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ABSTRACT 
It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted 

magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and 
so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual’field 
lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally 
tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the 
tube is twisted up further or reconnection takes place below the prominence, one finds a transition from 
normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and 
its true magnetic geometry as an erupting prominence is revealed more clearly. 
Subject headings: hydromagnetics — Sun: prominences 

I. INTRODUCTION 
One of the most fascinating and little understood areas of 

solar physics is the study of solar prominences, whose basic 
properties have been reviewed in books by Tandberg-Hanssen 
(1974), Jensen, Maltby, and Orrall (1979), Poland (1986), 
Ballester and Priest (1988), and Priest (1988). The two classical 
models for the global magnetic structure of solar prominences 
were proposed by Kippenhahn and Schlüter (1957) and 
Kuperus and Raadu (1974) many years ago. In the 
Kippenhahn-Schluter geometry there is a simple coronal 
arcade, with normal (N) magnetic polarity: the magnetic field 
lines go up from the photosphere on one side of the promi- 
nence, pass through the prominence horizontally, and go back 
down to the photosphere on the other side. The Kuperus- 
Raadu geometry, on the other hand, has inverse (I) magnetic 
polarity: the magnetic field passes through the prominence in 
the opposite (or inverse) direction to the field lines below, and 
in some models it is associated with an X-type magnetic 
neutral point below the prominence. Observations of magnetic 
fields in prominences at the limb by Leroy (1989) have shown 
that large quiescent prominences at high latitudes possess I 
magnetic polarity, whereas smaller quiescent prominences at 
lower latitudes close to the active-region belts possess N mag- 
netic polarity. 

These classical models were proposed many years ago and 
are now believed to be unsatisfactory for a variety of reasons. 
In both cases a two-dimensional model is set up in a plane 
perpendicular to the prominence axis. Then, almost as an after- 
thought, an extra magnetic field component is added along the 
prominence, and yet observations show this component to be 
the dominant one since the field is inclined at typically only 20° 
to the axis. Furthermore, there are difficulties with the notion 
of the formation of a Kippenhahn-Schluter prominence by 
thermal condensation in a coronal arcade. One could argue 
that a highly sheared arcade is most favorable for conden- 
sation if the field line lengths need to exceed a critical value 
before condensation instability occurs, but why should there 
not then be the occasional very wide and unsheared arcade 
containing a prominence? Also, coronal arcades naturally tend 
to possess summits with a concave curvature toward the solar 
surface, and so cooling plasma would tend to drain away from 
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the summit before it can accumulate (§ III). Similar difficulties 
apply to Kippenhahn-Schluter formation by injection from 
below. If it occurs in a highly sheared arcade, why should it not 
also work in an unsheared arcade without a strong field com- 
ponent along the prominence axis? Surely cool plasma is more 
likely to fall back down to the chromosphere than create a 
substantial dip in the field to support further material. 
Kuperus-Raadu models suffer from a serious problem of how 
to create a current of the required sign (Anzer 1988), since the 
effect of gravity during the formation naturally tends to 
produce one of the opposite sign corresponding to normal 
polarity. Furthermore, Anzer (1985) has shown that the self- 
pinching of a Kuperus-Raadu prominence sheet tends to create 
an unwanted downward force in the upper part of the sheet. 
Also there is not enough mass in the closed-field region to form 
a substantial prominence through condensation and chromo- 
spheric injection is ruled out by the field geometry. 

The prominence model we are proposing is ‘ essentially 
three-dimensional: it is clear that the third component of the 
magnetic field (i.e., along the prominence axis) is crucial to the 
very existence of a prominence and so should play an impor- 
tant part in a prominence model. We suggest that when a 
large-scale curved magnetic flux tube (Fig. 1) is twisted enough, 
field lines within the tube may acquire locally a favorable 
upward curvature to provide support against gravity. Figure 2 
sketches the evolution of such a flux tube as its twist increases. 
Twisting motions of various kinds have been well observed 
in prominences (Schmieder, Raadu, and Malherbe 1985; 
Schmieder et al 1988; Mein and Schmieder 1988), and active- 
region prominences are well-known to occur along velocity 
shears (Harvey and Harvey 1980). Section II calculates the 
critical twist (^cHt) for prominence formation as a function of 
the summit altitude (h) and minor radius (a) of the flux tube. It 
also shows how the dip near the summit of a typical field line 
increases in size as the tube is twisted further beyond Ocrit. The 
flux tube then becomes receptive to prominence formation 
either by condensation or injection, provided further condi- 
tions on the flux-tube length or injection speed are met, as 
outlined in § III. Section IV presents a local model for a promi- 
nence sheet supported within the flux tube, while § V outlines 
reasons for prominence eruption, and § VI concludes by sum- 
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FLUX-TUBE MODEL FOR SOLAR PROMINENCES 1011 

FIG 1 -Large-scale twisted flux tube with footpoint separation L and minor radius a. The length of the prominence is Lp, where favorable curvature or 
formation exists^«) From the side, (h) From above, (c) Cylindrical coordinate system (R, q>, Z) for a twisted flux tube with the Z-axis out of the plane of the figure. 0 
is the major radius about which twisting occurs, (d) The local coordinate system (r, 0) of the twisted flux tube of minor radius ama plane perpendicular to (a). 

marizing the properties and observational consequences of the 
model. It does not suffer from the difficulties raised by Anzer 
(1985, 1988) for the Kuperus-Raadu model, since the current is 
produced by condensation modifications to the basic flux-tube 
current which is in turn created by footpoint twisting motions. 
Furthermore, the force in the current sheet is everywhere 
upward (§ IV), and the mass can be supplied partly from the 
corona and partly along the helical field lines from the chromo- 
sphere, either by injection or by condensation-induced sucking. 

