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ABSTRACT 
Regularity conditions and global topological constraints leave some forbidden regions in the parameter 

space of the transonic isotherhjal, rotating matter onto black holes. Unstable flows occupy regions touching 
the boundaries of the forbidden regions. We discuss the astrophysical consequences of these results. 
Subject headings: black holes 

I. INTRODUCTION 
Many of the X-ray sources believed to be compact objects 

accreting rotating matter show transient behavior, switching 
themselves between high and low states. There is growing evi- 
dence that this may be due to particular properties of transonic 
accretion onto black holes and neutron stars, in particular to 
regularity conditions at the critical points and the global topo- 
logical constraints. 

Thin, stationary, axially symmetric accretion flows are often 
described by a one-dimensional model in which all the physical 
quantities are vertically integrated and the laws of mass, 
momentum, angular momentum, and energy are expressed by 
a set of ordinary differential equations (Muchotrzeb and 
Paczynski 1982). The necessary integration constants are pro- 
vided by the boundary conditions, which depend on the details 
of a particular astrophysical situation. For example, it is often 
assumed that the flow at some radius Rout far away from the 
central accreting body is identical with that given by the 
Shakura-Sunyaev solution. We shall call this particular possi- 
bility Keplerian boundary conditions. 

Accretion onto black holes is always transonic, and the same 
is true for most situations involving neutron stars. Differential 
equations describing transonic dissipative flows have sub- 
critical points in addition to the well-known critical points 
(Flammang 1982). Any locally acceptable solution must pass 
through these points regularly. The regularity conditions for 
critical points are in the form of algebraic constraints, while 
those for subcritical points are given by integral conditions. In 
the isothermal case the energy conservation equation is 
trivially fulfilled and the complications with the subcritical 
points do not arise (Flammang 1982). This, together with the 
fact that the sound speed cs is constant, enormously simplifies 
the problem and offers the possibility of studying the transonic 
flows analytically. 

An acceptable local transonic solution must be globally 
correct, going all the way from radial infinity to the center. For 
a regular, globally acceptable solution it is necessary, although 
not sufficient, for the critical point to be of saddle or nodal 
type; spiral- or center-type solutions are excluded (see Ferrari 
et al. 1985 for an excellent discussion on classification of types 
of critical points). 
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The sonic point/local regularity conditions, together with 
the global topological demands, cannot be met for all the 
choices of boundary conditions and parameters describing the 
material properties (equation of state, opacity, viscosity). This 
creates forbidden regions in the parameter space of the problem 
and means that not all astrophysically acceptable boundary 
conditions can lead to regular stationary flows. 

Abramowicz and Zurek (1981) found that in the case of 
dissipation-free black hole accretion the forbidden region 
separates two physically different regimes. The first, Bondi ac- 
cretion, contains solutions with the sonic point far away from 
the hole. They resemble spherical accretion of nonrotating 
matter. The second regime, disk accretion, contains solutions 
with the sonic point close to the hole. They are similar to the 
innermost parts of thick accretion disks and have no Newto- 
nian analogy. A speculation by Abramowicz and Zurek that 
when an astrophysical situation locates a stationary model of 
the flow in the forbidden region, then the nonstationary 
response of the flow will be bistable, with the flow oscillating 
between the Bondi and disk regimes, was later supported, 
although not proved, by a rough time-dependent model of 
Abramowicz, Livio, and Lu (1986). They suggested that the 
bistability can be connected with the observed high state-low 
state transitions of some X-ray sources. None of the nonsta- 
tionary numerical models of Hawley (1986) show the 
bistability. They were connected with shocks and covered only 
a limited region of the parameter space, however, since they 
always started from supersonic flow at the outer boundary. 

