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ABSTRACT 

A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as R~2, where R is 
the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; 
hence the term coasting cosmology. Observational consequences of such a model include the age of the uni- 
verse, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift 
relation, and the galaxy number count as a function of redshift. These observations are used to limit the 
parameters of the model. Among the interesting consequences of the model are the possibility of an ever- 
expanding closed universe, a model universe with multiple images at different redshifts of the same object, a 
universe with Í2 - 1 # 0 stable in expansion, and a closed universe with radius smaller than H0 

1. 
Subject heading: cosmology 

I. INTRODUCTION 

The standard Friedmann-Robertson-Walker (FRW) cos- 
mology includes two components in the stress-energy tensor; 
radiation with an equation of state pR = pR/3, and matter with 
an equation of state pM = 0. In this paper I will consider a 
cosmological model with stress-energy tensor dominated by a 
new type of matter, called K-matter, with equation of state 
Pk ^ —Pk/3. 

In the remainder of the introduction I will review the 
dynamical equations of the FRW cosmology (for a more com- 
plete review, see, e.g., Weinberg 1972). In the next section I will 
discuss kinematic tests of the model. The final section contains 
the conclusions and discusses some motivation for the model. 

Recall that the standard FRW metric is spatially homoge- 
neous and isotropic and can be written in the form 

ds2 = dt2 - R2(t)^i ^kr2 + r2 d02 + r2 sin2 Od^ , (1) 

where (r, 6, (f>) are comoving coordinates, and R(t) is the cosmic 
scale factor. I will rescale the coordinates so that k is +1, — 1 
or 0, corresponding to constant-time spatial sections of con- 
stant positive curvature, constant negative curvature, or van- 
ishing curvature, respectively. With such a rescaling, the 
coordinate r in equation (1) is dimensionless, and R(t) has 
dimensions of length. In the case /c = +1, the spatial geometry 
is that of the three-sphere of radius R(i), and r ranges from 0 to 
1. 

To be consistent with the symmetries of the metric, the 
stress-energy tensor, 7^v, must be diagonal, and the nonzero 
spatial parts of the metric must be equal. The simplest realiza- 
tion of such a stress-energy tensor is that of a perfect fluid 
characterized by an energy density p and a pressure p : 

= diag (p, -p, -p, ~P)- (2) 

The conservation of stress-energy equation is = 0. The 
^ = 0 component of this equation gives the familiar first law of 
thermodynamics : 

d(pR3) = pd(R3). (3) 

For an equation of state p = wp, the energy density evolves as 
p oc R~^1+w\ For radiation, w = i and pÂ oc R'4, while for 

matter w = 0 and pM oc R-3. In a universe with both radiation 
and matter, the “ early ” universe will be radiation dominated 
(Pr > Pm) and t*16 “ late ” universe will be matter dominated 
(Pm ^ Pr)- For K-matter with equation of state w = — 3, p* oc 
R-2. For a model universe with radiation, matter, and K- 
matter, the “ intermediate ” universe will be matter dominated, 
while the late universe will be K-dominated. 

The evolution of R(t) follows from the Einstein equations. 
The 0-0 component of the Einstein equation gives the Fried- 
mann equation 

k SnG 
R2 + R2~ 3 P ’ 

(4) 

and the i-i component gives 

25 + F + F--8"g'’- (5) 

The difference of equations (5) and (4) provides an equation for 
the acceleration, R : 

R 
R 

47üG . _ . 
— (P + 3p). (6) 

Note that for matter and radiation, p + 3p > 0, so the universe 
decelerates in expansion, while for K-matter, p + 3p = 0, and 
the acceleration vanishes. 

The expansion rate of the universe is described by the 
Hubble parameter, H = R/R. The Friedmann equation can be 
expressed in the forms 

H2 = 
SnG 

p-- 
R2H2 3H2ßnG 

- 1 = Q - 1 , (7) 

where Q is the ratio of the density to the critical density pc : 

_ p 3H2 

Q = Pc’ Pc = 8tiG 
(8) 

The i different components to the energy density will often be 
parameterized by the individual Qf. If the energy density of the 
universe is dominated by K-matter the energy density term 
scales in expansion in the same manner as the curvature term 
k/R2. 
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It will prove convenient to define a dimensionless parameter 
Kby 

8nG _ K_ 
3 Pk = R2- (9) 

Since pKcc R 2, K is constant. In terms of K, the Friedmann 
equation is 

= h2 = §-T2’ w 

and Q = 1 + k/R2H2 = 1 + k/R2 is a constant, given by 

Q = 
K 

K-k' (11) 

the age of a K-dominated universe is 

Ho 
(1+z) 

