with a small index of refraction ny > 1. The scat-
tering of a plasma wave into a plasma wave ions of
the equilibrium plasma also plays an important role.!®
Despite the high probability of scattering of an ex-
traordinary electromagnetic wave into an ordinary
one, this process cannot exert a significant influence
on the dynamics of conversion because of the high
group velocity of the ordinary wave and the small
size of the source along the field. The conversion of
a plasma wave into electromagnetic radiation is
pulsatory in nature. The period of the pulsations
(4-7 msec) in the narrow-band emission of S bursts.
The level of electromagnetic radiation corresponding
to the extraordinary mode can reach 6-1072° W/(m?2 -
Hz) in the model under discussion, which corre-
sponds to the emission level in S bursts observed at
the earth.

Dror simplicity, we shall discuss the dynamics of the conversion
of plasma waves based on the example of a dynamic spectrum with-
out splitting. I .
2)We do not consider the zero state of equilibrium Wp= Wp‘ = Wy =
0, which is unstable for any values of the system parameters (3)-
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Evolution times for disks of planetesimals
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We describe the basic design principles behind an algorithm for computer modeling of the evolution of disks
consisting of a large (X 10*) number of planetesimals, making it possible to investigate the main stages of solid-
body accumulation of planets or their cores. The accumulation times for planets are estimated on the basis of
computer models of the evolution of disks consisting of hundreds of bodies, and analytical investigations of a
series of models for the evolution of disks consisting of a considerably larger number of bodies. As in the work
of Safronov, Vityazev, and Pechernikova, the accumulation time for the main mass of the earth is ~ 10° years,
while for Neptune it is ~ 10° years. In the zone of Neptune certain planetesimals, moving in eccentric and

inclined orbits, could be preserved up to the present.

1. INTRODUCTION

Many authorities now maintain® that the planets
of the terrestrial group and the cores of the giant
planets were formed from a disk of solid bodies or
planetesimals, initially moving in almost circular
orbits. According to Refs.1-3, the total mass of the
initial bodies in the zones of the giant planets ex-
ceeded by severalfold the mass of solid material that
went into these planets. Having reached ~ 1-3 me
(me is the mass of the earth) in 3-107 and 3-10%
years, the embryos of Jupiter and Saturn, respec-
tively, began to accrete gas.* Other models of the
formation of the planets also exist.'>>"7 The pro-
cess of solid-body accumulation has been investi-
gated both analytically'~2,® and by computer model-
ing.3%,%~7,9"19 The results of computer modeling of
the evolution of disks initially consisting of hundreds
of bodies have been used to study the final stages
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of solid-body accumulation of the planets.36,10-12,14~18
The evolution of swarms that initially consisted of a
large number (~1011-1012) of planetesimal bodies has
been studied by a computer investigation of the varia-
tions of the distribution functions of the bodies with
respect to masses and distances from the sun.%,13,1°
Upon the appearance of large bodies (planetary
embryos) in the swarm, these calculations were ended,
since the "particle in a box" method used in Refs. 9
and 19 became inapplicable.

The actual process of accumulation of the planets
depended in a complex way on many factors. The
study of relatively simple models, however, makes
it possible to draw a number of important conclusions
about the process of accumulatioin of the planets.

In the present paper we consider the evolution of
disks of bodies moving around a massive central body
(the sun). Models in which the bodies combine in
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collisions are predominantly studied, but we also
discuss the influence of fragmentation of bodies and
gas drag on the accumulation process. The mutual
gravitational influence of the bodies is taken into ac-
count by the method of spheres (mainly spheres of
action),1“»2° i.e., inside a sphere the relative mo-
tion of bodies is treated within the framework of the
two-body problem, while outside the sphere the
bodies move around the sun in unperturbed Keplerian
orbits.

In Sec. 2 we consider certain general questions
in the construction of an algorithm for computer
modeling of the evolution of disks consisting of a
large number (2 10*) of bodies. As in Refs. 9, 13,
and 19, the bodies of the disk are divided into groups
(bins), but the interactions of the bodies are taken
into account differently. In the limit, when each
group consists of one body, this algorithm, not yet
implemented on a computer, is the same as the algo-
rithm used to investigate the evolution of disks con-]
sisting of hundreds of bodies.'®52° The formulas
that we use to determine the number of encounters
between bodies up to the radius r of the sphere used and
the number of collisions between bodies in a time At
(Sec. 3) were obtained for a more complex model
than the "particle in a box" model considered in Refs.
9 and 19, and they enable us to take into account
not only the relative velocity of the bodies but also
the orbital elements of proximate bodies. The time
of the fall of small bodies into a larger body is de-
termined (Sec. 4) for models differing from the
models considered by Safronov et al.’”%8 In Sec.

