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TEOMETPUYECKUE, TUHAMNYECKUE, OPBUTAJIBHBIE I ®OTOMETPUYECKUE
JAHHBIE I10 METEOPOJAM, CO@OTOTPA®UPOBAHHEIM B BOJIMAHOWM CETU

B paGoTe mpuBeaeHBI METOABL ¥ MaTeMaTHYECKHE BhIpaxkeHws I oOpaboTku dortorpadmit 60mmos momy-

YEHHBIX B3 MHOTOIIOCTOBOM NpOrpaMMEL. VI3 HEX MOXHO DOJTYIATH FEOMETPHYECKUE, IHHAMIIECKHE, OPOATAITB-

Hple ¥ (BOTOMETpHIECKAE NaHHBIE. DTEMH MeToHaMHu O0pabaThBAIOTCS CHEMKM GOJIMIOB NOJIYyYEHHBIE IIO
nporpaMme Esponeiickoii ceTu.

Methods and procedures of computing geometric, dynamic, orbital and photometric data from multi-

station photographic records of fireballs are presented and corresponding mathematical formulae are put

forth. These methods and procedures are currently used in evaluating photographic records from the
European Fireball Network.

Key words: meteoroids: photographic fireballs — reduction of photographs: geometric, dynamic, orbital

and photometric data.

1. Introduction

Since 1947 photographic observations of meteors
were carried out at the Ondfejov Observatory (Ceple-
cha, 1977). They became a systematic double-station
program using cameras with rotating shutter since
1951. The success of photographing a meteorite fall
(Ptibram meteorites) in 1959 initiated a multistation
fireball network program now covering a large part
of Central Europe territory, each station equipped
with an all-sky mirror camera or with a fish-eye
camera. During this period, we developed a number
of reduction methods and procedures, which we
used to compute the geometric, dynamic, orbital
and photometric data from our photographic records.

Bull. Astron, Inst, Czechosl. 38 (1987), 222—234,

We published only a small part of these methods and
some of them were already changed with the use of
big computers. During the last decade, we enclosed
all of the actually used methods into one computational
program, FIRBAL, (*4000 Fortran statements). This
paper contains equations applied in the majority of
our present-day computational methods for reduc-
ing the data from fireball photographs, with some
preference of methods suitable for cameras with
fish-eye objectives. Because the methods for fish-eye
objectives located at many stations are the most
general case, the other simpler possibilities can be
easily derived from them.

We publish preliminary data on photographic
fireballs, computed by methods of this paper, in
SEAN Bulletin. Due to possibilities of the computer
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program FIRBAL, the preliminary data are mostly
very close to the final revised values from all stations
published later in the Bull. Astron. Inst. Czechosl.

2. The Formulation of the Problem

The European Network for observation of fireballs
yields photographic records of the entire sky hemi-
sphere taken with fish-eye objectives (Zeiss Distagon
f/35, f = 30 mm) with a field of view of 180° at several
(at least two) stations. The diameter of the 180° image
is about 80 mm. The cameras are fixed and pointed
vertically (zenith is approximatelly equal to the center
of projection). Each record we are interested in
contains also the image of the fireball as seen from
different locations at time T. The fireball image is
occulted (broken) by a rotating shutter close to the
focal plane at regular time intervals (in our case:
12-5 times per second with half-time exposure and
half-time occultation of the image). For each of these
time marks, we want to compute the height above
sea-level, the distance from the station and the relative
distance (length) along the fireball trajectory. We want
to determine the most probable average trajectory
of the fireball. Direction of the trajectory against the
fireball flight is traditionally called its radiant. Using
the time marks, we want to compute the average
distance along the trajectory, the height, the velocity
and the deceleration, all these values represented as
function of time. We want to determine the brightness
of the fireball at individual trajectory points. From the
velocity as function of time, we want to determine
the initial velocity (no-atmosphere velocity). The
observed direction of the fireball trajectory and the
absolute value of the initial velocity define the velo-
city vector. We correct this vector for the FEarth’s
rotation and gravity (zenith attraction) and proceed
to the geocentric value of the velocity vector. Sub-
traction of the Earth’s velocity vector from it yields
the heliocentric velocity vector of the meteoroid
at the point of its orbit, where the Earth was located
at time T. These data are enough for computing
the meteoroid orbit.

The first step to achieve all this is the computation
of unknown directions (right ascension and declina-
tion or azimuth and zenith distance) to the individual
points of the fireball trail on each photograph. We
use stars as fiducial points in this respect and we also
use star images for the photometric calibrations.
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3. The Astrometric Positional Determinations
from Fish-Eye Photographs

We measure the rectangular coordinates x, y of each
point on the photographic image; in our case we use
a Zeiss Ascorecord device. About 15 to 20 stars
(their apparent positions) are used for the definition
of the conversion of x, y into a, z, the azimuth and
zenith distance. This means 30 to 40 independent
equations to be fitted to by the least-squares method.
Our definition of coordinate orientation is given by the
x-axis pointing to the north, y-axis pointing to the
west and the origin of x, y coordinates in approximate
zenith (which is identical with the approximate center
of projection). The conversion formulae are then

(1) tan (a — ao) = (¥ — ¥o)/(x — %o)
and

(2) z=U+ Vr + Sexp(Dr),
where

3 r? = (x = x0)* + (¥ — »o)*

is the distance, r, from the center of projection to the
point (x, y). These equations contain 7 unknowns
to be determined, a,, Xq, Yo, U, V; S, D.

The fixed cameras give us stars as star trails. The
time of the beginning (of the end) of the exposure
defines the azimuths and zenith distances of the
beginning (of the end) of the star trails, ajcat),
zcat), i = 1,2,...,n, where n is the number of
positional stars used and ““cat” stands for “catalogue”
denoting the catalogue o;, §; of stars used for the
computation of a;, z;.

