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ABSTRACT 
Some general features of gravitational Tensing of cosmologically distant objects by intervening masses are 

described. When the lensing mass distribution is restricted to a thin slab between the source and the observer, 
a time-delay surface can be constructed, allowing one to compute efficiently, via Fermat’s principle, the image 
positions, magnifications, and parities for any background source location. Conditions under which the abso- 
lute image parities can be observationally determined are elucidated, and it is shown that only certain com- 
binations of parities and delays are allowed when the lens is nonsingular and transparent. It is demonstrated 
that an image corresponding to a minimum (maximum) in the time-delay surface must have passed through 
less than (more than) a critical surface density of matter. Also, it is shown that a lens with a point singularity 
(e.g., a black hole) can sometimes be observationally distinguished from one with a line singularity (e.g., a 
cosmic string) using the parities of the observed images. Different possible arrangements of images are distin- 
guished in terms of the topology of the “ critical ” contours that pass through saddle points in the time surface. 
It is argued that caustics, which involve the transition from one topology to another through the merger/ 
creation of images, are important in the study of gravitational lensing. Fold and cusp caustics are analyzed, 
and it is shown that high-amplification images are most often associated with fold caustics. The extension of 
these ideas to multiple lenses and an inhomogeneous universe is outlined. The importance of seeking multiply 
imaged galaxies in the neighborhood of known multiply imaged quasars is emphasized. 
Subject headings : galaxies : clustering — gravitation — quasars — relativity 

I. INTRODUCTION 

The recent discovery of at least six convincing examples of 
gravitational lens action has rekindled interest in the formal 
description of this effect (see Gunn 1981; Peacock 1983; Burke 
1984; Turner, Ostriker, and Gott 1984, for recent theoretical 
and observational reviews). Much of this interest has been 
motivated by the difficulty of inferring the distribution of the 
lensing mass in the known examples. In no case has this been 
carried out noncontroversially. The large image separations 
that are seen suggest that extremely high velocity dispersion 
galaxies or groups of galaxies may be involved in the lensing. 
However, such objects are generally not seen even in deep 
searches of the field around the lensed images, suggesting that 
dark matter may be primarily responsible for lensing. Another 
intriguing feature is the occurrence of an even number of 
images in most of the known examples (with the exception of 
Q2016+112 [see Schneider et al 1986] and possibly 
Q0957 + 561 [see Gorenstein et al. 1983]), in conflict with the 
well-known result (e.g., Burke 1981) that nonsingular lenses 
should produce an odd number. It is therefore a matter of 
immediate practical concern to explore different methods of 
performing the inversion from the observed image configu- 
ration to the mass distribution in the lensing plane. In this 
paper we describe the application of Fermat’s principle of geo- 
metrical optics to the problem—an approach which we believe 
has some didactic and practical merit (cf. Schneider 1985). In 
particular, we show how it provides both a basis for a topologi- 
cal classification of possible image arrangements and a heuris- 
tic procedure for understanding the qualitative form of the 
underlying lensing mass distribution. We then go on to discuss 
the relevance of caustics to gravitational lensing. Further 

insights into the application of Fermat’s principle to this 
problem will be presented in Nityananda (1986). 

Bourassa and Kantowski (1975) showed how to locate the 
position of the images on the sky when a point source (e.g., a 
quasar) was viewed from a cosmological distance through a 
single transparent galaxy (or cluster potential). They gave a 
vector (or equivalently a complex) equation for the displace- 
ment of the image on the sky, which had to be solved implicitly 
to obtain the actual ray(s). If we regard the objects as being of 
finite extent, then this equation defines a mapping from the 
object plane to the image plane. In general this mapping is 
one-to-many. The Jacobian of the transformation gives the 
ratio of elemental areas in the two planes, and, since surface 
brightness is preserved, it therefore also gives the effective mag- 
nification of the image. Further, the sign of the Jacobian gives 
the parity of the image. This vector approach forms the basis of 
almost all contemporary discussions. 