5 we give the evolution time for disks initially con-
sisting of hundreds of bodies. The evolution of such
disks was investigated by computer modeling. On
the basis of the results given in Secs. 3 and 5, the
evolution time for disks consisting of a large num-
ber of original bodies is estimated for a series of
models of Secs. 6 and 7. Although the evolution of
the disks of planetesimals was three-dimensional in
nature,? a plane model  was also considered in the
paper along with the three-dimensional model. The
investigation of the plane model enables us to esti-
mate the minimum changes in the orbits of gravita-
tionally interacting planetesimals.

2. BASIC DESIGN PRINCIPLES BEHIND AN
ALGORITHM FOR COMPUTER MODELING OF THE
EVOLUTION OF DISKS CONSISTING OF A LARGE
NUMBER OF PLANETESIMALS

The group of bodies examined usually includes
bodies for which the masses m and the semimajor
axes a (as well as the eccentricities € and inclina-
tions i when a sufficiently powerful computer is avail-
able) of the orbits lie within certain fairly narrow
limits. In the algorithm under consideration, each
(k-th) group is characterized by the number N(K) of

bodies included in it (instead of N(K) we may con-
sider the total mass M(Zk) of all the bodies of the

group) and the mean values of m, a, e, and i desig-
nated as m(kK), (k) e(k), and i(K), respectively.
Moreover, in the three-dimensional case each group

can also be characterized by the mean values @

and @(K) of the longitude @ of the ascending node
and the argument of perihelion w.

As was done: in Refs. 9, 13, and 19, we break
down the entire process into a series of successive
steps At in time. The number of encounters Nk,
between bodies up to a distance r, and the number

%)
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of collisions N((:gl’ %) which occur between bodies of
the k-th and 2%-th groups, as well as the changes in
the quantities N(kK), m(k), e(k) (k) @(k) andw(k))
in a time At can be determined differently for differ-
ent models. Below we shall consider, in particular,
a relatively simple model, which we call the model of
group-averaged bodies. The more complex models
can be investigated on the basis of this model. In
the model of group-averaged bodies we shall assume
that in:the interaction of bodies of two groups, for
all N(K) bodies of one (the k-th) group the masses
m and the orbital elements, a, e, i, (2 and w) are
the same and equal to m(k), a(k), e(kK) (k) , (g
and w ), respectively. Such bodies will be called
averaged bodies. To improve conservation of the
integrals of motion, it is better to determine the
values of a(k), e(k), F(K) and (k) not as the mean
values of the corresponding orbital elements (as was
done in Refs. 9 and 19) but so that the mechanical
energy n(k)/2 and the angular momentum c¢®=
{cx(k), cy(k), cz(k)} of all the averaged bodies of
the group are the same as for all the actual (differ-
ent) bodies of the group. For each averaged body
of the k-th group the values of ¢ and h are ¢®=
{C—X(k)’ Ey(k), Ez(k)} = ¢® and Tl(k) = h(k)/N(k)
(remember that in the method of spheres, bodies out-
side the spheres do not interact with each other).
Using the laws of conservation of energy and angu-
lar momentum and dropping the group (k) we have

cos i=z,/mypp, sin =Y(@)*+ (&) Ym¥up,
cos Q=—¢,/m sin ZVp_ﬁ sin Q=¢,/m sin ﬂ/p_ﬁ, (1)
where p = (1-e?)a, u = G(Mg+ m), Mg is the mass

of the sun, G is the gravitational constant. In ac-
counting for the mutual gravitational influence of

the bodies by the method of spheres, h and ¢ do not
depend on w or the true anomaly v. Therefore, if

w is treated as one of the properties of the group,
we can calculate w as the mean value of wj for all the

bodies of the k-th group.

Witout dwelling in detail here on modeling the
gravitational interactions and collisions of bodies, we
note that at each step st of the algorithm one must
know the values of Nékaﬁ) and Ng]éf ) for k=1,...,

Ng and 2 = 1,..., Ng, where Ng is the number of

groups in the disk. The values of At are chosen, in
particular, so that there is no more than one col-
lision per body of a group, on the average, in time
At. If the number of bodies in the groups is large,
then the results of interactions between bodies in
the:time At can be determined from computer model-
ing of a relatively small number of characteristic en-
counters and collisions.