We can solve equations (1), (2), (3) by linearizing
them into the gradients of the unknowns, Aa,, Ax,,
Ay,, AU, AV, AS, AD. Starting with a, = 0, x, = 0.
Vo=0, U=0, V=00323arcmm™!, § = 000327
arc, D = 0-113 as the first approximation (¥ is the
scale of the image in zenith and S, D define the
“shortening™ of the scale with r; the given numbers
hold for Zeiss Distagon f[3-5, f = 30 mm). We can
proceed to n equations from differentiating equation
(1) and using it to n stars. This first approximation
corresponds to the orientation and position of the
image in the Zeiss-Ascorecord (x, y)-coordinate system
mentioned above. The resulting equations (4) contain
a multiplying factor, sin z(cat), which converts
differences in azimuths to the great-circle angular
distances comparable to differences in z;:

4 (sin z,(cat)) Aa, +
+ ((y: = o) sin z{cat)[r?) Axy +
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+ ((x; = xo) sin z{cat)[r}) Ay, =

= (ay(cat) — a/com)) sin z,(cat),

where i = 1, 2, ..., n and where a,(com) is the azimuth
computed from (1) with the approximate values
of ag, xo, Vo (all equal to zero at the first step, but
Aag, Axg, Ay, at the second step and so on). We have
also another n equations from differentiating equation
(2) with definition (3):

(5)  ((V+ DSexp(Dr))) (xo — x)[r;) Axo +
+ ((V + DS exp (Dr)) (yo — y))[r:) Ayo +
+ AU + r; AV + (exp (Dr)) AS +
+ (r:S exp (Dr;)) AD = z,(cat) — z;(com),

where Z;qom) is the zenith distance computed from (2)
and (3) with the approximate values of X,, yo, U, ¥,
S, D. Altogether we have 2n linear equations for 7
unknowns Aa,, Axg, Ay, AU, AV, AS, AD and we can
proceed to the least-squares equivalent of the 7 normal
equations for these 7 unknowns. If we denote the
starting values of agy, xq, yo, U, V, S, D as “old”,
we can define the next approximation, the “new”
values:

ag(new) = ay(old) + Aa,
xo(new) = xo(old) + Ax,
(6) yo(new) = yo(old) + Ay,
U(new) = U(old) + AU
V(new) = V(old) + AV
S(new) = S(old) + AS
D(new) = D(old) + AD

The next approximatioh starts again with equations
(4) and (5) with the new values of ao, Xo, yo, U, V, S, D.
The resulting Aay, Axy, Ay, AU, AV, AS, AD define
the next new values of all 7 unknowns by (6). This
procedure is repeated until the values of Aay, Ax,,
Ayo, AU, AV, AS, AD are sufficiently close to zero
(less than a prescribed small value, g). The resulting
aos X0, Yo, U, V; S, D and equations (1), (2) and (3)
then define any conversion of measured x, y into a, z
(or vice versa). Our practical experience with solutions
for thousands of good images taken with the above
mentioned fish-eye objective speaks for quick con-
vergence in almost all cases and the precision (standard
deviation of one measured position) is mostly close
to 1 minute of arc, even in cases of almost 90° difference
in z; The positional stars are usually chosen (if
possible) close to the fireball image covering thus more
than the whole interval of a and z of the fireball.

The above procedure is convergent in casgs of
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enough positional stars. If the night is less transparent,
we sometimes can use only few of the brightest stars.
The tactics we then use within the computer program
FIRBAL is the following: we start with the full
number of 7 unknowns (4 stars and more) and if
the procedure cannot find the solution for them,
we drop one of the unknowns (the first to be drop-
ped is D) and compute with 6 unknowns and again,
if it is not successful, we use 5 unknowns and so on.
For the dropped unknowns, we use the standard
values. They are close to the values given by the above
equation (4), but we determine them for each camera
separately, using several good images, because each
objective differs from the others in a recognizable
way. Another possibility in our computational program
is the solution separately for azimuths (3 unknowns
of equation (1)) and for zenith distances (4 unknowns
of equation (2) and (3) with x,, y, taken from the
solution of (1)). The sequence of automatic choice
of “lower” procedures if the ‘“higher” procedure
does not succeed in finding the solution, is the follow-
ing: all 7 unknowns; 3 unknowns of equation (1) and
4 unknowns of equation (2) + (3) separately; 3 un-
knowns of equation (1) and 3 unknowns of equation
(2) + (3) (D is chosen as standard value); 2 unknowns
ao, %o, (yo = 0) of equation (1) and 2 unknowns U,
V,(D = standard value) of equations (2) + (3);
1 unknown a, of equation (1) and 1 unknown V
of equations (2) + (3); the last regime corresponds
to “no stars available” and only the standard values
of V, S, D are taken in this case with the standard
values of ay = xy = yo = U = 0.

We have also incorporated another special regime
of work of the positional reduction procedure in the
program FIRBAL, if there are only the declina-
tion trails of stars available (bad weather at the
beginning and end of an exposure, making any time
data spurious). We then use the star trails in the
meridian section for defining the zenith distances and
for determining all 4 unknowns of equation (2) + (3)
with parameters of equation (1) all zeroes: a, = x, =
= yo = 0. This regime can also work with a smaller
number of stars (star trails) available, dropping
gradually and automatically D, S, U, V and using
their standard values.

4. Conversion of Measured Coordinates x, y
into «, 6 and Definition of Geocentric
Rectangular System

Now any measured point, and specifically any
measured point of the fireball trail with coordinates
x, ¥ (Ascorecord system) can be converted into a, z
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by means of equations (1), (2) and (3) using the result-
ing values aq, Xg, Yo, U, V, S, D. The standard devia-
tions of these 7 unknowns can either be used to
determine the standard deviations of any value
computed from double-station fireball record or they
can be used for computation of statistical weights
if records from more than two stations are combi-
ned. Azimuth and zenith distance, a, z, the local
sidereal time at the station, 95, of the fireball instant,
and the geographical coordinates of the station,
s, As, then define the right ascension and declination,
o, 6 of any measured point and the geocentric position
of the station.

