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ABSTRACT 

This paper suggests a new and clear-cut way of deciding whether evolutionary effects are necessary to 
interpret the observed radio-source counts. To this end, a method is outlined for constructing the parent 
radio luminosity function from a complete sample of radio sources whose redshifts are all known. It is 
argued that if such a luminosity function can be constructed without evolutionary parameters, then 
evolutionary effects are not required. The method is illustrated by its applications to two well-known 
samples of radio sources. It is further shown that the non-evolving luminosity function satisfies the 
constraint of sky brightness and is consistent with the observed redshift-flux-density plot. Thus it 
appears from these investigations that evolution is not required either in luminosity or in number 
density. 

I. INTRODUCTION 

In the early days of cosmology, it was hoped that the 
counting of radio sources down to different flux levels would 
provide a method of discriminating between different cos- 
mological models. This hope has not been realized, largely 
because the variation in the intrinsic properties of the objects 
to be counted tends to shroud the cosmological variations. 
For example, as noted by Hoyle and Burbidge ( 1970), the 
plot of logz (z = redshift of a source) against log S' 
(S = flux density of the source) gives a scatter diagram. Al- 
though this finding was based on a smaller sample, Figs. 1 
and 2 given here illustrate the scatter for two complete sam- 
ples with much larger numbers. 

The scatter indicates that the cosmological-distance effect 
( if indeed it exists! ) is smeared out by the wide range of radio 
luminosities of the sources. Clearly, the radio luminosity 
function (RLF) plays a critical role in determining the S-z 
distribution in a typical complete sample. Given a RLF and 
a particular cosmological model, it is possible to predict the 
numbers of sources in specified redshift ranges in a complex 
flux-density-limited sample. The question is, can this pro- 
cess be reversed? 

In principle, the answer to this question is affirmative, if 
the RLF is non-evolving. That is, if there is no z dependence 
in the RLF, then in a given Friedmann model it is possible to 
determine the shape of the RLF uniquely from the observed 
number-redshifts plot in a complete sample. In practice, this 
has so far not been attempted because there were few com- 
plete samples for which most of the redshifts were known. 
Happily, the situation has improved and, as we shall show 
here, it is possible to carry out this calculation for at least two 
samples: (I), the 3CR sample of Bennett (1962), and (II) 
the 2.7 GHz sample of Wall and Peacock (1985). We will 
undertake this exercise here. 

There are two advantages from such an attempt. First, the 
RLF can be reliably determined by sampling a large enough 
volume, and surveys like I and II above do just that. Second, 
the simplicity of Occam’s Razor requires that we first inves- 
tigate (and rule out if found untenable) the simplest hypoth- 
esis, which in this case is that the RLF is non-evolving. If the 
RLF determined from this hypothesis turns out to be unphy- 

sical in the sense to be discussed in Sec. II, we are forced to 
consider evolutionary models. As the work of Peacock 
(1985) amply demonstrates, such models require a large 
number of adjustable parameters and so take away the basic 
simplicity of the picture. The work outlined here has the 
advantage of telling us whether the simple (non-evolving) 
model must necessarily be abandoned in favor of a more 
complicated (evolving) scenario. 

In Sec. II we describe the general mathematical method of 
inverting the N-z data into an RLF. Then in Sec. Ill we 
apply the method of samples (I) and (II). In Sec. IV we 
subject the RLF to two tests. First, it should not produce 
excessive radio background. Second, the theoretical z-S plot 
produced by it should be consistent with the observed one. In 
the final section we compare our non-evolving models with 
the evolving ones of Peacock ( 1985 ). 

II. THE INVERSION FORMULA 

a) Basic Assumptions 

The formula we derive here is an extension of the earlier 
work of Burbidge and Narlikar ( 1976) for nearby sources in 
a Euclidean space. These authors had found that the num- 
ber-redshift curve for the 3CR radio galaxies whose red- 
shifts were known in 1975 follows an observed relation 

^ = constant, ( 1 ) 
d\nz 

where N{z) = number of sources with redshifts not exceed- 
ing z. Assuming a linear Hubble’s law, it was then possible to 
deduce a radio luminosity function 

f(L) ccL ~2-5, (2) 
where f(L)dL = number of radio galaxies per unit volume 
with luminosities in the range (L, L + dL). 

Since 1975, there has been considerable progress in the 
determination of redshifts of the 3CR radio galaxies, with 
the result that it is possible not only to check the conclusion 
(2) at the bright end of the RLF but also to determine the 
RLF exactly. 