Muchotrzeb (1983) continued the studies of dissipative ac- 
cretion flows started by Paczynski and Bisnovatyi-Kogan 
(1981) and by herself and Paczynski (1982). She worked in a 
particular subset of the parameter space consistent with the 
Keplerian boundary conditions. She found a part of the 
boundary of the region where globally acceptable transonic 
solutions of the saddle type exist. She interpreted the existence 
of such a boundary as an upper limit, a* æ 10 ~2, to the 
Shakura-Sunyaev viscosity parameter a and suggested that 
when a is greater than a* no stationary solution is possible. 
Matsumoto et al. (1984) cleared up this point by showing that 
unstable nodal-type transonic solutions exist beyond the 
boundary found by Muchotrzeb. They demonstrated that the 
boundary of the forbidden region corresponds to the boundary 
between regions of spiral- and nodal-type solutions. 

Instability of the transonic solutions was suggested by 
Muchotrzeb-Czerny (1986) and studied in great detail analyti- 
cally by Kato, Honma, and Matsumoto (1988) and numerically 
by Matsumoto, Kato, and Honma (1988). They found local 
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instabilities for isothermal disks when 

(1.1) 

Here Q is the angular velocity of rotation, v is the radial com- 
ponent of the accretion velocity, R is the radial distance, and 
the subscript c refers to the critical point. The instability arises 
when oscillations of the azimuthal component of the viscous 
force are in phase with the variations of azimuthal velocity, so 
the viscous force does positive work on oscillations. They 
showed that these local oscillations may develop to global 
trapped ones in the transonic region because the epicyclic fre- 
quency, 

aQ(Rc) > 
dv 
Jr 

2 2Q dl 
x =TdR’ 

(1.2) 

is small there. In addition to these, there is a nonpropagating 
mode located at JR = Rc. When inequality (1.1) predicts insta- 
bility, this mode also becomes unstable. For isothermal flows 
with the Shakura-Sunyaev viscosity prescriptions the insta- 
bility criterion (1.1) says that nodal sonic points are unstable, 
while the saddle-type points are stable. This is not, however, as 
we show later in this paper, a general property. 

Recently Paczynski (1987) proposed an explanation for the 
complex phenomenon of the quasi-periodic oscillations 
(QPOs) observed (see, e.g., Stella 1986 for references) in the 
several bright low-mass X-ray binaries. The explanation uti- 
lizes the existence of the upper limit for the viscosity parameter 
a for stable flows, suggested by Muchotzreb. 

We shall also discuss the location of the two other bound- 
aries in the parameter space. The first is connected with the 
condition that the solution must be complete, i.e., it must pass 
from infinity to the center. In the a = 0 case it was found by Lu 
(1986). The second is connected with the stability condition 

The most important conclusion of our paper is that the 
unstable region is located close to the forbidden region in the 
parameter space. As we explain later, this may indicate that the 
bistable flows oscillating between the Bondi and disk states 
should be in addition affected by instability, i.e., be intrinsically 
noisy, or show time-dependent pulsations with frequencies 
much higher than those characteristic for their high state-low 
state transitions. 

II. ISOTHERMAL TRANSONIC ACCRETION 

From now on we assume that the accreted gas is isothermal, 
i.e., that the sound speed cs is constant. Another simplification 
adopted here is the Paczynski and Wiita (1980) potential to 
describe, in the Newtonian theory, the external gravitational 
field at distance R from a black hole or a neutron star with 
mass M : 

- 
GM 

r-rg’ 
Rg = - 

2GM 
(2.1) 

In this potential the free particles on circular orbit have the 
Keplerian angular velocity QK and specific angular momentum 
/K given by 

2 _ GM 2 _ GMR3 

Qk = (R- Rg)2R ’ K " (R - Rg)2 ’ 
(2.2) 

Still another important simplification follows from the 

assumption that the vertical thickness H of the flow is very 
small : 

H = cs/Qk<R. (2.3) 

This allows us to use vertically integrated or averaged physical 
quantities: density Z, pressure W, specific angular momentum 
/, accretion velocity v, and the viscous stress g. The basic equa- 
tions describing the mass, momentum, and angular momen- 
tum conservation, together with the equation of state and the 
Shakura-Sunyaev viscosity prescription, are (cf. Matsumoto et 
a/. 1984) 

— + - (RZv) = 0 . 
ôt RdRy ’ 

dv ôv l2 - (je 1 8W W ô In flK 

Jt + VdR~ R3 8R + Z dR 

dl dl 
— “i- V 
dt dR 

W = ciX, 

g= -aW . 