All the computations are performed in geocentric
coordinates. The conversion of geographic latitude,
@, into geocentric latitude, ¢’, and the value of the
geocentric radius vector at the zero height level, R,
we perform by using the following formulae:

(7 @' = ¢ — 0-1924240867° sin 2¢ +
+ 0-000323122° sin 4¢ —
— 0-0000007235° sin 6¢

-0 02 1/2
R — (40680669-86 1 — 0-0133439554 sin” ¢ >

1 — 0-006694385096 sin? ¢
in km.
The rectangular geocentric system of coordinates
is then given by the following definition:
X = (R + h)cos ¢’ cos 3
(8) Y = (R + h)cos ¢'sin 3
Z=(R+ h)sing".
Any unit vector in direction of «,  can be.written in
the same system of coordinates
£ =cosdcosa
9) n = cos dsin o

{=sind.

5. The Fireball Trajectory

We strictly separaté our measurements of time
marks (breaks of the fireball image) from the measure-
ments of the apparent fireball trail (great circle).
The great circle of the fireball trail is thus determined
independently of measuring the time marks. The wire
setting is usually pointed to approximate centers
of 10 or more suitable dashes regularly spaced along
the whole fireball trail. Overexposed parts are omitted
from these measurements. Thus the plane containing
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the station and the fireball trajectory is defined
independently of the time marks and, moreover,
independently of those parts of the trail, where the
quality of the image is poor. The geometric precision
of the resulting trajectory is significantly increased
this way.

Each point measured for the determination of the
fireball trail can be represented from (9) as &, #;, (i,
i=1,2,..., k, where k is the number of all measured
points on the fireball trail. If a, b, ¢ is a unit vector
perpendicular to the average plane containing the
average fireball trajectory, then

(10)

where 4; = 0 in the ideal case of all measured points
being exactly on the same great circle (each (&;, 7, {;)
being perpendicular to (a, b, ¢)). But 4; are small
values to be minimized by the choice of unknown
vector a, b, c. From the condition

a; + bn; + c{; = 4;,

k
Y 47 = minimum ,
i=1

we can derive the solution of the unknown vector

k
(a, b, ¢) as (symbol [ ] stands for Y ):
i=1

a’ = [&n;] [nd:] — ][]
b = [Em] [&4] — [E1] [nidi]
¢ =[&][n] - [Emi]?

&= (@ + b 4 2

(11)

a =adld
b = bd
c =cld.

Substituting (a, b, ¢) into (8) written for station A,
where the fireball trajectory was photographed, yields
the geocentric position of the plane containing the
station A and the trajectory:

(12)

where
(13)
is the distance of the plane from the Earth’s center.

The fireball is photographed from N = 2 stations.
Any pair of them now define two planes, each plane
containing the fireball trajectory. The intersection
of these two planes is exactly the fireball trajectory
as defined by the fireball photographs taken from
these two stations. If one of these stations is A and
the other B, we can derive from (12) the intersection

all+bm+cl+dy=0,

- dA = aAXA + bAYA + CAZA
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of these two planes:

&= (bACB - bBcA)/d
e = (apcy — aycp)|d
R = (aAbB - aBbA)/d )

(14)

where

(15)

d = ((bA.cB - bECA)Z +
-+ (chA - aACB)2 + (aA_bB - aEbA)Z)I./Z

It is an easy task to convert &g, #g, (g into ag, dg the
right ascension and declination of the fireball radiant
(the direction against the flight of the fireball), if we
solve equation (9). If this computed point, o, Og, is
below the horizon (zg > 90°), then it is the “anti-
radiant’’and the computation proceeds just by chang-
ing the sign of the vector &, 7z, (- We need
also (for computation of statistical weight of the inter-
section) the value of the angle Q of the two planes
given by their normal vectors (a4, by, ¢4), (ag, bg, cg).

(16)

Cos QAB = laAag + bAbB + CACBI H
H((a + b+ cd) (ap + by + cp) 2.

If Q is very small, such intersection of planes looses
its statistical significance. The statistical weight of the
intersection of two planes A, B is proportional to

sin? Q 4p.

6. Projection of any Measured Point
of the Fireball Trajectory onto the Average
Fireball Trajectory as Defined from 2 Stations

Even the points, which define the fireball trajectory
from station A do not lie exactly in the plane contain-
ing station A and the fireball trajectory: they differ
from it by an angle ¥;, which can be computed for
each point from (10): sin y; = 4;. Also all the other
measured points on the fireball record from station
A do not fit exactly this plane. Such points are the
beginning and the end of the trail, and mostly the time
marks. The next task is to find the best (perpendicular)
projection of such points measured on the station-A
record onto the average fireball trajectory defined
by &, Mg, (x computed from (14) (from station 4 and
B records).

If n is the suffix of any measured point, we can
compute &,, 7, {, of this point from measured x,,
¥ (Ascorecord system of coordinates) using (1), (2),
(3), conversion of a,, z, into a,, &, and (9). The
position of station 4 from (8), (X4, Yy, Z,) with
(s s C,) defines a straight line deviating somewhat
from the (station A, fireball trajectory) plane. We

Vol. 38 (1987), No. 4

define the plane perpendicular to the (station A4,
fireball trajectory) plane and containing the straight
line (X4, Y4, Z,), (&, 71 &) The intersection of this
plane with the fireball trajectory is the point we are
searching for (the closest point to the measured point,
which lies on the average fireball trajectory defined
from 2 stations). This plane perpendicular to the
(station A, fireball trajectory) plane can be written as

(17)

The vector (a,, b, ¢,) and d, can be computed from

a,§ + by + ¢, +d, =0.

a, = NaCq — CnbA
(18) bn = CnaA - éncA
Cy = énbA — Nxd4

dn = _anXA - bnYA - anA .

The intersection X, Y,, Z, is then given by the three
planes that should contain this point:

aAé + bAn + CAC + dA = 0
ayé + an + Cgé’ + dB = 0
a,t +bn +c,{ +d, =0

(19)

and the distance of this point from station A4 is given
(20)
o =((Xp — X+ (Y, — X +(Z, — Z)H">.

Good checks of numerical computations are the
conditions

(1)

Now the corrected vector (&, n,, () is given as the
intersection of two planes (a,, by, ¢,4) and (a,, b,, c,):

Xn = rnén 2 Kl = rnnn > le = rllCﬂ *

Can = bycqy — by

Nan = Cu04 — ApCy

Can = ayby — byay
(22) é:. = fAn/lAn

Ma = NanfLan

&= CAn,/lArw where

L = (& + man + 32

is the length of the vector product, just to keep the
vectors to be of unit length. The sign of the vector
& My, ( is defined by the condition that «, computed
from (9) differs only by a small value from «,. If this
difference is close to 180°, then we only change the
sign of the resulting &,, #,. ;.

