 10,10
10
10
10 | | | 111100 | 17.3
17.2
17.4
17.2 | | 23 30.8
23 32.9
23 33.1
23 37.0
23 37.8 | 3 -18 40
9 -23 31
1 -21 33
0 -24 11
3 -22 54 | 53.21 -6
40.08 -7
46.04 -7
38.73 -7 | -69.64
-71.92
-71.34
-72.99 | F605
F536
F536
F536 | 12
26
41
76
87 | 120
64
28
97 | 152 284
138 228
123 68
88 192
77 261 | 2612
2615
2614
2628
2629 | RILLI |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 85
130
9
64
83 | 18.4:
16.9
17.9
17.5 | 19.0:
17.8
18.8
17.6
18.0 | 19.6
19.1
19.6
18.1
18.9 | 20200 | | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17.4
17.4
17.4
17.3 | | 23 40.9
23 44.5
23 45.5
23 49.9
23 51.7 | 9 -24 53
5 -21 53
5 -26 05
9 -24 45
7 -26 03 | 37.03 -7
48.30 -7
33.22 -7
34.15 -7 | -74.01
-73.91
-75.24
-75.97 | F536
F606
F537
F537 | 122
-78 -
-88
-35 | -10
-72
-71 | 42 154
242 50
252 92
199 164
178 93 | 2641
2655
2660
2663
2663 | HHHH | | 80
-10
20
63:
132 | 16.8
16.1
14.9
17.7
17.0 | 17.7
17.3
15.4
18.4 | | 20
20
20
20 | | | 2001E | | | 23 55.3
23 56.5
23 57.5
23 57.6
23 57.6 | 3 -20 27
5 -21 02
5 -20 34
6 -24 20
6 -25 35 | 57.41 -7
55.90 -7
58.06 -7
42.90 -7
37.18 -7 | -75.54
-76.07
-76.04
-77.56 | F606
F538
F537
F537 | 57
72
58
58 | 1 4 4 4 5 5 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | 107 126
92 95
230 120
106 186
106 119 | 2679
2680
2682
2681
2681 | H KI | | 82
185
96?
51: | 16.8
16.8
15.4
15.9 | 17.3
17.8
16.0
17.1
16.7 | 18.1
18.5
17.1
18.8 | 20,1C
10,1C
1C,10
20 | | | 00000 | 17.3
17.3
17.1
17.1
17.4 | | 23 58.4
23 59.1
00 00.3
00 02.2 | -24 25
-20 46
-25 12
-19 35 | 42.75 -7
58.13 -7
39.58 -7
64.05 -7 | -77.76
-76.46
-78.36
-76.42 | F537
F538
F472
F538 |
69
-46
-31
-6 | 118
-55
9 | 95 182
210 109
195 140
170 173 | 2685
2686
2690
2693 | REEL | 1-11
111
1 111-111 : | 44
61
37
61 | 15.5
14.3:
14.7
17.0: | | 18.2:
16.3
16.8
18.4 | 20
1C,20
20
20 | J | 0.1124 | 0404 | 17.2
16.4
16.9
17.3 | ## TABLE 7A Notes for Table 4 TABLE 7A—Continued | Continued | Abell Field Notes | 2829 F411 1st IS NEARLY EDGE-ON SPIRAL; 2nd & 3rd HAVE FAINT CORONAE. | | F195 1st & 4th HAVE FAINT CORONAE. BRIGHTEST ARE FOSSIBLY FOREGROUND CONTAMINATION Brightest are foreground: roo data rejected | F150 | 2832 F414 IB IBS CODIS.
9823 Dita I CACETV CATTED DI | F195 | F195 | 2836 F195 1st (=11594) IS SPIRAL (FOREGROUND?). SEVERAL SUPERPOSITIONS AND INTERPACTOR AT A VIEG IN PIET D. | F013 | | F195 | 2040 F295 18t HAS FAINT CORONA, CENTERED ON Std. 2841 P195 1st HAS CORONA (cD) | F474 | 2844 F411 SOMEWHAT ELONGATED AND SCATTERED. | F411 | Q:1 & Q:4; OTHERWISE SCATTERED. | F412 3rd HAS CORONA. QUITE SCATTERED. | F295 | 2849 F641 SCATTERED.
2850 F411 1st HAS VERY FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. | F412 | 2852 F.295 3rd HAS FAINT CORONA.
2853 F.295 2nd HAS FAINT CORONA. IRREGULAR. | F195 | 9865 F942 Convenient HATIONS, POSSIBLY SUPERFUSITION OF CLUSIERS. | F295 | F295 | 2859 F051 1st HAS FAINT CORONA. SOMEWHAT LINEARLY CONDENSED. F079 1st HAS VERY FAINT CORONA. BRIGHTEST ARE ELLIPTICALS. SCATTERED. | | F080 1st HAS VERY FAINT CORONA. SCATTERED. NEAR Q:4-S PLATE EDGE, COUNT 1.0W7 | F295 | 2861 F195 MANY FAINT GROUPS NEARBY.
2862 FK41 3-4 HAS FAINT CORONA | | 2864 F051 SCATTERED. DOZO 1- H LO EN INDI CONTROLIT CONTROLIT CONTROLITY INC. LINCOLD | | F080 1st HAS VERY FAINT CORONA. SEVERAL SPIRALS AMONG BRIGHTEST. | F352 | F151 | 2009 F 2430 Group superposed. 2870 F 195 1st HAS CORONA (cD). SPIRAL-RICH. NEAR Q2:N PLATE EDGE & PARTIALLY | |-------------|-------------------|---|-------------------------------|--|-------------------------------|---|--|--|---|-----------------------------|--|--|--|------------|---|---|---------------------------------|--|---|--|---|---|-----------------|---|---|-------------------------------|--|--|---|--|---|---|---|--|--|-------------------------------------|--|---| | - | l I | | | | | _ | | | | | | | | | | | | | _ | IABLE IA-CO | Notes | EXTREMELY ELONGATED WITH BRIGHTEST MEMBERS NEARLY LINEARLY | Oct is spiral. Sc superposed. | Scattered. 1st & 3rd ARE CLOSE PAIR WITH CORONAE: 2nd IS LENTICULAR. SCATTERED. | SOMEWHAT CENTRALLY CONDENSED. | IST HAS FAINT CORONA. | 1st HAS CORONA (cD). SOMEWHAT CENTRALLY CONDENSED. | 1st IS ELONGATED WITH CORONA. LINEARLY CONDENSED, SOMEWHAT | ELONGATED. | 1st use orone.
Group nf. | HAVE VERY FAINT CORONAE AND ARE OFF-CENT | 1st HAS VERY FAINT CORONA. SCATTERED. NEAR Q:4-S PLATE EDGE, COUNT | 2 - 3 groups superposed? | | 1st & 3rd HAVE FAINT CORONAE; 2nd IS SPIRAL. SLIGHTLY CENTRALLY CONDENSED | 16t HAS FAINT CORONA AND IS OFF-CENTER. CONCENTRATIONS IN Q:1 & Q:4. | Group superposed? | BRIGHTEST HAVE FAINT CORONAE. SEVERAL BRIGHT SUPERPOSITIONS.
BRIGHTEST ARE LINEARLY CONDENSED | 1st HAS CORONA AND BRIGHT, NEARBY COMPANIONS. MORPHOLOGICALLY | DIVERSE. 1st HAS FAINT ELONGATED CORONA. SCATTERED. bgc has this cluster | | near piate edge.
1st HAS FAINT CORONA. SCATTERED WITH SUPERPOSED CLUSTER IN Q:4. See | Note for A2801. | 18t PROBABLY FOREGROUND, 3rd HAS FAINT COROINA. | 1st IS PERIPHERAL ELLIPTICAL; 3rd IS SPINDLE. SOMEWHAT SCATTERED. | SCATTERED. SPARSE BACKGROUND. | 18t HAS CORONA (ED.). SYMMETRACAL AND CENTRALLY CONDENSED.
1st HAS FAINT CORONA. | MORPHOLOGICALLY DIVERSE AND LOOSELY SCATTERED. | 1st in foreground? Group superposed. | 1st HAS FAINT CORONA. THIS MAY BE A SUBGROUP OF A NEARBY | (SUPERPOSED?) CLUSTER. | SCATTERED, BUT WITH SOME SLIGHT CONCENTRATIONS. | 1st IS ELONGATED WITH FAINT CORONA. SCATTERED. | SOME COMTAMINATION WITH BRIGHTER FOREGOUND GALAXIES. MAJOR | CONCENTRATION TO E-NE. | ora is spiral.
Group superposed? | SCATTERED IN TENDRILS. | SOMEWHALL CENTRALLY CONDENSED. 3rd HAS FAINT CORONA. SCATTERED. RICH BACKGROUND. | | - | Field Notes | F150 EXTREMELY ELONGATED WITH BRIGHTEST MEMBERS NEARLY LINEARLY | | F410 Scattered. F079 1st & 3rd ARE CLOSE PAIR WITH CORONAE: 2nd IS LENTICULAR. SCATTERED. | ••• | F150 16 HAS FAHIT CURONA. | 1st HAS CORONA (cD). SOMEWHAT CENTRALLY CONDENSI | F051 1st IS ELONGATED WITH CORONA LINEARLY CONDENSED, SOMEWHAT | ELONGATED. | | 1st & 2nd HAVE VERY FAINT CORONAE AND ARE OFF-CENT | S VERY FAINT CORONA. SCATTERED. NEAR Q:4-S PL | F410 2-3 groups superposed? | SCATTERED. | E FAINT CORONAE; 2nd IS SPIRAL. SLIGHTLY | F079 1st HAS FAINT CORONA AND IS OFF-CENTER, CONCENTRATIONS IN Q:1 & Q:4. | | F411 BRIGHTEST HAVE FAINT CORONAE, SEVERAL BRIGHT SUPERPOSITIONS. RRIGHTEST ARE LINEARTY CONDENSED | ORONA AND BRIGHT, NEARBY COMPANIONS. MC | | combined with A2804; his data rejected. | F33U Near plake edge.
F411 1st HAS FAINT CORONA, SCATTERED WITH SUPERPOSED CLUSTER IN Q.4. See | | FIGURE 186 PROBABLY FOREGROUND, STABAS FAINT CORONA. FIRM 145 9-4 4-4 HAVE FAINT CORONAE. | 1st IS PERIPHERAL ELLIPTICAL; 3rd IS SPINDLE. SOMEWHA | • | F411 18t HAS CORONA (cD?). SYMMETRICAL AND CENTRALLY CONDENSED.
F295 1st HAS FAINT CORONA. | | F540 1st in foreground? Group superposed. R150 1st HAS RAINT CORONA TOORDIY SCATTERED | 1st HAS FAINT CORONA. THIS MAY BE A SUBGROUP OF A | (SUPERPOSED?) CLUSTER. | SCATTERED, BUT WITH SOME SLIGHT CONCENTRATIONS | F079 1st IS ELONGATED WITH FAINT CORONA. SCATTERED. FINE 1-4 HAS CORONAL SERVED AT CONCEMENDATIONS | SOME COMTAMINATION WITH BRIGHTER FOREGOUND GA | CONCENTRATION TO E-NE. | | F079 SCATTERED IN TENDRILS. F105 SOMEWHAT CENTRALITY CONDENSED | | | Notes | lst has corona.
Gronn sunernosed | SCATTERED WITH SEVERAL SMALL CONCENTRATIONS. | 1st HAS FAINT CORONA. DUMBBELL-SHAPED. | 1st HAS CORONA. 1st IS SPINDLE POSSIBLY FOREGROTIND TWO MATOR CONCENTRATIONS. | SUPERPOSITION? | 1st HAS CORONA. MORPHOLOGICALLY DIVERSE. | SCATTERED AND SINUOUS. | 1st has corona. | 1st HAS CORONA, 3rd IS LENTICULAR. | 2nd & 3rd ARE SPINDLES. SEVERAL CONCENTRATIONS. | 3rd IS EDGE-ON SPIRAL. 1st PROBABLY FOREGROUND. | 3rd HAS FAINT CORONA. SOME SUPERPOSITION WITH NEARBY CLUSTERS. | 1st IS PROBABLY FOREGROUND SPINDLE. IRREGULAR. | 1st HAS VERY FAINT CORONA. | PINWHEEL SHAPE. | 1st HAS FAINT CORONA. CLUSTER LOOKS LIKE A PINWHEEL. | SPIRAL-SHAPED CLUSTER. | LOOSELY SCATTERED. | 1st & 3rd HAVE CORONAE, SCATTERED. | Group superposed. | Near calibration cutout. | SOMEWHAT ELONGATED. | 1st & 3rd HAVE FAINT CORONAE; 2nd IS SPIRAL. SCATTERED. | SOMEWHAT DUMBBELL-SHAPED WITH FAINT CORE AND TWO (NE-SW) | CONCENTRATIONS. | 1st IS LENTICULAR, SCATTERED, NORTH OF SAO 167275. | let HAS VERY FAINT CORONA AND IS SUPERPOSED ON 2nd. MORPHOLOGICALLY | DIVERSE AND SCATTERED. | 1st HAS FAINT CORONA. | Compact | 1st & 3rd HAVE FAINT CORONAE. CENTRALLY CONDENSED. | 3rd HAS FAINT CORONA. RATHER SYMMETRIC AND CENTRALLY CONDENSED. | LOOSELY SCATTERED BACKGROUND OF FAINT GALAXIES. | 1st IS LENTICULAR WITH FAINT ENVELOPE. SCATTERED. | 1st PROBABLY FOREGROUND. | SOMEWHAT SERPENTINE: | 3 - 4 concentrations. | 1st IS DIFFUSE OVAL, 3rd HAS FAINT CORONA. MANY LENTICULARS. | SCATTERED. GROUPS AT EDGE. | Group superposed. | 1st HAS FAINT CORONA (FOREGROUND?). SOMEWHAT CENTRALLY CONDENSED. | SCATTERED. | SLIGHT CONCENTRATION. NEAR Q:1-NW CALIBRATION CUTOUT, COUNT LOW. | 1st HAS FAINT CORONA. | 1st HAS CORONA. | ELONGATED. | SCALTERED. | 3-A 1 EMED-1917 EQUECACOUND 30. | 18t IS PROBABLY FOREGROUND, CENTERED ON 2nd, SCATTERED. | 18t HAS FAIN I CORONA. SOMEWHAT SYMMETRICAL. | DARCHINGH H-O. | |---------|-------------------------------------|--|--
--|----------------|--|------------------------|-----------------|------------------------------------|---|---|--|--|-----------------------------------|-----------------|--|------------------------|--------------------|------------------------------------|-------------------|--------------------------|---|---|--|-----------------|--|---|------------------------|-----------------------|--------------------------------------|--|--|---|---|--------------------------|----------------------|-----------------------|--|----------------------------|-------------------|---|---|--|--------------------------------------|-----------------|------------|------------|---------------------------------|---|--|-------------------| | Field | F152
F196 | F413 | F353 | F476
F413 | | F413 | F413 | F244 | F413 | F413 | F476 | F413 | F413 | F353 | F413 | F413 | F353 | F413 | F477 | F297 | F244 | F245 | F477 | F543 | | F477 | F543 | , | F353 | F354 | F413 | F414 | F414 | F477 | F477 | F353 | F 354 | F477 | F114 | F354 | F013 | F052 | F544 | F013 | F014 | F543 | F 344 | 181 1 | F414 | F414
F354 | • | | Abell | 2917 | 2919 | 2920 | 2921 | | 2923 | 2924 | 2925 | 2926 | 2927 | | 2928 | 2929 | 2930 | 2931 | 2932 | 2934 | | 2935 | 2936 | 2937 | | 2938 | 2939 | : | 2940 | 2942 | | 2943 | | | ! | 2945 | 2946 | 2947 | 2948 | | 2950 | 2951 | 2952 | 2953 | 2954 | 2922 | 2957 | ; | 2958 | 9050 | 6067 | 2900 | 1087 | <u>;</u> | | i Notes | OBSCURED BY BETA PHE. | | Ū | | SCATTERED. | | | | • | | | | | Group superposed. 1st has corona. | | | | | | CONDENSED | | LOOSELY SCATTERED SHEGROUP OF NEARBY CLUSTER TO SE? | Plate edge. | | | | | | | 1st IS SPIRAL, 3rd HAS FAINT CORONA. | _ | 1 1st IS DISTORTED (DWARF?) SPIRAL (FOREGROUND?). LOOSELY SCATTERED. | | _ | | _ | Ĭ | | 3 rd IS SPINDLE. | | •• | 3 3rd HAS BRIGHT DIFFUSE ENVELOPE (CORONA). | | BRIGHT FOREGROUND SPIRAL SUPERPOSED. | | • | | | | | Group superposed. | | Field | e
G
G | F352 | F243 | F243 | F 290 | F113 | F243 | F244 | F412 | F352 | F195 | F541 | F113 | F352 | F352 | F296 | F195 | F113 | F10F | F 130 | F541 | F296 | F352 | F352 | F195 | F196 | F475 | F412 | F475 | F476 | F296 | F113 | F352 | F080 | F195 | | F244 | F412 | F413 | F244 | F412 | F476 | F476 | F296 | F352 | F352 | F296 | F352 | F413 | 7700 | | | Abell | 1 | AŁ | Abell F | Field | Abell | Field | Notes | |----------|---------|--|-------|-------|---| | | | | ; | ; | | | % | | | 3004 | F198 | 1st HAS FAINT CORONA (cD). MORPHOLOGICALLY DIVERSE.
3-4 HAS BAINT CORONA TWO CONCENTRATIONS | | Ñ | 0067 | F344 IST MAY BE FOREGROUND; 3rd HAS FAINT CORONA. AFFEARS SOMEWHAT
SPIRAL RICH | 3 | F545 | ARC-SHAPED WITH TWO CONCENTRATIONS. | | 8 | 2967 | F414 SCATTERED WITH SLIGHT CONCENTRATION AT EDGE. | 3006 | F298 | LOOSELY SCATTERED. MAY BE SUPERPOSITION OF SEVERAL GROUPS. | | 72 | | | 3007 | F478 | IRREGULAR. 1st HAS FAINT CORONA. SEVERAL BRIGHT FOREGROUND GALAXIES | | ౙ | | | 9006 | 0000 | IN FIELD.
Soveright in the over the profit to be covered with their by of homer from his | | 8 | | | 9008 | F 298 | SOMEWHAT ELONGATED, COUNT MAY BE CONTAMINATED BY CLUSTER TO N-W. | | స | 2971 I | F414 SCATTERED AND MORPHOLOGICALLY DIVERSE; SOMEWHAT SPIRAL-RICH. MANY | 3010 | F081 | 18t HAS PAINT CORONA BRIGHT FORECROIND IENTICII AR IGNORED PART OF | | č | 1 6200 | FAINT GALAXIES IN FIELD. | | | LARGE DISTANT CLOUD. | | 4 E | | | 3011 | F545 | CENTERED ON 3rd. NEAR Q1:N CALIBRATION CUTOUT; COUNT LOW? | | 1 % | | | 3012 | F415 | 1st IS SO. SOMEWHAT CENTRALLY CONDENSED; SLIGHT CONCENTRATION | | 22. | | LOOSELY SCATTERED: IN A LARGE CLOUD OF FAINT GALAXIE | | | TOWARD EDGES AS WELL. | | 25 | | | 3013 | F299 | 1st HAS CORONA. SCATTERED. | | 28 | 2977 I | F478 SCATTERED. | 3014 | F246 | SCATTERED. PART OF A LARGE CLOUD OF FAINT GALAXIES. | | 25 | 2978 I | | | F298 | MORPHOLOGICALLY DIVERSE AND SCATTERED. | | | | | 3019 | F.198 | 1st HAS FAINT CORONA; 2nd IS (FOREGROUND) FACE-ON SO. CENTRALLY | | స | | | 9100 | 0700 | CONDENSED. | | ౙ | 2980 I | | orne | F 240 | BRIGHT FOREGROUND GALANIES IGNORED. PART OF A LARGE CLOUD OF FAINT | | | | | 5 | 97.00 | GALAALES. | | 8 | 2981 1 | | 2002 | F.240 | PARI OF A LARGE CLOUD OF FAINT GALAXIES. BRIGHT FOREGROUND GALAXIES | | | | | | 0000 | IGNORED.
14 HAS COBONA (-D) VEDY DICH WITH CATANTES EAINTED THAN COHNTING | | | | | | 887 J | IST HAS CONCINA (CD). VEKI KICH WITH GALAAIES FAINTEK THAN COUNTING
TIMP | | .08 | | | 3018 | FORT | MINITE. SOMEWHAT CENTRALLY CONDENSED AND LENTICITAR BLEICH DART OF LARGE | | | | F354 Scattered. | | 100 1 | CLOHD(?) | | N 6 | | - | 3019 | F154 | 1st is spiral. Two clusters seen in projection? | | N 6 | 2882 | 1 WO CONCENTRATIONS. ELONGALED AND SOMEWHALL STAFFED. | 3020 | F198 | 1st HAS VERY FAINT CORONA. | | iκ | | | 3021 | F053 | 1st & 2nd HAVE VERY FAINT CORONAE. SCATTERED. | | ۰ ۳ | | | 3022 | F479 | Group superposed nf. 3rd is spiral. | | • | | | 3023 | F415 | ELONGATED. | | | | | 3024 | F299 | SEVERAL RELATIVELY BRIGHT SPIRALS IN CORE. SOMEWHAT ELONGATED. | | * | 2989 | - | 3025 | F415 | SCATTERED. | | 1 Ki | | (| 3027 | F355 | 1st and 3rd have coronae. | | 1 | | | 3028 | F415 | CLUSTER MEANDERS A BIT. | | ឌ | 2991 | F478 SCATTERED MOTLEY CLUSTER. 1st IS EDGE-ON LENTICULAR. 3rd IS | | F416 | 1st HAS FAINT CORONA. | | | | | - | F479 | 1st has corons. | | ส ี | | | 6700 | F 299 | 2nd 15 SFIRAL (566); 5rd HAS FAINT CORONA. MORPHOLOGICALLY DIVERSE
AND COMPANDATE OF ATERIA | | ส | 2993 | | 3030 | F108 | AND SOMEWHAL ELOGALED.
1st HAC FAINT CORONA MANY FAINT CALAYIFG AND CROTIPG IN STIRROTTING | | 2 | 700 | F355 3rd has corons. | 8 | | REGION. | | 4 č | | | 3031 | F154 | Scattered. | | 4 6 | | MODDHOLOGICALLY DIVERSE IS LOCKED SCATTERED | 3032 | F545 | SCATTERED. | | á | | | 3033 | F246 | SCATTERED, MOSTLY SPIRALS. NEAR ID CUTOUT; COUNT LOW? | | 72 | 2997 | | 3034 | F416 | 1st HAS FAINT CORONA. | | ដ | | | 3035 | F081 | SCATTERED. | | | | | | F082 | LOOSELY SCATTERED. | | ឥ | | | 3036 | F246 | ELONGATED. RELATED TO NEARBY FAINT GROUPS! | | й | | F545 SCATTERED. | 3037 | F003 | SOMEWHAI OEN IRALLII CONDENSED, NO DOMINANI GALAAY.
1st & 2nd HAVE FAINT CORONAE, SCATTFRED. | | ÷ ₹ | 3001 | FO44 IST MAY BE FUREGROUND, LOUSELY SCALLERED.
F107 FIONCATED 14 & 5-4 PROBABLY FORECROTIND | | F004 | 3rd HAS VERY FAINT CORONA. SCATTERED. | | 5 | | | 3038 | F154 | Group superposed. | | ౙ | 3003 | | | F198 | 1st HAS VERY FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. | | | | | - | | | | Notes | Group superposed. 1st has corona. | DUMBBELL-LIKE CONCENTRATIONS. 1st (SPINDLE) IS PROBABLY FOREGROUND. | SCATTERED WITH TWO CONCENTRATIONS.
2-4 HAS PAINT CODONA | Std HAS FAILT CONORA. 1st & 3rd ARE SPINDLES. | 1st HAS FAINT CORONA. MORPHOLOGICALLY DIVERSE. NEAR N PLATE EDGE, | COUNT LOW. | 1st is spiral. | SCALLEAGED. 1st IS DISTURBED SPIRAL, PROBABLY FOREGROUND, SPARSELY POPULATED | CORE. | 1st IS SPINDLE. SCATTERED, BUT SOMEWHAT ELONGATED. | IST HAS CORONA (cD); 2nd IS SPIRAL. MORPHOLOGICALLY DIVERSE. STINCTLISTERING OR STIPERPOSITION IN NW | 1st & 2nd HAVE CORONAE. MORPHOLOGICALLY DIVERSE. | 1st IS cD. TWO CLUSTERS SUPERPOSED? SECOND (S-SE) IS SPIRAL-RICH. | 1st and 3rd HAVE CORONAE. MORPHOLOGICALLY DIVERSE. NEAR E-SE PLATE
FINGE. COUNT LOW | 1st HAS FAINT CORONA, 3rd IS S(t). SPIRAL-RICH. SUPERPOSED(?) WITH | ANOTHER N-E. | LOOSELY SCATTERED, SOMEWHAT MORPHOLOGICALLY DIVERSE. NW OF SAO | LOOSELY SCATTERED. | 1st & 2nd IN COMMON ENVELOPE. 3rd HAS FAINT CORONA. | 1st HAS VERY FAINT CORONA; 2nd IS LENTICULAR. | 1st HAS FAINT CORONA. SOME SUBCLUSTERING OR SUPERPOSITION IN NE | Near Aludes survived a | 1st HAS FAINT CORONA. | 1st IS SUPERPOSITION (E+E) (FOREGROUND?). SCATTERED. | 1st HAS CORONA (cD). 9-3 15 50 MITTIN CREET AD MITCH FULL AND PREPRICE TODE COLUMN AD ENVISE ODE | OR IS SO WITH SIEBLAR NOCEEUS AND DIFFUSE IRREGULAR ENVELOFE.
1st HAS EXTENDED CORONA (5D?) | 1st HAS FAINT CORONA. TWO CONCENTRATIONS; RATHER SERPENTINE. | SUBCLUSTERED. UNUSUAL FILAMENTS OF GALAXIES. NEAR Q:4-S PLATE EDGE, | SOME SUBCLUSTERING AND FILAMENTARY STRUCTURE. NEAR S PLATE EDGE, | COUNT SOMEWHAT LOW. | MORPHOLOGICALLY DIVERSE AND SPIRAL-RICH. | 186 HAS COMMA (cd.), SOME SUFEMFORTHON WITH CHOSTER TO SW, COUNT CONTAMINATED. | 1st IS ELONGATED WITH CORONA; 2nd HAS CORONA. MORPHOLOGICALLY | DIVERSE. | 1st & 2nd HAVE CORONAE. MORPHOLOGICALLY DIVERSE. | 18t, 2nd, & std have fally Comman. 1st HAS CORONA (cD), MORPHOLOGICALLY DIVERSE WITH SOME | SUBCLUSTERING OR SUPERPOSITION. | 1st HAS FAINT, EXTENDED CORONA (cD?).
SOMEWHAT CENTRALLY CONDENSED. 1st HAS ELONGATED CORONA. SOMEWHAT CENTRALLY CONDENSED. | 1st HAS FAINT CORONA. | SOMEWHAT ELLIPTICAL IN APPEARANCE.
