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ABSTRACT

We consider the regression equations employed often for short-term flare activity predictions.
In these regressions the sunspot group characteristics on the given day and the flare activity
characteristics on the next day are taken into account. The regression functions are estimated from
the empirical data, in which some atypical data vectors may be contained. The problem we dealt in
this paper is: How much the regression functions used as predicting algorithms are influenced by
such single, atypical data vector. To solve the problem the stability of the regressions are analysed.
Four regression diagnostics are used to make clear the impact-of singular data vectors on the
regression equations. These diagnostics allow us to identify atypical data vectors which
characterize sunspot groups e.g. instantaneously changing flare activity level or such ones with
extremaly high flare activity. We have found that the predicting functions are sufficiently stable,
ie. that for the considered empirical data they are not disturbed strongly by such singular data
vectors. ’ :

1. Introduction

When considering a regression equation in a multivariate problem one
should be sure that its coefficients are stable. Otherwise, the result of the
regression analysis could be put in doubt. The coefficients of a regression
equation are stable if they do not depend too strongly on the particular data
set sampled from the analysed population. In the problem of short-term
prediction of solar flare activity many investigators have applied different
methods, mainly regression analysis methods. Some of the results (e.g. Hirman
et al. 1980, Jakimiec and Wasiucionek 1980, Neidig et al. 1986) indicate that the
estimated predicting function coefficients are unstable. The instability of the
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regression function can arise from various sources. For instance, the impact of
< atypical data vectors included into the data set on the predicting function
o coefficients might be such a source. This kind of the instability problem,
ot accordingly to our knowledge, has not been examinated as yet.

Some methods allowing to reveal atypical data vectors are presented by
Bartkowiak and Jakimiec (1989). They have found that a big error in one of the
data vectors can change quite considerably the structure of the covariances
between the considered variables. In the present paper we apply some
statistical methods allowing to investigate the stability of a regression equation.
In the following we will consider four statistics (statistical indices called also
regression diagnostics) showing the impact of single data vector on the stability
of the regression equation. These are: 1. The diagonal elements of the HAT
matrix h; 2. Externally studentized residuals ¢; 3. A statistics introduced by
Belsley et al. (1980), called by them DFFITS; 4. Mean percent of distortion of
the regression coefficients, called by us MDB. In all presented here methods we
use the leaving-one-out technique, i.e. we consider some statistics evaluated
consecutively n times after removing each time one data vector (individual)
from the data. '

2. The data

Generally, in our investigations a data vector (an item) comprises p exp-
lanatory variables X,, X,, ..., X, characterizing a sunspot group on a given
day and one predicting variable Y characterizing the flare activity of the given
sunspot group on the next day. We analyse in this work essentialy the same
data as used by Bartkowiak and Jakimiec (1989), i.e. we analyse a complex of
thirteen explanatory variables X, ..., X, ;, characterizing sunspot groups of D,
E, F Zurich classes and being in the decay phase of the evolution. We omit now
the variable x14 because it is strongly correlated with the variable x12 and does
not add any new information. However, in this work we consider two
additional predicted variables Y (Fs and Fh) describing the sunspot group flare
activity on the next day: the daily sums of the X-ray flare fluxes in the
wavelength intervals 1—8 A (Fs) and 0.5—4 A (Fh). Similarly as for the
appropriate variables x11 and x13 we use here the logarithmic transformations
Y =logY and Y’ =logY+2 for the characteristics Fs and Fh.

We consider the regression:

p
y=bo+ ) byx;+e, (1)
j=1
with p = 13, the number of the explanatory or predicting variables, and taking
in turn Fs and Fh as the predicted or explained variable Y, appropriately.

We have three sets of data. The first (set E) comprises erroneous values (due
to errors in punching the data, as discussed in Bartkowiak and Jakimiec, 1989).
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The second (set C) comprises the data corrected for the punching errors. The
third (set A) was obtained after removing from the set C two atypical data
vectors. Comparing the results obtained from the sets E and C we want to
study the impact of errors on the regression. Comparing the results obtained
from the data sets C and A we want to study especially the impact of two
atypical data vectors on the regression.

