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ABSTRACT 

The Friedman equation for the universe with arbitrary curvature (& = 0, + 1), filled with mutually 
noninteracting pressureless dust, radiation, cosmological constant, and strings is considered. We assume 
the string domination scenario for the evolution of the latter component. Moreover, we discuss the 
simplest possibility for the scaling of the string energy density: ps~R~2. For such models we write 
down the explicit solution of the Friedman equation. We realize that corresponding cosmological mod- 
els do not essentially differ from those without strings. We find an analytic formula for the radial 
coordinate ^ of a galaxy with a redshift z and express it in terms of astronomical parameters. This 
relation is then used for the derivation of the astrophysical formulas luminosity distance, angular 
diameter, and source counts, which may serve for testing the string-dominated universe. It seems that 
the most sensitive test, at least from the formal point of view, is the formula for the number of galaxies 
N(z) corresponding to a given value of the redshift. We show that the maximum of N(z) strongly 
depends on the density of strings, especially if the density is large enough to explain the fi problem. 
Other tests are also proposed. 

I. introduction 

One of the consequences of the inflationary scenario is the 
near flatness of the universe, which means that the energy 
density is very close to the critical value il = p/pc = 1 
(Guth 1981; for observational aspects, see also Loh 1986; 
Loh and Spillar 1986a,b). However, observation of galaxies 
gives us a value roughly one order less. A lack of observable 
mass necessary for approaching the critical density is usually 
called the dark matter problem. People propose many solu- 
tions to this problem (Turner 1987). One of the simplest 
solutions is the assumption that the cosmological constant 
does not vanish. Other possibilities are massive neutrinos, 
axions, or heavy superpartners of the usual particles, for ex- 
ample, photinos. Several years ago, when the theories of 
grand unification (GUTs) were used for the description of 
the early universe, one more candidate appeared to solve the 
mentioned problem—cosmic strings. 

In gauge theories with spontaneous symmetry, breaking 
the phase transition at critical temperature (above which 
symmetry can be restored) can give rise to the nontrivial 
vacuum structure of the universe (Zel’dovich et al. 1974). 
These are domain walls, strings, or monopoles, depending 
on the topology of the manifold of degenerate vacua ( Kibble 
1976). More complicated topological objects such as walls 
bounded by strings or monopoles connected by strings can 
also be formed (Vachaspati and Vilenkin 1984). However, 
we have good reason to believe that, up to the present time, in 
our visible part of the universe only strings, or eventually an 
infinite network of strings with monopoles in vertices, could 
survive (Vilenkin 1981a; Vachaspati and Vilenkin 1987). 

It is well known that there are two extreme configurations 
to which a system of strings may evolve: a scaling configura- 
tion or a string-dominated universe. The former possibility 
has been extensively examined in the context of galaxy for- 
mation (ZePdovich 1980; Vilenkin 1981b; Vilenkin and 
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Shaft 1983; Turok and Branderberger 1986; Kibble 1986). 
The latter one is also very attractive because it may give the 
explanation for the missing mass (Vilenkin 1984a; Turner 
1985; Kibble 1986). We shall not discuss both scenarios, 
referring instead to the literature (Vilenkin 1985; Kibble 
1985; Bennet 1986a,b; Scherer and Frieman 1986; Aryal, 
Everett, Vilenkin, and Vachaspati 1986). Our consider- 
ations are based on the result of Turok and Bhattacharjee 
(1984), who have shown that, neglecting interaction, the 
energy density of a network of strings scales as ~ 
where 2<«<3 (see also Kibble (1986) and Vachaspati and 
Vilenkin ( 1987)). The case « = 2 and the astronomical con- 
straints on SDU have been examined by Gott and Rees 
( 1987). Earlier, Gott ( 1985) had given exact solutions and 
presented interesting considerations concerning the gravita- 
tional field of strings in the context of gravitational lensing 
(see also Hiscock ( 1985)). 

