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ABSTRACT

The bias of a training data set owing to the sample selection effect is analysed. The
investigation is based on the predictions performed by use of the MVRA for four flare
characteristics. The sample burdening with the selection effect is due to the fact that, usually, daily
values of solar flare characteristics are used as the predictors and that the flare activity changes in
time shorter than 24 hours. The asymmetry effect consisting in the overestimation of the forecasted
values for low flare activity predictions seems to be a result of this selection. This effect is found to
be statistically significant.

1. Introduction

Generally, one assumes a priori without evidencing the faultlessness of the
data, although the problem of quality of the data base employed in prediction
procedure is quite frequently not omitted. Indeed, when analysing various kinds
of the data errors one concludes that most of these errors do not burden the
data base. This fact is optimistically emphasized by Sawyer et al. (1986). They
said: “The problem of errors in the data base, although far from trivial, is
presumably correctable”. However, one should be sure that the samples used in
prediction procedure are random and unbiased and this problem was not
investigated with sufficient care as yet. The problem was discussed in Paper I of
this series (Jakimiec 1987) and in the present paper will be studied further on.

First, we will consider the following three facts:


http://adsabs.harvard.edu/abs/1988AcA....38..431J

& 432 A.A.

(1) Flare activity characteristics are, without doubt, the best predictors of flare
'S activity occurring the next day (e.g. Hirman et al. 1980; Jakimiec and
e Wasiucionek 1980; Neidig et al. 1986; Bartkowiak and Jakimiec 1986).

(2) Prediction methodology is seriously limited by the fact that we use the daily
values of solar activity characteristics (i.e. available observations are performed
every 24 hours only).

(3) Flare activity is changing strongly in time range shorter than 24 hours.
These three facts together cause the sample (i.e. the training data set used for
estimation of algorithm parameters) to be burdened with the effect of selection,
i.e. the sample is not random and unbiased (e.g. Pfleiderer (1983) has discussed
comprehensively the problem of sample selection).

Generally, one employs in the prediction procedure the daily cha-
racteristics of the solar flare activity adjusting them to the other characteristics
of an active region. In Paper III of the series we found that the time interval
between the appearing of the strong flare activity and the appearing of the
precursor — the harder X-ray flux enhancement — is shorter than 24 hours.
This fact becomes very important when the flare activity increases rapidly after
an interval of low activity in a given active region. At that time it may occur
that both the precursor and the strong flares appear in the same time interval
of 24 hours, and so the information announcing the activity increase is lost.
Consequently, the data used in prediction (training data set) will be burdened
with thie effect of the sample selection. The sample bias results in a bad
prediction quality. Of course, the bad quality of prediction can also be due,
besides other reasons, to the lack of more appropriate predicting variables.

In summary, we conclude that the sample selectiveness and/or the lack of
more appropriate variable result in the algorithm deficiency in rendering the
variability range of the observed values of the predicted variable, Y. So, it seems
likely that it may cause the regression function in multidimensional space of
variables to change somewhat the inclination in comparison with the
inclination expected for an unselected data sample. This inclination change
may be reflected in the fact that the predicting algorithm shows a tendency to
give a smaller dispersion of the forecasted values around the mean value than
the actual dispersion of the observed values do. Thus the variance sj,
calculated for the forecasted values (), is lower than the variance s2, calculated
for the observed values (). In the confrontation of the forecasted and actually
observed values of the predicted variable in form of a test table, the inclination
of the predicting function may appear as an effect of asymmetry.

In the solar flare activity prediction the effect of asymmetry is twofold: (1)
Firstly, there is the effect of underestimation of strong flare activity (U-SFA), as
discussed in Paper III. (2) Secondly, there is the effect of the overestimation of
the low flare activity (O-LFA). This second effect occurs, rather commonly in
almost all predictions. The first time this effect was noticed by Jakimiec (1983)
in an analysis of a number of various predictions. Moreover, the same (O-LFA)
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effect can be also seen e.g. in the test tables reported by Beirong et al. (1986),
Neidig et al. (1986) or Bartkowiak and Jakimiec (1986).

In this paper, using the actual data set for solar flare activity prediction,
we will examine whether the O-LFA effect of asymmetry is associated with the
selection effect of the employed sample. With this intent we form two data sets:
a training data set (TDS) and a choosen one (TDS-bis) taken out from the
former set. We expect that the changed training data set will give as a result the
decrease of the selection effect and the improvement of the prediction quality.
In Section 2.1. we present the way of the TDS-bis formation.

