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Abstract. The differentialequations of planetary theory are solved analytically to first order
for the two-dimensional case, using only Jacobian elliptic functions and the elliptic integrals
of the first and second kind. This choice of functions leads to several new features potentially
of importance for planetary theory. The first of these is that the solutions do not require
the expansion of the reciprocal of the distance between two planets, even for those variables
which depend on two angular arguments. A second result is that the solution is free from
small divisors with the exception of two special resonances. In fact, not only are the solutions
for resonant orbits free from small divisors, the perturbations for all variables are expressible
in closed form. A subset of the resonant orbits maintains this form and in addition has the
remarkable feature that the first order perturbations are purely periodic; they contain no

secular terms. A solution for the 1:3 resonance case is given as an example.

1. Introduction.

The motivation for this study came from problems encountered in developing
an analytic solution for the orbit of Pluto. In addition to the small divisor,
3n — 2n', expected because of the resonance in mean longitudes between Nep-
tune and Pluto [5], there is another serious difficulty with the expansion of
1/A, where A is the distance between these two planets. Several studies have
been made of Pluto’s orbit, yet it has eluded successful analytic representation.
Petrovskaia [10] gives an expansion of 1/A which is valid in spite of the inter-
section of the orbits when they are projected into two dimensions. Seeking to
avoid the cumbersome nature of this expansion, Chapront [4] describes a spe-
cial technique of fitting a series to DE200, the numerical integration of Standish
and Williams [12]. Besides these difficulties, there are other problems with the
analytic representation of Pluto’s orbit. There is a second resonance found by
Williams and Benson [13] in the argument of the perihelion, and confirmed by
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Kinoshita and Nakai [8]. Nacozy and Diehl [9] made some progress in under-
standing the motion by fitting numerical results to periodic solutions of the
third kind in the restricted three body problem, and successfully representing
the motion of its perihelion by adding perturbations of other planets besides
Neptune. The last problem is that the numerical values of the eccentricity and
inclination are larger than those of other planets. This was a more serious dif-
ficulty when computers were not available to do algebraic computation and is
no longer a major factor. Pluto is more conspicuous by its absence from ana-
lytic developments than by its presence, for example in research at the Bureau
des Longitudes, Paris (Bretagnon [1]) and at the U.S.Nautical Almanac Office,
United States Naval Observatory.

The work presented in this paper was designed to avoid expansion of 1/A.
It will be seen that in so doing we have removed all small divisors from the
solution except n — n' and 2n — n’. Although an analytic representation of the
motion of Pluto was the motivating factor for developing this theory, no specific
representation of its orbit is given here. It was felt that it should not be handled
here, considering the additional details to which one should pay attention. This
solution, except for Pluto, is completely general. It is expressed entirely in
terms of Jacobian elliptic functions and Legendre elliptic integrals of the first
and second kind. Furthermore, in many places it is in closed form. No use is
made of the classical d’Alembert series; in that respect it would be interesting
to compare our solution with classical developments.

At the time this research was carried out, Richardson also obtained a solution
for planetary perturbations using elliptic functions and integrals and avoiding
expansion of 1/A. His results were published in 1982 [11]. His solutions, how-
ever, are limited to variables whose derivatives depend on the synodic angle
only. We show in this paper that the procedures can be extended to variables
which depend on two angular frequencies.

2. The Equations of Motion

The analysis starts with the differential equations for the perturbation of one
planet by another, given by
G(M
T+ M r=VR (1)

r3

1 r-r
R:GmI<Z'_ rla).

In these equations, G is the gravitational constant, M the mass of the sun, m
and r, the mass and position vector of the disturbed planet. Primed quantities
refer to the disturbing planet. The distance between the planets is found from
the relation,

where

A=z + ]2 - 2r -, (2)
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We shall use the methed of variation of elements to develop the perturba-
tions. In the application of this method to planetary theory, the appropriate
differential equations are developed from Eq.(1) in many standard texts. The
elements which we choose as variables are

a, the semi-major axis,

€ the constant of mean longitude,
e sin w,

k = ecosw,

e being the eccentricity and w the longitude of perihelion. Here, € is associated
with the perturbed mean longitude,

/\:/dt/hdt+e, (3)

introduced to avoid mixed secular terms in the perturbations. (See Brouwer
and Clemence [2, p.285] for a discussion of this variable.) A convenient form of
the equations adapted from Danby |6, pp.250ff] is

a = —2-(6Rsinv+1—7T),
nn
€ = l[ R( cosv>+eT<1+£)sinv},
na 1+19 p
y n r (4)
h = -——{ Rcosv—t—w)-}-T[( >sin(v+w)+h—}},
na p P
k = l{+Rsmv+w)+T[( )cos(v+w)+k£]},
na p P

where v is the true anomaly, p the semi-latus rectum and 7 = /1 —e%. R and
T are the radial and transversal components of the acceleration; with S as the
synodic angle,

1
R = —Gm'[é~(ﬁ—ra)r cosS}
1 1 ;
T = —-Gm' (F—;’E> r'sin S.

The integration of Eqs.(4) is done by Picard iteration, where we take the
reference solution for the first order to be coplanar, circular orbits for both m
and m'. With this approximation Eq.(2) becomes

A =+/a? + a'? — 2aa’ cos S. (5)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987CeMec..40..367W

370 CAROL A. WILLIAMS ET AL.

As we proceed, it is necessary to keep in mind that eventually we wish to have
Eqgs.(4) in a form which is readily adapted to integration with elliptic functions.
In this spirit, define two quantities

2 4o

=m and 20 =7 —S; (8)

then rewrite Eq.(5) as

Il

A = (1 + a)y/(1 - w2 sin? 9) (7)
with the auxiliary quantities

@ = max(a, a’) and  a =min(a/d,a'/a).

