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ABSTRACT 
The physical basis of the Planck-Larkin partition function in equation of state (EOS) and occupation 

number calculations is examined. It is shown that a many-body activity expansion of the grand cannonical 
partition function in terms of effective composite particle activities, defined through Planck-Larkin (PL) bound 
state weight factors, has advantages over an activity expansion in terms of real activities defined through 
Boltzmann weight factors. The PL effective activity expansion gives the EOS and the real electron and nucleus 
activities (chemical potentials). Calculation of the EOS does not require a knowledge of actual occupation 
numbers, but calculation of radiative properties does. In view of this distinction, a complementary Boltzmann 
activity expansion is presented solely for the purpose of calculating occupation numbers. It is shown that the 
occupation number relations derived from this expansion can be directly evaluated using the electron and 
nucleus activities obtained in the EOS calculation. 
Subject headings : equation of state — plasmas 

I. INTRODUCTION 
The divergence of the atomic partition function has been 

discussed in numerous papers (e.g., McChesney 1964). Even 
though a rigorous solution to this problem was developed 
more than twenty years ago (Larkin 1960), ad hoc techniques 
are still being used (Noels, Scuflaire, and Gabriel 1984). The 
rigorous solution involves the so-called Planck-Larkin parti- 
tion function (PLPF), given by 

PLPF = I (2/ + IXe-'’*"' - 1 + ßEJ , (1) 
nl 

Where n and / are quantum numbers, /? = l//cT is the inverse 
temperature, k is Boltzmann’s constant and Enl is the binding 
energy. Equation (1) is always convergent, since the divergent 
terms are excluded. The PLPF has been applied to astro- 
physics in at least one case (Ulrich 1982). 

The main purpose of this paper is to examine the physical 
basis of the PLPF and to present a consistent procedure for its 
use in equation of state (EOS) and occupation number calcu- 
lations. In addition, I want to show that some recent criticisms 
of the PLPF by Rouse (1983, and references therein) are 
unfounded. Ebeling et al (1985, and references therein) have 
already responded to the Rouse comments. Nevertheless, there 
is still reluctance within the astrophysics community to use the 
PLPF in EOS calculations. This is due to the fact that the 
occupation numbers predicted by the PLPF appear to be 
inconsistent with observation. This is discussed in detail by 
Däppen, Anderson, and Mihalas (1986). They also discuss 
methods for calculating occupation numbers from which they 
calculate hydrogen emissivities in good agreement with the 
experiments of Wiese, Kelleher, and Paquette (1972). A point 
to be established here is that the apparent shortcoming of the 
PLPF as a predictor of optical properties is the result of a 
misinterpretation. The PLPF is the most natural and accurate 
way to calculate the EOS, but in fact it does not give the actual 
occupation numbers. At low density, however, it will be shown 
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that it is straightforward to obtain the actual populations from 
those given by the PLPF. 

Much of what is discussed in this paper has appeared else- 
where in greater detail (Rogers 1981, and references therein). 
The purpose here is to present a clear explanation of why and 
how the PLPF should be used in astrophysical calculations of 
the EOS and occupation numbers of reacting plasmas. This is 
accomplished through a many-body activity expansion of the 
grand canonical partition function, where the activity is a 
physical quantity defined to have the units of density. It plays a 
similar role to density in a virial expansion and is proportional 
to the Gibbs free energy per particle divided by kf (see eq. 
[16]). A comprehensive discussion of activity (fugacity) expan- 
sions for reacting, nonideal, plasmas is given by Ebeling, 
Kraeft, and Kremp (1976). The initial activity expansion for the 
partially ionized plasma, which is developed in this approach, 
views the system in terms of its fundamental particles (electrons 
and nuclei). This fundamental particle activity expansion is 
then renormalized to account for the formation of ions and 
atoms. Since it started from a description of the system in terms 
of its fundamental particles interacting through the Coulomb 
potential, no ad hoc assumptions about the internal states of 
composite particles are required. It is for this reason that the 
activity expansion method is chosen in preference to the usai 
free-energy minimization method. 