2. Analysis of the data
2.1. Data sets.

The observational data cover the time range from January 1979 to June
1980, and have been collected from the Solar Geophysical Data — SGD (1979,
1980). We analyse the complex of 18 daily characteristics for the D, E, F Zurich
class sunspot groups. The first seven variables X, describe sunspot group
characteristics (the same were used by Jakimiec and Bartkowiak, 1986). They
are as follows: xI — Mcl, McIntosh sunspot class; x2 — A, sunspot group
area; x3 — CaA, calcium plage area; x4 — Cal, calcium plage intensity; x5 —
Mag, magnetic class; x6 — H, magnetic field strength; x7 — MFI, magnetic
field index.

The further seven variables describe solar flare activity of the sunspot
group on a given day. Now, it is useful to remind of the notations used in
Paper III: fs and fh are maximum values of solar flare X-ray flux in the
wavelength intervals 1-8 A and 0.5-4 A, respectively; Fs (Total Flare Flux) is
the sum of fs values for the sunspot group on a given day, and correspondingly
Fh is the sum of fh values; h is the quotient of the sum [ fh] and the sum [ fs5]
calculated consecutively every three hours for six-hour time intervals. So, the
variables are as follows: x8 — maxX, the maximum value of fs for the sunspot
group on a given day; x9 — NFF, the number of faint flares (for which
fh <0.08-10"% erg cm~2 s~ 1) per day; x10 — NSF, the number of stronger,
flares (for which fh > 0.08-10~2 erg cm~2 s~ ') per day; x11 — Fs, Total Flare
Flux (1-8 A); x12 — Fh, Total Flare Flux (0.5-4 A); x13 — HI, Hardness Index,
i.e. the quotient of Fh and Fs values; x14 — maxh, maximum value of eight h
values for a given day.

Four predicted variables, Y, concerning the flare activity on the next day
are: yI — maxX’, the maximum value of fs for the sunspot group on the next
day; y2 — NSF’, the number of stronger flares (for which fh > 0.08-1072 erg
cm ™2 s~ 1) per day; y3 — Fs’, Total Flare Flux (1-8 A); y4 — FI, Total Flare
Flux (0.5-4 A).
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The frequency distribution of the most of the 18 analysed variables reveal
very strong skewness. It concerns the following variables: x1I, x2, x3, x7, x8,
x11, x12, y1, y3, y4 and therefore for further analysis we use the variable values
obtained after the logarithmic transformation: X = log X.

In order to analyse the consequence of the sample selectivity for the
prediction quality, three data sets were formed. Two of them, TDS and
TDS-bis, covering 1979 year are the base for the estimation of predicting
algorithm parameters. The third, control data set (CDS), cover the first half of
1980 year, and will be used for the prediction quality evaluation. The choosen
data set (TDS-bis) was set up from TDS as follows: we remove from TDS the
cases, for which flare activity for a given day was very low (i.e. x13 < 0.04), and
for which strong flare activity or the harder X-ray flux enhancement occurred
the next day. We hope that the way we perform the transformation of TDS
cause the predictions made for TDS-bis to be less burdened by the fact we use
the daily data.

We have included into our data sets (TDS, TDS-bis and CDS) only those
sunspot group observations for which the full set of 18 characteristics could be
picked up. The sample sizes are: Nppg = 383 Nrpspvis = 291, Neps = 234,
respectively.

2.2. Correlation matrices analysis.

For both data sets, TDS and TDS-bis, two variants of the correlation
matrices were calculated: (a) for the relation between predicted (Y) and
predicting (X) variables, and (b) for the relation between Y and X 2 variables.
We have analysed three maximum values of correlation coefficient, 7, belonging
to the matrices, for each of the predicted variables and for two, (a) or (b)
relations. Without any loss of information only the (@) relation between Y and
X variables can be taken into account for further analysis because the
differences between the r values calculated for (a) and (b) relations are not
significant. We found also that the set of three variables with maximum r
values in the covariance matrices for TDS and TDS-bis, and also for (a) and (b)
relations is very similar. It is very important that among these variables only
flare characteristics such as Fs, Fh, NSF and maxX are present.