In § II we describe an alternative, though equivalent, scalar 
description of gravitational lensing based on Fermat’s prin- 
ciple, and reexpress the above features in this language. We 
assume that the lensing mass is confined to a single plane 
between the source and the observer and associate a time delay 
with each position in the sky of a potential image. The extrema 
of this time surface then give the true positions of the images. 
We state some general relationships between the magnifi- 
cations, parities, and time delays of the images. In § III we 
explain a topological classification of image configurations and 
specialize our results to the cases of three- and five-image 
lensing geometries. One of our two independent three-image 
topologies corresponds to the standard lensing geometry due 
to a spherically symmetric lens, which has been discussed in the 
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literature (e.g., Young et al 1980). However, the other three- 
image topology that we identify does not seem to have been 
distinguished so far. It can be produced by an elliptical (galaxy) 
lens or, in a limit, by a straight string. In § IV we describe a 
computer-graphical approach to the study of lensing by model 
galaxies and clusters. This can be used to model observed cases 
of lensing. We also outline the design of a simple optical appar- 
atus which could be used for fast modeling of image geome- 
tries. In § V we develop the connection between the Fermat 
approach and the classical theory of caustics and the more 
recent general theory of catastrophes (Thom 1975; Berry and 
Upstill 1980). We identify the fold catastrophe as the most 
relevant for applications in gravitational lensing. Lensed 
images are greatly magnified in the vicinity of caustics. For a 
sufficiently steep quasar luminosity function, high- 
amplification events will determine lensing cross sections, as 
emphasized by Turner, Ostriker, and Gott (1984), and this is 
the motivation behind this and other recent studies of the 
structure of caustics (Nityananda and Ostriker 1984; Hogan 
and Narayan 1984). We point out that circularly symmetric 
geometries may be misleading, since they lead to a nongeneric 
caustic structure. In § VI we consider the extension of our 
results to multiple scattering, where the lensing mass is distrib- 
uted in several planes, or continuously between the observer 
and the source. Many of our results survive in the case where 
there is one dominant lens, with the rest of the scattering acting 
as a perturbation. However, in the more general case when 
there are several dominant lenses, only some of our results 
remain true. We discuss future applications of these ideas in 
§VII. 

II. FERMAT’S PRINCIPLE 

If we consider all paths from a source S to the observer 
located at 0 (Fig. 1), then for each path we can form a path 
integral which measures the time of arrival of light at 0 leaving 
S at some fixed time. Fermat’s principle states that this time is 
extremized when the path corresponds to an actual ray. In 
what follows, we assume the existence of angular diameter 
distances that relate a proper distance at the source to the 
angle it subtends at the observer, as is true for instance in a 
homogeneous cosmological model. Some modifications are 
needed when the matter is not smoothly distributed (e.g., 
Zel’dovich 1964; Dyer and Boeder 1973; see also § VI). We also 
require that the lensing potential be stationary for the time it 
takes light to cross it. This can be a limitation in the case of 
lensing by cosmic strings (e.g., Vilenkin 1984; Gott 1984; 
Hogan and Narayan 1984). 

Let us specialize to the case where the lensing mass distribu- 
tion is restricted to a thin slab between the source at redshift zs 

and the observer. (We shall relax this condition in § VI.) We 
can idealize the situation further by taking a projected two- 
dimensional density distribution on a “ lens plane ” at redshift 
zL. Consider now the set of paths which propagate along null 
geodesics of the uniform background universe from S to points 
on the lens plane, and then again along null geodesics from 
there to 0. This family of paths is parameterized by the two- 
dimensional angular coordinate Oj of the ray received at O ; we 
measure 0j with respect to an arbitrary origin, which is most 
conveniently chosen to be the “center” of the lens. For a given 
path, there are two sources of time delay (cf. Schneider 1985). 
The geometrical contribution is just the extra path length trav- 
eled by the light when it is deflected from a geodesic in the 
background world model by a large mass. The second contri- 
bution, viz., the local gravitational time delay attributable to 
the presence of that mass, is familiar from the radar-ranging 
experiments carried out in the solar system (e.g., Reasenberg et 
a/. 1979; Weinberg 1972). 

Let dos and dOL be the angular diameter distances of the 
source and the lens from the observer, and let the angular 
diameter distance of the source from the lens be dLS. Let the 
angular position of the source in the sky be 0S, defined to be 
the direction along which a ray would have been received in 
the absence of the lens. Consider the ray path shown in Figure 
1 which is bent by an angle a at the lens plane and arrives at 
the observer along the direction 07. In the small-angle approx- 
imation, the geometrical time delay due to the extra path 
length of the ray as compared with the direct ray from 5 to 0 is 
measured by an observer in the lens plane to be aÇ/2 (Fig. 1), 
where here and henceforth we set G = c = 1. Noting that £ = 
($i — 0s)dOL and inserting a redshift factor, we find that the 
observed time delay is 

^) = (1 + ^°L‘'‘,j 19,(2.1) ZaLS 

The gravitational time delay is given in the lens frame by 
— 2 jds<p(0j), where (p is the local Newtonian potential and the 
integral is along the ray (e.g., Weinberg 1972; Misner, Thorne, 
and Wheeler 1973). (Arbitrary constants in the local definition 
of the potential are irrelevant.) The time delay in the observer 
frame is thus 

¿grav^j) = “2(1 + ZL) dsç(0j) . (2.2) 

The integral of the Newtonian potential along the line of sight 

ZS 

Fig. 1.—A ray from the source S at redshift zs being gravitationally deflected through an angle a by the lens at redshift zL before being received by the observer 0. 
The image is located at an angular position 0j, measured relative to an arbitrarily chosen reference direction. In the absence of the lens, the source would be seen at 
position 0S. The angular diameter distances dOL, dos, and dLS are marked. 
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is a two-dimensional potential with the projected surface 
density as its source. Let us write 