(16) 

This gives for the present age of the universe t0 = //"1 = 9.776 
x 109 /i"1 yr, where the Hubble constant is taken to be H0 = 

100h km s-1 Mpc-1. This age is 50% larger than the age of a 
matter-dominated universe and twice the age of a radiation- 
dominated universe. Of course in a realistic model with radi- 
ation, matter, and K-matter, the age must be adjusted to reflect 
the fact that equation (16) is only valid for the epoch of K- 
domination. Since the age of the universe is independent of K, 
the age does not restrict the model. 

From equation (10) it is clear that K-matter acts as an effective 
curvature term (hence the notation “ K ”). 

Only the case K > 1 will be of interest for the closed model. 
If k = -I-1 (a closed model) and K < 1, the universe will recol- 
lapse due to the curvature, and K-matter will not have much of 
an effect. If k = — 1 (an open model) and K < 1, K-matter will 
have a small, negligible effect. 

Of course since the deceleration vanishes, R is constant in 
time. A universe dominated by K-matter will either expand 
with constant velocity or collapse with constant velocity. In a 
universe with radiation, matter, and K-matter, a collapsing 
universe will become dominated in turn by matter and then 
radiation, while an expanding universe once dominated by K- 
matter will remain so. Therefore the expanding model will be 
studied. 

The present expansion rate of the universe is defined to be 
the Hubble constant, H0. The Hubble parameter, H = R/R, in 
general evolves in time. From equation (10), for the K- 
dominated universe 

H2R2 = Hq Rq = K — k = const . (12) 

In a universe dominated by radiation or matter, H2R2 is not 
constant, but decreases in time. Therefore as seen from equa- 
tion (7), Q — 1 in general grows in time, and Q exactly 1 is the 
only stable solution. However, since H2R2 is constant in a 
K-dominated universe, any value of £2 is stable. Of course as 
discussed above, for the k = 1 case, K > 1 and > 1. As 
K -► 1, £2* -► oo and as K -► oo, £2* -► 1. 

II. EVOLUTION OF A /¿-DOMINATED UNIVERSE 

a) Age of the Universe 
The age of a K-dominated universe is found by integrating 

the Friedmann equation (10). Obviously £ is a constant, and 
the solution for R(t) is straightforward 

R = (K — k) ; R = (K — k)1/2 = R0H0t . (13) 

The above equation for £ is a special case of the more general 
result 

[/n \(l + 3w)-| 
1 - £20 + £2o(^J J , (14) 

which follows from the Friedmann equation and the fact that 
p oc R~3(1+yv\ 

With the usual definition of the redshift z (here and below 
the subscript 0 on a parameter will refer to its present value) 

(15) 

b) Horizons and r(z) 
One of the most fundamental parameters in classical cos- 

mology is the fraction of the universe in causal contact. Con- 
sider a comoving observer at coordinates (r0 = 0, 0o, 0O) at 
time t. A light signal satisfies the geodesic equation of motion 
ds2 = 0. Geodesics intersecting r0 = 0 are lines of constant 6 
and </>. Thus the geodesic equation becomes 
0 — dt2 — R2(t)dr2/(1 — kr2), and a light signal emitted from 
(rH, 0, (j)) at time i = 0 will reach the observer at time t deter- 
mined by 

T df f™ dr 

Jo m “Jo (1 - kr2)112 ■ 
Since the proper distance to the horizon is 

<U4 = jo (9rr)ll2dr, 

the distance to the horizon can be expressed as 

(17) 

dH(t) = R(t) 
Í 

dr 

wrm 
r dR{t') 

mm ' 
(18) 

For a general w, using equation (14) and defining x = 
m/Woi 

i 
H0(\ + z) 

1 

ff0(i + 4 

r 

n 

dx 
[x2(l - Q0) + l + 3wjl/2 

(19) 

In the K-dominated universe the distance to the horizon 
diverges. Of course in a realistic cosmology, the lower limit 
must be modified to reflect the fact that the early universe was 
radiation dominated and the intermediate universe was matter 
dominated. 