To this end, we state the basic assumptions of our calcula- 
tion first. 
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Fig. 1. Scatter diagram obtained by plotting log z 
against logs' for the 3CR radio galaxies with 
\b I>7° andS'>10 Jy. 

Z 

2.7 GHz 

Steep-Spectrum 

Fig. 2. log S21 /Jy-log z planes for steep- and flat-spectrum sources. Li] 
(1985). 

sources 
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s 2.7 / Jy 

circles denote estimated redshifts. Figure based on Wall and Peacock 
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7 DASGUPTA ETAL. : RADIO SOURCES 7 

(i) The cosmological model for doing the calculation is a 
standard Friedmann-Robertson-Walker model with curva- 
ture parameter k{ — 1, 0, or — 1 ) and the present decelera- 
tion parameter q0. The present value of Hubble’s constant is 
taken to be H0 = 10O/*o km s~1 Mpc- ^ 

The line element for this model is given by 

ds2 = c2dt2 — Q2(t) dr2 

\ — hr2 + r2(d02 +sin2 6d<f>2) 

in terms of the comoving space coordinates (r,0,(f>) and the 
cosmic time t. For the derivation of cosmological formulas of 
this section, see Narlikar ( 1983). 

We denote by t0 the present epoch, and write an overhead 
dot for a derivative with respect to t. Thus 

Ho ¡Oi ~qo = Hô2 (4) 

(ii) The normalized RLF is denoted by g(L). Let n0 de- 
note the number of sources per unit proper volume at the 
present epoch. The function g(L)^0 is assumed to depend 
on L only and not on the epoch at which it is measured. We 
will also assume that as œ,g(L) -+0 in such a way that 

F(L) — ^ g(x)dx^>0 as L-» oo. (5) 

This condition is physically reasonable and consistent with 
the requirement F{0) = 1. Hereafter, we will assume L to 
measure the rate at which energy is radiated over a unit 
bandwidth Av = 1 Hz. 

(iii) In addition to the above condition on FiL), we also 
require the total sky brightness produced by the source pop- 
ulation to be bounded. 

(iv) We assume that the survey is limited to all sources in 
a given solid angle brighter than the flux density S0i and that 
the redshifts of all sources are known. Let us assume that for 
the sample in question dN denotes the number of sources 
with redshifts in the range (z, z -f dz). 

In practice, N(z) may be a smooth function which ap- 
proximates to the above data, with dN/dz=G{z), say. 

(v) We will assume that all sources have spectral index 
a = 1. This assumption is not critical to the nature of our 
discussion, although it does simplify the analytical expres- 
sions considerably. For example, if the source at redshift z is 
radiating energy L per second per unit frequency range with 
spectral index a = 1, it produces a flux density at the observ- 
er S = L /4 tt D 2, where D is the luminosity distance. For 
a1, the expression for S gets multiplied by ( 1 + z)1 ~ a. 

b) Derivation of the RLF 

To fix ideas, we will work with a Friedmann model with 
Æ = + 1. For this model q0 > 1/2. Denoting 0(i0) by g0, we 
get the number of sources per unit coordinate volume at the 
present epoch as 

«oôo = (jj-) n0(2q0 — l)-3/2. (6) 

Consider the coordinate volume of a shell subtending solid 
angle Í1 at the observer and with the r range (r, r + dr). 
ThenZ) = {c/H0)x, with 

* = -7 [îoz+ (Ço- iXVl +2^02 - 1)], (7) 
ql 
where the shell (r, r + dr) consists of sources with redshifts 
in the range (z, z + úíz). The coordinate volume of the shell 
is given by F(z) dz, where 

F(z) = (2g0-l) 3/2_r2 
a (8) 

(1 -f z)V 1 + 2q<ß 
Multiplying Eqs. (6) and (8) we get the total number of 
sources in this shell as 

V{z)n0Qldz = n0(-^-\ — 
\H0J (i 

x2ñ 
  -dz. (9) 

(1 +z)3Vl +2?oZ 
Not all these sources will, however, appear in the above 

survey. The flux-density limit S0 implies a lower limit on the 
luminosity L of the sources that appear in the survey: 

\2 
¿>411 (10) 

Hence the number of sources with redshifts in the range (z, 
z dz) appearing in the sample is 

dN 
(1 + z)V 1 + 2^oZ 

XF dz. (ID 

Comparison with observations gives us dN/dz=G(z). 
Thus the problem consists of determining F(L) and hence 
g(L) from the relation 

