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ABSTRACT 

We present the results of numerical simulations of the origin and evolution of the solar system comet 
cloud. We assume that comets formed in the outer planetary region and that their orbits evolved to their 
current state through planetary perturbations, stellar encounters, and the Galactic tide. The evolution is 
followed using a hybrid integration scheme which directly integrates the regularized equations of mo- 
tion for cometary orbits with large semimajor axes, while solving an energy-diffusion equation for more 
tightly bound orbits. Stellar encounters are introduced via a Monte Carlo approach using the impulse 
approximation. The simulations show that the formation of the comet cloud is driven by the interaction 
between planetary perturbations, which drive diffusion in semimajor axis a at constant pericentric 
distance q, and tidal torques, which change q at fixed a and thereby remove cometary perihelia from the 
planetary region. An inner edge to the cloud is found at ^ 3000 AU—roughly the radius at which the 
timescales for the two effects are equal for comets formed in the Uranus-Neptune region. The density 
profile between 3000 and 50 000 AU is roughly a power law proportional to 3 5. The inner or Hills 
Cloud (û<20 000 AU) thus contains roughly five times as many comets as the classical Oort Cloud 
(a>20 000 AU), but comets from the inner cloud enter the inner planetary region only during brief 
comet showers triggered by the passage about every 100 Myr of a star which comes within 104 AU of 
the Sun (cf. Hills 1981). Our simulations suggest that the flux of comets during a shower may be as 
much as 20 times higher than the steady-state rate, but is unlikely to be larger, no matter how strong the 
perturbation. 

I. INTRODUCTION 

The modern era in the study of comet dynamics began 
with the celebrated paper by Oort ( 1950), in which he pro- 
posed that the Sun was surrounded by a reservoir or cloud of 
comets with semimajor axes a and energies *= 1/a in the 
range 0<x510-4 AU_ 1 (our use of the term “energy” for 
x is a slight abuse of notation since the true orbital energy 
differs from x by the factor — i m ). Oort argued that 
stellar perturbations occasionally brought the perihelion dis- 
tance ^ of a comet in the cloud into the region # ^ 10 AU, 
where planetary perturbations are important. In this region, 
the typical change in energy per perihelion passage due to 
planetary perturbations is greater than the initial energy of a 
comet in the cloud; hence the comet rapidly either (i) es- 
capes from the solar system (as soon as* < 0) or (ii) diffuses 
to a much more tightly bound orbit. Oort suggested that the 
observed concentration of comets with energies in the range 
0<xS 10“4 AU-1 arose from comets entering the plan- 
etary system for the first time (“new” comets) with perihe- 
lion sufficiently small (qS2 AU) that they are visible from 
the Earth, while the comets with energy x £ 10"4 AU were 
once new comets but had already suffered perturbations on 
one or more previous perihelion passages. 

Oort’s model of the comet cloud has been modified and 
extended in several ways over the past decade: (i) En- 
counters with passing molecular clouds may have a perturb- 
ing influence on the comets which is comparable to that of 
stars (Biermann and Liist 1978; Biermann 1978). However, 
the influence of molecular clouds is difficult to estimate be- 
cause their parameters are so uncertain (Hut and Tremaine 
1985), and the consistency of observations with models of 
the comet cloud that neglect molecular clouds suggests that 
they do not have a major qualitative influence on the evolu- 

tion of the comet cloud. Moreover, most of our attention is 
focused on comets in orbits with a S 104 AU, which are rela- 
tively immune to molecular cloud perturbations because of 
adiabatic invariance. For these reasons, in a preliminary in- 
vestigation such as this one it seems appropriate to neglect 
molecular clouds, and we shall do so throughout this paper. 
(ii) The Galactic tidal field exerts a torque on the cloud 
comets which can cause them to drift into the planetary re- 
gion. It appears that the tidal torque dominates stellar per- 
turbations as a source of new comets, contributing roughly 
80% of the flux of new comets (Heisler and Tremaine 1986; 
Morris and Muller 1986; Heiser et al. 1987; Bailey 1986). 
(iii) Hills (1981) has observed that we should not generally 
expect to see any new comets unless the typical perihelion 
change due to stars and tides is large enough to bring the 
comet from outside the planetary system (qZ 10 AU) to 
inside the visibility zone (qS2 AU) in one orbit. This condi- 
tion can be shown to imply that new comets should have 
semimajor axes exceeding about 2X 104 AU, which is satis- 
fying close to the minimum semimajor axis actually ob- 
served in the concentration of comets near x = 0. Thus the 
minimum observed semimajor axis of new comets does not 
necessarily represent the inner edge of the comet cloud, and 
Hills stressed that the comet cloud may extend to much 
smaller radii and contain far more comets with a 52x 104 

AU than with ö > 2 X 104 AU. The comets in the inner cloud 
would only contribute to the flux of new comets during com- 
et “showers” occurring after a particularly strong stellar 
perturbation. To distinguish the outer cloud, ß>2X 104 

AU, which is directly observed through the new comets, 
from the hypothetical inner cloud, a < 2X 104 AU, we shall 
call the former the “Oort” Cloud and the latter the “Hills” 
Cloud. The relative population of the Hills and Oort clouds 
is perhaps the largest single uncertainty in our understand- 
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1331 DUNCAN ETAL. : THE COMET CLOUD 1331 

ing of the comet cloud; the population of the Hills Cloud 
may range from zero to more than 100 times that of the Oort 
Cloud. 