The projection of this point (X,, Y,, Z,) (corre-
sponding to the direction (£, ;, {;) from station A)
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onto the Earth’s surface can be computed by solving
equation (8), which yields ¢, 9,, R + h,. By means
of (7) the geocentric latitude, ¢, can be converted
to geographic latitude, ¢,. and also R can be comput-
ed. The height, h,, of the point above zero level re-
sults by subtracting R. The local sidereal time, 3,
defines the longitude of the point, 4, (sidereal time
intervals are equal to longitude intervals). The only
correction, which remains to be done, is the correction
of ¢, for the vertical projection (and not in the
direction of radius vector) of the point (X,, Y,, Z,)
to the zero level height to obtain ¢, of this vertical
projection

(23) @0 = 0u + 0 — ,)|(R + 1)

The same procedure (17) to (23) holds also for
station B. If the fireball is photographed from two
stations only, we arrived at the end of our computations
of the fireball trajectory. We use equations (17) to (23)
for each of the measurable time marks from station A.
We have h,, r,, ¢,, 4,. We can compute distances, 1,
along the fireball trajectory, say, from the first time
mark X,, Y, Z,:

(24)

L= [(X, — X)) + (Y, — Yo)* + (Z, — Z,)*]'?

and analyze these distances as function of time (Pecina
and Ceplecha, 1983, 1984) and determine velocities
and decelerations at any point of the fireball trajectory.
We can do the same for the time marks of station B.
We can also compute h, r, ¢, 4, | of the beginning
and the terminal points of the luminous trajectory
of the fireball from station A and from station B.

7. The Average Fireball Trajectory in Case
of Photographs Taken from More
than 2 Different Stations

If the number of different stations with photo-
graphic record of the fireball trajectory is greater
than 2(N > 2), then we have N planes, each contain-
ing the fireball trajectory and the corresponding
station. Because these planes differ slightly from
the exact positions due to errors in measurements, we
have (1;') intersections of these planes. The weighted
average intersection of all these planes is the average
fireball trajectory we are searching for.

We already computed (a, b, ¢) and d, (equations
(12) and (13)) defining the plane of the fireball trajectory
from station A: this is an “average” trajectory in the
sense of using all points measured on the fireball
trails from station A and B. The station-B plane
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of fireball trajectory from the same equations is given
by (ap, bp, cg) and dg. We will compute the direction
of the intersection of these two planes, (éR, s {,’R),
as a preliminary direction of the average trajectory
from all the stations (it differs very little from the
final direction of the trajectory, so that no iterative
procedure is necessary). A plane perpendicular to

(fk, fIr» CR) is:
(25) RE+mn + RE+dg =0

and intersects the two planes from any two stations
S and Lat a point, which lies on the fireball trajectory
defined by these two planes

(26) 056 + bsr’ + CSC + ds = 0
aLé"‘ bLn+ CLC+dL=0'

We now define two different dg of equation (25) by
means of two different points, plane (25) should
go through: the beginning point of the luminous
fireball trajectory from station A: (Xgpe, Yaees Zeec)s
and the terminal point of the luminous fireball tra-
jectory from station A: (X1gr, Yrer, Z1e)-

(27) dR(BEG) = —&Xpec — MrYsec — (rZBEG
(28) dR(TER) = — Xt — MRYrer — (RZ7ER

The solution of (25) and (26) with dg = dg(BEG)
yields a point (X, ¢(BEG), Y.5(BEG), Z,{(BEG)),
which corresponds to the intersection of the fireball
trajectory as defined from stations L and S with the
standard plane (25) (perpendicular to the direction
of the approximate fireball trajectory as defined from
stations A and B). This point has the statistical weight
Gis = g.dssin? Q;s, where Q, the angle of the two
planes, can be computed from (16) and g, and g5 are
the statistical weights of the fireball records from
station Land S, respectively: in case of equal positional
accuracy, g, is proportional to the apparent recorded
total length of the fireball trail as photographed from
station L, and gg is proportional to the same value
from station S. (g, and g5 can be taken directly
as lengths of the fireball trail in millimeters of the
record).

We now have (3) different points of all combinations
L, S with the statistical weight G,5. The weighted
average of these points is the first point on the average
trajectory of the fireball (X(BEG), Y(BEG), Z(BEG))
somewhere close to the beginning of the trajectory.
The second point on the average trajectory, (X(TER),
Y(TER), Z(TER)), which we need for the definition
of the average-trajectory position and direction, can
be computed from (X, 5(TER), Y.5(TER), Z,(TER)),
if (25) and (26) are solved with dg(TER). This
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point lies somewhere close to the termination of
the fireball luminous trajectory. The difference of
coordinates of these two points yields the direction
of the average trajectory (the average radiant) as
it corresponds to the fireball records from all N
stations.

f. = X(BEG) — X(TER)
(29) fix = Y(BEG) — Y(TER)
Z(BEG) — Z(TER).

T
P
1

Using (9), we can solve also for dg, dg of this average
radiant.

8. Projection of any Measured Point
of the Fireball Trajectory at any station S
onto the Average Fireball Trajectory Defined
from All N Stations

In section 6 we proceeded to equations (19), which
can be used to compute the geocentric rectangular
coordinates X,, Y,, Z, of any point on the fireball
trajectory. The measured direction, which generally
does not point exactly to the fireball trajectory, was
perpendicularly projected onto the trajectory. In
section 6 the fireball trajectory was defined from two
stations. The same procedure as in Section 6 can be
used, if the trajectory is defined as an average trajectory
from all N stations by (X(BEG), Y(BEG), Z(BEG))
and (&, iz, {g), from equation (29). If we have any
point on the fireball trajectory measured from any
station S (&,, 71, {,), then the direction to it deviates,
generally, from the direction to the average trajectory
by angle ,: siny, = 4, defined by equation (10)
with unknown ag, by, cg, which would correspond
to the plane containing station S and the average
fireball trajectory (X(BEG), Y(BEG), Z(BEG)),(&,
fir> Cr)- The vector (ag, bs, cs) can be computed from:

i = fi(Zs — Z(BEG)) — G(Y¥s — Y(BEG))
j = G(Xs — X(BEG)) — &(Zs — Z(BEG))
k = &(Ys — Y(BEG)) — 7i(Xs — X(BEG))

m = (i + j> + k})?
(30) as =i/m

bs = j/m

cs = kim

ds = —aSXS - bs]fs - CSZS .
The plane containing the station S and the average

trajectory is then

31)