The fact that the horizon distance formally diverges implies 
that if the universe is dominated by K-matter, it is possible to 
see around the three-sphere in the k = +1 model. This curious 
circumstance is due to the fact that if K > 1, a closed universe 
expands forever. Seeing around the universe will have conse- 
quences in observable parameters such as the luminosity 
distance-redshift relation discussed below. The phenomena of 
seeing around the universe cannot occur in a matter- 
dominated universe, as the antipodal point is visible only at the 
point of maximum expansion of the universe, and the universe 
is circumnavigated by a photon only upon completion of the 
entire expansion-collapse cycle of the closed model 

By changing the limits of integration in equation (19) it is 
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possible to express any coordinate r, <rg in terms of ii0 and 
z: 

fri dr 

Jo (1 - krY12 

P» dR(f) _ 1 
JRl R(t')R(t’)~ R0H0 I 

dx 
x [x2(l — £20) + ii0 Jc*1 _ 3m,)] 1/2 ‘ (20) 

For a matter-dominated universe (w = 0) the solution for any 
choice of/c is 

ri(z) 
<loZ + (go - l)[(2g0z + 1)1/2 - 1] 

H0 Rq ql(l + z) 
(21) 

where the deceleration parameter q0 is related to Q0 by 2q0 = 
Q0 for the matter-dominated model. For a K-dominated uni- 
verse 

i(i?o^o)_1ln(l +z), k = 0, 
ri(z) = ] I sin l(R0 JF/0)-

1 ln (1 + z)] | /c = +1 , (22) 
[sinh h[(K0 //0)-

1 ln (1 + z)] , k= -1 . 

Note that the k = 0 result can be obtained from the k = ±1 
results by taking the limit H0 R0 = (K — 1)1/2 -► oo. 

Equation (22) will be used extensively in the next section. Of 
particular interest is the periodic nature of r^z) for the k = +1 
geometry. As z starts from zero and increases, the three-sphere 
is circumnavigated. Extrema of r^z) occur at the points 
(1 + z„) = exp (nnR0H0/2), with odd n corresponding to 
maxima r1(zn = 2m + 1) = 1 and even n corresponding to minima 
ri(zn = 2m) = 0- Recall that the coordinate system was chosen 
such that the point z = 0, ^ = 0 is the “ north pole ” of the 
three-sphere.1 As z increases from 0 to zl5 increases, reaching 
its maximum = 1 at z = z^ The point zx corresponds to the 
“ equator ” of the three-sphere. As z increases in the range zx < 
z < z2,ri decreases, reaching its minimum ^ = 0 when z = z2. 
The point z2 is the “south pole” of the three-sphere. Further 
increase in z in the range z2 < z < z3 leads to an increase in rl9 
reaching a second maximum T*! = 1 at z = z3 when the equator 
is again reached. Increasing z in the interval z3 < z ^ z4 leads 
to decreasing rt as the north pole is approached at z = z4. As z 
is increased further, the three-sphere is again circumnavigated. 
As an observer looks out into the Universe, objects with red- 
shift zn=4m+1 are located on the equator, objects with redshift 
zn=4m+2 are located on the south pole, objects with redshift 
Zn=4m+3 are also located on the equator, but are viewed by 
looking past the south pole, and objects with redshift zll=4in are 
at the north pole. The integer m = 0, 1,2,... indicates how 
many times the photon has circumnavigated the universe 
before detection. In principle, every object will be seen with 
multiple redshifts, but in practice if the object (or observer) has 
a nonzero peculiar velocity, the object will appear with differ- 
ent redshifts in different locations. 

III. KINEMATIC TESTS OF THE COASTING MODEL 

a) Luminosity Distance-Redshift 
The luminosity distance is defined as the ratio of the 

detected energy flux, and the luminosity of the source, : 

(23) 

1 The terms north pole, equator, and south pole refer to the geometry of the 
three-sphere, and of course having nothing to do with any particular direction 
in the sky, e.g., north galactic pole, and so on. 

In the absence of expansion, the luminosity distance is simply 
the physical distance to the source. In the FRW cosmology, the 
luminosity distance to a source at coordinate (rl9 0, <¿) is 
(assuming for convenience that the observer is located at r = 0) 

d2
L = R2

0ri(l + z)2 . (24) 

The factors are easy to understand. At the time of detection 
(i0), a two-sphere surrounding the source encompassing the 
observer has area 4nRlrl. Thus the factor R^rf is simply the 
“inverse-square law.” In traveling from the source to the detec- 
tor, each photon suffers a decrease in energy of (1 + z), and the 
time between arrival of successive photons is increased by a 
factor of (1 -h z). Therefore the factor of (1 + z)2 decrease in the 
detected flux is due to the redshift of the radiation between the 
time of emission and the time of detection. Equation (24) 
follows simply from the form of the metric, and is independent 
of the form of the stress tensor. 