Another major issue is the formation of the comet cloud. 
One appealing theory is that comets formed in the planetary 
system and were scattered out to the comet cloud by en- 
counters with the planets (Oort 1950; Kuiper 1951 ). In this 
view, the outer parts of the solar accretion disk first con- 
densed into small bodies composed of ices and rocks; some of 
these accreted to form Uranus and Neptune, while the re- 
mainder were repeatedly scattered by the growing planets 
until they reached semimajor axes large enough for tides and 
stellar perturbations to remove their perihelia from the plan- 
etary region, after which they are relatively immune to plan- 
etary perturbations. The bodies that reach “safety” in this 
way comprise the comet cloud that is present today. 

Several competing theories of comet formation have been 
proposed (for example, that comets form in the outskirts of 
an extended solar nebula at distances of several hundred 
AU), but they will not be considered here (see Fernández 
1985 for a review). Instead, we shall assume that comets are 
formed in the region of the outer planets and investigate the 
process by which cometary orbits evolve through planetary 
scattering and perturbations by stellar encounters and the 
Galactic tide. Our principal aim is to determine the relative 
efficiency of populating the Oort and Hills clouds and hence 
to determine, within the context of this formation scenario, 
the present relative cometary populations of these two re- 
gions. Before discussing the results of the detailed simula- 
tions, we present some rough timescale arguments in Sec. II 
which will delineate the key features of the evolution. 

Our work is similar in many respects to a calculation car- 
ried out by Shoemaker and Wolfe ( 1984); the relation of our 
results to theirs is discussed in the conclusions. 

II. TIMESCALES 

The growth of the outer planets by accretion of small bo- 
dies has been investigated numerically by Fernández and Ip 
(1981,1983,1984). These simulations show that the growth 
time for Uranus and Neptune is very uncertain: depending 
on such factors as the presence of other large bodies and the 
existence of extended gaseous envelopes around the proto- 
planets, the growth time may range from ^ 108 yr to several 
times 109 yr or even longer. Even after the planets are 
formed, their long-term efficiency in scattering small bodies 
that do not make close approaches to the planets is difficult 
to determine. In view of these uncertainties, we shall not 
attempt to follow in detail the initial stages of the process by 
which the planets scatter small bodies from the protoplane- 
tary disk into the comet cloud. Instead, we simply note that 
the evolution to large semimajor axis is almost always 
through repeated weak scatterings: hence every comet that 
will eventually enter the cloud must, at some time, have any 
given semimajor axis a{, which we shall take to be a{ = 100 
AU, and we may simply specify our initial conditions 
through the distribution of times, perihelia, and inclinations 
at which the comets first have semimajor axis a{. We consid- 
er two limiting cases for the temporal distribution of the 
appearance of comets at : (i) a “prompt” model, in which 
all of the comets are scattered out to ax shortly after the 
formation of the solar system at r = 0; (ii) a “steady-state” 
model, in which the rate at which comets are scattered 
through a{ is constant in time. For simplicity, in both models 
we assume that all of the planets have their present masses at 

Fig. 1. The rms energy change per encounter for planetary pertur- 
bations is plotted as a function of perihelion distance. The light 
squares, light triangles, light circles, dark squares, dark triangles, 
and dark circles correspond, respectively, to inclination ranges 
relative to the ecliptic of 0o-30°, 30o-60°, 60o-90°, 90o-120°, 120°- 
150°, and 150°-180°. Each point is based on 3000 scatterings with 
random argument of perihelion. 

all times, although another interesting model would be one 
in which the outer planets grew slowly to their present 
masses. 

Once the semimajor axis a^ai = 100 AU, the scattering 
process becomes much simpler, for several reasons. First, 
the orbital period of the comet is sufficiently large [jP = 1000 
yr (a/100 AU)372] that the positions of the planets at 
successive perihelion passages may be considered to be un- 
correlated; thus the planetary perturbations cause a random 
walk of the cometary orbital elements. Second, since the or- 
bit is near parabolic, the probability distribution of the per- 
turbations is independent of the semimajor axis of the comet, 
and depends only on the perihelion distance q, the inclina- 
tion /, and the argument of perihelion cd. Figure 1, which is 
modeled after Fig. 1 of Fernández (1981), shows the root- 
mean-square (rms) energy change per passage, as a function 
of q and i. Each data point was obtained from the distribu- 
tion of energy changes for 3000 comets with random values 
of cd. We have suppressed the dependence on cd because the 
energy change is not a strong function of cd for small inclina- 
tions, which are the most important in our discussion. Fig- 
ure 1 is more fully discussed in Sec. IV. 

The third reason why the scattering process is simple is 
that perturbations in q and i are much less important than 
perturbations in energy x. To see this, letD(x) mdD(q) be 
the typical* energy and perihelion perturbations per perihe- 
lion passage of a comet with given q and /. Since both q and x 
undergo a random walk, the characteristic number of pas- 
sages required for the energy to change by an order equal to 
itself is Nx çz [x/D(x)]2, and the typical perihelion change 
in Nx passages is kq~D(q)Nx

/2^xD(q)/D(x). Similar 
expressions hold for the changes in /. In a typical case, say 
/ = 10° and q = 25 AU, we find D{x) = 2.4X IO“5 AU"1, 
D(q) = 5.6X 10-3 AU, and D(i) = 2.8X 10-4, and hence 
the typical changes in the other orbital elements over the 

♦The meaning of “typical” is not very well defined, since there are occa- 
sional close encounters with a planet which lead to large energy changes. 
However, our simulations indicate that close encounters contribute less 
than 30% to the rms energy change over the relevant number of orbital 
passages to be used in the arguments below. This point is discussed more 
fully in Sec. IV. 
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energy diffusion timescale are À#~2 AUX (100 AU/a), 
Ai~l°X ( 100 AU/a). These are sufficiently small that both 
q and i can be taken to be approximately constant once 
a £ 100 AU. 