T = 
(1 + zi)d oídos 

(2.3) 

and define a two-dimensional relativistic potential ^(07) by 

^(0,) = -T^y- Í ds cpie,) = f d2e'W) In (0, - 0'), aOLaOS J “OS J 

(2.4) 

where £(0') is the surface density (g cm-2) of matter at relative 
position O'. The potential ÿ then satisfies the two-dimensional 
Poisson equation 

d2il/ d2\\f SndOLdLSlé 2£ 
d6j1 d0j2 dos 

(2.5) 

where the derivatives are with respect to Cartesian axes in the 
image plane. The quantity Xc is the critical density at which a 
uniform sheet of matter would just focus radiation from the 
source at the observer (e.g., Turner, Ostriker, and Gott 1984). 

The total time delay is obtained by adding the geometrical 
and gravitational contributions. In these cosmologically scaled 
units, 

T(0I;0s) = i(0I-0s)2-iK0I), (2.6) 

where t(07 ; 0S) is the time surface. By Fermat’s principle, for a 
given source position the images are located at the station- 
ary points of t(07; 0s) with respect to variations of 07. In the 
absence of intervening mass, t(07 ; 0S) is simply a paraboloid 
and the single image is located at the minimum, 0I = 0S. As 
mass is gradually introduced (with i// <0) the arrival-time 
surface will be raised and new extrema will eventually be 
created (maxima, minima, and saddle points) corresponding to 
new images. Figure 2 shows a typical sequence of contour plots 
with increasing lens mass. 

The condition dz/dOj = 0 satisfied by the images gives 

0/ = 05 + ViA(0/) = 0S + «'(Oj), (2.7) 

where a' is related to the deflection angle a in Figure 1 as 
follows: 

a'(0;) = Y1 «(0/) • (2-8) 
dos 

Equation (2.7) recovers the standard vector equation (Bourassa 
and Kantowski 1975), thus demonstrating the equivalence of 
the vector and scalar approaches. This equation can also be 
written in the following alternate form : 

0s = Vt(07;O). (2.9) 

Thus, a single time surface, corresponding to 0S = 0, suffices to 
describe lensing by a given mass distribution for any source 
position (at fixed redshift zs). 

Now consider the scaled (extrinsic) curvature tensor 

K, 
djl =Mst 

dOji dOjj dOjj ’ 
(2.10) 

Ku is also the Hessian of the transformation 07->0s. The 
mapping from the source plane to the image plane is described 
by the magnification tensor Mt7 = K^. Let us now rotate the 

coordinate system on the sky in order to diagonalize the curva- 
ture tensor Xl7 at the position 07. In these special coordinates, 

Ku = 
l/Pi 

0 
0 

Í/P2 ’ 
(2.11) 

where pl5 p2 are the principal radii of curvature of the time- 
delay surface. The total magnification is given by the Jacobian 
for the transformation 0S 07 : 

M = |Ml7| = plP2. (2.12) 

Thus the magnification increases with decreasing Gaussian 
curvature. We write the diagonalized curvature tensor in the 
form 

K« = 
K + p 

0 01- K- p] 
(2.13) 

where k: = 1 + p2 ^ = 1 — X/Xc is the expansion and p = 
iípr1 — P21) is the shear. In terms of this decomposition, the 
magnification of the image is given by 

M = (k2 — p2)-1 . (2.14) 

We can use the eigenvalues of the magnification tensor, Pl, 
p2, to classify the parity of the image. The partial parities of the 
image are defined to be equal to the signs of the two eigen- 
values, and the total parity is the sign of the product of the 
eigenvalues. Thus, at a minimum of the time surface, the partial 
parities are both positive and so is the total parity. A maximum 
has negative partial parities and positive total parity, while a 
saddle point has negative total parity and partial parities of 
opposite signs. Figure 3 interprets the standard bending angle 
diagram for a circularly symmetric lens (e.g., Young et al. 1980) 
in terms of the parities of the images and the nature of the 
extrema (see also Narayan, Blandford, and Nityananda 1984). 

At this point we should clarify what properties of the source 
can be inferred in principle from observations of the images. 
Let us define a resolved image as one in which three or more 
noncollinear points can be clearly identified (as in a bent jet). 
(We assume that the source is not so extended that the different 
images overlap.) If the image is sufficiently small compared 
with the scale of the underlying potential, then its shape should 
be related to that of the source by a translation plus a trans- 
formation tensor (cf. Narayan, Blandford, and Nityanada 
1984; Gorenstein et al. 1984; see also Blandford and Jaro- 
szyñski 1981, who considered the opposite limit where a small 
lens introduces a local kink in a long, straight jet). If the lens is 
localized at a specific redshift and is described by a scalar 
potential (as, for example, would not be true of a moving 
string), then each source-to-image transformation tensor is 
symmetric (cf. eq. [2.10]). In other words, the image is expand- 
ed and sheared, but not rotated. 