The purpose of the present paper is to calculate some as- 
trophysical formulas for the homogeneous and isotropic uni- 
verse with arbitrary curvature (£ = 0, + 1 ) filled with pres- 
sureless dust, radiation, cosmological constant, and the 
system of strings. For simplicity, we consider only an ex- 
treme case when n = 2 (it corresponds, for example, to the 
set of randomly oriented straight strings or to the tangled 
network of strings which conformally stretches by the ex- 
pansion). This case is particularly interesting because it al- 
lows treatment of all mentioned components of the universe 
simultaneously in an analytic way. Generally, this is not the 
case if 2 < « < 3. Although the case under consideration is 
probably too idealistic, it gives some aspects of observational 
problems in the universe with strings and in some sense com- 
pletes the discussion of the string-dominated universe given 
by Vilenkin, Kibble, and Kardashev (1986), Charlton and 
Turner ( 1987), or Gott and Rees ( 1987). 

There exist several observational tests of the cosmic-string 
scenario: gravitational lensing (Vilenkin 1984b), anisotropy 
in the microwave-background radiation (Kaiser and Steb- 
bins 1984), and gravitational radiation emitted by decaying 
loops (Hogan and Rees 1984). The tests proposed in the 
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present paper are of a different type and are not relevant for 
detecting a single string. Our tests could be applied only for 
the universe in which the network of strings is sufficiently 
dense in order to influence astrophysical observables such as 
luminosity distance, angular diameter, or source counts. 
Moreover, the strings under consideration should be rela- 
tively light (Vilenkin 1984a). 

We do not want to make a statement pro or con regarding 
the string scenario. Our task is to propose tests that could be 
used for the verification of the hypothesis concerning a uni- 
verse dominated by a network of strings. It seems to us that 
at least one of them, namely source counts, is very promising 
for this purpose. We leave consideration of the less trivial 
case of the string-domination scenario (where 3 > « > 2 and 
the universe behaves very like a matter-dominated one) for 
the future. 

In the next section, we introduce some definitions and we 
describe the Friedman equation for the universe with strings 
in a form that allows use of the methods and results (with 
some modifications) from our previous papers concerning 
the case without strings (D§browski and Stelmach 1986a,b, 
1987a). Next, we give analytic solutions of the Friedman 
equation in a general form in terms of Weierstrass elliptic 
and nonelliptic functions. In Sec. Ill, we find the relations 
between astronomical parameters and derive some astro- 
physical formulas for the universe with strings. Section IV is 
devoted to the discussion of the tests for the existence of the 
network of cosmic strings. We pay much attention to the 
cases where the formulas are given by elementary functions. 
Because of their simplicity, these cases are of special interest. 
In Sec. V we summarize the results. 

II. FRIEDMAN EQUATION INCLUDING STRINGS 

We consider Friedman models described by the equation 

k2 + k = ^—-pR2, (i) 
3 

where /o is a total energy density of the universe including, 
besides the usual components (pm—matter, pr—radiation, 
/?A—cosmological constant), also strings/?s : 

P=Pr +Pm +P* +P^^ (2) 
& = 0, + 1 is the curvature index and R(t)is the scale factor. 
We assume that the strings satisfy the equation of state 
(Zel’dovich 1980; Vilenkin 1981c) 

P* = -A/3. (3) 
Noninteraction between the components gives the simple 
relation for ps, namely 

p,R 
3 

%ttG 
(4) 

Following the notation of Coquereaux and Grossmann 
( 1982), we give the similar expressions forpr,pm, and: 

PrR
4 = C'^, (5a) 

pmR1 = c, 

SttG 
3 

SttG ’ 

P^ = SttG 

(5b) 

(5c) 

where Cr, Cm, and Cs are constants. If we now introduce a 
new parameter 

k' = k — Cs. (6) 

Friedman equation ( 1 ) acquires a form identical to that 
without strings with the only replacement k-*k' 

¿2+*'=%+.§7+4*2- <7> R R - 3 
However, generally the sign of k ' now has nothing to do with 
the curvature of the universe. 

The formal resemblance of both models (with and with- 
out strings) notably simplifies treatment of the present case. 
In deriving different expressions for the model without 
strings (D§browski and Stelmach 1986a,b, 1987b), for the 
most part we did not employ the exact value of k. Thus, 
almost all formulas are still valid if we put k ' instead of k. For 
example, Eq. (7) rewritten in terms of dimensionless vari- 
ables and parameters takes the form 

(—Y = a7’4 + í7’3-yt'7’2 + —, (8) 
Kdr) 3 

where 
À = A/Ac, (9a) 

Ac =4/(9C2
m), (9b) 

a = CrAc, (9c) 

dr = dt/R, (9d) 

T(t)=A-'/2R(t). (9e) 