Section II of the paper discusses the analytic properties of 
the second cluster coefficient. It is demonstrated that the PLPF 
arises naturally for the Coulomb potential and effectively 
redefines the continuum as starting at — ZcT. As a result, all 
long-range divergences in the few-body problem are lumped 
together in the redefined continuum. Section III gives a dis- 
cussion of a many-body effective activity expansion that 
embodies the PL weight factors and explaines why this does 
not produce true occupation numbers. Section IV presents an 
activity expansion in terms of Boltzmann composite particle 
activities. A low-density Saha-like equation for calculating 
occupation numbers is extracted from this expansion. 
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II. THEORETICAL BASIS OF THE PLANCK“LARKIN PARTITION 
FUNCTION 

The PLPF first arose in a systematic many-body pertur- 
bation expansion of the logarithm of the grand partition func- 
tion, In V, T). Even though this procedure is rigorous, it is 
not very illuminating. A clear understanding of why the PLPF 
arises can be obtained from a study of the analytic properties 
of individual cluster coefficients (Rogers 1977, 1979). A rigor- 
ous discussion of the PLPF for hydrogenic plasmas can be 
found in Ebeling, Kraeft, and Kremp (1976). The many-body 
problem requires a simultaneous treatment of all cluster coeffi- 
cients, but for the present discussion a study of the second 
cluster (virial) coefficient will suffice. The electron (e)-nucleus 
(a) second cluster coefficient is given by 

(Qea - QeQJ 
(2s + l)2 (2) 

where ^ = hKlnniikT)112 is the thermal wavelength, i = {e, a), 
Qe and ßa are one-body partition functions, and Qe0L is the 
electron-nucleus two-body partition function. The physical 
significance of be<x is apparent; it gives the correction to the 
EOS that results from switching on two-body interactions, i.e., 
the effect of distorting the ideal gas plane wave eigenstates due 
to two-body encounters. This process conserves the number of 
states but changes their character and may even transform 
some continuum states into bound states. The second cluster 
coefficient is proportional to the difference between the “ sum 
over states ” before and after switching on the interaction. 

Beth and Uhlenbeck (1937) showed that be(X could be 
described in terms of bound states Enl and scattering state 
phase shifts ôh according to 

where 
Kol — bbe<x + Koc > 

b'L = aea I (21 + , 
nl 

b:„ = ■ dpfo exp 
K2peakT 

aea = 47i3/2A3
eal, 

= h/(2iieakT)112 , 

dô^p) 
/o = X(2/ + 1) dp 

(3) 

(4) 

(5) 

(6) 

/¿ea is the reduced mass, and p is the relative momentum. 
The origin of the —1 subtraction in the PLPF is easy to 

identify. An integration by parts of bc
ea gives 

where 

b c ea 
OeJM 

' "ea 

hip) = z (2/ + l)p<5,(p), 
/ 

hi = 
2fleq 

dpfi exp 
o \2iUea/cT 

(7) 

(8) 

(9) 

According to Levinson’s theorem, <%()) = rii tt, with rc* the 
number of bound states having angular momentum /. The 
zero-energy term in bc

ea, therefore, exactly removes the leading 

term in the high-temperature expansion of bb
ea. This is a result 

of the fact that the ideal gas states are distorted by the intro- 
duction of a potential, but the total number of states is con- 
served. It is important to note that the integration by parts of 
bc

ea has effectively redefined the continuum, i.e.,/0(p) has been 
replaced by/i(p). 

There exist higher order Levinson theorems (Rogers 1977; 
Bollé 1981, and references therein) such that it is possible to 
continue to integrate bc^ by parts. One additional integration 
by parts and cancellation with bb

ea gives 

be« = bb
el + b^ , 

where 

bb
ea = aex PLPF 

4a„ 
(pe„kTy r 

dpf2(p) exp 

and 

flip) = Z (2/ + 1) J dpp^ip). 

(10) 

(11) 

(12) 

(13) 

Equation (11) shows that the PLPF is part of the second 
cluster coefficient and is not a true partition function. This is 
the origin of the misunderstanding concerning the physical 
interpretation of the PLPF. 

It is possible to continue this process of integration by parts, 
but there is no particular reason to do so, since the first two 
integrations by parts (specializing to the Coulomb potential) 
have accomplished the following : 

1. They have removed all divergences in bb
ea by com- 

pensation with scattering state contributions. There are 
additional divergences in bc

eix, but they do not compensate 
with bound-state contributions. These divergences are 
removed through many-body resummations involving all 
cluster coefficients. 