However, the transformation from source to image is not 
directly observed. What can be determined is the transform- 
ation tensor between two resolved images. Given the coordi- 
nates of three identified points in both images, or some 
equivalent model fitting (cf. Gorenstein et al. 1984), we can 
solve directly for all four elements in each image-to-image 
transformation tensor. This tensor will not, in general, be sym- 
metric. Now suppose that we resolve n images and can there- 
fore determine (n — l) four-element image-to-image 
transformation tensors. One element in each tensor can be 
associated with an essentially unconstrained magnification. 
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Fig. 2.—Contours of arrival time 1(0, ; 0S) in the Oj plane for a simple elliptical galaxy lens in which the surface density (or, equivalently, the distance dOL) is 
increased. The source is located at the centers of the four diagrams, (a) When the lens is absent, the contours are circular and the image is located at the central 
minimum (L). (b) When the surface density is 1 unit, the contours are distorted but there is still only one image, (c) When the surface density is increased to 2 units, a 
maximum (H) and a saddle point (S) are created, giving a total of three images with a limaçon topology (cf. Fig. 5b). (d) At a larger surface density (3 units), the 
existing minimum will split into two minima and another saddle point with lemniscate topology (cf. Fig. 6c). 

We may, however, solve for the remaining 2n unknown source- 
to-image transformation tensor elements using the 3(n — 1) 
known image-to-image transformation tensor elements. This 
can be done uniquely if /t = 3, and we can infer the source 
shape up to an unknown scale factor. If there are more than 
three resolved images, then the solution is overdetermined and 
we have a check on the underlying assumption that the lens is 
well described by a smooth, stationary mass distribution local- 
ized in redshift. 

If, as is currently true for Q0957-h561, we only resolve two 
images, then we can still tell whether or not one of the images is 
a saddle point, since, if this is so, the determinant of the image- 

to-image transformation tensor will be negative. If we believe 
that neither image is a saddle point (for example, if the determi- 
nant of the image-to-image transformation tensor is positive 
and we believe that there are only three images), then we can 
distinguish a maximum-minimum combination from either a 
maximum-maximum or a minimum-minimum combination by 
inspecting the sign of the trace of the image-to-image trans- 
formation tensor, which will be negative for the maximum- 
minimum case. 

In this context, it is worth noting that the polarization posi- 
tion angle will be unchanged by the gravitational deflection, 
and this provides a further possible confirmatory test of gravi- 
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a 

Fig. 3.—The thick line shows the bending angle a as a function of impact 
parameter öj for a typical circularly symmetric lens. The sloping straight line 
intercepts the abscissa at the location of the source 0S. The intersections of 
these two lines give the locations of the three images (e.g., Young et al 1980). 
The parities +, — and the nature of the extrema in the time surface, L for low, 
H for high, and S for saddle point, are indicated. This geometry corresponds to 
the limaçon discussed in § III and shown in Fig. 5b. 

tational lens action. Furthermore, if we believe that the posi- 
tion angle of the polarization direction in a radio jet is related 
to the direction of the jet (cf. Rusk and Seaquist 1985), then 
polarization observations can give a direct determination of 
the orientation of the source. 

Using Fermat’s principle and the topology of the time 
surface, we can now make the following general statements: 

1. Provided that there are no discontinuities in the time 
surface (that is to say, we have a nonsingular, transparent 
potential), there is always an odd number 2n + 1 of images, of 
which n + 1 have positive total parity and n have negative 
total parity (cf. Burke 1981). This is obvious in terms of the 
time surface because there is one positive-parity image in the 
absence of the lens and the addition of the lensing mass pro- 
duces new images in pairs of opposite parity. The odd-number 
theorem is of course not valid if there are singularities in the 
lens, as with black holes or strings, or if there is obscuration of 
images. 

2. If one could measure the relative arrival times of the 
images (which should be possible for a variable source), then 
the earliest image will always have positive partial parities and 
hence positive total parity. This is because the time delay goes 
to +00 for large 10/1, and therefore the image with the least 
time delay has to be a global minimum. In other words, the 
first image to vary must have the majority parity. This result, 
which holds for an arbitrary (odd) number of images, and even 
with multiple lens planes (cf. § VI), means that if ever one finds 
the earliest image to have negative parity, then one can be 
certain that some images have been missed. 

3. Images with positive partial parities (of which there is 
always at least one by statement 2 above) each contain more 
flux than the original source (Schneider 1984). To prove this, 
we consider the representation of the curvature matrix given in 
equation (2.13). Using equation (2.5), the convergence k is 
given by 

k=1-£/Zc. (2.15) 

Thus k depends only upon the matter along the line of sight 

and must be less than unity.1 The shear term fi arises from 
matter outside the beam and is in general nonzero. The partial 
parities are the signs of k + ¡x and k — fi. When they are both 
positive, we have |/¿| < /c < 1, which implies through equation 
(2.14) that M > 1. 