3. NUMBERS OF ENCOUNTERS AND COLLISIONS
BETWEEN BODIES IN TIME at

For N(ck’ 2) and Né(l){l’ L) we shall take the ex-

pectation values of these quantites. In the sto-

chastic approach under consideration,

NL.”" “=N‘“N,,“' ’”At/f”"”, (2)

where N(k)Né %5 K)is the number of pairs of bodies
(body j, belongs to the k-th group while body j,
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belongs to the ¢-th group) for which the values of
the aphelion and perihelion distances (r, and ;)
allow an encounter between the j,-th and j,-th bodies
(the minimum distance between the segments [rn(] 1),

ra(j 2)] does not exceed re); 1/7(K, £) js the mean

values of the quantities 1/1(J1s J2), where t(j1 2
is the time between encounters (up to rg) of the
jo~th and j,-th bodies. We can represent Ng(2, k)

in the form
N,&W=NWxgt» vhere. gth W],

(3)

In the general case (%, K) can be calculated numeri-
cally. In the interaction between bodies of the same

group (for k instead of n(k)N@ k) in Eq. (2)
we have N(k)(N(gj ~1) w(k, k)/g.

First let us consider the plane model. Let A¢ be
the sum of the angles (in radians), with the apex at
the sun, within which the distance between the orbits
of the j,-thand j,-th bodies along the central r (y
(w1th apex at the sun), is less than r,, while T{J )
is the period of revolution of the j-th body around
the sun. Bodies that lie on the same central ray
will, after a time close to (equal to, for circular
orbits) the synodic period of revolution Tg =
TGITAD/|TAD-TG D, again lie on the same cen-
tral ray. If as an approximation we take the direc-
tion of this ray to be random, then the ratio A¢/2t
is the probability that the distance between bodies ly-
ing on this ray is less than r.. Also allowing for
the fact that the mean value of the initial angle (with
apex at the sun) between the directions toward the
bodies is 7 for a random location of the bodies, while
after an encounter it is 2r, we find that for At <
Tg/2 the expectation value of the number of encoun-
ters (up to re) between the ; -th and j,-th bodies
in the time at is at/t(1s 7272 AtA¢/nTg, while for
at > Tg/2 it is at/<Uw 3 = (0.5 + at/Tg)a¢/2n. In
the study of the process of solid-body accumulation
it is proposed to take At > Tg. In this case, there-
fore, designating the mean value of A¢ for different
pairs of bodies of the k-th and &-th groups as A¢
and assuming that the values of Tg for these pairs
differ only slightly, we obtain

T ® Y ~2aT,/Ag, (4)

where Tg is the mean value of Tg. For eccentric
orbits (e =max {e(k), 8@} < r,/R) we consider the
the quantity kg = 'A?J/rc*, where rz = ro/R and R is
the distance of the bodies from the sun. The values
of ky are smaller for larger eccentricities. It is
found numerically, for example, that for m = 0.01 me
we have kg = 30 for ey = 0.1, while kg4 = 10 for

eq = 0.3 (different mutual orientations of the orbits
of bodies of the different groups were considered
for these estimates of Usmg) Egs. (2)-(4), we
can determine the value of N( for k = 2.

In an investigation of interactions between bodies
of the same group, the bodies can be divided into
two subgroups in a certain way and the same Egs.
(2)-(4) can be a;)p]jed. Moreover, in that case the
values- 6f N can also be determined from Eq.

(2), assumlng that
7 AR 2k (3™ a9 T o/ro ~2nk (™) */r. Y G, (3)

where kp = 3.5, ae is the semimajor axis of the
earth's orbit, and Te is the period of its revolution
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around the sun. Equation (5) was obtained on the
basis of computer modeling of the evolution of a
series of disks consisting of 100 identical particles of
mass m,. The initial eccentricities ¢, of the par-
ticle orbits were the same. In such modeling it was
assumed that the ratio of the maximum to the mini-
mum values of the semimajor axes of the orbits of
bodies of the initial disk was apygy/amin = 2, 107°

me <m,<me, and 0.01 < e, < 0.3, and it was found
that (K> k) hardly depended on e = €.