The solution of the Friedman equation may be now writ- 
ten in a parametric representation in at least two ways. In the 
first version, we employ the Weierstrass elliptic function 
given as the solution of a differential equation (Tricomi 
1937; Abramovitz and Stegun 1964) 

(4£-J = 4^-g2!? -g3, (10) 

where 
aÀ 
T 

(Ha) 

and 

g, = l(A:'3-2A)--^4-. (11b) 
6 18 

Then, the solution reads 

^ _ 1 SVa^'Cr) + ^(-r) + £712 ,j2 

67X7 [^(t) + k’/12]2-aÀ/12 

In the second case, nonelliptic functions £ and a are used: 

[£(7-- rg) — f(r- Ty ) 

+ f(rg)-<r(r/)], 

i(r) = [Ç(Tg)-Ç(Tf) ]T 

+ In 
Q-(7-- ) 
(T(T-Tf )(T{Tg) 

(13a) 

(13b) 

The numbers rf and rg, which are generally complex, are 
given by the formulas (D§browski and Stelmach 1987a) 
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The discussion of the solution proceeds analogously as in the 
case without strings (Coquereaux and Grossmann 1982; 
D^browski and Stelmach 1986a). For details, we refer to 
D§browski and Stelmach ( 1987b). We realize that, in gen- 
eral, the types of the solutions do not essentially differ from 
the case without strings ( when A: ' = A: = 0, + 1 ). The funda- 
mental formal difference is that for the universe with strings 
k ' is not normalized and may take arbitrary values from the 
interval ( — 00,1 >. However, it should be stressed that 
some connection between k and A ' exists and follows from 
Eq. (6). Namely, for A'>0, there is only one possibility, 
k— 1, for A: ' = 0 the universe may be closed ( A = 1 ) or flat 
( A = 0), and finally for A ' < 0 three possibilities may occur 
(* = 0,±1). 

At the end of this section we discuss some solutions that 
take on an especially simple form. These are the cases when 
the Friedman equation is explicitly integrable, i.e., the 
Weierstrass functions f, and cr degenerate to elementary 
ones. We shall not find all such solutions, but, because of 
their particular simplicity, models with a vanishing cosmo- 
logical constant (A = 0) are of special interest. We get oscil- 
lating models for A ' > 0: 

R(r) — ( 1 — cos yfk^r + 3y¡ak 'sin 
3*Va7 

i(r) = Î  T 1— sin ■Jk1T — 3y[a 
3k'J7^[ VF 

X (cos VFr— 1) , (15) 

and monotonie ones for k ' < 0, 

R(t) = ! ( 1 - cosh f^lFr + 3V-A:'a 
3k' 

Xsinh V — A 't), 

t{r) = î i r   sinh y¡ — k'r + 3yfa 
3AVÄ7L 

X (cosh y¡ — k'r — 1 ) , 

and for A ' = 0, 

R(r) = r(r-f 6V«), 
6/ä; 

(16) 

(17) 

The last two formulas, which describe either the flat universe 
without strings (A = 0,CS =0) or the closed universe with 
strings (A = 1 = Cs), follow from Eqs. (15) and (16) by 
taking the limit A ' 0. These are the cases in which radiation 
and matter are negligible (Cr = Cm = 0), which can happen 
in a vacuum or in a string-dominated universe. Explicit inte- 
gration of Eq. (7) gives for different values of A ' and A solu- 
tions that are qualitatively the same as in the stringless cos- 
mology: 

R(t)= V3A 7A coshVX73¿, for A A > 0, (18a) 

R(t) =y¡ -2>k'/A sinhVX73¿, for A'<0,A>0, ( 18b) 

R( t) = expVA/3¿, for A; = 0,A>0, (18c) 

R( t ) = V3A7A sinV — A/3/, for A,A'>0, (18d) 

and, finally, 

R( t ) = yl — k't, for A^OjA^O. (18e) 
For simplicity, we put integration constants equal to zero. 
Note that the last formula describes also the asymptotic be- 
havior of the monotonie model given by Eqs. (16). Some 
numerical calculations for the above models, especially for 
that given by Eq. (18d), were performed by Kardashev 
(1986). 