’

asé+bsﬂ+CSC+ds=0.
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The plane, which is perpendicular to plane (31) and
contains the measured point (£,, #,, ¢,) (the point,
which lies close to the average fireball trajectory,
deviating by y,), can be written as equation (17),
where a,, b, ¢,, d, are given by (18), but written with
(as, bs, cs), (X5, Ys, Zs) instead of (ay, by, c4), (X4
Yy, Zy).

The plane perpendicular to (31) and containing the
average meteor trajectory is given by

(32)

where

aké+bRn+CRC+dR=O,

i = flxcs — (rbs

Jr = lras — &res

kg = &rbs — Mras

mg = (iz + jg + kp)'?

ar = iR/mR

by = jR/mR

R = kR/mR

dg = —ag X(BEG) — by Y(BEG) — ¢z Z(BEG).

(33)

The intersection of the three planes, (31), (17) and (32),
gives the solution & = X, n = Y,, { = Z,, which is
the point (X, Y,, Z,) of the perpendicular projection
of the measured trajectory point onto the average
fireball trajectory. Its distance from station S, 7,,
is given by (20), where (X,, Y,, Z,), (Xs, Ys, Zs)
are written instead of (X,, Y,, Z,), (X, Yy, Z,), re-
spectively. Using equations (22) for station S, we can
convert (X,, Y,, Z,) into the corrected direction from
station S to the average-fireball-trajectory point.
The projection of (X,, ¥,, Z,) onto the Earth’s surface
is described at the end of Section 6, and equations
(23) and (24) can be used in complete analogy as
in case of the solution for fireball trajectory given by
two stations only. The resulting values for station S
and the average fireball trajectory are h,, 7,y @ps Ans Ly
for each point measured on the station — S record
of the trajectory.

9. Time Marks

In general the time marks are given by any timed
occultation of the moving fireball image. The simplest
case is a rotating shutter in front of a classical camera
objective, giving a time-mark each 1/np second,
where ng is the number of occultations of the objective
per second. In our case of fish-eye objective, we placed
our rotating shutter very close to the focal plane,
and the progressive motion of the shutter combines
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with the motion of the fireball image. Thus a correction
for this effect is necessary.

If we define the relative time as zero at the first
measurable time-mark (t = 0 for I = 1,), then the
relative time, ¢t,, of time mark number n is

(31) t,= (I, — I + n Ag,[(2n))/f ,

where ngy is the number of rotating shutter arms
(nsg = 2 in our case), f is the number of rotations
of the shutter motor per second and Ag, is an angle
between the position of the shutter at the occultation
instant of time mark 1 and time mark » and is given by

(32)

Ag, = arctan ((x, — x.)/(ys — »,)) —
— arctan ((x, — x)/(ys — ¥o)) >

where (x,, y.) are the rectangular coordinates of the
axis of the rotating shutter motor, (x,, y,) are the
rectangular coordinates of the time mark 1 and
(x> ya) are rectangular coordinates of the time mark
n, all these rectangular coordinates in the original
system of the Ascorecord measured coordinates
of the image. In our case, x,, is nearly 0 and y, = 52
or —52 mm, depending on the two opposite orienta-
tions we exclusively use for our fixed cameras.

10. Length, Velocity, Deceleration
as Function of Time

Having l, and h, for each t,, we can use different
methods to compute the best fit of them as functions
of time: different sorts of interpolation formulae;
numerical differentiation of I, and some sort of
smoothing the resulting velocities; the exact solution
of the single-body motion equations of meteor physics
(Pecina and Ceplecha, 1983, 1984). The last method is
preferable in all cases, where enough change of velo-
city is inherent in the measured I,.

One of the parameters of the problem of smooth
fittingof 1, to ¢,isalways v, the initial (no-atmosphere)
velocity. This value corresponds to velocity very high
in the atmosphere before the ablation of the meteoroid
starts and before the deceleration overweights the
Earth’s gravity. The initial velocity, v, and the radiant
(& 7rs (r) = (&, Og) define the initial velocity vector,
which is used for the meteoroid orbit computations
together with the average velocity, 7, at the average
point somewhere in the middle of the average trajectory
(the same direction &, Jy is used for 7).

11. The Fireball Orbit

We start with the average observed values v, & and
&g, Og. First, we correct the observed velocity vec-
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tor, ¥, ag, 0 for the Earth’s rotation. The Earth’s
rotation velocity, v, is given by
(33) vg = 2n(R, + h,) cos ¢,/86 164-09 in km/s,

if (R, + h,), the radius vector to the average point
(X,, Y,, Z,) on the average fireball trajectory, where o
was derived, is expressed in kilometers. Here ¢, is the
geocentric latitude of this average point. If the geo-
centric coordinates of the observed radiant are given
by (9), we have the corrected velocity vector b(v,,,
¥y, ) given by the observed average velocity vector
5(D,, By, 0,), Where o, = [0] &, 7, = || lr, D, = [0] &
and by the corresponding geocentric representation
of (33):

Ve = U, — Vg COS O

(34)

v,. = D, — vgsin og

UZC = 52

where o is the right ascension of the east point
corresponding to latitude @, and longitude 7, of the
average point of the average fireball trajectory,

The next step is the correction of 7, to the Earth’s
gravity, which will give the geocentric velocity vector
v6 (Vg Vgy» Vg,)- First, we correct v, for the no-
atmosphere value (not changing the direction of the
vector) by adding the difference of the initial velo-
city minus the average velocity to the absolute value
of vector 9. The no-atmosphere value of 7, is then v

(35) Ve = Do + Uy — D

and the absolute value v; of the geocentric velocity
vector is then

(36)  vg = (v2, — 79 T201-0(R, + F,))?>

inkm, sunits.

