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Summary. Up to this time, the VSOP (Variations Séculaires des
Orbites Planétaires) analytical solutions of the motion of the
planets were only represented in elliptic variables, but the
cartesian or spherical variables are much more convenient in
many problems: determination of the planetary perturbations of
the Moon, analytical expressions for the computation of the
apparent places, analytical expressions of nutation, of the differ-
ence TDB-TDT.

From an analytical solution of the motion expressed with
elliptic elements, we hence build different representations. The
solutions are expressed with rectangular variables X, Y, Z or with
spherical variables, longitude, latitude and radius vector. The
different reference frames used are the dynamical ecliptic and
equinox J2000.0, the ecliptic and equinox of date. The origin is the
Sun or the barycenter of the solar system.

With these constructions we give the algorithms which allow
to go from the elliptic variables to the rectangular variables and
from the rectangular variables to the spherical variables in the
case of analytical solutions of the time. We also give the preces-
sion matrix as a function of the time to be able to hand over
coordinates from the reference frame J2000.0 to the reference
frame of date. This matrix can be used on a time span of several
thousands of years before and after J2000.0

The different versions are available on magnetic tape. They
are accompanied with Fortran programs substituting time in the
series and computing the derivatives with respect to time.

Key words: celestial mechanics —planetary theory

1. Introduction

Up to now the analytical solutions VSOP (Variations Séculaires
des Orbites Planétaires) had only been represented in elliptic
variables. It happens that, for some problems, these variables are
less convenient than the cartesian or spherical coordinates. It is so
for example in the analytical construction of the planetary
perturbations of the Moon (Chapront-Touzé and Chapront,
1983), in the determination of analytical expressions for the
calculation of apparent places (Soma et al., 1988), (Ron and
Vondrak, 1986). It is also true for the construction of analytical
expressions of nutation, of the discrepancy between the barycen-
tric dynamical time (TDB) and the terrestrial dynamical time
(TDT). We hence constructed, with all the precision of the basic

solution, various forms of an analytical solution of the planetary
motion coming from the VSOP 82 solution (Bretagnon, 1982).
Let us remind that the VSOP 82 solution is a theory of the motion
of the planets from Mercury to Neptune the integration constants
of which have been determined by fitting to the DE200 numerical
integration of the J.P.L. (Standish, 1982). VSOP 82 contains the
whole of the perturbations up to the third order of the masses for
all the planets. For the outer planets, Jupiter, Saturn, Uranus and
Neptune, the solution is completed up to the sixth order of the
masses by an iterative method.

We have built a VSOP 87 solution in elliptic elements close to
VSOP 82. From VSOP 87, we have made up five representations
(VSOP87A-B-C-D-E). These various versions are different
from one to another in the type of coordinates (rectangular or
spherical), the epoch and reference frame used (ecliptic and
equinox J2000.0 or of date).

In the same way as for VSOP 82, the VSOP 87 solution refers
to inertial and dynamical ecliptic and equinox J2000.0. This
reference frame is linked to that of the numerical integration
DE200 by the relations:

PRy = —0.0930" reckoned in the equator
& =23°26'21.409 1" @

where 7D, D represent the dynamical equinox and the dynam-
ical obliquity when meaning inertial.

Standish (1981) defines the rotating dynamical equinox y{®
and the obliquity & by:

PRy = —0.093 66”
g0 —ef) = +0.003 34"
hence:

7580 75° = +0.000 66"

The rotating dynamical equinox of the solutions VSOP is
thus very close to the equinox of DE200.

Let us recall that the determination of the equinox y® of
DE118 and hence of DE200 is according to Standish (1982b)
remarkably closely with that of Fricke used for the construction
of the FK5.

The bodies which motion has been represented can be differ-
ent according to the solutions. We give in Table 1 the list of these
bodies for the VSOP 87 solution and the deriving solutions as
well as the precision for each body. The Earth-Moon barycenter
has been called EMB.
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Table 1. VSOP 87 solutions. Precision over the time-span 1900-2100

Bodies
Solution Variables 1 2 3 4 5 6 7 8 9
VSOP 87 a, A, k, h,q,p Me \% EMB M J S U N
VSOP 87A X, Y, Z Me A% E M J S U N EMB
VSOP 87B L B r Me \% E M J S U N
VSOP87C X, Y,Z Me A" E M J S U N
VSOP 87D L B,r Me A% E M J S U N
VSOPS7E X, Y, Z Me v E M J N U N Sun
Precision 0.001” 0.006" 0.005” 0.023” 0.020” 0.100” 0.016” 0.030”

In this paper, after having mentioned our notations and given
some characteristics common to our solutions, we will describe
the VSOP 87 solution and its different versions as well as the way
through which they have been built.