III. ASTROPHYSICAL FORMULAS 

Detailed discussion of the relations between observable 
quantities in the usual Friedman models has been performed 
in our recent paper ( D§browski and Stelmach 1987a). It has 
been pointed out in the present work that the extension to the 
case with cosmic strings may be easily achieved by formal 
replacement A-» A '. Definitive solution of the problem con- 
sists therefore in expressing A ' in terms of astronomical pa- 
rameters q{}, ovo, <Tm0, <7s0. The last parameter did not come 
out so far in our papers. Its appearance follows from the 
existence of cosmic strings in the model and it is defined 

^sO 
m ’ 

(19) 

where H0 and /Os0 are present values of the Hubble constant 
and the energy density of strings, respectively. We calculate 
k ' using the definition 

k' = k-Cs=k-2a&0HlRl (20) 

and next ruling out HIR „ from the relation 

HqRo =- 
k ' 

+ 3crm0 - ?0 - 1 

Finally, k ' reads 

k' = {toro +3<rm0 -q0-\) 

k 
X- 

toro + 3am0 + 2(730 -00-1 

(21) 

(22a) 

Remaining parameters determining the model expressed in 
terms of a«,, am0, asa, H„, and q0 are 

9Ä, 
toa + 3crm0 - 0o - 

A = 3Hl(2crr0 + am 

F 
— <?<>)> 

(22b) 

(22c) 

\4oVo + 3i7rr - ?() - 1 / 
(22d) 

2¿7ro 4crr0 + 3om0 - g() - 1 
9<7^0 A 

(22e) 

For completeness, we define cr^, C7m0, H0, and q{): 

0ÏO — ■ 
3HI 

toGp„ 

3Hl 

H — n0 —  

(23a) 

(23b) 

(23c) 
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981 M. P. D4BROWSKI AND J. STELMACH: COSMOLOGICAL MODELS WITH STRINGS 981 

RqRq 
R2o 1 

(23d) 

where a zero means that the magnitudes correspond to the 
present value of the cosmic time t0. We note that application 
of the formula (22a) to the expression (22b, 22d, 22e) re- 
moves the explicit dependence on A: however, at the cost of 
also removing the proper parameter describing strings crs0. 
From the same formula, together with Eq. ( 21 ), a very inter- 
esting property of the models with strings may be deduced, 
namely, changing of the curvature of the universe without 
altering its dynamics (Gott and Rees 1987). Gott and Rees 
come to this conclusion by investigating the local influence 
of the strings on the geometry of the universe. In our ap- 
proach, the system of strings forms a continuous fluid satis- 
fying the exotic equation of state p= — (^)p. In this sense, 
we examine the global influence of strings on the evolution. 
In order to see how the above property follows from our 
model, let us come back to the formula (22a). Let us assume 
for the moment that strings are absent (<7s0 =0) and, for 
example, k = 0. Then, from the construction 4ar0 + 3<Tm0 

— #0—1=0 and k' = 0. Next, we add strings (<ts0 >0), 
leaving other astronomical parameters (^,^0,^0) un- 
changed. Then, of course, 4-a^ + 3crm0 + 2<js0 — q0— 1 > 0 
-  I 

and, consequently, the curvature index k has to be equal to 1. 
However, + 3crm0 — g0 — 1 = 0 is still zero. Hence, 
k' = 0 and the dynamics of the universe, which depends on 
the sign of A:', remains the same, although the curvature 
changed. The same conclusion may also be deduced if 
k= + 1 at the beginning. It seems that the reason for this 
property is that the dynamics of the universe depends in 
principle (besides the A term) on the sign on k7 parameter. 
Moreover, the sign of k ' depends only on the sign of the 
expression + 3<rm0 — q0— 1, which does not include 
strings (remember that k'—H^Rl 
(Ada -j- 3crm0 — q0— !))• For completeness, it has to be 
stressed that adding an exotic fluid other than the above one 
(for example, domain walls) changes the dynamics because 
of the appearance of a qualitatively new term on the right- 
hand side of Eq. (7). 

