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ON THE MINIMUM DISTANCE BETWEEN TWO
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Abstract. The methods used so far for determination of the closest approach between two orbits are
discussed, and corrected versions of two of them are presented.

1. Introduction

The problem of the minimum distance between two orbits may be encountered for
example in:

— determination of close approaches of comets and planetoids to the Solar System
planets,

— calculation of the comentary radiants,

— investigation of the evolution of meteor streams.

The problem of the minimum distance has been considered by several authors, for
example by Dubyago (1949), Kramer (1953), Lazovi¢ (1967, 1981), Sitarski (1968),
Babadjanov et al. (1980), Murray et al. (1980), and Hoots et al. (1984). However,
methods described by these authors have some disadvantages from the viewpoint of
practical computer calculations. These disadvantages result from the necessity of
having suitable initial values (Lazovi¢ (1967, 1981), Murray et al. (1980), Hoots et al.
(1984)) or from the limited applicability of the methods proposed (Dubyago (1949),
Sitarski (1968), Babadjanov et al. (1980)).

In this paper we propose a solution of the problem of determination of the
minimum distance between two arbitrary common focus orbits which does not have
these disadvantages.

2. Preliminaries

Let £, and X, be arbitrary common focus Keplerian orbits (ellipses, parabolas or
hyperbolas) defined by the perihelion distance q,, the eccentricity e, the longitude of
the ascending node @,, the argument of the perihelion @, and the inclination iy, for
k=1, 2, respectively.

The problem of determination of the closest approach between orbits £, and X, is
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reduced to minimization of the function:

D(f1, [2) = (7o = SF,)"+(F, = SF,), (1)
where f,, f, are the true anomalies,

7, = r(cos f,, sin f;, 0),
qi(l + e)

" ooy ?

k=12,

and S = {s;;],i,j=1, 2, 3 is the orthogonal matrix of the transformation between the
%, orbital coordinate system and the £, one. Elements of S are functions of Q,, w,,
ir (k=1,2) only.

From definition (1) it follows that:

V' D(f.. f2) =0, (3)
(f1:f,)eU

thus there obviously exists such a value D* that:

D*=inf{D(f1,f2)|(f1,f2)eU}, (4)

where U is the domain of the function D.
Every pair (f%, f1)e U satisfying the equation:

D(f%, f3)=D*,

are solutions to our problem. The set of all such pairs we denote by U*. The
existence of at least one pair (f¥, f¥)e U* is ensured when the domain U and the
function D satisfy assumptions of the Weierstrass theorem. Namely, if U is a
compact set and D is a continuous function over U then D takes a minimum value
somewhere in U.

3. Discussion of the Previously Used Methods

In all the papers quoted in the Introduction, the necessary and sufficient conditions
of the local minimum existence were used, i.e.:

_, D _, s
TP A |
0*D 0*D
70 (5370 o
0°D 0*D 0*D \?

_ ) 53
o7 o3 (aflaf) =0 )
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When all solutions of the system (5.1) are known, then the conditions (5.2) and (5.3)
are examined and finally, the smallest of the local minima may be taken as the
solution of the problem.

According to definitions (1) and (2), equations (5.1) may be rewritten in the form:

oD
E:Alcoszfl + A, cos f; +
+A3 Slﬂfl COSf1 +A4 Sln fl +A5 =0, (6.1)
oD
—— =B, cos® f, + B, cos f, +
>

+ B sin f, cos f, + By sin f, + Bs =0, (6.2)

where 4, = A,(f,), B;=B;(f,),i=1,2,3,4,5, or in a different manner, i.e.:

oD )

— = A + A5 sin f, + A5 cos f, =0, (7.1)
f

oD ) o

5)(—2 Bl +B2 Sin fl +B/3 COS fl =O, (72)
)2

where A; = A(f,), Bi=B{(f,),i=1, 2, 3.

The equation set (7) has been worked out by Dubyago (1949), Sitarski (1968) and
Babadjanov et al. (1980) by finding the value £ from equation (7.1) with a fixed
value f{? and next by testing how the obtained pair (f{*, /) would satisfy
equation (7.2) to correct the assumed value of f{°.

This procedure may lead to failure because in some cases it is impossible to find
the appropriate value of /) from equation (7.1). This may happen even in the close
neighbourhood of the solution (see Figure 1). The procedure described above is
equivalent to finding the points of intersection of the plane Il perpendicular to X, at
P,(f\?) with the orbit Z,.

In Figure la it may be seen that:

IPPINE, = ¢

A similar situation for both orbits X; and X, is shown in Figure 1b.