2. Notations. Characteristics common to the different versions

We use the elliptic variables a, 4, k, h, g, p with:

L
k=ecos®;, q=sin-cosQ

o 0
h=esin®, p=sin=sinQ.

where a is the semi-major axis, 4 the mean longitude, e the
eccentricity of the orbit, & the longitude of the perihelion, i the
inclination, Q the longitude of the node.

We call:

X, Y, Z the rectangular coordinates,

L, B, r the spherical coordinates.

In our solutions the coordinates are measured in au for what
regards the lengths (X, Y, Z, a, r) and in radians for the other
quantities. These coordinates are explicit functions of time and
are under the form of periodic series and Poisson series. Each
term is given under two forms:

T*Ssingp+Kcosp)=T*Acos(B+CT) 2)

In the expressions (2):
—the time T is reckoned in thousands of Julian years from
J2000.0

T=(Julian date —2451 545)/365250

—the power o of the time T is an integer in-between 0 and 5.
—the argument ¢ is defined by:

where the g; are integers.

The quantities 4;, for i=1 to 8, represent the mean longitudes
of the eight planets. For i=9, 10, 11, and 4; are Delaunay
arguments of the Moon D, F, L, respectively. Finally 4,,=(
represents the mean longitude of the Moon given with respect to
the equinox of date.
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Each 4; is under the form:
h=A+N,T

The A? and N; are given in Table 2.
The two forms of formula (2) are linked by the following
relations:

12 12
A={/S’+K* B=Y aif+f; C= 3 aN.
i=1

i=1
where f is given by:
S=—Asinf; K=Acosp.

The series are organized according to |S|+| K| decreasing which
allows to truncate them depending on the precision wanted.

Let us note that since the coordinates are explicit functions of
the time, it is easy to get the derivatives with respect to time, and
thus the velocities.

d
E[T"‘(Ssin(p+Kcos @)]=aT* (S sin ¢+ K cos )

12
+T*—Ksinp+Scosp)x Y a;N;

i=1

=aT* 'Acos(B+CT)—T*ACsin(B+CT) (3)

Table 2. Phases A? (in radians) and frequencies N; (in radians per
thousand Julian years) of the 12 components of the arguments

i N,

1 4.402608 84240 26087.903 1415742
2 3.176 146 696 89 10213.2855462110
3 175347045953 6283.075849991 4
4 620347611291 3340.612426 699 8
5 0.59954649739 529.690 965094 6
6 087401675650 213299095438 0
7 548129387159 74.781 598 567 3
8 531188628676 38.1330356378
9 5.19846674103 77713.771468 120 5
10 1.62790523337 84334.661 581308 3
11 235555589827 83286.914269 5536
12 381034454697 83997.091 1355954
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3. VSOP 87 solution

This solution is built for the bodies given in Table 1. As in the case
of VSOP 82, it is represented with heliocentric elliptic variables a,
A, k, h, g, p. It is reckoned to inertial and dynamical ecliptic and
equinox (yp,,) J2000.0 defined in (1).

VSOP 87 contains the newtonian perturbations of the eight
planets between themselves, the perturbations of the Moon on the
Earth-Moon barycenter and on all the planets and the relativistic
perturbations expressed in isotropic coordinates. For each
element and each planet all the perturbations are added up and
brought together in single expression.

When dealing with the planets Mercury, Venus, EMB and
Mars, the perturbations of the variables k, h, g, p, of VSOP 82
have been improved for the terms of high degree with respect to
time, by the polynomials taken out of the general theory by
Laskar (1986).

Besides, the first order perturbations due to the Moon have
been computed to a better precision. Moreover, we have com-
puted (Bretagnon, 1984) the second order perturbations with
respect to the masses by the Moon on the Earth-Moon barycen-
ter and on all the planets. For this computation, we have used the
entire solution ELP2000-82 (Chapront-Touzé and Chapront,
1983).

All these modifications on VSOP 82 mainly improve the
validity time-span of the solutions for Mercury, Venus, EMB and
Mars. For these planets, the validity time-span is brought from
1000 to 4000 yr before and after J2000.0. In the ends of the time-
span, the precision is about 1”.

