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The field equations of BUCHDAHL and WUNsCH for the description of fields of particles with nonzero rest mass and arbitrary spin in curved space-
times are considered. The Lagrangian, the field equations and the energy-momentum tensor for fields of integer spin are formulated by means of
real tensor fields.

Es werden die Feldgleichungen von BUCHDAHL und WONscH fiir die Beschreibung von Partikeln mit Ruhemassen ungleich Null und beliebigem
Spin in gekriimmter Raum-Zeit untersucht. Die Lagrange-, die Feldgleichungen und der Energie-Impuls-Tensor fiir Felder mit ganzzahligem Spin
werden mittels eines realen Tensorfeldes formuliert.
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1. Introduction
We begin our considerations with the following spinor field equations in Minkowski space-time:

6?{0(,0“1 Anky. Xt BXay. agkoky . X =0, 0
1

V4 L. .
aAoXAl.A.A,,le...Xk ~ UQagay.. Apky.. % = 0.

¢ and y are the field spinors which have to be symmetric in their dotted and undotted indices. The spin s and the rest mass m
are defined by

=k—+_;'L1 n=01,2.), m=—iu)f2 (m+0), ?)
respectively. If we note these definitions then the system (1) describes fields of particles with spin s = 1/2 and nonvanishing
rest mass m in Minkowski space-time, i.e. if we have not interactions with other fields (DIrRaC 1936).

The situation becomes more difficult if there are interactions. If we have additionally an electromagnetic field, then we
must replace the derivatives 9, in (1) by 0, — ie4,, where 4 and e are the electromagnetic potential and the charge, respectively.
But this replacement leads to inconsistent equations if the spin is greater than one (FIERZ and PAULI 1939). If we consider
the system (1) in a curved space-time and replace the partial by the covariant derivatives (minimal gravitational coupling)
then we get in general inconsistent equations for s > 1, too (BUCHDAHL 1958, 1962 ; WUNsCH 1978).

From these results the question arises, if it is possible to modify the system (1) in the case of interactions in order to obtain
consistent equations for arbitrary spin. Because we are mostly interested in gravitational interactions in the following we
consider the spinor field equations in a Riemannian space-time (M, g).

One possible answer to our question was given by BUCHDAHL (1982). He suggested the following first-order system

D
VX‘PDAP..A,, t W44, % = 0,

. n(n — 1) 3)
VixAl...A,,i “HPsaq...4, = p,(n 1) A(All/”f.FAquolEFGMg,...A,,) ”

where ¢ and ¥ denote the Levi-Civita and the Weyl spinor, respectively. BUCHDAHL showed that the system (3) is consistent
in arbitrarily curved space-times. Furthermore, it reduces to (1) for k = 0if n = 0 or n = 1 (i.e. in the case of Dirac’s or
Proca’s equation) or if the underlying space-time is conformally flat. But the grav1tat10na1 field seems to be nonminimally
coupled in the first-order system (3) since this contains the Weyl spinor explicitly.

WUNscH (1985) presented the system

D
VX¢DA1...A" t UXaq. 4,5 = 0,
; ()
V(Z,4XA1...A,,)Z‘ “HPuay...4, = 0

and proved, that this is equivalent to the system of BUCHDAHL (3). Because (4) does not contain any curvature spinor explicitly
it is minimally coupled to gravitation. Furthermore, the existence and uniqueness of the solution of Cauchy’s problem are
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proved in WUNscH (1985). This paper also contains the remark that the form (4) of the field equations allows the coupling
to an electromagnetic field by V, — V, — jed, and that the arising system is consistent, too (see also ILLGE 1988 a).

These results show that (4) is a likely system to describe fields of particles with nonzero rest mass and nonzero spin in an
arbitrarily curved space-time.

This paper especially deals with the system (4) for bosonic fields. In this case the field equations are the Euler-Lagrange
equations of an action problem (ILLGE 1986). Because of the integer spin the Lagrangian and the equations (4) can be formulat-
ed by means of tensor fields. The tensor fields belonging to the spinor fields ¢ and y are complex fields (JLLGE 1987), but an
exact analysis shows that it is possible to restrict oneself to their real parts. In this way we obtain the Lagrangian, the field
equations and the energy-momentum tensor for fields of integer spin, formulated by means of real tensor fields.

)

2. Definitions and former results
2.1 Definitions and notations
Let (M, g) be a four-dimensional Riemannian space-time of class C® whose metric g has the signature (+———). All

investigations are of local nature ; therefore we restrict M to a suitable coordinate neighbourhood. The signs of the curvature
tensor and of the Ricci tensor are determined by the Ricci identity V,V; T, = — 3 RijuT,and R := g*R;,, respectively.