(2.4a) 

0, (2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

In our convention u < 0 corresponds to accretion and r > 0 to 
a wind solution. We are not interested in the second possibility, 
so we assume t; < 0. 

a) Stationary Case 

In the stationary case the equation of mass conservation 
(2.4a) can be trivially integrated, giving InKLv = -M0 = 
constant, with M0 the accretion rate. To integrate the equation 
of angular momentum conservation (2.4c), one assumes that 
there is no viscous stress across the horizon of the black hole : 
g(RG) = 0. The result of the integration is (/ - lin)M0 = 
2nR2oiW. It will be convenient to introduce dimensionless vari- 
ables by the following scaling: 

Radius: r = R/RG 

Velocity: S — v/c , 

Sound velocity: K = cs/c, (2.5) 

Angular momentum: 2 = l/(RG
c) » 

Angular velocity: co = il/(c/RG). 

With this scaling the stationary model of the flow is described 
by 

-- J^ir, A), (2.6) 

A — Ain = —<xrK29-1 . (2.7) 

The functions AK(r) and ojK(r) are dimensionless versions of 
lK(r), fiK(r), given explicitly by (2.2) and (2.5). In particular, we 
have 

d In ((Oyjr) _ 5r — 3 
dr 2r(r - 1) ’ 

d2 In (cogjr) _ 5r2 — 6r + 3 
dr2 2r2(r - l)2 
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306 ABRAMOWICZ AND KATO 

Note that equations (2.6) and (2.7) were obtained by per- 
forming two integrations. However, only one integration con- 
stant, 2in, appears in these equations. The second integration 
constant, M0, is lost because of the assumption cs = constant 
(we shall discuss this later). 

b) Sonic Point Local Regularity Conditions 
At the critical point both the left-hand and right-hand sides 

of equation (2.6) are equal to zero, and 

S = SC=-K, 

' = ^ ~ ^K;(rc) c — 3 + K2 Sr, - 3 
2rc(rc - 1) 

= 0 . 

(2.9a) 

(2.9b) 

The critical points are located outside the horizon of the black 
hole, rc > 1. Thus, because 5rc > 3 and K2 > 0, equation (2.9b) 
can be fulfilled only when 

l2 < 4W , (2.10) 
a condition found previously by Abramowicz and Zurek 
(1981). Here equality corresponds to K = 0, and it is consistent 
with a boundary of a forbidden region in the parameter space. 

In general topological type of critical points for a linear 
first-order differential equation dy/dx = f(x, y) can be seen 
from an expression for the derivative r¡ = (dy/dx)c at the 
sonic point. It follows from the quadratic equation 
//2 — 2at] + b = 0, and may be written as 

= a + (a2 — b)112 . (2.11) 

Comparing this with equation (2.11), we conclude that the 
spiral, nodal, and saddle regions are consistent with 

a2co2 

Spiral: —< X , (2.17) 

2 2 
Nodal: 0 < AT < , (2.18) 

Saddle: 0>X. (2.19) 

A necessary, but not sufficient, condition for an acceptable 
solution is that the critical point should be of either saddle or 
nodal type. Therefore equation (2.17) with equality defines the 
boundary of a forbidden region. When X changes between 0 
and a2a^/4, i.e., the critical point is of the nodal type, the 
velocity gradient changes between 

0< (2.20) 

On the other hand, the criterion (1.1) demands for an unstable 
flow 

(2.21) 

However, owing to discontinuity of (dS/dr) across the critical 
point (see Fig. 1), the regions defined by inequalities (2.20) and 
(2.21) are, in fact, equivalent: the nodal-type flows are unstable, 
while those of the saddle type are stable. 