_ (HoY GCzHl+zjyi+lgoZ 
n0ilx

2 

(12) 

(13) 

To solve this problem, define 

The formula (7) can be inverted to give 

z = q0x-(,q0-l)[^ÍT+2JC-i]. (14) 
Writing LqX2 = L, we therefore get 

F(L) G(zHl+zNT±2^ (15) 

\ c ) n0tix
2 

On the right-hand side x=(L /L0)1/2 and z is a function of x 
through Eq. ( 14). Thus F(L) is explicitly determined. The 
formula ( 15) is valid for all values of k and q0. 

At the low-redshift end, the above formula reduces to 

F<L) = (M°\3 g(go*> = LoGjqjLÔo) 
\ c ) 4irn0£lx2 \ c ) Airn^flL 

(16) 

In the earlier investigation of Burbidge and Narlikar (1976), 
the formula ( 1 ) implied G(z) =A/z,A= constant. There- 
fore, Eq. (16) leads to 

F{L)<zL-V2, g{L)<xL~5n, (17) 
as given by Eq. (2). 

c) Validity of the RLF 

Before coming to the observed forms of G(z), let us lay 
down the criterion for deciding whether the solution ob- 
tained above is physically valid. For this we need conditions 
(ii) and (iii) of Sec. lia. To illustrate how these constraints 
can rule out non-evolutionary luminosity functions, consid- 
er the hypothetical situation in which the function 
G{z) =A /z continues up to high redshifts also. It is easy to 
verify that for ¿>¿0, 
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8 DASGUPTA ETAL. : RADIO SOURCES 

F{L) = BL 1/4, B = constant >0. (18) 
Clearly, this result is absurd, since g is negative while F di- 
verges at high luminosities. 

Thus it is necessary to check that the RLF obtained is 
physically meaningful. If it does not turn out to be so, the 
conclusion must be that evolution in some form or other is 
necessary. In what follows we will find it convenient to ap- 
proximate F by a form L ~ß, where ß varies slowly with L. 

III. APPLICATIONS 

a) The 3CR Sample 

Spinrad et ah (1985) have recently updated the optical 
information on the 3CR catalog. Their list includes 298 
sources, of which 195 are radio galaxies, 53 are QSOs, and 38 
are unidentified. In addition, there are 12 identifications that 
are still not confirmed. We shall concentrate on the radio 
galaxy sample only, leaving aside the QSOs and the unidenti- 
fied sources. So far as the QSOs are concerned, the situation 
is as follows. Unlike the radio galaxies, the QSOs do not 
show a tight Hubble relationship. Further, there are obser- 
vational studies that may suggest that the redshifts of QSOs 
are not entirely due to the expansion of the universe (Narli- 
kar 1986). If the QSOs are indeed at cosmological distances, 
optical studies alone demonstrate evolution (Schmidt and 
Green 1983 ). If the QSOs are not at cosmological distances, 
then they are irrelevant to cosmology and our analysis here 
cannot be applied to them. 

In the radio galaxy sample there are 163 galaxies with 
\b\>T,S0= 10 Jy. We have excluded low-latitude objects to 
prevent nearness to the galactic plane, and the above restric- 
tion is in keeping with the earlier work of Burbidge and Nar- 
likar (1976). 

The plot of TV against log z is given in Fig. 3, and it may be 
looked upon as an update of Fig. 1 of Burbidge and Narlikar. 
It is interesting to note that a linear relationship of the kind 
given by Eq. ( 1 ) exists over considerable spans of log z. One 

z 

Fig. 3. Plot of N(z) against logz for 3CR radio galaxies with \b |>7°, 
flux> 10 Jy. At high z, the curve shows indications of flattening. 

8 

can draw two straight lines across the curve having the equa- 
tions 

dN = 54.67 ¿/(log z), 0.01585 <z < 0.137, (19) 
dN= 102.5 ¿/(logz), 0.137<z< 1.781. (20) 

The corresponding integral RLF, given by F(L), is plotted 
in Fig. 4. Note that it starts off with a dependence /? = 1.5 
and flattens to/? = 0.45 at the limit of the sources in the 3CR 
survey. The luminosity range covered by this RLF is (for 
<7o = 0.5) 

3.3 X 1022 WHz"1 <L <2.0X 1029 WHz"1. (21) 
Figure 5 shows the plot of ß against log L. 

It is interesting to note that F{L) flattens towards the 
upper limit of this range. This flattening cannot, however, go 
on without limit, since towards the large-redshift end the 
number count begins to flatten compared to the straight lines 
of Eqs. ( 19 ) and (20). This flattening of number count is not 
an evolutionary effect. It can be traced to a steepening of the 
RLF at large L. Thus the overall-consistency requirement of 
Sec. lie is satisfied. We will later demonstrate that no abnor- 
mal sky-brightness problems arise in this way. 