Since the square root function in Eq.(7) appears frequently in the later devel-
opments, we introduce

6= \/(1 — k2sin® ¢). (8)

When evaluated along the reference orbits, all of the coefficients of R and T in
Egs.(4) will be constants. In fact in R and T themselves, the only terms which
remain as functions of the time are those which depend on ¢ and §. To show
this explicitly, we first define

Gm!
B, = S @(1+a)d
Gm/ ,
= - 9
Bz B1l+a)® )
Gm'
R3 = + 72

Then the components of the acceleration become

R = % + (% + R3> cos 2¢,
- (10)
T = (5_32 + R3> sin 24.

Substituting Eqs.(10) into Egs.(4) and letting e = ¢’ = 0 everywhere yields the
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equations in their final form

@ = —z_:h (f; Rs) sin 29,

. R R

¢ = —%[6—1+(6:+R3)cos2¢],

. 1 | Ry R (1)
h = - [63 sA— = (ESE+R3> [cos(/\+2¢)—3cos()\—-2¢)]] ,

- 1 [Ry R . .

k = + -~ [63 ni+ - (Esz + Rg) [3sin(A + 2¢) — sin(A — 2¢)]] .

3. Quadratures Involving a Single Frequency

By inspection and Eq.(8) it is seen that the first two of Eqs.(11) depend on
the angular variable ¢ only, while h and k depend on both ¢ and A. A more
traditional method of integrating these latter equations would proceed with an
expansion of 1/6 in powers of k. This can be avoided by introducing a new
variable, u, defined by

¢
u= / dz . (12)
0 \ﬂl — k2sin® z)
We then have
é = am(u, k),
sin ¢ = snu,
cos ¢ = cnu, (13)

6 = dnu.

The independent variable in Egs.(11) is, of course, t. We wish to transform the
independent variable to either ¢ or u to perform the integrations. From the
second of Eqs.(6) we see that 2¢> = —S. When evaluated along the reference
orbits, we obtain

20=—-(A-MN)=n'—n, (14)

where we have made use of the fact that to first order @w = w’ = 0. From
Eq.(14) and Eq.(12) we derive

(n' — n)dt = 2d¢ = 2dnudu. (15)
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Eq.(15) implies that the introduction of ¢ or u as an independent variable re-
placing t will lead to the divisor n — n’ in the perturbations. Both of these
choices for the transformation of the independent variable eliminate the possi-
bility of applying this planetary theory to orbits with a 1 : 1 resonance, but one
should add that a rotation of the coordinate system normally would suffice to
handle this case. Thus there is no need for applying this theory to the 1 :1
resonance.

The first two of Eqgs.(11) can be integrated with the aid of Table I which
contains quadratures from Byrd and Friedman [3] taken from their formulas [#
315.02, #320.02, #360.11] as well as some obvious quadratures. We can already
observe that, since the expressions in Table I are in closed form, the first order
perturbations for a and € will also be in closed form, but we shall examine those
more closely in Section 6.

TABLE 1

fsla—dgb: 2}7 [E(u) _,szétin_y]

nu
Feos2tag = g au- (14 ) (B(w) - wonpeny)]
K
sin 2¢ _ 2
f 53 d¢—x,2dnu

fcos 2¢ d¢ = snucnu

fsin 20d¢ = % (sn2u — cnzu)

Two quantities in Table I which may need definition are E(u), the Legendre
elliptic integral of the second kind and ', the complementary modulus.

4. Quadratures Involving Two Frequencies

The integration of Egs.(11) containing the two angular variables ¢ and X is
considered in this section. We first write all linear combinations of A and ¢
as multiples of ¢. This is possible since to first order ¢ and A are both linear
functions of t. Define three numbers, w;, and a phase angle, ¢ according to

A = w1¢+ ¢Oa
A=20 = wad+ o, (16)
A + 2¢ = w3¢ + ¢0a
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where
2n

wy = 7
n —n

, we = w1 — 2, ws = wy + 2 (17)

and w
bo = € — 71(7r+6'—e).

From Egs.(11) and (16), the right hand sides of the equations for k and k, in
exponential notation, will contain terms of the form

expt(w;¢ + ¢o) and expi(w;¢ + ¢0)/6°

which reduce to the forms

exp(ido), exp(t¢o)/6°, exp(tw;¢), exp(iw;¢)/6>.