II. CRITICAL TWIST FOR LOCAL SUPPORT 

The purpose of this section is to illustrate how a twisted 
magnetic flux tube can have the correct curvature to support a 
coronal condensation. We set up a simple model of a twisted 
flux tube that illustrates how twisting photospheric motions 
produce magnetic configurations that can provide the neces- 
sary magnetic dip within which a condensation may form. We 
expect the flux tube to narrow where it reaches the solar 
surface, so that the flux comes from an area of radius much 
less than the tube radius (a) in the corona (Fig. la-lfc), but we 
shall neglect such a necking in this preliminary model. 

Consider for illustration a potential field 

> ’ 

where the cylindrical coordinate system (R, cp, Z) is shown in 
Figure 1c. Assume that circular twisting motions are centered 
about the major radius R0 with a maximum minor radius a. 
The inverse aspect ratio, a/R0 = e, is assumed much smaller 
than unity, and the field is expanded in powers of e, with only 
the leading contributions retained. 

If the flux surfaces are circular in cross section, to leading 
order the field components Be and RB^ are just functions of r, 
and the relationship between the cylindrical and local coordi- 
nate systems is given by 

R = K0[l — cos 0 + 0(e2)J cos 6 + 0(e2) 

sin 0 + 0(€2) 

(2.1) 

= R^ sin 0 + 0(e2)J 
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1012 PRIEST, HOOD, AND ANZER Vol. 344 

Fig. 2.—The evolution of a large flux tube as its twist increases, (a) No twist, (b) Critical twist @crit for prominence formation to start at the tube summit, (c) 
Larger twist, with the prominence extending along the length Lp where curvature is favorable for support, (d) Such a large twist that the prominence erupts. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
4 

. l
O

lO
P 

No. 2, 1989 FLUX-TUBE MODEL FOR SOLAR PROMINENCES 1013 

and 

Lvt-' 
F 
(0]“ 

+ 0(1), 

6 = tan 
Z/*0 \ 

Vl - R/Ro) 

(2.2) 

+ 0(e) 

The magnetic field is then 

B<t» ^z) + 0(e), 

B = < 

(o’ ’ 0 

r < a . 

r> a , 

where 
Br = Be(r) sin 9 

g(r) 
R 

r < a . 

r < a , 

Bz = Be(r) cos 0 r < a . 

(2.3) 

(2.4) 

(2.5) 

To satisfy continuity of total pressure at r = a, B^q = g(a) and 
B0(a) = 0 (see Lothian and Hood 1988). 

Using the definitions of BR and Bz, along with equation (2.1), 
it is easily verified that the leading contributions satisfy 
V • Æ = 0. Equilibrium is obtained if the Lorenz force van- 
ishes; to leading order this becomes the usual straight-cylinder 
equation : 

- W + 7TT = 0 • r R 

The equation of a field line is determined by solving 

rd6 Rd(j) 
Be B# 

and integrating gives the leading order contribution as 

rg 

(2.6) 

(f) : 
BeR

2
0 
9 4- constant (2.7) 

Before proceeding, it is useful to express R0 in terms of 
physically more useful quantities, namely the footpoint separa- 
tion (L) and vertical height (h) of the flux tube. From Figure 1c, 

*o = 
L(1 + a2) 

4a 
and 

</>0 = tan 
2a 2a 

1 -a^ 
= sin 

1 -ha2 

(2.8) 

(2.9) 

where a = 2h/L and the feet of the flux tube subtend angles 
0 = ± </>o- The inverse aspect ratio (e = a/R0) can be expressed 
in terms of a, /i, and L by, for example, 

e = 
4a a 

1 + a2 L 
(2.10) 

Now, using equation (2.7), the angle, 0, through which a field 
line is twisted in passing from one end of the flux tube to the 
other is simply 

0(r) = 2Ro0o  
rg r/ag ’ 

(2.11) 

and so, after using equation (2.11), the field line equation (2.7) 
may be rewritten as 

200 
ô = —— 9 + constant. 

0 
(2.12) 

In order to understand how twisting a flux tube can provide a 
suitable dip in the magnetic field to enable a condensation to 
form, we must study the vertical field component, namely, 

fiver. = fi* sin 0 - fiR COS 4> 

= — Tsin 0 — — sin 9 cos </>l 
fio L 9 J 

= — Tsin 0 - 4- sin 6 cos , (2.13) 
R0 |_ Rq 200 J 

where 0 and 9 are related by equations (2.12) and (2.11) has 
been used. The first field line that produces a dip is the one 
passing through 0 = 0 at 0 = 0, i.e. the lowest point at the top 
of the arcade. Thus, for such a field line the constant in equa- 
tion (2.12) is zero. Expanding equation (2.13) about 9 = 0, 
0 = 0, and using equation (2.12) gives the critical twist (from 
dByeJd(t) = 0) for the formation of a dip as 

0cri. = 2^0 ^ = 24>o(y)1/2 = 24>o(|)1/2 • (2.14) 

For example, taking r/a = 0.5, a/L = 0.05, h/L = 0.1 gives 
<t>0 = 0.395, e = 0.038, and ©crit = 1.8tc, which is just less than 
one revolution. On the other hand, a high flux tube in the 
shape of half a torus with h/L = 0.5 gives (p0 = Jt/2, e = 0.1, 
and ©crit = 4.57t, just over two revolutions. Incidently, it is 
interesting to note that the result (2.14) follows from the defini- 
tion © = 2R0 <j)0 BJ(rB^) and the condition Bj/r = Bl/R0 that 
the magnetic tensions due to Be and B# be equal. 