It seems therefore that a non-evolving RLF is able to ex- 
plain the observed redshift distribution of the radio sources 
in the 3CR catalog. 

b) High-Frequency Sample 

Although the 3CR was a pioneering survey and has been 
studied most thoroughly, it is essentially limited to high- 
flux-density sources. There have been many surveys extend- 
ing to fainter flux densities, and these have been at higher 
frequencies. Most of these surveys are poor in terms of red- 
shift determinations, and so the above technique cannot be 
applied. It is possible, however, to compare our RLF with 
that of Peacock (1985) as determined from a survey at 2.7 
GHz. This survey (Wall and Peacock 1985) is 73% com- 
plete in redshift measurements. For those radio sources for 

Fig. 4. Plot of logFXL) against log/, for 3CR radio galaxies with 
\b \ >T, flux > 10 Jy. The discontinuity at log L~21 is not physically 
significant and arises from the two-straight-line approximation of 
Eqs. ( 19) and (20). 
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9 DASGUPTA ETAL. : RADIO SOURCES 9 

Fig. 5. Plot of — ß=d{\og F{L))/d{\og F(L) ) against log L for 3CR 
radio galaxies (\b |>7°, flux> 10 Jy). The index/? steadily decreases 
from 1.5 for low-luminosity sources to 0.45 for high-luminosity ones. 

which redshifts are not known, we follow the estimates given 
by Wall and Peacock based on their optical magnitudes and 
Hubble’s law. In short, this sample has 233 sources down to 
S0 = 2 Jy, covering a solid angle ¿> = 9.81 Sr. Of these, the 
distribution is as follows: 

119 confirmed galaxies, 
24 very faint extended objects, 
74 confirmed QSOs, 
10 stellar-like objects, 
6 empty fields. 

Although for reasons given in Sec. Ilia we should consid- 
er only radio galaxies, for a comparison with Peacock’s work 
we will apply our analysis to the entire sample as well. We 
will try to fit the N-z curve with a smooth function of the 
form 

N(z) =A +B\ogz + C(log z)2, (22) 
which is a generalization of Eq. ( 1 ) to the quadratic form in 
log z. 

The 233 sources in the entire sample range in z from 
0.0008 to 2.852. The range log(0.0008) to log(2.852) was 
divided into one hundred equal parts, with each bin corre- 
sponding to a width of A log z = 0.0355. Since the data give 
the numbers in each bin, it is possible to make a best ‘fit’ of 
the form Eq. (22) by the least-square method. The resulting 
values are 

A = 178.64, B = 140.85, C= 27.835. (23) 
Figures 6 and 7 illustrate the goodness of fit of N(z) with 
respect to log z as well as with respect to z. Notice that the fit 
does not hold well at the extreme high-redshift end. This is to 
be expected from the steepening of the RLF at high L, which 
in turn is required by our consistency constraints of Sec. 11a. 

Given the form of iV(z), it is now a simple matter to deter- 
mine the RLF. The result is illustrated in Fig. 8. The RLF at 

any L in the relevant range can be approximated by a power 
law: 

g(L)ocL-r, (24) 
where y varies slowly with L. Table I gives the variation of y 
with L, for the Friedmann model k=\,q0= 1/2. y briefly 
rises from its value of 1.98 at log 24 to 2.25 at 
logL = 25.5, then it starts diminishing, falling to 1.79 at 
log L-29. 

Again, we notice a flattening of the RLF at high L, but one 
that will not continue for long in view of the flattening of the 
N(z) curve discussed earlier. Thus there is no conflict with 
sky brightness. Further, y(L) weakly depends on q0, the 
type of cosmology used, and none of the models appears to 
be ruled out by the consistency of the RLF. 

A similar analysis carried out for the radio galaxy sample 
gives 

A = 135.32, B = 89.68, C= 14.66, (25) 
with y(L) varying from 2.03 at L = 1X 1023 W Hz-1 to 
1.78 atL = 4.24X1028 W Hz“1, for k = 0,qo= 1/2. 