SOMEWHAT ELONGATED NEAR O.4.W PLATE ENGE | SOMEWHAI ELONGAIED. NEAR Q'4-W FLAIE ELIGE. | |-------|-----------------------------------|---|--|--|---|------------|----------------|--|-------|--|--|--|---|--|--|--------------|--|-----------------------------------|---|---|---|---|--|--|--|--|--|---|--|--|---|--|---|---|--|--|--|---|---|--|---| | Field | F356 | F199 | F480 | F417 | F300 | į | F357 | F417 | ; | F082 | F199 | F417 | F481 | F480 | F481 | 9 | F248 | F082 | F300 | F116 | F199 | F257 | F248 | F054 | F248 | F 246 | F248 | F300 | F301 | | F200 | F 240 | F199 | | F200 | F 248 | 2 | F199 | F301 | F547 | r 046 | | Abell | | 3085 | 3086 | 3088 | 3089 | | 3000 | 3091 | | 3092 | 3093 | 3094 | | | 3095 | 000 | 3096 | 3097 | 3098 | 3099 | 3100 | 3101 | 3102 | 3103 | 3104 | 3106 | 3107 | | | | 3108 | 9109 | 3110 | | 1111 | 3112 | } | 3113 | 3114 | 3115 | | | Notes | 1st has corona. | | Ist HAS FAINT CORONA. | | | | | Scautered. Group superposed. Several clusters superposed?
Scattered. Group superposed. 1st and 3rd in foreground? | | | 3rd HAS CORONA. SEVERAL CLOSE OR INTERACTING PAIRS. | | | LOOSELY SCATTERED. | 1st HAS VERY FAINT CORONA. MORPHOLOGICALLY DIVERSE, AND LOOSELY | SCATTERED. | LOOSELY SCATTERED. | SCATTERED WITH TWO CONCENTRATIONS | 3rd is spiral. | Group superposed p. | Nearer cluster superposed. 1st in foreground? | Commenced and an annual an annual and an | 3rd APPEARS TO HAVE FAINT CORONA. A FEW BRIGHT FOREGROUND GALAXIES | IN FIELD. | 1st HAS VERY FAINT CORONA. | 18t HAS CORONA (CD). COMEWHAT ELONGATED IN A CHARTE OF BAINT CALAYTEC | | CONCENTRATED. | SCAI LERED. NEAR FLAIE EDGE, COUNT SOMEWHAT LOW(?).
Plate edge. | 1st has corona. 3rd is spiral. = RPO9. | 1st HAS CORONA (cD); 2nd IS SPIRAL. NEAR Q4:S PLATE EDGE, COUNT | SCRETTERED MANY CALAYIRS AT DIATE INST. | 1st HAS FAINT CORONA. LOOSELY SCATTERED. | 2nd IS SPINDLE. SOMEWHAT ELONGATED WITH CONCENTRATIONS. | 1st HAS CORONA (cD). MORPHOLOGICALLY DIVERSE. | 186 AFFEARS TO HAVE CORONA AND COMPANION. SCATTERED. | 1st & 3rd HAVE FAINT CORONAE; 2nd IS SPINDLE. SOMEWHAT CENTRALLY | CONDENSED. | 3rd HAS FAINT CORONA. TWO CONCENTRATIONS. | SCATTERED. | 18t HAS FAINT CORONA. | | Field | F356 | F416 | F416 | F198 | F199 | F356 | F 247 | F154 | F115 | F416 | F416
F199 | F416 | F198 | F199 | F247 | | F199 | F480 | F356 | F356 | F154
F014 | F154 | F247 | | F480 | F 460 | F247 | THE 47 | F547 | F154 | F199 | F480 | F247 | F199 | F199 | F248 | F082 | F300 | F417 | F480 | 1 900 | | Abell | 3039 | 3042 | 3043 | 3045 | 9 | 3046 | 3047 | 3049 | 3051 | 3052 | 3055 | 3056 | 3057 | 3058 | 3059 | 0 | 3060 | | 908
09 | 3064 | 3065
3066 | 3067 | 3068 | | 3069 | 3071 | 3072 | 9079 | 6106 | 3074 | | 3075 | 3076 | 3077 | 3078 | 8100 | 3080 | 3081 | 3082 | 3083 | \$000 | | Abell | | Field | Abell | Field | Notes | |-------|---------|--|-------|-------|--| | | | | | | | | 3116 | | | | F201 | 1st PROBABLY FOREGROUND. CENTRALLY CONDENSED. | | 3117 | | | 3164 | F117 | 1st HAS FAINT CORONA (cD?), CONCENTRATIONS TO N. NEAR Q:1-N PLATE FIGE COINT COMPANIATION | | 3118 | | FOR THE STATE OF T | | F156 | EDGE, COUNT SOMEWHAT DOW. | | 31 | | | 3166 | F358 | 1st HAS CORONA. SEVERAL CONCENTRATIONS. | | | | - | 3168 | F482 | A463 nf just off this plate. Plate edge. Group superposed. | | 3120 | | F200 1st HAS EXTENDED CORONA (cD), CENTRALLY CONDENSED. | 3169 | F358 | SEVERAL CONCENTRATIONS. | | 3199 | | | 3171 | F 150 | DOMEDBELL-SHAFED. 1-+ HAS FAINT CORONA CENTRALLY CONDENSED | | 3123 | | i i | 3173 | F358 | SCATTERED WITH SEVERAL CONCENTRATIONS. | | 3124 | | _ | 3174 | F549 | SCATTERED. | | 3125 | | | 3175 | F549 | 1st HAS CORONA (cD). MANY FAINT GALAXIES IN FIELD BELOW MAGNITUDE | | 3127 | | | | | CUTOFF. | | 3128 | | | 3177 | F483 | Ist is peculiar. | | | 7 | F200 1st, 2nd, & 3rd HAVE FAINT CORONAE. MORPHOLOGICALLY DIVERSE. | 3178 | F549 | 1st HAS ELONGATED ENVELOPE (S0?). SCATTERED WITH MANY VERY FAINT
MEMBERS | | 116 | | CENT TALLY CONDENSED. | 9170 | E901 | MEMBERT CHADEN (TWO CLOSE FAINT CROTIDES) | | 3131 | | | 3180 | F309 | DOMINISTALISM ED (140 CHOSE, ININI GROOTS). | | 3132 | | | 3184 | F302 | 1st has corona 3rd is sniral | | 5 | | | | F359 | lst has corona. | | 3133 | | | 3185 | F549 | 2nd IS SO(2) WITH ENVELOPE | | 3134 | | | 3186 | F031 | 1st HAS FAINT CORONA. TWO CONCENTRATIONS ABOUT BRIGHTEST MEMBERS. | | 3135 | | F301 BRIGHT QUADRUPLET OF ELLIPTICALS AT CENTER. SEVERAL CONCENTRATIONS | | F032 | 1st & 2nd HAVE FAINT CORONAE. TWO CONCENTRATIONS. | | 11 | | AND SOME SUPERPOSITION. | 3189 | F302 | Group superposed. | | 3136 | | | 3190 | F549 | 1st HAS FAINT CORONA. | | | FC | F064 1st & 3rd HAVE VERY FAINT CORONAE; 2nd IS SPINDLE. CENTRALLY | 3191 | F083 | 1st IS EDGE-ON SPIRAL (FOREGROUND?); BRIGHTEST ARE MORPHOLOGICALLY | | ì | | | | , | DIVERSE. SOMEWHAT CENTRALLY CONDENSED. | | 3137 | | F348 ELUNGATED. | 9109 | FILT | SOMEWHAT CENTRALLY CONDENSED AND MORPHOLOGICALLY DIVERSE. | | 3139 | | | 0180 | F201 | 18t HAS COROUN (ED). FOSSIBLE FOREGROOND CONTAMINATION AT 3-E
EDGE.
1st HAS FAINT CORONA (ED). BRIGHTEST MEMBERS ARE LENTICHLARS. | | 3140 | | 01 VERY CENTRALLY CONDENSED, 3rd HAS VERY FAINT CORONA. | 3196 | F549 | 1st MAY BE FOREGROUND, 3rd IS FACE-ON SPIRAL, SCATTERED. | | 3142 | | | 3201 | F549 | SCATTERED. | | 3143 | | 1st HAS FAINT CORONA. SOMEWHAT ELONGATED. | 3202 | F156 | SEVERAL CONCENTRATIONS. MAY BE SUPERPOSITION OF TWO OR MORE | | 3144 | | F156 1st HAS FAINT CORONA (cD?). SCATTERED AND OVERLAPPING WITH SEVERAL | | | CLUSTERS. | | 3 | | | 3203 | F359 | Spiral superposed f. | | 3145 | 45 F301 | | 3204 | F250 | SCATTERED. | | 91.46 | | DIFFORD COLD. | 3200 | F019 | 18t HAS VERY INITI COUNTY AND COMPANION. A 95050 — A 77450 S. C., L 1 N., | | 3147 | | | 3207 | F419 | = $A3206$. = $AC122$ in Couch and inewell (1984).
= $A3907$ | | 3148 | | | 3208 | F156 | WINDMILLIKE SHAPE | | 3149 | | 54 SCATTERED WITH CONCENTRATION AT WEST EDGE. | 3210 | F156 | 1st HAS FAINT CORONA. | | 3150 | | | 3215 | F201 | LOOSELY SCATTERED WITH SINGLE, SOMEWHAT DENSE, CONCENTRATION TO S.W. | | 3151 | | | 3216 | F083 | SOMEWHAT SCATTERED. SLIGHT PERIPHERAL CONCENTRATION. | | 3152 | | | 3217 | F420 | SOMEWHAT CENTRALLY CONDENSED. | | 3153 | | | 3218 | F483 | Group superposed n. | | 3154 | | | 3219 | F083 | 1st HAS FAINT CORONA (cD?). SOMEWHAT CENTRALLY CONDENSED. | | 3155 | | | 0666 | F084 | Ist has corona. | | 9150 | | 19 = ACLEI II COUGH AND INVESTIGATION AND ADDICATED TO ACCOUNT AND COUCHE DESCRIPTION OF THE ACCOUNTY AND ACC | 3220 | 6101 | SOMEWHAT ELONGALED. | | Te . | | | 3222 | F420 | 18t IS LENTICULAR (FOREGROUND?). SCATTERED AND PART OF A LARGE | | 3159 | | | | | CLOUD OF FAINT GALAXIES. | | 3161 | | | | F483 | Several concentrations. Scattered. Group superposed? | | 3163 | 63 F200 | 00 1st PROBABLY FOREGROUND. SOMEWHAT CENTRALLY CONDENSED. | 3223 | F420 | 1st HAS CORONA (cD?). ELONGATED WITH CONCENTRATIONS IN Q:1 & Q:4. | | | | - | | | | | Field | 1 INEAR MAINLY FAIRT CALAXIES IN A SOMEWHAT PINWHEEL DISTRIBUTION. 1840. 1841. 1842. 1841. 1842. 1841. 1842. 1841. 1843. 1844. 1843. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1844. 1845. 1844. 184 | | |-------------|--|---| | | | | | Abell | 3270
3271
3271
3271
3272
3273
3281
3281
3282
3283
3284
3284
3284
3286
3286
3286
3286
3286
3286
3286
3286 | | | | | - | | Notes | MORPHOLOGICALLY DIVERSE. SCATTERED AND PART OF A LARGE CLOUD OF GALAXIES. 1st HAS CORONA (O.D. MORPHOLOGICALLY DIVERSE. 1st HAS CORONA (O.D. MORPHOLOGICALLY DIVERSE. 1st HAS CORONA (O.D. MORPHOLOGICALLY DIVERSE. 1st SPROULE, SCATTERED. 1st Spiral, Gregoual' 3sd has corona. 1st SPROULE, SCATTERED. 1st spiral, Group superposed. 1st spiral, Group superposed. 1st spiral, Group superposed. 1st bas ocrona. danke with count. 1st bashal. bas | | | Field Notes | MORPHOLOGICALLY DIVERSE. SCATTERED AND PART OF A LARGE CLOUD OF GALAXIES. F112 18 I HAS CORONA, COLONA CRATTERED. F220 F220 F230 F240 F240 F250 F250 F250 F250 F250 F250 F250 F25 | | | | | | | Notes | 1st HAS FAINT CORONA; 2nd & 3rd ARE LENTICULARS.
1st HAS VERY FAINT CORONA. CENTRALLY CONDENSED WITH BRIGHTER
FOREGROINN GROIP STIPERDSEN | | Near plate edge. Group superposed s. | | | SCATTERED.
3rd HAS FAINT CORONA. SCATTERED. | FAIRLY SCATTERED. | SOMEWHAT LINEAR WITH CONCENTRATIONS. | 1st HAS FAINT CORONA. CONCENTRATION IN Q:1-11. IN A CTOTID. | 1st FACE-ON SPIRAL, MORPHOLOGICALLY DIVERSE. POSSTRIA PART OF LARGE CLOUD OR SUPERCLUSTER | SCATTERED. | SOMEWHAT SCATTERED. | 1st & 2nd HAVE CORONAE. DENSE CONCENTRATION TO E-NE. ELUNGALED.
1st HAS CORONA: 2rd IS SO | 1st HAS FAINT CORONA. | 1st HAS FAINT CORONA; 3rd IS TRIPLET IN COMMON ENVELOPE. SUPERPOSED ON OF HEMBE TO COURTE | ON CLUSTER, IO SOUTH. 18t HAS CORONA (cD), BRIGHTEST CLUSTER MEMBERS MOSTLY SPIRALS. | 1st HAS CORONA, 2nd & 3rd ARE SPIRALS. CURIOUS LINE OF BRIGHT | GALAAIES. MORTHOLOGICALLY DIVERSE.
14. IS PRORARIY FORFICEOTIND FILIPTICAL. | Scattered. 1st has corons. | 1st HAS VERY FAINT CORONA. SCATTERED WITH SLIGHT CONCENTRATION IN
0-4 | - | | 1st & 2nd HAVE FAINT CORONAE. SOMEWHAT CENTRALLY CONDENSED. N-W OF | | | CENTRALLY CONDENSED. | 1st has citain. 1st HAS VERY FAINT CORONA. SOMEWHAT SCATTERED. | Group superposed. | = RPO13. | THE LAND COUNTY, MONT HOUSE DIVERSE, NEAR WITH FINE EDGE & CALIBRATION CUTOUT, COUNT LOW. | 1st & 3rd HAVE CORONAE. DOMINATED BY BRIGHT MORPHOLOGICALLY DIVERSE | GALMANES. 1st is double in corona. 3rd is spiral. $= RPO14$. | 1st HAS CORONA. | SOMEWHAT ELONGATED. | lst is spiral.
SOMEWHAT SCATTERED. | |---------|---|------|--------------------------------------|---|------|--|-------------------|--------------------------------------|---|---|------------|---------------------|--|-----------------------|---|---|---|--|----------------------------|--|-------|------|--|------|------|---|--|-------------------|--|---|---|---|-----------------
---------------------|--| | Field | F120
F204 | F205 | F253 | F363
F424 | F488 | F306 | F488 | F424 | F364 | F364 | F555 | F555 | F307 | F364 | F254 | F205 | F364 | F307 | F556 | F556 | F556 | F556 | F160 | F205 | F206 | E-05.5 | F489 | F255 | F087 | F 900 | F365 | F161 | F365 | F489 | F556
F556 | | Abell | 3362
3363 | | | 3364 | 3365 | 3366 | 3367 | 3369 | 3370
3371 | 3372 | 3374 | 3375 | 3377 | 3378 | 3379 | 3380 | 3381 | 3389 | 3383 | | 3384 | | 3385 | | | 3396 | 3387 | 3388 | 3389 | 0600 | | 3391 | 3392 | 1000 | | | d Notes | (NW) CONCENTRATION. 1 IS HAS CORONA AND DOUBLE NUCLEUS (cD). 2nd IS SUPERPOSED ON RING CALLAY BOLICHY TINEAR | | | 2 MAJOR FAINT CONCENTRATION IN Q:1 (NW).
2 1st HAS FAINT CORONA. | | 4 1st 4AS CORONA (cD), FAIRLY CENTRALLY CONDENSED.
4 1st & 3rd HAVE FAINT CORONAE, SCATTERED. | 1st | | 3 1st APPEARS TO BE SUPERPOSITION.
5 1st HAS CORONA (cd) | | . 02 | | 3 IST & STATAVE CORONAE, MORPHOLOGICALLY DIVERSE.
3 IST HAS CORONA AND IS STIPERPOSITION | | CONCENTRATIONS (SUBCLUSTERING) TO N. | | | 4 Its HAS VERY FAINT CORONA. SCATTERED. 3 1st has corona In a sunarchister | | 3 In a supercluster. 4 1st HAS BAINT CORONA SOMEWHAT BY ONCATED WITH SEYEDAL | | | 4 1st HAS FAINT CORONA. SOMEWHAT SCATTERED. | . • | | 4 1st HAS VERY FAINT CORONA, SOMEWHAT CENTRALLY CONDENSED, BRIGHT PAPECROTIME STIP AT STIPED PAGED. | | | 4 1st HAS FAINT CORONA. NEAR W PLATE EDGE. (Q-1). 1-4 IS PACE ON SPIDAT SPIDAT PICH AND DIVERSE MORPHICE OCICATIVE | | ••• | | | | 4 Ist HAS FAINT CORONA AND SEVERAL FAINT COMPANIONS. SOMEWHAT CONDENSED. | | Field | F423 | F423 | | F252
F252 | F203 | F204 | F252 | F004 | F423 | F204 | F204 | F423 | F423 | F204 | DARO | F253 | F423 | F204 | F204 | F253 | 107.1 | F204 | F204 | F204 | F306 | F204 | F253 | F423 | F424 | F424 | F363 | r 300 | F306 | F253 | F204 | | Abell | 3323 | 3325 | | 3328
3329 | 3330 | 3331 | 3332 | 3333 | 3335 | 3337 | 3338 | 3340 | 3341 | | | | 3344 | 3345 | 3346 | 3347 | 200 | 3348 | 3349 | 3350 | 3351 | 3352 | | 3353 | 9954 | #000
1 | 3355 | 9990 | 3357 | 3359 | 3361 | | 1 | | | | | | | | | | | | | | : | 112 | 2 | F161
F206
F206
F206
F206
F207
F207
F207
F207
F207
F207
F207
F207 | lat has corona. = RPO15. let 1S PROBABLY FOREGROUND. 3rd HAS FAINT CORONA. let 1S PROBABLY FOREGROUND. 3rd HAS FAINT CORONA. SCATTERED WITH SLIGHT CENTRAL CONDENSATION. Poorer cluster near n. 1st has corona. He AS FAINT CORONA. ENFERGULAR AND SOMEWHAT CENTRALLY CONDENSED. 1st HAS FAINT CORONA. SEVERAL BRIGHT MEMBERS ARE SPINDLES. 1st HAS FAINT CORONA. SEVERAL BRIGHT MEMBERS ARE SPINDLES. 1st HAS FAINT CORONA. SEVERAL BRIGHT MEMBERS ARE SPINDLES. SOMEWHAT LOW? SOMEWHAT LOW? SOMEWHAT CONDENSED. 1st SPROBABLY POREGROUND SPINDLE. 3rd HAS FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. 1st HAS CORONA (cD). SOME SUPERPOSITION WITH CLUSTER TO E-SE. 1st HAS CORONA (cD). SOME SUPERPOSITION WITH CLUSTER TO E-SE. AND SPIRALS. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. THAS CORONA (cD). MORPHOLOGICALLY DIVERSE. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. SCATTERED AND SOMEWHAT SCATTERED AND SCATTERED. 1st HAS VERY FAINT CORONA, 3rd IS SPIRAL. Superposed on, and count probably contaminated, by ASGI9. 1st HAS VERY FAINT CORONA, 3rd IS SPIRAL. SUPERAL CORONA AND IS SUPERPROSITION WITH SMALLER. FAINTERS. 1st HAS PRINT CORONA, 3rd IS SUPRAL. VERY SCATTERED. 1st HAS RAINT FORONA AND IS SUPREPROSITION WITH SMALLER. SAINTERED. | 3452
3453
3453
3455
3456
3456
3463
3468
3472
3472
3473
3474
3474
3474
3476
3476
3476
3476 | F437
F376
F576
F576
F576
F576
F570
F438
F265
F570
F577
F570
F570
F577
F577
F573
F573
F574
F577
F573
F574
F577
F577
F577
F577
F577
F577
F577 | SCATTERED. 35 da HAS PAINT CORONA. SCATTERED. 154 HAS PAINT CORONA. SCATTERED. 155 HAS PAINT CORONA. SCATTERED. 156 HAS PAINT CORONA. 151 in foreground. 152 A 34d HAVE CORONA. 153 in foreground group superposed. 154 in foreground group superposed. 155 Lad PROBABLY FOREGROUND. SCATTERED. 156 A 27d HROBE OF PROBECT ON SPIRAL. 157 TWO OF THE FOREGROUND SCATTERED. 157 TWO OF THE FOREGROUND SCATTERED. 158 THAS CONONA. 159 THAS CORONA. 150 THAS PAINT CORONA. SUPERPOSITION WITH CLUSTER TO N.E. SLIGHTLY 150 TALS FAINT CORONA. SOMEWHAT SPIRAL AND LENTICULAR-RICH. 151 THAS FAINT CORONA. SCATTERED WITHOUT CENTRAL CONDENSATION. 150 THAS PAINT CORONA. 150 THAS FAINT CORONA. 151 THAS CORONA. 152 THAS CORONA. 154 THAS CORONA. 155 THAS CORONA. 156 THAS CORONA. 157 THAS CORONA. 158 THAS CORONA. 159 THAS CORONA. 150 THAS CORONA. 150 THAS CORONA. 150 THAS FAINT 151 THAS FAINT CORONA. 152 THAS FAINT CORONA. 154 THAS FAINT CORONA. 155 THAS FAINT CORONA. 156 THAS FAINT CORONA. 157 THAS FAINT CORONA. 158 THAS FAINT CORONA. 159 THAS FAINT CORONA. 150 THAS FAINT CORONA. 150 THAS FAINT CORONA. 150 THAS FAINT CORONA. 151 THAS FAINT CORONA. 152 THAS FAINT CORONA. 154 THAS FAINT CORONA. 155 THAS FAINT CORONA. 156 THAS FAINT CORONA. 157 THAS FAINT CORONA. 158 THAS FAINT CORONA. 159 THAS FAINT CORONA. 150 THAS FAINT CORONA. 150 THAS FAINT CORONA. 150 THAS FAINT CORONA. 150 THAS FAINT CORONA. 151 THAS FAINT CORONA. 151 THAS FAINT CORONA. 152 THAS FAINT CORONA. 155 THAS FAINT CORONA. 156 THAS FAINT CORONA. 157 THAS FAINT CORONA. 158 THAS FAINT CORONA. 159 THAS FAINT CORONA. 150 | |--|--|--|--
--| | F499
F499
F374
F435 | 18t HAND AND AND IS SOFEAR COLUMN WITH SMALLES, FAILTEN CALLANDS. SEVERAL CONCENTRATIONS. MANY FAINT GALAXIES IN SURROUNDING FIELD. SEVERAL CONCENTRATIONS. MANY FAINT GALAXIES IN SURROUNDING FIELD. SPIRAL. SPIRAL. Is the Scoons. Group superposed ii. | 3491
3492
3493
3494 | F378
F379
F504
F440 | SPIRAL-RICH. SCATTERED. 1st IS FACEON SPIRAL (FOREGROUND?), 2nd HAS CORONA. SCATTERED. 1st HAS FAINT CORONA. SOMEWHAT SCATTERED. PART OF A LARGER CLOUD? | | F435
F435
F436
F375
F375
F375
F375 | 1st has corona. Group superposed n. SCATTERED. VUMEROUS SCATTERED FAINT BACKGROUND GALAXIES. SCATTERED. VUMEROUS SCATTERED FAINT BACKGROUND GALAXIES. Two concentrations. 1st IS SO. MORPHOLOGICALLY DIVERSE AND SCATTERED. SLIGHTLY ELONGATED. SCATTERED. SLIGHTLY CENTRALLY CONDENSED, BUT HAS SLIGHT EXCESS AT EDGE. SLIGHTLY CENTRALLY CONDENSED AROUND BRIGHTEST, BUT OTHERWISE SCATTERED. Two clusters seen in projection? Two clusters seen in projection? SCATTERED. (SUPERPOSITION OF TWO CLUSTERS?) | 3495
3496
3497
3499
3499
3500
3501 | F440
F440
F440
F440
F440
F440 | SOMEWHAT DUMBBELL-SHAPED; MAY BE TWO CLUSTERS SUPERPOSED. POSSIBLY PART OF LARGE CLOUD. SCATTERED. Ist HAS PENT CORONA. SOMEWHAT CUSP-SHAPED. PART OF LARGER SYSTEM? Ist HAS VERY FAINT CORONA. SOMEWHAT ELONGATED. POSSIBLY PART OF A LARGER CLOUD. Ist HAS VERY FAINT CORONA. SYMMETRICAL. APPEARS TO BE PART OF A LARGER CLOUD. Ist HAS VERY FAINT CORONA. MAY BE SUPERPOSED ON FAINTER CLOUD OF GALAXIES. CONFUSED REGION. Ist HAS PAINT CORONA. SCATTERED AND POSSIBLY PART OF A LARGE CLOUD. Ist HAS FAINT CORONA. SCATTERED AND POSSIBLY PART OF A LARGE CLOUD. | | d Notes | | | | 1 1st HAS FAINT CORONA. NEAR W PLATE EDGE, COUNT LOW. | - | 1 1st HAS CORONA, 3rd IS SPIRAL. | | 1 1st HAS CORONA. 1st 9d 1. 9d HAVE EAINT CORONAE SOMEWHAT SPIRAL BICH | | 1 1st IS BRIGHTER OF PAIR, SEVERAL CONCENTRATIONS. SEVERAL INTERACTING PAIRS | . – | | 1 1st HAS CORONA, SEVERAL SUPERPOSITIONS AND SUBCLUSTERS. 1 1st HAS CORONA & IS SUPERPOSED DIVERSE WITH SEVERAL CONCENTRATIONS | | SUPERPOSED, MORPHOLOGICALLY DIVERSE. 14 IS LATE ELLIPTICAL SUPERPOSED ON ANOTHER CLUSTER TO N.E. COUNT. | - | _ | | | | 1 1st HAS FAINT CORONA. MORPHOLOGICALLY DIVERSE. 1 1st HAS FAINT CORONA. | | STELLAR NUCLEUS AND DIFFUSE CORONA. 1 of HAS RAINT CORONA | | | 3 1st IS OFF-CENTER WITH FAINT CORONA. 2nd HAS, CORONA AND IS SIIDERPOSITION (INTER ACTING?) | - | | 1st IS ELONGATED OD WITH EXTENDED CORONA. | | | 186 HAS CORONA AND POSSIBLE GLOBOLAR CLUSTERS.