Table 1 shows the values of correlation coefficient between the variables
x8, x10, x11, x12,'y1, y2, y3 and y4 characterizing flare activity. Comparing the
r values for the variables X (upper-left part) or Y (lower-right part of the
matrix) we see that the variables reveal very strong interrelation, and also, the r
values calculated for the TDS and TDS-bis sets are not significantly different.
Instead, the X variables are correlated less strongly. with the predicted variables
Y taken for the next day (lower-left part of the matrix for TDS, and upper-right
part of the matrix for TDS-bis). This’means that the 24 hours time interval
makes the random factors more prevailing for the relation of Y and X. So,
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Table 1
Values of the correlation coefficient between the variables characterizing flare activity. TDS —
lower part, and TDS-bis — upper part of the table.

TDS-bis x8 x10 x11 x12 yi y2 yd y5
ms\ maxX NSF Fs  Fh maxX’ NFS’ Fs’ Fh’
xB-maxX — 0.75 0.93 0.93 0.63 0.8 0.65 O0.69
x10~-NSF 0.753 - 0.76 0.76 0.63 .60 0.66 0.69
x11-Fs 0.92 0.7¢ -  0.98 0.65 0.56 0.67 0.69
x12-Fh 0.93 0.73 0.97 - 0.64 0.57 0.68 0.68
yi-maxX’| 0.32 0.52 0.55 0.34 - 0.73 0.93 0.92
y2- NSF°| 0.352 0.3 0.51 0.32 0.72 - 0.73 0.71
y3- Fs’ 0.5¢ 0.53 0.60 0.38 0.92 0.72 -  0.96
yd- Fh’ 0.5¢ 0.93 0,58 0.97 0.92 0.69 0.96 -

using the daily values in predictions we lose an essential amount of
information. The information loss is different for TDS and TDS-bis, namely, on
the average, the random variance for TDS-bis is less than for TDS by about
0.11. This fact may be considered as the first indication that the sample bias
effect may be important for the prediction. So, in further analysis we will
examine whether the consequence of data set selection by use of the flare
characteristics may affect the prediction quality, as it follows from above
analysis.

2.3. Analysis of predicting functions.

We use for the predicting function evaluation the multi-variable regression
analysis (MVRA) methods. We employ the linear regression of the Y predicted
variables on X variable vector:

yk =ay,+a, xl1+a,x2+...+a,,x14+ek, (1)

where yk (k = 1, 2, 3, 4) are the predicted variables, x = (xI, x2, ..., xI4) is the
vector of explanatory variables, g, is the free term, a = (a,, ..., a;,) is the
vector of the regression coefficients, and ek is the error.

The values of the regression function’ (RF) coefficients were estimated for
both data sets, TDS and TDS-bis. In order to obtain a proper subset
of the predicting variables (X) we applied the stepwise search procedure
MAXSTEPREGR (Bartkawiak 1978). We work with two significance levels:
o = 0.10 and a = 0.04, and we adopt the number of predicting variables not
greater than five. It means we assume that to draw out the major part
information included into the set of explanatory variables it is sufficient to take
five predicting variables only. So, we cannot get a new important information
for the prediction including to RF any additional variable. The multiple
correlation coefficient, RR, was used as a measure of the closeness of the Y on
X relation.
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Table 2 presents the set of predicting variables choosen for the RF (with
o o =0.10), and the values of RR (in parentheses). We see that besides the
& variables (such as x10, x11 or x14) characterizing flare activity, the predicting
"' variable set contains also the variables characterizing sunspot groups (such as
x2 or x7). The underlined variables were choosen in the procedure of the RF
estimation with the significance level a = 0.04. Then we note that for both data
sets the obtained variable subset is the same.

Table 2
Set of the predicting variables and the determination coefficient values.

DS TDS-bis
X RR X RR

x2, x4. €0.36> x2, x6, x7 €0.49>
y1i %T0, X11 xTo, %11

x2, x5, €0.37> x2, x5, x6, €0.45>
Y2 | 370, x14 %T0, x14

x1, x4, x7, €0.42> x2, x6, x7, €0.55>
Y3 | w10, x1 %70, W1

x4, x38, x7, €0.41> x3, x7, x9, €0.55>
v4 %10, X111~ x10, 11

It can also be seen from Table 2 that RR values calculated for TDS-bis set
are systematically greater than those calculated for TDS. This result confirms
the importance of differences between the values of correlation coefficient
shown in Table 1. This may be the evidence that the random variance for
TDS-bis is lower than for TDS either because of the rejection of the outlying
points (when we form the TDS-bis) or because the RF calculated for TDS-bis
(TDS-bis-RF) is tilted to the RF obtained for TDS (TDS-RF) (or these two
lines are shifted one from another).