4. Images with negative partial parities (maxima in the 
arrival-time surface) are created by rays that pass through 
a mass density in excess of the critical density £c. To see 
this, note that if both partial parities are negative, then d2\¡// 
dOji > 1 and d2il//0j2 > 1, which implies that £ > Zc from 
equation (2.5). Likewise, a minimum must have k > 0 and from 
equation (2.15) must be located at a point of subcritical surface 
density. There is no bound of either sign on the density neces- 
sary to produce a saddle point. Interestingly enough, one can 
have multiple images even when X does not exceed Xc any- 
where on the sky. Since there can be no maxima in such cases, 
the image topologies (§ III) and parities are restricted (only 
Figs. 4b and 6a are permitted among the topologies considered 
in this paper). 

5. Images which are closer together tend to be brighter than 
isolated ones and the flux goes to infinity as the images merge. 
In fact, an isolated image cannot become arbitrarily bright 
except in nongeneric high-symmetry geometries or in the vicin- 
ity of a cusp or higher order catastrophe. We amplify this in 
our discussion of catastrophe theory in § V. 

6. If we only see two out of three images because of a singu- 
larity in the gravitational potential, then the nature of this 
singularity may be elucidated by studying the parities of the 
observed images. A black hole singularity will produce two 
images of opposite total parity, whereas a string will give 
images of similar parity. This becomes clear from the dis- 
cussion of § III and Figures 4 and 5. The “missing” image 
cannot have both partial parities positive. 

We are also interested in calculating the cross section for 
lensing of a quasar at redshift zs by a lens at redshift zL. This is 
much easier to compute by integration over the image plane 
than over the source plane. The cross section for a point source 
to undergo some lensing event is given by 

iMr1^, (2.16) 

where we have used the fact that |M| is the Jacobian relating 
the two spaces. In evaluating the second integral in equation 
(2.16), we must be careful to include just one image per source 
position because of the one-to-many mapping from 0S to 0¡. 

We have assumed that the lensing mass distribution is local- 
ized in the sky, so that far from the lens the spacetime tends 
asymptotically to that of the background isotropic universe. 
This is of course true for most lenses of interest. However, if we 
consider lensing by infinitely long strings (Vilenkin 1984; Gott 
1984; Hogan and Narayan 1984), this is not strictly valid 
because spacetime takes on a “conical” character. For many 
purposes we can still replace the string by a Newtonian mass 
density along a line and use the corresponding linear potential. 
However, it must be remembered that a string that is tilted by 

1 The statement that the surface density £ is positive is not strictly true. For 
example, consider an Einstein-de Sitter cosmology with a spherical void in the 
lensing plane subtending an angle Ôv <£ 1. This will contribute an effective 
negative surface density E 9^ (cf. Nityananda and Ostriker 1984). 
However, provided that there are not significant deviations from mean cosmo- 
logical density along the line of sight, and this assumption underlies our single- 
screen model, the surface density can never become sufficiently negative to 
affect the lensing geometry strongly. 
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Fig. 4.—(a) Contours of projected density of a model galaxy lens with an 
elliptical shape. The density has been adjusted so that rays from the source are 
focused in front of the observer in a plane that runs from the lower left-hand 
corner to the upper right-hand corner of the diagram, but behind the observer 
in a perpendicular direction, i.e., the lens is astigmatic. A limiting case of this 
type of lens is a straight string, which only focuses in one direction, {b) Con- 
tours of time delay for the given source located at X, computed as discussed in 
§ IV. The contour spacing has been selected to highlight the three extrema, 
consisting of two L (low) images and one S (saddle point) image. The “ critical ” 
contour passing through S is highlighted, and distinguishes the topology 
(lemniscate in this case) of the lensing. If the lens were a string, S would lie on 
the string and have zero magnification. The remaining images will have the 
same (viz., positive) parity, (c) The solid line shows the caustic in the image 
plane (fy), which is the locus of points at which an L and an S image merge 
with infinite amplification and then disappear in a fold catastrophe. The S 
image always lies inside this closed curve, and the L images outside. The 
dashed line shows the location of the third image when the other two merge. 
Multiple images are always found inside this curve. The two points at which 
the solid and dashed lines meet are cusp catastrophes (positive cusps; see § V), 
involving the simultaneous merger of all three images, (d) Shows the caustic 
curve in source space (0S), consisting of two cusps joined by two smooth curves 
of fold catastrophe. Multiple images are produced only when the source is 
inside the curve. The detailed structure of a cusp caustic is discussed in § V and 
Fig. 9. 

an angle (p from the plane of the sky has a reduced bending 
proportional to sin <p, a somewhat surprising result that arises 
from the peculiar nature of the spacetime (Gott 1984). 