Thus, for a ^ 100 AU, planetary perturbations cause a 
random walk in energy x at constant perihelion q and incli- 
nation i. The nature of this random walk has been investigat- 
ed by many authors. Yabushita (1980) shows that if 
nixtfdx is the number of comets at time t with energies in 
the range [x,x + dx] for given q and /, then n satisfies the 
diffusion equation 

dn _ 1 1/2 <?2(«x3/2) 
dr 2 0 dx2 (1) 

where x0 is arbitrary, r = t/tD (x0 ), and the diffusion time is 

2ir 
iD (*) = 

D2M 

= IX106 yrl 

V G^r. 

f\04J 
\~a 

Auy 2rio-4Au- 
L D(x) 

(2) 

In Eq. (2), the diffusion timescale iD is defined by the 
random-walk relation tD(x) =P(x)x2/D 2(x). Notice that 
iD decreases with semimajor axis as a-1/2 (Fig. 2). Thus, a 
typical comet that reaches large semimajor axis will have 
spent most of its time close to the planetary region. 

The Green’s function corresponding to the initial distribu- 
tion «(x,i = 0) = <5(x — x0) is 

n(XJ> - ^“p[ - tO + [tÍÍJ'I • 
V (3) 

where I2 is a modified Bessel function. The simple solution 
provided by Eq. (3) fails when the semimajor axis becomes 
too large, for several reasons: 

(i) When the typical energy change per orbit D(x) is com- 
parable to x, the diffusion approximation fails. 

(ii) Torques from the Galactic tide lead to changes in the 
perihelion distance q and hence D(x) can no longer be con- 

Fig. 2. The relevant timescales for the evolution of a solar system 
comet are plotted as a function of sêmimajor axis. P(a) is the 
orbital period; i D is the diffusion timescale for planetary perturba- 
tions (Eq. (2) ); tq is the tidal torquing time from the Galactic disk 
defined by Eq. (5) for Aq = 10 AU and q = 25 AU; tT is the time 
required for Galactic tides to move a comet from minimum perihe- 
lion to maximum perihelion and back. The age of the solar system 
is indicated by the heavy horizontal line. 

sidered fixed. The orbit-averaged rate of change of angular 
momentum due to tides is (Heisler and Tremaine 1986) 

= — SirGp^e2 sin21 sin 2coG . (4) 
dt 

Here/?0c-0.185 pc-3 is the mean density in the Galac- 
tic disk, / is the inclination relative to the Galactic plane, and 
coG is the argument of perihelion relative to the Galactic 
plane. For highly eccentric orbits, J^^lG^/^q, and thus 
the timescale on which the perihelion distance changes by 
A^^^is 

(GL^0)1/2Ag 
q 5irGptfill2a2 sin2/e 

where we have set e= 1, replaced sin 2coG by its median 
absolute value, 1/^/2, and replaced the inclination / by its 
value for orbits in the ecliptic, 7e = 60.2°. The quantity tq is 
plotted in Fig. 2. Yabushita’s Green’s function (3) is invalid 
whenever ^ ^ fD, where tq is defined using 10 AU since 
Fig. 1 shows that D(x) changes substantially for Aq of this 
order. We also define the tidal torque return time tT to be the 
time required for q to cycle to its maximum value and back 
under the influence of tidal torques alone. We find from nu- 
merical integrations that for initially low-inclination orbits 
starting near qç^25 AU, tT ^ 1.5X109 yr(a/104 AU) ~3/2, 
with a variation of a factor of about 2, depending on the value 
of coG. The quantity tT is also plotted in Fig. 2. Most of the 
time in the cycle is spent with q near its maximum. 

(iii) Perturbations from passing stars lead to a random 
walk in the perihelion distance. The nature of this random 
walk over a timescale At depends on the impact parameter of 
the closest encounter during the interval. If the interval is 
sufficiently short that the minimum impact parameter is 
larger than the semimajor axis, that is, if 

irna2(vr)AtS \, (6) 
then the rms change in angular momentum is (Heisler and 
Tremaine 1986) 

{{V)2)U2^\%Gpsa
2\t. (7) 

Here n and /?s are the number and mass density in stars, 
(vT) — Aa/yfir is the mean relative speed, and <7 is the one- 
dimensional dispersion of the stars (we assume that on aver- 
age the Sun has had the same rms velocity relative to the 
local standard of rest as other stars). Setting the rms change 
in angular momentum equal to ^GJ/^TlqAq, we find that 
the characteristic time for a perihelion change Aq is 

L ^0.04 
Gpsq

V2a2 

<8> 
for p& = 0.05 pc 3. Note that f* has exactly the same 
functional form as tq but a slightly larger coefficient; for this 
reason we have not plotted U separately in Fig. 2. 

Equation (8) is only valid if the inequality (6) is satisfied 
for Ai = i *, which requires 

0.4 
g Y Ag yzsAin 

V ps / \20 km s-1 A10 AU/V q ) 

1/2 
SI, 

(9) 
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1333 DUNCAN ETAL. : THE COMET CLOUD 1333 

which is marginally valid in most cases of interest. 
Thus, by a small margin, it appears that tides, rather than 

passing stars, are the dominant influence on cometary peri- 
helia. This suggestion appears to be borne out by the numeri- 
cal results presented below. 