1 146 HAS FAINT CORONA, NEAR N-NE PLATE EDGE WITH SAO 204916 & 17 | | 1st HAS CORONA. MORPHOLOGICALITY DIVERSE | - | |---------|--|----------------------------------|---|---|---|----------------------------------|--|--|---|--|--|------|--|------------|--|------------------------------------|--------------------------|--|------------|-----------------|--|--|--|--|--------------------------------------|--|-----------------------------|---|---|------------|-----------------|---|--|--|---| | Field | F443
F508 | F382
F508 | F382
F382 | F444 | F269 | F444 | F444 | F444 | F382 | F444 | F444 | F444 | F444
F444 | F383 | F270 | | F444
F270 | F324 | F383 | F38 | F383 | F383 | F383 | F325 | i | F383 | F383 | i | F445 | 3 | F383 | F383 | | F445 | F510 | | Abell | 3540 | 3543 | 3545
3545 | 3546 | 3548 | 3549 | 3551 | 3552 | 3554 | 3555 | 3556 | 3557 | 3558 | 3560 | 3561 | | 3562
3563 | | 3564 | 3565 | 3566 | 3568 | 3569 | 3570 | | | 3571 | | 3572 | 3 | 3573 | 3575 | | 3576 | 3 | | Notes | OF A LARGE CLOUD.
1st HAS VERY FAINT CORONA.
SOMEWHAT CENTRALLY CONDENSED, BUT ELONGATED. NEARBY GROUP | SUPERPOSED, PART OF LARGE CLOUD? | 1st & 2nd HAVE CORONAE. MORPHOLOGICALLY DIVERSE WITH CONCENTRATIONS.
1st HAS CORONA, 2nd IS SPINDLE. | list HAS CORONA. SUPERPOSED ON EDGE OF CLUSTER TO N-NE. | ord HAS CURUNA.
1st IS OFF-CENTER WITH FAINT CORONA. MORPHOLOGICALLY DIVERSE | WITH CONCENTRATIONS. | SCATTERED, MORFHOLOGICALLY DIVERSE. SUPERPOSITION?
1st HAS VERY FAINT CORONA. | let HAS FAINT CORONA. | 18t HAS FAINT CORONA AND IS AT EDGE OF CLUSTER. GENERALLY SCATTERED
WITH SOME CENTRAL CONCENTRATION. | 1st & 3rd HAVE FAINT CORONAE. | tes & and received in the Constitution of the second superposed. Ist and 3rd are spiral. Hardly a cluster, or very | | 1st APPEARS TO BE SUPERPOSITION, SLIGHTLY CENTRALLY CONDENSED. | SCATTERED. | SCATTERED. | Scart tanker.
Group superposed. | Scattered.
SCATTERED. | 1st IS ELONGATED WITH FAINT ELONGATED CORONA (cD?). SCATTERED. | SCALLEAGE. | 1st HAS CORONA. | FAIRLY COMPACT. 1st NEAR CENTER. | Centaurus. Counts completed on F323. Position for N4696. | Centaurus. Counts completed on F322. | det man familia Comona.
Group superposed sf. 1st has corons. = RPO16. | Group superposed sf. 1st has corona. | SOMEWHAT ELONGATED AND SCATTERED. | Frace edge. Ist nas corons. | 1st & 3rd HAVE CORONAE. SOME OVERLAP WITH NEARBY GROUP TO N-NE. | ist has corona. | SCATTERED. | 1st is spindle. | 1st HAS VERY FAINT CORONA. SLIGHTLY ELONGATED.
1st HAS FAINT CORONA. SOMEWHAT ELONGATED. | 1st & 2nd HAVE CORONAE, 3rd IS EDGE-ON SPIRAL. IN NW CORNER NEAR | CALIBRATION CUTOUT; COUNT LOW. | OCALIERED. BARCHIEST ARE MORTHOLOGICALLI DIVERSE.
1st HAS FAINT CORONA. SCATTERED. | | | OF A
1st H
SOMI | SUP. | lst & | lst H | 3rd H
1st IS | MIT | SCA
1st H | let I | WIT | 1st 8 | Gro | opac | 1 12 | SC | SS | 3 & | S C | 18t | is S | į | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 3 3 | ਹੈ : | Š | Ğ | S | 18 T | 184 | 1 2 2 2 | SC | 18t i | lst
1 H | 18t & 1 | CAL | 1st H | | Field | OF A
F505 1st H.
F440 SOM1 | - | | F505 1st H | | | | F267 1st I | | F268 1st 8 | - | - | F506 1st | . • • | F574 SCA | | F506 Sca. | | _ | | F574 FA | | F323 Cen | _ | | F575 SO | | | F443 1st | | | F575 1st H | | CAL | | TABLE 7A—Continued | Notes | 3rd HAS FAINT CORONA. Two concentrations. Group superposed. SCATTERED, WITH CONCENTRATION IN Q:1. Std HAS BAINT CORONA A MAY CALA XTES BAINTER THAN M3 ± 2 | ist has corona.
3rd HAS VERY FAINT CORONA AND
SEVERAL FAINT COMPANIONS. SOMEWHAT | OBSCURED BY GAS & DUST CLOUD. 1st HAS FAINT CORONA, 3rd IS SPIRAL, FAINT GALAXIES SOMETIMES | CONFUSED WITH FAINT TRAILED STARS; COUNT LOW?
Sad HAS VERY FAINT CORONA SIGHTLY CONTRALLY CONDENSED.
14 TS FACE ON SOMY CARTTEDERY AND WITH A PEW PER ATTURY PERICHT | CALL AND WITH A FEW RELATIVED BRIGHT | lst IS PROBABLY FOREGROUND. SOMEWHAT CENTRALLY CONDENSED.
SOMEWHAT SCATTERED. | | 1st IS SPINDLE, 2nd IS SO. SCATTERED.
1st HAS CORONA. SOMEWHAT CENTRALLY CONDENSED AND QUITE | ie.
Orphologically diverse. | 1st MAY BE SPIRAL (FACE-ON). MANY GALAXIES IN SURROUNDING FIELD.
PART OF STIPERCLITETER? | CALL OF SUFERCING LERS: 1st HAS VERY FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. | | | MIDELI SCALLERED. 184 HAS FAINT CORONA. SLIGHTLY SCATTERED WITH CONCENTRATION IN S.W. | lst HAS FAINT CORONA.
RATHER COMPACT WITH TWO MAJOR CONCENTRATIONS; SOMEWHAT DUMBBELL | CHARLES OF THE CAMPAGE AND | 1st 1s Frodably Forections Ellist 11Cal. Scallered. = AC106 in Couch and Newell (1984). | dewhat scattered.
Densed | SELECTED CENTRALES COUNTERVED. SHOT BAS CORONA. NEAR 9.1-N PLATE EDGE. COUNT LOW. SOME EVIDENCE OF | SUBCLUSIERING/CONCENTRATION (GOA has this as one cluster with ASSE4). | 1st & 2nd HAVE CORONAE (cD's). LINEARLY CONDENSED. MAY BE
SUPERPOSITION OF TWO CLUSTERS. | Very compact. | MALLI CONDENSED ALIHOOGH SOMEWHAT | CLOSE COMPANION. | 1st HAS FAINT CORONA. SEVERAL FOREGROUND GALAXIES (THIN SPINDLES) | 1st HAS FAINT CORONA. SEVERAL FOREGROUND GALAXIES (THIN SPINDLE).
In FIELD.
1st IS SPINDLE (FOREGROUND?). SOMEWHAT CENTRALLY (AND LINEARLY) | let HAS FAINT CORONA. SEVERAL FOREGROUND GALAXIES (THIN SPINDLES) IN FIELD. Ist IS SPINDLE (FOREGROUND?). SOMEWHAT CENTRALLY (AND LINEARLY) CONDENSED. Ist HAS FAINT CORONA. SCATTERED WITH EVIDENCE OF SUBCLUSTERING (OR | 164 HAS FAINT CORONA. SEVERAL FOREGROUND GALAXIES (THIN SPINDLES) IN FIELD. JOAL IS SPIND. 104 IS SPIND. 105 HAS FAINT CORONA. SCATTERED WITH EVIDENCE OF SUBCLUSTERING (OR SUBCRUSTERING (OR SUBCRUSTERING COR SUBFREDSTITION) TO S.W. 105 HAS FAINT CORONA. GOINT CONTAMINATED BY SIDERPOGRITION | |-------------|--|---|--|--|---|--|---|---|--------------------------------|---|---|--|-------------------------------------|--|--|--|--|----------------------------------|---|---|---|--|--|--|---|---|---|--| | Field | | | | J 1.7 - | . 02 . | - 02 | 83 SCATTERED.61 Foreground group superposed? | | ~ | | - | 39 = RPO22. 85 SOMEWHAT SCATTERED. | - | | | •• | | | | | | | | | | | | | | | 4 F183
6 F282
7 F045
8 F283 | | 1 F283 | 3 F185 | | | 8 F283
9 F461 | 0 F011
1 F185 | | 4 F399 | | 6 F339
0 F185 | 1 F284 | | F026
5 F185 | 010 | F 186 | 5 F025 | | i | F186 | F339 | | F340
F340 | | 5 F186 | | | | Abell | 3634
3636
3637
3638 | 3639 | 3641 | 3643 | 9 9 | 3645 | 3648
3649 | 3650
3651 | 3653 | 3654 | 3655 | 3656
3660 | 3661 | 3664 | 3665 | | | 3666 | 3667 | | | 3668 | ě | 3671 | | 3675 | 3675
3676 | 3675 | _ | | | | | POSSIBLE LARGE GROUP OF FOREGROUND GALAXIES SUPERPOSED. TWO CONCENTRATIONS. 2nd 18 FACE-ON SBa. SAO 182123 OBSCURES PART OF CLUSTER. 1st HAG CORONA | 1st HAS CORONA.
1st HAS CORONA (cD?). NEAR Q:4-W PLATE EDGE. COUNT LOW. | SOMEWHAT COMPACT. PART OF CLOUD OF FAINT GALAXIES? SOMEWHAT SCATTERED. | 1st IS NEARLY FACE-ON SPIRAL.
SCATTERED.
GCATTERED. | SYALIERED. 3rd HAS FAINT CORONA, SCATTERED. | Group superposed. 1st is spiral (in foreground?).
1st and 3rd have coronae. | BRIGHTEST APPEAR TO BE UNRESOLVED SPIRALS. SLIGHTLY CENTRALLY CONDENSED. | BRIGHTEST APPEAR UNRESOLVED. SCATTERED.
MORPHOLOGICALLY DIVERSE. RICH IN SPINDLES. | SOMEWHAT COMPACT. SCATTERED. | 1st HAS FAINT CORONA.
SCATTERED, MANY FAINT EVELD CALAYTES IN NEIGHBORHOOD (CLOTING) | SCALIERED, MANT FAINT FIELD CALAXIES IN NEIGHBURHOUD (CLOUD!).
1st MAY BE FOREGROUND, SCATTERED. | Three concentrations. ELONGATED. | 1st has corons. 3rd is spiral. | = RFOZI.
NEAR S PLATE EDGE, COUNT LOW. | SCATTERED.
1st HAS FAINT CORONA. TWO CONCENTRATIONS. | 1st HAS VERY FAINT CORONA. SLIGHTLY ELONGATED. | Laree concentrations. Group superposed? | DRONA. SCATTERED. | SINGLE CONCENTRATION WITH OTHER SCALLERED GALAALES. | 3rd & 10th ARE SPIKALS, 2nd HAS CORONA. FAIRLY SCATTERED; MANY FAINT GALAXIES NEARBY. | SCATTERED. 1st HAS VERY FAINT CORONA.
1st IS SPINDLE: 3RD HAS CORONA. | 1st IS FOREGROUND. 2nd IS FACE-ON SPIRAL. COUNT MAY BE CONTAMINATED BY FAINT STARE | 1st HAS VERY FAINT CORONA. SLIGHTLY CENTRALLY CONDENSED. | 1st, 2nd, & 3rd HAVE FAINT CORONAE. SLIGHTLY ELONGATED.
1st IS SPIRAL, 2nd HAS FAINT CORONA. SCATTERED. | 1st, 2nd, & 3rd HAVE FAINT CORONAE. SOMEWHAT SPIRAL-RICH. | INT CORONAE, WEAR CONCENTRATIONS | 184. Z. ZDA HAVE FAINT CORONAE. WEAR CONCENTRATIONS IN Q:1 & Q:2. SUPERPOSITION? 184 HAS FAINT CORONA. SOMEWHAT ELONGATED N.S. | INT CORONAE. WEAK CONCENTRATIONS
RONA. SOMEWHAT ELONGATED N-S.
. NEARLY ROUND ELLIPTICAL. SOMEWHA | | Field Notes | F510 POSSIBLE LARGE GROUP OF FOREGROUND GALAXIES SUPERPOSED. TWO CONCENTRATIONS. F510 2nd IS FACE-ON SB SAO 182123 OBSCURES PART OF CLUSTER. F511 1st HAS CORONA | | | F578 1st IS NEARLY FACE-ON SPIRAL. F511 SCATTERED. F511 SCATTERED. | | | F511 BRIGHTEST APPEAR TO BE UNRESOLVED SPIRALS. SLIGHTLY CENTRALLY CONDENSED. | | | F579 1st HAS FAINT CORONA. F570 SCATTERED MANY
FAINT FIFTD CATAXIES IN NEICHBORHOOD (CLOUDS) | SCALLERED, MANY FAINT FIELD GALAXIES IN NEIGHBORH 1st MAY BE FOREGROUND, SCATTERED. | F447 Three concentrations. F579 ELONGATED. | F272 1st has corona. 3rd is spiral. | | | | _ | 1st HAS FAINT CORONA. SCATTERED. | SINGLE CONCENTRATION WITH OTHER SCATTERED GALA 1st HAS FAINT ORROWS | | F514 SCATTERED. 1st HAS VERY FAINT CORONA.
F582 1st IS SPINDLE: 3RD HAS CORONA. | | | | 1st, 2nd, & 3rd HAVE FAINT CORONAE. SOMEWHAT SPIRAL-R | F043 1st & 2nd HAVE FAINT CORONAE. WEAK CONCENTRATIONS IN Q:1 & Q:2. | | | TABLE 7A—Continued | Abell Field 3682 F400 3684 F026 3684 F026 3688 F400 3689 F400 3690 F400 3690 F400 3691 F340 3692 F400 3693 F400 3693 F400 3694 F400 3695 F400 3695 F400 3700 F401 3712 F401 3713 F401 3714 F266 3724 F266 3724 F266 3727 F401 3728 F010 3729 F402 3720 F402 | Notes GALAXY. Ist HAS FAINT CORONA AND APPEARS TO BE INTERACTING WITH AN Sc GALAXY. Ist HAS FAINT CORONA AND APPEARS TO BE INTERACTING WITH AN Sc GALAXY. Ist HAS FAINT CORONA. SCATTERED. Ist HAS VERY FAINT CORONA. SCATTERED. Ist HAS VERY FAINT CORONA. SCATTERED. Ist HAS VERY FAINT CORONA. SCATTERED. SCATTERED. Ist HAS VERY FAINT CORONA. SCATTERED. Ist MAS FAINT CORONA. SCATTERED. COOSELY SCATTERED. CONCENTRATION TO SE. SENGHANT LENTICULAR. RICH BRIGHTEST ARE ELLIPTICALS, HOWEVER. BE ONGATED. SOMEWHAT LENTICULAR. RICH BRIGHTEST ARE ELLIPTICALS, HOWEVER. Ist MAS CORONA. Ist MAS CORONA. Ist MAS CORONA. Ist MAS CORONAE. Group superposed. Ist MAS CORONA. Group superposed. Ist HAS CORONA. END DAIL HAS CORONA. BRIGHTEST CLUSTER MEMBERS ARE DOMINATED BY ROUND ELLIPTICALS. Ist MAS CORONA. Ist MAS CORONA. END DAIL MAS CORONA. END DAIL MAS CORONA. BRIGHTEST CLUSTER MEMBERS ARE DOMINATED BY ROUND ELLIPTICALS. Ist MAS CORONA. CENTERED ON 3rd. SEVERAL THIN SPINDLES NEAR CENTER. CENTERED NOT 3rd. SEVERAL THIN SPINDLES. Ist MAS FAINT CORONA. ORDING SIDE IN COMMON ENVELOPE. SCATTERED. Ist AS FAINT CORONA. SOMEWHAT ELONGATED. This soften superposed. Ist MAS RAINT CORONA. SOMEWHAT ELONGATED. SCATTERED AND SOMEWHAT CENTRALLY CONDENSED. SCATTERED AND SOMEWHAT ELONGATED. Plate edge. SCATTERED NEAR PARE NOT REMEMBERS. HIST SALVE OF A RAMBLING CLOUD OF GALAXIES. HIST SALVE PARE PARE PARE PARE PARE PARE PAGE SCATTERED. Ist as SALVE CORONA. SOMEWHAT ELONGATED. Plate edge. SCATTERED NEAR PARE PARE PARE PAGE BORED. Plate edge. SCATTERED NEAR PARE PARE PAGE BORED. SCATTERED NEAR PARE PARE PAGE BORED. SCATTERED NEAR PAGE PARE PAGE BORED. Plate edge. SCATTERED NEAR PAGE PARE PAGE BORED. SCATTERED SORTED. SCATTERED SORTED. SCATTERED SORTED. SCATTERED. SCATTERED | Abell 3737 3737 3738 3738 3741 3742 3744 3746 3746 3762 3763 3763 3763 3763 3764 3763 3764 3776 3776 | Field Field Field Field F402 F202 F286 F286 F286 F286 F286 F286 F286 F28 | Group superposed. 1st and 3rd are spirals. Group superposed. SERFENTINE-LIKE. GOOD SUPERPOSED. SERPENTINE-LIKE. GOOD SUPERPOSED. SERPENTINE-LIKE. GOOD SUPERPOSED. SERPENTINE-LIKE. GOOD SUPERPOSED. SILGETTY ELONGATED. NEARER GROUP NEIGHBORING. SERPENTINE-LIKE. SILGETTY ELONGATED. CONSIDERABLE MEMBERSHIP PAINTER THAN MAGNITUDE. COUTOFF (RPO) and HGC have probable foreground group included). SILGETTY ELONGATED CONSIDERABLE MEMBERSHIP PAINTER THAN MAGNITUDE. COUTOFF (RPO) and HGC have probable foreground group included). SILGETTY ELONGATED CONDONNA. Ist AS and ARE SOFIC, BOTH HAVE CORONAE. SCATTERED WITH SEVERAL CONCENTRATIONS OR SUPERPOSITIONS. SILGETTY CENTRALITY CONDENSED. SOMEWHAT ELONGATED AND MARPHOLOGICALLY DIVERSE. PART OF A LARGE CLOUD OF GLANXIES. SCATTERED AND MORPHOLOGICALLY DIVERSE. PART OF A LARGE CLOUD OF GENTRALITY CONDENSED. SCATTERED. | |--|--|--|--|--| | | lat in foreground? Let & 3rd HAVE CORONAE, 2nd IS SPIRAL. SCATTERED, BUT WITH SEVERAL CONCENTRATIONS. SCATTERED, 3rd IS SPINDLE. SCATTERED WITH CONSIDERABLE FAINT POPULATION BELOW MAGNITUDE CUTOFF. | 3779
3782
3783
3784 | F531
F011
F145
F287
F465 | 1st Have Sug. 1st Have Step Faint Corona and is off-center. Somewhat elongated. Foreground spiral ignored. Foreground spiral ignored. Foreground spiral some concentration at edge. = RPO30. 1st Has Faint corona. Symmetrical and centrally condensed. Scattered. Group superposed? | TABLE 7A—Continued | Notes | Group superposed sf. Another cluster nff. 1st HAS FAINT CORONA; 2nd & 3rd ARE LENTICULAR. FIVE FOREGROUND | GALAXIES IN FIELD. | SCATTERED. DOMINATED BY A FEW ELLIPTICALS. | Group superposed s. | 1st HAS VERY FAINT CORONA; 3rd IS SPIRAL. SOMEWHAT ELONGATED WITH | CONCENTRATION TO S-E. | Another cluster sf. | LOOSELY SCATTERED. | Two concentrations. Cream anneanced Scattered | 1st is foreground spindle 1.5 arcmin north. N7230 5 arcmin s-w. | 1st IS SPINDLE. | 1st MAY BE FOREGROUND. SLIGHTLY CENTRALLY CONDENSED, BUT OTHERWISE | RAMBLING. | 18t has corona, sta is spiral. 1st IS PAIR IN COMMON (?) ENVELOPE, LOOSELY SCATTERED. | 1st IS ELONGATED (ALONG CLUSTER MAJOR AXIS) AND MAY BE BINARY; HAS EXTENDED ENVELOPE. | 1st is extended with corona. | 1st is spiral. | Group superposed of. | SCALLEAGED, SEIGHT CONCENTRALION 10 S-E. Two concentrations. | 1st IS ROUND ELLIPTICAL AT EDGE. CENTRALLY CONDENSED. | let has corons.
Groun sunernosed let has corons and sunernosed star | 1st and 3rd have coronae. | Three concentrations. = RPO41; position wrong in Olowin (1986, |
1987).
Chaper supernosed 1st and 3rd uncertain | 2nd IS LENTICULAR, 3rd HAS FAINT CORONA. | Plate edge. | 1st is muchine system in corons.
Plate edge. 1st has very large corons. | 1st multiple in corona. | 1st HAS FAINT EXTENDED CORONA, 2nd IS SPIRAL. | 1st is spiral, 3rd has corona. | 2nd HAS CORONA. SUMEWHAT CENTRALLY CONDENSED AND MORPHOLOGICALLY
DIVERSE. | 1st HAS CORONA. CENTRALLY CONDENSED. NEAR E CALIBRATION CUTOUT. | 1st has corons. = RPO44. | Group superposed. 1st 1s spirsl. Names sluster superposed. 2sd is suited. | Mearer cluster superposed, ord is spiral.
Plate edge. | Two concentrations. | LOOSELY SCATTERED. | CENTARLIY CONDENSED CLUSTER DOMINATED BY BRIGHT ELLIPTICALS. | Group superposed. | 1st has corons. | 1st HAS CORONA. | |-------------------|---|---|---|---|---|-------------------------------------|---------------------|--------------------|--|---|-----------------|--|--------------------------|--|---|--|---|---|---|---|---|---|--|---|--|---------------------------------------|--|-------------------------|---|--------------------------------------|--|---|------------------------------|---|--|-------------------------------|----------------------|--|---|--|------------------------------------| | Field | F344
F467 | 1070 | F467 | F237 | F344 | | F344 | F404 | F237 | F601 | F289 | F344 | D408 | F289 | F344 | F344 | F344 | F405 | F344 | F289 | F190 | F405 | F190 | F190 | F467 | F344 | F189 | F190 | F289 | F405 | F076 | F467 | F468 | F405 | F147 | F190 | F345 | F345 | F468 | F468 | F534 | | Abell | 3835
3837 | 900 | 3838 | 3841 | 3842 | | | 3844 | 3845
3846 | 3847 | 3848 | 3853 | 2054 | 3855 | 3856 | | 3857 | 3858 | 3861 | 3862 | 3864 | 3866 | 3869 | 3870 | 3873 | 3874 | 0100 | | 3876 | 3878 | 3879 | 3880 | | 3881 | 3884 | 3886 | 3887 | 3888 | 3889 | 3892 | 3893 | | | | | | | | - | | | - | | | _ | | | INI | | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | Notes | ry close double. = RPO29.
LONGATED WITH EXTENDED CORONA. SOMEWHAT SCATTERED. | uster superposed sp. Scattered. | d.
Brit shabed: May be stidendostrion of the Crotide | | iral. | oncentrations. Group superposed nf. | corona. | orona. | J. SOMEWHAT ELONGATED. | corona. Plate edge. | LY SCATTERED. | ERED. 1st PROBABLY FOREGROUND. | HAT CENTRALLY CONDENSED. | itom Abs/4 superposed. | LATTENED ELLIPTICAL OR LENTICULAR (FOREGROUND?). MANY FAINT PRO | 149-5 with position corrected? Galaxy at position of S149-5 | ground (Corwin and Emerson 1982) and may have faint | ons, or is superposed on cluster members. = RPO33. | S FAIN I CORONA. BRIGHT FOREGROUND LENTICULAR IGNORED. HAT ELONGATED. | HAT CENTRALLY CONDENSED. | CORONA (cD), TRACE OF SUBCLUSTERING IN Q:1 (NW). | FAINT CORONA (cD?) WITH STAR SUPERPOSED TO S. SCATTERED | OME CONCENTRATIONS. | uperposed f. 1st in foreground?
Inserposed of 1st in foreground? | uporposed as: too as soldseduid: | orona. Plate edge. | Orona. | ercluster. | uperposed. | uperposed; bright galaxy superposed. | slaxy superposed. = RPO36. | Destposed. | uperposed f. 1st has corona. | ge; data from this plate rejected. Dwarf galaxy superposed. | | sec.
Littiple cD. = RPO38. | d. Group superposed? | uperposed. | ENTICULAR, 3rd HAS CORONA. = A3833. | i. 18t and ord nave coronae. Indextremely bright star of | uperposed nf. Scattered, but rich. | | | 1st is very close double. = RPO29. 1st IS ELONGATED WITH EXTENDED CORONA. SOMEWHAT | Nearer cluster superposed sp. Scattered. | Scattered. Dimerry of TWO CE | DOMBBELL-SHAFED; MAI BE SUFERFUSITION OF 1WO GE
1st & 2nd ARE PRORABLY FOREGROTIND | | • | | | 531 1st IS SO. SOMEWHAT ELONGATED. CENTRA 11 V. CONDENSED. | | | | | 268 Gataxies from Abyly superposed. 531 Several concentrations | | | is in foreground (Corwin and Emerson 1982) and may have faint | companions, or is superposed on cluster members. = RPO33. | | | 287 1st HAS CORONA (cD). TRACE OF SUBCLUSTERING IN Q:1 (NW). Superposed on more distant cluster? 1st has corns. — RPO34 | 1st HAS FAINT CORONA (cD?) WITH STAR SUPERPOSED TO | | 108 Group superposed f. 1st in foreground?
288 Group superposed of 1st in foreground? | | | 400 18t has corons. | | | - | 145 Dwarf galaxy superposed. = RPO36.
189 Plate edge. | | | | = KFU37. | | •. | _ | 167 1st IS LENTICULAR, 3rd HAS CORONA. = A3833. | | | | Abell Field Notes | C., | F403 Nearer cluster superposed sp. Scattered. | | F287 1st & 2nd ARE PRORARLY FOREGROUND | F188 | F531 | F403 | F236 | 3197 F531 1st IS 50. SOMEWHAT ELONGATED. | F075 | F287 | F011 | | 3804 F531 Georgea from Ash 4 superposed. | F531 | 3806 F145 Is this S149-5 with position corrected? Galaxy at position of S149-5 | is in foreground (Corwin and Emerson 1982) and may have faint | r
c | 3801 F331 ZEG HAS FAINT CORONA. BRIGHT FOREGROUND LENTICULAR IGNORED. SOMEWHAT ELONGATED. | F531 | 3809 F287 1st HAS CORONA (cD), TRACE OF SUBCLUSTERING IN Q:1 (NW). F388 Singernand on more distinct cluster? 1st has coons - RPO34 | 1st HAS FAINT CORONA (cD?) WITH STAR SUPERPOSED TO | | F108 Group superposed f. 1st in foreground?