For each of the predicted variables we receive two predicting functions, for
TDS and TDS-bis; i.e. we obtain two regression coefficient vectors. As a
measure of the mentioned inclination we use the ¢ angle between these two
vectors (estimated with o = 0.04). Moreover, as a measure of TDS-bis-RF shift
we take the absolute value of the subtraction result of the corresponding a,
values (|da,l). It should be noted that to calculate the ¢ and |da,| values we
reduced the units of the RF coefficients to one standard deviation of the
predicted variable. The ¢ and |4a,| values are given in the 3-th and 4-th
columns of Table 5, respectively.

The calculations concerning the MVRA methods have been performed on
an Odra 1305 computer with programmes from the SABA package by
Bartkowiak (1981).

2.4. Analysis of prediction quality.

Next we will examine the differences in the quality of predictions which are
performed by use of the algorithms calculated for TDS and TDS-bis sets (now
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we use the RL estimation with « = 0.10). The comparison of the forecasted )
and observed (y) values of the predicted variables was made for the control
data set (CDS). In test tables each of four predicted variables are divided into

four categories (see Table 3). In Table 4 are put together the test tables for the
TDS prediction evaluation (left part) and for the TDS-bis prediction evaluation
(right part). One can easily see that the O-LFA effect of asymmetry is quite
prominent in the TDS tables and is far less prominent for the TDS-bis tables.

Now we will examine whether the O-LFA effect is eliminated in the
TDS-bis test tables. Let [n;;] be the matrix of the event numbers, and [p;;] —

Table 3
The division of variable Y values into categories.
1 2 3 4
y1i < 0.3 0.31 - 0.8] 0.81 - 1.3 2 1.31
y2 1, 2 3, 4 25
y3 < .3 0.31 - 0.8] 0.81 - 1.3 > 1.31
yvé < 0.1 0.11 - 1.2] 1.21 - 2.2 > 2.21
Table 4
Matrices of forecasts vs observed events.
forecasted, ;-
observed, y TDS TDS-bis=s
1 2 3 4 1 2 3 4 Total
1 73 39 1 0 93 19 1 [\] 113
2 i8 33 8 (4] 27 24 8 ] 39
y1 3 31 11 2 11 28 7 1 a7
4 7 4 1 4 6 4 1 13
Total 97 110 24 3 133 7 20 2 23¢
1 64 44 7 o 81 28 0 1193
2 18 38 12 i 26 33 1 69
y2 :
3 2 16 11 2 4 13 10 2 31
4 7 6 3 7 5 -} 19
Total 85 103 36 8 113 83 30 8 234
1 26 60 11 0 69 24 97
2 9 16 12 1 21 10 6 1 3as
y3
3 2 14 24 3 7 21 13 [ 43
4 o 14 27 13 4 21 19 10 34
Total 37 104 74 19 101 76 42 13 234
1 2 72 6 1] 18 60 2 [+] 80
va 2 0 30 20 1 34 29 1 31
3 4] 27 33 3 34 24 3 63
4 o 11 21 8 21 15 4 40
Total 2 140 80 12 27 149 30 8 23¢
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the matrix of the probabilities in a given test table. Then the O-LFA effect is
% manifested by the fact that ny, exceeds n,;. In order to investigate whether the
% O-LFA effect in the test table is statistically significant we put the null
i hypothesis: H(p,, = 0.5). Probability p;, can be estimated by the fraction:

fio=—12 ~ )

If the null hypothesis is right, the statistics:

—05
U= \/ﬁ\/ Riz+hy = f12 e A/ M2ty 3)
P12P21

has asymptotically normal distribution, i.e. ue N (0, 1). In the 5-th and 6-th
columns of Table 5 the f;, and u values are given for each of predicted variables
and for TDS and TDS-bis predictions, u, = 2.58 is the critical value for the

Table 5
Values of parameters used for the comparison of the quality of predictions performed by use of the
TDS and TDS-bis data sets.

data -
variable set, ¢ IAa°| flz u v vs AS
TDS 0.684 2.77(-0.13 | 0.38{ 0.15
vt 7°.8| 0.710 -
TDS-bis 0.413 1.18}~0.32 0.39| 0.37
TDS 0.710 3.31) 0.06 | 0.32] 0.06
y2 7°.8 0.034 —_—
TDS~bis 0.519 0.28[|-0.09 | 0.24]| 0.09
TDS 0.870 6.15| 0.08 | 0.49| 0.07
y3 9°.4 0.705 —_ —_—
TDS-bis 0.533 0.44}-0.36 | 0.43] 0.33
TDS 1.00 8.46| 0.17 0.49| 0.14
yé 9°.0 0.742 —_— —_
TDS-bis 0.896 6.48|-0.10 | 0.61| 0.10