2. They have redefined the continuum such that weak 
bound states lying above -/cT are treated along with scat- 
tering states in a many-body perturbation expansion. States 
lying below —kT are treated as strong bound states whose 
contribution to the EOS is dominant at low T. 

These considerations are very useful in carrying out a system- 
atic expansion of the EOS. As a consequence, certain artificial 
contributions to the EOS are canceled at the outset rather than 
carried through the entire analysis and canceled at the end. 
Furthermore, the number of basic constituents that have to be 
explicitly considered is greatly reduced, consisting only of elec- 
trons, nuclei, and electron-nucleus composites in strong bound 
states. It is important to note that the artificial divergences that 
are being compensated for apply to the EOS; the actual 
occupation of high-lying states is a different question. The 
separation of be0L given by equation (10) applies explicitly to a 
Coulomb or screened Coulomb potential and is potential- 
dependent. Similar compensation is also present in all higher 
electron-ion cluster coefficients (Rogers 1979), and it is taken 
into account in the many-body resummations. 

III. EQUATION OF STATE 

Due to the long range of the Coulomb potential, the EOS of 
reacting plasmas is inherently a many-body problem. The 
natural way to handle this problem is through a many-body 
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activity expansion of ln H (Bartsch and Ebeling 1971; Rogers 
and DeWitt 1973). For a single element this expansion involves 
only the activities of electrons ze and nuclei za. However, when 
bound states are appreciably occupied, it is necessary to define 
new activities that represent composite particles. Nevertheless, 
these new activities are proportional to products of the basic 
activities ze and za. Next, the grand partition function is renor- 
malized on the basis of the augmented set of activities. Since 
the analysis began from a description of the plasma in terms of 
its fundamental constituents, no loss of generality is introduced 
through this renormalization. Fortunately, the analytic 
properties of the cluster coefficients, which are discussed for the 
second cluster coefficient in § II, restrict the number of com- 
posites states that need to be explicitly assigned an activity. 
This produces an expansion in PL activities rather than 
Boltzmann activities and correspondingly does not yield 
true occupation numbers. It is shown in § IV that the ze and za 
obtained in the EOS calculation can be used to evaluate terms 
in a complementary Boltzmann activity expansion that does 
give actual occupation numbers. 

A detailed description of the PL activity expansion is given 
by Rogers (1981). Only the leading terms given in that work are 
required for the present discussion. Truncation of the many- 
body PL activity expansion after squared power terms gives, 
for the pressure P divided by /cT, 

kT 
= £ + SkÆ) + X Ci 

Kt _ 

subject to 

+ ZZcI-cJ-5I-,(ij + ..., (i4) 

Pi = ti 
dP/kT 

Ki : (15) 

where the are effective occupation numbers, optimized for 
the EOS. In the particular case of hydrogenic plasmas, i and j 
range over (e, a, Hls, H2s, ...], and H"z signifies a hydrogenic 
ion in the state nl. The Ci for electrons and nuclei are real 
activities given by 

Ci = zf = (2st- + l)Á¡~3e^i/kT . (16) 

where is the chemical potential. 
For composite particles the Ci are effective activities defined 

by PL weight factors according to 

Ci = ZeZoiaeocdi(e~ßEl _ 1 + ßE,) , (17) 

where p, is the statistical weight. 
Due to the nonexponential form of equation (17), the com- 

posite particle activities are not the actual activities for state nl. 
This point is discussed in § IV. Guidelines for the values of nl to 
be included in the sums in equation (14) are also discussed in 
§ IV. The terms in equation (14) involving SR are related to the 
Debye-Hiickel correction that arises in a density expansion 
and are given by (for nondegenerate plasmas) 

Sr — 
1 

nnPA ’ 

kT 

4ne2(£iziCi)_ 

1/2 

where Zf is the charge on species i and ÀA is the activity- 
dependent screening length. In the low-density limit, Ci~*Ph 

the number density; and XA-+ XD, the effective Debye length; 
consequently, SR approaches a Debye-Hiickel-like result. The 
Sfj- in equation (14) are closely related to the second cluster 
coefficients for a screened Coulomb potential having a screen- 
ing length XA ; except that due to the many-body resummation, 
first- and second-order perturbation terms are excluded from 
the Sij. Explicit definitions of the sI7- are given by Rogers (1981). 
It is important to point out that, whereas the F; that enter the 
fundamental particle activity expansion are screened, the 
that go in the PL activities (eq. [17]) are the isolated ion values. 
This is a consequence of the renormalization to create activities 
for composite particles described earlier. Due to the subtrac- 
tion of the leading two terms at high temperature (for reasons 
discussed in § II), the Ci corresponding to — ßEi < 1 effectively 
do not contribute to P/kT. This is particularly important at 
high density, where many terms contribute to the pressure (eq. 
[14]). 