3. Statistical methods

3.1. The diagonal elements of the HAT matrix as indicators of leverage points
for a regression
The regression equation (1) can be presented in more general form:

y=Xb+e, )

where y = (y,, ..., y,)’ is the vector of the values of the predicted variable; n is
the number of considered data vectors (size of the data set); X =(x;)
G=1,...,n;j=0,..., p)is the “design matrix” comprising in the first column
a vector of “ones”, and in the remaining columns the values of the predicting
variables; p is the number of predicting variables; b = (b, b,, ..., b,) is the
vector of the regression coefficients; e = (e,, ..., e,) is the vector of errors or
inadequacies of the fit of the assumed model given by (1) or (2). Generally, it is
assumed that the components of e are independent and identically distributed
with mean values E(e;) =0 and variances Var(e)= o> (for i=1,...,n).
Further, it will be assumed that each e; is normally distributed, i.e. ¢;~ N(0, ¢?).

The least squares estimator b of the regression coefficients b appearing in
(2) can be calculated by the formula:

b=XX)"1Xy, (3)

(provided the matrix X is of rank m = p+1, and n > m), wherefrom y, the
vector of expected values, can be obtained as:

$=Xb=X(X'X)'X'y.

The HAT matrix is defined as H = (h;)(i,j = 1, 2, ..., n) obtained from the
design matrix X by the formula::

H=XXX)"'Xx". 4

It permits to obtain from the values of the predicted variable y the values of
y expected from the assumed regression equation by using simple formulae:

y=Hy. )

For example, assuming i = 1, i.e. considering the first individual (data
vector) we obtain from (5) the following formula for computing the expected
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value y,:
Ji=hyyith,y+ . +hyy,.

The value h;, can be here interpreted as the amount of leverage or influence
excerted by the value y, on j,. In general, the matrix H reveals points of high
influence of position in the design. Usually these are values of X, ..., X,
located at extreme positions of the cloud of the data points, which can influence
strongly the regression equation and therefore special attention should be paid
to such points. However, it can happen that points with high leverage do not
influence the regression equation at all. For a discussion on this topic see
Chatterjee and Hadi (1986).
It can be shown that the elements h;; satisfy the inequalities:

0<h;<1, (6)

since H is an idempotent matrix satisfying H> = H. Moreover, the trace of the
matrix H is equal to the rank of the matrix X:

Speaking more generally, if h; is large and y; is aberrant, then the fitted value j;
will be determined mainly by y;; moreover, the fitted value j; will be pulled
toward y, and the fitted model may be seriously biased (distorted). Hoaglin and
Welsch (1978) suggest identifying a leverage value h; as large one if:

hi; = 2m/n. ()

For our data the cut-off point 2m/n established by (7) is equal to 28/149
= (0.1879.

3.2. Externally Studentized residuals

Let é;, = y,—J; be the residual that results from the fit. The variance of this
residual is (1 —h;)o?, hence é/[(1—h,;)'/?*c] has mean value 0 and variance 1.
Usually, o2 is estimated by s?, the residual variance:

?=s*=m-m~') é. (8)
=1

Let s(i) be the standard deviation s computed from the data after deleting the
i-th data vector; likewise let P(i) be the vector of regression coefficients
estimated from such deleted data, and let X (i) be the matrix after deleting the
i-th data vector (i.e. the i-th row of X). Let x; be the i-th row of the design
matrix X. So we have

= yi""xiﬁ(i) B é
sO[1+x,(X (@) X ()T x; ]2

t;(i) ©)

- S(i)[l_lhii]llz '


http://adsabs.harvard.edu/abs/1989AcA....39..257J

© Copernicus Foundation for Polish Astronomy * Provided by the NASA Astrophysics Data System

Vol. 39 261

In the statistical literature t(i) described by the formula (9) is called an
externally Studentized residual (Cook and Weisberg, 1980, Gibbons et al.
1987), deleted Studentized residual (Hocking, 1983), cross-validatory or jack-
knife residual (Atkinson, 1981). In his recent book Atkinson (1987) proposes to
call it simply deletion residual. The updating and deletion formulas that
underlie the computing of t(i) can be found, among others, in Belsley et al.
(1980) and Atkinson (1987). Under assumption of normality N(0, ¢2I) of the
vector e appearing in formula (2) the variables (i) have a Student’s ¢ dist-
ribution with n—p—1 degrees of freedom. Belsley et al. (1980) propose to pay
a special attention to the cases, for which

I£()] = 2.0. (10)

A convenient way of identifying aberrant values of Y is plotting the deletion
residuals against the fitted values of y.

