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ABSTRACT 
The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a 

powerful way to find, and test the significance of, weak periodic signals. The method has previously been 
thought to be “slow,” requiring of order 102N2 operations to analyze N data points. We show that Fast 
Fourier Transforms (FFTs) can be used in a novel way to make the computation of order 102iV log N. 
Despite its use of the FFT, the algorithm is in no way equivalent to conventional FFT periodogram analysis. 
Subject heading: numerical methods 

I. INTRODUCTION 

Lomb (1976) and Scargle (1982) developed a novel type of periodogram (Fourier spectrum) analysis, quite powerful for finding, 
and testing the significance of, weak periodic signals in otherwise random, unevenly sampled data. Horne and Bahúnas (1986) have 
elaborated on the method and discussed its implementation. The method is incorporated into the data analysis package “ J ” and is 
widely used in some astronomical specialities. (For a pedagogical discussion, see Press and Teukolsky 1989). 

Briefly, given a set of data values hhi= 1,..., iV at respective observation times th the Lomb-Scargle periodogram is constructed 
as follows. First, compute the data’s mean and variance by 

1 N 

»i» 

Second, for each angular frequency co = 2nf > 0 of interest, compute a time-offset t by 

^ x y. sin Icot: tan (2cot) = ^  —- 
Yjj cos 2œtj 

Third, the Lomb-Scargle normalized periodogram (spectral power as a function of co) is defined by 

PfÁco)^ 
1 

2cr2 
E, (hi - ft) cos Mtj - T)]2 | [L (ft, - h) sin a>(tf - r)]2 

Xj cos2 - T) Xj sin2 oitj - t) 

(2) 

(3) 

The constant t makes Psico) completely independent of shifting all the by any constant. Lomb (1976) showed that this 
particular choice of offset has another, deeper, effect : it makes equation (3) identical to the equation that one would obtain if one 
estimated the harmonic content of a data set, at a given frequency co9 by linear least-squares fitting to the model 

h(t) = A cos cot + B sin cot. (4) 

This fact gives some insight into why the method gives superior results on unevenly sampled data: it weights the data on a “per 
point ” basis instead of on a “ per time interval ” basis. 

Up to now, the Lomb-Scargle method has been viewed as being a “ slow ” method, in the technical sense of requiring a number of 
operations on the order of N operations to examine frequencies for a data set of N points. In fact, the constant in front of this 
order is quite large, ~ 102, because of the trigonometric operations which are required. Restriction to evenly spaced values of co and 
use of trigonometric recurrence relations (Press and Teukolsky 1988) can save a factor ~ 3, but the count is still large. 

Furthermore, one typically wants to be larger than iV by a significant factor, for two independent reasons. First, it is desirable 
to oversample the spectrum, so as not to miss the peak of a spectral signal that is on the borderline of statistical significance. 
Second—this is one of the powerful features of the method—it is often meaningful to examine frequencies significantly higher than 
the Nyquist frequency that would obtain if the same number of data points were evenly spaced in the same total length of time. 
Some spectral information is obtainable for frequencies all the way up to something like half the inverse spacing of the closest spaced 
points. 

The upshot is that the Lomb-Scargle method has a computational burden on the order of N2, with quite a large constant in front, 
~ 102-103. Until now, its use has been limited to data sets no longer than, say, 1000 points for interactive workstation applications, 
or perhaps 104 points on a supercomputer. 

In the remainder of this paper, we will show how equations (2) and (3) can be calculated—approximately, but to any desired 
precision—with an operation count only of order log N^. The method uses the FFT, but it is in no sense an FFT periodogram 
of the data. It is an actual evaluation of equations (2) and (3), the Lomb-Scargle normalized periodogram, with exactly that method’s 
strengths and weaknesses. The fast algorithm given here makes feasible the application of the Lomb-Scargle method to data sets at 
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278 PRESS AND RYBICKI 

least as large as 106 points, and it is already faster than straightforward evaluation of equations (2) and (3) for data sets as small as 60 
or 100 points. 