Figure 3a shows how ©crit varies with the inverse aspect 
ratio (e). The smaller the e value, the larger the twist must be to 
produce a dip for fixed <t>0-^e an<i the footpoint separation (L) 
are held fixed, then the lower the loop height (decreasing a and 
hence 4>0), the smaller the critical twist must be. Figure 3a gives 
a universal curve for ©crU, but the way it varies with h/L and 
a/L is also shown in Figure 3b. 

As © is increased beyond the critical value (©crit), the length 
(Lp) of the dip increases, as shown in Figure 4a. It is calculated 
by assuming that cool prominence material will drain to the 
bottom of the dip. Tracing out the position of minimum dip 
from Bvert vanishing, for different field lines, on the same flux 
surface, defines the initial length of the newly formed promi- 
nence. The maximum extent of the prominence is given by 

, r © . a n 

^ IS and e=2- 

and the length Lp is given approximately by 

(2.15) 

sin </>max 

sin (po 

since the prominence lies at a small angle to the torus axis. 
Finally, the shape of a field line projected onto the R-<fi plane 

is shown in Figure 4b as the footpoints are twisted. All these 
field lines pass through 0 = 0, </> = 0, and the appearance of a 
dip is clearly seen. It should be noted that our estimates here 
are based on the thin torus approximation, whereas the true 
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1014 PRIEST, HOOD, AND ANZER Vol. 344 

Fig. 3.—<a) The critical twist (©cr¡t) at a radius r = 0.5a for the formation of a dip, measured in units of 20O, as a function of the inverse aspect ratio 
€ = a/R0 = 8(a/LXÄ/L)/(l + Ah2/!}). 2*0 is the angle subtended by the feet of the flux tube at its large-scale center of curvature, (b) The critical twist (0crit) as a 
function of the flux-tube height (h) and minor radius (a), where L is the footpoint separation. 

geometry is closer to that sketched in Figure 1. Therefore the 
estimates of this section are to be taken with some caution, 
although the general behavior should be represented properly. 
A more complete model would include a zeroth-order axial 
field to align the magnetic field with the polarity inversion (or 
“neutral”) line. However, this added complication will not 
change the basic conclusion that twisting up a flux loop can 
indeed produce the correct curvature for prominence forma- 
tion. 

III. PROMINENCE FORMATION 

Cool solar prominences could be produced through the 
process of condensation of coronal material. Coronal plasma 
can cool on the time scale of radiative losses; for typical 
coronal parameters (n = 1014 m-3, T = 2 x 106 K) this is 
~105 s (e.g., Priest 1982, p. 278). If the magnetic field in the 
region of condensation has convex curvature, then the cold 
material will fall down along the magnetic field. The free-fall 
time for a height of 30,000 km is 500 s. Because of the inclina- 

tion of the field with respect to the vertical the actual time scale 
will be somewhat larger, but still much shorter than the 
cooling time. This implies that the material will fall down 
before it can cool efficiently. This leaking can be prevented by 
the existence of a dip in the magnetic field. The condensation 
itself cannot in practice produce the dip as the following esti- 
mates will show. Suppose that coronal material with density 
n = 1014 m-3 and a width of 30,000 km condenses into a 
narrow sheet, then a gravitational force arises which has a 
surface density 

F = pdg « 10-3 kg m-1 s-2 (or 10-2 in cgs). (3.1) 

This force can be balanced by magnetic tension. A magnetic 
field which has a horizontal strength Bh and a jump in the 
vertical component [£ J produces a tension force 

F, = - Bh[BJ . (3.2) 
F 

© /2 (|)o 

Fig. 4a 

Fig. 4.—(a) The length (Lp) of the dip as a function of flux-tube twist (0) for several values of the aspect ratio (e = a/R0) and h/L = 0.15 at a radius r = 0.5a. (b) 
The projections of a field line on the R-(j) plane as it is twisted up by photospheric footpoint motions for several values of twist (0). Here h/L = 0.2, e = 0.8, and 
r/a = 0.5. (0 = 1.5 corresponds to about one-quarter of a turn.) 
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No. 2, 1989 FLUX-TUBE MODEL FOR SOLAR PROMINENCES 1015 

For Bh = 5 G equilibrium is obtained with [BJ = 10-2 G or 
B+ — —B~ = 5 x 10“3 G. Therefore this sagging effect can 
be completely neglected. 