Let us summarize this section. We assume that there is a 
lensing mass in between us and the source. We calculate the 
two-dimensional Newtonian potential in the lens plane using 
the integral form of Poisson’s equation and convert it into an 
effective relativistic potential. We compute the arrival times for 
possible rays passing through the lens plane and locate the 
actual observed images by the extrema of these arrival times. 
The associated magnifications and parities of the images are 
given by the curvature tensor of the arrival-time function at 
these extrema. 

III. TOPOLOGICAL CLASSIFICATION OF IMAGE CONFIGURATION 

It is by now quite clear that the geometries in the observed 
examples of gravitational lensing are not simple, and we must 
probably renounce hope of using the observations to make 
quantitative estimates of the masses of galaxies or the value of 
the Hubble constant (e.g., Falco, Gorenstein, and Shapiro 

Fig. 5.—(a) Contours of projected density of an elliptical lens correspond- 
ing to a case when rays from the source are focused in front of the observer in 
both principal directions. A limiting case of this type of lens is a point mass, say 
a black hole, (b) Contours of time delay corresponding to the source at X, 
computed as discussed in § IV. The three extrema consist of an L (low) image, 
an H (high) image and an S (saddle point) image. The critical contour has the 
shape of a limaçon. If the lens were a black hole, H would lie on the singularity 
with zero magnification and the surviving images would have opposite 
parities, (c) The inner solid line shows the caustic corresponding to the tran- 
sition from three images to one image, involving the merger and disappearance 
of the H and S images. The outer solid line is a second caustic, involving the 
transition from three to five images and must always be present, as discussed in 
the text and also shown in Fig. 10. There are two positive cusps C+ and two 
negative C_ on this caustic (see § V for the distinction between positive and 
negative cusps). The dashed lines demarcate areas on the image plane corre- 
sponding to one, three, and five images, (d) The two caustics in the source 
plane. The outer curve is a pure fold corresponding to the transition from one 
to three images. The inner curve consists of four cusps joined by folds and 
corresponds to the transition from three to five images. The topology of the 
time surface in the five-image region is shown in Fig. 6c. When the lens is made 
perfectly circular, as in the case discussed in Fig. 3, the inner caustic in (d) 
shrinks to a point, thus corresponding to a nonstandard, nongeneric catas- 
trophe. The corresponding caustic in the image plane (c) is, however, topologi- 
cally unaffected, in the sense that it is still a finite closed curve. 

1984; Alcock and Anderson 1984). Nevertheless, we may be 
able to understand the imaging geometry in qualitative, topo- 
logical terms. 

In the absence of a lens, the time-delay function 1(0/ ; 9S) is 
just a paraboloid centered on the source. The effect of adding 
masses in the lens plane is to raise this surface in the region 
around the mass. If the mass is large enough, then we will 
create new extrema with associated images. 

Let us first consider three-image topologies. We represent 
maxima (highs), minima (lows) and saddle points on the time 
surface by the symbols H, L, and S. By the discussion in § II, 
one of the three images has to be S and one L. Therefore, there 
are only two possible three-image topologies—LLS and LHS. 
These are shown in Figures 4b and 5b, where we have empha- 
sized the “critical” isochronal contours passing through the 
saddle points. The shapes of the critical contours in the two 
cases are those of the classical lemniscate and limaçon curves, 
and we will use these terms henceforth. The usual example, 
discussed in the literature, of three-image lensing by a 
(spherical) galaxy with a non singular core (Fig. 3) corresponds 
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to the limaçon. The lemniscate does not appear to have been 
distinguished so far. It occurs naturally with elongated lenses 
as shown in Figure 4. It is also more likely to be produced 
when the mass distribution in the lens is extended rather than 
centrally concentrated. 

If we consider holding the lens fixed and moving the source 
around, the images and the critical contour will also move. For 
particular source positions, two of the images will merge and 
disappear in a caustic singularity. This is shown for the case of 
the lemniscate by the solid line in Figure 4c. The dashed line 
shows the location of the third image at the instant when a pair 
merges at the caustic. The significance of this line is that, when- 
ever an image is found outside it, it is the only image. That is, 
three-image geometries have all three images inside this line. 
There are two points at which the caustic and single-image 
curves in Figure 4c touch. These correspond to cusp catas- 
trophes where three images simultaneously merge into one. 
This is to be contrasted with the fold catastrophe which occurs 
over the rest of the caustic, where only two images merge. 
Figure 4d shows the shape of the caustic in the source plane. 
Caustics are discussed in detail in § V. 