For Jupiter and Saturn, we have ensured a precision always
better than 1” over 2000 yr before and after J2000.0. For Uranus
and Neptune, the same precision is ensured over 6000 years
before and after J2000.0.

Over time-spans of about some centuries only around
J2000.0, the precision of VSOP 87, for the whole of the bodies, is
about the same as that of VSOP 82. We give the precision of the
longitude over the time-span 1900-2 100 in Table 1.

4. VSOP 87 deriving solutions

All the solutions we are going to present in this paragraph have
been built from VSOP 87. They have the same precision as this
solution.

4.1. VSOP87A solution

This solution is built for the bodies given in Table 1. It is
represented with heliocentric rectangular variables X, Y, Z. It is
reckoned to inertial and dynamical ecliptic and equinox J2000.0
defined in (1).

We must first solve Kepler’s equation in order to get the
expressions of the variables X, Y, Z:

E—ksin€+hcos€=4
where the longitude & is defined by:
E=E+o

E being the eccentric anomaly. We proceed through iteration as
in what has been explained in Bretagnon (1981).

We afterwards get the expression of the true longitude w
under the following form:

311

rcosw= —ak+a(l—h*y)cos € +ahkysin €
rsinw= —ah+ahky cos € +a(l —k*})sin€
where r is the radius vector and:
B 1
RN e
Finally, the rectangular coordinates are obtained with the follow-
ing expressions:
X =(1-2pH)rcosw+2pqrsinw
Y=(1—2q%)rsinw+2pgrcosw
Z= —2\/1 —p*—q? (prcosw—qrsinw)

If we call S and Sun, E the Earth, M the Moon and B the
Earth-Moon barycenter, the vector Sun-Earth is given by:
SE=SB+ BE
with
BE= I—J’:—u EM
where u is the ratio of the mass of the Moon over the mass of the
Earth:

My
u=——=0.01230002.
mg

The vector EM has been built from the solution ELP2000-82.

As an example, we give hereunder an excerpt of the series
corresponding to the heliocentric coordinates X, ¥, Z of the
Earth reckoned to the dynamical ecliptic and equinox J2000.0. In
the series, we have only retained the terms over 10~ ° au. This
level of truncation ensures a precision of 2” over the time-span
1900-2100. X, Y, Z are expressed in au and given according to the
second form of the formula (2):
X =0.0056114+0.001234T

+0.999 829 3 cos(1.7534857+6283.075850T')

+Tx0.000011cos(2.024+6283.1T)

38 40
+ Y A;cos(B+C;T)+ Y TxAcos(Bi+C;T)

i=1 i=39
Y=-0.0244270+0.000930 T
+0.999 8921 cos(0.1826589+6283.075850 T")
+0.0000055co0s(3.964+5507.6 T')
+0.000001 2 cos (5.45+943787T)
+ Tx0.000005cos (5.83+6283.1T)

38 -
+ Y A;cos Bi_E +C,.T

i=1
40 -

+ Y Tx A,»cos<Bi— - +C,T>

i=39 2

Z=0.000054T

+0.000002 8 cos(3.20+84334.7T)
+0.0000010cos(5.42+5507.6 T)
+ Tx0.002278 cos(3.4137+6283.076 T')
+ Tx0.000019cos(3.37+12566.2T')
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The quantities A;, B;, C;pouri=1,2, ..., 40 are given in Table 3.

4.2. VSOP87B solution

This solution is built for the bodies given in Table 1. It is
represented with heliocentric spherical variables longitude, lati-
tude and radius vector. It is reckoned to inertial and dynamical
ecliptic and equinox J2000.0 defined in (1).

The longitude L, the latitude B and the radius vector r are
built through successive approximations from the rectangular
variables of VSOP 87A.