II. FAST LOMB-SCARGLE EVALUATION 
A first observation to be made is that the trigonometric sums that occur in equations (2) and (3) can be reduced to four simpler 

sums. If we define 

and 

then 

N N 
sh= Y, hjsin (œtj) ’ ch= Y hjcos (œtj) 

7=1 7=1 

N N 
s2= Y sin (2cüî7) c2=Y cos » 

7=1 7=1 

(5) 

(6) 

N 
Yj hj cos co(tj — t) = Ch cos cot + Sh sin cot 

7=1 
N 
£ hj sin co(tj ~ t) = Sh cos cot — Ch sin cot 

7=1 
N N 1 1 
Y, cos2 co(tj — t) = — + - C2 cos (2cot) + - 52 sin (2cut) 

7=1 2 2 2 

(7) 

N N 1 1 
£ sin2 co(tj — t) = — — - C2 cos (2cot) — -S2 sin (2ct7T) 

j=i 22 2 
Notice that if the i/s were evenly spaced, then the four quantities Sh, Ch, S2, and C2 could be evaluated by two complex FFTs, and 
the results could then be substituted back through equation (7) to evaluate equations (2) and (3). The problem is therefore only to 
evaluate equations (5) and (6) for unevenly spaced data. 

Interpolation, or rather “reverse interpolation”—hereafter referred to as “extirpolation”—provides the key. Interpolation, as 
classically understood, uses several function values on a regular mesh to construct an accurate approximation at an arbitrary point. 
Extirpolation, just the opposite, replaces a function value at an arbitrary point by several function values on a regular mesh, doing 
this in such a way that sums over the mesh are an accurate approximation to sums over the original arbitrary point. 

It is not hard to see that the weight functions for extirpolation are identical to those for interpolation. Suppose that the function 
h(t) to be extirpolated is known only at the discrete (unevenly spaced) points = hh and that the function g(t) (which will be, e.g., 
cos cot) can be evaluated anywhere. Let tk be a sequence of evenly spaced points on a regular mesh. Then Lagrange interpolation 
(see, e.g., Press et al. 1986, § 3.1) gives an approximation of the form 

g(t) x X wk(t)g(h), 
k (8) 

where cok(t) are interpolation weights. Now let us evaluate a sum of interest by the following scheme : 

I hjgUj) « Z hï Y = I [ X hjWk(tj)\g(tk) = X Kdih) ■ 
7=1 7=1 L* J fc L/= 1 J k (9) 

Here hk = Yj hj <uk(tj). Notice that equation (9) replaces the original sum by one on the regular mesh. Notice also that the accuracy of 
equation (8) depends only on the fineness of the mesh with respect to the function g and has nothing to do with the spacing of the 
points tj or the function h ; therefore the accuracy of equation (9) also has this property. 

The general outline of the fast evaluation method is therefore this: (1) choose a mesh size large enough to accommodate some 
desired oversampling factor, and large enough to have several extirpolation points per half-wavelength of the highest frequency of 
interest. (2) Extirpolate the values ^ onto the mesh and take the FFT; this gives S* and Ch in equation (5). (3) Extirpolate the 
constant values 1 onto another mesh, and take its FFT; this, with some manipulation, gives S2 and C2 in equation (6). (4) Evaluate 
equations (7) (2), and (3), in that order. 

There are several other tricks involved in implementing this algorithm efficiently. Rather than try to describe these in words, we 
direct attention to the commented program implementation, reproduced in Table 1, mentioning here only the following points: (a) 
A nice way to get transform values at frequencies 2co instead of co is to stretch the time-domain data by a factor of 2, and then wrap it 
to double-cover the original length. (This trick goes back to Tukey.) In the program, this appears as a modulo function, (b) The 
subroutine REALFT is assumed to return the positive-frequency half of the complex spectrum of a real data array, and can be found 
in Press et al. (1986). (c) Trigonometric identities are used to get from the left-hand side of equation (2) to the various needed 
trigonometric functions of cot. FORTRAN identifiers like (e.g.) CWT and HS2WT represent quantities like (e.g.) cos cot and 
2 §in (2cot). (d) See Press and Teukolsky (1988) for discussion of the approximations involved in the calculation of the significance 
level of the largest spectral peak found, (e) the subroutine SPREAD does extirpolation onto the M most nearly centered mesh points 
around an arbitrary point; its turgid code evaluates coefficients of the Lagrange interpolating polynomials, as efficiently as we know 
how to do. 
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