Kramer (1953) described the iterative method for solving equation set (7). With
£ fixed in equation (7.1) the value f¥ is obtained. Next from equation (7.2), now
with fixed f, = f% a new value f{V is calculated and so on. Apart from the
difficulties mentioned earlier such a defined iterative procedure never converges to
the minimum. Namely, if P©eX, is fixed by f{» and PeX, described by f is
obtained from (7.1) then (see Figure 2) P'” is the point of X; which is the closest to
P{. The new point Pt # P¥ obtained from equation (7.2) with /% fixed is more
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Fig. 1. Examples of the situation when there is no solution of the equation (7.1) with respect to f,.
(a) Z, plane LX,, (b) Z, plane ||Z,.

Fig. 2. See text.
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) (0) ) :
distant from P%” then P{’, so we have:
0) £(0 1) £
D(fP, ) <D(fP, D).
Consequently, after each step of such an iterative procedure we always have:
DY, fE)<D(fETV, f5),  neN.

The difficulties described thus far result from improper solving of the set (5.1). The
first equation of set (5.1) should be solved with respect to f; instead of f,. The
second one with respect to f, instead of f;, but the formulae (6) implied by such
a procedure are more complicated.

Another group of methods (Lazovi¢, 1967, 1981), (Hoots et al., 1984), for finding
the minimum distance between two orbits (only elliptical) is based on the iterative
calculation of corrections Af;, Af, to the given starting values f, f%). These
corrections are obtained by Newton’s method applied to the equation set equivalent
to (6). However such a procedure may be ineffective (see section 5), when the initial
values f{ and ¥ do not ensure convergence to a local minimum. Such a
convergence has not been proved for the starting values determined according to
Lazovi¢ (1974, 1976, 1978, 1980, 1981) or to Hoots et al. (1984).

Murray et al. (1980) solved the system (6) with the numerical method due to
Powell, for elliptical orbits only, requiring ‘suitable starting values’. The method of
choosing the initial values was not presented.

4. Methods Proposed

As was mentioned in the Section 2, the set of solutions may be defined as:

U*={(fT. fDIUT, 5 e UAND(ST, f5) = D*}.

To be sure that U* # @ it is sufficient in our case to restrict the domain U to its
compact subset U (such a restriction is fully justified from the viewpoint of practical
applications). Before that, we replace the true anomaly f; by a variable y, defined by
the well-known relations:

(i) when e, <1 then y,=E,

tg(Ex/2) = ((1 — e/(1 + €)' tg(fi/2), (8.1)
(i) when e, =1 then y, =0y

o) = tg(fi/2), (8.2)
(111) when e, > 1 then y, = H,

tg(Hy/2) = ((ex — D/lex + 1) ?tg(f1/2), (8.3)

for k=1, 2.
Using these variables, equations (6) may be rewritten in a simpler form, with the
simple geometrical interpretation of the coefficients, which simplifies the solution of
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the problem. Now we define the new compact domain as the rectangle:

~ ~

U=1,x1,

where y,e1,, y,€1, and

I,=[—mn] when e, <1, (9.1)
I,=[—-M,M] when e, = 1, (9.2)
T,=[—n/2+¢m/2—¢] when e, > 1. 9.3)

Here k=1, 2, 0 < M < oo arbitrarily large and ¢ > 0 arbitrarily small.

The methods of determination of the minimum distance between two orbits,
presented below, are based, like those discussed earlier, on the solution of the set
(5.1). However, this solution is obtained in a different manner, free from the
previously presented difficulties and with condition (5.2) included.

Let us rewrite the conditions (5.1) in the form:

oD

T=F1(V1’V2)=0 (10.1)
V1

oD

FR = F5(y1,72)=0 (10.2)
Y2

where y{, 7, are defined by (8). The methods proposed consist in successively solving
the equations of set (10) with various fixed values of one of the variables y,. Thus, we
solve equation (10.1) with respect to y,, while equation (10.2) is solved with respect
to y,. In both cases there are two to four solutions in general; but the detailed
geometric analysis makes it possible to obtain the isolation interval containing the
only solution satisfying the condition (5.2). In this way we obtain the point of one of
the two orbits that is the closest to the fixed point on the other one.

First of all we show how to obtain the solution of equation (10.1) with y, fixed for
different types of orbit £,. Equation (10.2) with y; fixed is solved analogously.