We conclude from this that there must be a preexisting dip 
in the magnetic field of the prominence region (see An et al 
1988, who find that formation by injection can only work when 
the plasma beta is of order unity or greater). One may specu- 
late that such dips can be formed in magnetic arcades if they 
are sheared in a special way. But what kind of shear function 
will produce dips is not known at present. Here we want to 
follow the picture of twisted flux tubes outlined in the preced- 
ing section. Such a flux tube can acquire regions where the field 
lines are curved upward if the twist is sufficiently large. Since 
our model is based on a single very large flux tube, the neces- 
sary twisting motion has to occur on a large geometrical scale 
and over long periods. A prime candidate for such a twisting 
action is the rotational flow due to Coriolis forces. 

We assume that the magnetic field of the flux tube is 
anchored in the outer parts of a supergranule. In these cells one 
observes systematic flows from the cell center to the boundary. 
This flow will be diverted by the Coriolis force. For order-of- 
magnitude estimates we use a simple model described by Hide 
(1978). It has a radial outflow between the two cylinders r = r1 
and r = r2, with 

vr — v0 

This then leads to an azimuthal velocity given by 

v(ñ = -r + i 
ri(r2—ri)~| ( 2 

rŸ2-n+2l r J + l2 

The exponent s is given by 

r2 

(3.3) 

(3.4) 

(3.5) 

with v being the viscosity coefficient. For a typical super- 
granule one has v0= 1 km s-1 and r2 = 15,000 km; we also 
take an eddy viscosity ve = 109 m2 s-1 (1013 in cgs); e.g., 
Gilman (1976) gives ve « 1012-1014 cgs. This gives s « 15, and 
from Figure 5 of Hide one obtains a maximum value of 

v# = 0.8Qr2 . (3.6) 

The time for one revolution can be estimated as 

2nr2 ~ 2n 
v# ~ 0.8Qo ’ 

(3.7) 

sphere and a counterclockwise sense in the southern hemi- 
sphere. In both hemispheres this twisting produces a field 
component opposite to the normal one in the lower part of the 
tube (Fig. 9). This means that as one increases the twist, the 
magnetic polarity in these parts of the tube can change from 
normal to inverse (i.e., Kuperus-Raadu type). An alternative 
cause for such a change in our model is reconnection below the 
flux tube due to convergent photospheric motions (Martin 
1986; Van Ballegooijen and Martens 1989). 

Differential rotation can also result in twisting—at least as 
long as it does not disintegrate the tube. Relative to a solid 
rotation one obtains an azimuthal velocity of 

v<f> = n 
dlnQ 

d® 9 

and a revolution time of 

(3.8) 

(3.9) 

The observations give for mid-latitudes d In Q/d© « ¿ leading 
to T « 1.5 x 107 s. This is a factor of 5 larger than the time 
scale for the Coriolis flow and can therefore be neglected. It is, 
however, interesting to note that this rotation has the opposite 
sense of the one produced by the Coriolis effect. 

Once such magnetic configurations with a dip are formed 
condensation can start. But to obtain equilibrium solutions 
which are cool at the top, hot over the coronal regional region, 
and cold again at the base an additional requirement has to be 
fulfilled: the flow of thermal energy by conduction into the 
prominence has to be sufficiently small. Hood and Anzer (1988) 
found that a spreading of the flux tube by a factor of 2 reduced 
the conduction enough so that prominence-type solutions are 
possible. Since our model needs an increase in tube radius by 
at least a factor of 3 for other (i.e., geometrical) reasons this 
condition will always be satisfied. Once the condensation has 
been established the accumulation of mass can be further 
enhanced by the siphon mechanism which was first proposed 
by Pikelner (1971). 

These dip configurations could also be filled by an injection 
mechanism which brings in chromospheric material. But for 
this process to work special conditions have to be met. We 
discuss them for a configuration which has a dip at a distance h 
above the chromosphere and has a depth AZ which is small 
compared to h. We assume that material is injected from both 
sides of the loop. The velocities are t;10 and v20 at the chromo- 
sphere and v1 and v2 at the bottom of the dip. For simplicity 
we assume that the densities are equal (i.e., px = p2). Then the 
material is trapped in the dip if 

which amounts to 3 x 106 s or 35 days. This shows that the 
mechanism is efficient in producing twisted flux tubes. It is 
possible that the same mechanism also works on the larger 
scale of giant cells. By comparison, the mean lifetime of high- 
latitude quiescent prominences is 140 days, and polarity inver- 
sion lines last even longer. 

Next we want to discuss the orientation of the field with 
respect to the dividing line of the underlying bipolar region. An 
untwisted flux tube will show a normal polarity (as in 
Kippenhahn-Schluter models), but as it gets stretched by the 
action of differential rotation the tube becomes more aligned 
and its normal field component weaker. The rotational motion 
described above has a clockwise sense in the northern hemi- 

Itii - i>21 < .Jig AZ (3.10) 

holds. One also has 

v\o -v\ = 2gh for z = 1, 2 , (3.11) 

which gives 

(«10 - «2oX«10 + «20) = («1 - «2)(«1 + «2) • (3-12) 

Then condition (3.10) leads to 

I «io «201 < 1,1 * ^ N/2^AZ ■ (3.13) 
«10 + «20 
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If we assume vl0, v2o — 0(2gh)112 and vu v2 = 0(2gAZ)1/2 the 
following rough estimate can be obtained 

Ko-i^Ag 

^io h 
With h = 30,000 km and ÀZ = 3000 km we find | vi0 — v201/ 
t;10 < 0.1 and \ v10 — v20 \ < 10 km s“1. This shows that the 
injection velocities have to be very well balanced in order to 
trap the material in the dip. But, on the other hand, we cannot 
completely rule out this mechanism on the basis of the above 
estimates. 