It is possible to relate equations (14) and (15) to the more 
familiar free-energy minimization method. If only terms 
involving SR are retained in equation (14), it can be shown that 
the free energy is given by 

kT \pJ3J \paXl 

x —Nu In 
g PLPF\ 

Ph4 ) 
-VSR(XD), (18) 

where 

Ph — X ’ 

and 

k = {Unl} , 

XD = ykT/4ne2 £ zf p¡ 
1/2 

The resulting Saha-like equation that gives the effective 
number densities for EOS calculations is (Rogers 1984, 1985) 

Ne Vg 2 VXfj exp (ze2/k TXD) 
Nh ~ X3

eX
3

aPLPF 
(19) 

Higher order terms in equation (14) can also be included in the 
analysis (Ebeling et al 1985), but this is not required for the 
present discussion. 

IV. OCCUPATION NUMBERS 
Section III gave the rigorous low-density Saha-like equation 

that should be used for EOS calculations. It is clear from § II 
that this does not produce actual occupation numbers, i.e., 
EOS contributions from high-lying states have been canceled 
with the continuum contributions. This procedure has effec- 
tively redefined the continuum. As a result the Ne in equation 
(19) includes electrons in weak bound states as well as electrons 
in continuum states. This was done for compelling procedural 
reasons, but in principle it is not necessary. In fact, we could 
carry along the compensating terms throughout the entire 
analysis. For reasons already enumerated, this would greatly 
complicate the problem. The results of § III produce the 
correct EOS and unique values of ze and za (see eq. [16]). 
However, the definition of effective composite particle activ- 
ities is somewhat arbitary, i.e., slightly different definitions for 
the effective composite particle activities will yield identical 
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ROGERS Vol. 310 726 

results for P, E, ze, and zh provided a sufficient number of 
terms are used in the different versions of equation (14). 

If instead of using PL weight factors to define composite 
particle activities we use the true continuum, the activities are 
given directly in terms of Boltzmann factors according to 

zk = zezaaecigie~l,Ek, 

k = {H"'} . (20) 

Comparison with equation (17) shows that zk = hkÇk, where 
hk = e-iiEk/(e-ßEk-l+ ßEk). 

The zk defined in equation (20) are real activities. Now a 
renormalization similar to the one leading to equation (14) 
gives 

_P^ 
kT 

subject to 

Z zi + Sr(^a) + Z ^ 2 |_ dzi 

+ Z Z ZiZj Sij{^A) + • • • , 
» J 

Pi = Zi 
d{P/kT) 

dzi 

(21) 

(22) 

where i ranges over (e, a, {H"z}), / = k for composites (see eq. 
[20]), 

Sr — 

^A = 

1 
12nÀ3

D ’ 

kT 
47ce2 ZiZfz, 

1/2 
(23) 

and the si; are now defined directly in terms similar to bc
ea for a 

screened Coulomb potential, i.e., equation (5) instead of equa- 
tion (12). Equation (21) is an expansion in Boltzmann activities 
and can be used to obtain occupation numbers. All the diver- 
gences present in the few-body problem have been removed 
through many-body correlations. If properly carried out, equa- 
tions (14) and (15) and equations (21) and (22) will give exactly 
the same P, E, ze, and za. Consequently, the results of a self- 
consistent solution of equations (14) and (15) can be used 
directly to evaluate equations (21) and (22). 