Let us consider the following cases:

(a) e; <1

We rewrite equation (10.1) using a new variable E, e1,, according to (8.1) and (9.1)
in the form:

G,sinE; —G,sinE;cosE; —G3cosE, =0 (11
where:

G, =a,(c; + &),
G2 = C%:

G =b;n,,
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Fig. 3. See text.

and

a;=q./(1—ey),
by =a,(1—-e})?
¢ =a,ey,
$2=S11X2+ S21V2,
N2 = S12X2 +$22)>.
The values &,, 1, are the coordinates of the point P, being the rectangular
projection of the point P,(r,)eX, on to the X; orbital plane. The values x, and y,

are the coordinates of 7,(E,) in the T, orbital reference system. The elements of S
matrix are defined as follows:

s11 =Py Py,
512=Q1'P27
521=P1-0Q,,
520=010;,

where P, and Q,, (k = 1, 2), are the unit vectors of the orbital reference system of the
orbit Z,. The vector P, is directed towards the perihelion point, the vector Q,
towards the point described by the true anomaly f) = n/2.

It is easy to see that the value E' describing the point P; on X; which is the
closest to the fixed point P, on X, may be obtained as follows:

(1) f G, =0,G,>0, G3#0 then E|=mn/2for G;>0
E\ = —n/2 for G5 <0
() if G; #0, G, 20, G3=0 then E;=0 for G, >G,
Ei == for G, < -G,
cos E1 =G,/G, for G, #0
and —G,<G; <Gy,
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(iii) if G, =G3=0, G, 20 then cosE;=0,

(iv) if G, =G,=G3=0 then E] is an arbitrary value
from [—m, 1],

(V) if Gl#o, G2=O, G37é0 then thll =G3/G1 and Ell
belongs to the interval
given in (vi),

(vi) if G, -G, G5 #0 then equation (11) may be solved with the arb-
itrary numerical method (bisections, iteration, etc.) in the following
isolation intervals:

if Gy >0 and G3>0 then E;e€]0,7/2[

if G; <0 and G3; >0 then Eje]n/2,n[

if G; <0 and G5 <0 then E\e]—mn —7n/2[
if G; >0 and G3<0 then Eje]—n/2,0[

Notice, that in cases (iii) and (ii)) when — G, < G; < G, we obtain two equivalent
solutions and in the case (iv) an infinite number of solutions.

(b) e; =1

With the variable o,e1, according to (8.2) and (9.2) equation (10.1) takes the
form:

O’?+G10’1—G3=0 (12)
where

G, =(¢, +41)/q.
G; =194

and &,, 1, are defined as previously. The value o) satisfying equation (12) and the
respective condition (5.2) may be obtained as follows:

(1) f Gy, =G3=0 then ¢, =0
(i) if G, =0, G3#0 then o) =(G3)'>
(i) if G; #0, G3=0 then o7 =0 for G; >0, or
o, =+(—G,)? for G, <0
(v) if G- G3#0 then the ¢; may be obtained
analytically, taking into account
that:
if G5 >0 then ¢,€]0, M]
if G5 <0 then ¢,e[—M,O[.

Note that in the case (ii1), when G, <0 we have two equivalent solutions.
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(c) e; >1

Choosing H €1, as a variable according to (8.3) and (9.3) we rewrite equation
(10.1) in the form:

GlsinH1+G2tgH1—G3=0 (13)
where

G,=a,(&;—cy)
G2 - C%
G;=bin,

a; =q,/(e; — 1)
by =ay(e; — 1?2

Ci=a,€

and &,, 7, are defined as in the case of ¢; < 1.
The value of H} may be obtained as follows:

(1) if Gy=0 then tgH)=G;/G,
(i) if G3=0 then H} =0 for G; 2 —G,, or
cos H), = —G,/G; for G, < —G,,
(1) if G;-G3#0 then we have the following isolation
intervals for the solution of (13):
if G3>0 then H}€]0, /2 — ¢]
if G3 <0 then Hy e[ —n/2 +¢,0[.

Note that in the case (ii) when G, < — G, there are two equivalent solutions.

When each equation of the set (10) is solved as shown above it is easy to find the
minimal distance between orbits £; and X, in every case. To this aim we apply two
different methods.

(a) Alternating iterative method

This method 1s analogous to the cyclic-coordinate ascent method described, for
example by Zangwill (1974). Namely, starting with an arbitrary initial value, for
example yYel,, we find (in the way described previously) the value VeI,
satisfying equation (10.1) and additionally condition (5.2). Next having 7>’ we solve
in an analogous manner equation (10.2) obtaining a new value y5’eT,. A successive
repeating of such steps gives the pair (71, y%”) which approximate the solution of set
(10) with required accuracy. The proof of the convergence of such an iterative
procedure may be found in Zangwill (1974).

If the obtained pair (7, y§”) satisfies condition (5.3) then it is the local minimum
point of the function D.