We have:

rP=X?+Y?*+2?

and we define p by:

p2 — XZ + Y 2

We need to express under the form of Fourier series and Poisson
series the quantities 1/p and 1/r. We can write:
rPP=X24+Y2+Z2=r2+46(r?)

where r, is a constant and §(r?) a series ranging about the
eccentricity, and therefore small with respect to r3. 1/r is then
obtained by the development of the following expression:

1
1 1 sy 2
roro re

which converges without difficulty. In the same way we obtain the
development of 1/p in Fourier series and Poisson series.
a) Computation of the longitude L:

We compute L by iteration. At the iteration m+ 1, we have:

Lm+1=Lm+5Lm+1;

oL, ., being small, we can write:
1

oL, ~sindL,,,=—(YcosL,—XsinL,).
P

We take as first approximation:
Lo=i°+NT

The process converges without any difficulty. We stop the
computation when JL,, is smaller than the requested precision.
b) Computation of the latitude B:

We proceed in the same way as for the longitude:

p=rcosB; Z=rsinB

From an approximation B,, of B, we have:
1

6B, 1=—-(ZcosB,,—psinB,)
r

and

B,.1=B,+0B, ..

We take as first approximation:
B,=0

We immediately get:

z
B,=0B,=—
"

The process converges with no problem. We stop the com-
putation when 6B,, is smaller than the requested precision.
¢) Computation of the radius vector r:

We have already established the analytical expression of r?
and of 1/r. We determine by product of series:

1
r=r?x-—
r

4.3. VSOP87C solution

This solution is built for the bodies given in Table 1. It is
represented with heliocentric rectangular variables X, Y, Z. It is
reckoned to mean ecliptic and equinox of date.

VSOP 87C solution is built from VSOP 87A which we put
through a rotation function of the time representing the preces-
sion. The nfean motions of the ecliptic and equator are completely
defined by the quantities g and p that describe the motion of the
ecliptic with respect to the ecliptic J2000.0, and by the precession
in longitude p, and by the obliquity ¢,,.

We have used the expressions ¢, p, p,, &, expanded in
polynomials of the time up to degree 10 by Laskar (1986). They
ensure a precision of about 1” over 10000 years before and after
J2000.0 in so far as the precession constants pg and &4 are
perfectly known.

The values of these constants recommended by IAU are:

p%=50290.966" per thousands of Julian years
£4,=23°26'21.448"
In order to perform the rotation, function of the time, we used
these expressions keeping only polynomials of the time of degree
6. The terms thus neglected are smaller than 1” over 5000 yr
before and after J2000.0. Finally we used the following ex-
pressions:
gx10'°=—11346900.2 T+ 123726.74 T >+ 12 654.170 T 3
—137.1808 T*—3.20334 T 5+40.005072 T ©
px101°=1018039.1 T+470204.39 T2 —5417.367 T 3
—250.7948 T*+4.63486 T > +0.056431 T ©
pa=pyT+111.1971" T2+0.07732"T 3 —-0.235316" T *
—1805.5"x107¢T5+174.51"x 1076 T*®
£,=64—468.093" T—0.0155" T 2+1.99925" T3
—5138"x1075T4-2496.7"x 1076 T3
—39.05"x1076T*®
where T is reckoned in thousands of Julian years from J2000.0.
All these quantities slowly vary as functions of the time except
the linear term of p,. We thus note:
Pa=C+y
with
£=50290.966" T=0.243 817483 530 T,
y being a function slowly varying with the time. In the VSOP 87
solutions the argument £ is represented by a combination of the
longitude of the Earth and the arguments of the Moon:
{=—l3—Aotip+m

as we can check with the values in Table 2.
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From the quantities g and p we easily determine the variations
of the inclination i and of the node Q of the mean ecliptic with
respect to the fixed ecliptic J2000.0:

ix 1010=2278495537 T—162427.97 T > —5998.737 T3
+13.2116 T*—0.54000 T *+0.246 508 T °
Q=3.052112654975+10'%(—420786043.17 T
+74394531T2+275.036 T3
—1813.0659 T*—34.83882 T %)
Let us note X, Y, Z the coordinates referring to the ecliptic

and equinox J2000.0 (VSOP 87A solution) and X, Y, Z,, the
coordinates referring to the ecliptic and equinox of date. We have:

X X
Y, |=)| ¥
Zy z

The rotation matrix (A) is obtained by the combination of the
three rotations:

1) a rotation of the axes around 0, of angle Q

2) a rotation of the axes around 0, of angle i

3) a rotation of the axes around 0, of angle —(Q+p,)
For i=1, 2, the elements a;; of the matrix (4) are put under the
form:

a;j=sysin&+c;;cos g, i=1, 2.

The quantities s;;, ¢;; and a,;; are polynomials of the time
restricted to the degree 6. Taking the symmetries of the rotation
matrix (4) into account, we have the following relations:

for j=1,2,3.