°<'f 
< ctcor 

The spiral-type critical points exist for a2 -b <0, while the 
saddle and nodal points exist for a2 - b > 0. The saddle points 
correspond to 6 < 0 and the nodal ones to h > 0. When a = 0, 
there are no nodal points. In this case the spiral points (which 
are reduced to circular ones) correspond to h > 0 and the 
saddle points to b < 0. (See, e.g., Ferrari et al 1985 for more 
details.) 

To apply these ideas to equations (2.6) and (2.7), we intro- 
duce three new variables, x = r - rc9 y = S - z = À - Àc. 
With accuracy in quadratic terms in x, y, z, one has 

Expansion of equation (2.6) near the critical point gives 

dy _ dJT \dJf 
y dx~K^Z + 2^r (2.13) 

The derivatives dJfldk2 and dJfldr can be found from equa- 
tion (2.6). From equation (2.7) one has, expanding around 
r = rc, 

z = olxK -h arc y , (2.14) 

c) Global Topological Constraints 
The conditions X < cc2co2/4 and À2 < À^(rK) demand that 

the critical point have the correct topological type, saddle or 
nodal, and correspond to an acceptable equation of state, with 
positive sound-velocity square. These conditions are local; 
they cannot guarantee that a solution crossing a locally correct 
critical point reaches the central accreting object: there is a 
possibility that the solution turns back to a subsonic region 
through a nonregular sonic point with J^(r, À) # 0. Figure 2 
illustrates this possibility and defines what we understand by a 
final critical point. The question whether a critical point is final 
can be always answered by numerical integration. Here we give 
a simple analytical argument, sufficiently accurate for our pur- 
poses. 

Integration of equation (2.6) from rc to some value r < rc 
gives 

1 _ K2} _K2[n\3 = F(r> A) ^ (2 22) 

Fir- '‘i=ÍA”'“*+K¡3t - 
and from the last three equations one derives the solution for 
the derivative (dS/dr)c : 

dy oteo, \ 1/2 
(2.15) 

4V4 - ode Kr~3 - i (rc - l)“3 

5rc — 6rc + 3 , 
+ ^-> *2- 

- K2 In a>K(r) rc 

«kW r_ ’ 
(2.23) 

The function of 9 and K on the left-hand side of equation (2.22) 
is zero for 9 = —K, i.e., at a critical point, and positive for the 
supersonic part | £ ( > K. Hence the condition that the critical 
point is final reads F(r, /) > 0 for all r <rc. On the other hand, 
from 2 = 2in + <xr/C2/| 9 \ and \9 \ > K we have /.tn < / < 2in 

+ arK, and from equation (2.23) we can write 

F(r, /in + arK) < F(r, 2) < F(r, 2in) . (2.24) 
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Fig. 1.—Gradient of the accretion velocity at the critical point as a function of X 
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If F(r, Ain + (xrK) > 0 for all r <rc, then also F(r, i) > 0 for 
all r < rc. Hence 

F(r, Ain + ocrK) > 0 for all r <rc (2.25) 

gives a sufficient condition for the critical point r = rc to be 
final. Similarly, if F(r, 2in) < 0 for some r <rc, then it would be 
also F(r, À) < 0 for some r <rc. Hence 

F(r, Ain)>0 for all r<rc (2.26) 

is a necessary condition for the critical point at r = rc to be 
final. Both of these conditions can be explicitly expressed as 
algebraic conditions, and for fixed K and a they give two lines 
on the (Àc, rc)-plane. The boundary between the final and non- 
final critical points, 

F(r, A) = 0 , (2.27) 

lies between them. When a = 0 the two conditions (2.25) and 
(2.26) coincide, and the location of the boundary (2.27) is 
explicitly known. 