Now we proceed to the presentation of the astrophysical 
formulas for the universe with strings. A magnitude that 
enters most of the expressions is a redshift z of observed 
galaxies. We start with the fundamental relation that estab- 
lishes the connection between the redshift and a radial coor- 
dinate T of a galaxy. In the most general case with cosmic 
strings, radiation, and a cosmological term this relation is 
nontrivial and the Weierstrass elliptic function & is used 

0>(X) = 
- <7<i - 1 ( 

to*, + 3crm0 - ft, - 1 z + 2 
[^mO + ^rO U + 2) ] 4(7,0 + 3crm0 + 2crs0 - q() - 

+ ^-{1 + [2ctK)z
2(z + 2)2 + am0z

2(2z + 3) +?()z(z + 2) + (z+ 1)2]1/2}2^. (24) 

The x coordinate, by definition, is a difference between the 
present value of the conformal time r() and a time r corre- 
sponding to the moment of the emission of the light ray by 
the galaxy with the redshift z: 

X = To-^ (25) 

If we compare the above formula with the appropriate one in 
the model without strings (D§browski and Stelmach 1986b, 
1987a), we perceive that the difference is quite unremarka- 
ble. As a matter of fact, it is no wonder, otherwise cosmic 
strings would have been already discovered. Nevertheless, 
the distinction exists and should come out in almost every 
astrophysical formula. Following our last paper (D§- 
browski and Stelmach 1987a), we specify some expressions 
emphasizing particularly the universe with vanishing a A 
term and those that are string dominated. 

a) The Luminosity Distance 

Denoting the right-hand side of Eq. (24) by/(z), the for- 
mula for the luminosity distance of the observed galaxy is 

A, = —(■ 
Ho V 4*7,0 + 3<Jm0 4- 2<js0 — qQ 

\ 1/2 
—J Sk{X)' 

(26) 

where 

T=^-,[/U)] 

and Sk is defined 

(sin x> k>0 

T, k = 0. 
sinh x> k<0 

In degenerate cases (A = 0) the Weierstrass function 
converts into an elementary one (Abramovitz and Stegun 
1964): 

(27) 

(28) 

-4r + JM 
12 4SI •(^A) 

(29) 

Then, the formula for ^ reads 

1 t, _ j |Æ'||/2 ( 2°'ro+2gm0+2gso — 1 y/2 

X \k'\'n k L z + 1 \ k ) 

);,gmo*+ (c^o + 2<rri) - 1)([20^2(2+2) +2o-m0z+ 1]1/2- 1) 

ojno + 2.0,0 (207o + 20’mO - 1 ) 
(30) 
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982 M. P. D4BROWSKI AND J. STELMACH: COSMOLOGICAL MODELS WITH STRINGS 982 

In models without strings & ' = /:=: 0, + 1, in consequence 
we have 

(...). (31) 

Inserting Eq. (30) into Eq. (26) and remembering that re- 
moving À allows elimination of q0 (cf. Eq. (22d) ), we get the 
formula for the luminosity distance in a form that does not 
depend explicitly on curvature. In the universe with strings, 
this is not the case. Parameters k ' and k generally do not 
coincide. Hence the composition 5'Ao(|/:'|“

1/25,
A~ !) does 

not yield the identical function and the redshift-magnitude 
formula has a more complicated form. All formulas signifi- 
cantly simplify only in extreme cases. For example, choosing 
oVo = 0, am0 = i7s0 = i and /: = 1, we have 

which coincides with the result known from the stringless 
cosmology. Of course, this similarity is not accidental. The 
reason is that in the case considered here the parameter k ', 
which in some sense plays the role of the curvature index, is 
equal to zero. Hence some cosmological effects following 
from the existence of cosmic strings compensate for those 
typical for closed geometry (k= 1 ). In spite of this, the for- 
mulas for the luminosity distance are in both cases different 
(especially for large z) 

n z -f- 1 • D = sin for k = l,<7s0 = 3, 

J 

V* H- 
for k = as0 = 0. 

Another interesting case may be obtained when as0 is arbi- 
trary but radiation and matter are negligible compared to the 
density of strings. Then, the expression for D0 is 

A) U+Dj 

(33) 
and simplifies further by putting k = 0 

D0 = —^7— In (z + 1 ). (34) 

Note that adding the cosmological constant to the case 
(oYo = <7m0 = 0) does not lead beyond elementary functions 
(cf. Eqs. 18(a)-18(e)). In order to find j, we use the formu- 
las 

—^- = Z+ 1, 
RU) 

R 1 ( V/2 

0 Ho\2as0-q0-\) ’ 

*'=-($o+l) 

(35a) 

(35b) 

(35c) 

(35d) 