3811 F988 Group superposed of 1st in foreground? | F403 | 3813 F403 1st has corona. Plate edge. | | F237 | F237 | F237 | 3822 F145 Dwarf galaxy superposed. = RPO36.
F189 Plate edge. | F403 | F532 | 3825 F145 Plate edge, data from this plate rejected. Dwarf galaxy superposed. | 897 F14K Distance | F146 | | F288 | F467 | 2002 F 1900 — A 2002. Is a fail of a large contage.
2013 T 201 — A 2014 P 2014 B 1900 F | | TABLE 7A—Continue | | ERPOSED ON PART O | | | | | | | | | D. | | | SUPERPOSED ON | RALLY CONDENSED. | | | | O GALAXY. | ND FOREGROOM | | | | | | | RGE CLOUD OF | | | | | | | | CANDING AT | OMEWHAT | | | | | | | | | |-------|--|---|---|--|--|-------------------
----------------------|---|---|--|--|--|---|--|----------------------------------|----------------------------|---------------------|---|---|--|-----------------------------------|---|---|--------------------|-----------------|--|--|--|---|---|----------------------------|-------------------|-------------------|---------------------|--|---|--------------------------------------|------------------------------------|--|-----------------------|--|-----------------------------------|---| | Notes | SCATTERED, SEVERAL CONCENTRATIONS AND APPEARS SUPERPOSED ON PART OF NEIGHBORING CLUSTER. | Group superposed sf. 1st has corons. | 1st HAS FAINT CORONA. SCATTERED. | 1st is peculiar spiral. Group superposed. | lst is spiral. | Group superposed. | Group superposed. | In a supercluster. | GIOUP SUPELPUSCU II.
ELONGATED AND STIPERPOSED ON CLIISTER TO S.E. | SOMEWHAT CENTRALLY CONDENSED, OTHERWISE SCATTERED. | LOOSELY SCATTERED. | In a supercluster. Two concentrations. | 18t HAS FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. SUPERPOSED ON | NEIGHBURING CLUSTER.
1st HAS VERY PAINT CORONA. PAIRLY SYMMETRIC AND CENTRALLY CONDENSED. | Two concentrations. | In a supercluster. | 1st is spiral. | 1st HAS FAINT CORONA. NW OF SAO 191733 AND FOREGROUND GALAXY. | 181 IS ELONGALED WITH FAINT CORONA. NW OF SAC 191783 AND FOREGROUND GALAXY. | Three concentrations. Two clusters seen in projection? | 1st IS FOREGROUND FACE-ON SPIRAL. | 1st HAS FAINT CORONA. SLIGHTLY CENTRALLY CONDENSED. | 1st and 3rd are spind es.
CONCENTRATED TOWARD EDGE. | 1st in foreground? | 1st has corons. | 1st IS SO(?). MORPHOLOGICALLY DIVERSE AND PART OF A LARGE CLOUD OF | FAIN I GALAALES. Two concentrations group superposed | Group superposed p. 1st is spiral. | Several pretty bright stars superposed. | Group superposed. 1st in foreground? 2nd $m = 17.7$. | TWO SLIGHT CONCENTRATIONS. | Group superposed. | Scattered. | Cloud superposed. | 1st & 2nd PROBABLY FOREGROUND. 3rd HAS FAINT CORONA. SOMEWHAT.
Crntrally Condensed. | Scattered. | Group superposed? 1st in foreground? | = RPO46. | 1st HAS FAINT CORONA. | let has corons. | Group superposed. Scattered.
Nearby cluster superposed s. | Group superposed. 1st has corona. | 1st HAS FAINT CORONA AND IS OFF CENTER. | | Field | F290 | F147 | F469 | F406 | F407 | F406 | F 407 | F 14 (| F-940 | F290 | F291 | F147 | F290 | F991 | F147 | F148 | F346 | F470 | F409 | F347 | F535 | F049 | F239 | F407 | F110 | F049 | F230 | F110 | F077 | F604 | F536 | F347 | F347 | F191 | F192 | F148 | F077 | F347 | F470 | F408 | r 408
F 408 | F408 | F536 | | Abell | 3956 | 3957 | 3958 | 3959 | 0000 | 3960 | 9906 | 3086 | 3060 | 3970 | | 3971 | 3972 | | 3975 | 3976 | 3977 | 3980 | | 3984 | 3982 | 3986 | 3987 | 3989 | 3880 | 3992 | 3003 | 3994 | 3882 | 3996 | 3008 | 4000 | 4004 | 4002 | | 4006 | 4004 | 4008 | 4009 | 4010 | 4011 | 4013 | 4014 | | - | | | | | _ | | | | | | | | | | | | | | | | _ | Notes | STRANDS OF FAINT GALAXIES. FOORITY SCAPTEBED BITS COMEWHAT LINEARLY CONCENTRATED | Group superposed. Plate edge. Magnitudes uncertain. | = A2462. 1st has corona. Plate edge. | 1st HAS CORONA; 2nd IS DIFFUSE BLUNT SPINDLE. = A2462. | MANY FAINT GALAXIES BELOW COUNT LIMIT. FOREGROUND CONTAMINATION. | SCATTERED | 1 We concentrations. | SOMEWHAT ELONGATED WITH LARGE FAINT MEMBERSHIP BELOW MAGNITUDE | CULOFF | DIJONGALED. | SLIGHTLY CENTRALLY CONDENSED, BUT OTHERWISE SCATTERED. | ELONGATED. | 1st HAS FAINT CORONA (cD?). SCATTERED AND SLIGHTLY OVERLAPPING WITH | NEIGHBORING CLUSTER. | 1st is spirat.
1st is spiral. | Plate edge. 1st is spiral. | Two concentrations. | | 1st IS SPIRAL (FOREGROUND?); 2nd HAS FAINT CORONA. SCATTERED. Scattered in streams | 1st HAS FAINT CORONA. | In a supercluster. | 1st has corona. 3rd is spiral. | MORPHOLOGICALLY DIVERSE AND SCATTERED. SEVERAL CONCENTRATIONS. OVERLADS WITH NEIGHBORING OF HETER | 1st is peculiar. | Scattered. | Two clusters superposed? Confused area. | Group superposed. Near calibration cutout. | 18t is dentificadar. Scaltered But somewhat more concentrated in 4:1
& Q:4. | S-shaped. Group superposed. | = AC113 in Couch and Newell (1984). | Three concentrations. | Plate edge. | Group superposed? | Two concentrations. | Group superposed p. In a supercluster. | 11st BAS FAINT, ELONGATED CORONA, AND A CLOSE COMPANION. | 1st HAS FAINT CORONA. ELONGATED. | 1st is spiral or group superposed? | 1st is peculiar, or superposed on cluster? | | 1st HAS FAINT CORONA, NEAR S-E PLATE CALIBRATION CUTOUT. | SCATTERED. | SCATTERED. | | | F663 STRANDS OF FAINT GALAXIES. F945 LONGENT SCATTERED BITT COMEWHAT LINEARLY CONCENTRATED | | F602 = A2462. 1st has corona. Plate edge. | | | | | F290 SOMEWHAT ELONGATED WITH LARGE FAINT MEMBERSHIP BELOW MAGNITUDE | BOOK BY CALOFF. | • | | ELONGATED. | 1st HAS FAINT CORONA (cD?). SCATTERED AND SLIGHTL | NEIGHBORING CLUSTER. | | | - | In a supercluster. | (EGROUND?); 2nd HAS FAINT CORONA. | • | | 1st has corona. 3rd is spiral. | F290 MORPHOLOGICALLY DIVERSE AND SCATTERED. SEVERAL CONCENTRATIONS. OVERLADS WITH NEIGHBORING CLIEFER | | | | GOM TARWINGS | & Q:4. | | | F406 Three concentrations. | | | | F147 Group superposed p. In a supercluster. | 11 & Supercluster: 1st HAS FAINT, ELONGATED CORONA, AND A CLOSE COM | 1st HAS FAINT CORONA. ELONGATED. | _ | 1st | 1st HAS FAINT CORONA. | DRONA. NEAR S-E PLATE CALIBRATION | | F290 SCATTERED. | | d Notes | Group superposed. Ist is spiral. Ist HAS FAINT CORONA. SCATTERED. Ist HAS FAINT CORONA. SOMEWHAT SCATTERED. 13 - 4 concentrations. In a supercluster. Group superposed. Part of A40772. Group superposed. Fart of A40772. Group superposed. Advin Spiral. Ist has corona. Part of A40772. Ist HAS PAINT CORONA. RELATIVELY COMPACT. | |---------|---| | Field | F111
F3409
F409
F409
F409
F538
F538
F241
F292
F292 | | Abell | 4067
4068
4070
4071
4072
4073
4075
4075 | | Notes | Group superposed a. 1st has corona. 3rd is spiral. Group superposed a. 1st has corona. 3rd is spiral. 1st, 2nd, 2st dat ARE ELIPTICALS, LATTER TWO HAVE VERY FAINT CORONALS. SOMEWHAT SCATTERED. 10.0SELY SCATTERED, SOMEWHAT ELONGATED. 3rd is doubte or has star superposed. Scattered. Group superposed. SCATTERED. 1st HAS VERY FAINT CORONA. SOMEWHAT ELONGATED. 1st HAS VERY FAINT CORONA. SOMEWHAT ELONGATED. 1st HAS VERY FAINT CORONA. SOMEWHAT ELONGATED. 1st HAS CORONA. SOMEWHAT ELONGATED. 1st HAS CORONA. SOMEWHAT INDEARLY CONDENSED. 1st HAS CORONA. SOMEWHAT INDEARLY CONDENSED. 1st HAS CORONA. SOMEWHAT LINEARLY CONDENSED. 1st HAS CORONA. SOMEWHAT
LINEARLY CONDENSED. 1st HAS CORONA. NEAR W PLATE EDGE; COUNT LOW. 1st HAS CORONA. TWO CONCENTRATIONS. SCATTERED. 1st HAS CORONA. TWO CONCENTRATIONS. SCATTERED. 1st HAS CORONA. Group superposed. Group superposed. Group superposed. Group superposed. Group superposed. 1st HAS CORONA. PAINT CORONA. 1st HAS PAINT CORONA. 1st HAS PAINT CORONA. 1st HAS CORONA. 1st HAS CORONA. 1st HAS CORONA. 1st HAS PAINT CORONA. 1st HAS PAINT CORONA. 1st HAS CORONA. 1st HAS CORONA. 1st | | Field | F408
F110
F240
F240
F240
F240
F240
F240
F408
F408
F409
F409
F409
F409
F409
F409
F409
F409 | | Abell | 4017
4018
4020
4020
4021
4022
4033
4033
4034
4034
4033
4033
4034
4033
4033
4033
4033
4033
4033
4034
4034
4035
4035 | | ' | 119 | ## TABLE 7B Notes for Table 5 | | Abell | Field | Notes | Abell | Field | Notes | |--------|---------|-----------|--|-------|-------|--| | | | | | | | | | | S0001 | F409 | | S0039 | F539 | TWO CONCENTRATIONS. | | | S0002 | F409 | DOMINATED BY BRIGHT ELLIPTICALS. BRIGHT STAR OBSCURES SOME MEMBERS. | S0040 | F294 | 3rd HAS FAINT CORONA AND IS LOCATED IN CENTER OF CLUSTER. | | | S0003 | F409 | 1st HAS CORONA, 3rd IS SPINDLE. | 20041 | F350 | lst has corons. Core-halo structure, = KFO6. | | | 50004 | F050 | 1st HAS FAINT CORONA (cDf.); 3rd IS SPINDLE: SCATTERED. | 20042 | F070 | 18t HAS FAILT COROUNS, 2nd 18 LEDIT LOCAL TEACH. | | | 20002 | F.292 | SCATTERED, MORPHOLOGICALLY DIVERSE. NEAR Q:3-E CALIBRATION CUTOUT, | S0043 | FU19 | 18t HAS FAINT CORONA; 2nd 13 SFINDLE, SCALLERED.
SCATTERED | | | Schools | E400 | COUNT SOMEWHAT LOW. | S0045 | F 059 | JOAN I DIVED. TWO concentrations | | | 20000 | F 403 | ISE HAS CONCINA (CD.): 244 IS STIMAL: MORE HOLOGICALLE DIVERDE: NEARRY CLISTER SUPERPOSED | S0045 | F150 | SOMEWHAT ELONGATED. | | | 80008 | F050 | 1st HAS FAINT CORONA (CD2), DISPLACED FROM CENTER, 2nd IS SPINDLE: | S0046 | F294 | SCATTERED, 1st IS FOREGROUND SPIRAL NEAR N EDGE OF CLUSTER. | | | | | | S0047 | F150 | 1st IS SPINDLE. NEAR Q:1-N PLATE EDGE, COUNT SOMEWHAT LOW. | | • | | F078 | 1st HAS CORONA (cD?); 2nd IS SPINDLE; 3rd IS SPIRAL. BRIGHTEST ARE | S0048 | F150 | 1st PROBABLY FOREGROUND SPIRAL(?). LOOSELY SCATTERED. | | | | | LENTICULARS AND SPIRALS. | S0049 | F150 | 1st HAS FAINT CORONA. SCATTERED. | | | S0009 | F292 | 1st HAS FAINT CORONA, 3rd IS SPINDLE. | S0050 | F194 | Group superposed. | | | S0010 | F409 | 1st HAS CORONA. | S0051 | F294 | 1st HAS FAINT CORONA. NEAR N-PLATE EDGE JUST W OF N FIDUCIAL MARK. | | | S0011 | F293 | 1st MAY HAVE EXTREMELY FAINT CORONA. | | | COUNT LOW. | | | S0012 | F349 | 1st has corona. 3rd is spiral. Two clusters seen in projection? | S0052 | F150 | SOMEWHAT SCATTERED. | | | | | = RPO3. | S0053 | F242 | 1st & 2nd ARE CLOSE PAIR OF ELLIPTICALS. | | | S0013 | F193 | 1st is spiral. | S0054 | F194 | Group superposed. | | | S0014 | F193 | Group superposed. | S0055 | F150 | 1st HAS FAINT CORONA, 3rd IS SPIRAL. LOOSELY SCATTERED. Superposed | | | S0015 | F539 | 1st HAS CORONA: 3rd IS S0. | | | on AS54. | | | 20016 | F140 | Groun amornoad Craftond | S0056 | F078 | 1st IS SPIRAL (FOREGROUND?) BRIGHTEST MEMBERS ARE ELLIPTICALS. | | | 20010 | E 1 1 2 2 | Out the type power. Jeanwater. | | | CONCENTRATIONS TO BASE | | | 2001 | F078 | CIU A D SI TINAL. | | F079 | 1st IS FOREGROUND(*) SPIRAL. FILIPTICALS DOMINATE BRIGHTEST. | | 12 | 20010 | FOFO | 14 IS COID AI. 3-A IS COUNT F CCATTEBED | | | CONCENTRATION AT EASTERN EDGE | | 20 | COOS | F050 | BUILD OF HEALT, SHIPLE SOUTH BUILD. BUILD THE TO SHIPLE SOUTH BUILD. | S0057 | F078 | TOOSEIN SCATTERED AT THE EDGE OF A LARGE CLOUD | |) | 2005 | 200 | | | F079 | SCATTERED AT EDGE OF LARGE CLOTIN | | | 20091 | E003 | SCALIBERT. 104 IS SDIPAL MODDHOT OCICATIV DIVERSE AND FLONGATION | 80058 | F050 | 1st HAS CORONA (cd.) APPEARS SUPERPOSED ON A LARGE, CLOUD OF FAINT | | | 20021 | F 002 | 18th IS STIMATE, MORTHOLOGICALLE DIVERSE AND ELONGALED. | 8 | 30 | GALAXIES (IN 0.1). | | | 2002 | F070 | LATE INVINITUIL AD DADE OF A CEDEAT CLOTTE OF BAINT CALAVIDS | | F051 | 1st HAS FAINT CORONA S.E. OF CLOTID OF FAINT GALAXIES. SOME | | | 2002 | F050 | 18th DELOCATION TO STREET OF A STREET CHOICE OF TAILS. 1st IS DEPORABLY FOREGROUND SPINNTE IN A LARGE CLOTTO OF FAINT | | | SUPERPOSITION. | | | | | CONTRIBUTION OF A VITE | 80059 | F949 | 1st HAS CORONA | | | 2000 | D070 | OCAL TEMED WALANTES. | 09005 | F540 | to the order | | | 2005 | FOIO | AND THE STATE OF STAT | S0061 | F294 | 3rd HAS PAINT CORONA LOOSELY SCATTERED. | | h. | | E070 | NAME OF THE PROPERTY OF THE OFFICE OF THE CATAVIES | 20062 | F194 | Grain annarmand | | | 2000 | F 01 2 | 9-14 A DATENDED DANGE COLOUD OF FAIR I GABARIES. | 2008 | F150 | OF THE PROPERTY OF THE PROPERTY SCATTERED | | | 07000 | 1001 | of the family occopies with the control of cont | 89000 | F-90K | 124 HAS CODONA, 9-2 8-2-3 ADE COID AND | | | 2002 | 1.000 J | 18t HAS VERT FAINT CORONA; 3rd IS CLOSE PAIR IN COMMON ENVELOPE. | COOR | E 230 | IN IND COLOURS AND WE BE THE STATEMENT OF THE STATEMENT OF THE CONTRACT OF THE STATEMENT | | | 00000 | 00.10 | SOMEWRAL ELONGALED. | 2006 | F150 | COATTEDED BIT WITH COME CONTROL | | | 20000 | 1000 | WIDELI SOCALIERED. FOR THE SOCALIERED TO THE SOCIETY OF SOCIE | 20067 | F943 | OUTLIBUID DOI WILL COMM CONCENTIONS. | | | 2002 | r 050 | BAIGHTEST MEMBERS IEND IOWARDS EDGE OF CHOSTER, MOSTER TICALS. | 19005 | E 410 | The property of the confidence of the confidence of the property of the confidence o | | | 20030 | F012 | 18t HAS COKONA 2 2nd 18 FACE-ON SPIKAL. SCALTEKED AND SOMEWHAI | 90000 | F 411 | 186 FROBABLI FOREGROUND, SOMEWHAI SIMMEIRICAL. | | .4. | | 5 | MORE HOLOGICALLY DIVERSE. | COUCO | F 114 | GOOD III.
14. TA CODOMA CCATTEDED CHEEDED ON COMEACT CTHETED TO CE | | • | | F013 | 1st HAS CORONA. SOMEWHAI CENTRALLY CONDENSED AND MORPHOLOGICALLY | 20002
 F 280 | 18t HAS CONDING SOAL LEAGUE. SOUFERFORD ON CONFIGURE 10 SE. | | | 1000 | 2 | DIVERSE | 2000 | r411 | 18t 13 E(!). SCAI LEKED, Q:3 CONCENTRATION, AND SUPERPOSED IN Q:1 | | | 50031 | F050 | 1st IS LENTICULAR. SOMEWHAT COMPACT. | 50071 | T-90E | ON MICH CEUSTER. | | | 20037 | F.294 | 1st IS FUREGROUND S(r). SCATTERED. | 2007 | 687.1 | STORES HAS FAILT COUNCING. COMPETED BY & ZOID FOSSIBLE FORESCHOUND. | | | S0033 | F078 | 1st IS SPINDLE. SCATTERED. IN A LARGE CLOUD. | 20072 | F 351 | 18 IS SU. SOMEWHAT ELONGALED. FOREGROUND SU SUFERFUSED. | | | , 000 | F079 | 18t IS SPINDLE: IN A LARGE CLOUD. | 20013 | F 280 | IN THAS COUNTY AND SOFTERFORD OF CONTRACTOR SOCIETY EARLY. SO THE TELEFORD OF SALES AND SOFTER CONTRACTOR OF SALES AND SOFTER SO | | | S0034 | F050 | COMPACI, CENTRALLY CONDENSED. | 30014 | F 190 | ord has failed concinal booseled some lened. Sufferenced on failed | |)
) | 50035 | F294 | MORPHOLOGICALLY DIVERSE. | S0075 | F051 | OLOSIERA(!).
1st HAS VERY FAINT CORONA DENSEST PART OF A LARGE MEANDERING | | | 20037 | F249 | 184 IS FOREGROUND 30: SCALLERED. | | | CLOUD OF FAINT GALAXIES. | | | 2000 | F294 | 1st HAS CORONA | 80076 | F150 | 1st HAS FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. SEVERAL BRIGHT | | | 50038 | F294 | 1st HAS FAINT EXTENDED CORONA, SCATTERED. | | | FOREGROUND GALAXIES IN FIELD. | | | | | | | | | | 4. | | | | | | | | ב- כחונותנמ
 | Abell Field Notes | S0114 F412 SCATTERED.
S0115 F195 1st HAS CORONA (cD).
S0116 F195 1st IS BRIGHT SR'r). MEMBERS SCATTERED WITH SOME EVIDENCE OF | F195 | S0118 F541 1st HAS VERY FAINT CORONA AND CLOSE COMPANION. SOMEWHAT SCATTERED. S0119 F412 IRREGIILAR 1st HAS FAINT CORONA | F295 | LOW.
S0121 F243 Group superposed. | S0122 F295 1st & 2nd HAVE FAINT CORONAE. | F 295 | S0125 F195 3rd HAS FAINT CORONA. SEVERAL FOREGROUND SPIRALS. | F295 | S0128 F013 1st HAS CORONA; 2nd IS SPIRAL. SCATTERED AND MORPHOLOGICALLY DIVERSE. | S0129 F195 1st HAS FAINT CORONA, 3rd IS SPIRAL. LOOSELY SCATTERED. | F051 | S0132 F195 DUMBBELL-SHAPED. | F412 | S0135 F195 SCATTERED. S0136 F412 14t HAS FAINT CORONA | F113 | F412 | S0140 F195 1st IS FOREGROUND SBa. LOOSELY SCATTERED. S0141 F412 1st HAS CORONA & POSSIBLE GLOBULARS: 2nd IS SB(?). | F195 | F296 | S0146 F412 SCATTERED. S0149 F105 LOOSFLY SCATTERED | F196 | S0151 F412 1st HAS FAINT CORONA AND IS OFF CENTER. F413 1st HAS CORONA 1st COMPANION BITH IS OFF CENTED | F196 | S0153 F113 1st & 2nd PROBABLY FOREGROUND SPIRALS. S0154 F413 1st HAS CORONA. | F296 | F113 | MORPHOLOGICALLY DIVERSE. S0159 F413 1st IS SB. SCATTERED IN SCATTERED BACKGROUND. | F353 | S0161 F.113 1st HAS VERY FAINT CORONA, BRIGHTEST ARE MOSTLY ELLIPTICALS. SCATTERED. | S0162 F196 Spiral superposed. = RPO7. S0163 F296 1st HAS FAINT CORONA. LOOSELY SCATTERED, MORPHOLOGICALLY DIVERSE. | |-----------------|-------------------|--|--|--|--|--|---|----------------------------------|--|--|--|--|--|--|-----------------------|---|---|---------------------------------------|--|---|--|---|----------------------------------|--|--|---|--|--|---|---|--|--| | - | ו קקמטן | Notes | 1st & 3rd HAVE CORONAE.
1st HAS CORONA (cD). SOMEWHAT CENTRALLY CONDENSED.
1st IS S0. SLIGHTLY CENTRALLY CONDENSED. | | 1st & 3rd HAVE FAINT CORONAE. MORPHOLOGICALLY DIVERSE. SOMEWHAT
SOMEWHAT CONCENTRATED IN Q.1. | 1st HAS FAINT CORONA (cD?) AND IS SUPERPOSITION. SLIGHTLY CENTRALIX CONDENSED. | CENTRALDI CONDENSEL) SOALIERED.
1st & 2nd ARE SPIRALS, 3rd IS SUPERPOSITION. SOMEWHAT SCATTERED | WITH CONCENTRATIONS. 1st HAS VERY FAINT CORONA AND IS STIBEREDOSTITION BRIGHT. | FOREGROUND(?) SPIRAL SUPERPOSED. | 1st HAS FAINT CORONA. LOOSELY SCATTERED.
3-J IS SPIRAT (S.). SCATTERED AND MORPHOLOGICALLY DIVERSE | 1st IS FOREGROUND SO. LOOSELY SCATTERED. | IRREGULARLY SCATTERED.
1st IS SO. LOOSELY SCATTERED WITH SOME FOREGROUND CONTAMINATION. | 184 HAS FAINT CORONA. SOMEWHAT SCATTERED. LOORETY SCATTERED, SOME IRRECTIL AR CONCENTRATIONS | 1st IS So(?), POSSIBLY FOREGROUND. NEAR QI:N PLATE EDGE, COUNT | LOW. SUPERPOSED ON SEVERAL MORE DISTANT CLUSTERS & GROUPS. | | 1st HAS FAINT CORONA. SEVERAL BRIGHT SPIRALS INCLUDED, ONE
SUPERPOSED PAIR, SCATTERED. | SCATTERED, BUT MORE CONCENTRATED IN Q:1 & Q:2. | SOME SUPERPOSITION WITH CLUSTER TO N. | STA HAS CORONA & COMPANIONS, CURIOUS LINEAR CONCENTRATION S-E OF
CENTER. | 1st IS SUPERPOSITION WITH CORONA; 2nd HAS CORONA. SCATTERED WITH CONCENTRATION IN 0.3 | 1st & 2nd HAVE FAINT CORONAE. LARGE MEMBERSHIP OF FAINT GALAXIES. | SUPERPOSED ON CLOUD?
2nd HAS VERY FAINT CORONA: 1st IS OFF CENTER. | 1st HAS FAINT CORONA. SCATTERED. | MORPHOLOGICALLY DIVERSE AND SCATTERED.
SOMEWHAT DIIMBRELL-SHAPED | 164 & 2nd ARE FLATTENED ELLIPTICALS WITH CORONAE. 18t MAY BE | FUREGROUND, SCATTERED. 1st & 2nd ARE FLATTENED ELLIPTICALS. SCATTERED AND SOMEWHAT | MORPHOLOGICALLY DIVERSE. | 1st HAS CORONA (S0?). MORPHOLOGICALLY DIVERSE AND SCATTERED. | 1st IS SPINDLE, 2nd IS BINARY. LOOSELY SCATTERED. Spiral superposed. | 1st HAS CORONA. CENTRALLY CONDENSED. NEAR Q.2-N EDGE, COUNT | SOMEWHAT LOW.
1st, 2nd, & 3rd HAVE CORONAE. CENTRALLY CONDENSED ALTHOUGH | SOMEWHAT IRREGULAR.
BRIGHTEST HAVE FAINT CORONAE. AT Q:4-W PLATE EDGE, COUNT LOW. | | ו אמנין ו | Field Notes | F150 1st & 3rd HAVE CORONAE.
F195 1st HAS CORONA (cD). SOMEWHAT CENTRALLY CONDENSED.
F079 1st IS S0. SLIGHTLY CENTRALLY CONDENSED. | 1st IS SO. LOOSELY SCATTERED.