3.3. DFFITS, the change in fitted value when deleting single individuals
(items)

DFFITS is a statistics introduced by Belsley et al. (1980). It is defined as
follows:

DFFITS(i) = (9~ 5:0)/[s()h&>]. (11)

In the numerator we have the change in fitted values that occurs when the i-th
data vector is deleted. This difference is scaled by an estimate of the standard
deviation of the fitted value. The formula (11) is equivalent to the following one:

DFFITS(i) = [hy/(1 —hy)]"21,(i). (12)

It follows from (12) that DFFITS(i) combines informations from h; (Eq. (5))
and t(i) (Eq. (9)); DFFITS (i) is large if either h; or t, is large. Belsley et al. (1980)
recommend flagging DFFITS,; as large one if:

IDFFITS(i)] = 2(p/n)*/. : (13)
For our data set the cut-off point established by (13) is equal to 0.6131.
3.4. DFBETAS, the change in the regression coefficients after deleting single
data vectors

A scaled measure of the change in ﬁj, j=0, ..., mwas proposed by Belsley
et al. (1980). It is called DFBETAS;; and is defined as follows:

DFBETAS,; = [B,— B,)1/[s*G) c;;1M>, (14)

where c;; is the j-th diagonal element of the matrix C = (X'X)™ .
Several criteria have been proposed for stating whether a DFBETAS is so
large that it indicates an “influential” data vector. One criterion is the cut-off
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value equal to Z/ﬁ (Belsley et al. 1980). The measure od DF BETAS;; expresses
a scaled change of the j-th coefficient ; evaluated from the whole data set after
removing the i-th data vector from the data set.

In this paper we will employ another statistics defined as follows:

B,—B,0)

J

MDB() = 3

j=0

100. (15)

4. Analysis of the data

4.1. The values of the employed regression diagnostics

We consider the regression equations allowing to predict Fs or Fh taken in
turn as the predicted variable Y. We carried out the calculations separately in
the data sets E, C and A described in Chapter 1. In Tables 1 and 2 we show the
values of the above introduced regression diagnostics (i.e. h;;, t(i), DFFITS(i)
and M DB(i)) evaluated for the Fs and Fh regressions. We show only the values
for the selected data vectors exhibiting some features of unstability. The values
of hy, t(i) or DFFITS(i) surpassing the appropriate cut-off points are marked
by “+”. Moreover, in these tables also the observed values of the predicted
variables y; are given together with the values of y,(i). Thirteen data vectors
(items) analysed in more detail by Bartkowiak and Jakimiec (1989) are marked
by stars.

One can see from Tables 1 and 2 that in the data set E there are fifteen data
vectors for which the values of the statistics h; surpass the cut-off point 0.1879.
In particular, the highest value 0.97 occurs for the erroneous data vector no. 30
(discussed in more detail in the paper of Bartkowiak and Jakimiec, 1989). After
correcting this data vector the new value h is equal to 0.06. Also the values of
DFFITS(i) and MDB(i) are extremally high for this erroneous data vector, and
after correction of this item the values diminish significantly. In the corrected
data set C there remain still twelve items with high values of h;;, i.e. there are
still data vectors which could possibly influence considerably the regression. In
most cases these data vectors were already revealed as outliers by means of
other methods presented by Bartkowiak and Jakimiec (1988).