As an explicit example of the method, consider the 
occupation number of hydrogenic composites in quantum 
state nl. Direct differentiation of equation (21) gives 

Pv = Zv + 2 (Z l)2z, U 
dsR\/<i2sR\ 
du A dU2) 

+ 2zez„sev + 2za zv sav + 2z2svv + IEZv 
i j 

ôS^a) . 
3ZV 

(24) 

where v = H"*, U = Z!i Zf zh i and s range over (e, a, {H”z}), and 
zv is obtained from the solution of equations (14)-(15) accord- 
ing to zv = /iv fv. Explicit definitions of the can be found in 
Rogers (1981). It is important to note that: (1) The Debye- 
Hiickel-like terms in equation (24) do not depend on the 
quantum numbers nl, i.e., they change the total number density 
but not the relative occupation numbers; and (2) The terms 
involving two-particle and higher scattering contributions (not 
considered herein) explicitly depend on the quantum states of 
the composite particles involved in the scattering. This effect 

increases with increasing n. Consequently, the relative distribu- 
tion of states falls off more rapidly than predicted by a simple 
Boltzmann distribution. 

To relate equations (21) and (22) to the free-energy mini- 
mization method, these equations are truncated after terms 
linear in SR. Since most particles are in low-lying states which 
are not much affected by the PL compensation, Á,A and 2^ are 
not very different, so that 

Pk^KPk- (25) 

This relation does not hold for states for which higher order 
terms are important; nevertheless, the occupation numbers can 
be systematically calculated from the procedure presented 
here. In the low-density limit the occupation number version of 
equation (19) now takes the form 

N,N. 24 V IZe‘/kT*ul 

• (26) 

where 

4> = lgke-
l>Ek (27) 

k 

is the usual internal partition function; except, for reasons dis- 
cussed further on, equation (27) include only a finite number of 
bound states. In the low-densities limit, the occupation of indi- 
vidual internal states is given by 

Nk_gke-*Ek 

Nh <t> 
(28) 

The sole advantage of equation (26) is that it estimates actual 
occupation numbers. However, due to the slower convergence 
properties of equation (21), described earlier, percentage errors 
in the occupation numbers given by equation (26) are larger 
than those for the EOS obtained through equation (19). This 
disparity can be reduced by inclusion of higher order terms. 

Equation (26) shows that the Debye-like terms which come 
from a solution of the many-body problem have the effect of 
lowering the continuum, so that weak bound states are 
“ swallowed ” by the lowered continuum. At low density there 
are many states that lie between the Planck-Larkin cutoff at 
— kT and the lowered continuum. A proper interpretation of 
the renormalized activity expansion given by equation (21) 
requires a careful study of how these states should be treated. 

Figure 1 shows the Is energy level in the exponentially 
screened Coulomb (Debye-like) potential that arises in the fun- 
damental particle activity expansion when ÀJÀA is small. For 
large values of ÀA, the energy can be expanded in inverse 
powers of ÀA. Near the zero-energy cutoff, cls, the energies can 
be expanded in powers of ÀA — cu. The leading terms in these 
expansions are also plotted in Figure 1. In the region where 
inverse power expansions can be used, it is possible to system- 
atically define an activity for a composite particle in state nl, 
such that the renormalized activity expansion can be expressed 
according to equation (21). As a result, unscreened energy 
levels appear in the definition of zk. When a level is close to the 
continuum this is not possible. Consequently, a new activity 
should not be introduced for particles in these states, i.e., the 
effect of these states is left in the electron-nucleus (see eq. 
[21]). At some intermediate value of ÀA, as the density 
increases, it is necessary to quit defining a new activity for the 
state nl, so that i and j range over one less activity. The state nl 
is present in both forms of the expansion, but it is manifested in 
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Fig. 1.—Energy vs. screening length for an exponentially screened 
Coulomb potential (solid curve). Leading terms in the weak and strong screen- 
ing expansions are also plotted. In the weak screening limit (dashed line) the 
energy is expandable in inverse powers of XA. Second-order terms in this 
expansion depend explicitly on nl A completely different expansion (dotted 
line) applies in the strong screening limit. 

different ways. Since the term under consideration is small 
compared to the dominant terms, the calculation should be 
insensitive to the switching procedure. A convenient choice for 
the value of ÀA at which the treatment of the nl state should be 
changed is given by the condition 

Ze2 

Enl(co) + — = 0. (29) 
ÁA 

Figure 1 shows that there is some arbitrariness in condition 
(29). 