1st & 2nd ARE SPIRALS. SCATTERED. | PHOLOGICALLY DIVERSE. SO | F411 1st HAS FAINT CORONA (cD?) AND IS SUPERPOSITION. SLIGHTLY CONTRAITY CONTRAITS CATTTERED | F195 1st & 2nd ARE SPIRALS, 3rd IS SUPERPOSITION. SOMEWHAT SCATTERED | WITH CONCENTRATIONS. F105 1st HAS VERY FAINT CORONA AND IS STIDERPOSETTION RRIGHT | | F150 184 HAS FAINT CORONA, LOOSELY SCATTERED. F351 3-4 IS SPIRAT (S.), SCATTERED AND MORPHOLOGICALLY DIVERSE | | IRREGULARLY SCATTERED. 1st IS S0. LOOSELY SCATTERED WITH SOME FOREGROUND CONTAIN | F150 1st HAS FAINT CORONA. SOMEWHAT SCATTERED. F150 TOOSELY SCATTERED SOME PREFITING | | LOW, SUPERPOSED ON SEVERAL MORE DISTANT CLUSTERS & GROUPS. F079 1st & 2nd HAVE CORONAE, CONCENTRATION IN 0.4 | 1st HAS FAINT CORONA. | L BRIGHT SPIRALS INCLUDED, ON | F411 SCATTERED, BUT MORE CONCENTRATED IN Q:1 & Q:2. F105 14 IS BY ATTYPINED FIT IDPLICATORS OF SUBMIT BY TATABLE ATTYPINED FIT IDPLICATORS. | SOME SUPERPOSITION WITH CLUSTER TO N. | F285 3rd HAS CORONA & COMPANIONS, CURIOUS LINEAR CONCENTRATION S-E OF
CENTER. | F351 1st IS SUPERPOSITION WITH CORONA; 2nd HAS CORONA. SCATTERED WITH | F002 1st & 2nd HAVE FAINT CORONAE, LARGE MEMBERSHIP OF FAINT GALAXIES. | SUPERPOSED ON CLOUD?
F003 2nd HAS VERY FAINT CORONA: 1st IS OFF CENTER | | F411 MORPHOLOGICALLY DIVERSE AND SCATTERED.
F295 SOMEWHAT DIMARRIL-SHAPED | | FOREGROUND: SCATTERED. FOR3 1st & 2nd ARE FLATTENED ELLIPTICALS. SCATTERED AND SOMEWHAT | MORPHOLOGICALLY DIVERSE. FA11 1+ HAS PAINT CORONA LOGETY SCATTERED. | | F195 1st IS SPINDLE, 2nd IS BINARY. LOOSELY SCATTERED. F243 Spiral superposed. | _ | E CORONAE. CENTRALLY CONDENSED ALTHOUG | SOMEWHAT IRREGULAR.
F080 BRIGHTEST HAVE FAINT CORONAE. AT Q:4-W PLATE EDGE, COUNT LOW. | | ld Notes | | | 14 SCATTERED.
43 SOMEWHAT ELONGATED | | 13 1st HAS FAINT CORONA. SOMEWHAT SCATTERED WITH GROUP SUPERPOSED. 81 1st HAS CORONA (-D.) CENTRALITY CONDENSED AND MORPHOLOGICALLY | _ | | SPIRAL-RICH.
14 14 ISTENTICITAR SCATTERED & SOMEWHAT SPIRAT-BICH | | | FOREGROUND. 184 IS ELLIPTICAL WITH VERY FAINT CORONA. LOOSELY SCATTERED. | • | 88 181 IS SPIKAL, MOKPHOLOGICALLY DIVERSE & SCALTERED, NEAR
CALIBRATION CITTOUT
COUNT SOMEWHAT LOW | | | 8/ 1st HAS FAINT CORONA. | | | 98 IST HAS FAINT CORONA; 2nd MAY BE FOREGROUND FACE-ON SPIRAL. I DOSEITY SCATTERED | | | FII4 IST HAS VERY FAINT CORONA (cD?). SCATTERED. GROUPS NEARBY. | | | 97 LOOSELY SCATTERED, MORE CONCENTRATED TO EDGE.
15 SCATTERED 1st PROBABLY FORECROIM | | 54 Scattered. Group superposed. | | | F355 1st has corons. Group superposed n. In a supercluster.
F052 1st HAS CORONA (cD), SOMEWHAT MORPHOLOGICALLY DIVERSE. | | | F415 ISTINDLE. SEVERAL CONCENTRATIONS.
F197 1st HAS CORONA SOME STRCLIISTERING AND/OR STIPERPOSITION TO NE | | 14 SCATTERED. 81 14 HAS CORONA (AD) DESCRIPER ARE SEED ATS | | 15 SCATTERED. NEARER GROUP SUPERPOSED.
78 SCATTERED | | |----------|--|--|--|--|--|---|--|---|----------------------------|---|--|------------|---|------------|---|---|-----------------------------------|--|--|-----------------------|--------------------------|---|--|--------|---|-------------|---------------------------------------|--|---|--|--|-------|---|--------------------|--|--|--|--| | l Field | 2 F543 | | 5 F114
7 F543 | | F013 | | 1 F013 | F014 | | 4 F298 | 5 F298 | | 5 F298 | 7 F245 | | 5 F197 | . — | | 3 F298 | - | | | | | 0 F197
1 F415 | | | 4 F197
F198 | | | | | | | 0 F014 | | 3 F415
4 F478 | | | Abell | S0202 | S0204 | S0205 | S0208 | S0209 | 700 | S0211 | | S0212 | S0214 | S0215 | Š | S0216 | S0217 | Š | 50218 | S0221 | S0222 | S0223 | S0224 | č | S0225 | S0227 | S0229 | S0230
S0231 | S0232 | S0233 | 50234 | S0235 | S0236 | | S0237 | S0238
S0239 | | S0240 | S0242 | S0243
S0244 | S0245 | | Notes | 1st HAS VERY FAINT CORONA, SCATTERED, NOT CENTRALLY CONDENSED. | 1st HAS FAINT CORONA, 2nd IS SB(r). 1st HAS CORONA AND FAINT COMPANIONS. | FOREGROUND CLUSTER SUPERPOSED? SOME SUPERPOSITION WITH FAINTER | LOOSELY SCATTERED, SOMEWHAT ELONGATED. | 1st IS LENTICULAR. BRIGHTEST ARE MORPHOLOGICALLY DIVERSE. LOOSELY | SCALIERED. 1st IS LENTICULAR. SCATTERED. | 1st HAS FAINT CORONA. LOOSELY SCATTERED. | 1st HAS FAINT CORONA; 3rd IS SAB(r). SCATTERED. | nearer custors superposed: | 1st IS SPIRAL (FOREGROUND?); 3rd HAS CORONA. SCATTERED. | 18t & ZNG ARE SPIRALS; STG HAS FAINT CORONA. SCALTERED. 1st IS SUPERPOSITION. SOMEWHAT CENTRALLY CONDENSED. | ELONGATED. | SCATTERED 1st PROBABLY FOREGROUND. | 100100 100 | SCATTERED AND SOMEWHAT DUMBBELL-SHAPED. | SCATIERED. TWO BRIGHT FOREGROUND(2) SPIRALS IGNORED SCATTERED | 2nd IS SPIRAL. LOOSELY SCATTERED. | 1st & 3rd HAVE VERY FAINT CORONAE. SOMEWHAT CENTRALLY CONDENSED. | 1st HAS FAINT CORONA, LOOSELY SCATTERED. 1st HAS FAINT CORONA, BEICHTEST CALAYIES FORM CHAIN | 18t IS SO. SCATTERED. | Another cluster near np. | 1st HAS FAINT CORONA. | SOMEWHAT Y-SHAPED WITH THREE CONCENTRATIONS. | ICALS. | BRIGHTEST ELLIPTICALS HAVE FAINT CORONAE. SCATTERED WITH THREE | Plate edge. | BRIGHTEST GALAXIES MAY BE FOREGROUND. | SCATTERED.
SOMEWHAT DIIMBREIL-SHAPED. | 1st IS ELONGATED WITH CORONA. BRIGHT FOREGROUND SPIRAL IGNORED. | SCATTERED.
1st HAS PAINT CORONA FOREGROUIND SPIRAL IGNORED. | 1st IS ELONGATED WITH CORONA (cD?). NEAR Q:4-S PLATE EDGE, COUNT | LOW. | 1st in foreground group? | LOOSELY SCATTERED. | 1st IS ELONGATED WITH FAINT CORONA. SOMEWHAT LINEARLY CONDENSED. | SCALLERED.
1st IS SO WITH EXTENDED ENVELOPE. WIDELY SCATTERED. NEAR Q.2-N | PLATE EDGE, COUNT LOW. | SCATTERED. IN CLOUD OF FAINT GALAXIES. | | Field | F353 | F413
F353 | F413 | F080 | F113 | F114 | F052 | F052 | F413 | F029 | F030 | F543 | F543 | 047 | F543 | F353 | F114 | F114 | F114 | F197 | F152 | F413 | F543 | F029 | F030 | F297 | F353 | F413 | F080 | F081 | F114 | | F152 | F081 | F114 | F032 | F543 | F245 | | Abell | S0165 | S0166
S0167 | S0168 | S0169 | S0170 | | S0171 | S0172 | S0174 | S0176 | S0177 | S0178 | S0179 | 20100 | S0181 | S0182
S0183 | | S0184 | S0185 | S0187 | S0188 | S0189 | S0190 | S0191 | | S0192 | , | S0193 | S0194 | | | | S0195
S0196 | | 90100 | S0199 | 20000 | S0201 | | | | | | | | | | | | | | | | | | | 1 | 22 | Notes T CORONA AND IS OFF-CENTER. SCATTERED AND SLIGHTLY T CORONA. SUPERPOSED ON ANOTHER CLUSTER TO S.E. & 24 HAVE RAINT CORONA. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA, STARBY. ANTERED. LOCATED IN CHAIN OF GROUPS. ATTERED. LOCATED IN CHAIN OF GROUPS. ATTERED. LOCATED IN CHAIN OF GROUPS. T CORONA; 3rd IS LENTICULAR. PART OF A LARGE DISTANT ANY EAINT CORONAE. MORPHOLOGICALLY DIVERSE AND ESTRACALLY CONDENSED. T CORONA; 3rd IS LENTICULAR. PART OF A LARGE DISTANT ANY EAINT CORONAE. MORPHOLOGICALLY DIVERSE AND ESTREACH CONDENSED. T CORONAS, 3rd IS LENTICULAR. PART CLUSTER TO TO SEPCENCATED. DNA; 3rd IS BARRED SPIRAL. NEAR E PLATE EDGE, COUNT SUPPOSED ON MORE DISTANT CLUSTER TO N.E. T CORONA. SOMEWHAT CONTENED. T CORONA. SOMEWHAT OF OVERLAPPING WITH CLUSTER TO N.E. T CORONA. SOMEWHAT OF OVERLAPPING WITH CLUSTER TO N.E. T CORONA. SOMEWHAT OF OVERLAPPING WITH CLUSTER D. T CORONA. SOATTERED. CORONAL SOATTERED WITH CONCENTRATION IN SW. THEN THE SOATTERED WITH CONCENTRATION IN SW. TREALLY DIVERSE. TO CORONE SHARL PART OF A LOOSELY SCATTERED CLOUD OF TUES. | Notes | ELONGATED. 1st APPEARS TO BE SPIRAL(?).
1st HAS VERY PAINT CORONA. SCATTERED. | TWO CONCENTRATIONS, SOMEWHAT DUMBBELL-SHAPED. SUPERPOSITION OF TWO | SCATTERED. | 1st HAS FAINT CORONA. | 1st HAS FAINT CORONA. MORPHOLOGICALLY DIVERSE AND SCATTERED. | ist HAS FAINT CORONA, MORPHOLOGICALLY DIVERSE.
SCATTERED, COUNT CONTAMINATED BY BRIGHTER FOREGROUND GALAXIES? | Group superposed, 1st has corona. | Spiral superposed. Group superposed n. | 1st HAS CORONA (cD). | 1st HAS CORONA (cD). | 18t HAS CORONA. MORPHOLOGICALLY DIVERSE. SOMEWHAT SUPERPOSED ON | CLUSTER TO S.SW. | 1st HAS CORONA. LOOSELY SCATTERED. | 1st and 3rd are spiral. | 1st HAS VERY FAINT CORONA AND IS SUPERPOSITION. MORPHOLOGICALLY | DIVERSE AND SPIRAL-RICH. | BRIGHT ELLIPTICAL WITH HALO & FAINT COMPANION SUPERPOSED. | 1st IS SBB. SOME EVIDENCE OF SUBCLUSIERING TO EAST OF CENTER. | 18t HAS FAHAT COROLAR, 2444 IS SFIRMED, DOUGELT SCALLERED. 18t IS IRREGULAR SUPERPOSITION, 2nd HAS CORONA, SEVERAL SUPERPOSED | (INTERACTING?) GALAXIES. | DUMBBELL-SHAPED AND MORPHOLOGICALLY DIVERSE. | 18t IS (FOREGROUND!) STINDLE. ELOINGALED.
1st HAS CORONA: 2nd IS LENTYCIII.AR. SOMEWHAT LENTYCIII.AR-RICH AND | CENTRALLY CONDENSED. | SOMEWHAT LINEARLY CONDENSED WITH TWO CONCENTRATIONS (SUPERPOSITIO | OF TWO CLUSTERS?). | SCATTERED. | 1st HAS CORONA. LOOSELY SCATTERED. | MORPHOLOGICALLY DIVERSE WITH CONCENTRATION N-NE. NEAR N PLATE | Scattered. 1st is spindle. | Scattered. 1st is spindle. 3rd is peculiar. 10th is spiral. | 1st (FLATTENED ELLIPTICAL?) HAS FAINT CORONA. APPEARS SPIRAL-RICH. | All galaxies out-of-focus, count uncertain. | Ist has corona.
144 hag baint corona several syspected for porected galaxies | IGNORED. | 1st & 2nd ARE S0's. NEAR Q2:N PLATE EDGE, COUNT SOMEWHAT LOW. | FACE-ON SPIRAL WITH JET(?) SE OF CENTER.
LOOSELY SCATTERED. | LOOSELY SCATTERED. | 1st (cD) & 2nd HAVE CORONAE; 3rd IS SPIRAL.
Near plate addre Groun sunarroad | Group superposed. | 1st HAS CORONA; 3rd IS SPIRAL. SOMEWHAT DUMBBELL-SHAPED.
1st HAS FAINT CORONA; 3rd IS SPIRAL. LOOSELY SCATTERED. |
---|-------|--|--|------------|-----------------------|--|--|-----------------------------------|--|----------------------|----------------------|---|--|------------------------------------|-------------------------|---|--------------------------|---|--|--|--------------------------|--|--|----------------------|---|---|------------|------------------------------------|---|----------------------------|---|--|---|---|----------|---|--|--------------------|---|-------------------|---| | Notes T CORONA AND IS OFF-CENTER. SCATTERED AND SLIGHTLY T CORONA. SUPPERPOSED ON ANOTHER CLUSTER TO S.E. & 24 HAVE RAINT CORONAE. T CORONA. ELONGUED. T CORONA. ELONGUED. T CORONA. ELONGUED. T CORONA. ELONGUED. T CORONA. ELONGUED. T CORONA, ELONGUED. T CORONA, ELONGUED. T CORONA, ELONGUED. T CORONA; BABY. T CORONA; BABY. T CORONA; BABY. T CORONA; BABY. T CORONAE. C C C C C C C C C C C C C C C C C C C | Field | F545 | F299 | F198 | F416 | F198 | F199
F247 | F356 | F154 | F247 | F299 | F299 | | F299 | F356 | F053 | i | F247 | F300 | F199 | | F116 | F 199 | | F115 | F100 | F247 | F199 | F300 | F356 | F357 | F199 | F547 | F356 | | F199 | F247 | F248 | F 14 | F155 | F248
F199 | | Notes T CORONA AND IS OFF-CENTER. SCATTERED A T CORONA AND IS OFF-CENTER. SCATTERED A T CORONA. SUPERPOSED ON ANOTHER CLUST & 3td HAVE FAINT CORONAE. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA. ELONGATED. T CORONA, SUPERPRIST. ATTERED. LOCATED IN CHAIN OF GROUPS. ESPIRALLS. MORPHOLOGICALLY DIVERSE. SCATEBROUNDS. T CORONA, 3td IS LENTICULAR. PART OF A LAB TAVE FAINT CORONAE. MORPHOLOGICALLY DI SELONGATED. DNA; 3td IS LENTICULAR. PART OF A LAB T CORONA, 3td IS LENTICULAR. PART OF A LAB SELONGATED. ONA (LD?). SCATTERED WITH SILGHT CONCENT SRACE-ON SPIRALS. SCATTERED. ONA (LD?). SCATTERED. ONA (LD?). SCATTERED. T CORONAE. FE FAINT CORONAE. FE FAINT CORONAE. FOSEITON WITH 3td. SOMEWHAT SCATTERED. T CORONA. SOMEWHAT CALAXIES. GALAXIES SOMEWHAT CALAXIES. GALAXIES SOMEWHAT CALAXIES. GALAXIES SOMEWHAT CANTRALLY CONDENSE T CORONA. SOMEWHAT CANTRALLY CONDENSE T CORONA. SOMEWHAT CANTRALLY CONDENSE T CORONA. 2nd IS SPIRAL WITH DUST LANE. SC DNA. BRIGHTERD WITH CONCENTRATION IN Q.2. E. SCATTERED WITH CONCENTRATION IN Q.2. E. LOOSELY SCATTERED ARGER CLOUD. ROUND SFIRAL. PART OF A LOOSELY SCATTER RROUND SFIRAL. PRISE. | Abell | S0287
S0288 | S0289 | S0290 | S0291 | S0292 | S0293 | S0294 | S0295 | S0296 | 20902 | 2002 | 0 | S0300 | S0302 | S0303 | | S0304 | 50300 | S0308 | | S0309 | 50311 | | S0312 | 50313 | S0314 | S0315 | S0316 | | | S0317 | S0318 | S0319
S0330 | | S0321 | | | S0322 | | S0324
S0325 | | | | - | 1st HAS FAINT CORONA. SUPERPOSED ON ANOTHER CLUST | | | | | | | | | | 1st AND 3rd HAVE FAINT CORONAE. MORPHOLOGICALLY DI | | | 1st & 2nd ARE FACE-ON SPIRALS. SCATTERED WITH SMALL | | SOUTH, SUPERPOSED ON MORE DISTANT CLUSTER. | IST DAY CONOINA; STO IS BARRED STIRAL. NEAR E FLATE ED I.OW(?) | | | | - | | 1st HAS FAINT CORONA. SOMEWHAT OVERLAPPING WITH | SCALTERED. IN CLOUD OF FAINT GALAXIES. RRIGHTEST GALAXIES SOMEWHAT CENTRALLY CONDENSE | SCATTERED. | | | | | | | | | | | | | _ | 1st IS FOREGROUND SPIRAL. PART OF A LOOSELY SCATTERED CLOUD OF FAINT GALAXIES. | | Field | 1 1 | | | | | | | F246 | | | F415 | | | | | | | | | F355 | F545 | F415 | | | F299 | F246 | | F545 | F115 | F014 | | F198 | F355 | F.299 | F115 | F299 | F081 | F198 | F115 | F246 | F247 | | Abell Abel | bell | 346 | 47 | P | 49 | 2 2 | 2 | 33 | 4 | 2 | 2.0 | 5 | 28 | 0.5 | 8 | 61 | 62 | č | 3 | 64 | 92 | 99 | 9 6 | 2 | - 9 | 2 | | 2 | 4 7 | 9 | | 13 | 9 2 | 2 | 80 | 22 53 | 2 | 83 | % % | 98 | | | Notes | SCATTERED. 1st HAS FAINT CORONA. COUNT MAY BE CONTAMINATED BY CLUSTER TO N. 1st HAS CORONA SCATTERED. | | 1st HAS FAINT CORONA. SPIRAL-BICH. | 1st IS ELONGATED AND WITH CORONA. SCATTERED. | | | 18t IS SPIKAL; 3rd HAS FAINT CURONA. | 18t HAS FALIN CONOUN. NEARD I CHOSTERS SUFERFUSED. Fornex Cluster, 1st HAS CORONA AND GLOBILLARS, OTHER FILIPTICALS | | | 18t HAS VERY FAINT CORONA.
SCATTERED WITH SEVERAL PAIRS OF BRIGHT (FOREGROUIND) INTERACTING | GALAXIES SUPERPOSED. | 1st HAS CORONA (cD?). OVERLAPS TO WEST WITH ANOTHER. | SCATTERED WITH CONCENTRATIONS IN Q.2 & Q.4. SOMEWHAT ELONGATED. | | 1st HAS CORONA. SCATTERED. | 1st HAS FAINT CORONA. SCATTERED. | 1st HAS FAINT CORONA. | 1st IS FACE-ON SPIRAL (FOREGROUND?). SCATTERED. | SCATIERED. | 1st HAS CORONA, SEVERAL CONCENTRATIONS, NEAR IN PLATE EDGE, COUNT | LOW. | STAR SUPERPOSED ON 1st; 3rd IN COMPACT GROUP. SCATTERED. | Group superposed? 3rd is spiral. | 1st HAS DOUBLE NUCLEUS (COMPANION SUPERPOSED?); 2nd HAS FAINT | OCHOINA: MAINT FAINT MEMBERS IN Q'ILQ'E-N. 18t HAS COMPANION SUPERPOSED OR DOUBLE NUCLEUS: 2nd HAS VERY FAINT | CORONA. MANY FAINT GALAXIES IN Q:1. | 1st HAS FAINT CORONA. SCATTERED. | 1st and 3rd in foreground? | 1st & 3rd HAVE CORONAE: 2nd IS FACE-ON SPIRAL. | SOMEWHAT ELONGATED. | SOMEWHAT ELONGATED. | SCALLERED; SOMEWHAL STINAL-NICH: 1st IS ELLIPTICAL, 2nd IS SPIRAL, 3rd HAS FAINT CORONA. SCATTERED. | 2nd & 3rd HAVE FAINT ENVELOPES. SLIGHT CENTRAL CONCENTRATION. | SEVERAL BRIGHT GROUPS NEARBY. | Group superposed! 1st multiple.
1st HAS VERY FAINT CORONA SCATTIERED | SLIGHTLY CENTRALLY CONDENSED AND DOMINATED BY A BRIGHT ELLIPTICAL | WITHOUT APPARENT CORONA. | 186 MAS VEIG FAILT COROTA: SCALLERED, NEAR Q.IW FEALE EDGE, COOK! LOW. | 1st HAS CORONA (cD). WIDELY SCATTERED WITH SUPERPOSITION OR SUBCLUSTERING. | | |-----------|--|-------|------------------------------------|--|-------|-------|--------------------------------------|---|---|-------|--|----------------------|--|---|-------|----------------------------|----------------------------------|-----------------------|---
--|---|-------|--|----------------------------------|---|---|-------------------------------------|----------------------------------|----------------------------|--|---------------------|---------------------|--|---|-------------------------------|---|---|--------------------------|--|--|--| | Field | F358
F301 | | F249 | F358 | F117 | F358 | F117 | F358 | | F200 | F200 | | F156 | F083 | | F032 | F083 | F117 | F083 | F308 | F358 | | F117 | F359 | F003 | F004 | | F156 | F482 | F249 | F200 | F201 | F 1050
F 249 | F156 | 200 | F 359 | F249 | F950 | 1.400 | F156 | | | Abell | S0363
S0364
S0365 | 20366 | S0367 | S0368 | S0369 | S0370 | 50371 | S0373 | | S0374 | S0375
S0376 | | S0377 | S0378 | 50380 | | S0381 | | S0382 | S0383 | S0385 | | S0387 | S0388 | S0389 | | | S0390 | 50391 | S0393 | S0395 | 20308 | S0398 | S0399 | 00700 | S0400 | S0402 | | | S0404 | | | eld Notes | SOME EVIDENCE OF SUBCLUSTERING (OR SUPERPOSITION) AT WESTERN EDGE. 1814 & 2nd HAVE FAINT CORONAE. SCATTERED AND MORPHOLOGICALLY DIVIDEST | | | | •• | | | ALCONORELY SCATTERED & MORPHOLOGICALLY DIVERSE, SUPERPOSITION WITH | _ | | 248 1st IS SPIRAL; 3rd HAS FAINT CORONA. SCATTERED, MORPHOLOGICALLY DIVERSE 1: SOMEWHAT SPIRAL, RICH | | | 155 1st has very faint corons. | | 1st HAS FAINT CORONA. | | | | WITH SOME CENTRAL CONCENTRATION. MORPHOLOGICALLY DIVERSE AND COMEWHAT SDIRAL BICH | | | , | | CLUSTER SUPERPOSED? | US4 IST IS SU (FOREGROUND!). SCATTERED, MORPHOLOGICALLY DIVERSE, AND SPIRAL-RICH. | | | 558 SCATTERED. | | | | 150 Finace coge. 1st nas corona.
083 1st HAS FAINT CORONA: 2nd & 3rd ARE SPIRALS. MORPHOLOGICALLY | | | 249 IST HAS FAINT CORONA. | 1st IS PROBABLY FOREGROUND. LOOSELY SCATTERED. | | | | | | Field | F199 | F199 | | | | | F300 | | | | F248 | F417 | | F155 | | | | | F248 | F948 | | | | F083 | | F034 |) F031 | | F358 | | | F117 | F 155 | | | F.249 | | F548 | | | | | Abell | S0326
S0327 | S0328 | 20390 | | S0330 | S0331 | 50332 | 50334 | | S0335 | S0336 | S0337 | S0338 | S0339 | 50340 | 1 | S0342 | | S0344 | 20345 | S0346 | 50347 | S0348 | | 07007 | 50349 | S0350 | S0351 | S0352 | 20995 | S0354 | | S0355 | | S0356 | C0357 | S0358 | S0359 | S0361 | S0362 | | | 11 | | | | | | | | | | | | | | | | | | 10 | 24 | Notes | 1st HAS CORONA. QUITE SCATTERED AND MORPHOLOGICALLY DIVERSE. | 18t HAS CORONA. NEAR W-INW FLATE EDGE, COUNT DOW: 1st HAS FAINT CORONA. TWO BRIGHT CONCENTRATIONS. | ELONGATED WITH BRIGHTEST MEMBERS SOMEWHAT CENTRALLY CONDENSED. | 18t IS SUFERFOSTITON:
1st HAS FAINT CORONA WITH FAINT COMPANION SUPERPOSED. | 2nd & 3rd HAVE FAINT CORONAE. SCATTERED. | 1st IS ELONGATED WITH FAINT CORONA. | COMPACT. | IST AFFEARS TO BE SUFERFUSITION WITH FAINT FLUME. SUMEWHAT | SCATTERED AND MORPHOLOGICALLY DIVERSE, MAY BE SUPERPOSED ON | FAINTER CLUSTER. | 3rd HAS FAINT CORONA. | 1st IS SPINDLE. | 1st & 2nd (SPIRALS) PROBABLY FOREGROUND. 3rd HAS CORONA. LOUSELY SCARMINGER | SCALIERED.