Their integration after the transformation from t to ¢ by Eq.(15) requires the
following quadratures:

/ 49, f 549, / exp(iw;¢)de (18)

/ exp(iw;¢) dé (19)

and

3

The quadratures in Eq.(18) are immediately obtained either by inspection or
from Table I. The following discussion concerns the solution of the quadrature
in Eq.(19).

In order to avoid expansion of 1/62 in powers of k, we examine the possibility
of integrating with elliptic functions of ¢ or u, as was done in Section 3. This
will require expansion of the numerator of Eq.(19) in powers of cos ¢. In order
to do this, we start with the Fourier expansion of cosw;¢ and sinw;¢. Begin
by dropping the subscript of w;. It will be recovered later. Write

coswe =0 Z a;cosjo, sinwg = o Z b; sin j¢. (20)

§=0 i=1

The coefficients of the Fourier series of Egs.(20) are found from the definite
integrals

2m 2m
1 . ..
oa; = %/0 coswe@ cos J¢do, ob; = 5;/0 sin wé sin ) ¢d¢
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from which we obtain

sin 2w
c =
2wr
2
aJ = 2w ‘9! ] > 01 (21)
we—7
_ v :
bJ - U)2 _ ]2, J > 0

Powers of cos ¢ are introduced into Eqgs.(20) with the Chebyshev polynomials
(n > 0)

in/2]

To(cosd) = cosng =7 Y (-0 m) (" ") 2eose)r
m_?n/2j (22)
sin(n +1)¢ ~

Up(cosg) =

{l
I
=

3
TN
=

3 |
3
N——
9

(e

o

w
>
3

I

[

3

sin ¢

The desired series will have the forms

o< . oC

coswd = ’; A, cos™ ¢ and S;?nwj = Zl B, cos" 7! 6.

The coefficients A,, = Ap(w) and B, = B,(w) are determined by combining
the series of Eqs.(20) and Eqs.(22) to give

Ao = O,
Ap/w = By/n
271 & (2,-n) (G-1)! 22
= w -1y " .
T Jgn( : w? = (27— n)% (5 - n)!

The next step in evaluating the quadrature of Eq.(19) is to transform the in-
dependent variable from ¢ to u using Eqgs.(13), and use the series in Eq.(23).
Considering the even functions first, write

Coswo N cos™ ¢ i cn™u
-~ dé:/ Ap———do = An/ du. 24
[Ftaem [Tt Lo [
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From Byrd and Friedman [3, #355.01], we obtain the quadrature necessary for
complete evaluation of Eq.(24), with the recurrence relation

n 1 n-—-2
/cn Ydu= — cn"_zudu—'yfcn udu, n>2 (25)

dn’u K2 dn’u

where

12

k'?=1-k? and v = (£'/k)2.

That this is indeed a recurrence relation we can see by putting

1, = / cn—zudu and C, = /cn"u du, (26)
n‘u
so that we can write Eq.(25) as
1
In = Fcn_z - ’7[,,,_2, n 2 2. (27)

To complete the recurrence relation we borrow from Byrd and Friedman |3,
# 312.05 and # 312.06) and obtain the following formula, for n > 4,

1
C, = —3)vCh_s— (n—2)(v - 1)C,_
n-—1 {(TL )’7 4 (ﬂ, )(7 ) 2 (28)
+cn™ *usnudnu/k?].
The recurrence will start with

Co = 4312.00
Cl = (1/ )sm (fCSI]’U.), #31201
C: = (1/r%)[E(u) - &7u), #312.02 (50
Cs = (1/2x%)[(x* - £'%)sin™(x snu) + xsnudnu], #312.03
Iy = (1/K'2)E(u) — (k/k")?(snucnu/dnu), #315.02
I = snu/dnu. #354.01

The second function in the quadrature appearing in Eq.(19) is developed in a
similar manner. We first write from Eqs.(13) and (23)

sinwg = sin ¢ cos™ 1 ¢
[Ftee = [y nmeg—te
n—1

S -

u
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From Byrd and Friedman [3, # 355.01], we obtain

-2
snucn"u 1 _ snucn™ " “u
/—————du: —2/snucn" 2udu—7/——du.

2
dn“u K dn®u

If we define

snucn”u
Jp = / ————du and Sy = /snucn"u du,
dn“u

we can rewrite Eq.(31) in a form similar to Eq.(27), namely,

J 1
J, = 75"'2 i n > 2.
K

(33)

The integration of S,,, since it was not found in Byrd and Friedman, is developed

here. By integration by parts, considering that
snucnudu = —(1/x?)d(dnu),

we obtain

n—1

1 _
snucnudu = — —cn™ tudnu —
K2 K

With the identity
enu = v+ (1/%)dn’y,

this becomes

1 n—1
Sp=—-5 en Yudnu - =485, _2, n> 2.
nk n

- 2
/snucn" 2y dn®udu.