$2j=Cyjs  C2;= —8yj

We give in Table 4 the 9 polynomials s, c,;, as; for j=1, 2, 3.
Upon applying to the VSOP 87A solution, the rotation defined by
the matrix (A), we get a new version of VSOP 87 expressed in
heliocentric rectangular variables reckoned to the mean ecliptic
and equinox of date.

We limit the Poisson series thus obtained to the degree 5 so as
to get the VSOP87C version. This transformation ensures a
precision of 0.00017” over the time-span 1000-3000 and a
precision better than 1" over 4000 yr before and after J2000.0.

4.4. VSOP 87D solution

This solution is built for the bodies given in Table 1. It is
represented with heliocentric spherical variables longitude, lati-
tude and radius vector. It is reckoned to mean ecliptic and
equinox of date. VSOP 87D is built from rectangular variables X,
Y, Z, of VSOP 87C through the same transformation as what
enabled us to go from VSOP 87A to VSOP 87B.

Expressions representing the motion of the Sun and of the
planets Mercury, Venus and Mars over the time span —4 000,
+8000 (Bretagnon and Simon, 1986) were indeed built from
VSOP 87D.

4.5. VSOPS87E solution

This solution is built for the bodies given in Table 1. It is
represented with rectangular variables X, Y, Z. It is reckoned to
the barycenter of the solar system and to inertial and dynamical
ecliptic and equinox J2000.0. The coordinates of the Sun given

313

Table 3. Periodic terms of the heliocentric variables X and Y of
the Earth given in the ecliptic and equinox J2000.0

i A,(x107) B, C;
1 83527 1.71033 12566.1517
2 1047 1.6672 18849.228
3 311 0.669 83996.85
4 256 0.586 529.69
5 214 5.191 —1577.34
6 171 0.495 6279.55
7 171 6.153 6286.60
8 144 3472 2352.87
9 111 2.586 —5223.69
10 93 6.07 12036.5
11 90 3.18 102133
12 74 437 398.1
13 68 222 4705.7
14 66 1.31 57534
15 61 5.38 6812.8
16 57 2.15 1059.4
17 55 1.46 141435
18 54 0.79 775.5
19 51 444 7860.4
20 45 6.09 5884.9
21 45 1.28 62568
2 45 5.37 6309.4
23 41 0.54 6681.2
24 26 227 12168.0
25 26 1.45 709.9
26 23 1.24 7058.6
27 23 3.01 —4694.0
28 2 451 11506.8
29 21 5.85 11790.6
30 20 407 17789.8
31 18 297 796.3
32 18 6.24 6283.1
33 18 0.40 6283.0
34 16 1.62 25132.3
35 16 1.42 5486.8
36 15 0.87 2133
37 13 522 7079.4
38 13 4.80 3738.8
39 5150 6.003 12566.15
40 129 5.96 18849.2

with respect to the barycenter have been determined using the
values of the IAU masses. We remind these values giving in Table
5 the ratio of the mass of the Sun over the mass of the planet.

The coordinates X, ¥, Z of the velocity of the Earth with
respect to the barycenter of the solar system, which are necessary
to the calculation of the aberration, are easily obtained from
formulas similar to (3). The results concur with the series estab-
lished at the precision of 5 x 108 au/day by Ron and Vondrak
(1986).

5. Number of terms of the solutions

The numbers of terms of the periodic series and the Poisson series
for the various versions of VSOP 87 depend on the truncation

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988A%26A...202..309B

FT9BBAGA: & ~202° .

314

Table 4. Coefficients of the polynomials of the matrix (4). (Unit: 10~ 12)

Degree 0 1 2 3 4 5 6
S11 0 0 —538867722 —270670 1138205 8604 —813
Cy 10*2 0 —20728 —19147 —149 390 —34 617
512 —1012 0 2575043 —56157 140001 383 —613
Cya 0 0 —539329786 —479 046 1144883 8884 —830
S13 0 2269 380040 —24745348 —2422542 78247 —468 —134
Ci3 0 —203607 820 —94040878 2307025 37729 —4862 25
as, 0 203 607 820 94040878 —1083 606 —50218 929 11
as, 0 2269 380040 —24745348 —2532307 27473 643 -1
as; 102 0 —2595771 37009 1236 —13 0
Table 5. Mass of the Sun over mass of the planet