Using equation (21) for r^z), the luminosity distance in the 
standard matter-dominated universe is given by 

H0dL = qo2{zqo + (<?o - m2q0z + 1)1/2 - 1]} . (25) 

Expansion of this expression for small z yields 

ifo^L = z + 2(1 - <?oz2 + • * • • (26) 
Of course the familiar linear “Hubble law” only obtains for 
small z. This luminosity distance as a function of redshift is 
shown as the dashed curves in Figure 1 for three values of q0 

(4o = 0,2, and 5). 
Using equation (22) for a X-dominated model, the lumi- 

nosity distance as a function of z is 

H d =\H0R0(l+z)\sml(H0R0)-
1\n(l+zm k=+l, 

0 ^ \h0 R0(l + z) sinh [(#„ ^0)_ 1 ln(l + z)] k= - l . 

(27) 
Expansion of the above expressions for small z gives 

H0dL = z + ±z2 + ■■■ (28) 

The luminosity distance as a function of redshift for a K- 
dominated universe is shown in Figure 1 as the solid curves for 
the indicated values of K. Figure la is for the closed k = +1 
geometry while Figure lb is for the open k = — 1 geometry. As 
with all kinematic tests, different cosmological models have 
similar behavior at z <0 (as can be easily seen by the above 
small-z expansions), and the greatest discrimination among 
different models comes from observations at the largest red- 
shift. 

Construction of a luminosity distance-redshift (or Hubble) 
diagram is the most fundamental program in observational 
cosmology. There have been countless surveys in the literature. 
Of course at high redshift (z > 1) evolutionary effects on galac- 
tic luminosity obfuscate the program. The data point and con- 
comitant error bar in Figure 1 indicates the range of possible 
data at the largest z where evolutionary effects are not expected 
to swamp the results. For instance the data of Kristian, 
Sandage, and Westphal (1978) extend to z ^ 0.75 and are con- 
sistent with matter-dominated universes with 0 < qf0 < 5 (see 
Rowan-Robertson 1985). If the data point and error bar is 
taken seriously, the following limits to K obtain 

K> 
Í1.08 
(1.5 

k — + 1 , 
k = — 1 . 

(29) 

The limits to K are summarized in Table 1. 
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Fig. la 

Fig. lb 

Fig. 1.—The luminosity distance-redshift relation for a matter-dominated universe (dashed curves) and a K-dominated universe (solid curves). Results for the 
matter-dominated model are given for q0 = 0, 2, and 5. (a) The K-dominated results for a closed model with K = 1.01, 1.08, 1.5 and oo. (b) The K-dominated results 
an open model with K = 1.01,1.1,1.5,4, and oo. The data point and error bar represents the results of Kristian, Sandage, and Westphal (1978). 

The form of the Hubble diagram for small K in the /c = +1 
case is particularly unusual. It is due to the fact that since 
R2

0H
2

0 = K-l, as K -► 1 the present radius of the three- 
sphere, R0 becomes small: Æ0 = Hq — 1)1/2 ~ 3000/i_1 

(K — 1)1/2 Mpc. If K = 1.01, for example, the radius of the 

TABLE 1 
Limits to K 

Method /c = +1 k = —1 

Luminosity distance-redshift  X ^ 1.08 X > 1.5 
Number count-redshift    X > 1.2 X > 4.0 
Angular diameter-redshift —. X > 1.2 X > 1.5 
Nonobservation of 

south pole   X^ 1.2 

three-sphere is only 300 Mpc. If we rotate the coordinate 
system to place ourselves at the north pole of the three-sphere, 
then the equator is at z = zl= exp (nR0 H0/2) — 1 = 
exp (n(K — l)1/2/2) — 1 = 0.1701, the south pole at z = 
z2 = exp (nR0H0) - 1 = exp |>(K - 1)1/2] - 1 = 0.3691, the 
equator viewed by looking around the south pole is at 
z = z3 = exp (3nR0 H0/2) - 1 = exp [3tc(K - l)1/2/2] - 1 = 
0.6020, and finally if we look out to z = z4 = exp (2nR0 H0) 
— 1 = exp [2ti:(K — 1)1/2] — 1 = 0.8745 we are looking 
around the universe and observing our own position. The 
effect of the closed geometry is to focus the light from any 
object in the opposite hemisphere. Light emitted from the 
south pole converges at the north pole, giving an infinite flux 
and therefore a vanishing luminosity distance. The light from 
an object at z = z6 is also at the south pole, but it has traveled 
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1.5 times around the universe before converging on the north 
pole. The (1 + z)2 factor in equation (24) results in the growth 
of the envelope of maxima of//0 dL. 