1st HAS BAINT CORONA SCATTERED | 1st IS ELONGATED WITH CORONA; 2nd IS SPIRAL; 3rd HAS CORONA. | MORPHOLOGICALLY DIVERSE. | 1st HAS CORONA. SCATTERED. SUPERPOSED ON CLUSTER TO E-SE. | 1st IS ELLIPTICAL(?) WITH CORONA. | STORY FAINT COROUNTS TO CONTRACT FOR THE BROWN | ISE & 2nd HAVE FAINT CORONAE. SCALLERED. NEAR GEN FEALE EDGE,
COINT SLIGHTLY LOW | 1st HAS FAINT CORONA. CLUSTER CENTERED ON 3rd. | 1st & 2nd MAY BE FOREGROUND. SCATTERED. | MORPHOLOGICALLY DIVERSE AND SCATTERED. | 1st & 2nd HAVE CORONAE, 3rd IS SB(r). | 18t & 2nd Ake Spirals, std is Spindle. | 186 MAS CONCINA (CD.). WIDELI SCALLERED AND MORFHOLOGICALLI DIVERSE. SCATTERED SIDERPOSED ON DISTANT CLIISTER IN 0.3 | 1st IS (FOREGROUND?) SPIRAL: 2nd & 4th HAVE CORONAE. | 1st IS SB(r)b (FOREGROUND?). MORPHOLOGICALLY DIVERSE. | 1st IS (FOREGROUND?) SO. SCATTERED. | 1st HAS CORONA & SUPERPOSED COMPANIONS. SCATTERED. | 1st HAS CORONA (cD). LENTICOLAR-RICH. SOMEWHAT SCATTERED. | ISU & ZHU BAYE VERI FAINI CONCINEE.
SCATTERED, 1st & 3-d HAVE VERY FAINT CORONAE. | 1st IS SPIRAL (PROBABLY FOREGROUND); 2nd IS SUPERPOSITION. | SCATTERED. | 1st HAS FAINT CORONA. SCATTERED. LITTLE CENTRAL CONDENSATION. | 1st IS INTERACTING PAIR, 2nd & 3rd HAVE CORONAE. | IST HAS COROTA (6D:). SCALLERED AND SCHIEFINAL MORE HOLOGICALELI
DIVERSE. | 1st HAS FAINT CORONA. CONCENTRATION TO NE. | 1st HAS CORONA (cD). SCATTERED AND MORPHOLOGICALLY DIVERSE. | SCATTERED. | 1st HAS CORONA. SCATTERED AND SPIRAL-RICH.
1st & 3rd HAVE FAINT CORONAE. SCATTERED. NEAR N PLATE EDGE, COUNT | SOMEWHAT LOW? | 1st HAS FAINT CORONA, 3rd IS SB(r)bc. SEVERAL CONCENTRATIONS. | 180 & 2HU ARE SUFERFUSITIONS, SUALIERED, CONCENTRATION (UN | |----------|--|--|--|--|--|-------------------------------------|----------|--|--|------------------|---|-----------------|---|--|--|--------------------------|---|--|--|---|--|---|--|---------------------------------------|--|--|--|---|-------------------------------------|--|---|--|--|------------|---|--|--|--|---|----------------------------|---|---------------|---|--| | Field | F420 | F421 | F420 | F421 | F250 | F202 | F250 | F 202 | F420 | ! | F421 | F421 | F.202 | F360 | F157 | | F360 | F421 | F421 | F 055 | F251 | F551 | F421 | F421 | F 301 | F 551 | F202 | F304 | F202 | F421 | F202 | F004 | F421 | F360 | F361 | F361 | 1001 | F251 | F251 | F421 | F361
F421 | | F361 | F 991 | | Abell | S0449 | S0450 | S0452 | 50453 | S0454 | S0455 | S0456 | 20407 | S0458 | | | S0459 | S0461 | S0469 | S0463 | | S0464 | S0465 | 50400 | 20407 | S0468 | S0469 | S0470 | S0471 | 50472 | S0474 | S0475 | S0476 | S0477 | S0478 | 50479 | 20400 | S0481 | S0483 | | S0484
C0485 | 20406 | S0486 | S0487 | S0488 | S0489
S0490 | | S0491 | 76500 | | ld Notes | | | 1st HAS CORONA. SOMEWHAT MORPHOLOGICALLY DIVERSE. | 15 IST HAS CORONA. | | | | | 17 IST HAS CORONAL SCALLEMED. DRIGHTEST MEMBERS ARE STIMALS AND SUS. | | 1st IS SPIRAL. BRIGHTEST ARE SPIRALS AND LENTICULARS. SC. | | | 53 IST IS SPINDLE, SUATTERED AND SLIGHTLY LENTICOLAR-RICH. | | | | 10 1st HAS FAINT CORONA, 2nd IS LENS. SERPENTINE APPEARANCE. | | 50 SCATTIERED; IN A SCATTIERED CLOUD OF GALAXIES. | | 1st IS ELONGATED WITH CORONA. | • | | | 18 Two groups superposed. | | | | | | 30 Ist in foreground? 2nd m = 19.2. | , ,_ | | | 50 2nd cluster 15' f (obscured by bright star) in same supercluster. | 1st has faint corona, scallered and moreholdscalled | SOUTH OF CALIBRATION CUTOUT: COUNT SOMEWHAT LOW. | | Nearer group superposed f. | 50 SLIGHTLY CENTRALLY CONDENSED. BRIGHTER GROUP SUPERPOSED. 12 14 IS DISTORTED SPIRAL. MORPHOLOGICALLY DIVERSE. | | • | 00 1st HAS FAINT CORONA. SCATIERED. | | Field | F003 | F004 | F014 | F015 | F201 | F084 | F117 | F055 | F117 | F117 | F083 | F117 | F250 | F083 | F303 | F201 | | F250 | F420 | F250 | F117 | F117 | F550 | F032 | F117 | F118 | F 201 | | F201 | F202 | F250 | F350 | F250 | F250 | | F550 | F420 | F 201 | F202 | F550 | F250 | F250 | F420 | F360 | | Abell | S0405 | | | SOAOR | S0407 | S0408 | | S0409 | S0410 | S0412 | S0413 | S0415 | S0416 | 20417 |
20410 | S0419 | | S0420 | S0421 | S0423 | S0425 | S0426 | S0427 | S0428 | S0429 | 50430 | 50431 | 70100 | S0433 | | S0434 | 50435 | 50437 | S0438 | | S0439 | S0440
S0449 | 20447 | | S0443 | S0444
S0445 | S0446 | S0447 | S0448 | 1 | 25 | a | |---------------| | æ | | Z | | Ξ | | 8 | | Ü. | | Ĭ | | മ് | | $\overline{}$ | | Щ | | _ | | 9 | | ⋖ | | | | Abell | ll Field | Notes | Abell | Field | Notes | |-------|-----------|---|----------------|--------------|---| | | | | | | | | SOA03 | 2
F551 | SUPEROSITION?) IN Q.3. WITHELY SCATTERED, AND MORPHOLOGICALTY DIVERSE | S0532
S0533 | F204 | 1st HAS CORONA, WIDELY SCATTERED. | | S0494 | | 1st HAS FAINT CORONA (cD?). NEARER LOOSELY SCATTERED CLUSTER | S0534 | F204 | 1st IS (FOREGROUND?) SPINDLE; 3rd HAS FAINT CORONA. | | į | | SUPERPOSED. | | | MORPHOLOGICALLY DIVERSE. | | S0495 | 5 F202 | IST HAS FAINT CORONA AND SUPERPOSED FAINT COMPANION. MORPHOLOGICALLY DIVERSE | S0535
S0536 | F363
F423 | 1st is fureground spindle, 3rd is brighter of pair.
1st has corona | | | F251 | 1st HAS FAINT CORONA AND FAINT COMPANION. | | F424 | 1st HAS CORONA (cD). NEAR W PLATE EDGE (Q-4), COUNT LOW? | | S0496 | | SCATTERED. CENTER DOMINATED BY BRIGHT SPIRALS AND INTERACTING | S0537 | F120 | 1st HAS CORONA (cD); 2nd IS SA(r). | | | | PAIRS. | 80238 | F306 | 1st HAS FAINT CORONA. LENTICULAR-RICH. NEAR Q:4-S PLATE EDGE, | | S0497 | 7 F251 | 1st HAS CORONA (cD). LOOSELY SCATTERED, MORPHOLOGICALLY DIVERSE. | | | COUNT SOMEWHAT LOW. | | 000 | ľ | INCLUDES DOUBLE RING SB(r). | S0539 | F306 | 1st & 2nd MAY HAVE FAINT CORONAE. SOMEWHAT ELONGATED. | | S0498 | F 301 | SCALLERED. | S0540 | F 300 | 184 HAS BALENDED AND ELONGALED CONCINA, MORT HOLOGICALEL DIVERSE. | | S0500 | | 1st IS SPIRAL: 3rd IS ELLIPTICAL SPIRAL-RICH, NEAR O: 1-W PLATE | | | GROUP AT NORTHERN EDGE. | | | | | S0542 | F204 | 1st HAS CORONA (cD), BRIGHTER MEMBERS ARE MOSTLY SPIRALS. | | S0501 | 1 F202 | 1st IS PROBABLY FOREGROUND ELLIPTICAL. 2nd & 3rd ARE SPIRALS. | | | MORPHOLOGICALLY DIVERSE. | | S0502 | | 1st HAS VERY FAINT CORONA. SCATTERED. | | F205 | 1st HAS CORONA (cD). BRIGHTEST CLUSTER MEMBERS ARE S & SO. | | S0503 | | lst is spiral. | | | MORPHOLOGICALLY DIVERSE. | | S0504 | | | S0543 | F204 | 1st, 2nd, & 3rd ARE SPIRALS. SCATTERED. | | S0505 | 5 F251 | 1st HAS FAINT CORONA AND IS OFF-CENTER. NEAR Q:3-E PLATE EDGE AND | | F205 | 1st & 2nd ARE SPIRALS. SCATTERED. NEAR Q1:N CALIBRATION CUTOUT, | | | | CALIBRATION CUTOUT. COUNT LOW. | | | COUNT LOW. | | | | 1st IS OFF-CENTER WITH CORONA. MORPHOLOGICALLY DIVERSE. | S0544 | F424 | 1st IS S0. | | | | Very compact. | S0545 | F363 | 1st IS LENTICULAR WITH CORONA. MORPHOLOGICALLY DIVERSE. | | 12 | | SCATTERED. | S0546 | F364 | 1st IS FACE-ON SPIRAL. SPIRAL-RICH. PECULIAR PAIR (DUMBBELL) | | | | FAIRLY SCATTERED. CONCENTRATION IN Q.1. | 17 100 | 7000 | INCLUBED. | | S0509 | | SCATTERED. | S0547 | F.204 | 18t HAS CORONA (cD), SEVERAL SPINDLES. | | S0510 | | SCATIBILED. | | F205 | 18t has corona (cd), brightest closter members are lenticolars.
1st has corona (cd): 3-d is spinite so. bich | | 50511 | 1 FU63 | IS IS DECECON EVILLY INCAL, SOCIAL LEBED. DESCRIPTION MONDEDE IN CONTENT AT INDA D DISTRIBITION MODDIFFICATIVE | COSAB | F 201 | SOMEWHAT SPIRAL BICH MORPHOLOGICALLY DIVERSE NEAR OLLW PLATE | | 3091 | | BRIGHTEST MEMBERS IN SOMEWRAL LINEAR DISTRIBUTION: MORFROLOGICALLI
DIVERSE. | 01000 | 107.1 | EDGE, COUNT SOMEWHAT LOW. | | S0513 | 3 F305 | SCATTERED, MORPHOLOGICALLY DIVERSE. | | F307 | IN Q:4-SE CORNER, COUNT LOW. | | S0514 | | SCATTERED. 18t IS LENTICULAR. COUNT MAY BE CONTAMINATED BY | S0549 | F364 | 1st HAS CORONA. NEAR N(W) CALIBRATION CUTOUT, COUNT SOMEWHAT LOW. | | | | FOREGROUND GROUP. | | F424 | 1st HAS CORONA AND COMPANION. | | S0515 | 5 F305 | 1st, 2nd, & 3rd HAVE FAINT CORONAE. FOREGROUND SPIRAL IGNORED. | S0550 | F363 | 1st HAS CORONA, 3rd IS SPINDLE WITH CORONA. | | | | DUMBBELL SHAPED. | | F364 | 1st HAS CORONA. SEVERAL CONCENTRATIONS. | | S0516 | | Compact. | S0551 | F205 | SCATTERED. | | S0517 | | 1st has corona. | S0222 | F120 | 1st IS LENTICULAR (FOREGROUND?); 3rd IS ELLIPTICAL. | | S0518 | 8 F204 | 1st HAS VERY FAINT CORONA AND APPEARS TO BE SUPERPOSITION. | 2 | 1000 | MORPHOLOGICALLY DIVERSE. | | | | SCATIERED. | 20993 | F 307 | SCALLEMEN. | | S0519 | | 3rd has corona. | S0554 | F000 | SCATTERED. 18t HAS FAINT CORONA (cD:). | | 00100 | | 1st in foreground? 2nd m = 18.7. 3rd has corona. | ccenc | F 307 | 18t HAS ELONGALED CORONA. | | 20520 | 1 1205 | 181 188 COTOLS. | SOSSA | F254 | 34 HAS BAINT CORONA MORPHOLOGICALLY DIVERSE | | 50521 | | 18t HAS FAINT CORONA. NEAR QUE'N FLAIE EDGE, COOK SOMEWHAT EOW. | S0557 | F205 | 1st HAS FAINT CORONA, SCATTERED. | | S0523 | | 1st is smiral. | S0558 | F120 | 1st, 2nd, & 3rd ARE SPIRALS. MORPHOLOGICALLY DIVERSE, SPIRAL-RICH. | | S0524 | | 1st & 2nd ARE INTERACTING SPIRALS. SPIRAL-RICH. | S0559 | F307 | MORPHOLOGICALLY DIVERSE. 1st IS S0. | | S0525 | 5 F204 | | S0560 | F120 | 1st HAS CORONA (cD); 2nd IS SB(r). | | S0526 | | 1st APPEARS TO HAVE VERY FAINT CORONA. FOREGROUND GALAXIES IGNORED. | S0561 | F120 | 1st HAS CORONA (cD?); 2nd & 3rd ARE SPIRALS. SOMEWHAT SPIRAL-RICH. | | S0527 | | 1st HAS CORONA. | S0562 | F425 | 2nd HAS ELONGATED CORONA. SCATTERED AND SOMEWHAT MORPHOLOGICALLY PRIMESES | | 00100 | | 184 HAS CORONA AND FAINT COMPANION. | COERS | D984 | DIVERSE. | | 50528 | F 252 | 18t IS LENS. SOMEWHAT SPIKAL-KICH. = KPOIZ. | S0564 | F 254 | 18t IS INDANUE FROE-ON SD(F).
3rd HAS FAINT CORONA. | | 50529 | | 186 BAS YEAT FAIN LOUNDING BRACHTEST MEMBERS OF CENTERS. | 5000 | F307 | 1st HAS CORONA AND FAINT CLOSE COMPANION. | | | | | _ | | | | Notes | 2nd HAS FAINT CORONA; 3rd IS IN CLOSE PAIR. ELONGATED (SE-NW) WITH SEVERAL CLOSE PAIRS. | 1st HAS FAINT CORONA; 2nd IS IN CLOSE PAIR. MORPHOLOGICALLY
DIVERSE. | 1st HAS CORONA, 2nd IS SPIRAL. S-W OF SAO 235635. NEAR Q4:S PLATE | EDICE, COUNT DOW. 1st HAS VERY FAINT CORONA. SCATTERED WITH A SLIGHT CONCENTRATION | IN Q:1. | 1st HAS FAINT CORONA. SCATTERED.
1st APPEARS TO BE INTERACTING WITH CLOSE COMPANION. | 1st IS SB(r). SCATTERED. | 1st HAS CORONA. | 1st HAS FAINT CORONA. SCATTERED AND MORPHOLOGICALLY DIVERSE.
SCATTERED | 1st HAS FAINT CORONA. | Group superposed sp. | GALAXY IS A MEMBER. | Group superposed. | 18t has corona.
1st HAC CORONA (ch) COMEWHATT CENTRALIY CONDENSED | 18t HAS FAINT CORONA; 3rd IS SPIRAL. SOMEWHAT SCATTERED. | Group superposed. Focus/seeing worse than average; counts | under dam.
1st HAS CORONA. | 1st HAS FAINT CORONA. SCATTERED. | 1st HAS CORONA. NEAR S PLATE EDGE, COUNT LOW. | 186 HAS CORONA (ED.:). SOMEWHAT SCALLERED AND MOM HOLOGICALD! DIVERSE. | 1st IS SB(?). SCATTERED, BUT ONLY GROUPING IN THIS REGION. | Group superposed nf. | 1st HAS CORONA. MANY FAINT GALAXIES WITH SOME CONCENTRATIONS. | 18t HAS CORONA, SOLITERED.
1st HAS CORONA, ISOLATED. | SCATTERED, 1st IS SPINDLE. | 1st HAS CORONA. MORPHOLOGICALLY DIVERSE. | 1st HAS CORONA AND FAINT SUPERPOSED COMPANION; 2nd IS SB(r). | 18t IS ELONGATED WITH EXTENDED CORONA (cD?). MORPHOLOGICALLY | DIVERSE AND SCATTERED. | 1st & 2nd HAVE CORONAE. MORPHOLOGICALLY DIVERSE, SOMEWHAT | ELONGATED.
SOMEWHAT OVAL IN APPEARANCE, 1st IS SPIRAL(?). | 1st spiral, in foreground? | 1st & 3rd HAVE FAINT CORONAE. MORPHOLOGICALLY DIVERSE AND SOMEWHAT SPIRAL-RICH | 1st IS SPIRAL (FOREGROUND?); 3rd HAS FAINT CORONA. SCATTERED AND | MORPHOLOGICALLY DIVERSE. | 1st IS SPIKAL. MORPHOLOGICALLY DIVERSE, SPIKAL-KICH. 1st HAS CORONA(?); 2nd IS SB(r)b. MORPHOLOGICALLY DIVERSE. | 1st in foreground? 2nd $m = 19.5$. | 1st PROBABLY FOREGROUND. 2nd HAS CORONA. SCATTERED. 1st IS THICK SPINDLE WITH FAINT CORONA. | | |-------|---|---|---|---|-----------------------------------|---|--------------------------|--|---|---|----------------------|---|----------------------------|--|--|--|--|---|---|--|--|---|---|---|--|--|--|--|------------------------|---|--
---|--|---|--|---|---------------------------------------|---|--| | Field | F005 | F006 | F209 | F005 | | F006 | F018 | F431 | F562 | F496 | F565 | 101.1 | F498 | FSSS | F434 | F434 | F499 | F374 | F374 | F 300 | F316 | F567 | F374 | F316 | F374 | F374 | F316 | F375 | | F375 | F375 | F375 | F264 | F437 | , | F214 | F569 | F437
F376 | | | Abell | S0605 | | S0606 | S0607 | | S0608 | 6090S | S0610 | S0611
S0612 | S0613 | S0614
S0615 | 01000 | S0616 | 71905 | S0618 | S0619 | S0620 | S0621 | S0622 | 30023 | S0624 | S0625 | S0626 | S0628 | S0629 | S0630 | S0631 | S0633 | | S0636 | S0638 | | S0639 | S0640 | 9 | S0643
S0643 | S0645 | S0646
S0647 | | | Notes | SCATTERED. 1st IS PAIR IN COMMON ENVELOPE; 3rd IS SB(r). MORPHOLOGICALLY | DIVERSE. 14 IS PLONG ATED WITH CORONA (CD2) IN VERY DENGE STAR RIPLD | AINT STARS? | 1st HAS CORONA, SCATTERED. | 1st HAS CORONA (FACE-ON SPIRAL?). | 1st HAS CORONA AND KNOTTY ARC, SCATTERED. | | MORPHOLOGICALLY DIVERSE, SOMEWHAT SPIRAL-RICH. | 1st HAS CORONA. SOME OVERLAP WITH CLUSTER TO NW. | 18. IS CLOSE FAIR IN COMMON(!) ENVELOYE. MORFHOLOGICALLI DIVERSE, POSSIBLY WITH NEARER GROUPS SUPERPOSED. | | SCALLERED AND DIVERSE, THIS MAY BE SUPERPOSITION OF TWO GROUPS. | 1st HAS CORONA. SCATTERED. | 1st HAS VERY FAINT CORONA. | IST IS ELUNGATED WITH CURONA (cD). AT QZ:N FLATE EDGE, COUNT
LOW. | 1st IS ELONGATED WITH CORONA (cD), BRIGHTEST MEMBERS ARE SO'S. | IST IS EDGE-ON ELLIPTICAL WITH EXTENDED CORONA. BRIGHTEST ARE TENTRITIABLE | 1st & 2nd HAVE FAINT CORONAE. SOMEWHAT SCATTERED; BRIGHTEST | OFF-CENTER. | Group superposed.
ELONGATED | 1st IS ELONGATED WITH CORONA (cD). | 1st & 2nd HAVE FAINT CORONAE; 3rd IS SPINDLE. MORPHOLOGICALLY | DIVERSE. AT Q.3-E PLATE EDGE, COUNT LOW. | 1st HAS FAINT CORONA (THICK SPINDLE). | 18t IS SOMDREAD, SEA IS SEB. MORE HOLOGICALLE DIVERSE.
1st HAS FAINT CORONA. IN DIFFRACTION RINGS OF SAO 196857 & 196861: | COUNT LOW. | 1st IS SPIRAL, 3rd HAS CORONA. | Group superposed. 3rd is spiral. | Group superposed np. | 1st HAS CORONA, 3rd IS SUPERPOSITION. | FOREGROUND SPIRAL IN FIELD. JUST SOUTH OF SAO 197183. | TRUE. TO TAILLY CONCIN. COURT MAY BE SOMEWHAT BOW DUE TO MUN STAR. FIELD. | 1st HAS FAINT CORONA; 2nd IS SUPERPOSITION. SCATTERED. | 18t has fain I Corona. Scallered, members primarily ellipticals and
Lenticulars. | 1st, 2nd, & 3rd HAVE CORONAE. MORPHOLOGICALLY DIVERSE. | 1st HAS VERY FAINT CORONA, 2nd IS SPIRAL. BRIGHTEST MEMBERS ARE MOSTLY SPIRAL. | SCATTERED. BRIGHTEST ARE ELLIPTICALS. | SCATTERED. SLIGHT CONDENSATION NEAR BRIGHTEST ELLIPTICALS. 1st IS PACE-ON EARLY SPIRAL: 3rd IS LATE SPIRAL. | | | Field | F205
F254 | FORE | 900 | F425
F205 | | F425 | | | F364 | | | F254 | | | F.160 | F205 | F.206 | F489 | | F087 | | F086 | ; | F160
F265 | | | | F161
F308 | | | F366
F366 | 000.1 | F058 | | | F207 | F034 | F035
F208 | | | Abell | S0565
S0566 | CO5.67 | | S0568
S0569 | S0570 | 20571 | 20911 | S0572 | S0573 | 50514 | S0575 | 50577 | S0578 | S0579 | 20280 | 1, | 27 | S0581 | 0 | S0582
S0583 | S0584 | S0585 | | 50587 | S0589 | | S0591 | S0592
S0593 | S0594 | S0595 | S0596
S0507 | 8000 | S0598 | RROOG | S0601 | S0602 | S0603 | S0604 | | | Notes | 1st & 3sd IN COMMON ENVELOPE. 1st HAS CLOSE COMPANION. 1st IS ELONGGATED WITH CORONA. SOMEWHAT SPIRAL-RICH. SCATTERED. SEVERAL UNESCOLVED SPIRALS INCLUDED. 1st & 2ad CLOSE AND OFF-CENTER; CENTERED ON 3sd. 1st HAS CORONA. AND TWO COMPANIONS. 1st HAS CORONA AND TWO COMPANIONS. 1st HAS CORONA AND TWO COMPANIONS. 1st HAS CORONA. AND TWO COMPANIONS. 1st HAS CORONA. SOMEWHAT SPIRAL-RICH. SPIRAL. 2sd IS FACE-ON SPIRAL. 2sd IS FALLY CORONA. SOMEWHAT CENTRALIY CONDENSED. 1st HAS CORONA. SUGHTIY CONDENSED. 1st HAS CORONA. SUGHTIY CENTRALLY CONDENSED AND MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SUGHTIY CENTRALLY CONDENSED AND MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. AND SOMEWHAT SPIRAL. 1st HAS CORONA. MORPHOLOGICALLY DIVERSE, SPIRAL-RICH. 2sd HAYE BENDY. 2sd HAYE FAILT CORONA. SCATTERED. 2sd HAYE BENDY. 2sd HAYE FAILT CORONA. SOLGHLY DIVERSE, SPIRAL-RICH. 2sd HAYE FAILT CORONA. AND SPIRAL. 1st HAS CORONA. MORPHOLOGICALLY DIVERSE, SPIRAL-RICH. 2sd HAYE FAILT CORONA. AND IN SUPERPOSITION. WIDELY SCATTERED. MORPHOLOGICALLY DIVERSE. NARRE GROUP TO N.E. 1st HAY SINT CORONA. NEAR WEST FIDUCIAL MARK. 1st HAS FAINT CORONA. AND REAL WEST FIDUCIAL MARK. 1st HAS FAINT CORONA. AND REAL WEST FIDUCIAL MARK. 1st HAS FAINT CORONA. AND REAL WEST FIDUCIAL MARK. 1st HAS FAINT CORONA. LOSE QUARTET WITH (COMMON?) ENVELOPES INCLUDED. 2st HAS FAINT CORONA. LOSE QUARTET WITH (COMMON?) ENVELOPES. | SCALI LEGED AND MORTHOLOGICALLY UN ERGE. 1st HAS CORONA. DOMINATED BY BRIGHT SPIRALS. 1st HAS FAINT CORONA. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. 1st HAS CORONA, 3rd IS LENTICULAR. MORPHOLOGICALLY DIVERSE. | |----------|--|--| | Field |
F441
F380
F321
F321
F321
F574
F576
F380
F380
F381
F268
F381
F268
F374
F575
F575
F575
F575
F575
F575
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F577
F | F382
F508
F508 | | Abell | \$0691
\$0694
\$0694
\$0696
\$0696
\$0696
\$0696
\$0696
\$0696
\$0696
\$0701
\$0702
\$0703
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711
\$0711 | S0729
S0730
S0731 | | ld Notes | 1st HAS FAINT CORONA. RELATIVELY SPIRAL-RICH. 1st HAS RORONA, 3rd 18 FACEAN SB(pbc. TWO INTERACTING I 1st HAS RORONA, 3rd 18 SUPERPOSITION. MORPHOLOGI DIVERSE, SOMEWHAT SPIRAL-RICH. 1st HAS PAINT CORONA, 2rd 18 SPIRAL, 3rd LENTICULAR. NEAR PLATE EDGE, COUNT SOMEWHAT LOW. 1st & 3rd HAVE CORONA, 2rd 18 EDGE-ON SPIRAL. 1st HAS CORONA, 2rd 18 EDGE-ON SPIRAL. 1st HAS PRINT CORONA. SCATTERED AND MORPHOLOGICALL) 1st EN THORES SPIRALE. 1st HAS PRINT CORONA. SCATTERED. 1st HAS PRINT CORONA. SCATTERED. 1st HAS PRINT CORONA. MORPHOLOGICALLY DIVERSE AND SC SPIRAL-RICH. Two concentrations. 1st HAS PRINT CORONA. MORPHOLOGICALLY DIVERSE AND SC SPIRAL-RICH. Two STRAL RICH. Two SUMEWHAT SPIRAL-RICH SEVERAL CLOSE (INTERACTING?) P 1st HAS FAINT CORONA. 2rd & 3rd ARE IN INTERACTING?) P 1st HAS FAINT CORONA. 2rd & 3rd ARE IN INTERACTING?) P 1st HAS CORONA. 1st HAS PAINT CORONA. SCATTERED. 1st HAS CORONA. And IS SUFFALL. 1st HAS CORONA. And IS SUFFALL. 1st HAS CORONA. AND PHOLOGICALLY DIVERSE AND SOMEWH CONDENSED. 1st HAS CORONA. MORPHOLOGICALLY DIVERSE AND SOMEWH CONDENSED. 1st HAS CORONA. AND IS LOCATED AT EDGE OF C HAS CORONA. AND PHOLOGICALLY DIVERSE. 1st HAS CORONA. SCATTERED. FAINT VERY FAI | 18. IS STRAIL, 2nd SB(r). 3rd HAS FAINT CORONA. NEAR S FLAIE EDIGE, COUNT LOW. 11 1st HAS CORONA. FAIRLY MORPHOLOGICALLY DIVERSE. 11st HAS FAINT CORONA. 2nd IS SUPERPOSITION. SUPERPOSED(?) WITH ANOTHER CLUSTER S-SW. | | Field | | F267 | | Abell |
\$20648
\$20648
\$20650
\$20654
\$20654
\$20654
\$20656
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$20666
\$2 | S0689
S0690 | | u i | 128 | | TABLE 7B—Continued | d Notes | 7 let & 2nd HAVE FAINT CORONAE. SCATTERED WITH SOME FOREGROUND CALLYIES STIPERPOSED | | - | | | 1 In a supercluster. | | | 9 1st & 2nd ARE CLOSE PAIR OF ELLIPTICALS. SOMEWHAT SYMMETRICAL.