Generally, the function D(y,,y,) may have more than one local minimum and we

cannot find the global minimum in this problem at once. So, the iteration should be
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repeated for several initial values of Y. The practical calculations have shown that
to obtain the global minimum of the function D, it is sufficient to start the iteration
from an arbltrary value 7%’ and next to repeat it for the following starting points:
P +7/2, 9P + 7, ¥ + 37/2 in the elliptical case. When one or both orbits are open
curves it 1s sufficient to make three iterative procedures only.

(b) Scanning method

The main idea of this method comes from Sitarski (1968). We have changed here
only the method of solving the equations of set (10).

Let us choose the sequence of points 4§ from the interval [a,b] =1,,i=0,1,..
such that:

')n?

a=yy" <y <P < <yP=b
and
YD M - Ay=(b—a)/n, m=0,1,2,...,n— 1.

Putting values 7% into equation (10.1) we obtain (in the manner described
previously) the sequence of values y{, i=0,1,...,n, satisfying the equation:

Fl(y (11)7’})(21)) - O
Next from equation (10.2) we determine the sequence:
yi=F(09,99).

By consequent N bisections (N = (InAy —In¢)/In2, where ¢ is the required
accuracy) of every subinterval [y§™,y5* 17 such that:

vm'vm+1 \<‘07

we obtain a set of pairs (y{,7%). Among them there are all local minima of the
function D (if the appropriate step has been assumed). For finding the pair describing
the global minimum it is sufficient — instead of examining conditions (5) — to
calculate the values of function D for all obtained pairs and choose the smallest of
them.

5. Numerical testing

The numerical testing of the methods described by Sitarski (1968), Babadjanov et al.
(1980), Dubyago (1949), and Kramer (1953) seems to be irrelevant, because their
disadvantages were shown clearly in Section 3. For testing we chose the following
methods:

NL-Newton’s method by Lazovi¢ (1967),

NH-Newton’s method by Hoots et al. (1984),

SM—scanning method described in this paper,
AM-alternating iterative method also described in this paper.
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We applied all these methods to find the closest approaches between the Earth’
orbit and all elliptical cometary orbits taken from Marsden cataloque (1982). The
results obtained show that Newton’s method is the fastest one (formulae given by
Lazovi¢ (1967) and by Hoots et al. (1984) are almost equivalent).

However, the NL and NH methods sometimes do not give the minimum distance
between the orbits considered. Examples of such situations are shown in Table 1.

Similar cases have occurred several times. In Table II the comparison of reliability
of the NH, NL, AM and SM methods on the whole sample of cometary orbits is
given.

The NH and NL methods consist of two consequent iterations from two different
pairs of starting data. In the NL method we used formulae for starting data
proposed by Lazovic (1980). They give values of true anomalies describing the
relative nodes of £, and X, orbits. In the case of the NH method the first pair was

TABLE I

Minimum distances between Earth’s mean orbit (Seidelmann et al., 1974)
and selected cometary orbits. For NH and NL methods we stopped cal-
culations when corrections to fy and f, were smaller than 1 x 10~ °rad.

Comet Method D-min Je f
[AU]

1882 II NH 0.598 346°.726 191°.354
NL 0.516 13.008 168.858
AM 0.516 13.008 168.858
SM 0.516 13.008 168.858

1969 1 NH 2.700 342°.300 352°.390
NL 1407.3 172981 180.000
AM 2.700 342.300 352.390
SM 2.700 342.300 352.390

1980 XI NH 0.652 63°.266 7°.094
NL 0.652 63.266 7.093
AM 0.178 175.542 116.900
SM 0.178 175.542 116.900

TABLE II

Comparison of four methods of numerical testing

Number of Method
solutions

NH NL AM SM
correct 269 273 290 290
incorrect 20(@) 17 0 0

(a) In the case of the comet 1889 III it was impossible to obtain the
solution by NH method within a sensible machine time.
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the same but according to Hoots et al. (1984) the second pair of starting anomalies
is obtained by:

JO=ft+m

S =ft+m
where f¥,f% are solutions obtained from the first iteration. In our opinion this is
the reason for the different number of incorrect solutions for NH and NL methods
given in Table II.

All incorrect solutions follow from the fact that starting values were out of the
convergence region for the Newton’s method.

6. Conclusions

It should be stressed that the aim of this paper was to find the method which gives
the minimum distance between two orbits of any type and of any configuration.
Both methods proposed in Section 4 meet this requirement.

The numerical testing shows that in many cases the NH and NL methods may be
used as well as AM and SM ones. In those cases NH and NL methods are superior
because they are extremely fast.

However, in our opinion it is rather dangerous to use them because sometimes
they give wrong solutions.

The methods proposed by Sitarski (1968), Babadjanov et al. (1980) and Dubyago
(1949) may be applied only in the limited number of problems, when the difficulties
mentioned in Section 3 do not appear.
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