(35e) 
2<7so ~ (íq~~ 1 

A = — 3?()tf 0 > 

where Ä( t ) is given by Eq. (18). Performing simple inte- 
grations, we get 

X = y[2a^z for A: ' = 0( =>* = 1,?0 = - 1,A = 3.ff£ ), 

* _ - arctaij äa 
(i0+ l)(z+ 1) 

for 
k’>0(=ïk= l,q0< — lfA> 3HI), 

and 

(^ \1/2 |n (z + 1 ) (q0 + 1 )1/2 + [ (q0 -f 1 ) (z -j- 1 )2 — ^()]
1/2 

\ &(#o+1) / (^0 + 1 )1/2 + 1 

(36a) 

(36b) 

(36c) 

for 

& ' <0( =>k = 0, + l^o> — 1,A < 3H0 ). 
The case where the A term vanishes can be recovered only 
from the last formula (36c) by putting qo = 0 (see Eq. 
(35e)). 

b) Angular Diameter 

Writing an expression for the angular diameter 0 of a gal- 
axy with the redshift z in the universe with strings does not 
lead to any difficulties. We just use the known formula 

6 = ¿(z+ , (37) 
A 

where d is the linear size of the galaxy and D0 its luminosity 
distance given by Eq. (26). In this context, one usually dis- 
cusses minimal values of 6, since it turns out that in the 
expanding universe the angular diameter of a galaxy is not a 

I  
decreasing function of its redshift. In the next section, we 
show that 0min depends distinctly on the density of strings. 
Therefore, observation of 0min may be a good tool for testing 
a string-dominated universe. 

c) Source Counts 

We calculate the number of sources with redshifts from 
the interval z, z + dz. We use the same formula as in the 
standard cosmology without strings, 

dN = 4im(z)S2
k[x(z)] dz, (38) 

dz 
however, the ^ coordinate is now given by Eq. (24). Such a 
general formula, although exact, is troublesome in practical 
applications because of its complicated form. Of course, in 
some special cases the expression simplifies a little bit (cf. 
Eqs. (30) and (36), see also Eq. (46) from our previous 
paper (D^browski and Stelmach 1987a)). However, notable 
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simplification is obtained only by expanding the appropriate 
expressions into series with respect to z. We find that source 
counts are the strongest test for the cosmic string hypothesis. 
We shall discuss this point in detail in the next section. 

There exist some other cosmological formulas that may be 
found in the model under consideration: particle and event 
horizon, the age, or eventually maximum radius and period 
of oscillation of the universe. In the quoted preprint (D§- 
browski and Stelmach 1987b), we have derived these magni- 
tudes and we discussed in detail the influence of cosmic 
strings on them. In the present paper, we do not want to pay 
too much attention to this. The task of the first-rate signifi- 
cance is the verification of the string-domination scenario on 
the basis of the strongest tests. 

IV. ASTROPHYSICAL TESTS FOR THE COSMIC STRINGS 

Writing down the solutions of the Friedman equation in 
Sec. II, we realized that resulting cosmological models in- 
cluding strings should be very similar to those without 
strings. We concluded then that the cosmic string network 
would be hardly detectable. To be more precise, we consider 
now the formula for the luminosity distance D0 to a galaxy 
with a redshift z. The complicated form of the general formu- 
la (26) renders difficulties while fitting it to observational 
data. Because of this and also because of the small accuracy 
of the data it seems that using approximate expressions for 
the relation is justified. We perform an expansion of D0 in the 
general case with radiation, matter, cosmological constant, 
and strings into series with respect to the redshift. The result- 
ing expression is (see also Solheim 1966) 

2 + —( 1 “ tfo)*2 + — [3<7()(<7o -hi) — 120-* 
2 o 

(39) 

Note that D{) is the luminosity distance, not a corrected one 
as in the paper of Ellis and MacCallum ( 1970). The appear- 
ance of <rs0 not before the third order of the expansion means 
that the luminosity-distance relation is not a good test for the 
existence of strings. 

As a matter of fact, in astrophysical tests, instead of the 
luminosity distance D0 one rather measures the apparent 
magnitude m given by the formula (Lang 1974) 

m = 5 log D0 -f Af + const., (40) 
where Mis an absolute magnitude. Expansion of the magni- 
tude (in the corrected form) into series (cf. Kristian and 
Sachs 1966; Ellis and MacCalum 1970) gives 

m=M—5 logtf0 + 5 logz-F (2.5 loge) O 

-F L(3ío+1)(9o_1) 
4 

(41) 

where A is given by Eq. (22c). Note that the radiation is 
included in the above formula by means of A. Here we notice 
that the strings appear in the second order. It seems that the 
influence of strings is still weak. From the point of view of 
the possibility of the detection of the cosmic strings, this 
result is not promising. 