(34)

The starting values for the recurrence relations Eqgs.(33) and (34), taken from

Byrd and Friedman [3], are

So = (1/x)In(dnu - kcnu), #310.01
S, = —(1/k*)dnu, #360.03
Jo = —~(1/K'2)((‘nu/dnu), #353.01
J, = ]/(sznu). #360.11

(35)
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TABLE 1I

Planets a K2 k'? (k/k)?  (k'/K)?
Mercury- Venus 0.535 0.908 0.092 9.908 0.101
Earth 0.387 0.805 0.195 4.122 0.243

Mars 0.254 0.646 0.354 1.826 0.548

Jupiter | 0.074 0.258 0.742 0.347 2.879

Saturn 0.040 0.149 0.851 0.175 5.702

Uranus 0.020 0.078 0.922 0.084 11.899

Neptune | 0.013 0.050 0.950 0.053 18.917

Pluto 0.010 0.038 0.962 0.040 25.031

Venus- Earth 0.723 0.974 0.026 37.789 0.026
Mars 0.475 0.873 0.127 6.881 0.145

Jupiter 0.139 0.429 0.571 0.750 1.333

Saturn 0.075 0.261 0.739 0.353 2.833

Uranus | 0.038 0.140 0.860 0.163 6.143

Neptune | 0.024 0.092 0.908 0.101 9.896

Pluto 0.018 0.071 0.929 0.076 13.167

Earth- Mars 0.656 0.957 0.043 22.223 0.045
Jupiter 0.192 0.541 0.459 1.178 0.849

Saturn 0.104 0.342 0.658 0.520 1.923

Uranus 0.052 0.188 0.812 0.232 4.311

Neptune | 0.033 0.125 0.875 0.142 7.024

Pluto 0.025 0.096 0.904 0.107 9.389

Mars- Jupiter 0.293 0.701 0.299 2.343 0.427
Saturn 0.159 0.473 0.527 0.899 1.113

Uranus 0.079 0.273 0.727 0.375 2.669

Neptune | 0.051 0.184 0.816 0.225 4.445

Pluto 0.039 0.143 0.857 0.167 5.995

Jupiter- Saturn 0.543 0.912 0.088 10.376 0.096
Uranus 0.271 0.671 0.329 2.041 0.490

Neptune | 0.173 0.503 0.497 1.012 0.988

Pluto 0.132 0.411 0.589 0.698 1.432

Saturn- Uranus 0.500 0.889 0.111 7.981 0.125
Neptune | 0.319 0.733 0.267 2.751 0.364

Pluto 0.243 0.628 0.372 1.691 0.591

Uranus-  Neptune | 0.638 0.951 0.049 19.530  0.051
Pluto 0.485 0.880 0.120 7.336 0.136

Neptune- Pluto 0.760 0.981 0.019 53.023  0.019
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Although the solution for the perturbations of h and k are obtained without
expanding 1/8 (traditionally done in powers of &), nevertheless the expansion of
cosw;¢ introduces a power series not in a but in v = («'/k)2. This is due to the
fact that the relations given by Eqs.(27), (28), (33) and (34) contain the factor
~. In this regard, one should note that 4 is not necessarily a small quantity,
as one can see from Table II where the values of « are given for all pairs of
planets. For Neptune-Pluto, it has a value less than 0.02, but for some pairs
it is > 1. In order to compare all of these parameters, Table II lists the values
of o, k%, k'2,(k/k')2, and (x'/k)%. In the following discussion let us restrict
our attention to values of a which may occur in planetary theories, namely
0 < a < 1. The value of o associated with vy = 1is a3 = 3 — /8 ~ 0.17. For
values of @ > @3, 7y < 1 and as & — 1, ¥ — 0. For Neptune-Pluto, x'? and
(k'/k)? are the smallest parameters available for an expansion. Thus it appears
that expansion of the numerator of Eq.(19), rather than its denominator, is
preferable for the Neptune-Pluto problem. At the other end of the spectrum,
where a is small, («'/£)2 > 1. In that region, (x/«')2 would be a more suitable
expansion parameter if one wants to use elliptic functions to avoid expanding
1/6. For this type of development, the integrals of Eqs.(24) and (30) should be
developed in powers of snu rather than cnu. However, it must be pointed out
that (x/«'}2 is > o throughout the range of the table.

Consider the value az = 1/3, where (k'/k}? < o whenever @ > a3. The
value @ = o, represents a demarcation between expansion parameters if elliptic
functions are to be used. The value @ = @, is more important if numerical con-
vergence is the criterion for the developments. Whenever a < ag the classical
expansions of 1/6 with the Laplacian coeflicients expressed as hypergeometric
series in powers of a are preferred. When a > a2, we contend that the expan-
sions In powers of v as outlined in this paper are more suitable. We shall say
more about this in the next section.