Now let us use these results to examine the evolution of a 
comet from an initial semimajor axis a{ = 100 AU, perihe- 
lion q = 25 AU, and low inclination. According to Fig. 1, 
D^ 2 X 10-5 AU“and hence the energy-diffusion time 
is c-2.5 X 108 yr. As the comet random walks to larger 
semimajor axis, the energy-diffusion time decreases as a -1/2, 
while the perihelion changes on a timescale that decreases as 
a~2. From Eqs. (2) and (5), we conclude that tq <rD for 
a £ 6000 AU (see Fig. 2). 

Thus we expect the comet to random walk in energy at 
fixed perihelion until its semimajor axis reaches about 5000 
AU. At this point, the tidal field will either decrease its peri- 
helion to ^ 5 15 AU, where the random walk in energy will 
proceed much more swiftly, or increase its perihelion to 
# £ 35 AU, in which case the perihelion has left the planetary 
zone and the comet has reached the comet cloud and safety 
from planetary perturbations. The comet will again ap- 
proach the planetary region after a time tr ~2X 109 yr, but in 
that interval stellar perturbations will change the perihelion 
enough so that the comet is unlikely to re-enter the region of 
strong planetary perturbations. 

These simple considerations suggest that the distribution 
of comets in the comet cloud is largely set by the competition 
between planetary perturbations and the Galactic tide, and 
that, in particular, the inner edge of the comet cloud is at the 
semimajor axis where the energy-diffusion time iD and the 
timescale for perihelion change tq become equal. However, 
the processes involved are sufficiently complex that the 
crude timescale arguments of this section must be supple- 
mented by numerical models. Numerical modeling of the 
evolution of cometary orbits is greatly simplified by the fol- 
lowing observation: comets with semimajor axes = 100 
AU must random walk at fixed q and i out to a ^ 5000 AU 
before they are substantially affected by tides or passing 
stars. Hence, the origin of the comet cloud can be deter- 
mined by starting the numerical computations with an en- 
semble of comets at, say, a{ = 2000 AU rather than at 

= 100 AU, since all potential cloud comets must pass 
through this state with nearly the same perihelion and incli- 
nation that they had at ö = 100 AU. In the following section, 
we discuss numerical models of such an ensemble. 

The validity of starting the integrations at a{ = 2000 AU 
rather than = 100 AU has been checked by integrating a 
small number of comets (A= 60) with a{ = 100 AU and 
q{ = 20 AU. Each orbit was integrated until either (i) the 
comet reached semimajor axis a > 2000 AU, (ii) the comet 
was ejected, or (iii) the number of integrations steps exceed- 
ed 5 X 106, corresponding to about 105 orbits. We found that 
roughly 10% of the comets were ejected, 40% reached 2000 
AU, and 50% stayed near a = 100 AU. Less than 5% of the 
comets had semimajor axes between 200 and 2000 AU when 
the integration was terminated. The perihelia of the comets 
reaching 2000 AU never exceeded 24 AU. These results con- 
firm that comets evolve from ö = 100 AU to a = 2000 AU 
with nearly fixed perihelion, and that very few comets are 
present between a = 200 AU and a = 2000 AU at any time. 
The interval 100 AU <a< 2000 AU can be thought of as a 
nearly leakproof pipeline connecting the planetary region to 
the comet cloud region. 

III. NUMERICAL METHOD 

The study of the evolution of cometary orbits over the 
lifetime of the solar system presents a challenging numerical 
problem. Comets presently in the Oort Cloud have executed 
at least ^ 103 orbits during that time, often with large eccen- 
tricities, implying a force variation of several orders of mag- 
nitude over each period. The problem is exacerbated by the 
premise discussed above that the current cloud originated 
from a much more tightly bound population of comets on 
eccentric orbits which may have required 104 to 107 orbital 
periods to evolve to their current status. 

The early stages of this evolution are adequately described 
by the diffusion equation ( 1 ). The purpose of the present 
paper is to investigate numerically the intermediate and late 
stages of this process, i.e., those regimes in which planetary 
perturbations, the Galactic tide, and encounters with pass- 
ing stars are all potentially important. The numerical inte- 
gration scheme must be able to handle extremely eccentric 
orbits {e> 0.9999) with very high accuracy. We have there- 
fore adopted a scheme that is a generalization of that sug- 
gested by Stiefel and Schiefele (1971) for the restricted 
three-body problem with an additional conservative per- 
turbing potential. In particular, the regularization of the 
equations of motion used in this method (see below) proves 
to be crucial to an accurate treatment of the orbits. 

Since the dynamical influence of the terrestrial planets is 
easily shown to be negligible for all but extremely rare close 
encounters, we consider a model solar system comprised of 
the four giant planets revolving about the Sun in circular, 
coplanar orbits of zero inclination. The dominant contribu- 
tion to the Galactic tidal field is that of the Galactic plane, 
which we model as a slab of density p0 = 0.185 Jt^ pc-3 

inclined at an angle of 60.2° to the ecliptic (Bahcall 1984; see 
also Heisler and Tremaine 1986). 

The equations of motion in the barycentric frame are 

r = — - © 
*©1 

(r-r©) 
(r - r_ ) 

r-r„ 
-VF. 

(10) 
In Eq. ( 10), r, rQ, and xp are the barycentric positions of the 
comet, the Sun, and planetp, respectively, and V = 2TrGpQZ2

G 
is the Galactic tidal potential, where zG is the component of r 
perpendicular to the Galactic plane. 