significance level o = 0.01. Jakimiec (1986) formed three indices of the
prediction quality: e — a measure of the dispersion of v deviations (v = y—y),
WS (“wings” ithdex) and AS (asymmetry index) — measure of the large
deviations. The last three columns of Table 5 give the values of mean deviation
(0), and WS and AS values. The critical values for WS and A4S indices are
WS. =035 and AS,=0.25, respectively. The values higher than the
corresponding critical values are underlined. The calculated values of index e
are not presented in Table 5 because they are less than the critical values for all
test tables. It means that the v values are concentrated around the diagonal
(v =0) quite good for all predictions.

From Table 5 we see that the O-LFA effect is statistically significant
(u > u,) for the predictions obtained by use of the TDS data. This effect is
absent (u < u,) for the yl, y2, y3, variables and is somewhat reduced for the
variable y4 when the predicting algorithm coefficients are estimated for the
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TDS-bis data set. The elimination of the O-LFA effect seems to be associated
with the fact that the TDS-bis-RFs are tilted to the TDS-RFs (at ¢ ~ 8°—9°).
However, we found that the TDS-bis-RFs are shifted from TDS-RFs
(|4a,| ~ 0.70) for the variables y1, y3 and y4. So, we have the worsening of the
prediction quality (7 < 0, WS > WS, and/or AS > AS,) which consists in the
increase of the U-SFA effect.

We found in Paper III that the enhancement of the hardness index (see
variable x14) occurs frequently before strong X-ray flares in time interval
shorter than 24 hours. We want to know whether the underestimated events in
Table 4 (for which the deviation values v = j—y are negative) were forerun by
the hardness index enhancement, i.e. by the appearance of small, faint flares for
which the harder (0.5-4 A) X-ray flux was greater than 0.08-1072 erg

Table 6
The number of underestimated events, n,,, and the corresponding number of strong events for
corrected forecast, ng,.

yi y2 y3 yé
M My s "ue sk Mo _Use  "ue_ s
-1 53 23 a0 21 50 20 48 26
TS -2 10 6 9 6 16 10 11 7
-3 3 1 1 1 o 0 o o
-1 59 24 46 23 61 21 86 23
TDS-bis -2 17 10 11- 7 28 17 23 14
-3 4 1 2 2 4 3 o o

cm~2 s71 Table 6 shows the number of underestimated events nyp (left
column) and the corresponding number of events ng (right column) for which
strong flares (= C5, i.e. fs > 0.07) were found occurring during the second half
of the day, and also for which during the first half of the day the enhancement
of the harder X-ray flux was observed. Very low flare activity occurring the
preceeding day may render the proper forecasting of these strong flares
impossible. We note that we would gain the corrected forecasts for about 48%
of such events if we were able to employ the flare data from the first half of a
‘given day. Considering that some of the events with v = —1 may be included
into the central part of the v normal distribution (Jakimiec 1986), the mean
percentage of the corrected forecasts is about 80%.

In Section 1 the question of the predicting algorithm deficiency was
discussed. The deficiency arises from the fact that the algorithm shows the
tendency to increase the concentration of the forecasted values around the
mean value of the predicted variable (this effect is most prominent for the
prediction of the variable y4 — see Table 4). As a consequence, the variance s3
of the forecasted (§) values is significantly less than the s variance of the
observed (y) values. This effect can be expressed by the values of the Variance
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Quotient:
= s2
£ ve=3; (4)
L 5

The VQ values calculated for the TDS and TDS-bis predictions are given in
Table 7. The VQ statistics, for normally distributed variable Y, has F-Snedecor
distribution with (N—1, N—1) degrees of freedom. The critical value is
F, = 1.39 for the significance level a = 0.01. Table 7 shows that only for the

Table 7
Values of VQ quotient of the variances of the forecasted and observed values.
yi y2 y3 yd
TDS 1.890 1.438 2.12¢ 3.352
TDS~-bis 1.949 1.371 1.729 2.802

TDS-bis prediction of the y2 variable, the VQ value is less than the critical F,
value. It means that only for y2 variable we obtain the predicting algorithm
which gives the correct variability range of the predicted variable. We can also
see from Table 7 that for other variables the VQ values are greater than the
critical value. This conclusion is in good agreement with the conclusion drawn
above from the analysis of the prediction quality (Table 5). So, we think that
also the VQ statistics may be used as a certain indicator of the prediction
quality.