5. First Order Perturbations of the Elements

The data needed to construct the solution of Egs.(11) are contained in either
Table I or Section 4. Consider first the variables a and €. From the differential
equations we obtain

/aa:z R2/Mdt+33fsm2¢dt .
n 63

Substituting for dt from Eq.(15) and using Table I leads to the expression

u

a(t) - a(0) = —> [4R2

2 2
oy gy + Rg(sn®u — cn u)]

x2dnu «(0)

where the R; are defined by Eqgs.(9).
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If we choose ¢ = 0 at t = 0, then u(0) = 0. The corresponding synodic angle
is A(0) — A’(0) = =. The osculating value of a(t) at t = 0 is a(0). Since snu, cnu,
and dnu are periodic functions of u, a(t) is a combination of a constant mean
value and a periodic perturbation. There are no secular terms in the semi-major
axis, as expected. In the following expression, ¢ is introduced from Eqgs.(13),
giving

a(t) = a(0) + ao [a1(1 — 1/6) + a2(1l — cos 24)], (36)
where ; ‘R
2
apg = m, ay = ?, and as = ‘R3.

The a; are to be evaluated from the parameters defining the reference orbits.
A similar solution is obtained for the constant of mean longitude, namely

e(t) = €(0) + €0 [ﬂu + €o (E(u) — k2 Sn; cnu) + €gsnu cnu] (37)
nu
where
e = 4 o _ 2R
7 an(n-n')’ VT k20
R R 1
€2 = ;,%_;23<l+m>, and 63:R3.

The coefficients of the secular terms in €(t) may be incorporated into the first
order approximation of the averaged mean motion; this is done in Section 6.

It would be somewhat involved to compare the results in Eqs.(36) and (37)
with the results of Richardson [11]. The methods used in the two papers are
very different. Richardson works in a Hamiltonian context. Besides, he takes
the more general problem of many planets. Further, he gives the generator of
the averaging function, but does not give the specific transformation for the
variables. Our results appear to be equivalent to his.

The integration of h and k makes use of the developments in Section 5.
Considering h(t) first, we write from Eq.(11)

1 tcosA R, /t cos(A + 2¢) — 3cos(A — 2¢) ir
0

At - k() = - [leo - dr— 22 e
_% /Ot[cos(/\ +24) - 3cos(A — 2¢)] dr] .

First, let us change the independent variable to ¢, adopt Eqs.(16) and set v =
2/lan(n — n')] We may then write

h(t) = h(0) + v(Hy + H3)|C (38)
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and define H; and H, with the equations:

é
H()-m0) = B [ oot
o

R ¢ cos(waz + $o) /'4> cos{wsz + o)
— dz — 39
+5 {3 /0 u o | 27 %0 4o, (39)

dz

¢
Hy(¢) — Hz(0) = 523/(; [3 cos(wzz + ¢o) — cos(wsz + ¢o)] dz.

Let us consider the development of H; first. As an example, starting with
the first quadrature in H; and, for the moment, ignoring the constant factor R,

¢ cos(wiz + ¢o) p
53 §
0

¢ coswiz ) ¢ Sin w1 T
cos @g dz — sin ¢g dz.
0 0

63 63

Adopting the form of the quadratures given by Eqs.(24) and (30) and using the
notation introduced in Eqs.(26) and (32), the first term in H; is written,

¢ cos(wz 0 i
Rl/o ( 63+ $o) dr = R;cosgg ZAn(wl)[In(u) — 1,(0)]

— Rysingo Y Bu(w1)[Jn-1(x) — Jn-1(0)]

where I,, and J,, are given by the recurrence relations of Section 4. Inspection of
the starting values in Eqs.(29) and (35) indicates that I,,(0) = 0 while J,, (0) # 0,
for all n. Incorporating all of the terms in Eq.(39) gives

Hi(u) = Y [Qui(n)In(v) + Qu2(n) Jn-1(u)] (40)
where we define
QRi1{n) = +[Ri1An(w1)+ (R2/2)(3A,(w2) — An{ws))]cos ¢o,
Qi2(n) = —[RiBn(w1)+ (R2/2)(3Bn(wz2) — Bn(ws))]sin éo.

It is necessary to define Bp(w;) = 0 in order to extend the summation to include
n = 0 as it is done in Eq.{40).
The quantity Hz in Eq.(39) is easily integrated to give

Hy(¢) = % (U% sin(wz¢ + ¢o) — ;1—3 sin(wg¢ + ¢o)> i (41)
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The wy, and wg appear as divisors in this expression and it is important to see
whether they can take on the value 0. From their definition in Eq.(17) we have

wy, = w;—-2=0 & =n/n=1/2
wg = wp+2=0 & n' =0.

The latter of these two results is meaningless to our discussion and therefore
the only resonance which could produce a small divisor or a secular term in the
perturbations of the eccentric variables is n/n' = 1/2. Including the additional
constraint imposed by the divisor n—n', we discover that these two are the only
small divisors appearing in the solutions.

The perturbations in k(t) lead to the same conclusions. Following the de-
velopments for h(t) we eventually obtain

k() = k(0) - »(K:1 + K2)¢,
Ki(u) = Z[Q21(n)1n(u) + Q22Jn—1(u)], (42)
Kale) = 2 (Lcontons +60) = S costuns + 00))

together with

Q21(n) = [RiAn(w1) — (R2/2)(An(w2) — 3A4n(ws))]sin g0,
Q22(n) = |RiBn(wi) — (R2/2)(Bn(wz2) — 3B, (ws))] cos ¢o.