III. PHYSICAL REGIONS IN THE PARAMETER SPACE 

a) Parameter Space 
There are three first-order derivatives, (dZ/dR), (dv/dR), (dl/ 

dR), in the stationary problem and therefore three constants of 
integration connected with them. Material properties of the 
fluid are characterized by two parameters, a and K = cs/c. The 
location of the sonic point Rc gives one additional parameter to 
the problem. The value of the central mass M is not a param- 
eter, because the scaling (2.5) erases it completely. 

The six constants which characterize the problem param- 
eters are 

Mo, 2in, Ac, Rc, a, K . (3.1) 

We shall see that only three of them are independent. The two 
regularity conditions at the sonic point reduce the number of 
independent parameters from six to four. We have already seen 
that the integration constant M0 (accretion rate) does not 
appear in the regularity conditions at the sonic point. This is a 
particular property of the isothermal flow which arises from 
simplification of the pressure gradient force term Z~1{dW/ 
ÔR) = P' in equation (2.4b). 

In general, for a one-parameter equation of state, W = W(L) 
and c| = (dW/dZ) ^ constant. Therefore, 

P' 
E ÔR s{ } E dR ' (3.2) 

One then uses equation (2.4a) and its integrated version to 
eliminate both dZ/dR and Z from equation (3.2), replacing 
them by dv/dR, v, and known functions of R. Because Z = 
— M0/2nRv, one obtains in general P' = P'(v9 dv/dR, R, M0). 
However, since P' depends on M0 only through cs, when cs is 
constant the dependence of M0 is lost. Therefore, only three of 
the original six parameters are independent. 

One might worry that the absence of the accretion rate M0 
in the set of parameters describing the flow due to the assump- 
tion cs = constant implies that this very assumption is quite 
unacceptable from the physical point of view: after all, M0 
contains the most important physical information about the 
flow. However, in a sense, exactly the same information is 
carried out by cs. For example, physically the vertical thick- 
ness H of the flow is regulated by the accretion rate, but 

because H = cs/QK one can regulate the thickness by tuning cs. 
The thickness is zero either when M0 = 0 or when cs = 0. In 
Figure 3 the location of the critical points is shown in the a = 0 
case. Figure 3a corresponds to the isothermal situation con- 
sidered here, while Figure 3b, taken from Abramowicz and 
Zurek (1981), corresponds to the general one-parameter equa- 
tion of state W = W(Z). The topological equivalence of the 
cs = constant curves in the isothermal case with the M0 = 
constant curves in the general case is quite visible in this figure. 

The angular momentum conservation equation and the 
regularity condition Jr

c = 0 help to make the best choice of 

1 10 r 100 
' c 

Fig. 3.—Location of the critical points in the a = 0 case for {a) isothermal 
and {b) general one-parameter equation of state cases. The regularity condition 
jV' = 0 gives cs = constant curves for the isothermal case or M = constant 
curves for the general case. It is clear from these figures that the properties of 
these curves are very similar: in both cases the negative slope of the curves 
indicates the saddle-type sonic point (solid lines), and the positive slope indi- 
cates the circle or spiral type (dashed lines). For the same set of parameters two 
solutions with the acceptable, saddle-type, critical point topology are some- 
times possible, as shown by horizontal dotted lines. If such a situation occurs, 
it is always possible to reach infinity from the outside critical point and the 
accreting center from the inside critical point. In this paper we are considering 
the outside critical points, and therefore the question is whether the critical 
curve passing a critical point can reach the center. 
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the three independent parameters. These equations at the criti- 
cal point have the form 

2in = >lc-arcK, K2 = 2 2[^(rc) - Ac
2](rc 1) 

rc
2(5rc - 3) 

(3.3) 

It is obvious that one must choose two of the three parameters 
K, rc, 2C and one of the two parameters Àin, a. The most conve- 
nient choice of the three independent constant parameters, 
completely describing the three-dimensional parameter space 
of the problem, is 

rc, Ac, a . (3.4) 

b) Boundaries of the Physical Regions 
The different boundaries discussed in the previous section 

form two-dimensional surfaces in the three-dimensional 
parameter space. We shall describe them in the two- 
dimensional plane (i2, rc), treating a as a parameter. 