In the above analysis, we have not bothered to distinguish 
between steep-spectrum and flat-spectrum sources. The dis- 
tinction becomes relevant in the evolutionary scenarios 
where the two types are assigned different evolutionary 
properties. So far as our analysis is concerned, a spectral 
index a changes the condition (10) to 

YSoAd+z)“-1. (26) 
\HqJ 

The effect on the analysis of a ^ 1 is marginal but can be 
computed if required. This detail has no bearing on our pres- 
ent investigation, which seeks to answer the question: “Is 
evolution really necessary?” 

c) The Range of Validity of the Analysis 

It is important to emphasize here that the forms of G(z) 
given by Eqs. (19), (20), or (22) are determined purely 
empirically from the data and, as shown in Figs. 3 and 6, the 
fits provided by the simpler forms above do not work so well 
at large z( £ 1 ). For example, the rising straight line of Eq. 
(20) contrasts with the flattening of N with log z at large z 
indicated by the data in Fig. 3. 

It should be possible to include these effects at high z and 
determine the form of G{z) more precisely than given here. 
We have not gone through such an exercise here, partly be- 
cause there are not many data points beyond z £ 1 to give a 
reliable fit and also because we wish to demonstrate that 
even our crude approximations of Eqs. ( 19), (20), and (22) 
fare reasonably satisfactorily. For this reason, in a statistical 
comparison of theory with data, one need not attach much 
significance to the few points beyond, say, z —1.2, where the 
chosen forms ofG{z) do not work well. When surveys rich in 
high-redshift galaxies become available, the technique can 
certainly be applied to them with a form of G(z) determined 
with a greater degree of reliability; and, if G{z) oc z~1 contin- 
ues to large z, the situation of Eq. (18) would certainly rule 
out the non-evolutionary hypothesis. 

IV. TWO OBSERVATIONAL CONSTRAINTS 

a) The Limit of Sky Brightness 

The radio luminosity functions derived in Sec. HI show a 
flattening towards the high-luminosity end. This flattening 
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N(z) 
Fig. 6. iV(z)-log z plot for 2.7 GHz sources (the 
continuous line is the observational curve, and the 
dashed line is the least-square fit to the observa- 
tions). 

Z 

Fig. 7. N(z)-z plot for 2.7 GHz sources (the con- 
tinuous line is the observational curve, and the 
dashed line is the least-square fit to the observa- 
tions). 

Z 
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11 DASGUPTA ETAL. : RADIO SOURCES 11 

Fig. 8. Plot of log ^(L) against log L for 2.7 
GHz sources. 

cannot, however, continue forever, since the number-red- 
shift count curve also begins to flatten at high redshifts. Nev- 
ertheless, it is necessary to reassure ourselves that even this 
intermediate flattening does not produce a ‘sky-brightness 
catastrophe’. Below, we estimate the energy density of the 
radio background generated by the RLFs calculated in Sec. 
III. 

The total number of sources in the redshift shell (z, 
z + dz) is given by Eq. (9). The flux density of radiation 
produced at r = 0 by sources with z!<z<z2 and luminosities 
L1<L<L2 is therefore 

dz 

(1 + z)3V 1 + 2^oZ 
(27) 

Table I. 2.7 GHz sources. 

logio¿ r = - 
-¿[logiog(L)] 

¿(logjoL) 

24.02 
24.20 
24.73 
25.11 
25.54 
26.00 
26.30 
26.68 
27.19 
27.57 
28.00 
28.25 
28.76 
29.06 

1.98 
2.07 
2.19 
2.23 
2.25 
2.23 
2.21 
2.16 
2.07 
1.98 
1.88 
1.83 
1.77 
1.79 

As before, we have taken the spectral index a = l. Our esti- 
mates, in any case, are too crude to require, at this stage, a 
fine distinction between steep- and flat-spectrum sources. 

We will explicitly work out the background flux density 
SB for the RLF determined from the 3CR sample. The maxi- 
mum redshift in this sample is 1.781. Limiting ourselves to 
the sky brightness generated by all sources out to this red- 
shift and taking Llf L2 to be given by Eq. (21 ), we find that 
for q0 = 0.5, SB = 7.6X103 Jy. The value of SB decreases as 
q0 increases: for ^0 = 0.1, ^ = 11.3X103 Jy, while for 
q0 =l,SB = 6.3 X 103 Jy. 