The case of the limaçon in Figure 5b is a little more compli- 
cated. We still have a caustic separating one- and three-image 
geometries, shown by the inner of the two solid lines in the 
image plane (Fig. 5c). However, the generic limaçon-producing 
lens must possess a second caustic, shown by the outer of the 
two solid lines, corresponding to a transition from three to five 
images. A very general topological argument can made to 
show this. Consider moving the source from left to right in the 
figure. At far left one has only one L image. As the source 
moves to the right, at one point a pair of images is created and 
we have the configuration LHS as in Figure 5b. Still later, as 
the source moves to the far right, we again have only one L 
image. For certain trajectories of the source, the H and S 
images will merge, leaving the original L image as the sur- 
vivor. A little thought, however, shows that this cannot happen 
for all trajectories. In fact, for certain “ central ” trajectories, we 
will require the L and H images to merge, which is impossible 
without creating additional images. Similarly, the S must turn 
into L, which also requires additional images. Thus there must 
be a region of five or more images (cf. Figs. 5 and 10). The only 
way to avoid this topological argument that insists on five 
images is to have a very special lens distribution where L and S 
combine into a single closed trench in the time-delay surface of 
constant t (a Mexican hat with a level bottom). This leads to a 
ringlike image for a particular position of the source. In a 
sense, the caustic is still there, except that the whole caustic is 
lighted up for a single source position. (One could also argue 
that this is a case of an infinite number of images.) Turner, 
Ostriker, and Gott (1984) have studied amplifications and 
cross sections for this special case, using a circularly symmetric 
lens. However, it is clear that this geometry cannot occur in 
practice, since any random mass distribution far away from the 
beam will introduce shear into the local curvature tensor, 
breaking the symmetry. Nityananda and Ostriker (1984) and 
Hogan and Narayan (1984) have studied the effect of the shear 
in specific cases, and find that one generally has a region of 
parameter space with five images. As shown in Figure 5d, the 
one- to three-image caustic in source space (outer solid line) is a 
pure fold catastrophe, while the three- to five-image caustic 
(inner solid line) has cusp catastrophes in addition (four cusps 
in this case). 

The lemniscate and the limaçon are basic building blocks for 

e f 
Fig. 6.—(a-f) The six topologically distinct five-image arrangements pos- 

sible. Types {b) and (/) cannot have cusp catastrophes, as discussed in § V. 

the critical contour plots when five or more images are formed. 
In Figure 6 we give the six possible nondegenerate topological 
possibilities for five images. There are 25 topologically distinct 
nondegenerate arrival-time surfaces containing seven images. 
Our definition of “ degenerate ” here is that two or more saddle 
points have a common isochronal contour or that two images 
merge. If we change the image topology by continuously alter- 
ing the potential, then we must pass through one of these 
degenerate configurations. 

In a given case of lensing, it may be possible to determine the 
parities of all the images, using, say, VLBI. In addition, it may 
also be possible to measure relative time delays, thus permit- 
ting the images to be time ordered. These two pieces of infor- 
mation uniquely determine the topology in the three-image 
case, as shown in Table 1. Note that the negative-parity image 
cannot arrive earliest, as discussed in § II. In the case of five 
images, there are six permitted types of time ordering and four 
forbidden (Table 1). Of the permitted types, only two corre- 
spond to a unique topology. Even in the other four nonunique 
cases, it could happen that pairs of opposite-parity images are 
brightened and appear close to each other in the sky, in which 
case it would be natural to interpret them as merging pairs. 
This will uniquely determine the topology. 

IV. INTERACTIVE USE IN INTERPRETATION OF 
OBSERVATIONAL DATA 

Fermat’s principle can be applied to the practical problem of 
finding simple lens geometries that reproduce given observed 
image configurations. We have written a routine to compute 
the two-dimensional potential i¡/, and hence the arrival time for 
a given source position, due to a given distribution of mass on 
the sky. The images are located at the extrema of the arrival 
time surface, and the associated magnifications, and shapes of 
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TABLE 1 
Image Parities 

Parities of Time-ordered Topology 
Images (Figure Number) 

+ + - 4b 
+ - + 5b 
- + + 

+ + +  
+ + - + - 
+ + - - + 
+ - + + - 
+ - + - + 
+ + + 
- + + + - 
- + + - + 
- + - + + 
 + + + 

6a 
6a, 6b 

6b, 6c, 6/ 
6b 

6b, 6d, 6/ 
6d, 6e 

Note.—The first column gives the parities of 
the images in sequence of arrival times, the ear- 
liest image being listed first. The second column 
lists the topologies that can give rise to the par- 
ticular ordering. Orderings with the earliest 
image having negative parity are not allowed. 

extended images, are given by the local curvature tensor. We 
have developed a computer-graphical package which plots the 
isochronal contours on a TV screen. This is a great help in 
interactively fine-tuning the parameters characterizing the 
mass distribution of the lens so as to reproduce a wide variety 
of image configurations. The effect of adding or subtracting 
mass is to increase or decrease the function 1(0/) locally and 
thus to alter the image locations and magnifications in a 
manner which is easy to appreciate. As Figure 7 shows, an 
additional mass M attracts/repels images parallel to negative/ 
positive curvature principal axes, the forces being proportional 
to M/(| 0M — 0j I) and to the respective radii of curvature. 

a b 
Fig. 7.—(a) Schematically shows a limaçon topology with three images, L, 

H, and S. (b) Shows the effect of adding an additional point mass M. This 
repels the image at L, attracts the one at H, repels S along the direction HS and 
attracts it along the perpendicular direction. The magnitudes of the response 
depend on the strength of M, the distance between M and the image, and the 
values of the local principal radii of curvature of the time surface. 