A clearer picture of the perturbations appears when we study the functions
I,(u) and J,(u). Table III gives these functions for 2 < n < 9, expressed in
terms of the starting values of Eqgs.(29) and (35) and of the Jacobian elliptic
functions.

From this table, one may observe that the coefficients of Iy, I, Jo and Jy,
are the first four terms of —v/(1 + v) expanded in powers of 7. One can also
expect as the table suggests, that the other terms of the J,,’s, decrease somewhat
rapidly in powers of 4. (Recall that v = (x’/£)?.) The same is not true for the
remaining terms in the first half of the table —a point which suggests that a
large number of terms may be necessary in applications.

From the starting values, we observe that Jo, So, J1, and S; are purely peri-
odic. So also are I;,C; and Cg. Secular terms come from Iy, Cy and C, which
depend on the elliptic integrals « and E(u). If one recalls Eq.(24), it is eas-
ily seen that these secular terms arise from the even powers of cos ¢. Had we
used an averaging method instead of Picard iteration, we might have cured the
problem.
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TABLE III

12 I Is Iy
Io —v| -7 vt
Co/x? 1| =7 | v(1+37)/3 | (4-97—-159°)/15
Ca/k? 1 (2-54)/3 | (8—17y+ 334%)/15
snucnudnu/xt 1/3 (4 —99)/15
snucndudnu/x? 1/5

I I I Iy
L -7 | - vt
C1/k? 1| =y | v(1+29)/2 | 7(5— 11y - 129°)/12
Cy /K> 1 (3—74)/4 | (15— 32y + 5742)/24
snucn?udnu/k? 1/4 —(5—114)/24
snucnt*udnu/k* 1/6

J2 Jy Je Js
Jo -7 | 4 . v
So/k? 1 | —3y/2 | 154%/8 —3543/16
cnudnu/k? -1/2 7v/8 —1942/16
enudnu/kt -1/4 11~/24
enbudnu/k? —-1/6

Js Js J7 Jo
Jy -7 1 —-° vt
S1/x? 1 | —57/3 1142 /5 —93~%/35
en?udnu/k* -1/3 3v/5 —29+2/35
entudnu/kt -1/5 13v/35
enfudnu/kt -1/7
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Table III also contains the information necessary to separate the various
terms appearing in h(t) and k(t) according to the categories of terms: constant,
secular and periodic. Consider Eqgs.(38), (40) and (41) to obtain

h(t) = R(0) + v(ho + ks + hy),
ho = —(H.1(0)+ H2(0)),
hy = (Z Q11(2n)12n(u)) , )
hp = Hl(u) -+ H2(¢) — ho —,;1:.

Following the same procedure, we also obtain

k(t) = k(0)—v(ko+ ks + kp),
ko = —(Ki1(0) + K2(0)),
0o 44
ky = (Z Q21(2n)12n(u)) : .
kp = Kl(_U) + K2(¢) - ko —B;:a.

Because of the choice of reference orbits we should substitute the value e = 0,
into the right hand sides of Eqs.(43) and {44). This condition is equivalent to
h(0) = 0 and k(0) = O, but the first order perturbations induce a non-zero value
for the eccentricity of O(m’'), as expected.

6. First Order Perturbations in Mean Longitude.

The perturbed mean longitude is developed from its definition in Eq.(3). The
value of n is derived from a using Eqs.(11) and then integrated according to
Eq.(36). This procedure yields

./0 n(r) dr = n(t) — n(0) = no [n1(1 — 1/6) + n2(1 — cos 2¢)], (45)

where
3n

n, = ——a,;.

2a
The integration of Eq.(45) leads to the quadrature

‘/0 n(r) dr = [n(0) + no{n1 + n2)|t + 2ng(n1 v + nosnucnu)/(n —n'). (46)
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An expression for A is obtained by adding Eq.(37) and Eq.(46), yielding

2
A = [n(0) + no(n1 + n2)]t +€(0) + <eoe1 + "'Onl,) u
n—n
) (#7)
+ €0€2 (E(u) _ g2 cnu) + { €o€s + 10%2 ) snucnu.
dnu n—nl

The elliptic integrals in Eq.(47) contain both secular and periodic parts. The
relationships between t, u and ¢ are taken from Eqs.(13)and(15). We may use
this information to separate the secular and periodic perturbations in the mean
longitude. Note that A(0) = ¢(0). From the theory of elliptic integrals, we know
that

E(u) = (E/K)u+ Z(u),

where K and E' are the complete elliptic integrals of the first and second kind,
respectively, and Z(u), the Jacobi zeta function, is purely periodic in u. Further,

¢ = amu = (7/2K)u + am”u,

where am*u is the purely periodic part of the amplitude function. Therefore
both u and E(u) can be expressed as sums of terms linear in ¢ plus periodic
terms. Writing the elliptic integrals this way and setting 2¢ = {(n' — n)t, we
obtain the final form

A= X+ Mt + A2Z(u) + Agsnucnundu + Agsnucnu + Asam®u. (48)

The A; are given by the relations

Ao = €(0),

M = n(0)+no(n1 +n2) +e(n' — n)(e1K + e2F) /7 — 2Knony /7,
A2 = €€z,

As = —kZepeq,

A = g€z + 2ngonz/(n —n'),

As = —2¢(e1K + e2FE)/m — dngn1 K/[n(n — n')].