A background flux density SB at v = 178 MHz would 
correspond to a total flux of background radiation over the 
radio-frequency range 10 MHz-30 GHz of 

/*30GHz , 
= aSb X 1.78X 109 —-1.4X1010 SB. (28) 

JlOMHz V 
In terms of energy density of the radio background, this be- 
comes 

|-B = —^bsS.SxIO-20 ergcm-3. (29) 
c 

This value is well below the radio-background energy den- 
sity actually observed at < 10“18 erg cm-3 (Narlikar 1983). 
Of course, to the value ( 29 ) we have computed we must add 
contributions from sources beyond z> 1.8. This contribution 
will be negligible as the integrand of the z integral in Eq. ( 27 ) 
decreases rapidly for large z. 

Had we worked with a < 1, we would have obtained some- 
what larger values for |’B. The value of |*B for q0 = 0.5, 
a = 0.5, for example, is higher than the corresponding value 
for = 0.5, a = 1 by less than 20%. This difference hardly 
matters in the present context. 
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b) The Redshift-Flux-Density Distribution Table II. z-S data. 

A second constraint on an RLF is that it should generate a 
redshift-flux-density distribution of the source population 
that is statistically not inconsistent with the observed distri- 
bution. It is not expected that theory and observations match 
exactly since the latter can be subject to statistical fluctu- 
ations. Thus, although we started with the integral number- 
redshift curve, it would be instructive to see to what extent 
the differential number counts generated by the theory agree 
with the observed counts in different redshift bins and flux- 
density bins. 

Accordingly, we define by Niz^Si^) the number of 
sources in the redshift range zl<tz<iz2 and the flux-density 
range Using the notation of Sec. lib we find after a 
simple manipulation 
N (zX9Z2ySuS2) 

jj7 _ p 

X- 
x2dz 

(1 +z)\/T+2¡7¡z 
(30) 

where x is given by Eq. ( 7 ). The quantities n0, c/H0, and L0 
drop out of the answer if we use Eq. ( 15 ). We then get 

where 

p {flXzt) -H{z2)}x2dz 
zi (1 + z)3-\/1 -{- 2q^ 

(31) 

N(z¿ ,z¿ + j ,S¿ ,Sj + ! ) 

z, zI +1 Sl Si+l Observed, O Expected, E (O-E)2 

0.018 
0.504 

0.504 
1.252 

10.0 11.2 
10.0 11.2 

18.81 
5.14 

5.12 
0.14 

0.018 
0.504 

0.504 
1.252 

11.2 13.0 
11.2 13.0 

12 
13 

20.01 
5.58 

3.21 
9.87 

0.018 
0.342 

0.342 
1.252 

13.0 14.4 
13.0 14.4 

11 
4 

9.39 
4.81 

0.28 
0.14 

0.018 
0.342 

0.342 
1.252 

14.4 
14.4 

15.7 
15.7 

10 
6 

7.26 
3.52 

1.03 
1.75 

0.018 
0.342 

0.342 
1.252 

15.7 
15.7 

17.8 
17.8 

7.95 
4.36 

0.49 
0.09 

0.018 
0.18 

0.18 
1.252 

17.8 
17.8 

19.9 
19.9 

3.86 
5.03 

0.34 
1.75 

0.018 
0.342 

0.342 
1.252 

19.9 24.6 
19.9 24.6 

7.91 
4.88 

0.15 
1.99 

0.018 1.252 24.6 30.4 8.92 7.17X10“4 

0.018 
0.18 

0.18 
1.252 

30.4 46.9 
30.4 46.9 

4.4 
6.74 

0.08 
0.45 

0.018 
0.018 

1.252 
1.252 

46.9 54.4 
54.4 350.0 

2.29 
7.18 

1.28 
0.09 

= ff(z)(l + Z)3V1 +2?^ 
X2 

and ZUZ2 are related to Sv S2 by the following relations: 

To apply the x2 test f°r consistency of the theory we have 
divided the z-S plane into various rectangular bins bounded 
by z = constant, S = constant. Table II illustrates the proce- 
dure for 3CR sources. Here the observed numbers O and the 
theoretically expected numbers E are given for various rec- 
tangular bins bound by z¿ ,z- + x ,S¿,S¡ +1. The redshifts in Ta- 
ble II go as far as 1.252 because the functional form 
G(z) ocz-1 is not expected to hold at very high redshifts, as 
seen from Fig. 3. 