Equation (10) can be rewritten using the barycentric de- 
finition ^#©r0 = — 2 ^pTp in a form suitable for regular- 
ization: 

GL^xr 
r= + P — VF, (11) 

r 
where r=\r\, =^© +2^^, and the “perturbing 
force” P is 

P= -GJt^ (r -r©) 

-G2^P(-^--L)(r-r,)( (12) 

where A© = |r — r© | and = |r — | . 
Introducing a new spatial 4-vector, u, and a new indepen- 

dent variable s by means of the Kustaanheimo-Stiefel ( K-S) 
matrix L(u), such that x = L(u)u and ds = rdt, Eq. (11) 
becomes (Stiefel and Schiefele 1971) 
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u" = -—u + A.£,t(u)(vF+P) ( (13) 
2 2 

where '^d /ds> LT is the transpose of the K-S matrix, and 
h = G^T/r — i y2 — F. In the integration scheme, Eq. ( 13 ) 
is supplemented by the relations 

F = r = u-u and h ' = -2u'-LTP. (14) 
Equations (13) and (14) have the well-documented ad- 

vantage over Eq. (10) that, in the absence of planetary per- 
turbations, the equations of motion are those of a harmonic 
oscillator with a time-invariant frequency related to the en- 
ergy but independent of the orbital eccentricity. We shall 
show that the numerical stability of the equations is main- 
tained even in the presence of reasonably large perturba- 
tions. 

The solar system contribution to the acceleration in Eq. 
(11) decomposes at large distances into a monopole term 
modified by a quadrupole term reflecting the finite extent of 
the system. At a distance rs = 150 AU the quadrupole term is 
~10-6 of the monopole contribution and adiabatic invar- 
iance guarantees that the net effect of neglecting the quadru- 
pole term is negligible. As a result, once orbits pass beyond 
rs, the solar system can be treated as a point mass at the 
barycenter, thereby avoiding the calculation of the planetary 
perturbation. The planetary perturbations, with the correct 
planetary phases, are reinstated whenever the comet re-en- 
ters the region r<rs. 

A fraction of the comets will random walk via planetary 
perturbations to tightly bound orbits with a S 500 AU and 
periods 5 104 yr. The evolution of these orbits for several 
billion years by the methods described above would be pro- 
hibitively costly in CPU cycles, but these comets cannot be 
ignored since they may subsequently random walk back to 
large semimajor axes and enter the comet cloud. However, 
inside 500 AU the tidal torquing and stellar perturbations 
are negligible, so that the orbital evolution is well described 
by the energy-diffusion equation (1). This equation can be 
solved for an initial delta function in energy (subject to ap- 
propriate boundary conditions) to give the probability dis- 
tribution in energy at any given time of a comet with a speci- 
fied initial semimajor axis a{. 

Thus we proceed by initializing a set of cometary orbits in 
the same semimajor axis, say 2000 AU, and integrating the 
orbits directly using our regularization scheme. Any comet 
that reaches some more tightly bound orbit, say a = 500 
AU, is removed from the integration and, at a time deter- 
mined randomly from the probability distribution just de- 
scribed, is either reinserted at 2000 AU or is deemed to have 
become a tightly bound comet with a < 100 AU, at which 
time the approximation of energy diffusion at constant q 
breaks down and the integration from that comet is stopped. 
Once the comet is reinserted at 2000 AU, the integration is 
resumed as before until either 4.5X 109 yr have elapsed or 
the comet is ejected. 

Note that we have included in our simulations only the 
compressive component of the Galactic tidal field that is due 
to the Galactic disk. At heliocentric distances on the order of 
a parsec ( ^ 200 000 AU ), the tidal field of the Galaxy in the 
equatorial direction establishes an outer limit to the solar 
system (Antonov and Latyshev 1972; Heisler and Tremaine 
1986). Thus any comet that passes beyond 1 pc is deemed to 
have been tidally stripped and is removed from the simula- 
tion. 

The stellar perturbations are incorporated by a Monte 

Carlo procedure described in more detail by Heisler et al. 
( 1987). Our treatment uses the same assumptions regarding 
the mass spectrum, velocity dispersions, and number densi- 
ties of the perturbers, and uses the impulse approximation to 
compute the relative velocity increment imparted to the 
comet as the result of an encounter. In practice, the stellar 
parameters relevant to the encounters are generated prior to 
a set of comet integrations and the orbital integrations are 
used to determine the comet’s position and velocity at the 
relevant encounter time. No stellar perturbations are applied 
in the rare cases where the encounter timescale exceeds the 
comet orbital period, since adiabatic invariance implies that 
in these cases the perturbation will be much smaller than 
that predicted by the impulse approximation. 

A fourth-order Runge-Kutta scheme was used to inte- 
grate the regularized equations. Using the timestep criteria 
described below, a full-scale simulation with all four planets, 
tides, and stars included requires about 0.3 s per orbit on a 
Sun 3/160 with Floating Point Accelerator board. The Sun 
is about three times faster than a VAX 11/780 with FPA, 
but, nonetheless, the simulations described below required 
about four months of CPU time on a dedicated Sun 3. 

Extensive tests of the code have been performed with each 
of the perturbations acting alone. These tests show: 

(i) In the absence of perturbations it was found that with 
roughly 60 steps per orbit, even when the eccentricity was as 
large as 0.99999, the energy of the orbit deviated by roughly 
one part in 1011 per orbit and the pericenter remained con- 
stant to one part in 106. Thus, millions of orbits can be reli- 
ably followed in the unperturbed case. 