Now let us consider the calculation.of Néka £) for

the three-dimensional model. We designate the angle
between the orbital planes of two encountering bodies
as Ai, while u' is theangle between one of the two
rays formed by the line of intersection of the orbi-
tal planes and the direction toward one of these bodies,
which we call the second. Encounters between bodies
up to re can occur only for those values of u' for
which h(u') =R,sinu'sin Ai< ro, where R, is the dis-
tance from the sun to the second body. We desig-
nate the sum of the angles, with apex at the sun,
within which this inequality is satisfied as Au!. Tak-

%t
ing R,= R, sinu' » u', sin Ai = Ai, and max {h(u")} 2

re (i.e., 41 2 r), we obtain Aug = 4rc*/Ai, and the
probability p( A1) of an encounter between two bodies
up to re in a time At is smaller in the three-dimen-
sional case than in the plane case by a factor of ki =
(2n/8ug)(re/re') » TR Ai/2r', where ro' is the mean
value (in the region 4u';) of the projection of re on-
to the orbital plane of the first particle. Since

,cf=[ f ymwu']/ [ aw~rae,

h(u")<re h(u')<re

p(ai) and N are smaller by about a factor of kj =
mai/re* for 412 re* than for ai = 0 (for the same
values of m, e, and a). In the case when Ai assumes
values from-0 to Aifax — re* with equal probability,

taking ki = 2(where 1/T<1 1s the mean value of 1/k1
for different Ai) for 0 < ai < rC , for 0 < Ais Almax
we obtain

1k, = {S Wkyd @]/ S d (Al) = rekn, /Ay, 6)
where nj = 0.5+ In(aif )=In(re*). For i uniformly
distributed from 0 to :3?( , the probability that Ai =
Mpax = ir(nl;g(+ i(mna)x is lower than it is for aiz 0.
Therefore, Aif = < Aipgy. We shall take approximate-
ly Ai* ~ (k) + T(2).  For example, if r, is the
radlus of the sphere of action and Almax" 0.15, we
havenjz 9 for m = 107°* me andnj= 4 for m = me .
Equation (6) was obtained for the case when the
bodies are not divided into different groups accord-
ing to i. But if the values of i for bodies of k-th
group range from ignli to iﬁ};%{, while the minimum
i(¥) ] and
max
then, mtegrating

distance Aiyi, between the segments [1(k)
(2) (%)

[1mln ] is greater than rc,

ki from Almm to A1 » by analogy with Eq. (6), we

obtain
I—fi =n (Ail‘gax - Aimin)/"c* In (Ai:{ax/Aimm).
Using Eq. (2), we obtain

N’ =N&" [N&D <N® Atk T ()
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. where Ngk, £) is the mean number of encounters up

to re leading to one collision and
T4 O=F®ON D[ NSO (ky=1 for k+] and ky=2 for k=I).(8)

Usually in the algorithm under consideration At <
T¢(k, £), but formally we find from (7) that in a time

Tq’(ks L) each body of the k-th group takes part in

one collision with some body of the g2-th group, on the
average. We assume below that bodies collide (com-
bine or are destroyed) when the distance between
their centers of mass becomes equal to the sum rjy of
their radii. With allowance for the additional capture
or destruction of some of the bodies that have en-
tered the Roche zone,!>!? it must be borne in mind
that the accumulation tlme is T« (ry,)~* for ai= 0
and T « (r;)~? for Ai r}, where r, is the capture
radius. According to Refs. 21 and 23, the additional
capture is minor.

Using the concept of the effective radius rg of a
body, in the plane case for averaged bodies we have

Nt mre/ra=re/rsV 126, S
where 68' = 0°5(Vpar/vrel)2’. Vpar=‘/2G(rT1(k) +Tn(1))/rz,
and Vvpe] is the relative velocity of bodies encounter-
ing each other at a distance r,. According to Refs.
1 and 2, the rms velocity of bodies relative to a cir-
cular orbit of a planet of mass M and radius r is

V%el = VGM/#8r, where 6 is Safronov's parameter. If

m(K) = M 2 m®) = yM, then 8'= 8(1+ v)/(1+~/3),
where 3/4 < (1+ y)/(1+ y1/%) 1. We designate

£ = Vyel/Vorb = kge, where vgp}, is the velocity of a
body in an orbit of radius (a(K) +@a(%))/2. On the
basis of Eq. (9) and the values of N, obtained in
computer modeling of the evolution of plane disk con-
sisting. of hundreds of bodies, for a disk con51st-
ing of one group we have kg 1. If ai> rc, then
Ne = (Ncpl)z: where Nc pl is the value of N¢ for a
plane model with the same orbital eccentricities as in
the three-dimensional case. For i1 = e/v/2 (Ref. 13)
the values of £ and k; are larger by a factor of _
about v3/2 than for 1 = 0 with' the same values of e.