The coordinates of (34) can be transformed by (9)
into a, J., the right ascension and declination of the
radiant corrected for the Earth’s rotation. Then z, is
computed from

(37)

cos z, = sin d, sin @, +
+ cos 8, cos @, cos (3, — a,) .

In (37), the geocentric latitude, @,, of the average point
on the average trajectory is used and thus z, is the
zenith distance from the ‘“‘geocentric zenith”. This is
done because the gravity acts gradually upon the
change of direction of the meteoroid approaching
the Earth and the average point of the gravity action
lies 2R from the Earth’s center. Thus the meteoroid
motion is governed mostly by the whole Earth’s
body and not only by the particular part over which
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it was observed. We correct now z, by Az, > 0 as
given by

(38)

Az, = 2 arctan ((v,, — vg) tan (z.[2)/(v,. + v5))

and

(39)

is the zenith distance of the geocentric radiant. Its
azimuth did not change from the ¥.-value and can
be computed from o,, 8, (again, geocentric latitudes
are used).
(40)
We can transform ag, z4 into the right ascension and
declination of the geocentric radiant, og, g, by @, 3.
Because we used apparent coordinates of stars to
convert x, y coordinates measured on the photographic
record into the apparent azimuths and zenith-distances,
a, z, the resulting ag, dg are also in the apparent
coordinate system. It is usual to convert them into
coordinates of some standard epoch (1950-0 or
J2000-0), which is a standard procedure described
in “The Astronomical Almanac”, and depends on
precessional and nutational constants and the time
elapsed from or to the closest standard epoch.
Having vg, og, dg, We can compute the heliocentric
velocity vector, vy, Ly, By, of the meteoroid in orbit
at collision with the Earth (L, B are the ecliptical
longitude and latitude). First we convert the apparent
o, 0g into ecliptical longitude and latitude, Ls, Bg
for the epoch of the closest beginning of the year or
the middle of the year. The heliocentric ecliptical
system of rectangular coordinates we define as

zZg = z, + Az,

.4g = 4,

X = rcos Lcos B
Y = rsin Lcos B
Z =rsin B

(41)

where r is the distance from the Sun (radius vector).
The position of the Earth in this system can be found
either directly in “The Astronomical Almanac” or
can be computed from the solar longitude, Lgy, con-
verted to the coordinate system of the closest beginning
of the year) minus 180°, (ELgyy — 180°), and from the
radius vector of the Earth, r, using definition (41).
The velocity vector of the Earth in orbit can be com-
puted from the time change of the solar longitude,
Lgyn, and from the time change of the radius vector,
r. If V,; is the velocity of the Earth in AU per solar
day, and ¢ the time in solar days, then

_ _d_T-' 2 4 (r(_iES_K_IN>2]1/2
Ar d dt '

(42)
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The direction of ¥, is given by the ecliptical longitude
of the Earth’s apex, L,p:

@9 Lur = Lo = w2 () [+ 2o).

(All angles in (43) are in angular measure of arc)

The rectangular coordinates of the heliocentric
velocity of the meteoroid, vy (vy,, vy, vy;), can be
computed from

Uy = —Ug €0s Lg cos Bg + V,pcos L,p
(44) vy, = —vgsin Lgcos Bg + Vjpsin Lyp
vy, = —Vgsin Bg .

Equations (41) can also be written for velocities

Uygx = Uy €OS Ly cos By

(45) vy, = vy sin Ly cos By
vy, = Uy sin By.

Thus from (44) we can compute all rectangular
components of the heliocentric velocity vector and
substituting it with opposite sign into (45), we can
also find the heliocentric radiant of the fireball, Ly, By,
and the heliocentric velocity, v,. Because in (44), the
velocity V,p is in AU per solar day and vg from our
photographic records was computed in km/s, we need
a conversion factor. It holds (system of the IAU (1976)
astronomical constants):

(46) vg [km/s] = 1731-456829v; [ AU/solar day] .

All velocities in (44) must be in the same system of
units. (In many papers on meteor orbits only rough
values of conversion factor were used, mainly based
on wrong content of 1 AU in km.)

Now, if the velocities are in units of AU/solar day,
we have the semimajor axis, a, of the orbit from

(47) a = k*r|(2k* — rof),

where k is the Gaussian gravitational constant in
AU-solar day-solar mass units (k = 0-01720209895).
The longitude of the ascending node, Q, depends
on the sign of By:

(48)

for By>0,
for By<0O,

Q = Lgyn ;
Q=Lyn—T.

The inclination of the orbit, i, is given by its cosine
and sine:

Jpcosi = (rog, sin Lgyy — rvg, cos Leyn)/k
(49) /psin i = —ruy, sin Lgyy/(k sin Q) or
Jpsin i = —rog, cos Lgyy/(k cos Q) .

Publishing House of the Czechoslovak Academy of Sciences * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987BAICz..38..222C

Vol. 38 (1987), No. 4

Eccentricity of the orbit, e, and the true anomaly, v,
can be computed from

(50) esin v = —./(p) (vuy cOs Lsyn + vny sin Leyn)/k
ecosv = plr —1,
where p is given by equations (49).
The perihelion argument, w, depends on the sign
of BH:

(51)

for B4y>0, o=7n1—-v;
for By<0, o= —v.

If the orbit is eliptical (a > 0), the perihelion distance,
g, and the aphelion distance, Q, can be computed
from geometrical relations

(52) g =a(l — e
Q0=a(l+e
If the true anomaly, v, is converted into the mean

anomaly, u, we can compute the time DT elapsed
from the last perihelion passage of the meteoroid:

(53) DT = (ua®?)fk .

All the angular orbital elements now hold for the
closest beginning of year (middle of the year) and
have to be converted into values holding for some
standard epoch (1950-0 or J 2000-0) using the formula
and numerical parameters from “The Astronomical
Almanac”.