The convergence property of the A: = 1 cosmology allows a 
limit to be placed on K. If convergence occurs, very bright 
high-redshift objects would be seen.2 The lack of any obvious 
candidates implies that the south pole has not been observed. 
Since the south pole is at a redshift of z = z2 = exp (nR0 H0) 
— 1 = exp [n(K — 1)1/2] — 1, with the choice z2 > 3, then 

1.2. The limit to K is not very sensitive to the minimum 
value chosen for z2. 

b) Number Count-Redshift 
Another kinematic test is the galaxy number count per red- 

shift interval. The number of galaxies in a comoving volume 
element in an angular solid area dQ, with redshift between z 
and z + dz is sensitive to the number of galaxies, n, in a co- 
moving volume element dVc, and the spatial curvature : 

diVga, = ndVc = n j-j-^ rkr2y/2 dr<in ■ (30) 

Using the exact solution for r(z) in a matter-dominated model 
([eq.[21]) 

1 1 dN^= (H0 R0) -3 

n z2 dz dQ (1 + z)3z2qo 

± (go - l)[(2go z + 1)1/2 - l]}2 

[1-240 + 240(1+2)]1/2 ' ’ 

The small z expansion of the above result gives 

For the K-dominated universe, equation (22) leads to the result 

n z2 dz dQ 

_ i[R0 H0(l +z)z2]-1 sin2 [(fío /to)-1 ln(l +z)] k= +1 
\íR0H0(l+z)z2r1sinh2[_(H0R0)-

iln(l+z)-] k= -1 , 

(33) 
with small z expansion 

1 1 dALal 
(1-22+">- <«» 

Again, as expected, the small z expansions are identical in the 
two models. 

The number count-redshift results for a K-dominated uni- 
verse are shown in Figure 2 as the solid curves for the indicated 
values of K. Figure 2a is for the closed k = +1 geometry while 
Figure 2b is for the open k = —1 geometry. Also shown in 
Figure 2 by the dashed curves are the results for the matter- 
dominated model for q0 = 0, 0.1, and 0.5. The data point and 
error bars are taken from the recent analysis of Loh and Spillar 
(1986). Loh and Spillar also have data points at z = 0.5 and 

2 The fact that “ nearby ” z < 1 quasars are seen removes the temptation of 
identifying such objects as quasars. 

z = 0.25, but as before, the largest z data point is the most 
sensitive for the purpose at hand. 

Using the results of Loh and Spillar, the limits to K are 

K > 
\1.2 k=+l 
[4.0 k=-l. 

The limits to K are summarized in Table 1. 

(35) 

b) Angular Diameter-Redshift 
The final kinematic test that will be considered here is the 

angular diameter-redshift test. The angular diameter of galaxy 
clusters have been measured out to z 1 (Bruzual and Spinrad 
1978). Consider a source at r = ^ which emitted light at i = ^ 
(again taking our position as the north pole of the three- 
sphere). The observed angular diameter of the source, 3, is 
related to the proper diameter of the source, D, by 

K(ii)rT * 

The angular diameter distance, dA is defined to be 

(36) 

dA = ^ = R(ti)ri 
Rpr, 
1 -f z ‘ 

(37) 

For the matter-dominated model, 

H0da = <?o2(l + ^)"2{^o + (<?o - 1)[(24oz + 1)1/2 - 1]} , 

(38) 
which has small z expansion 

H0dA = z- ^(3 + q0)z2 + • • • . (39) 

For the K-dominated model, 

H d = Ka+^-MsinKHo^-Una+z)]! k=+l 
0 A Uo(l + z)-1 sinh [(Ho^-Mníl + z)] íc = -1 , 

(40) 
with small-z expansion 

H0dA = z-%z2 + -• . (41) 

The angular diameter-redshift results for a K-dominated 
universe are shown in Figure 3 as the solid curves for the 
indicated values of K. Figure 3a is for the closed k = +1 
geometry while Figure 3b is for the open k = -1 geometry. 
Also shown in Figure 3 by the dashed curves are the results for 
the matter-dominated model for q0 = 0, 0.5, and 1.0. The data 
point and error bars are taken from Bruzual and Spinrad. 
Again, data at smaller z are not important. 

The angular diameter-redshift limits to K are 

K> i'- 
k= +1 
k= -1 . 

