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ADbstract: We derive a new method to obtain an approximate solution for Kepler’s equa-
tion. By means of an auxiliary variable it is possible to obtain a starting approximation
correct to about three figures. A high order iteration formula then corrects the solution to
high precision at once. The method can be used for all orbit types, including hyperbolic.
To obtain this solution the trigonometric or hyperbolic functions must be evaluated only
once.

1. Introduction

Despite the apparent simplicity of Kepler’s equation, it has drawn much attention even
during recent years. This interest is explained by the fact that in many problems of orbital
dynamics a large number of solutions of this equation must be calculated. Consequently
even a litle shortening of the computation is important. Some of the most recent works on
Kepler’s equation include the explicit solutions found by Siewert and Burniston (1972) and
Neutsch and Schiifer (1986), and the systematic study of iterative methods by Burkhart
and Danby (1983) and Danby and Burkhart (1983). In a very recent paper Odell and
Gooding (1986) suggest an algorithm which, utilizing a carefully chosen starter, converges
in two iterations by means of a high order correction formula.

What may be the best method for solving Kepler’s equation? Assuming that a good
estimate is not known one must first obtain a starter value which is then to be improved
by some iterative process. Because it is computational economy that we are pursuing, the
initial estimate should be computationally cheap and accurate enough to not require many
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iterative corrections. We believe that our method is actually close to an optimal one: it
requires the solution of a cubic equation while the improvement (to a typical precision of
15 or more figures) can be done by using a high order iteration formula just once.

2. General

Consider the solution of the elliptic and hyperbolic Kepler’s equations
E —esin(E)=M
(1)
e sinh(E) — F = M.

The main difficulty in solving these is essentially due to the behavior of the equations at
and near the point e = 1, M = 0. Power series expansion gives

1
(1—e)E+geE3:M—{—..

(2)
1 3
(e—1)F + geF =M+ .

One easily finds that the partial derivatives of the solution with respect to both e and M
are singular at e = 1, M = 0. This suggests that an efficient starter must be based on the
solution of an equation which coincides with (2) in the small-M limit. However, sin(E) (or
sinh(F)) can not be approximated to a high enough accuracy by a third degree polynomial
over the entire region |E| < 7 (or |F| < o0). The way out we have found is based on
the use of the auxiliary variable s = sin(E/3) (or s = sinh(F/3)). The advantage of this
is that sin(F) is a third degree polynomial in this variable. In the following we derive
the solution separately for the elliptic and hyperbolic cases. We also present a unifying
formulation useful for all types of orbits.

3. Elliptic case

With the substitution
s =sin(E/3) (3)

the new form of Kepler’s equation reads
3arcsin(s) — e(3s — 4s%) = M. (4)

Reduction of M to the interval —7m < M < 7 is assumed to make s as small as possible. If
the series

: 13,35
= — — . 5
arcsin(s) = s + 55 tos T (5)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987CeMec..40..329M

A CUBIC APPROXIMATION FOR KEPLER’S EQUATION 331

is truncated after the third order term we obtain the approximate equation
I3
3(1—e)s+ (4e + 5)3 =M. (6)
The error is largest at M = 7, however, adding the simple correction term

ds = —0.078s° /(1 + ) (7)

improves the estimate so that the maximum error is an order of magnitude smaller. This
crude estimate for the error is obtained by using (5), the derivative of (4) at M = m and
adjusting the constant on front of (7). More accurate (and more complicated) correction
terms may be easily found but the functioning of the method is not affected.

After obtaining the value of s by solving eq.(6) and adding the correction (7) we can
evaluate the eccentric anomaly by means of the formula

E =M + ¢(3s — 45°). (8)

This starting approximation, which has the maximum relative error |dE/E| < .002, we
thus obtained without a single evaluation of trigonometric functions! However, the cubic
equation (6) has to be solved and this requires the calculation of one square root and one
cubic root. In fact, if we write

a=(1-¢)/(tet3), B=3M/(e+ ) (90)

and
s = (64 VBT R (99)

then

s=z—alz. (9¢)
The sign of the square root is to be chosen to be the sign of 3.