5 1st APPEARS TO BE SUPERPOSITION. FAINT STARS MAY CONTAMINATE COUNT. | | | | | | | 12 1st & 2nd ARE SPIRALS; 3rd IS DISTURBED (SUPERPOSITION?). SOMEWHAT
CENTRALITY CONCENTRATED. | | | | CENTRALLY CONDENSED. 44 18t IS SPINDLE. SCATTERED AND SOMEWHAT MORPHOLOGICALLY DIVERSE. | 11 lst and 3rd are spirals. | | | | | | _ | 33 18t PROBABLY FOREGROUND LENTICULAR(?); 3rd HAS CORONA. SCALLERED
CLUSTER IN DENSE STAR FIELD. | 0,2 | 11 1st & 2nd HAVE CORONAE. MORPHOLOGICALLY DIVERSE, SOMEWHAT SPIRAL-
RICH. | . 02 | | | | |-------------|---|---|---|--|--|--|--|---|---|---|--|--|---|---|---|---|--|--|-----------------------|--|---------------------------------------|--|------------------------------------|--|------------------------------|---|-------------|---|--------------------------------|---|--|--|--|---| | Field | 5 F327 | 3 F327 | F386 | | | | F008 | | F009 | | | | F023
F024 | | | 4 F102 | 5 F044 | | 7 F102 | 8 F024 | | 1 F230 | | F281
3 F071 | | F104 | | 6 F183 | | 8 F231 | 9 F025 | | | | | Abell | S0776 | S0778 | | S0779 | S0781 | S0783 | S0784
S0785 | | S0786 | S0787 | S0789 | S0790
S0792 | | S0793 | | S0794 | S0795 | S0796 | S0797 | S0798 | S0799 | S0801 | S0802 | S0803 | S0805 | | | S0806 | S0807 | S0808 | S0809 | S0810 | S0813
S0814 | S0815 | | | CONTENT | | | LS WITH (COMMON?) | CORONAE. | | | | | OMMON ENWELOPE | | Ξ | RINGED | IT LOW. | 3 OF | | JW. | | į | INA. | | | | CATTERED | | | | | | RED BY SAO | | | AME ORCCITE ATTON BY | E OBSCORATION DI | | Notes | SCATTERED AND MORPHOLOGICALLY DIVERSE. | 18t IS SPINDLE, 2nd IS SPINAL. NEAR GI-IN FLAIE EDGE
SOMEWHAT LOW. | 18t HAS FAINT CORONA.
DOMINATED BY BRIGHT LENTICULARS. | CENTER DOMINATED BY QUARTET OF BRIGHT ELLIPTICALS WITH (COMMON?) | VE | ELONGATED. NEAR Q:4-W PLATE EDGE, COUNT LOW. | 1st HAS CORONA; POSSIBLY A FACE-ON SPIRAL. 1st HAS CORONA. SCATTERED, MORPHOLOGICALLY DIVERSE. | 1st HAS FAINT CORONA. SOMEWHAT SCATTERED. | 1st, 2nd, & 3rd ARE LENTICULARS. | 1st HAS CORONA. NEAR QUILL S PLATE EDGE; COUNT LOW. | INCLUDED. BRIGHTEST ARE MORPHOLOGICALLY DIVERSE. | 1st HAS VERY FAINT CORONA; 2nd & 3rd ARE SPIRALS. BRIGHT
(INTERACTING?) TRIPLET INCLUDED. | 1st IS SB(r); 3rd IS LENTICULAR. SPIRAL-RICH WITH TWO RIN
CALAXIES | 1st HAS FAINT CORONA. NEAR N-EDGE OF PLATE, Q.II; COUNT LOW | 1st APPEARS TO BE UNRESOLVED SPIRAL. 1st IS LENTICULAR, 3rd HAS FAINT CORONA. SOME EVIDENCE OF | SUB-CLUSTERING TO NE. | ZEG & STG HAVE FAINT CORONAE. 1st & 2nd HAVE FAINT CORONAE. NEAR ID-CUTOUT; COUNT LOW | 1st has corona. And is spindle. 2nd APPEARS TO BE PAIR IN COMMON(?) ENVELOPE. | 1st HAS FAINT CORONA. | 1st & 2nd ARE SPIRALS (FOREGROUND?); 3rd HAS FAINT CORONA.
1st has corona. 3rd is spiral. = RPO18. | 1st & 3rd ARE ELONGATED WITH CORONAE. | TWO CONCENTRATIONS; SOMEWHAT DUMBBELL-SHAPED. 1st HAS CORONA (cD2), SCATTERED. | 1st is spiral. Scattered. = RPO19. | 1st and 2nd superposed? Core-halo structure. = RPO20. 1st HAS VERY FAINT CORONA: 2nd & 3rd APPEAR TO BE SB's. SCATTERED | AND MORPHOLOGICALLY DIVERSE. | 1st is spiral.
ELONGATED AND MORPHOLOGICALLY DIVERSE. | Plate edge. | 1st IS SO WITH CLOSE COMPANION. SPIRAL_RICH | 1st HAS CORONA, 2nd IS SPIRAL. | 1st & 3rd ARE SPINDLES, SPIRAL-RICH, PARTIALLY OBSCURED pressor TO N | 209659 IO IN.
1st HAS VERY FAINT CORONA: 2nd IS SPIRAL. | 1st IS ELONGATED WITH CORONA. SCATTERED. | 184, 204, & 3rd HAVE CORONAE. SCATTERED. 1-4 TAS CORDINA AND ENTIRE TENENTITIES AD COMPANION SOME ORSCITRATION BY | 1st HAS CORONA AND FAINT LENTICULAR COMPANION: SOM SAO 206037. | | Field Notes | FE68 SCATTERED AND MORPHOLOGICALLY DIVERSE. | . 01 | F382 18t HAS FAINT CORONA.
F383 DOMINATED BY BRIGHT LENTICULARS. | | F576 RATHER ELONGATED. CENTERED ON 1st. 1st & 2nd HAVE COI | | F444 1st HAS CORONA; POSSIBLY A FACE-ON SPIRAL. F324 1st HAS CORONA. SCATTERED, MORPHOLOGICALLY DIVERSE. | 1st HAS FAINT CORONA. SOMEWHAT SCATTERED. | F383 1st, 2nd, & 3rd ARE LENTICULARS. F305 1st HAS CORONA SOMEWHAT SPIRAL-RICH | | | 1st HAS VERY FAINT CORONA; 2nd & 3rd ARE SPIRALS. BH
(INTERACTING?) TRIPLET INCLUDED. | 3rd IS LENTICULAR. SPIRAL-RICH WITH TWO | | F383 1st APPEARS TO BE UNRESOLVED SPIRAL. F383 1st IS LENTICULAR, 3rd HAS FAINT CORONA. SOME EVIDENCI | | 2nd & 3rd HAVE FAINT CORONAE. 1st & 2nd HAVE FAINT CORONAE. NEAR ID-CUTOUT; COU | | | F578 1st & 2nd ARE SPIRALS (FOREGROUND?);
3rd HAS FAINT CORC
F384 1st has corons. 3rd is spiral. = RPO18. | | F511 TWO CONCENTRATIONS; SOMEWHAT DUMBBELL-SHAPED. F578 1st HAS CORONA (cD2). SCATTERED. | | F384 1st and 2nd superposed? Core-halo structure. = RPO20. F511 1st HAS VERY FAINT CORONA: 2nd & 3rd APPEAR TO BE SB's. St | | F326 1st is spiral. F511 ELONGATED AND MORPHOLOGICALLY DIVERSE. | | F511 1st IS S0 WITH CLOSE COMPANION. F385 SPIRAL-BICH | 1st HAS CORONA, 2nd IS SPIRAL. | 1st & 3rd ARE SPINDLES. SPIRAL-RICH. PARTIALLY OBSCU | E327 18t HAS VERY FAINT CORONA: 2nd IS SPIRAL. | | | F327 1st HAS CORONA AND FAINT LENTICOLAR COMPANION: SOM SAO 206037. | | OPE. SORGE | Notes | ON FAINT CLUSTER TO S. 1st HAS VERY FAINT CORONA. 1-4 HAS VERY FAINT CORONA. 1-4 HAS VERY FAINT CORONA. | . 02 | | 1st IS ELONGATED WITH CORONA. MORPHOLOGICALLY DIVERSE. NEAR Q.2-E PLATE EDGE; COUNT LOW. | | 3rd IS SB(r). WIDELY SCATTERED.
1ST IS cD WITH MULTIPLE NUCLEUS AND CORONA. | | _ | | | BRIGHTEST ARE SPIRALS. SCATTERED. BRIGHTEST GALAXIES ARE LINEARLY CONCENTRATED MORPHOLOGICALLY | | 1st HAS CORONA (cD) BUT MAY BE FOREGROUND. FOREGROUND GROUP SITPERPOSED | | | | -, | _ | . | 1st HAS FAINT CORONA; 2nd IS LENTICULAR. | - • • | | SEVERAL BRIGHT FOREGROUND GALAXIES IN FIELD. 1st HAS CORONA. | | EARLY SPIRAL SUPERPOSED.
1st HAS FAINT CORONA: 3rd IS SB(r). BRIGHTEST ARE SPIRALS. | . 02 . | 1st, 2nd, and 3rd HAVE COROINAE. MORE HOUSICALLY DIVERSE.
2nd HAS CORONA, 3rd IS SPINDLE, SI-RICH. | | 1st HAS CORONA WITH AN ELLIPTICAL SUPERPOSED. COUNT CONTAMINATED BY NEARBY CLIETERS | | 1st HAS CORONA. COUNT CONTAMINATED BY SUPERPOSITION WITH | NEIGHBORING CLUS LERS. 14 HAS EXTENDED CORONA. SOME OVERLAP WITH NEARBY CLUSTERS. | | | |---|-------|--|---|--|--|--------------------|--|---|--|--------------------------------------|--|---|--------------|---|--|---|--------|--|--|--|--|---------------------|---|---|--|---|---|---|---|---|-----------------------|---|---|--|---| | GROUND GROUND GROUND E. TWO E. TWO E. TWO C. TERED. TERED. TAY ND ATTONS ATTONS TAY ND TAY ND TAY ND TAY TAY ND TAY | 11 1 | F233 | | | | F234 | | | | | | | | | | | | | | | F340 | | | F597 | | | | | | F341 | | | | | | | Notes to 2 | Abell | | S0862
S0863 | S0865 | S0866 | | S0867
S0868 | S0869 | S0871 | S0872 | 208(3 | S0875 | | S0877 | S0878 | S0880 | S0882 | S0884 | S0885 | S0886 | 20887 | S0888 | 20890 | S0891 | S0892 | S0893 | | S0894 | S0896 | S0897 | S0898 | S0899 | S0900 | S0902 | S0904 | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | _ | | Field | Notes | Group superposed. Group superposed. 4. 0. 1. And Control of the part pa | 1 | | | | 1st HAS FAINT CORONA.
1st HAS FAINT CORONA, SCATTERED. | PHOLOGICALLY DIV | BRUGHT FOREGROUND GALAAIES IGNORED.
1st HAS CORONA. | 1st HAS FAINT CORONA, 2nd IS SPIRAL. | SCATTERED: SOME OVERLAP WITH NEARBY RICH CLUSTER TO E-SE. 1st (cD?) & 2nd HAVE CORONAE. ELONGATED AND MORPHOLOGICALLY | DIVERSE. 1-4 HAS CORONA AND POSSIBLE GLOBIII AR CLIISTERS: 2-4 IS SPIRAL | SPIRAL-RICH. | 3rd HAS EXTENDED ENVELOPE. SOMEWHAT ELONGATED AND SCATTERED. | 1st HAS CORONA (cD?). SLIGHTLY CENTRALLY CONDENSED AND QUITE | DEOGICALLY DIVERSE. 2nd HAS F | | Several concentrations. Counting aperture centered on largest concentration. | Rich, scattered. Nearer cluster superposed sf. | 1st HAS CORONA (cD). SLIGHTLY CENTRALLY CONDENSED. | WIDELY SCATTERED. | 1wo concentrations. | 1st HAS CORONA (cD). SCATTERED AND MORPHOLOGICALLY DIVERSE. | 1st HAS FAINT CORONA (cD). SOMEWHAT SPIRAL AND LENTICULAR-RICH. | 18t & 2nd HAVE FAINT COROINAE. SCALLERED AND MORFHOLOGICALLY
DIVERSE. | 1st [=N6868] HAS CORONA AND GLOBULAR CLUSTERS. 2nd [=N6861] AND
3rd [=N6851] APE ELLIPTICALS | 1st & 3rd HAVE CORONA S. 2nd IS SPIRAL. | 18t & ZDA AKE SPIKALS. SCALTEKED.
1st HAS CORONA (4D?) 2nd IS SO ELONGATED WITH TWO CONCENTRATIONS | (GOA has this as one cluster with A3687). MORPHOLOGICALLY | DIVERSE. | Three concentrations. | 1st IS PROBABLY FOREGROUND SPIRAL. SCATTERED AND SOMEWHAT SPIRAL-
| FAICH. | 1st HAS CORONA (cD). CONCENTRATION IN Q:4 10 SW. 1st HAS CORONA (cD). | 1st IS S0 (FOREGROUND?); 2nd & 3rd HAVE FAINT CORONAE. SUPERPOSED | | Abell Abell S0817 S0819 S0820 S0820 S0822 S0823 S0824 S0824 S0834 S0844 S0844 S0844 S0845 S0848 S084 | | Group superposed. Group superposed. 1.4.6.0.1 bits of one batts on statement at a state of statement of the | SOMEWHAT SPIRAL-RICH. SCATTERED. THE ART CONTINUES OF DESIGNATIVE OF THE PRICE. | LINEARLY CONDENSED. MORPHOLOGICALLY DIVERSE. A FEW GALAXIES PRESENT. | 1st, 2nd, & 3rd HAVE FAINT ENVELOPES. 1st HAS VERY FAINT CORONA: 2nd HAS EXTENDED ENVELOPE. | 1st in foreground? | | SCATTERED, ELONGATED, AND QUITE MORPHOLOGICALLY DIV | | | | | | | | MORFHOLOGICALLY DIVERSE. 1st HAS CORONA (cD). MORPHOLOGICALLY DIVERSE. 2nd HAS F | BULGE. | d Notes | | INCLUDED. ELONGATED. | |---------|--|--| | Field | F531
F531
F531
F531
F531
F531
F538
F538
F538
F538
F600
F108
F108
F601
F601
F601
F601
F601
F601
F601
F601 | F344 | | Abell | \$8962 \$8964 \$9964 \$8964 \$8964 \$8964 \$8964 \$8964 \$8964 \$8964 \$8964 \$8964 \$8964 | S1015 | | d Notes | Two concentrations. Plate edge. 3rd is spiral. 1st and 10th are spiral. = RPO24. 1st and 10th are spiral. = RPO24. 1st HAS CORONA (cD). SOMEWHAT SCATTERED AND MORPH Group superposed. = AC103 in Couch and Newell (1984) and Sharple et al. (1985). 3rd HAS FAINT CORONA. SCATTERED AND SUPERPOSED ON BACKGROUND OF GALAXIES. 1st HAS VERY FAINT CORONA. MORPHOLOGICALLY DIVERSE AND 1st HAS VORONA (cD). SOME SUPERPOSITION WITH NEARBY WELL AS SUBCLUSTERING. 3rd HAS FAINT CORONA. MORPHOLOGICALLY DIVERSE AND 1st HAS CORONA (cD). SEVERAL CONCENTRATIONS. SUPERPOSITION WITH NEARBY WELL AS SUBCLUSTERING. 1st HAS CORONA (cD). SEVERAL CONCENTRATIONS. SUPERPOSITION WITH SORDAN (cD). SEVERAL CONCENTRATIONS. 2nd IS SPIRAL. PART OF A LARGE CLOUD OF GALAXIES. 1st HAS CORONA (cD). SUGHTLY ELONGATED AND MORPHOLOFERSE. 1st IS SPIRAL. 3rd has corona and ring. = RPO25. 1st IS SPIRAL. SCATTERED AND SOMEWHAT OVERLAPPIT (TO NE. TO NE | 1st in Inica Stitutus, and in Stitutus. Monthologically Divense. Corwin noted two concentrations (also in F531), but Olowin has two | | l Field | | r 046 | | Abell |
\$0900
\$0900
\$0900
\$0901
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911
\$0911 | S0961 | | Notes | | Group superposed. SCATTERED. | | ELONGATED. 1st IS DIFFIISE OVAI. WITH CORONA | | | • | | | | and Newell (1985). | | - | | | | | | 1st HAS CORONA AND IS SUPERPOSITION. | | • | | | SEVERAL CONCENTRATIONS IN Q.2 AND Q.4. PART OF A LARGE CLOUD OF DAINT CATAVIES | | | | | | | •. | 1st HAS FAINT CORONA. ELONGATED. NEAR (PART OF?) LARGE CLOUD OF | | | | | | Two concentrations, group superposed. | | Group superposed.
SCATTERED | | | | SCALTERED. | | | | |-------|--|---|----------|---|--|-------------------|---------------------|---------------------------------|----------------------------------|-------------------|----------------------|--|---|---|---------------------|-----------------|-----------------------------------|-------------------------------|--------------------------------------|--|--|--------------|-------|--|----------------------------|--|---|--|---|-------------------------------|--|---|--|---|----------|---|--|--|--|--|--|------------------------------|-------------------|---|-------------------------|---|--| | Field | | | F290 | F603 | F190 | F191 | F239 | | | r 400 | E076 | F010 | F 230 | F239 | F290 | F239 | | F346 | F011 | F049 | | | F470 | F049 | F901 | F535 | F291 | F346 | F347 | F191 | F291 | F049 | F040 | F291 | | F239 | F407 | F239 | F 04.0 | F 191 | F049 | | F110 | F 536 | F470 | F347 | | | Abell | S1068 | S1069 | S1070 | S1071 | S1072 | | S1074 | S1075 | S1076 | 21016 | C1078 | 51018 | 51080 | S1082 | S1084 | S1085 | S1086 | S1090 | S1091 | S1093 | | S1096 | 100 | 21087 | \$1008 | S1099 | \$1101 | | | S1102 | S1103 | S1104 | 21105 | S1106 | | S1107 | 81109 | S1110 | 51111 | S1112
S1113 | S1114 | | S1116 | S1117 | S1119 | S1120 | | | Notes | VERY SCATTERED. 1st IS SPIRAL, 3rd HAS FAINT CORONA. | Plate edge. 1st is spiral, foreground?
1st is spiral. = RPO42. | = RPO43. | 1st HAS IRREGULAR ENVELOPE. SOMEWHAT ELONGATED.
1st & 2nd ARE SPIRATS, SCATTERED, BITT SOMEWHAT CENTRALLY CONDENSED. | 1st & 2nd ARE SPIRALS. SOMEWHAT SCATTERED. | Group superposed. | Two concentrations. | 1st HAS CORONA (cD). SCATTERED. | Group superposed. 3rd is spiral. | Group superposed. | Group superposed sp. | To support power.
In a connection $m/3 \pm 9$ halow plate limit | III & SUPPECTURES: INIQ) + L SUSTON PROSE INTO: | 18t HAS FAINT CORONA (cD2). SOMEWHAT MORPHOLOGICALLY DIVERSE WITH | CONCENTRATION TO N. | 10th is spiral. | Group superposed. 1st has corona. | Sb near sp. Group superposed. | Plate edge. | 16t HAS FAINT CORONA. LOOSELY SCATTERED. | 1st HAS CORONA AND SEVERAL FAINTER COMPANIONS. | SPIRAL-RICH. | | 18t has faint corona, scallered, suferfosed somewhat on closler to N.W. | lat has corona. Plate adde | SCATTERED WITH SOME EVIDENCE OF SUBCLUSTERING. | 1st has corona. Near calibration cutout. Part of A3895? | LOOSELY SCATTERED, BUT SOMEWHAT LINEARLY CONCENTRATED. | Group superposed. Plate edge. Magnitudes uncertain. | 2nd & 3rd HAVE FAINT CORONAE. | This is nearer of two clusters seen in projection. | 1st IS FOREGROUND SPIRAL. 2nd & 3rd HAVE FAINT CORONAE. | ANALY HOLOGICALDED IN PRINCE
1st HAS FAINT CORONA LOCKETY SCATTERED | 1st HAS CORONA (cD) (SUPERPOSED?). SOMEWHAT MORPHOLOGICALLY | DIVERSE. | 1st IS LATE ELLIPTICAL (?). SLIGHTLY CENTRALLY CONDENSED. | 18t & 2nd HAVE FAINT CORONAGE 3rd ISPINDLE. SOMEWHAT SCATTERED | AND SUPERPOSED ON MORE DISTANT GALAXIES. | 18t HOS FRING COROLA (U.S.). SOCITEDAD AND SEIGHTED OVERLANT ING
MITTH NEICHDODING OFFICERD | WILL INDIGHTOLING CLOSTER. 14 HAS PAINT CORONA BRIGHTEST ARE MORPHOLOGICALLY DIVERSE. | 1st HAS VERY FAINT CORONA. CONCENTRATED AT EDGE. | ELONGATED. GROUP SUPERPOSED. | Group superposed. | IST HAS CORONA & SUPERPOSED COMPANION. NEAR Q.Z-E PLATE EDGE, | ELONGATED AND BRANCHED. | 1st HAS CORONA (cD). SOMEWHAT SPINDLE-RICH. APPEARS X-SHAPED. | | | Field | F345 | F189 | F190 | F027 | F049 | F405 | F190 | F076 | F405 | F 190 | F405 | F147 | F345 | F076 | | F190 | F468 | F405 | F406 | F345 | F534 | F345 | F289 | F 340 | F533 | F345 | F405 | F345 | F406 | F290 | F147 | F345 | F345 | F076 | : | F049 | F.590 | 0064 | 067 3 | F011 | F049 | F290 | F406 | F345 | F290 | F290 | | | Abell | S1016 | S1020 | S1023 | S1024
S1027 | | S1028 | S1029 | S1030 | S1031 | 51032 | 51033 | 51035 | 51036 | S1038 | | S1039 | S1040 | S1041 | | S1042 | S1043 | S1045 | S1046 | 51047 | \$1048 | S1049 | S1050 | S1051 | | S1052 | S1053 | S1055 | 51056 | S1057 | | S1058 | S1059 | 01080 | 21000 | S1061 | S1062 | S1063 | S1064 | SIU65 | S1066 | S1067 | 13 | 2 | Notes | Int HAS CORONA, 2nd IS SPINDLE. SOMEWHAT MORPHOLOGICALLY DIVERSE. | |-------
---| | Field | F293 | | Abell | S1174 | | Notes | Group superposed. 1st SPROBABET AF CORGEGROUND SPIRAL. 1st SPROBABET STREET S | | Field | F347 Gi F7347 F7470 Iss F7471 Gi | | Abell | S1122
S1123
S1124
S1125
S1126
S1126
S1127
S1130
S1131
S1131
S1132
S1133
S1134
S1134
S1134
S1144
S1144
S1144
S1144
S1146
S1155
S1156
S1156
S1156
S1156
S1156
S1156
S1156
S1156
S1157
S1156
S1157
S1156
S1157
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158
S1158 | | 4 | 133 | ## TABLE 7C Notes for Table 6 | Notes | TWO CONCENTRATIONS (CLUSTERS SUPERPOSED?). MANY FAINT GALAXIES IN | 3rd HAS CORONA AND COMPANION (POSSIBLE DOUBLE NUCLEUS?). | 1st IS SPINDLE; 3rd HAS CORONA. NEAR W PLATE EDGE, COUNT LOW(?).
3rd HAS CORONA. | 1st IS EDGE-ON LENTICULAR; 3rd HAS CORONA. | 1st HAS CORONA. SEVERAL SPINDLES NEAR 1st. | IST HAS CORONA. 14 HAS CORONA TWO CONCENTRATIONS (CITIETERS STIPERPOSED?) | 3rd HAS CORONA. | SCATTERED. | 1st IS SPIRAL; 3rd HAS CORONA. | 3rd IS SPIRAL. | SOMEWHAT ELONGATED. | 1st HAS CORONA; 3rd IS SPINDLE. | Near calibration cutout. 1st has corona. | 1st HAS FAINT CORONA (cD?). | 18t HAS CORONA; COMPACT AND MORPHOLOGICALLY DIVERSE. | Nearer cluster superposed. | GLOUP SUPERIOR FOR FORTHALT DAY | Change and March 1914 and 1914 | Story superposed: treat table curous. 5' error in Abell (1958) declination. | Group superposed n. | 2nd HAS CORONA (cD). | COMPACT: 1st IS SPINDLE. | Diffuse images. | 1st IS EDGE-ON SPIRAL. SOMEWHAT SCATTERED. NEAR Q-4:W PLATE EDGE, | COUNT LOW. | THE MASS CALCULAS. FIL ONC ATTENT WITH SEVER AT CONCENTR ATTIONS | SCATTERED: CONCENTRATION AT SOUTHERN EDGE, GROUP SUPERPOSED. | Group superposed. | RICH IN ELLIPTICALS. | NEAR W PLATE EDGE. | 1st HAS VERY FAINT CORONA. SOMEWHAT CENTRALLY CONDENSED. | 1st HAS VERY FAINT CORONA. | 186 DAS FAINT CORONA; STAIS SPINDLE.