To ensure stability of the x2 test against small-number 
fluctuation, the required statistical criterion of 0>5 should 
be followed. This necessarily requires pooling of small bins 
into large ones. We have tried to ensure this, except for two 
cases where 0 = 4. For the bins of Table II, the^2 works out 
at 28.25 for 19 degrees of freedom. The probability of obtain- 
ing this by chance is between 0.05 and 0.10. Thus, by stan- 
dard statistical criteria, the null hypothesis of ‘no evolution' 
cannot be rejected. 

c) The Kolmogorov-Stnirnov Test 

Peacock (1983) has advocated the use of a Kolmogorov- 
Smimov test since, in its one-dimensional form, the K-S test 
is distribution free (Kendall and Stewart 1961). However, 
as noted by Peacock himself, the two-dimensional K-S test 
that is needed to test the S-z distribution suffers from certain 

drawbacks: (i) it is not distribution free and (ii) there is no 
rigorous analytical derivation available for the statistic to be 
tested. We have reservations of our own. The K-S test de- 
pends critically on monotonicity of data points. In the one- 
dimensional case, such monotonicity can be uniquely speci- 
fied and is expressed by cumulative distribution functions. 
In higher dimensions, one cannot specify this uniquely, 
which is why such a test cannot even be conceptualized. In- 
deed, several professional statisticians have advised us that 
an applicable form of bivariate or multivariate K-S test is 
not yet available. 

Under the circumstances, we have repeated Peacock's ex- 
ercise ab initio for our theoretical distribution. Basically, this 
involves using a Monte Carlo technique to generate a z-S 
distribution and then examining the deviation between the 
theoretical and generated distributions. A K-S statistic Z 
can be calculated along the lines suggested by Peacock. By 
producing a large number of Monte Carlo distributions, an 
empirical distribution for Z is obtained. This distribution 
tells us the values of Z, which are randomly exceeded with 
specified probabilities like 1%, 5%, etc. These values can be 
compared with the Z statistic obtained for theory versus the 
actual data. 

More specifically, we consider the 155 sources in the 3CR 
catalog with 0.01585 <z< 1.781. For a sample of size 
« = 155, we generate a Monte Carlo (z,>S) plot as per our 
non-evolving luminosity function. For each data point, we 
determine the difference between the theoretical and actual 
fraction of total points lying in the corresponding rectangle, 
as done by Peacock. Let 

Z = Max{V^ I theory — observation |}, ( 34 ) 
where in our case 
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« = 155. (35) 
Thus Z can be calculated for each Monte Carlo plot so 

generated. Figure 9 shows a cumulative distribution of the Z 
statistic obtained empirically for one thousand Monte Carlo 
plots corresponding to the q0 = 0.5 Friedmann model. Ar- 
rows show the values Z = 2.41 and Z = 2.76, which are ex- 
ceeded with probabilities 0.05 and 0.01, respectively. A simi- 
lar computation of Z for the actual (z->S) plot from the 3CR 
sample yields a value Z = 2.47, which corresponds to a 
probability (of being exceeded in random fluctuations) of 
0.04. Thus the null hypothesis of no evolution is not rejected 
at the 1 % level, although it is marginally significant at the 
5% level. 

The theory performs better vis-à-vis observation, how- 
ever, as q0 is lowered. At (the model considered by 
Burbidge and Narlikar 1981 ), the Z value has a probability 
of being exceeded by chance as high as 10%. 

It is clear that the K-S test therefore does not reject the 
null hypothesis of ‘no evolution’ as per standard statistical 
norms. The qualitative performance of the theory in this test 
is comparable, probability-wise, with that in the x2 test* 

Considering the caveats stated earlier in deriving the theo- 
retical distribution, for example, the simple and somewhat 
crude approximation for the observed G(z), the lack of dis- 
tinction between the flat- and steep-spectrum sources, the 
present agreement between data and the non-evolutionary 
hypothesis can certainly be improved further. 

V. DISCUSSION 

It is worth comparing our non-evolutionary approach 
with the evolutionary ones which are much more in vogue. 
The evolutionary hypothesis assumes that the observed 
source count cannot be explained at all flux levels unless an 
evolution of number density, luminosity, or both are in- 
voked. The best evolutionary scenario itself has evolved over 
the years. (See, for example, many references, for example, 
Longair and Scheuer 1967; Longair et al. 1973; Robertson 
1978, 1980; Katgert 1980; Wall et al. 1980; Peacock and 
Gull 1981; Van der Laan and Windhorst 1982; Wall and 

  Z > 

Fig. 9. Empirical cumulative probability distribution of the K-S 
statistic Z based on one thousand Monte Carlo simulations of the 
(z-S) plot produced by the non-evolving RLF of Fig. 4. 