Comparing the values (i) calculated for the data sets E and C one can see
that some of them are not diminished after removing the gross errors but even
rised (e.g. for Fh the absolute value [¢(50)| rised from 1.66 to 2.14, and the
absolute value |t(75)| rised from 1.83 to 2.14). The existence of large values of h;;
(providing leverages for the fitted regressions) and simultaneously of relatively
large values of t(i) (showing large differences between the values y; and ¥,
estimated independently, i.e. by the leaving-one-out method) allow us to
suppose that the data vectors nos. 15 and 50 might be influential both for the
regression of Fs and Fh. Generally, in the corrected data set C we find six
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o values of t(i) which exceed the cut-off point 2.0. The largest values are
< t(101) = 2.62 for Fs and t(101) = 3.07 for Fh. This does not seem to be
o especially contradictory to the Student’s ¢ distribution with 135 degrees of
ot freedom for a sample size n = 149,

Looking at the values of the statistics DFFITS(i) and M DB(i) calculated for
the data set C one can see that the largest values can be found for the data
vectors nos. 15 and 50 for the regression predicting Fs and also Fh. The mean
change of the regression coefficients exceeds 30% when removing the 50-th
item and 20% when removing the 15-th item. In the data set E the highest and
realy extreme values of MDB can be found for the erroneous data vector
no. 30.

0N W & w0 10 w0
Y% E

401

’ NMMM\W‘«A/&
% C
40

%
’ AWWMMNAWM/\,
0 20 & e = 80 100 = 120 = %0

Fig. 1. Index plot of MDB(i) put against the no. of the data vector, i. The values MDB(i) are
evaluated for the predicted variable Fs.

In Figures 1 and 2 the index plots of MDB(i) put against i, the current
number of the item, are shown. They were evaluated for the regression of Fs
and Fh, respectively. The data vectors of big influence on the regression can be
easily seen in these figures. First of all we see one such vector in the data set
E (item no. 30), and two items in the set C (nos. 15 and 50). Excluding these two
individuals from the set C we obtained a new data set A with n = 147 data
vectors. Comparing the values calculated for the data sets C and A (shown in
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Fig. 2. The description as for Fig. 1 but for the predicted variable Fh.

Tables 1 and 2) one can see that the values of the analysed statistics (h;;, t(i),
DFFITS(i) and MDB(i)) did not change strongly after removing the two
mentioned data vectors.

4.2. Comparison of the regression coefficients evaluated from the data sets E,
C and A

In Tables 3 and 4 the estimated values of the regression coefficients b;
evaluated for the predicted variables Fs and Fh, are given, respectively. The

Table 3
Regression coefficients (and their standardized values) of the equation (1) for the predicted variable
y = Fs. RR is the square of the multiple correlation coefficient.

data set E data set C data set A

J bJ bJ/s(bJ) bJ bj/s(bj) bJ bJ/s(hJ)
0 -1.253446 -1.213337 -1.143233

1 0.161981 0.75 0.171860 0.81 0.171385 0.83
2 -0.106287 -0.67 -0.157187 -0.99 -0.158430 -1.02
3 0.336166 2.14 0.374089 1.95 0.373228 2.00
4 1.922023 2.30 1.853797 2.20 1.622157 1.97
5 0.017988 0.47 0.020081 0.54 ' 0.035361 0.96
6 —0.029693 ~0.49 —0.020583 -0.34 —-0.018611 -0.32
7 0.181411 1.66 0.202519 1.87 0. 208595 1.98
8 0. 058965 0.26 0.163965 0.59 0.287151 1.04
9 -0.007320 ~0.32 -0.010841 -0.47 -0.007473 -0.31
10 0.076948 3.15 0.071111 2.89 0.080814 2.83
11 0.476816 1.39 0.734600 1.84 0.770933 1.88
12 : 0.736378 1.97 -1.142173 -0.51 -1.298916 -0.57
13 -0.197967 -1.12 -0. 351051 -1.47 -0. 430363 -1.80
RR 0.55 0.56 0.59
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2
1
I Table 4
L | . . . . .
L The description as in Table 3 but for the predicted variable Fh.
IS
B
[o)]]
g. data set E data set C data set A
1 3 <
cﬁ a3 bj bj/s(bj) bj bjIS(bj) b) bj/S(bj)
(o] -1.74006%5 -1.558511 -1.450902
1 0.220439 0.61 0.155334 Q.44 0. 152994 0.48
2 -0.237810 -0.89 -0.2779597 -1.10 -0.281386 -1.14
3 0.676850 2.597 0.517804 1.71 0.512842 1,72
4 2.213094 2.08 2.954364 2.22 2.619828 1.99
S 0.059061 0.93 0.063059 1.07 0.082682 1.41
& -0.093678 -0.94 -0.051559 -0.54 -0.044954 -0.48
7 0.246919 1.35 0.329233 1.92 0.334395 1.98
8 -0.398220 -1.05 0.179802 0.41 0.360375 0.82
9 -0.0177467 -0.47 -0.014600 -0.40 -0.005906 —0.15
10 0.124202 3.04 0. 120992 3.10 0.141495 3.11
11 1.021138 1.77 0.917640 1.45 0.906732 1.39
12 ?.829225 15.74 ~1.067274 -0.30 -1.4637548 -0.45
13 -0.574908 -1.94 -0,.425818 -1.13 -0.307999? -1.33
RR 0.78 0.53 0.55