The limits to K are included in Table 1. 

(42) 

IV. CONCLUSIONS AND SUMMARY 

A universe dominated by K-matter has several interesting 
properties. (1) A closed universe may expand forever. (2) A 
model with Q # 1 is a stable model, i.e., Q — 1 is constant in 
time. (3) In the case of the closed universe model, the radius of 
the universe may be small. (4) The closed universe model 
admits the possibility of multiple images at different redshifts 
of the same object. (5) In the closed model, light from distant 
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Fig. 2a 

Fig. 2b 
Fig. 2.—The number count-redshift relation for a matter-dominated universe (dashed curves) and a ^-dominated universe (solid curves). Results for the 

matter-dominated model are given for q0 = 0, 0.5, and 1.0. (a) The K-dominated results for a closed model with K = 1.01, 1.1, 1.5, and oo. (b) The K-dominated 
results an open model with K = 1.1,1.5,4, and oo. The data point and error bar are from Loh and Spillar (1986). 

objects converge due to the geometry. (6) The distance to the 
horizon diverges. (7) The age of the universe is Hö1- 

Models are parameterized by a dimensionless constant, 
K = 8nGpKR2/3. Kinematic tests limit K (see Table 1). Since 
for the k = +1 case the limits imply K > 1.2, the radius of the 
universe is today greater than R0 > — 1)1/2 > \300h~1 

Mpc. 
The fraction of the critical density contributed by K-matter 

is Qk = K/(K — k\ (K > 1 for /c = +1). For the closed model, 
K > 1.2 implies £lK < 6, while for the open model K > 4 
implies C1K < 0.8. The K energy density scales as (1 + z)2 while 
the matter energy density scales as (1 + z)3. If the fraction of 
the critical density contributed by matter is QM, the universe 

was matter-dominated a z > z*, given by 

1 + z * 
_K__L< jbÜM1 +1 
K - k QM ~ (0.8ÍV k = — 1 . 

(43) 

Even for QM as small as 0.01, the very early history of the 
universe is unchanged (primordial nucleosynthesis, recombi- 
nation, and so on). 

If the universe is spatially flat (k = 0), Qx = 1 for any value 
of K, and if /c # 0, Q* -► 1 as K -► oo. It is interesting to note 
that a spatially flat K-dominated model gives different results 
for the kinematic tests than does the spatially flat matter- 
dominated model. 
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Fig. 3a 

Fig. 3b 

Fig. 3.—The angular diameter distance-redshift relation for a matter-dominated universe {dashed curves) and a X-dominated universe {solid curves). Results for 
the matter-dominated model are given for q0 = 0, 0.5, and 1.0. (a) The X-dominated results for a closed model with X = 1.01,1.1,1.5, and oo. {b) The X-dominated 
results an open model with X = 1.1,1.5, and oo. The data point and error bar are from Bruzual and Spinrad (1978). 

Is there any reason to motivate the consideration of the 
existence of K-matter ? I mention the possibility of a universe 
dominated by cosmic strings (Vilenkin 1984). In Vilenkin’s 
paper, K is determined by the scale of spontaneous symmetry 
breaking of the symmetry responsible for the cosmic strings. 

A dynamical question not discussed here is the growth of 
perturbations in the X-dominated model. If there are no per- 
turbations in X-matter and the universe is X-dominated, then 
growth in matter perturbations is slowed (Turner 1985). 
However, if there is the possibility of perturbations in X- 
matter, then structure formation might proceed faster than in 
the matter-dominated model. The growth of perturbations in 
the energy density, <5, on scales inside the horizon well above 
the Jeans length in a spatially flat FRW model in the linear 

regime is described by the equation (Weinberg 1972) 

Ô + 2-ô- 4nGpô = 0 . (44) 
R. 

In the X-dominated model, R/R = t~1, and pK = 
IKfônGR2 = 3KßnG(K — k)t2, and equation (44) becomes for 
k = 0 

¿'4-2r^-|i-2 = 0, (45) 

which has growing-mode solution <5 oc i(7_1)1/2/2 = i0*8229. 
This is to be compared with the growing-mode solution 
ö oc i2/3 for the matter-dominated case. 
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Note added in manuscript.—Gott and Rees (1987) have This work was supported in part by NASA grant NAGW- 
pointed out that K-matter would lead to gravitationally lensed 1340, and by the Department of Energy. I would like to thank 
quasars. Their limit is K > 1.2. Ed Copeland and David Haws for useful conversations. 
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