Now we consider another test connected with the minimal 

angular diameter of galaxies. The value of the redshift zmin 
that corresponds to 0min has been calculated analytically for 
pressureless Friedman models without the A term and 
strings (Edwards 1972; Narlikar 1983), zmin = J. We 
showed in our recent paper (D§browski and Stelmach 
1987a) that adding the radiation in a flat universe lowers this 
value: 

Zmin = 7—(2o'rO ~ 1 + 76<TrO + 1 )<|- (42) 
^Vo 

Calculation of zmin in a general case, especially including 
strings, is complicated because it leads to a non-elementary 
equation, 

^-=(z+l)Ä. (43) 
S k (*) dz 

It seems than an analytic solution exists only in one special 
case when k = À = — am0 = 0, i.e., in a string-dominat- 
ed universe. Then 

* = ln (z+ 1) 
and Eq. (43) gives 

(44) 

(45) 

In cosmological scale, the calculated value is remarkably 
greater than the value | obtained in a matter-dominated uni- 
verse. In order to see how zmin changes if the universe passes 
from the matter-dominated state to the string-dominated 
one, a nonelementary equation has to be solved. For exam- 
ple, in the case k = À = ar0 =0 (but am0 ^0 and crs0 ^0), 
Eq. (43) takes the form is given by Eq. (30)) 

¿„h / ^ 
-y z( i - 2<7s0 ) +1 

Q-^so)2 

wz(^ - (7s0 ) - ((7,0 + ^ (-y/z( 1 - 2(7,0 ) +T - 1 

z + 1 
Its numerical solution with respect to z, for any value of 

crsOG(0,p is presented in the form of a diagram (Fig. 1 ). 

Fig. 1. Dependence of the redshift, for which the angular size of a galaxy 
takes a minimum value, on the energy density of strings. À = k = =0, 
^mO + ^sO ~ 2" 
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The influence of the A term on zmin may also be examined. 
We perform it for the string-dominated model. Then x is 
given by Eq. (36c), and the equation to be solved is 

ln z + 1 + [ (z + 1 )2 - go/(go + 1 ) ]1/2 

1 + 1/ (tfo +0 

= 1  
[(z-f \)2-q{)/(q0+ D]1/2 

In Fig. 2 we illustrate the dependence of zmin on the decelera- 
tion parameter, which is proportional to the cosmological 
constant in the case considered (cf. Eq. (35e)). Since the 
signs of the A term and qQ are opposite, we deduce from the 
diagram that the negative cosmological constant, even when 
large, insignificantly lowers the value of the redshift zmin, for 
which the angular size of a galaxy is minimal, while the posi- 
tive A term dramatically increases zmin. However, the influ- 
ence of the small cosmological constant may be ignored in 
any case. 

At the end of our considerations, we propose another as- 
trophysical test, which distinguishes string- and matter- 
dominated models more distinctly than the previous test. 
The test consists in counting galaxies with a given redshift. 
Denoting this number by Af(z) and coming back to the for- 
mula (38), we find that 

N(z) = Airn^Sl [^(z) ] . (46) 
dz 

We shall not examine this function in detail. As in the case of 
the luminosity distance, we can expand into series with re- 
spect to z (we put for simplicity n(z) = const. = n). 

4or
r0 + 3<rmo + 2<7s0 - g0 - 1J/2 

X j^2 — 2(<?o + Oz3 "I" (io + 1) (37<70 + 31 ) 

- 96crr0 - 42<Tm0 - 8<7s0 ]z
4 + ... j. (47) 