standardized values b,/s(b;) shown also in these tables allow us to compare the
values of these coefficients obtained for different sets of data. In lower part of
the tables the appropriate values of the determination coefficient RR (an
estimate of the square of the multiple correlation coefficient between the
predicted variable Y and the set of predictors X, X,, ..., X,) are given. One
can see the big differences between the values of regression coefficients obtained
for the data sets E and C — especially for the coefficient b, ,. These differences
are due to the big error in the data vector no. 30 contained in the data set E.
The differences in b ; between the data sets C and A are lower, but also
noticeable.

4.3. Using the values of the regression diagnostics for the differentiation of the
data vectors

Let us recall the meaning of the analysed statistics: Large value of a h; can
(but not must) be connected with a big influence of the i-th data vector on the
regression. A large value of #(i) means a large deletion residual calculated as the
difference between the observed value y; and the expected value j,(i) evaluated
from a regression function with coefficients estimated from the data set after
excluding the i-th data vector; In other words, t(i) is large when the observed
value y; is far from the regression line. A large value of DFFITS(i) means a big
change in fitted values that results from the deletion of the i-th data vector.
A large value of MDB(i) means a big influence of the i-th data vector on the
estimated values of the regression coefficients.

In Figures 3 and 4 we show the scatter diagrams of the values j put against
the values y of the predicted variables Fs and Fh, respectively, evaluated for the
data set C. We use the regression diagnostics for the differentiation of the data
vectors. The vectors for which the value of ¢(i) < 1.0 and the value of h,, < 0.19
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Fig. 3. Scatterdiagram of the pairs (§, y), with Fs taken as the predicted variable, evaluated in the

data set C. Curves denote the conditional regressions.
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Fig. 4. The description as for Fig. 3 but for the predicted variable Fh.
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are marked by black points. The vectors for which 1.0 <t(i) <20 and
h,; < 0.19 are marked by circles. The vectors for which (i) > 2.0 and h; < 0.19
are marked by dark triangles. Each circled symbol (black point, circle or
triangle) corresponds to the data vector for which h; > 0.19. Moreover, the
data vectors for which DFFITS(i) > 0.61 are marked in Figures 3 and 4 by
radial beams. The twenty four data wectors, for which the values of the
regression diagnostics are collected in Tables 1 and 2, are denoted by numbers.
The curves denote regression lines of the first kind and will be discussed in
Chapter 5. One can see from Figures 3 and 4 that:

1. The data vectors revealing: small values of both statistics 4;; and t(i) are
marked by black points. They make the essential part of the data vectors (56%
for Fs and 60% for Fh). All they are located near the line y = y (e.g. items nos.
30, 35, 104 and 121). Rejection of one of such data vectors has virtually no
effect on the estimated values of the regression coefficients. The mean value od
DFFITS evaluated for these data vectors (marked by black points) is about
0.12 only, so we might suppose that their influence on the regression is
practically none.