(ii) To maintain accuracy in the planetary region, at least 
50 steps were taken when the comet was interior to rs. In 
addition, the timestep was reduced still farther by a factor 
that depended on the ratio of the perturbing forces to the 
central force. This allowed for careful treatment of close en- 
counters and resulted in a reduction of at least an order of 
magnitude in the step size when this ratio was of order unity. 
As a check on the scheme, several cases were run in which 
Jupiter was the only planet and a comet was integrated start- 
ing at a = 100 AU and # = 4 AU. After one hundred orbits 
the Jacobi integral (which is exactly conserved for the three- 
body system considered here) had changed by less than one 
part in 105. 

(iii) The tidal-perturbation calculations were checked by 
running cases without planets and comparing the results 
with a numerical integration of the orbit-averaged equations 
of Heisler and Tremaine ( 1986). The agreement was good to 
one part in 103 with the discrepancy probably lying in the 
orbit averaging rather than the regularized scheme. 

IV. RESULTS 

Before turning to the full simulations, we briefly discuss 
the scattering experiments used to obtain Fig. 1. The results 
of these experiments were used in Sec. II to estimate time- 
scales, and were used in the full simulations to obtain the 
diffusion timescale t D [ Eq. ( 2 ) ] for comets reaching a < 500 
AU, which are then followed by the diffusion equation until 
they reach a = 2000 AU. Since the timescale for this process 
is short ( ^ 3 X 108 yr) the simulation is quite insensitive to 
the exact value of t D and the details of the diffusion process. 

The calculation of the rms energy change D(x) for para- 
bolic encounters with a range of q and i used the same param- 
eters as Fernández (1981) except that we have added two 
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1335 DUNCAN ETAL. : THE COMET CLOUD 1335 

new sets of points at ^ = 32 and 37 AU in order to show the 
beginning of an abrupt decrease in ZH* ) beyond 35 AU. Our 
results are in excellent agreement with those of Fernández 
when close encounters as defined by him* are excluded, but 
we do not find as marked an increase in Z>(;c) when close 
encounters are included. Our simulations show that, over a 
few thousand scatterings, close encounters increase the rms 
energy change by 20%-40%, while Fernández quotes in- 
creases of factors of 2-3 for low-inclination orbits. We feel 
that our results are likely to be more accurate since they rely 
on a precise orbital integration rather than the “sphere of 
influence” method used by Fernández. Our simulations con- 
firm the result of Everhart ( 1968 ) that close encounters pro- 
duce a tail proportional to A*-3 in the distribution of energy 
changes. This tail produces a weak divergence in the rms 
energy change which is proportional to Vlog (AO, where iV is 
the number of scatterings. We have verified that this depend- 
ence is present by computing D(x) for iV = 200, 3000, and 
30 000 scatterings. The calculated rms energy changes in- 
creased by about 40% over the range studied. The values 
shown in Fig. 1 are for N = 3000, which is roughly the ap- 
propriate number for the situation we are examining. 

We now turn to the results of the complete simulations 
and examine the interplay among the perturbing influences 
that determine the properties of the comet cloud. In our 
most complete set of runs, we began with seven sets of about 
one thousand comets with initial semimajor axes of 2000 
AU, inclinations of 18° and pericenters of 5, 10, 15, 20, 25, 
30, and 35 AU. Each orbital integration was halted at 
4.5 X 109 yr or earlier if the comet was either ejected, reached 
a radius r > 1 pc, or diffused into a tightly bound orbit 
(a < 100 AU). Many of the runs were repeated with one or 
more of the parameters altered in order to test the sensitivity 
of our results to the initial conditions. We shall see that the 
qualitative features of the evolution are remarkably robust. 

Figure 3 shows the random walk in q and a for a typical 
comet that survives for the age of the solar system. It begins 
with q = 20 AU and a = 2000 AU. Note that the evolution is 
at roughly constant qïot aS 6000 AU and at roughly con- 
stant a for a £ 10 000 AU. There are several loops in q caused 
by the galactic tide. This particular comet is drawn back 
down to —3500 AU by planetary perturbations when its 
pericenter is tidally torqued back into the planetary region, a 
relatively rare occurrence. 

Table I shows, for a given initial q, the percentage of com- 
ets that have attained each of the possible end states by 
4.5 XlO9 yr. The results are consistent with the timescale 
arguments of Fig. 2. In particular, comets with pericenters 
less than about 15 AU are unlikely to survive for the age of 
the solar system—the planetary perturbations are so large 
that the tides do not have time to torque them out of the 
planetary region before they are ejected. On the other hand, 
those with initial q between 15 and 35 AU are delivered to 
safety with reasonably high efficiency: roughly 30% of the 
comets survive. 