3. Conclusions

In paper I of this series the different effects associated with the prediction
quality were discussed. The choice of the adequate set of the explanatory
variables may be of great importance for this problem. The question of the
usefulness of these variables is also very significant for the predicton quality.
The quality of prediction may be affected by the facts that the observational
data are not enough faultless and that the sample selected for the predicting
function estimation may not be random and unbiased. Further effect associated
with the prediction quality that should be mentioned is the unhomogeneity of a
population from which we select both, TDS and CDS data sets. Problem of the
homogeneity is of major importance in the proper prediction procedure where
the predicting function is extrapolated forward.

It is very important to recognize the consequences of these effects for the
prediction quality. Bad prediction quality denotes the appearance of high
number of large deviations which appear in the form of the overestimated or
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underestimated events. In present work we suppose the overestimations
(O-LFA effect) to be the result of the fact that TDS is selected not randomly. If
the calculation result does not depend on the way that we select the sample, we
may regard this sample as randomly selected. However, really, the estimated
values of the predicting function coefficients depend on the variables
characterizing solar flare activity. For the reason that we use the daily values of
solar activity characteristics, and that flare activity changes strongly in time
interval shorter than 24 hours, these variables are essential to the procedure of
the TDS formation. It means we may think that the result (the calculated
values of the predicting function coefficients) is burdened with the selection
effect. From Tables 4 and 5 we can see that for the predictions based on the
TDS the O-LFA effect is present and is statistically significant. To examine
whether the selection effect may be removed we have taken purposefully
another training data set (TDS-bis). We reject from TDS such observational
vectors that contain very low flare activity for the given day and strong flare
activity for the next day. We found that the predicting functions calculated for
the TDS-bis are inclined to those calculated for the TDS at the angle of about 8
to 9 degrees (see Table 5). Comparing the prediction qualities performed for
both data sets we see that the O-LFA effect is highly reduced for TDS-bis
predictions. This fact means that the employing of the daily values in the
short-term predictions of flare activity may be the reason of the O-LFA effect
which have been stated in many predictions previously performed.

It was mentioned above that the bad quality of predictions may be due,
besides the sample bias, to the lack of more appropriate predicting variables.
Generally, this lack is believed to be the most important reason of the bad
prediction quality. It can be seen from Tables 4 to 7 that the prediction quality
is not the same for various variables. This fact seems to argue that we should to
search for another sunspot group characteristics in the predictions of flare
X-ray flux (particularly for the y4 variable). However, if we use the sample with
any new sunspot group characteristic (e.g. magnetic shear index) we do not
remove the 24-hour selection effect.

In most predictions performed as yet for which the O-LFA effect is stated
the training and control data sets were constructed for the same time interval.
Therefore there was no problem of the predicting function extrapolation and
this problem have not been discussed as the reason of bad quality of predictions.
In present paper the TDS and CDS are constructed for two different time
intervals (1979 and 1980). So, analysing the quality of predictions, the problem
of the predicting function extrapolation can not be omitted. Particularly, the
bad quality of the y4 variable prediction may be the result of the extrapolation.
For the first half of 1980 year for which the CDS was formed, we can notice
strongly increased solar activity level. This solar activity rise can change
strongly the structure of the interrelations of various sunspot group cha-
racteristics, particularly, the harder X-ray flux of solar flares. In the further
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work we will study in more detail the difference in the structure of
' interrelations of sunspot group characteristics comparing 1979 and 1980 years.
£ In this paper the multivariable regression analysis (MVRA) alone is used
“* for the predicting function estimation. We believe that the result would look
similarly also for the predictions performed by use of the other methods, e.g. for
multivariable discriminant analysis (MVDA) methods which are based also on
the correlation matrix.

Now, we will mention that the analyzed O-LFA effect may be dependent
on the solar numerical force of sunspot groups, i.e. it might be connected with
11-year cycle (being greater for the high solar activity and smaller for the
decaying phase of solar cycle). This fact, besides other reasons, may results in
the worsening of the quality of prediction performed for the maximum phase of
solar activity cycle. Hirman et al. (1980) who used data for 1977 year obtained
better prediction quality than the prediction quality obtained by Neidig et al.
(1986) who used data for time interval from January 1977 to January 1979.
Similarly, Jakimiec and Wasiucionek (1980) showed that the prediction quality
is better for the period of lower solar activity (1973-75) than for the period of
high solar activity (1971-72). The problem needs further investigation for the
entire 11-year cycle of solar activity.
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