From formulas (2.17), (2.18), and (2.19) it follows that when 
a = 0 the nodal region shrinks to a single line X = 0, and that 
the spiral (circle in the limit a = 0) and the saddle regions are 
divided by this line. The line X = 0 for a = 0 corresponds to 
the loci of the extrema of the JV' = 0 (with K = constant) 
curves. In Figure 4 the curve X = 0 for a = 0 is shown by a 
thick solid line marked £ss, while the c/T = 0 curves for four 
given K’s are shown by thin lines, marked by the correspond- 
ing values of K. Their solid parts indicate saddle-type points, 
and the dashed parts denote the circle-type critical points. The 
j/' = 0 curve for K = 0 (solid line marked 2£) gives the bound- 
ary of the forbidden region connected with inequality (2.10). 
Inside this region K2 <0, and in the region above the line Bss 
the physically acceptable solution is impossible when a = 0. 

When a 0 the line Bss shifts upward and splits to form a 
nodal region, sandwiched between the spiral and the saddle 
regions. This is shown in Figure 4 by two pairs of thick solid 
lines marked a = 0.1 and a = 0.3. In the case a = 0.1 the two 
lines almost coincide, so it is not possible to show them as 
separate ones. For the Shakura-Sunyaev viscosity prescription 
(2.4e) the nodal region coincides with the region of the unstable 
solutions ; instability criterion ( 1.1 ) is fulfilled there. 

Figures 5a and 5b show in detail how the boundaries of the 
forbidden regions change with increasing a. As a increases, the 
saddle region on Jf' = 0 (with K = constant) curves, indicated 
by solid lines, invades beyond the extrema of the curves. In 
addition, the nodal region, indicated by dotted lines, emerges 
between the saddle and the spiral regions. For sufficiently large 
K the minimum and maximum first come very close together, 
then join, and finally, for still larger K, disappear (see Figs. 
3-5). Because of this, for sufficiently large K and a, the spiral 
region, indicated by dashed lines, disappears on the «yF = 0 
(with K = constant) lines, leaving two saddle regions sand- 
wiching a nodal one (see Fig. 5b). The = 0 (with 
K = constant) lines with no extremal points belong to the 
saddle region. 

The boundary of the regions where the sufficient and neces- 
sary conditions for a final critical point are satisfied are shown 
in Figures 5a and 5b by dash-dotted lines marked BFS and BFN, 
respectively. Critical points below BFS are guaranteed to be 
final, while those above the curve BFN are certainly not final. 
The region of final critical points extends beyond the local 
minima of the = 0 (with K = constant) curves and enters 
slightly into the unstable nodal region. Between these curves 
our criteria cannot judge whether or not a critical point is final, 
but this is not a problem, because for our present purpose it is 

pIG 4—Diagram showing boundaries of various physical regions in the (2^, rc)-plane. The curve marked is the Keplerian one. The curve marked Bss is the 
boundary between the regions of saddle critical point and circular critical point, in the case of a = 0. When a = 0, the whole regions above the Keplerian curve as well 
as above the curve are forbidden ones. The region of nodal critical point which appears when a ^ 0 is also shown for a = 0.1 and a = 0.3. The region in the case of 
a = 0.1 is so narrow that it is shown by a single curve. The region below the strip is the saddle region, while the region above is the spiral region. The .yT = 0 curves 
with K = constant (thin lines) are shown in order to demonstrate that the B^ curve is the locus of the extrema of these curves. 
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Fig. 5b 