The evolution of the spatial distribution of the survivors is 
illustrated in Fig. 4. It shows the distribution of our sample 
as seen from the Galactic plane after 107, 108, 109 and 
4.5 X 109 yr have elapsed. Note that the ecliptic is inclined at 

♦Fernández defines a close encounter to occur when a comet enters the 
“sphere of influence” of a planet. This is a spherical volume, centered on the 
planet, of radius r7 = (^p/2^0 )1/3rp, where ^p and are the 
masses of the planet and the Sun and rp is the orbital radius of the planet. 

iog(x) (ait') 

Fig. 3. The evolution in semimajor axis and perihelion is displayed 
for a typical comet. One data point is plotted per orbit. The comet 
started with a semimajor axis of 2000 AU and a perihelion of 20 
AU ( light square ) and ended after 4.5 X 109 yr at the light circle. A 
triangle is plotted every 108 yr. 

an angle of —60° to the Galactic plane and it is the Galactic 
tides and stellar perturbations that randomize the spatial 
distribution at large distances. The dotted circle in each 
snapshot is at a radius of 20 000 AU, indicating the inner 
edge of the classical Oort Cloud. It is evident from Fig. 4 that 
the distribution after 108 yr is still biased toward the ecliptic 
for orbits with a S 104 AU. However, by 109 years, the distri- 
bution is isotropic for a £ 2000 AU, and roughly 20% of the 
survivors are in the Oort Cloud, with the remainder populat- 
ing the Hills Cloud. Between 109 and 4.5 X109 yr, the total 
number of survivors decreased by a factor of ^2, but the 
relative populations of the two clouds remained essentially 
unchanged. 

For quantitative analyses of the overall distribution of sur- 
viving comets, we assume that the initial number density of 
perihelia was proportional to q~1 °. (This is based on the 
assumption that the initial surface density in the solar nebula 
was proportional to r~2 and that the perihelion of a comet is 
approximately conserved in the initial phases of the scatter- 
ing process. In fact, most of our results are insensitive to the 
initial perihelion distribution since the final semimajor-axis 
distributions (Fig. 7) have similar shapes at different #’s.) 
Since our sample has equal numbers of comets at equal inter- 
vals in qt we simply weigh the contribution of each comet to 
the total by q~1 °. Figure 5 shows the evolution of the mean 
inclination of the orbits with respect to the ecliptic as a func- 
tion of semimajor axis. The dashed curve in Fig. 5 represents 
the weighted average of the cosines of the inclination of all 
surviving comets at t = 109 yr as a function of x. For a £ 104 

AU, the mean is near zero, indicative of a random distribu- 
tion. However, more tightly bound orbits retain a bias to- 
ward low-inclination orbits. The solid curve in Fig. 5 repre- 
sents the same distribution at i = 4.5 X 109 yr, and it is seen 
that the inclinations are random for a £ 5000 AU. 

Figure 6 shows the mean value of the square of the orbital 
eccentricity as a function of x at í = 109 yr (dashed line) and 
t = 4.5X 109 yr (solid line). There is a bias toward radial 
(high-eccentricity) orbits at í = 109 yr for a S 3000 AU. At 
t = 4.5 X109 yr, the mean e2 is everywhere very close to the 
value of 0.5 expected for an isotropic velocity distribution. 

In Fig. 7(a) we plot the fraction of comets with energy 
greater than x as a function of x at í = 109 yr. Results are 
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Table I. Probable end states of comets.a 

Initial perihelion 
(AU) 

Planetary 
ejections 

Stellar 
ejections r> 1 pc a < 100 AU Survivors 

5 
10 
15 
20 
25 
30 
35 

0.84 
0.73 
0.45 
0.46 
0.44 
0.41 
0.35 

0.02 
0.01 
0.05 
0.02 
0.01 
0.01 
0.03 

0.04 
0.15 
0.21 
0.17 
0.16 
0.15 
0.13 

0.09 
0.06 
0.05 
0.06 
0.05 
0.04 
0.04 

0.02 
0.06 
0.24 
0.29 
0.34 
0.40 
0.41 

a The bins with initial perihelia from 5 to 30 AU are calculated from a set of one thousand comets. The bin with initial perihelion of 35 AU is calculated from a 
set of 716 comets. In all cases the initial semimajor axis was 2000 AU and the initial inclination was 18°. 

TEN MILLION YRS. 100 MILLION YRS. 

ONE BILUON YEARS 4.5 BILLION YRS. 

Fig. 4. The distribution of the comets in space is projected onto a plane for several different times. The plane z = 0 is parallel to the galactic plane. 
The dotted circle denotes a radius of 20 000 AU, indicating the inner edge of the classical Oort Cloud. 
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1337 DUNCAN ETAL. : THE COMET CLOUD 1337 

Fig. 5. The mean of the cosine of the inclination of comets to the 
ecliptic is plotted as a function of semimajor axis. The solid line 
corresponds to 4.5 X109 yr and the dashed line to 1.0 X109 yr. 

shown separately for each set of initial perihelia. Figure 7(b) 
shows the same quantities after 4.5 X109 yr. These results 
confirm the qualitative predictions of the timescale argu- 
ments in Sec. II—the inner edge of the population of surviv- 
ing comets is given roughly by the radius at which the time- 
scale for tidal torquing equals the energy-diffusion timescale 
for the initial pericenter q{. Since the energy-diffusion time- 
scale increases with increasing q{, we expect, and indeed 
find, that the inner radius of the surviving population de- 
creases with increasing q{. 

Figure 8 shows the cumulative distribution of the surviv- 
ing comets at i = 109 yr (dashed line) and i = 4.5 X109 yr 
( solid line ). This distribution was obtained using the weight- 
ing scheme described above but the results are insensitive to 
the assumed initial distribution, since most of the survivors 
are comets with initial perihelia in the range 15 AU 5^535 
AU, for which the final energy distributions are very similar. 
We see from Fig. 8 that approximately 80% of the comets lie 
in the Hills Cloud, a < 20 000 AU, and the Hills Cloud has a 
rather sharp inner cutoff at ^ 3000 AU. The resulting spatial 
density of comets is proportional to f* with a = — 3.5 
± 0.5 for 3000 AU 5 r 5 50 000 AU. 