It is apparent that both equations (14) and (21) have discon- 
tinuities when the switch determined by equation (29) is carried 
out. This is due to the fact that the activity expansion is trun- 
cated after a few terms. Since equation (14) involves the PL 
weight factors, which largely removes the effect of bound states 
lying above —/cT, it is quite insensitive to these discontinuities 
until the continuum is lowered to —kT. Low-order derivatives 
of the EOS obtained from equation (14) are also not much 
affected by the switching procedure. It is for these reasons that 
complementary activity expansions are introduced for the cal- 
culation of the EOS and occupation numbers. Formally the 
EOS and number densities are continuous, and the discontin- 
uities arise from a practical need to truncate the calculation at 
some point. At very low densities, the merging due to Stark 
broading leads to an optical lowering of the continuum, which 
for hydrogenic ions is somewhat larger than the true contin- 
uum lowering; consequently, the fine details concerning con- 
tinuity occur in a region that is not observable as line 
radiation. The number of observed lines should be consistent 
with the Inglis-Teller (1939) formula. 

A specific example of the foregoing statements is displayed in 
Figure 2. It shows the location of the various continua in the 
solar photosphere. The temperature and electron density used 
by Ebeling et al (1985) have been assumed in this example, i.e., 
T = 5785 K and ne = 1013 cm-3. Figure 2 shows that contin- 
uum lowering in the plasma causes scattering state energies to 
overlap bound state energies for n > 106. This overlap, even 

disregarding line-broadening mechanisms, diminishes the 
observability of states up to n = 167, the maximum allowed 
principal quantum number in the Debye-Hückel potential for 
the conditions that exist in the photosphere. According to the 
arguments of § IV, occupation numbers can be calculated for 
states having n < 106, but not for states having 106 < n < 167 
(see the discussion of Fig. 1). The presence of bound states in 
the continuum could lead to resonance phenomena. 

Figure 2 shows that optical lowering of the photospheric 
continuum due to line merging, as qualitatively predicted by 
the Inglis-Teller formula, prevents the observation of any line 
having n> 21. This is in reasonable agreement with the obser- 
vations of Moore, Minneart, and Houtgast (1966), who 
observed members of the Balmer series up to n = 17. Since 
continuum lowering varies more rapidly than optical lowering 
with increasing Z, it can be larger than optical lowering for 
highly ionized high-Z ions. When this occurs, continuum 
lowering, rather than optical lowering, determines the observa- 
bility of a given level. In this latter case, even the last few 
observable line profiles may not show appreciable overlap. 
This phenomenon probably cannot be observed in radiation 
from astrophysical objects, but it is being studied using laser- 
driven gas microballoon implosions (Goldsmith, Griem, and 
Cohen 1984; Delamater et al 1985). 

Figure 2 also shows that Planck-Larkin compensation 
places the effective continuum between n = 5 and 6. This 
means that states having n> 5 make small individual contri- 
butions and should, for EOS calculations, be treated together 

Fig. 2.—Hydrogen continua in the solar photosphere. Energy is given on 
the left scale and principal quantum number on the right scale. Horizontal 
lines in the diagram give E and n for bound states. Dotted area, bound state 
range that is part of the Planck-Larkin continuum. Singly hatched area, bound 
state range subject to line merging. Cross-hatched area, location of the plasma 
continuum. 
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with scattering states in a systematic perturbation expansion. 
At low density, the location of the Planck-Larkin effective con- 
tinuum is independent of density but, according to the above 
discussion, it will move down at high density. 

V. CONCLUSION 

A discussion of how the PLPF arises in a systematic many- 
body analysis of the EOS has been given. Complementary 
activity expansions for the calculation of EOS and occupation 
numbers were presented. It was shown that the PLPF is 
important for the calculation of both the EOS and occupation 
numbers. Due to the wide use of free-energy minimization 
methods in astrophysical applications, it was demonstrated 
that, in the low-density limit, the Saha-like equation that gives 

effective occupation numbers for the EOS is different from the 
Saha-like equation that gives occupation numbers for radi- 
ation. This latter equation is somewhat similar to what is 
already used, except that in current astrophysical applications 
the same equation is also used to calculate the EOS. The point 
is that this is incorrect. Likewise, it is incorrect to use effective 
occupation numbers derived directly from the PLPF in appli- 
cations that require actual occupation numbers. 

I would like to thank H. E. DeWitt, C. A. Iglesias, and D. B. 
Boercker for useful discussions and for their careful reading of 
this paper. This work was perfomed under the auspices of the 
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