12. The Photometry

The Zeiss-Distagon (f/3:5, f = 30 mm) fish-eye
photographs can also be used for the fireball photo-
metry. With enough comparison stars (star-trails),
the precision of photometry of +0-1 to 40-2 stellar
magnitudes can be achieved in the entire field from
zenith (as center projection) down to zenith distance
of 70°. The last 20° to the horizon are not so good,
but can still be used photometrically with limited
precision of + several tenths of stellar magnitudes.
The biggest trouble in photometry of a fireball trail
lies in the fact that usually a good part of the trail
is the brightest object on the whole photographic
record and thus the extrapolation of the characteristic
density curve sometimes yields results with standard
deviations exceeding 1 stellar magnitude.

The definition of the diameter of a stellar image as
function of the star brightness is so good in the interval
0° < z < 70° that measurements of the diameter
of the stellar image (thickness of the star trail) can be
used for photometric purposes.

Using 10 to 15 comparison stars for photometry,
we can construct the characteristic density curve.
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We transform the catalogue magnitudes in the inter-
national 5-color UBVRI system to our “panchromatic”
system of magnitudes, V,, (emulsion ORWO NP-27):

(54)

and we use V, for the definition of the characteristic
density curve. The apparent V, is a function of zenith
distance, z, and the velocity v, (mm/s) of the image
(trailing velocity, fixed camera: daily motion): V, =
= Vp(z, v,). We use the standard trailing velocity v, =
= 0-001 mm/s for our focal length of 30 mm. The
values of V, computed from (54) are ¥V, = V,(0, v,).
For any z and v,, we can then correct them to a given z
and the standard trailing velocity by

(55)

V,=V+062B—V)—05(V-R),

V,(z, 0:001) = V,(0, v,) +
+ K(1/cos z — 1) + 2-5log (v,/0-001)

The coefficient K is a combination of the extinction
coefficient and of the coefficient describing the weaken-
ing of the image with distance from the center of
projection (the center of projection is approximately
in zenith). Zeiss Distagon f/3-5, f = 30 mm, at an
average night transparency in Europe gives about K =
0-35. Using now V,’s from (55) and the measured
widths, w, of star trails, we can construct the characte-
ristic density curve. Measuring then w for the points
on the fireball trail, we can ascribe V, in system of
(55) to each measured fireball point. We transform
then these V,’s into the absolute (100 km distance)
panchromatic fireball magnitudes, M,, by taking
into account the difference from system (55) in z and
v, and the difference of r from 100 km and finally
the difference of occultation by the rotating shutter
(star images are occulted by the shutter, but the fireball
image is not). Then the resulting absolute panchromatic
magnitude of any fireball point can be computed from

(56)

M, = V,(2,/0-001) — K(1/cos z — 1) —
— 2-5log (v,/0-001) — 5 log (r/100) + 0-75,

where v, is the trailing velocity in mm/s of the fireball
image (it is easy determined at any point from the
measured coordinates x, y of the time marks),  is
the distance of the fireball point from the station and
the correction 075 magnitudes originates from the
rotating shutter occultations of the comparison stars.

13. The Dark Flight and the Impact Point

If a fireball penetrates very deep into the atmosphere,
the computed velocities and decelerations at the end
of the luminous trajectory may yield a computed mass
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of the body as high as a hundred grams and more.
In these cases, a meteorite fall may follow the fireball
and we are interested in predicting the meteorite
impact point from the data of the luminous trajectory
of the fireball. After terminating the luminous tra-
¢ jectory, the body continues in its flight in a ‘“‘dark-
flight trajectory” without emitting the light. The last
measured velocity and deceleration at the terminal
point, the position of the terminal point and the
direction of flight define completely the solution
of this problem. One of the complications in the
computations of the dark flight lies in the poorly-
known wind field and the main uncertainity originates
from the unknown shape of the body, which we
have to assume to be symmetrical. The equations of
motion of a non-ablating body can be written as

(57)

(dv,/dh) = (—I'Sev(V; + v;) — 20(v, sin @ +
+ v, cos ¢ sin ag))/v,

(dv,/dh) = (—I'Sgvv, — g + 2w cos @ .
.(vysin ag + v, cos ag))/v,

(dv,/dh) = (I'Sev(V, + v,) +
+ 2w(v, sin ¢ — v, cos @ cos ag))/v; ,

where v, the velocity of the meteoroid is composed
of 3 perpendicular components: the vertical plane
containing the fireball trajectory contains the hori-
zontal component of the velocity, v;; the same vertical
plane contains the vertical velocity component,
v, = dh/dt; the horizontal direction perpendicular
to the vertical plane containing the fireball trajectory
contains the other horizontal component of velocity,
v, (perpendicular to the fireball trajectory in horizontal
direction). The signs of the velocity components are
chosen so that v; > 0 is in the direction of the meteor-
oid flight, so that v, > 0 is up (in the real problem of
the meteoroid motion v, < 0 always), and so that
v, > 0 to the right hand side viewing along the
meteoroid motion. The other symbols of equations
(57) are: V,, V, the wind velocity components,
V, > 0 against the meteoroid motion, ¥V, >0
against the positive direction of v,; I' the drag
coefficient as function of Mach number I' = I'(M)
(and thus function of v and the air temperature);
S = m/s the ratio of meteoroid mass, m, and meteor-
oid head crossection, s; ¢ the air density; ¢ the
geographic latitude; ay the astronomical azimuth of
the direction of the meteoroid flight (south: ag = 0°%;
west: ag = 90°); w the angular velocity of the Earth’s
rotation (2n/86 164). The Coriolis-force terms in (57)
can be omitted; they are only a small correction
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factor in the majority of practical cases. The solution
of differential equations (57) can be performed
numerically and we use the Runge-Kuta method
of integration in this case. We usually chose the
integration step dh = 0-01 km, but higher up in the
atmosphere even bigger steps do not decrease the
accuracy of computations. At each integration step,
the velocity of the meteoroid is computed from

(8)

The initial values of v, v,, v, for the integration of
system (57) with (58) are given by

v =0 + (v, + V)? + (v, + V).

v, = vpSin zg
(59) v,, =

vx=0’

—Ur Cos Zr

where vy is the velocity at the terminal point of the
luminous trajectory of the fireball computed from the
measured lengths along the fireball trajectory (see
section 10) and zg is the zenith distance against the
direction of flight (zenith distance of the radiant).
The initial value of I'S is given by the drag equation
written for the terminal point of the luminous trajectory.
This initial value of I'S is completely given by the
observations: implicitly it contains the unknown
mass, shape, density and drag coefficient of the
meteoroid. Thus the relative change of I'S during the
decreasing velocity is the only necessary assumption
for solving (57). We change I' as function of Mach
number, M, for a symetrical shape and assume S
constant (it means no change in the shape and orienta-
tion of the flight position takes place).