Planet Mercury  Venus EMB Mars Jupiter Saturn Uranus Neptune
Mass ™! 6023600 408523.5 328900.5 3098710 1047.355 34985 22 869 19314

Table 6. Number of periodic terms higher than 10™° in the VSOP 87 solutions

Mercury  Venus Earth  Mars  Jupiter Saturn Uranus Neptune
VSOP 87 1163 1529 2111 3441 3297 6763 8987 4994
VSOP 87A 1426 1044 1457 2773 2308 3730 3146 1651
VSOP 87B 1299 813 1129 2376 1836 3145 3139 1307
VSOP87C 1713 1245 1724 3258 2760 4514 4087 1775
VSOP 87D 1304 803 1119 2330 1754 2857 2354 1202
VSOPS7E 2296 1745 2063 3176 2376 3732 3075 1539

precision. These precisions, counted in relative value, deal with
the quantity 7 %(|S|+|K]) of the formula (2).

The truncation is 0.5x 107!° for Mercury, 5x107!° for
Venus, the Earth, Mars and the Earth-Moon barycenter, 10~ for
Jupiter, Saturn and Neptune, 1.6 x 107° for Uranus. For the
outer planets, the truncation of the Poisson series corresponds to
a time-span of 1000 years ( T=1), for the other planets a time-
span of 2000 years (T=2).

In VSOP87E, the barycentric coordinates of the Sun are
truncated at 2x 107! au.

In order to compare the respective size of the various rep-
resentations of VSOP 87 for each body, we give, in Table 6, the
number of periodic terms higher than 10~° in relative value
(1.6 x 10~ ° for Uranus).

For Mercury, for example, we find there are 1163 periodic
terms higher than 107 ° (0.387 x 10~ ° au for the semi-major axis)
for all 6 variables a, A, k, h, g, p of the VSOP 87 solution.

Still for Mercury, there are 1426 terms higher than 0.387
x 10~2 au for the 3 heliocentric variables X, Y, Z reckoned to
ecliptic J2000.0.

We can note that, apart from Mercury, the rectangular
variables solutions (VSOP 87A) contain far less terms than the
elliptic variables ones (VSOP87), particularly for the outer
planets. The VSOP 87B solution expressed in longitude, latitude,

radius vector even contains less terms. Finally we can note that
the barycentric solution (VSOP 87E) contains many more terms
than the heliocentric one (VSOP 87A) and even more, since the
planet is close to the Sun.

The entire solutions withhold, of course, more terms than
what is shown in Table 6 because they also contain the Poisson
series and because the truncation precision is smaller than 10~°
for the inner planets.

6. Conclusion

The different versions are available on magnetic tape. They are
accompanied with Fortran subroutine substituting time in the
series and computing the derivatives with respect to time.

The series are organized according to |S|+| K| decreasing and
thus we can take out from them secondary series that give a
weaker precision analytical representation.

If nis the number of retained terms and A the amplitude of the
smallest retained term, the accuracy of the thus truncated series is

about q\/; x A where 7 is a number smaller than 2.

Acknowledgements. We deeply thank J.-L. Simon for the fruitful
discussions we had over the course of this work. We also thank

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988A%26A...202..309B

B!

FT9BBAGA: & ~202° .

Dr. E.M. Standish for his suggestions, and especially for what
regards the relations situating the dynamical equinox of our
solutions with respect to the equinox of DE200. The calculations
have been made on the computers of the Centre Inter-Régional de
Calcul Electronique du CNRS (F-91405 Orsay).

References

Bretagnon, P.: 1981, Astron. Astrophys. 101, 342
Bretagnon, P.: 1982, Astron. Astrophys. 114, 278

315

Bretagnon, P.: 1984, Celes. Mech. 34, 193

Bretagnon, P., Simon, J.L.: 1986, Planetary Programs and Tables
from —4000 to + 2800, Willmann-Bell, Inc.

Chapront-Touzé, M., Chapront, J.: 1983, Astron. Astrophys. 124,
50

Laskar, J.: 1986, Astron. Astrophys. 157, 59

Ron, C,, Vondrak, J.: 1986, Bull. Astron. Inst. Czech. 37, 96

Standish, E.M.: 1981, Astron. Astrophys. 101, L17-18

Standish, E.M.: 1982, “DE200”, magnetic tape

Standish, E.M.: 1982b, Astron. Astrophys. 114, 297.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988A%26A...202..309B