2. The data vectors with small values of ¢(i) and with the values of h; greater
than the cut-off point are marked by circled points. They indicate poss1b1y
influential data vectors which could reveal either atypical interrelations
between the variables X (e.g. items nos. 8, 28, 66, 68) or extremally large values
of the variables X (e.g. items nos. 1, 57, 58). In our figures displaying the data
set C, there are only a few of such data vectors. These points were already
discovered and discussed in the former paper (Bartkowiak and Jakimiec, 1989).
The mean value, about 0.28, of DFFITS for these points is very moderate when
compared to the cut-off value equal to 0.61.

3. Vectors revealing a small value of h; but a considerably larger value of
the residuals (1.0 < #(i) < 2.0) are marked by small circles. They constitute
a large part of the data (29% for Fs and 34% for Fh). The circles corresponding
to these data vectors do not lie in Figures 3 and 4 on the periphery of the
cluster of points-individuals but exhibit a specific pattern: for small values of
the predicted variable (low X-ray flare activity) the values of j are greater than
y (e.g. for item no. 133), whereas for high values of the predicted variable (high
X-ray flare activity) the values of y are smaller than y (e.g. for items nos. 14, 18,
22). Their influence on the regression is stronger, the mean value of DFFITS is
for them about 0.39.

4. In our data set there are also a few data vectors (marked by radial beams)
for which DFFITS > 0.61, what means a big impact on the fit of the regression
model. These are data vectors for which either the value of h; is high
(h; > 0.19) and the value of ¢(i) is greater than 1.0 (these data vectors are
marked by circled circles in Figures 3 and 4, e.g. item no. 19 for Fs and nos. 15,
102 for Fh) or t(i) is greater than 2.0 (data vectors marked by triangles e.g.
items nos. 15, 50, 61, 94, 101 and 140 for Fs and nos. 2, 50, 61, 75, 101, 140 for
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1+ Fh). The data vectors nos. 15 and 50 correspond to sunspot groups with a rapid
<, decay of the X-ray flare activity, whereas the other vectors correspond to
o sunspot groups with a rapid increase of the flare activity. The impact of these
ot data vectors on the regression seems to be very great. Especially the vectors
nos. 15 and 50, for which also the values h; are high, seem to be realy
influential (they are marked in Figures 3 and 4 by circled dark triangles).

4.4. Analysis of the dependence between y and y considered in the data sets E,
C and A '

Next we analyse the expected values y evaluated from the appropriate
regression equations and compare them with the observed values y. We
subdivided the range of the observed values of y into eight intervals and
assumed the same intervals for y. The results of the comparison between y and
y were put together in the form of contingency tables. Two of them (for Y = Fs
and Y = Fh, evaluated in the data set C) are shown in Table 5. In these tables

Table 5
Contingency tables for (J, y) showing the accordance of the observed and expected values of
y evaluated from the regression equation estimated from the data. Presented results are obtained
from the data set C.

interval
boundaries -~
calculated values, y Total
observed
values 1 2 3 4 S & 7 8
y=Fs
1 S 26 13 S (o] o]} (o] 0 49
0.0 '
2 1 2 1 o (o] (o] [+] (] 4
0.3
3 2 4 9 7 2 [ (o] L] 24
0.6
9 4 (] 2 9 ? S (o] 1 0 24
'2 s 1 o 6 s I 4 1 1 ° 18
1'5 6 o 1 2 8 3 l 2 ° ° 14
1-5 7 o o ) 1 5 4 | 0 o 10 .
) 8 [ ) o o o 1 e | 3 5
Total 4 35 40 31 19 a8 4 3 149
interval
boundaries ~
calculated values, y
ohserved Taotal
values 1 2 3 4 S 6 7 -]
y=Fh ’
1 4 17 3 o] o] (o] o S50
0.0
2 1 I 4 2 3 o 0 o 0 10
0.3
.0 3 (Y] 4 ;] 7 2 o (o] o] 21
!'5 3 1 1 12 I s s 1 1 o 26
: s 0 1 7 9 I o 2 o o 19
2.0
) [o] 1 1 3 8 ' 2 (o] o} 15
2.5
7 o o o 1 1 1 l o 1 4
3.0
8 o o 0 o o 1 1 ' 2 4
Total &6 37 47 31 16 7 2 3 149
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11 also the assumed interval boundaries are given. The diagonal elements are
< underlined. They correspond to the cases, for which the observed and expected
o values are very close to each other. They constitute 21% and 17% of total cases
ot for Fs and Fh, respectively. Let us emphasize that these contingency tables
were obtained from the same data sets for which the regression coefficients
have been estimated. In the control tables one can also see some non-empty
counts far from the diagonal — they comprise the atypical data vectors marked
by dark triangles in Figures 3 and 4.