Fig. 5.—(a) Diagram showing how the ,/F = 0 curves (with K = constant) are divided into regions of saddle, nodal, and spiral critical points, in the case of 
a = 0.1. The = 0 curves are shown for four values of K : 0.01,0.07,0.1, and 0.2. The curve for K = 0.01 is almost equal to the Keplerian one in the range of r under 
consideration. The saddle-type critical point region is shown by solid curves, and the spiral-type region by dashed curves. The nodal-type region is so narrow that 
only the boundaries are shown by vertical lines. The boundary of a sufficient condition for the final critical point is shown by curves marked 5^. Below this curve, 
the critical point is definitely the final one. The boundary of a necessary condition for the final critical point is also shown by curves marked ßFN. Above the curve, the 
critical point cannot be the final one. (b) Same as (a), but for a = 0.3. The nodal critical point region on the = 0 curves is shown by dotted curves. Notable 
differences from the case of a = 0.1 are that the saddle region as well as the nodal region are wide, and the spiral region disappears in the case ofK = 0.1. 
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enough to notice that a physically acceptable region, in which 
a// the local and global conditions are fulfilled, exists for any 
value of a. There is no critical value for viscosity beyond which 
steady solutions are impossible. 

IV. DISCUSSION 

Our assumptions about viscosity and the equation of state 
are, of course, quite unrealistic. We shall now discuss how the 
results depend on these assumptions. 

a) Viscosity Law 
The Shakura-Sunyaev viscosity law has the unphysical 

property of giving nonzero viscous torque in the shear-free, 
dQ/dR = 0, case. For this reason many authors adopt today 
another phenomenological viscosity law, assuming that the 
kinematic viscosity v is given by 

v = (xcsH, (4.1) 

where a is a constant viscosity parameter. In this case the 
viscous stress is # = alTQ^ 1R(dQ/dR), and the dimensionless 
equations describing the steady state are 

K2\dS ^ n 

X — Xin = ot.r2K29~1cú¡¿1 dco 
dr 

(4.2) 

(4.3) 

Compare this with equations (2.6) and (2.7) for the Shakura- 
Sunyaev viscosity. At the critical point ^(2, r) = 0, which is 
the same regularity condition as in the Shakura-Sunyaev case. 
This should be expected anyway, since the regularity condition 
does not depend on a. 

We shall use the same method to study the topology of 
the critical points that was used in § l\b. The expression for 
y(dy/dx) is the same as that given by equation (2.13), while the 
expression for z, obtained from expansion of expression (4.3) 
around the critical point, now reads 

2odcK-(Ac-Xin)SK(rc) 
x =   x , 

ccrc K 
(4.4) 

where &K(rc) is the Keplerian rotation speed at the critical point 
rc. Therefore, the square of the velocity gradient at the sonic 
point equals 

^)=±r1/2, (4.5) 

(4.6) 

(4.7) 

dr, . 

with Y = Y(rc,Ac,Ain) given by 

y = 2xK?* - (Xc - IJXC 9K(rc) + 1 fdjr 

dr 

a. Kr* 

T 2 -4 , 1 \ — 3 

2\ dr 

Sr* — 6rc + 3 
2rc

2(rc - l)2 

From this we conclude that only spiral- and saddle-type criti- 
cal points exist in the present case : 

= -3¿2rc-* + (rc-l)- 

Spiral: 7<0, 

Saddle: 7>0, 

Nodal : does not exist. 

When a <0, one has 

(K - = 2aKXc + 0(a2) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

This proves that for a = 0 the boundary between the saddle 
and circle (spiral) regions in the Shakura-Sunyaev case, given 
by = 0, and the boundary between these regions in the 
present case, given by T = 0, coincide, as they obviously 
should. When a ^ 0, these two boundaries not only locate in 
different places; in addition, they have different topology, one 
being a nodal region, the other one being a line. 

The absence of the nodal region in the present case might 
make one think that there is no unstable region either. This is, 
however, not true. Let us linearize equations (2.4a)-(2.4d), with 
g = (xWQ^Ridil/dR), assuming that every physical quantity 
/ differs slightly from its equilibrium, steady state, value/0, 
/=/0 + ôf. We assume that 

ôf ~ exp i(ot — JfR), (4.12) 

where o is the frequency of the perturbation, JT = 2n/A its 
wavenumber, and A its wavelength. We consider only short- 
wave perturbations, A R0, with R0 being the length scale of 
change for /0. Keeping terms linear in ôf and dropping some 
terms according to A R0, we arrived at the following disper- 
sion relation : 

n3 + aJT2c| Qk 1n2 + (x2 + 2c|)n 

+ <xJir2cj Qk ^QQk h0 + c| JT2) = 0 , (4.13) 

where n = i(<7 - v0 Jf ), h0 = -(R/QK)(dQ/dR), and x is the epi- 
cyclic frequency defined by equation (1.2). 