(IS)y = —(dv/dt)r/(er07) ,

where v7 and (dv/dr); are the velocity and deceleration
observed at the terminal point of the fireball luminous
trajectory and g; is the air density at the terminal
height hy. The air densities for low penetrating fireballs
are usually available from meteorological acronomical
measurements, or higher up (between 30 to 40 km)
they can be extrapolated from them with the standard
relative change taken from CIRA 1972 atmopshere
(month and geographic latitude averages). The wind
direction and velocity is given from aeronomic data
and we usually take the closest values in time and
location of the fireball and extrapolate (if the loca-
tions are not separated by singularities in meteoro-
logical situation). From aerological measurements,
we can determine at each integration step for the
particular height:

T = T{°C) + 27315

(60)
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o = (3-483676P|T) x 10~* g cm™3
¢ = 0:0200468T"? kms™!,

where temperature, T, is the absolute temperature, P
the air pressure in millibars (hectopascals), ¢ the air
density in g em™3 (Mgm~™%). We are also interes-
ted in the total length of the dark flight from the ter-
minal point of the luminous trajectory to the impact
point: L denotes the component of this length in
direction of the flight and L, denotes the component
perpendicular to the flight (positive to the right hand
side viewing along the fireball flight), both these compo-
nents are located in the horizontal plane or more
accurately, in the zero level height of geoid. If h;is the
height above sea level of the Earth’s surface at the
impact point and hp is the height of the terminal
point of the luminous trajectory, then

(62) L= th(vl/vh) dh

hs
hr

L= f (esfor) dh .
hs

We can compute the integrals (62) at each numerical
step, dh, of the Runge-Kuta solution replacing h, by h.
Thus we can compute the partial lengths L= L(h),
L, = L/(h) as function of height from hr down to h,.
The starting values of them are L{h;) = L (hy) = 0.

The last value from aerological measurements we
need at each step of numerical solution of (57) with
(58) is the direction of the wind. It is given by geodetic
azimuth, ay, from where the winds blows: nothern
wind ay = 0°, eastern wind ay = 90°. Keeping
this definition for the wind direction and keeping the
astronomical azimuths for the meteoroid direction
of flight, we can compute at each step of integration
of (57) with (58) the following values:

(63) v

V, = Vsin (ay — ag),

Veos (ay — ag)

where Vis the total wind velocity. If the components
of the geographical coordinates along the flight are
denoted by suffix I, the components of them per-
pendicular to the flight are denoted by suffix x (positive
to the right-hand side), then we have at each step:

a, = ag+ 90°

de, = [cos ag/(R + h)] dL
(64) di; = [sin ag/((R + h)cos ¢)] dL

dg, = [cos a,/(R + h)] AL,

dA, = [sin a /(R + h) cos ¢)] dL,
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and the total change of geographical coordinates
(65) do = do, + do,
dl =di, +di,.

The instantaneous azimuth and zenith distance against
the direction of the meteoroid flight (of the radiant)
is given by

(66) a

ag + arctan (v,/v))
arctan [(v} + vl)[vy ]2 .

The numerical solution of (57) with (58) starts at the
terminal height, hy, of the luminous trajectory above
the point given by geographical coordinates ¢r, Ar,
with v;, v, v, given by (59) and (I'S); given by (60).
We then proceed step by step using the aeronomical
data and equations (61), (62), (63), (64), (65), (66)

z

. and a tabulated function I'(M). (I'(4) = 0-580, I'(3) =

= 0618, I'(2) = 0632, I(1-5) =059, I(12)=
= 0552, I(1) = 0-504, I(0-8) = 0441, I(0:6) =
= 0-389, I'(0-4) = 0-351, I'(0-2) = 0-328). Thus for
each height, h, we can compute v;, v,, v, v, L, L,, ¢, 4,
ag, zg. We continue until the height is equal to the
height of the Earth’s surface, h,, and we then have for
the impact point: v(h,) (the impact velocity), L{h,),
L,(hy), o(hy), Ahy), ag(h), zg(h). The standard devi-
ations of all measured values yield the standard devi-
ations of these computed quantities and define so-
called impact area, where the meteoritic body may
have landed with the probability of being inside space
of one standard deviation.

All these computations are independent of the
meteoroid mass. However, we can estimate the terminal
mass of the meteoroid using I'S computed from (60)
and substituting for I' = 0-58:

(67) m = (0-05016/I'S))*® for the body density

0m = 37 Mg/m3
m = (0-07094/(I'S))? for the body density
Om = 22 Mg[m?.

14. The Problem of Standard Deviations.
Computer Program FIRBAL

The values computed from the equations of this
paper depend on the accuracy of observational values,
on the accuracy of measurements of x, y coordinates
on the photographic record and on the accuracy of the
time data. The standard deviation of any of the com-
puted values can be determined as well. It depends
on the partial derivatives according to independent
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parameters defining the computed value. Mostly,
these partial derivatives can be expressed in closed
analytical form. If not, they can always be computed
numerically by repeating the computations with a small
change of the one parameter in question. Having n
independent parameters, p; (i =1,2,...,n), and
their standard deviations, ¢;, we can compute the
standard deviation of any function f = f(p;) from

n 2
&2 = .;1 (%) el.

All equations and procedures of this paper and
procedures for the standard-deviation computations
(and some more procedures) were incorporated in
one computer program FIRBAL, (~4000 Fortran
statements). This program is available at the Ondfejov
Observatory. The majority of the computed and printed

(68)
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values are accompanied by their standard deviations.
As a numerical example of all equations in this paper,
you can use the values published for some of our photo-
graphic fireballs in several papers (the most suitable
are: Ceplecha et al., 1976; Ceplecha, 1977; Ceplecha
et al., 1979).
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