In the following we use the two-component spinor calculus (see e.g. PENROSE and RINDLER 1984). For any point x € M let
S(x) denote the spinor space at x. We choose a fix coordinate system {#*| 4 = 1, 2} in S(x) and denote the coordinates of
a spinor ¢ of type (n, k) by

Pay.ggiy i, > Ape A, €{1, 2}, Xy, X, € i, 2}

Further let S, , denote the set of all spinor fields of type (n, k) and of class C* on Mand &, , < S, , the set of the symmetric
spinor fields of type (n, k).

There is a 1:1-correspondence between (complex) tensors of rank n and spinors of type (n, n) arranged by the connecting
quantities ¢’ ,,. We denote this correspondence symbolically by “«>”. If X « x then  is called the spinor equivalent of X.
Moreover, we use the notations of (WUNsCH 1978, 1985; PENROSE and RINDLER 1984).

2.2. Lagrangian and energy-momentum tensor for fields of integer spin

In the case of integer spin the field equations (4) are derivable by means of an action principle. Let @ £ M be a domain with
a sufficiently smooth boundary and the action 7 defined by

I=A‘LdV,

where the Lagrangian density L is the real part of
c . A .
L = ayt2-42X V5! Pay...ap T b1 42 V§1XA2...A25X +

Ay...AsX

1
+ 5 ula+ b) Xayagek — @204 4y) )

with a = const., b=const,, a+ b+ 0,s =1,2,...,(n = 2s — 1). Then (4) are the Euler-Lagrange equations of the
variational problems 6I/6y = 0 and 61/6¢ = 0 (ILLGE 1986).

The knowledge of the Lagrangian to the system (4) makes it possible to compute the energy-momentum tensor by means
of the well-known formula (see e.g. SCHMUTZER 1968)

1, - 2 8L Vig)
l/lg_l Sg“

The energy-momentum tensor 7, for bosonic fields described by the Lagrangian density (5) redds as the real part of the
tensor equivalent of the spinor

o Ag... Ay...A
Tyiri = (@ +b) {S(pKLAg...AZS VAz(i(X 2 AZSIL) + (s = 1) x5 &k Vi) 4 Pkras... 405 —

s—1
2

A2 ., A3...A2s, Az, . A3...A2s,
((pKAz.“AZSV iXL K+(pLA2...AZSV KXk i)+

, | ‘
A3... Agg B L Ap.. dgsK
+ su (XA3...AZSKI'(X T 5 ERLERLXAy... ApsiX © 2 )} (©)

(ILLGE 1987).
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3. Description of bosonic fields by means of real tensor fields
3.1. The special case s = 1 (Proca’s equation)

From (4) one obtains Proca’s equation by settingn = 1:
b .
V)‘((PVDA + x5 =0, V(ZAXB)Z' —up =0, O]

where the spinor field y has to be hermitean (WUNscH 1978). The symmetrization in the second equation of (7) can be omitted
because the first equation implies the vanishing of the divergence of y.
We define tensor fields @ and 4 by

Dy © Puptiy T PiyEap» A © Xax -

& is a real, antisymmetric tensor of second rank (a bivector), whilst A4 is a real vector because of the hermitecity of x. Ele-
mentary calculations show that the system (7) is equivalent to

1 ip* m m *
”“V(pik‘*‘TAk:O, _V[kAu"'—‘pkt:Oa (8)
2 /2 212
where @ * denotes the dual bivector of @ (see SCHMUTZER 1968) and m is the rest mass (cf (2)). By defining F, := n (2
we obtain Proca’s equation in the usual form l/—
Fkl = ZV[kAI] s V‘Ek + mZAk = 0 . (9)
The Lagrangian density (5) reads in tensor form
1
L =—3A4' V'F,; +bF”VA——(a+b)< FUF,; +m2AA> (10)

the real constants @ and 5 have to satisfy the condition @ + b # 0. If one takes the field equations (9) into account then the
Lagrangian density (10) reads .

_b- :
. a (2 FiF,, — mzA'A,.>. (10a)

Now one can determine the energy-momentum tensor in terms of the fields F,; and 4, from (10) by variation of the metric
or from (6) by computation of the tensor equivalents. The result is

- . 1 . 1 .
T, =(a+b) {Fleil + n guFF;; — m? I:AkAl ) gszxA.]} . ‘ (.

Most of these formulas are already known from the literature (CHRISTENSEN 1978).

3.2, Definition of suitable tensor fields for s = 2, 3, ...