The full analytical discussion of stability of the transonic, 
isothermal accretion flow with the Shakura-Sunyaev viscosity 
prescription was done by Kato, Honma, and Matsumoto 
(1988). Because our dispersion relation (4.13) becomes identical 
with theirs when our quadratic term is dropped and h0 = 1, 
some of the results concerning the Shakura-Sunyaev case can 
also be recovered from our present discussion. 

First of all, let us note that because dQ/dR is less than zero 
for accretion flows, all the coefficients at in the dispersion rela- 
tion aid = 0 are positive. The condition for instability is Im 
(cr) < 0 or Re (n) > 0. For a = 0 the dispersion relation has the 
three solutions 

n = 0 , n= ±i(x2 + ^2cJ)1/2 . (4.14) 

These solutions represent a trivial neutral mode and two sound 
waves with Doppler-shifted frequency propagating through 
rotating and moving medium. Let us now consider the case of 
nonzero but very small viscosity, a 1, by expanding the fre- 
quency according to n = n0 + oiôn. The solution connected 
with n0 = 0 is 

, - ajr2c2(2QQK K + csjr2) ^ 
=+ XV.) <0' <415) 

and this corresponds to a stable viscous mode. On the other 
hand, the sound waves become overstable for a 1 : 

(xôn = aQ 
J>f2c2 2Q2 - x2 

X2 + tf2c\ QQk 
>0. (4.16) 

Note also that the growth rate of the unstable sound modes n is 
of the order of aQ, i.e., the instability occurs by the thermal time 
scale. It is the same instability as that found by Kato, Honma, 
and Matsumoto (1988). It is also for the v = cccsH viscosity 
law, despite the fact that there are no nodal-type critical points 
there. This makes us believe that the presence of the unstable 
region in the parameter space is a general property, not depen- 
dent on a particular viscosity description. 
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b) Equationof State; Energy Equation 
In this paper we have shown how to analyze local and global 

constraints connected with the occurrence of the critical points 
in the flow in the simple case of the isothermal accretion onto a 
black hole. Such an analysis is complicated in the general case, 
when the equation of state is assumed to be that of the gas and 
radiation mixture, various heating and cooling processes are 
allowed, and radiation transfer is considered. In particular, no 
stability analysis is available yet. For this reason it would be 
premature to apply the exact results of our paper to numerical 
models with realistic equation of state and realistic treatment 
of dissipative processes. Such realistic numerical models for a 
wide range of accretion rates, from M0 = 10"3M£ to M0 = 
102M£, have been recently computed by Abramowicz et al 
(1988). The authors used the Shakura-Sunyaev viscosity law, 
included heat transport by radiation, conduction, and advec- 
tion in both vertical and horizontal directions, allowed the 
angular momentum distribution to be different from the 
Keplerian one (although boundary conditions are Keplerian), 
and explicitly solved the transonic part of the flow. 

V. CONCLUSIONS 
We have shown that the local regularity conditions and the 

global topological demands do not prevent steady state, trans- 
onic, isothermal accretion flows to exist for any value of the 
Shakura-Sunyaev parameter a. However, these conditions cut 
off some forbidden regions from the parameter space of the 
problem. This means that if the astrophysical situation locates 
the flow in these forbidden regions, the flow cannot be station- 
ary. This can be manifested as switching between high and low 
states. As the boundaries of the forbidden regions are warped 
by unstable regions, the unsteady flows should in addition 
show some activity on time scales shorter than that of the high 
state-low state switching. 
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