AT O.S.E PLATE EDGE: COINT LOW? | SOMEWHAT V-SHAPED IN APPEARANCE | AT Q:2-E PLATE EDGE, COUNT LOW? | SOMEWHAT SERPENTINE. | 1st has corons. | ELONGATED AND SCATTERED. | ELONGATED. | SOMEWHAT CENTRALLY CONDENSED. | 18t HAS COROTA (cD): SOMEWHAT CENTRALLY CONDENSED.
SCATTERED DAD IS COTE AT | Group superposed n. | SCATTERED. | DUMBBELL-SHAPED WITH TWO CONCENTRATIONS. 1B(s)m IN FIELD. | On edge of calibration cutout. | ELONGATED. | |-------|---|--|---|--|--|--|---------------------|--|--------------------------------|---------------------------------|---|---|--|-----------------------------|--|--|---------------------------------|-------------------------------------|---|---------------------|----------------------|--------------------------|---|---|---|---|--|---|----------------------|-----------------------|--|----------------------------|---|---------------------------------|---|---|----------------------------------
--------------------------|------------|-------------------------------|--|---------------------|-------------------------------|---|--------------------------------|-----------------------| | Field | F477 | F477 | F478
F477 | F478 | F477 | F478
F478 | F478 | F544 | F478 | F544 | F545 | F478 | F479 | F545 | 1040 | F4/9 | 0770 | F 400 | F546 | F546 | F480 | F480 | F546 | F547 | F546 | F547 | F547 | F547 | F480 | F481 | F547 | F548 | F 048 | F549 | F548 | F549 | F482 | F549 | F549 | F549 | F 348 | F483 | F549 | F549 | F550 | F049 | | Abell | | 0289 | 0297 | | 0302 | 0395 | 0327 | 0341 | 0343 | | | 0353 | | 2960 | 0000 | 0380 | 999 | 0.00 | 999 | 0386 | 0389 | 0402 | | | 0406 | 201 | 0416 | | 0419 | | 0428 | 0453 | 0456 | 2010 | 0457 | | 0458 | 0459 | 0462 | 0463 | 0404 | 0469 | | 0472 | 613 | 5.40 | | Notes | 1st HAS FAINT CORONA. SLIGHTLY ELONGATED. | 3rd HAS CORONA. TWO CONCENTRATIONS. | 3rd HAS CORONA. NEAR W PLATE EDGE, COUNT LOW. MORPHOLOGICALLY DIVERSE. | 1st and 3rd are spirals. | MOST OF CLUSTER LOST IN CALIBRATION CUTOUT. rpo data not used. | Group superposed.
Crotto stipersposed. | Group superposed n. | 1st & 2nd HAVE FAINT CORONAE: 3rd IS SO. | SOMEWHAT ELONGATED. | Plate edge; all data uncertain. | 1st PROBABLY FOREGROUND; 2nd HAS FAINT CORONA. ELONGATED. | 1st has corona and companion. Group superposed. | lst has corona. | Scattered. | GROUP SOF EMP (SEL): | Flate edge. Magnitudes uncertain.
Plate edge 1st has corona | 1 sever ough, to una colours | Isk has column and star superposed. | Group in.
1st has corona. 3rd is spiral. | 1st has corona. | Plate edge. | 1st HAS FAINT CORONA. | Three concentrations. Group superposed f. | let IS SUPERFOSED FOREGROUND (?) SB(?). MORPHOLOGICALLY DIVERSE. | Group superposed s. 1st multiple with corona.
CONFIISED CENTER-SEVERAL GALAXIES ARE SUPERPOSITIONS INCLIDING 1st | | 1st HAS CORONA. | 1st IS BRIGHT DIFFUSE OVAL WITH CORONA. | 1st HAS CORONA (cD). | 3rd HAS FAINT CORONA. | 1st HAS ENVELOPE (S0? or E+?). | 3rd HAS CORONA. | SOMEWHAT ELONGALED. | Groups supernosed at and n. | 3rd IS SPINDLE. NEAR PLATE EDGE AND PLATE ID CUTOUT, COUNT LOW. | 1st IS SPINDLE. NEAR CALIBRATION CUTOUT, COUNT LOW? | Two clusters seen in projection? | 1st is spiral. | Group p. | 1st IS SPINDLE. | 186 HAS FAINT CORONA AND IS STIPERPOSTFION MANY FAINT CALAXIES IN | SURROUNDING FIELD. | COUNT LOW DUE TO FIELD STARS. | SOMEWHAT COMPACT AND MORPHOLOGICALLY DIVERSE. | 1st HAS CORONA. | 18t HAS FAINT CURONA. | | Field | F538 | F539 | F472 | F473 | F472 | F473 | F473 | F539 | F539 | F473 | F539 | F473 | F473 | F473 | F 0.58 | F 340 | T 1 1 | F 0#0 | F540 | F540 | F474 | F541 | F474 | F475 | F474
F475 | | F475 | F475 | F541 | F475 | F541 | F475 | F\$41 | F542 | F475 | F476 | F542 | F542 | F542 | F476 | F4/0 | 075 | F476 | F543 | F477 | F544 | | Abell | 0002 | 9100 | 0014 | 0014 | 0015 | 0020 | 0022 | 0027 | 0033 | 0035 | | 0042 | 0047 | 0000 | | 0086 | 8 | 0000 | 6600 | 0107 | 0114 | | 0118 | 0100 | 0122 | | 0127 | 0133 | | 0135 | : | 0140 | 0141 | 0177 | 0183 | | | 0185 | 0197 | 020 | 0210 | £170 | 0215 | 0235 | 0264 | 0283 | | 11 1 | 1 | 34 | Notes | 1st HAS FAINT CORONA; 2nd IS SPINDLE. SOMEWHAT ELONGATED. SOMEWHAT WEDGE-SHAPED AND SCATTERED. 1st has corona. Plate edge. | 1st HAS FAINT CORONA. 1st HAS VERY FAINT CORONA. SCATTERED. ELONGATED AND SCATTERED. | NEARER CLUSTER POSSIBLY SUPERPOSED. 1st HAS ELONGATED CORONA (cd), SOMEWHAT CONCENTRATED IN O:1/2 NEAR | Q:1 PLATE EDGE, COUNT LOW. | 18t HAS CORONA, STRAL-RICH.
1st HAS FAINT CORONA, 3sd IS SPINDLE.
1st IS SPINDIE (FORECROINT)?? 3sd HAS PAINT CORONA | 1st IS SO. SOMEWHAT SCATTERED AND MORPHOLOGICALLY DIVERSE. | lst outlying. Seems too poor to be an Abell cluster. | 1st HALL STATE CORONA. SOMEWHAT ELONGATED. 1st 9.nd 4s 3nd HAVE CORONAE MORPHOLOGICALLY DIVIDED | lst has corons. | Group superposed. | 18t is spirat.
2nd & 3rd HAVE CORONAE. TWO CONCENTRATIONS. | 1st HAS CORONA. | 1st IS FOREGROUND SPIRAL.
2nd IS RING, 3rd HAS FAINT CORONA. | 1st FOREGROUND, 3rd HAS CORONA. | 1st HAS FAINT CORONA.
FAIRLY SCATTL'RED | 1st, 2nd, & 3rd ARE UNRESOLVED SPIRALS IN CENTER. SCATTERED. | IST HAS FAINT CORONA. FOREGROUND SPIRAL IGNORED. SCATTERED AND | MORFHOLOGICALLI DIVERSE.
1st HAS FAINT CORONA. FOREGROIIND FACE-ON SPIRAL, IGNORED | AT Q:4-W PLATE EDGE, COUNT LOW. | 1st IS (FOREGROUND?) SPIKAL. 3rd HAS FAINT CORONA.
SCATTERED. | 1st IS FOREGROUND SPIRAL, SCATTERED. | 3rd HAS FAINT CORONA. | 18t IS ELLIT FICAL WITH FAINT ENVELOFE. 1ST HAS CORONA, MANY FAINT GALAXIES. | 1st and 3rd have coronae. | SCATTERED. | 18t HAS CORONA.
1st HAS CORONA SEVERAL CONCENTRATIONS | Plate edge. | 1st HAS FAINT CORONA. | 1st HAS CORONA. 3rd IS SPIRAL.
Group superposed np. | 1st has corons. Two clusters seen in projection? | 3rd has corons. 1st HAS CORONA, 2nd IS SUPERPOSITION. | Two clusters seen in projection? | 1st IS PROBABLY FOREGROUND SPIRAL. 2nd HAS FAINT CORONA. SLIGHTLY CENTRALLY CONCENTRATED. | |-------|--|---|---|--|--|--|--|---|---|-----------------------|---|---------------------|--|---------------------------------|---|--|--|---|---|---|--------------------------------------|-----------------------|--|---------------------------|-----------------|---|-----------------------|-----------------------|--|---|--|----------------------------------|---| | Field | F505
F506
F574
F576 | F507
F574
F575 | F507 | F507 | F507 | F576 | F509 | F576 | F509 | F509 | F510 | F510 | F510
F510 | F510 | F578
F510 | F511 | Foll | F579 | F580 | F580 | F580 | F512 | F597 | F529 | F598 | F 598 | F529 | F598 | F598 | F530 | F530 | F530 | F531 | | Abell | 1450
1537
1584
1604 | 1625 | 1633 | 1648 | 1664
1699 | 1709 | 1727 | 1732 | | 1757 | 1611 | 1802 | 1816
1822 | 1846 | 1853
1857 | 1883 | 1924 | | 9 | 1945 | ; | 1981 | 2328 | 2330 | 9339 | 2333 | 2335 | | 2336
2337 | 2338 | 2341
2344 | 2347 | 2357 | | Notes | lst in foreground? 2nd m = 17.4. Plate edge. 4 min error in Abell (1958) right ascension. 1st HAS VERY FAINT CORONA. SOMEWHAT SCATTERED. COMPACT AND SOMEWHAT SYMMETRICAL. | Near plate corner.
1st HAS FAINT CORONA (cD?). SOMEWHAT SYMMETRIC AND MORPHOLOGICALLY.
DIVERSE. | Near plate edge.
Group superposed. | 1st HAS FAIT CORONA. DUMBBELL-SHAPED, POSSIBLY A SUPERPOSITION OF TWO CHISTERS | 1 WO CLUSIEMS. 1st is spiral. Two concentrations. | rand 3rd have coronae. | Near plate edge.
Nearer cluster annearmoad nf | lst has corona. Plate edge. | SOMEWHAT ELONGATED, MORPOLOGICALLY DIVERSE. | 1st HAS FAINT CORONA. | ELONGALED. 1st HAS FAINT CORONA. TWO CONCENTRATIONS. | Two concentrations. | Group superposed.
1st has corona. Galaxies of AS617 superposed. Abell (1958) richness | (2) incorrect. | 1st IS FOREGROUND SPIRAL. Abell (1958) richness (2) probably incorrect. | 1st has corona. In rich star field. | TWO CONCENTRATIONS. 1st IS SPINDLE. | tst nas cotons and star superposed.
Group superposed f. 1st has corons. | 1st & 2nd HAVE CORONAE. SCATTERED & MORPHOLOGICALLY DIVERSE. NEAR | 4:1-N CALIBRATION CUTOUT; COUNT LOW. 1st and 10th are spiral. Counts completed on F437, 1515. | 1st has corona. | Plate edge. | of its spinate. 1st HAS CORONA, BACKGROUND OF VERY FAINT GALAXIES. | 1st has corona. | lst has corona. | 180 IS SU (FROBABLY FUREGROUND): 2nd HAS CORONA.
of of 9: 43466 is other | 1st HAS FAINT CORONA. | 1st has corona. | 1st HAS STELLAR NUCLEUS & SINGLE ANSA; PROBABLY FOREGROUND.
NEAR W PLATE EDGE: COHNT POSSIRLY LOW | 1st HAS FAINT CORONA. ANOTHER CONCENTRATION TO SE, TWO CLUSTERS | SUPERPOSED?
Group superposed. | 10th is spiral. | SOME SUBCLUSTERING.
1st is spiral. Plate edge. | | Field | F550
F550
F551
F551 | F484
F551 | F552
F552 | F551 | F552
F485 | F486 | F552
F487 | F553 | F488 | F555 | F556 | F556 | F498
F565 | | F566
F498 | F565 | F366 | F500 | F437 | F501 | F569 | F568 | F502 | F570 | F570 |
F 502 | F503 | F570 | F503 | F504 | F571 | F572 | F505
F572 | | Abell | 0474
0490
0499 | 0200 | 0507
0510 | 0514 | 0533 | | 0543 | | 0548 | 0550 | 0555 | | 0823
0842 | | 0857 | | 900 | 9960 | 1060 | | 1088 | 1090 | 1146 | , | 1163 | 1181 | 1217 | 1233 | 1311 | 1347 | 1352 | 1418 | 1440 | | 1 | | | | | | | | | | | | | 13: | 5 | Notes | 1st HAS PAINT CORONA. 1st IS PORECROUND SPINDLE, 3rd HAS FAINT CORONA. 1st IS PORECROUND SPINDLE, 3rd HAS PAINT CORONA. Ares rich and confused. 1st is forground? 2nd m = 153. SUPERPOSED ON ANOTIERE CLUSTER TO N.E. 1st HAS FAINT CORONA. Ares rich and confused. 1st & 2nd INTERACTING IN COMMON CORONA. 1st has corona. Ares rich and confused. 1st has corona. 1st has corona. Are rich and confused. 1st has corona. 1st and 3d are spiral. 2nd IS MARITY ACCOMMON ENVELOPE. 1st and 3d are spiral. 2nd IS MARITY ACCOMMON. 2nd ES GARAITY ACCOMMON. 2nd ES GARAITY ACCONSTINA. 2nd IS GARAITY ACCOMMON. 1st is applied. 2nd AS GARAITY ACCOMMON. 1st is applied. 2nd IS GARAITY ACCOMMON. 1st is applied. 2nd IS GARAITY ACCOMMON. 1st and 3d are spiral. 2nd IS GARAITY ACCOMMON. 1st and 3d are spiral. 2nd IS GARAITY ACCOMMON. 1st is applied. 2nd IS GARAITY ACCOMMON. 1st is applied. 2nd IS GARAITY ACCOMMON. 1st and 3d are applied. 2nd IS GARAITY ACCOMMON. 1st and 3d are applied. 2nd IS GARAITY ACCOMMON. 1st and 3d are accoma. 3nd IS GARAITY ACCOMMON. 1st and 3d are add 3rd have coronae. 1st has corona. 3nd IS GARAITA ACCOMMON. CORONA. 4nd IS GORONA. 4nd IS GORONA. 4nd IS GORONA. 4nd IS GORONA. 4nd IS SPINDLE. 5croup superposed. 4nd IS GORONA. 5croup superposed. 4nd IS GORONA. 5croup superposed. superposed | |-------|---| | Field | F535
F535
F604
F604
F604
F605
F605
F605
F605
F605
F605
F605
F605 | | Abell | 25.40
25.41
25.42
25.43
25.44
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45 | | | MLLY DIVERSE. BRIGHTEST seion. = A3897. EAR DISTRIBUTION OF TTERED. Y EDGE-ON). | | Notes | 1st IS FORECROUND SPINDLE, 3rd HAS CORONA. 1st HAS CORONA. 1st HAS CORONA. 1st HAS CORONA. 3rd MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. AT E PLATE EDGE; COUNT LOW. 1st HAS VERY FAINT CORONA. 1st HAS CORONA. AND ENTREPOSITION. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. BRIGHTEST GALAXIES ARE LINEARLY DISTRIBUTED. 1st HAS CORONA. As dis SPINDLE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. BRIGHTEST GALAXIES ARE LINEARLY DISTRIBUTED. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY DIVERSE. 1st HAS CORONA. SPIRAL-RICH & MORPHOLOGICALLY ENTRED. 1st HAS CORONA. Sad & 10th ARE SPIRALS (NEARLY EDGE-ON). 3rd IS LENTICALAR. 1st HAS CORONA. Sad & 10th ARE SPIRALS. 3rd IS LENTICALED. 1st HAS CORONA. Sad & 10th ARE SPIRALE. 1st HAS CORONA. Sad IS SPINDLE. PAINT CORONA. ELONGATED. 3rd IS LENTICALED. 3rd HAS ENTICALED. 3rd HAS FAINT CORONA. FORDRA. 3rd HAS FORDRA. 3rd HAS FORDRA. | | Field | F600 F600 F600 F600 F600 F600 F600 F601 F601 | | Abell | 2365 2369 2370 2371 2371 2372 2375 2375 2378 2384 2401 2401 2402 2416 2417 2417 2418 2481 2481 2481 2481 2481 2487 2487 2487 2487 2487 2487 2487 2487 | ABLE 7C—Continued | F537 COUNT VERY LOW. | Notes | |--|--| | F606
F537
F538
F606
F472
F638
F638
F606
F606
F606
F606 | . TOW. | | F537
F472
F538
F606
F472
F537
F638
F608
F608 | MORPHOLOGICALLY DIVERSE. BRIGHTER GALAXIES IN CORE. | | F472
F538
F606
F472
F537
F538
F606
F606 | | | F538
F606
F472
F537
F538
F606
F606 | 1st PROBABLY FOREGROUND. 2nd & 3rd HAVE
CORONA. OVERLAPS NE WITH AARSI | | F538
F606
F537
F538
F606
F606 | foreground? Ind m = 13 8 | | F606
F537
F538
F606
F538 | 1st IS FACE-ON SPIRAL: 2nd HAS FAINT CORONA. SOMEWHAT ELONGATED. | | F472
F537
F538
F606
F538 | 1st IS FACE-ON SPIRAL; 2nd HAS CORONA AND TWO COMPANIONS; 3rd HAS | | F472
F533
F538
F506
F538 | | | F537
F538
F606
F538 | 1st PROBABLY FOREGROUND. 3rd HAS DOUBLE NUCLEUS WITH CORONA OR IS | | F537
F538
F538
F606
F538 | ION OF TWO. | | F538
F538
F538
F538 | 3rd APPEARS TO HAVE DOUBLE NUCLEUS (OR PAIR IN COMMON ENVELOPE?). | | F538 F606 F538 F538 | foreground? 2nd m = 18.0. | | F606
F538 | 1st MAY BE SUPERPOSITION; APPEARS IRREGULAR. SCATTERED. | | F538 | CONA. SOMEWHAT ELONGATED. | | DK 20 | IT CORONA. CONCENTRATION IN Q:3. | | 1000 | SCATTERED. | ## REFERENCES ``` Aaronson, M., Bothun, G., Mould, J., Huchra, J., Schommer, R. A., and Klemola, A. R. 1969, A.J., 74, 804. Aaronson, M., Bothun, G., Mould, J., Huchra, J., Schommer, R. A., and Cornell, M. E. 1986, Ap. J., 302, 536. Abell, G. O. 1958, Ap. J. Suppl., 3, 211. ______. 1961, A.J., 66, 607. _____. 1965, Ann. Rev. Astr. Ap., 3, 1. _____. 1975, in Stars and Stellar Systems. Vol. 9, Galaxies and the Universe, ed. A. Sandage, M. Sandage, and J. Kristian (Chicago: University of Chicago Press), p. 601. ____. 1976, Ap. J., 213, 327. Abell, G. O., and Corwin, H. G. 1983, in IAU Symposium 104, Early Evolution of the Universe and its Present Structure, ed. G. O. Abell and G. Chincarini (Dordrecht: Reidel), p. 179 König, A. 1962, in Stars and Stellar Systems, Vol. 2, Astronomical Techniques, ed. W. A. Hiltner (Chicago: University of Chicago Press), Kowalski, M. P., Ulmer, M. P., Cruddace, R. G., and Wood, K. S. 1984, Ap. J. Suppl., 56, 403. Kristian, J., Sandage, A. R., and Westphal, J. A. 1978, Ap. J., 221, 383. Kron, R. G. 1980, Ap. J. Suppl., 43, 305. Lari, C., and Perola, G. C. 1978, in IAU Symposium 79, Large Scale Structure of the Universe, ed. M. S. Longair and J. Einasto (Dordrecht: Reidel), p. 137. Lauberts, A. 1982, The ESO/Uppsala Survey of the ESO (B) Atlas, Evolution of the Universe and its Present Structure, ed. C. G. Chincarini (Dordrecht: Reidel), p. 179. Bahcall, N. A. 1975, Ap. J., 198, 249. Bahcall, N. A. and Soneira, R. M. 1984, Ap. J., 277, 27. Baier, F. W. 1978, Astr. Nach., 299, 311. Batuski, D. J., and Burns, J. O. 1985, A.J., 90, 1413. Baum, W. A. 1973, Pub. A.S. P., 85, 530. Bautz, L. P. 1972, A.J., 77, 1. Bautz, L. P. and Morean, W. W. 1970, Ap. I. (Letters) (Munich: ESO) Leir, A. A. 1976, M.Sc. thesis, University of Toronto. Leir, A. A., and van den Bergh, S. 1976, preprint of Leir and van den Bergh (1977). ______. 1977, Ap. J. Suppl., 34, 381. Lucey, J. R. 1983, M.N.R.A.S., 204, 33. Lucey, J. R., Currie, M. J., and Dickens, R. J. 1986, M.N.R.A.S., 221, Dautz, L. P. 19/2, A.J., 7/, 1. Bautz, L. P., and Morgan, W. W. 1970, Ap. J. (Letters), 162, L49. Bingelli, B. 1982, Astr. Ap., 107, 338. Braid, M. K., and MacGillivray, H. T. 1978, M.N.R.A.S., 182, 241. Brown, G. S. 1974, Ph.D. thesis, University of Texas (Univ. Texas Pub. Astr., No. 11 [1978]). Buta R. L. and Corwin H. G. 1986, Ap. J. Suppl. 62, 255. Lucey, J. R., Dickens, R. J., and Dawe, J. A. 1980, Nature, 285, 305. Luyten, W. J., and La Bonte, A. E. 1972, in The Role of Schmidt Telescopes in Astrometry, ed. U. Haug (Bergedorf: Hamburg Observa- tory), p. 33. Mitchell, R. J., Dickens, R. J., Bell-Burnell, S. J., and Culhane, J. L. 1979, M.N.R.A.S., 189, 329. Olowin, R. P. 1986, Ph.D. thesis, University of Oklahoma. Olowin, R. P. 1987, in IAU Symposium 124, Observational Cosmology, ed. A. Hewitt, G. Burbidge, and L. Z. Fang, (Dordrecht: Reidel), p. 331. Olowin, R. P., Chincarini, G., and Corwin, H. G. 1987, Bul. AAS, 19, Owen, F. N., White, R. A., Hilldrup, K. C., and Hanisch, R. J. 1982, A.J., 87, 1083. Noonan, T. W. 1974, A.J., 79, 775 . 1981, Ap. J. Suppl., 45, 613. Peebles, P. J. E. 1980, Large Scale Structure of the Universe (Princeton: Princeton University Press). Princeton University Press). Peterson, B. A., Ellis, R. S., Kibblewhite, E. J., Bridgeland, M. T., Hooley, T., and Home, D. 1979, Ap. J. (Letters), 233, L109. Quintana, H., and White, R. A. 1980, Bul. AAS, 12, 834. Rainey, G. W. 1977, Ph. D. thesis, University of California, Los Angeles. Rood, H. J., 1976, Ap. J., 207, 16. Rood, H. J., and Sastry, G. N. 1971, Pub. A.S.P., 83, 313. Rose, J. A. 1976, Astr. Ap. Sympl. 23, 109 Rood, H. J., and Sastry, G. N. 1971, Pub. A.S.P., 83, 313. Rose, J. A. 1976, Astr. Ap. Suppl., 23, 109. Sandage, A. R. 1972, Ap. J., 178, 1. ______. 1973, Ap. J., 183, 731. Sandage, A. R., Kristian, J., and Westphal, J. A. 1976, Ap. J., 205, 688. Sastry, G. N., and Rood, H. J. 1971, Ap. J. Suppl., 23, 371. Schmidt, K. H. 1983, Astr. Nach., 304, 201. Sersic, J. L. 1974, Ap. Space Sci., 28, 365. Shane, C. D., and Wirtanen, C. 1967, Pub. Lick Obs., Vol. 22, part 1. Shanks, T., Stevenson, P. R. F., Fong, R., and MacGillivray, H. T. 1984, M.N. R.A.S., 206, 767. Sharples, R. M., Ellis, R. S., Couch, W. J., and Gray, P. M. 1985, M.N. R.A.S., 212, 687. Smyth, R. J. 1979, Ph.D. thesis, University of Edinburgh. Snow, T. P. 1970, A.J., 75, 237. Struble, M. F., and Rood, H. J. 1987a, Ap. J. Suppl., 63, 543. Struble, M. F., and Rood, H. J. 1987a, Ap. J. Suppl., 63, 543. Struble, M. F., and Rood, H. J. 1987a, Ap. J. Suppl., 63, 543. 1987b, Ap. J. Suppl., 63, 555. Thuan, T. X. 1980, in Physical Cosmology, ed. R. Balain, J. Audouze, and D. N. Schramm (Amsterdam: North-Holland), p. 277. Tully, R. B. 1986, Ap. J., 303, 25. 1987, Ap. J., 323, in press. Tyson, J. A. 1984, in IAU Colloquium 78, Astronomy with Schmidt-type Telescopes, ed. M. Capaccioli (Dordrecht: Reidel), p. 489. White, R. A. 1978, Ap. J., 226, 591. Zwicky, F. 1952, Pub. A.S.P., 64, 242. 1957. Morphological Astronomy (Berlin: Springer-Verlag). . 1979c, Astrofizika, 15, 599. Gunn, J. E., and Melnick, J. 1975, Bull. AAS, 7, 426. Hanes, D. A. 1975, Ph.D. thesis, University of Toronto. Hawkins, M. R. S. 1981, M.N.R.A.S., 194, 1013. Hintzen, P., Scott, J. S., and McKee, J. D. 1980, Ap. J., 242, 857. Hoessel, J. G., Gunn, J. E., and Thuan, T. X. 1980, Ap. J., 241, 486. Holmberg, E. 1974, Astr. Ap., 35, 121. Johnson, M. W., Cruddace, R. G., Ulmer, M. P., Kowalski, M. P., and Wood, K. S. 1983, Ap. J., 266, 425. Kalinkov, M., and Kuneva, I. 1986, M.N.R.A.S., 218, 49P. Karachentsev, I. D. 1980, Soviet Astr. Letters, 6, 1. . 1957, Morphological Astronomy (Berlin: Springer-Verlag). ``` GEORGE O. ABELL (deceased): Department of Astronomy, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90024 HAROLD G. CORWIN, JR.: Astronomy Department, RLM 15.308, University of Texas, Austin, TX 78712-1083 RONALD P. OLOWIN: Department of Mathematical Sciences, Saint Mary's College of California, Moraga, CA 94575