Since the mean longitude is often a critical variable in computations, the closed
form expression given in Eq.(48) may prove useful in many applications. Of
particular interest also is the closed form expression for the averaged mean
motion, Aj.
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7. The Resonance Case.

From the values of the coefficients of the Fourier series given by Egs.(21), we
see that cosw@ and sinw¢ contain the divisor w? — 2. If w has a value near an
integer this would be a small divisor. From Eqs.(17) we can determine which
frequencies of the mean longitudes would lead to integer values of the w;’s.
There are only two classes of solutions, one given by

n/n’ = p/(p+1), (49)
wi=2p, wp = 2(p—1) and wg=2(p+1),
and the other by
n/n' = (2p-1)/(2p+1), (50)
wp=2p—1, we = 2p—3 and w3z =2p+1;

in both cases, p is a positive integer. These solutions still hold if n/n’ is replaced
by n'/n.

If the w,’s satisfy either Eq.(49) or (50) then cosw;¢ and sinw;¢/sin ¢ can
be expressed as power series in cos ¢ directly from the Chebyshev polynomials
in Egs.(22) without the use of the Fourier series of Eq.(20). This avoids the use
of the Fourier coefficients altogether; thus no small divisors will appear in the
developments.

If Eq.(49) or Eq.(50) is satisfied exactly, we can write w = N, where N is a
positive integer, and express the real part of the quadrature of Eq.(19) by

fcosw¢d¢ /COSN¢d¢:I}"V. (51)
Eq.(51) can be considered a definition of I¥,. Similarly, J}, can be defined by
/squﬁd¢ /SmN¢d¢ I3 (52)

Using the Chebyshev polynomials and the definitions of I, and J,, in Eqs.(26)
and (32), we write for N > 1

[N/2)

= — Z 1 (N B m> 2N—2mIN—2m7

—m m

(63)

L(N—l)/2J
(—1)'"(N m 1)2N—2m-1JN_2m_1.
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If N=0,cos N¢ =1 and sin N¢ = 0. Thus from Egs.(51) and (52) we have
I = /(1/63)d¢ and Jj = constant.

In most problems, we do not have exact resonance but may be merely close
to resonance, with small divisors presenting a problem of convergence. The
transition from exact resonance to its neighborhood is studied in classical devel-
opments by many methods including expanding trigonometric terms into power
series in the time. This transition may be studied here without the introduction

of power series. We begin the investigation by defining a quantity 8 according
to

w=N+p and -05<p<05. (54)
We shall need the Fourier series of Eqs.(20) with w replaced by j:

cosfB¢ = op Z a;(B)cos 7,
3=0

sin 8¢ = 05ij(ﬂ) sin j ¢,

j=1
Further we define 03 = sin 287 /23n. After some algebra we have

coswp = opgcosNg+ 323 Z {la;(B) +b;(B) cos(N + 5)¢

B F_|_ la;(B) — bj(B)]cos(N — 5)é}.

With this form of cosw¢ substituted into the real part of the quadrature in
Eq.(19) , we use Eqgs.(51) and (52) to obtain the desired result

cos(N+ﬂ)¢d _ I (I;V+j IFJ—J’)
/—————63 $ =05 N+ﬂ1§§oo el I (55)

After a similar set of operations is applied to the integration of the imaginary
part of Eq.(19), we obtain

sin(N +8)¢ | (JXH:' Jﬁl—a‘) 56
/ 53 ¢ =0p N+ﬂ13;o el | EE G

Inspection of Egs.(53) for I}, and J3; reveals that they contain no small divisors
and that they do not depend on #. Therefore, as 3 — 0, the quadratures in
Eqgs.(55) and (56) approach the values given in Egs.(51) and (52), respectively.
Thus the solution is well behaved as resonance is approached.
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An important resonance in the solar system is that between Jupiter and
Saturn where
n/n' =2/5,

in which case
wy =4/3, wz=-2/3 and ws=10/3.

Since the w;’s are not integers, the developments of Section 4 can be applied
and will not produce small divisors at first order. However, elliptical orbits
are normally adopted as reference orbits when one is deriving the first order
perturbations of the Jupiter-Saturn problem. We adopt circular reference orbits
in this paper and it is not clear that the absense of small divisors would persist
if we were to adopt elliptical orbits instead.

Although it is interesting that no small divisors appear in our developments,
unfortunately there are, instead, secular terms. However, if Eq.(49) or (50)
holds, the perturbations will be in closed form because of Egs.(51) and (52).
Further, in the case of Eq.(50), the solution will contain no secular terms. The
next section discusses this feature in detail.