13 

Peacock 1985.) The latest and most comprehensive ap- 
proach towards an evolutionary model is that of Peacock 
( 1985 ). We briefly outline his approach first. 

In Peacock’s analysis, the radio luminosity function 
/? (P,z) describes the comoving space density of radio sources 
of power P{=L /Att) afredshift z in the form 

logp = ¿ ^ AijX'{P)yJ(z)y (36) 

where x and y are transformed axes of the P,z plane. The 
rules of transformation are 

x(P) = 0.1(log10 P—20), (37) 
y(z) = O.lz for models 1,2,4,5 

= log10(l +z) for model 3. (38) 
Thus five models are considered. Further, the coefficients/^ 
are different for steep-spectrum and flat-spectrum sources. 
In all, some 30-40 unknown parameters are needed to fit the 
data. Statistical techniques like the Kolmogorov-Smirnov 
test are used to determine the best-fit parameters. 

It could be argued that because the best-fit parameters 
imply evolution, the source count implies evolution. How- 
ever, as we have explained earlier, the information content of 
the source-count data, i.e., the number redshift distribution 
of sources in the sample, can be reproduced by a non-evolv- 
ing RLF. Moreover, as shown in Fig. 10, the N(z) curve 
determined by us from Peacock’s model as per the best-fit 
values given in his Table A5 does not give as good a fit as the 
best-fit curve of Fig. 7 on which our RLF is based. 

The clue to why a non-evolving RLF is able to reproduce 
the observed N(z) curve is given by the factor Fin Eq. (11). 
If the radio astronomer were able to pick out arbitrarily faint 
sources, then he would have counted all sources up to any 
given redshift. In practice, his surveys are flux-density limit- 

Fig. 10. N{z) curve from Peacock’s model (Peacock 1985) against obser- 
vational N(z). The absolute numbers produced by the luminosity func- 
tion of Peacock have been scaled to match the maximum value of iV(z) at 
Zmax = 2.852, the highest redshift in the 2.7 GHz sample. The dashed line 
has been obtained from Peacock’s model. 
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ed and so he is able to detect only a fraction of his total 
population. For sources in the redshift range (z,z + dz), this 
fraction is given by the function F whose argument in Eq. 
(11) involves the redshift-dependent quantity x. The actual 
form of dependence of Fon z is specified by the RLF. Thus, 
although the RLF by itself is redshift independent, its effect 
on Fis to produce in it a redshift dependence. The point we 
wish to make here is that this kind of indirect dependence 
seems to be enough to explain the observed features of radio- 
source counts. To carry this argument further, we could say 
that this apparently evolutionary effect is compatible with 
the steady-state model. 

Because of its non-evolutionary character and fewer pa- 
rameters, our RLF is more vulnerable to observational tests 
than the evolutionary one. For, as redshifts get determined 
for sources in fainter surveys, it should be possible to make 
the tests of Secs. Ill and IV again to see whether the non- 
evolutionary RLF can be sustained. By contrast, if an evolu- 
tionary RLF is found to be inconsistent, it can always be 
made consistent by adding further parameters. The many 
references to evolutionary approaches cited earlier in this 
section bear testimony to this fact. 

Since the Friedmann universe itself is evolving, one may 
wonder as to the propriety of discussing a non-evolutionary 
scenario within such a framework. It is true that only in a 
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non-evolutionary cosmology like the steady-state cosmology 
is the hypothesis of ‘no evolution' a necessary consequence. 
Indeed, in a later paper we plan to examine the above non- 
evolutionary RLF within the framework of the steady-state 
model. Meanwhile, our justification of the present procedure 
rests on its simplicity and dependence on fewer parameters. 
As indicated above, the hypothesis of ‘no evolution’ is more 
readily testable and hence scientifically more attractive than 
one that can call on several adjustable evolutionary param- 
eters. 

The question of evolution, in general, needs to be investi- 
gated further in the light of the new data on other discrete 
extragalactic objects, e.g., the optical counts of galaxies, the 
variation of angular size with redshift, etc. We propose to 
carry out such investigations next. We suspect that the case 
for evolution is not as unequivocal as is sometimes made out. 
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