IV. LOCAL SUPPORT IN A FLUX TUBE 
In this section we show how a prominence, once formed, can 

be supported in a model flux tube by the azimuthal component 
(B0). In reality, especially in a low-beta quiescent prominence, 
the B^-component may be modified too, causing at first a flat- 
tening and later sometimes a dip in the (^-direction (see Velli 
and Hood 1989). Consider here, however, the magnetic field 
locally in the neighborhood of the prominence and neglect the 
large-scale curvature of the flux tube for simplicity. A more 
complete model would, of course, include such a curvature. 
For a force-free magnetic field which is independent of z, the 
distance along the prominence, the magnetic field components 
may be written (e g., Low 1982; Hu, Hu, and Low 1983) in 
terms of a flux function (A) as 

(4.1) 

where A is the solution of 

v‘a+¿ G b‘) “ ° <4-2> 

once the functional form of Bz is prescribed. Note that here z is 
measured along the prominence, whereas in § II Z was normal 
to the plane of Figure 1c. 

This may be written in terms of the axial twist ©0 = 0(0) as 

0(r) = Qo 
(1 _ ^2)1/2 > 

and the mean twist is 

(4.6) 

(4.7) 

Furthermore, from total pressure balance, the external total 
pressure (Pe) which can confine the flux tube is 

(4.8) 

Here Pe represents the sum of the magnetic plus plasma pres- 
sure in the external region, and under normal coronal condi- 
tions it is dominated by the magnetic pressure. 

If / is set equal to a, so that the axial field (Bz) vanishes on the 
surface of the tube, and if the flux (F) and axial twist are given, 
then B0 and a in equation (4.4) are given by 

B -^2 B° - a2 (4.9) 

Thus, if L and F are held fixed, as the tube is twisted up, so a 
decreases and B0 increases. 

A better model is to allow / to differ from a and use equations 
(4.4), (4.7), and (4.8) to deduce B0, a, and / in terms of the flux 
(F), the mean twist (0m), and the external pressure (pe). Thus B0 

is given by equation (4.4) in terms of a, /, and F (where Iq = 
9F2/l4gPe]) as 

2/p(/LPe)1/2 

o /2[1 - (1 - a2/l2)312] ’ (4.10) 

while / and a are given in terms of 0OT, Pe, and F from the 
coupled equations (4.7) and 

a) AT wisted and Confined Flux T ube 
Now consider first a cylindrically symmetric flux tube (Fig. 

5a) such as may exist before the prominence forms. It has only 
components Be(r) and Bz(r), which depend on the radial dis- 
tance (r) from the axis alone and which are related by 

For example, consider for illustration fields of the form 

B r ( r2V/2 

Bd = j2r B* = BX-p) ’ 0 <r < a (4.3) 

which possess three parameters B0, /, and a (the radius of the 
tube). 

The magnetic flux (2nF) through the tube is given by 

F = (4.4) 

and the amount [0(r)] by which a field line at radius r is 
twisted about the axis in going a distance L from one end of the 
tube to the other is 

0(r) = 
LBe L 
rBz ~ y/2l(l - r2/l2)112 ’ 

(4.5) 

_ 2/q(1 - a2/2l2) 
[1 - (1 - a2//2)3/2]2 * 

(4.11) 

Thus from equation (4.11) as a/1 decreases from 1 to 0, so / 
increases from l0 to infinity and a4 approaches (f)1/4/o- The 
resulting variations of /4, a4, and B0 with Om are shown in 
Figure 6. As the twist (0m) increases from 0 up to 
[7t/2(2)1/2]L//0 so the magnetic length scale (/) decreases from 
infinity to /0, while the tube radius (a) increases monotonically 
from (f)1/4/0 to l0 and the axial field (B0) increases from zero to 
2(juPe)1/2. Also the scaling with flux (F) and external pressure 
(pe) is contained in the parameter l0 

( 9F2 \1/4 

o~wpJ • 

We have here considered the simple force-free field of the form 
(4.3), but other forms such as “ constant-alpha ” or “ uniform- 
twist ’’ give similar results. 

b) A Sheet Model within a Flux Tube 
Suppose that the magnetic field in the neighborhood of a 

prominence is close to that of a cylindrically symmetric flux 
tube, so that the flux function has the form 

A = A0(r) + ^(r, 0), (4.12) 
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Fig. 5b 
FIG. 5.—Notation for (a) a cylindrically symmetric flux and {b) a flux tube supporting a prominence sheet 
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Fig. 6a Fig. 6b 

B0/(HPe)
1/2 

FIG. 6.—The variation with mean twist ©m of (a) the magnetic scale length 
/, {b) the radius a, and (c) the axial field strength B0 of a flux tube, where 
ll = 3F/{4fiPe)il2 in terms of the axial flux (F) and external total pressure (Pe). 

Fig. 6c 

and for which 

Bz = B0Jr) + Blz(r, 0). 