8. An Example of a Resonance Solution.

The variables a{t), €(t), and A(t) are given in closed form for any orbit and
the solutions given by Egs. (36), (37), and (48) are applicable whether we
have resonance or not. Therefore, we shall concentrate on the solution for the
variables h(t) and k(t). Let us choose, as an example, the resonance n/n’ = 1/3.
In this case, we have w; = 1, wy = —1 and ws = 3. We begin with Eq.(39)
appearing in the development of the perturbations of h(t) and write

Hi(w) - Hy(0) = [Ral,(u) + (Re/2)(3I2, (u) — I3, ()] cos o
~ [RaJ2, () + (B2/2)(872, (w) — J2, ()] sin do
T [RaJ2,(0) + (Re/2)(372,(0) — J2,(0))] sin do.

From the definition of I}, and J3 in Eq.(53) we see that I}, = I* 5 and Jy =
~J*n. Thus

Hy(u) = cos ¢o|(R1 + 3R2/2)I7 — RoI3 /2] — sin ¢o[(R1 — 3R2/2)J; — Rz J3 /2.

Again, from Eq.(53), we can express I3 and J} in terms of I, and J,. Then
using Table III together with the starting values for I, C;, Jo and Sp in Eqs.(29)
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and (35), we obtain

snu
L = —

1 dnu’

4
B = —(4y+3)= + — sin"!(xsnu),
dnu = «3 (57)

Je - __cnu

o k'2dnu’

1 4

J: = + 4y cnu + — In(dnu — kenw).

k'?2 dnu &

Combining the results of Eq.(57) with Egs.{38), (39), and (41) and writing the
results in terms of ¢ from Eq.(13), we obtain

h(t) = h(0)+v{— Hy(0) — H2(0)
+ [R1 + (3 + 27)R2] cos ¢osin ¢ /6
+ [R1 — {1 — 2v)R2]sin ¢o cos ¢ /(k'26)
— (2R2/K3) cos ¢o sin~ ! (x sin ¢)
+ (2R2/£*) sin ¢ In(6 — « cos @)
+ (R3/6)[9sin(¢ — ¢o) — sin(3¢ + ¢0)]} -

(58)

In a similar manner we derive from Eqgs.(42),

k(t) = k(0)—v{— K:i(0)— K2(0)
+ [Ry — (5 + 67) Rz sin dg sin ¢ /6
— |Ry — (1 + 67) R2] cos ¢ cos ¢/ (x'26)
+ (6R2/x3) sin ¢¢ sin ™ (k sin 4)
+ (6R2/k>) cos o In(6 — K cos §)
— (R3/2)[cos(¢ — ¢o) + cos(3¢ + ¢0)]} .

(59)

Note that the expressions for the first order perturbations of the eccentric
variables h(t) and k(t) are in closed form, are purely periodic and do not contain
any small divisors. This will be the case for any resonance which leads to the
w;’s being odd integers. From Eq.(50) we find that this corresponds exclusively
to all resonances of the form n/n’' = (2p — 1)/(2p + 1).
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9. Conclusions.

The planetary theory presented here has at least four interesting features not
found together in other theories. They are:

1. avoidance of expansion of 1/A in powers of «,
2. absense of small divisors with the exception of n — n' and 2n — n/,

3. purely periodic solutions in closed form for orbits satisfying the res-
onance condition n/n' = (2p — 1)/(2p + 1),

4. compactness.

The closed form expressions for the perturbations in a, ¢ and consequently
A have been known from the work of previous authors. It is interesting that by
continuing to force the solution for the eccentric variables to be expressed in
Jacobian elliptic functions and Legendre elliptic integrals, we obtain solutions
at exact resonance which are in the form of finite truncations of the infinite
series used in the non-resonance cases.

One of the difficulties with this solution is the presence of secular terms
introduced into the perturbations of the eccentric variables. Since the source of
the secular terms i1s known, there is some hope that this secular feature can be
controlled in some way. An averaging method may prove useful in this regard.

Numerical tests of the theory have not been performed. Since our reference
orbits are circular and small divisors are not present, numerically generated
periodic orbits of the first kind in the general three body problem might provide
good comparisons. Such orbits have been generated by Hadjidemetriou [7].

Because they are analytic and in closed form, the periodic solutions for
resonant orbits may be useful as reference orbits for minor planet studies or for
linear stability analyses.

In order to be of practical value, the planetary perturbations presented in
this paper should be extended to three dimensions. Another necessary extension
of this theory is the inclusion of perturbations proportional to the eccentricity.
Such extensions would require expansion of 1/A; not in powers of a, but in
powers of e. Although these classical types of expansions are not expected
to introduce any difficulties in the use of elliptic functions, nevertheless they
would produce enormous complications best handled with computer automated
algebra.

A complete planetary theory in terms of elliptic functions has not appeared
up to now. It would seem that the avoidance of these functions may have
been due to the difficulty of computing with them. Numerically, there are
no difficulties with their evaluation. Algebraically, however, they are expected
to generate difficulties at higher orders. The lack of availability of computer
software to perform algebraic and calculus operations on elliptic functions and
integrals has led to a postponement of a second order solution. Hopefully, this is
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only a temporary situation. The second order solution should shed considerable
light on how well this theory can be expected to perform.

Perhaps the most interesting and significant feature of this perturbation
method is that it nicely avoids most of the cumbersome developments that have
plagued planetary theory for a long time.
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