In the course of evolution of a disk of planetesi-
mals, 6 varies. In the zone of the giant planes,
for example, 8 » 1 for a gasless model disk of ap-
proximately equal bodies.?3 We represent r. in the
form reo = R(m/Mg) (1 + 5)(1/2 When spheres of
action are used, o=0.4, while in Ref. 10 § = m,/m,,
where m; and m, are the masses of the bodies en-
countering each other (m,< m; = m). If N(K) » 1,
using Egs. (5), (6), (8), and (9) and omitting the
group numbers, in the interaction between bodies_
(of density p) of the same group and for ipgx ~ 2i
we have:

a) for i+26' = 1,

[od

Top =a"%p"kr (1/6) “T o/ M"N% (ag) "< ™[ My,

Nop1~ap me (n/6) " (148) 2/ (M) %,

Toaa~a’p"Tkon (7/6) *Tel W Nun:(ag) ho i/ M, (10)

b) for 1+ 26'x 28' (for 6'> 1),
Nep1=a@"p"sme =g (Mo) "= (1+8)“/*(nt/6) "/ 2o¢ kg,

Ty o=@ (§/7) kr (Mo) " (/6) /*T o/ 2N (ag) o< " [ M.

T g o820 Thant (n/6) " MoT o4 "N, (ag) " o< iii=" [ M. (11)
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For the "particle in a box" model, ® s° Ng){l’ )

NN vy m(re) 28t/ V, where V is the volume of
space while vye] is determined through e and 1. The
values of N and Ngg), determined using Egs. (2)-
(9), also depend on A¢, Tg, and «, which are de-
termined, in turn, by the orbital elements of the
bodies encountering each other. The different values
of the semimajor axis of the orbits of the bodies are
thereby taken into account, in contrastto Refs. 9
and 19. Usng the equations obtained above, we can
analyze, in particular, the cases of i = 0 and e = 0.
The algorithm whose basic principles were discussed
above enables us to investigate not only the initial
stage, as-in Refs. 9 and 19, but also subsequent
stages of solid-body accumulation of the planets (or
of their cores). If each group consists of only one
body, then such an algorithm is analogous to the
algorithm used for computer modeling of the evolu-
tion of disks consisting of hundreds of gravitating
bodies.”"!8:2% In studying the interaction between
single large bodies, instead of using the stochastic
approach one can determine the times until encoun-
ters between pairs of bodies and subsequently model
(with allowance for encounters that have already oc-
curred) the encounters between bodies occurring in
the time interval At under consideration.

4. TIMES OF FALL OF SMALL BODIES INTO A
LARGER BODY (PLANET)

When the k-th group consists of one large body
(planet) of mass M and the ¢-th group cons1sts of N
bodies of mass m, in a time At about NAt/T¢s k

bodies fall onto body M. Using the results of Sec. 3,

in the case of e = e( L) » e(k and 1-{(9‘) > 1( )
we have

Ty guocM™"/7, Ty <iM~*/z for  1+20'~1 (12)
and

TyproceM™"[%,  Typyq<ieM~"[% for 1+20'~26". (13)

From Eqgs. (12) and (13) it is seen, in particular,
that, other conditions being equal, larger bodies
grow faster. If the number of bodies m that can en-
counter the body M is proportional to e, then k «

e in Egs. (12) and (13). In the case when all the

bodies m can encounter body M (for Né’Z k) = 1),
the mean time for a body m to fall onto body M is
T = T%’ k)NC. If the inclinations of the orbits of

the bodies m to the orbital plane of body M are the
same and equal to Ai, then, with allowance or the
results of Sec. 3, for eccentric orbits of the bodies m

we find that in the plane case Tpl o] NC pl2rTg /k¢r
21TgR/rsk ¢‘/1_+ 20', while for ai>r}, Tyq =
Ne :g27? TSAl/k¢(PC)2~ ZWZTSAI(R/PZ)Z/R¢(1 +20").

Analytic formulas for the time of growth of a
planet as it exhibits the bodies from its feeding
zone are given in Refs. 2 and 8. Here the thickness

= 2R sin i of the zone and the eccentricities e of
the orbits (the same for all the bodies) are deter-
mined by the mass M of the planet, which varies
greatly in the course of evolution. In obtaining
these formulas, it is assumed that 6 does not vary
with time, and that the surface density of material
near the planet's orbit is the same as in the entire
feeding zone (continuous mixing of bodies in the
zone occurs). The formulas given in Sec. 4 were
obtained for the case when M varies little over the in-

c ¥
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vestigated time interval, while e and sini (or i)
cannot depend on each other or on M.