In practice, the deformation produced by a fully formed promi- 
nence may be substantial, and so this approximation is appro- 
priate for the initial condensation or for active region 
prominences where the magnetic field is very strong. A linear- 
ization about the cylindrically symmetric solution [>loM] then 
yields from (4.2) the basic equation which determines 
namely 

dAo[l±f ¿¿A 1 d2All d Vl d f dA0V\ 
dr |_r dr \ dr ) + r2 dO2 J dr [_r dr \ dr )] 

Ai = 0 . 

(4.13) 

S+K,/-°- 
(4.14) 

and 

A'0 d f dR\ 
r dr \ dr J B^)]R=Klá^- (4'l5, 

where K2 is the separation constant, assumed here positive. 
If the field lines are assumed symmetric about a vertical axis 

(as shown in Fig. 5b) and if 6 is measured from the upward 
vertical, the boundary condition 

at Ö = 0 

Separable solutions to equation (4.13) may be sought of the 
form 

A, = R(r)m , 

implies that 

/= 6 cos K6 , 

where €( <U) is the linearization parameter. 
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In general, equation (4.15) can be integrated numerically, but 
for the particular form A0(r) = — B0 r2/(2x/2/) corresponding 
to the field (4.3), it reduces to 

r2R" + rR' — K2R = 0 . (4.16) 

Solutions behaving like r" have 

n2 = K2 9 (4.17) 

and the requirement that n > 0 so that ^ has no singularity at 
r = 0 implies that we have to select the positive solution. The 
resulting field components are 

Bir = Rf/r = -eKr*-1 sin KO , (4 lg) 

Bie = —dR/drf = -eKr^1 cos K6 , 

for — Tr < 0 < ti. In order that Blr and Bid are well-behaved at 
r = 0 we need 

K>1 . (4.19) 

Another condition is that Blr > 0 at 0 < tt so that there is an 
upward curvature at the prominence sheet (0 = n) in order to 
provide magnetic support for the prominence against gravity, 
and this implies 

e sin Ktc < 0 . (4.20) 

When € > 0 this (and eq. [4.19]) implies that 

1 <K<2 

(the fundamental solution). However, for 3/2 < K < 2 one 
finds that Bie < 0, and dominates Boe(~r) near 
r = 0, no matter how small e is, so giving a downward Lorentz 
force. One thus has to exclude this region, and K is limited to 
1 < X < 3/2 in this case. For higher harmonics 

2m — 1 < X < 2m , m = 2, 3,... . 

The resulting variation of Blr with 0 and r and the magnetic 
field lines are shown in Figure 7. Now, locally within the 

B1r/ekr 

k-1 
B1r/ea ksinkG 

Fig. 7b 

Fig. 7.—The variation with (a) 6 and (b) r of the radial field component Blr for several values of K between 1 and 2 and with e > 0. (c) A magnetic field line for 
1C = 1.5 in a plane perpendicular to the flux-tube axis and € = 0.5. {d) The variation of prominence mass (m) with height h = a — r. 
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B1r/(-8ak'1 ksinke ) 

Fig. 8.—As for Fig. 7, but with e < 0 and values of K lying between 2 and 2. K = 3 for (c). 

prominence we may assume a local balance 

P9 
between gravity and the Lorentz force, and this may be inte- 
grated across the prominence (assumed so thin that the hori- 
zontal field component Bh is uniform) to give 

mg = lBlr]Boe/in , 

where m is the prominence mass density per unit length inte- 
grated across the prominence, [Uir] is the jump in Ælr across 
the prominence from 0 = n to 0 = —tu, and Boe = B0r/{j2î) 
for the field (4.3). In other words, 

where 
m0 = —y/leK sin (Kn)B0a

K/(lgg) . 

The variation of m with height (h) in the prominence is shown 
in Figure Id. Since the condensing plasma is expected to drain 
down the field lines and occupy a narrow region only a scale 
height thick (based on the prominence temperature), the 
approximation of treating the prominence as a sheet is a good 
one (see Low 1981a). 

When 6 < 0, condition (4.20) implies that 

2m < K < 2m + 1, m = 1, 2, ... , 

and in particular we show the variations of Rlr and promi- 
nence mass in Figure 8 for 2 < X < 3. Here the curvature of 
the field lines in a section across the flux tube (Fig. 8c) is rather 
different than for Figure 7, since a field line starting from the 
top of the flux tube first moves out to a larger radius before (as 
in Fig. 7c) coming in to a minimum radius with a reversed 
curvature and then moving out near the prominence location. 

v. DISCUSSION 

a) Eruption 
Most prominences erupt at some point in their lifetime but 

often reform in the same location, presumably because the 
basic magnetic mould and the velocity patterns which are 
necessary for prominences to exist are not completely 
destroyed. An eruption takes place somewhere on the Sun typi- 
cally once every other day, and it usually produces (or is pro- 
duced by) a coronal mass ejection. When an active-region 
prominence erupts, it generally creates a large two-ribbon flare. 