Table 6
Conditional means J,,, evaluated in 8 intervals of the range of y observed.

predicted Yovserved conditional mean Yeond
variable — mean of
interval data set E data set C data set A
-0.15 0.27 Q.26 0.25
0.15 0.21 0.15 0.15
0.45 R 0.47 Q.49 0.47
0.75 0.66 0.69 0.63
i 1.05 0.72 0.75 0.71
1.35 0.84 0.81 0.86
1.65 1.14 1.14 1.17
1.95 1.6%9 1.75 1.85
-0.25 0.50 0.4 " 0.45
0.23 0.465 0.4&0 0.60
0.75 0.87 0.22 0.96
1.25 1.10 1.12 1.00
Fh 1.75 1.09 1.12 1.09
2.25 1.52 1.55 1.58
2.75 2.00 2.12 2.25
3.25 2.95 2.88 2.88

In order to compare the interdependence between j and y in the three data
sets E, C and A we evaluated the conditional regression of y in the given
intervals of y (the regression of the first kind). For each interval of y we
evaluated as the conditional mean J,,,; the average of all § values falling into
this interval. These conditional means are given in Table 6. From these values
the conditional regression (regression of the first kind) were constructed. They
are shown in Figures 3 and 4. One can see from the Table 6 and from Figures
3 and 4 that in spite of the differences in the values of the regression coefficients
the constructed conditional regressions differ in principle neither for E and
C nor for C and A data sets.

5. Discussion
In the short-term predictions of solar flare activity the building of an

appropriate model is based on the assumption that the sunspot group does not
change strongly from day to day, in other words, that the situation is rather
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stable. In fact, while many sunspot features do not change strongly from day to
day (e.g. the sunspot group area or the magnetic strength), the local magnetic
field configuration can change very quickly, even during several hours.
Therefore the physical conditions which are favourable for flare activity can
appear in a time shorter than 24 hours and also they can disappear quickly. It
is somehow amazing that despite of this changing situation the variables
characterizing flare activity of the sunspot group are the best predictors as it is
emphasized e.g. by Sawyer et al. (1986). The estimated regression function
should reflect true physical relations between the sunspot group characteristics
on the given day and the flare activity on the next day. Such true relation can
be established from the mean part of the data sets, after removing off the
singular, atypical data vectors which perturb the regressions. In this paper we
have described and applied some statistics (regression diagnostics) allowing to
identify such atypical data vectors. Some of these vectors, for our data,
characterize sunspot groups with unstable situation (rapidly changing flare
activity).

One can see from the analysis that the differences between the predictions
based on the data sets E, C and A are practicaly none. The differences in the
regression coefficients are not very high. It is very encouraging that the
predicting functions despite of some big errors or atypical data vectors
occurring in the data are sufficiently stable, i.e. the predicting function is not
disturbed strongly by singular data vectors even if the size of the training data
set with p = 13 variables is only about 150. The problem of an extrapolation
of the predicting function needs a further exploration, especially when in the
new data set some atypical data vectors are encountered.

Finishing this discussion we would like to emphasize the fact that the
contingency tables reveal doubtless a pattern of asymmetry. This fact indicates
that the assumed regression model does not fit ideally into our data. Maybe,
another mathematical model would give a better fit or, maybe, we should
change fundamentally the model. Some suggestions for the construction of
more sophisticated models can be found in the book by C. Sawyer et al. (1986).
This fact needs further exploration.
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