4. Hyperbolic case

The hyperbolic form of Kepler’s equation differs in behavior from the elliptic one. However,
near e = 1, M = 0 it is still much the same and the same basic approximation leads to
good results here too. Thus we write

s = sinh(F/3) (10)
and have
e(3s +4s%) — 3In(s + V1 + s2) = M. (11)
Using the series
1
In(s + V14 s2%) :3—633+.. (12)
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we obtain the approximation
1
3(e —1)s + (4e + 5)33 = M. (13)

Here the approximation (12) completely breaks down for large values of s; however, this
do not apply to (13) because the third order term 4es® arising from expressing sinh(F) in
terms of s dominates. Thus, for large s the main spurious effect due to the use of (12)
is that it replaces the correct asymptotic relation 4es® ~ M by (4e + %)53 ~ M, which
is equivalent to a relative error of ~ 'sl—e in M. This effect can, however, be corrected by
properly selecting a correction term (see below) and consequently the break-down of (12)
for large s is harmless, while for small s the error is of order s°. This is the main reason
to adopt the auxiliary variable (10) similarly to the elliptic case instead of using directly
sinh(F), which would lead to failure for large values of M and thus would require the use
of different formulae in different regions.

To make the correction corresponding to (7), we are obliged to use a more complicated
equation than in the elliptic case. By taking into account the error of (12) for both small
and large values of s we constructed a simple rational function for the error estimate

ds = 0.071s°/[(1 + 0.455%)(1 + 4s7)e]. (14)

After adding this correction to s we evaluate the value of F by the formula
F =3In(s + V1+ s?). (15)

which now gives a precision very similar to that in the elliptic case. The equivalent to (8)

ie. F = e(3s+4s®) — M is, of course, correct but would increase the error of F due to
error in s.

5. Unifying formulation
Let us write
y =+/l|als (16)

where a is the semi-major axis (negative for hyperbola). A substitution to the elliptic and
hyperbolic equations ( (6) and (13) ) gives in both cases the equation

1
3qy + (4e + E)y?’ =T. (17)

Here ¢ = a(1 — ¢€) is the pericenter distance and T is the time measured from pericenter
passage (in units in which the gravitational constant and the total mass are unity ).
Expressions for the parameters a and 8 in eq. (9a) are now o = ¢/(4e + %) and 8 =
1T /(4e + 3), while the solution (9c) is now y instead of s. The correction terms, however,
remain different for different orbital types. For the ellipse we have

dy = —0.078ys*/(1 +¢) (18)
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where, as in the following, s2 = y?/|a|. For the hyperbola
dy = 0.071ys*/[(1 + 0.45s%)(1 + 45%)e]. (19)

The unifying anomaly (see eg. Herrick 1972, p.118-120)
¢
X = dt/r (20)
to

may be obtained as follows:
(a) for the ellipse:

X =+aE =T/a+ ey(3 — 4s?)
(b) for the hyperbola:
X =+v—aF =3y/—aln(s + V1 + s?)
1 3
=3y(1 - =6+ —s* + .)(for s*® < 1)

6 40
while the unified form of Kepler’s equation reads

(21)

X +eX3c3(X?*/a) =T (22)

where ¢z is a Stumpff-function (see e.g. Stiefel and Scheifele 1971, p.42-51).

As we can see, the corrections are zeros for a parabola and actually (17) is equivalent
to (22) in this case (with X = 3y).

6. Final correction

The above approximate solutions are accurate to about
|dX/X| <2x107%, (23)

This result applies to both elliptic and hyperbolic equations. In the elliptic case, the
maximum error occurs near e = 1, M = 1.5 and the corresponding figures for the hyperbola
are similar. Due to the smallness of the maximal error and because it occurs in a region far
from pericenter, it is possible to correct the approximation to a high precision by using a
high order formula just once. We adopted the method suggested by Burkhart and Danby
(1983): Write the equations for the correction dz in the form f+ f'dz+ %f”(d:z:)2 +..=0;
then one may calculate successively higher order approximations from

n+1 f(l/

)
donpr = —f] ) ” (dz,)¥ 1. (24)

Accepting dz4 as the final solution, we always have a relative precision of the order of
10715 or better, while dzs gives three more correct figures. One should note that the
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trigonometric functions were evaluated only once to obtain the solution. In any practical
sense, the method thus found is not iterative but a direct method for solving Kepler’s

equation.

Acknowledgement

This work has been supported by an NSERC (Canada) operating grant to
K.A. Innanen.

References

Burkhart, T.M. and Danby, J.M.A.: (1983), Cel. Mech., 31, 317-328.

Danby, J.M.A. and Burkhart, T.M.: (1983), Cel. Mech., 31, 95-107.

Herrick, S.: (1972) Astrodynamics, Vol.Il, Van Nostrand Reinhold Company, London.
Neutch, W. and Schifer, E.: (1986), Astroph. and Space Sci., 125, 77-83.

Odell, A.W. and Gooding, R.H.: (1986), Cel. Mech., 38,307-334.

Stiefel, E.L. and Scheifele, G., (1971), Linear and Regular Celestial Mechanics,
Springer,Berlin.

Siewert, C.E. and Burniston, E.E.: (1972), Cel. Mech., 6, 294-304.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987CeMec..40..329M