In contradistinction to the previous case concerning Z>0, now 
strings appear in each order of the expansion, in a constant 
factor. Coming back to the full formula (46), we notice that 
the function N(z) possesses a maximum for some value zmax. 
We are interested in only the dependence of zmax on the den- 
sity of cosmic strings. In order to extract main features of 
this dependence, we assume that A = — k = 0. Then j is 
given by Eq. ( 30). Differentiating N(z) with respect to z and 
equating the result to zero, we find the following formula for 
^max * 

sinh 2^2gs0[z(l — 2<js0 ) + ij V2o-s0 z(i-c7-s0) 
(3z + 1)(^ — <Ts0) (J-^so)2 

In two limiting models (matter- and string-dominated uni- 
verses), the equation is solvable analytically, namely zmax 
= 16/9 for <7s0 = 0 and zmax —e2—\ for am0 = 0. Figure 3 

shows the behavior of zmax as a function of crs0 in the whole 
allowed interval (0,¿). For comparison, we plot also, in the 
same coordinate system, the dependence of zmin on <js0. 
From the diagram, we see that although for small density of 
strings the change of zmax ( compared to the matter-dominat- 
ed universe) is not remarkable, in the string-dominated 
model the shift of zmax is large. One may show that the influ- 
ence of the cosmological constant on zmax is qualitatively the 
same as in the case of 0min. 

Fig. 2. Influence of the cosmological constant on zmjn. ¿r*, = am0 = A: = 0, 
<A<) = 5* 

- (^so + |)(V*Q - 2<rs0) + 1-1) 
z + 1 

I  
V. CONCLUSIONS 

The aim of the paper was to examine some observational 
implications of the universe filled in with a sufficiently dense 
network of strings. The averaged energy density of strings 
was assumed to scale as /os “2. Hence we assumed the 
simplest possibility when the system of strings stretches con- 
formally by the expansion and may come to dominate the 
universe. Besides cosmic strings, the universe contains non- 
interacting pressureless dust, radiation, and a cosmological 
constant. The mathematical formalism, which could de- 
scribe such general models, is based on Weierstrass func- 
tions. We have given the solutions of the Friedman equation 

Fig. 3. Dependence of the redshift, for which N(z) takes a maximum value, 
on the energy density of strings. A. = k = cr^ = ^mo + ¿Ao = {■ 
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and the principal astrophysical formulas for observable 
quantities in the models. The first conclusion from the re- 
sults obtained was the confirmation of the general conviction 
that the influence of the cosmic strings on the evolution of 
the universe is relatively small in spite of the sophisticated 
equation of state for the strings (pressure given by strings is 
negative). On the basis of the derived formulas, we proposed 
some tests, which may be used for the verification, if not for 
the entire string scenario, at least for the string-domination 
scenario (of course, only in the case/?s ~R ~2). We showed 
that the luminosity distance and consequently the apparent- 
magnitude relations are not sensitive tests if one takes the 
small accuracy of present observational data into account. 
In the next test, we examined the influence of the cosmic 
strings on the redshift zmin, for which the angular size of 
galaxies takes a minimum value. We noticed that in the 
string-dominated universe zmin is shifted compared to the 
case without strings, and the value of this shift is or order t. 
We checked also that the small A term (reasonable value for 
our present universe) does not change the result too much. 
The last test considered in the paper was connected with the 
source counts. We proved that the number of sources corre- 
sponding to a given redshift in a homogeneous, expanding 
universe possesses a maximum depending strongly on the 
strings. Strictly speaking, this dependence is not so distinct 
for a low energy density of strings. Then zmax is roughly 

equal to 2. However, in the string-dominated universe, for 
example in the case when strings form invisible dark matter 
giving il= 1, zmax dramatically increases to e2 — l for 
(7s0 where e = 2.71828.... From Fig. 3 it follows that the 
string-domination scenario (for example, where 90% of the 
total energy is in strings and the rest is in matter) should give 
zmax = 4. One should also emphasize that zmax ^2 still al- 
lows existence of cosmic strings up to 40% of the total ener- 
gy (in our considerations, we assumed that the number of 
sources in a comoving volume is constant in time). In spite of 
the strong dependence of zmax on the density of strings as0, 
practical application of the presented test does not seem to be 
possible up to now because of large values of redshifts which 
should be taken into account (z> 2). In this regime, prob- 
lems of two kinds appear. First, the problem of faint galaxies 
exists and there is a limit as to how faint a galaxy one can 
detect. The second problem is even more severe and is con- 
nected with evolutionary effects of galaxies for large z. The 
full formula for this test should involve the appropriate cor- 
rections. 

In conclusion, we would like to remind the reader that 
throughout the paper we considered only the simplest sys- 
tem of cosmic strings scaling as ps~R ~2. Discussion of ob- 
servational implications of other, maybe more realistic, 
string-domination scenarios, whereyos ~R and « > 2, will 
be published in the future. 
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