During the eruption of a prominence it often has an appear- 
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anee suggestive of a twisted flux tube, which is therefore one of 
the main motivations for the present model. Indeed, it is, in 
view of this observation, surprising that a twisted flux tube 
nature has not been central to most previous models of their 
quiescent state. Since the large-scale twisting up of a flux tube 
is, we have argued, a likely cause of prominence formation, it is 
natural that as the twist continues the attainment of a second 
critical twist may cause an eruption. One should, however, be 
aware that observed structure giving the impression of helical 
twisting could also result from a system of oppositely inclined 
strands lying on both sides of a vertical sheet. In particular, 
filling a whole flux tube with cool dense material in equilibrium 
causes a theoretical problem, since in the upper part of such a 
tube the Lorentz force is not in the right direction to counter- 
act gravity. Perhaps this is why it is only in the highly nonequi- 
librium state of prominence eruption that a flux-tube geometry 
is revealed. 

Several analyses of prominence stability support this sugges- 
tion. First of all, a simple force-free magnetic arcade with shear 
but no twist (i.e., no magnetic island in a plane perpendicular 
to the arcade) is extremely difficult if not impossible to make 
ideally unstable (Hood and Priest 1980; Hood and Anzer 
1987). However, when a magnetic island is present so that we 
have a large-scale flux tube with an overlying arcade, insta- 
bility may result when either the twist is too great or the height 
of the prominence is too great or the width of the arcade is too 
large (Hood and Priest 1980; Birn and Schindler 1981 ; Einaudi 
and Van Hoven 1983; Hood 1983,1984; Migliuolo and Cargill 
1983; Low 1982). For a uniform-twist field, Hood and Priest 
(1980) showed that the stabilizing effect of photospheric line 
tying is to give a critical twist of 2.5n (i.e., greater than the 
Kruskal-Shafranov limit), whereas for a linear force-free field 
with an inversion Einaudi and Van Hoven (1983) obtained a 
higher value of 20tl If a typical critical twist for an eruption to 
occur is in the range 2.57T, to 2071, and is 2n say, for prominence 
formation, then the lifetime of a prominence (based on the 
estimates for twisting motions in § III) would be in the range 
17 days to 310 days. As well as twisting, there may be spread- 
ing motions, for example, in the decay of a remnant active 
region which can lead to prominence eruption. Another possi- 
bility is that if the plasma pressure gradient becomes too large, 
an arcade may lose equilibrium (Zwingmann 1985) or go 
unstable (Hood 1986; Velli and Hood 1986; Cargill, Hood, and 
Migliuolo 1986). But this seems less likely since in general the 
solar corona is completely dominated by the presence of strong 
magnetic fields. 

By analyzing the equilibrium of a magnetic flux tube under a 
balance between magnetic buoyancy and tension forces, it has 
been shown that the tube may lose equilibrium if the twist is 
too great or if the separation of the footpoints is too large, 
typically greater than a coronal scale height (Parker 1979; Low 
1981h; Browning and Priest 1984, 1986; Wolfson 1982). As far 
as the latter possibility is concerned, perhaps if two neighbor- 
ing tubes are joined together by reconnection they may create 
a longer tube which cannot be in equilibrium and so erupts. 
Furthermore, K. Harvey (private communication) has sug- 
gested that for active-region prominences the observed photo- 
spheric flow may not be fast enough to stretch out a long flux 
tube, so that instead it may be created by connecting together 
several small flux tubes. Indeed, the fascinating observations of 
Martin (1986) reveal many small regions of cancelling mag- 
netic flux near prominence footpoints which are probably sites 
of reconnection submergence, as argued by Priest (1987) and 

Zwaan (1987). This process may also cause a change in polarity 
from normal to inverse. 

Another model of the way prominence eruption may be ini- 
tiated has been put forward by Demoulin and Priest (1989), 
based on an earlier qualitative model by Van Tend and 
Kuperus (1978) and an analysis by Amari and Aly (1989). Here 
the equilibrium of a twisted magnetic flux tube (treated as a 
line current) in a force-free arcade is calculated, and it is found 
that, when the twist (or current) is too great or the arcade shear 
is too large, the flux tube can no longer be in equilibrium and 
the imbalance of forces is such as to make it erupt. The actual 
eruption after losing equilibrium has been recently studied by 
Steele and Priest (1988), in which the eruption drives reconnec- 
tion below the prominence and so allows the eruption to 
proceed faster than otherwise. Their analysis is a development 
of an earlier model by Anzer and Pneuman (1982) in which 
reconnection drove the eruption. 

b) Formation and T wisting of the Flux T ube 
How does the flux tube form? Malherbe and Priest (1983) 

and Priest (1987) have suggested that quiescent prominences 
lie along giant cell boundaries that separate unipolar regions. 
Differential rotation or shear at such boundaries (or fault lines) 
may then stretch out the arcade that arches over a boundary 
and create a long flux tube inclined at a small angle to the 
boundary. Shearing motions (Ambroz 1987) may, for example, 
occur at the boundary of the polar field and flux migrating 
toward it from lower latitudes. For active-region prominences, 
they may also be present near the edges of active regions or 
between neighboring active regions (see Harvey and Harvey 
1980, who find all such prominences to lie along velocity 
shears). 