Let us consider the fall of small bodies m, into
a large body, a planet, of mass M (M > m,) and
radius r in the case when the feeding zone of body
M has the form of a torus, formed by rotation about
the Oz axis of part of a circular ring, bounded by
two arcs of circles of radii R, = R(1 -~ §,) and R, =
R(1 + §,) and by two segments of rays with the
apex at the sun. We take the angle between these
rays to be 2i and we assume that the bisector of this
of this angle is the Oy axis, perpendicular to Oz.
The volume of this zone is Vg z 4n[(R,)® - (R,)3]-
sini/3. We designate the total mass of the bodies
m, lying inside such a torus as m%. We shall as-
sume that the ratio A of the mass of the bodies
thrown into hyperbolic orbits or falling into other
planetary embryos to the mass m! of bodies falling

into body M is constant in the course of evolution.

We assume that near the orbit of body M the spatial
density of bodies of the swarm is p, = «' pecs» Where
pes = [m§ — mL(1+ X)]/Vp and «'= const. Then,

using the well-known?,® relation dM/dt = v(re)2p0v¥el,

for i> ro/R and nearly constant values of M, sini,
and vl\x/[-el (and hence of e and £) in the course -of

evolution, we find that the time in which bodies m,
with a total mass ksm%(l + 1) fall into body M is

kons'/(142), T (k) ~—2(8:+8,)sin i(R/r)*P In|1— (1+A) k.| /2 (14

28') £x, where P is the period of revolution of body
M around the sun.

The formulas given in this section can be used
to determine the total mass of bodies m that fell in-
to body M (not necessarily a planetary embryo) in
a time At, as well as to determine the time of exis-
tence of bodies in the vicinity of a nearly formed
planet. While bodies are falling into a planet 6'zx
6= (4m/3)3p2/2M2/3%a/g2M, (Ref. 23) and &, = §, =
e, where p is the density of the planet and a is the
semimajor axis of its orbit. If &= v2¢ (Ref. 23),

A = 0, and kg =0.97, then forthe earth T(kg) = 3 -
10°sini/(1+ 20) yr, while for Neptune T(kg) = 3-
103sini(1+26) yr. In this case, in particular, for
€ = 0.2 in the terrestrial zone T(kg)=:5-10®sini yr,
while for € = 0.4 in the zone of Neptune T(kg) = 2-
101! siniyr. If Tg = 5P, then for these planets and
values of € we have T,q=4-10° i (for k4 = 20) and
T,q = 2:10*14i (for k 4 = 10), resectively. The
estimates given above indicate that in the zone of
Neptune individual planetesimals may still exist, mov-
ing in inclined and eccentric orbits. The extended
gaseous envelopes possessed earlier by the giant
planets!? could -contribute to greater efficiency of
capture of planetesimals (smaller values of T and

T(ks))-

5. TIMES OF EVOLUTION OF DISKS CONSISTING
OF HUNDREDS OF BODIES

The distribution of bodies of an evolving disk as
a function of their masses and orbital elements was
investigated earlier®,'*~1® by computer modeling of
the evolution of disks initially consisting of hundreds
of bodies. The mutual gravitational influence of the
bodies was taken into account mainly by the method
of spheres of action, and it was assumed that collid-
ing bodies combine. In this case the bodies were
not divided up into groups, pair-wise interactions
of all the bodies were taken into account, and the
algorithm described in Refs. 14 and 20 was used. In
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this section we give the time T of evolution of these
disks (up to the last collision between bodies). The
value of T can vary by an order of magnitude with
variation of the pseudorandom numbers used to deter-
mine the positions in their orbits of the bodies en-
countering each other.2?° Besides T, therefore, we
also consider the values of T(25), the time of evolu-
tion until 25 bodies remain in the disk.

For the three-dimensional model (with i=%/2) in
the terrestrial zone, with a mass My of solid material
in the feeding zone of the planet equal to mey , we

have Tgés) % 107 yr and T,q ~ 5-107-5-10° yr, while
in the zone of Uranus and Neptune with My = 200 mg,
we have T(ags) % 5-107 yr and T,q ~ 3-10%-10** yr.