All of the above results are for the “prompt” model for 
appearance of the comets at the initial semimajor axis. We 

log(x) (AU l) 

Fig. 7(a). The cumulative number of surviving comets as a frac- 
tion of the initial number of comets is plotted against semimajor 
axis at a time of 1X109 yr. The solid, dotted, short-dashed, long- 
dashed, dot-short-dashed, dot-long-dashed and long-short-dashed 
lines correspond to initial perihelia of 5, 10, 15, 20, 25, 30, and 35 
AU, respectively, (b) The same quantities as in (a) are plotted at a 
time of 4.5 X109 yr. 

have also investigated the “steady-state” model by examin- 
ing the distribution of comets that have been integrated for 
random time uniformly distributed between 0 and 4.5 X 1C 
yr. The characteristics of the distribution of semimajor axes 
in the steady-state model are similar to those of the prompt 

Fig. 6. The mean-square eccentricity is plotted as a function of 
semimajor axis. The solid line corresponds to 4.5 X 109 yr and the 
dashed line corresponds to l.Ox 109 yr. 

Fig. 8. Assuming an initial distribution in perihelion <x ^ ~10, the 
cumulative distribution of comets is plotted against semimajor 
axis. The dashed line is for a time of 1.0 X 109 yr, and the solid line 
is for 4.5X109 yr. 
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1338 DUNCAN ETAL. : THE COMET CLOUD 1338 

model, with the curves falling between the curves for 1X109 

and 4.5 X109 yr in the prompt model. 
The origin of the steady-state flux of new comets is, of 

course, the Oort Cloud, and comets from the Hills Cloud 
only enter the inner planetary region directly during a comet 
shower. The upper limit to the flux of comets during a show- 
er can be obtained by assuming that a close stellar encounter 
fills the loss cylinder at every radius in the Hills Cloud. We 
find that in this case the flux will be ~20 times higher than 
the steady-state flux for a shower duration of 3 X 106 yr. This 
flux is at least an order of magnitude lower than many pre- 
vious estimates of the flux in a shower (e.g., Hills 1981 ). It is 
interesting to note in this context that Kyte and Wasson 
( 1986) have measured the sea-floor iridium concentration 
for the period from 33 to 67 Myr ago. They find an increase 
by a factor of ~ 13 near the Cretaceous-Tertiary boundary 
(66 Myr ago). Thus our model of the Hills Cloud predicts 
that the strongest possible comet showers would yield an 
iridium enhancement within a factor of 2 of the magnitude 
seen at the Cretaceous-Tertiary boundary. 

V. CONCLUSIONS 

We have simulated the formation of the solar system com- 
et cloud and have studied its subsequent evolution over an 
interval equal to the age of the solar system. We have em- 
ployed a numerical scheme that accurately computes the 
perturbations on cometary orbits from the giant planets, Ga- 
lactic tides, and random passing stars. Assuming that the 
comets formed in the outer planetary region, we have shown 
that the formation of the current comet cloud was driven 
mainly by an interaction between planetary perturbations 
and torquing due to Galactic tides. This interaction pro- 
duced an inner edge to the cloud at ^ 3000 AU—the radius 
where the timescales for the two processes are comparable. 

The comet orbital inclinations and eccentricities are 
found to be randomized by perturbations from the tides and 
passing stars for semimajor axes a £ 5000 AU. The density 
profile between 3000 and 50 000 AU is roughly proportional 
to r~35, so that ~20% of the surviving comets lie in the 

classical Oort Cloud (a > 20 000 AU). We estimate that the 
flux of comets into the inner solar system during a comet 
shower initiated by the close passage of a passing star may be 
as much as 20 times higher than the steady-state rate, but is 
unlikely to be much larger. This result is consistent with the 
iridium deposition rate determined from the geological re- 
cord. 

Our results are based on the assumption that all comets 
formed in the planetary region. Many authors (see Fernán- 
dez 1985) have suggested that an extensive belt of comets 
may be present outside the planetary system. Such a belt 
does not evolve dynamically over the lifetime of the solar 
system and hence cannot be addressed by the methods used 
here. 

After this work was nearly complete, we learned that simi- 
lar calculations had been carried out by Shoemaker and 
Wolfe (1984). The principal differences are that (i) Shoe- 
maker and Wolfe used Öpik’s sphere-of-influence approxi- 
mation to compute the planetary perturbations, rather than 
integrating the orbits numerically; (ii) they started the com- 
ets from near-circular orbits within the planetary region 
rather than from near-parabolic orbits with perihelia in the 
planetary region. Shoemaker and Wolfe’s calculation sug- 
gests that the Hills Cloud is substantially more massive than 
that we have estimated: they find that 85% of the comets 
have semimajor axes a < 10 000 AU and 70% have a < 5000 
AU (our numbers are 70% and 50%). We believe that the 
discrepancy may arise from their use of the Opik approxima- 
tion, which substantially underestimates the planetary per- 
turbations at perihelia outside Neptune’s orbit (Fig. 1 ). 

We would like to thank Julia Heisler for making available 
to us her Monte Carlo code for simulating stellar perturba- 
tions, Man Hoi Lee for programming assistance, and Gene 
Shoemaker for helpful discussions. This research was made 
possible by a Special Research Grant from the Connaught 
Fund at the University of Toronto and was assisted by fund- 
ing from the Natural Sciences and Engineering Research 
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