Once the flux tube is stretched out, how is it twisted up in a 
systematic way that tends to produce normal polarity promi- 
nences at low latitudes and inverse polarity at high latitudes 
later in their lives as they drift towards the poles? Possible 
twisting mechanisms are shear gradients at giant cell bound- 
aries, differential rotation or Coriolis forces in supergranules as 
flux is carried from cell centers and concentrated at cell junc- 
tions. The estimates of § III favor the Coriolis effect which can 
twist up the tube over times of 10-100 days. Another, less 
likely, possibility is that the flux tube emerges already twisted. 

c) General Properties 
An important topic of prominence physics which has been 

virtually ignored until recently is the nature of prominence feet. 
One possibility is that they represent local regions where so 
much plasma has accumulated that the flux tube sags down to 
the chromosphere. Alternatively, the lower boundary of the 
prominence (presumably the critical height for prominence 
formation) could vary in a three-dimensional model because of 
several effects: either the field line divergence may vary along 
the prominence, or the field may become more normal to the 
prominence axis (and so reduce the thermal shielding) or the 
transverse magnetic field may vary and so allow different 
amounts of sag. For example, Demoulin, Priest, and Anzer 
(1988) have suggested that prominences with normal polarity 
tend to have their feet at the centers of supergranules, while 
those with inverse polarity tend to have them located at super- 
granule boundaries. 

Another neglected topic is the presence of fine vertical 
prominence threads, which may be caused by an interchange 
or resistive instability including thermal and gravitational 
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Fig. 9.—Long-term evolution of the magnetic flux tube within which a prominence forms, shown both from above (x-y plane) and in the xz-plane normal to the 
prominence sheet; i.e., looking along the prominence, (a) Shearing of a flux tube at a polarity inversion line (y-axis). (b) Twisting due to Coriolis forces produces a dip 
and a prominence with normal polarity, (c) Transition, (d) Increasing twist gives a prominence with inverse polarity. Field lines on the near side of the flux tube are 
shown solid, whereas those on the far side are dashed, (e) Evolution from normal to inverse polarity of a configuration including an ambient magnetic arcade in a 
section across the prominence. 

effects. Alternatively, a local condensation may tend to com- 
municate vertically as it sags and create dips on neighboring 
field lines above and below (Poland and Mariska 1988). 

One observational consequence of our model is that the 
prominence axis should be inclined very slightly (Fig. lb) to the 
polarity inversion line: for example, a source diameter (2ap) of 
4 Mm and a prominence length of 100 Mm implies an inclina- 
tion angle of 2°. Another consequence is that the ends of the 

prominence should be anchored in magnetic sources and sinks 
at the photosphere. 

Two possible long-term evolution sequences for promi- 
nences going from normal to inverse polarity as they migrate 
poleward have been considered by Hirayama (1985), but there 
are theoretical difficulties with them. In sequence A due to 
Pneuman, reconnection in going from (b) to (c) is most unlikely 
and in sequence B going from (b) to (c) by shearing and twisting 
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needs an unlikely rotation about the vertical axis of each mag- 
netic plane of the configuration. We would like to suggest 
instead the evolution shown in Figure 9 as a natural conse- 
quence of shearing and twisting. As the flux tube is twisted up 
it first forms a prominence with N-polarity (Fig. 9b), passes 
through a transition (Fig. 9c) and then forms a prominence 
with I-polarity (Fig. 9d). Since the prominence is located at the 
dips in the field lines, it is inclined very slightly to the photo- 
spheric polarity inversion line, and so the inversion polarity 
relative to the prominence sheet will take place at a slightly 
different twist from the inversion relative to the polarity inver- 
sion line. Another point to notice is that the evolution from 
N-polarity to I-polarity can also result from reconnection 
below the flux tube. 

Figure 9c shows the evolution from N- to I-polarity of a 
possible global magnetic field, including an ambient magnetic 
arcade, in the x-z plane across the prominence corresponding 
to Figures 9b-9d. As twisting continues, a cusp-type neutral 
point is formed, and the lower part of the prominence changes 
from N-polarity to I-polarity. The local configuration near the 
cusp may be modeled by a flux function A = x2 + y3/3 giving 
field components 

(Bx,By) = { + y2,-2x), 

and a current density j = —2(1 + y)//z. As the twist continues, 
the cusp splits into a pair of O- and X-type neutral points with 
local flux functions A = x2 y2 and A = x2 — y2, respectively, 
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Fig. 9e 

say. Prominence formation with I-polarity then becomes pos- 
sible in the lower part of the magnetic island around the 
O-point. For a time both types of prominence may possibly 
coexist, but eventually when the magnetic island has grown 
substantially we have shown in the last sketch only a promi- 
nence with I-polarity. 

When a prominence erupts it undergoes a metamorphosis 
and changes its appearance from a thin vertical sheet to a 
curved tube, although sometimes it looks like a twisted sheet. 
The eruptive process clearly disrupts and heats the prominence 
material allowing it to fill up parts of the erupting tube, 
whereas previously it was sitting quietly in potential wells at 
the bottoms of field line dips. 

VI. SUMMARY 
We have suggested that the stretching and twisting of a large 

magnetic flux tube naturally explains many observational fea- 
tures of quiescent solar prominences. The model is essentially 
three-dimensional. Twisting by Coriolis forces can create a dip 
in the flux tube when the twisted field component (Be) exceeds 
{a/RoY^B^ where B# is the field component along the flux 
tube and a and R0 are the minor and major radii of curvature 
of the tube. The presence of the dip can then allow the promi- 
nence to form by thermal condensation (if the criterion for 
radiative instability is satisfied) or by injection (for low-lying 
prominences when the injection speed is high enough). As a 
prominence migrates poleward and becomes more twisted or 
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