Here, as below, the numerical estimates are made for
the case when the density of bodies in the terres-
trial zone is ~5.6 g/cm®, while in the zone of Nep-
tune it is ~2 g/cm®. The results obtained, like the
data of Ref. 11, indicate that the time it takes for
the individual bodies from its feeding zone to fall
into the earth may reach 5-10° years. In a compu-
ter-aided investigation of the evolution of three-di-
mensional disks initially consiting of nearly formed
planets and several hundred bodies in the zone of
Uranus and Neptune,® the time it took for most of
the bodies to fall into these planets was Tyn=z 10° yr.
Although the evolution of the disk of planetesimals
had a three-dimensional character,? for comparison
we note that Tyy = 107 yr in the plane case. When
the initial mass of the plane disk of approximately
equal bodies wss close to the mass of solid material
in the corresponding planets, for the terrestrial zone

T§é5) ~ 10 yr and Tpiz 2-10*-10° yr (here not one
but several small planets are formed!®), while for the
zone of Neptune T{2°)x 10° yr and Tpj = 3-106-3-

107 yr.

6. TIME OF EVOLUTION OF A DISK CONSISTING
OF APPROXIMATELY EQUAL BODIES

Using the formulas given in Sec. 3, we can make
certain analytic estimates of the time of evolution of
disks for a number of the simplestmodels. In Sec.

6 we consider an auxiliary model in which the masses
m of the bodies of the evolving disk are always ap-
proximately equal to each other (although they change
in time), and in which the bodies combine in colli-
sions. In that case we can treat the entire feeding
zone of a planet as one group and use Egs. (10) and
(11), taking « « e. Such a model does not occur in
reality, but we can use it to investigate more com-
plex models, treating the approximately equal bodies
of the disk as one of the groups. For a model of
equal bodies, in a time T, the bodies combine in
pairs and the masses of the bodies double.

As can be seen from Egs. (10) and (11), T¢ 1
grows with an increase in m. At the end of evolu-
tion 6 > 1 (Refs. 2 and 23) and T pl does not de-
pend on e for k « eTyp]. Therefore, most of the time
of evolution of a plane disk is spent in the end
stages of evolution. In the terrestrial zone this
statement is also valid for a three-dimensional model ,
since in this case T ,q is larger for larger m. For
a disk of different bodes it follows from this, in
particular, that in the terrestrial zone the majority
of the initial planetesimals were not preserved up
to the final stage of formation of this planet. In the
case when the influence of gravitational interactions
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of the bodies on the variation of € and T is greater
than that of the gas, for the three-dimen-
sional model in the zone of the giant planets
e and i can reach a maximum rather rapidly, while,
apart from the initial stage of evolution, 6 > 1 (Refs.
1 and 25). Therefore (see Eq. (11)), in this case
T ¢sd can decrease in the couse of evolution. For
example, if in the zone of Neptune the mass of the
disk is My = 100 me, & = 0.2, ize/vZ, and p = 2 g/
cm®, the maximum of Tgys;q » 4:10° yr is reached for
mz 1074-0.01 me, while for m=me and m = 107° mg
the values of Ty, are lower than this maximum by a
factor of two to three. For & = 0.4, Ty,q is about
four times larger than for & = 0.2. Therefore, in
the evolution of a disk of different bodies combining
in collisions, bodies with masses of ~107%-0.01 mg
could exist in the final stages of the accumulation of
Neptune.

Using Egs. (7), (10), and (11), we can compare
the rate of growth of bodies in the feeding zones of
different planets. If the ratio of the total masses
of the planetesimals in the zones of Jupiter and
Earth is MZR 2 55/2, while 6 » 1, then in the case
of a thre-dimensional gasless model with equal values
of m and e, the values of Tg,4 are smaller for the
zone of Jupiter, and hence the rate of growth is
greater, than in the terrestrial zone. Since Ty,q «
m~Y3/M; for 6 » 1, in this case allowance for the
larger bodies in the zone of Jupiter than in the ter-
restrial zone only strengthens this statement. If
1+ 26 =~ 1, then with My < 57/2 for the three-di-
mensional model and with MR < 55/2 for the plane
model, the values of Ty in the zone of Jupiter are
larger (for the same m and €). The drag of the gas
decreases € and i (Ref. 7). According to Ref. 13,
& = 1v/2. Therefore, with allowance for Eqs. (19)
and (11), we find that (except for the plane case
with 1+26 = 1) gas drag decreases Ty and hence the
time of evolution. Gas probably disappeared earlier
from the terrestrial zone than' from the zone of
Jupiter. Therefore, allowance for the influence of
gas only accelerates the relatively faster (in com-
parison with the terrestrial zone) growth of bodies
in the zone of Jupiter. This also results from al-
lowance for the fact that 6 may be larger in the zone
of Jupiter than in the terrestrial zone. The results
obtained indicate that the embryo of Jupiter with a
mass of ~2-3 me (capable of accreting gas) could
have formed before the accumulation of the earth
ended. The maximum value of e for bodies moving
in a gas are estimated in Refs. 18 and 23.