The tensorial description of the fields for s = 2, 3, ... requires some preliminary definitions and lemmata.
Definition I: Let ¢ € &5, ¢ be any symmetric spinor. The tensor @ defined by

¢kl-'~k2s O Pay iz BhikyChgg_yhyy T PhyXyBayay e Cagg 1y
is called a bivector of rank s. Further let y be any member of the set &,,_, ;. The tensor X defined by
Xlk3..,k25 « XA3...AZSB}"£).(3}'(4"'8)225_1)223 + X).(3...)'(ZS).'B£A3A4"'gAzs_lAzs

is called a vector-bivector of rank s.
In the paper (ILLGE 1988b) it was shown:
Lemma 1: A real tensor @ of rank 2s is a bivector of rank s if and only if it has the following symmetries:

D) Pykayy_atkay k2 kay s 1kas = 0,
ii) d”q~~‘~k2v—2kzg—1k29k2v+1~-~kzg_zk2v—1k2vk29+1~-k2s = d)'quzs
forallv, e {1, ..., s},
iii) *o¥ — 1 11l '3’445 P
1 kiokos = g €iky Ckiky 1115030 4ks. . kog = ~Phy.kyg o
. ki1k3 kokg k1k3 kokq rx
iv) g1 ¢k1...k25 =9 9 (pkl...kzs =0.
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A real tensor X of rank 25 — 1 is a vector-bivector of rank s if and only if it has the following symmetries:
v) The properties i) ... iv) with respect to the last 25 — 2 indices,
vi) g’k3Xlk3.4.k = glk3X* =0.

2s lk3...kyg

Definition 2: Let @ be any bivector field of rank s and X any vector-bivector field of rank s. Then we define the derivatives
6@ and d.X respectively by

OPis...kp5 - = Vi¢ilk3...k

2s”’
s
—_ a a _ * ¥ a A
(dX)kl...kzs s s vgl(VIkZV—IXkZV]kI'-'k2v—1k2v"'k2s V[k2v~1Xk2v]k1...k2v_ lkZV"'kZS)'

The symbols k,, _, K, denote that these indices are to be omitted.
It is easy to verify that the derivative 3 of a bivector of rank s is a vector-bivector of rank s. Vice versa the derivative dX

of a vector-bivector of rank s is a bivector of rank s. Moreover, the operator — l d is the (formal) adjoint of the operator &
(ILLGE 1988b). In the same paper we have shown: 2

Lemma 2: Let @ be some bivector field of rank s and X some vector-bivector field of rank s. Further let ¢ and y denote
the spinor fields belonging to ¢ and X according to definition 1. Then we have

D 7
OP)ris...kps «> ViPDBas... 4y Eh3%q €xyy 1k T VEPziks. . kpBazas  EAgg_ 1425

. z P . , b . ,
(dX)l“...kzs'H V(AIXAZ...AZS)ZEXIXZ-'-sxzkl)(z;+V(XIXXZ...XZS)DSAMZ"' Caps_ 1425

3.3. Tensorial description of the field fors = 2, 3, ...

Let us return to the field equations (4). Let ¢ and X denote the bivector of rank s and vector-bivector of rank s belonging
to the spinor fields ¢ and y according to definition 1. Using lemma 2 it is easy to show that the system (4) forn = 25 — 1
(s = 2, 3, ...) is equivalent to the system of tensor equations

. m t 3
: (5¢)lk3...k2; ——= X3k, = 0,

/2

m
(dX)kl...kzs + ﬁ ¢:1-~'k25 =0.

Using the formulas of section 3.2. one obtains the Lagrangian density immediately from (5):

(12)

m

212
where the real constants @ and b have to satisfy @ + & # 0 (note (®, dX) = —2(®, VX)). In (13) we have used the usual
notation for the scalar product of tensors: Let 4 and B be two tensors of rank r then (4, B) is defined by

(A, B) =4 .Bil"'ir X

if..edy

; ) :
L = a(X, 6¢)+E(¢,dX)+ @+»b (%(45, %) — (X, X*)), _ _ (13)

The Lagrangians (10) and (13) and the field equations (9) and (12) have an entirely equal form. But the energy-momentum
tensor for fields of integer spin s = 2 will become more difficult than (11) if we compute it by variation of the metric. For -
example the term £ V, 4 ;in (10) does not contain Christoffel symbols because of the antisymmetry of the field F. Contrary
to this the corresponding term in (13) contains derivatives of the metric.

Because the energy-momentum tensor is already known in its spinor form (6) it is sufficient to convert it into tensor form
by means of definition 1. The result is:

=2
’I;d = 2(& + b) {¢(kli2i3i4vi3[xi2[1)i4 + Xi4|l) i2] - 2@(ki21)i4vi3Xi2i3i4 - Xi2i3i4vi3¢(k,i2]l) iq +
m 1 * 1 * i3ig % 14
+ﬁ I E(X’X)_—S—@’(p) — X" "X izig (14)
s=3 v
T, = 2@+ B) {(S =1 d5uqiz'"iz“Vinz|1)i4_...iZS - Sqiucizl)i“"'52"’Vi3X'i2i3...i2s —
1) Xi2i3-i2s M5 o x X% — S x iaeias 15)
—(s—-1) Vi3’¢(k|i2]1)i4...i23 + ‘—l/-z— ngl( > )"5 (k Diz...izg
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Comparing the formulas of section 3.3. with those of section 2.2. we observe that the Lagrangian, the field equations and
the energy-momentum tensor formulated by means of spinor or real tensor fields have essentially the same form. However,
the spinor calculus seems to be more suitable for calculations because of the complicated symmetries of the field tensors
(see lemma 1).
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