7. TIMES OF EVOLUTION OF DISKS CONSISTING
OF DIFFERENT BODIES

Let us consider a gasless model of the evolution
of a disk consisting of large bodies m and smaller
bodies m'. We designate their total masses as my and
mz', respectively, and their mean eccentricities as
e(m) and e(m'). We shall assume that for each time
under consideration, the masses of the bodies m are
approximately equal to each other. Let Tm,m' be
the mean time between collisions of two bodies m
and m', while k' = Ty 1'/Tyy - Then for a model
in which bodies combine in coilisions, the rate of
growth of the bodies m is proportional to [m y2e(m) +
m 5'(g(m) + ’é(m'))/k']/Tm, m- If the mean eccentric-
ities and inclinations of the orbits of bodies in the
variants being compared are about the same for
bodies m and m' (this condition can be satisfied for
mz' < my ), as well as for different variants, then

k' > 1 and the time in which the masses of the bodies
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m double is T« =T y(my, m)k'mg/(k'my + ms') = Ty(My ,
m)ck, where ci = ﬁ'/[l +(k'-1)mg/Mg ], Mg = my +
my, while T¢(mz , m) is the value of T for the case
when the disk consists of bodies m whose total mass
is my. For such a model k'< 2 in the plane case
and k' £ 4 in the three-dimensional case and for My, =
const, Ty is of the same order as for a model disk
of bodies that are always approximately equal.

Let us consider the model of evolution of a disk,
consisting of bodies m and m', in which bodies m
colliding with each other are converted into bodies
m', and bodies m' colliding withbodies m always com-
bine with them. Then, under the assumption that
the mean eccentricities and inclinations of the orbits
of bodies m and m' are approximately the same, and
in the absence of the ejection of bodies into hyper-
bolic orbits, we can show that the disk evolves to
a state in which my= k'my. If this relation is satis-
fied, then for the same values of My, the bodies m
grow more slowly by a factor of My/Ms = k'+1 than
in the case when the disk consists only of equal
bodies m.

The results given above indicate that in the
evolution of a disk of different bodies, for a model
allowing for fragmentation of the bodies and gas
drag, the times of growth of the largest bodies of
the disk do not exceed (by more than a factor of
five, in any case) the times of growth of bodies for
the model of approximately equal bodies if the
masses of the disks are the same in both cases.
Bodies with larger masses grow faster, Therefore,
allowance for the differentiation of the bodies by
mass only strengthens the statement made above. Al-
though planetary embryos may be destroyed in col-
lisions with large bodies, breaking up and partially
vaporizing, in the opinion of Cox and Lewis'® a con-
siderable part of the fragments can be collected into
one body again under the influence of gravity.

Even while losing some mass in collisions with large
bodies, however, planetary embryos could grow, on
the whole, due to the accumulation of small bodies.

8. CONCLUSION

An algorithm for computer modeling of the evolu-
tion of a disk initially consisting of a large (2 10%)
number of bodies, the basic design of which was
discussed in the present paper, makes it possible
to study only the initial stage, as in Refs. 9, 13,
and 19, but also subsequent stages of solid-body
accumulation of planets (or their cores).

We obtained the analytic dependence of the time
of evolution of a disk on the number, masses, and
mean eccentricities and inclinations of the orbits of
the bodies comprising. On the basis of these func-
tions, as well as computer modeling of the evolution
of disks of hundreds of bodies, the characteristic
times of evolution of disks consisting of a consider-
ably larger number of bodies were studied for a
number of models. The times for the falling of small
bodies into large bodies and planetary embryos were
studied. The estimates obtained for the time of ac-
cuinulation of the main mass of the planets are close
to the results of Safronov, Vityazev, and Pecherni-
kovals 2,8 (~10® years for Earth and ~10% years for
Neptune). In the zone of Neptune certain planetsi-
mals, moving in inclined and eccentric orbits, might
be preserved up to the present, and some bodies
with masses of ~10%-0.01 me could survive up to
the final stages of formation of the planet.
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