Figures 4 and 5 were made using this computer routine. We 
have also reproduced the six five-image topologies of Figure 6 
using positive mass distributions. (There is no guarantee that 
there exist inversions of given image distributions that satisfy 
this physical constraint.) Applications of this computer routine 
to the modeling of observed cases of gravitational lensing and 
the estimation of cross sections for various types of lenses and 
lensing events will be discussed in a separate publication. 

In fact, there is an alternative to the computer-graphical 
approach, which has some heuristic value. It is possible to 
construct an optical analog device (although we have not 
actually carried this out) that simulates gravitational lensing. 
One possible design is shown in Figure 8. A reflecting elastic 
membrane (e.g., silvered Mylar) is fitted around a circular 
frame. Light from a source above passes through a half-silver 
mirror and is reflected by the membrane. The reflected rays are 
bent by the mirror before being focused by a lens system to 

Fig. 8.—Schematic design of a gravitational lens simulator. S is a bright light source with an asymmetric shape to permit determination of image parities, M is a 
half-silvered mirror, and L is the “ lens,” simulated by means of a reflecting elastic membrane deformed by hanging weights or blowing air jets. The source can be 
observed visually through a small aperture, A, or can be reimaged onto a screen, C. 
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produce a real image on a screen. In the case of an undeformed 
membrane, there will be one spot of light on the image screen, 
corresponding to the single minimum in the geometric time 
surface 0S). A gravitational lens can now be simulated 
by hanging proportionate weights from the bottom of the 
membrane or (more practically) by blowing high-pressure air 
jets at it. As long as the displacement z(r) of the membrane is 
small, it satisfies the two-dimensional Poisson equation 

V2z = Z(r)g/T , (4.1) 

where £(r) is the surface density of the mass distribution, g is 
the acceleration due to gravity, and t is the surface tension of 
the membrane. Since the light propagation time depends lin- 
early on z, Fermat’s principle works in this analog device 
exactly as in the real lensing situation (compare with eqs. [2.5] 
and [2.6]). As the membrane is pulled down by the hanging 
masses, new extrema will be created, which will appear as addi- 
tional spots on the screen. The brightness of these spots will 
correspond directly to the magnification of the associated 
images, and their parity can be monitored if the light source 
has a finite size and an asymmetric shape. Displacements of the 
source and the viewing screen can be used to simulate varia- 
tions in 0S, zs, and zL. The parameters of the lens can be tuned 
by changing the air jets. 

V. CATASTROPHE THEORY AND THE MERGING OF IMAGES 

We have shown how different types of lenses give rise to 
topologically distinguishable arrival-time surfaces. We now 
consider the details of the transition from one topology to 
another through the merger/creation of pairs of images. In the 
language of catastrophe theory, the position on the sky of the 
source (keeping the redshift fixed) gives us two control vari- 
ables (xs, ys) = 0S in Cartesian coordinates referred to a suit- 
ably selected origin. The arrival time for a given 0S is a function 
of two coordinates (x7, yj) = 0j (known in catastrophe theory 
as state variables) on the sky in the image plane. We are inter- 
ested in the change in the topology of the arrival-time surface 
as we alter the control variables. 

If the source is in a direction well away from the lens, then 
there will be just one image, and the isochronal contours are a 
set of nested curves that are topologically equivalent to circles. 
If the lens is strong enough, then, as we move the source closer 
to the lens, a stage will come when a pair of images will be 
created, thereby changing the shape of the arrival-time con- 
tours. As discussed in § III, the critical contour that passes 
through the saddle point takes the form of either the lemnis- 
cate or the limaçon. The line in the control (i.e., source) plane 
across which this change occurs, which may be located 
through the vanishing of the determinant of the curvature 
tensor K^, is a caustic (or catastrophe). Correspondingly, there 
is a line in the state variable space on which images merge (or 
are created) (cf. Figs. 4 and 5). For simplicity, we will also refer 
to this line as a caustic. For two control variables, there are 
two possible elementary catastrophes (e.g., Poston and Stewart 
1978; Berry and Upstill 1980) known as the fold and the cusp, 
both of which can occur. 

Before discussing the properties of these catastrophes in 
detail, let us first fix ideas by considering the mapping between 
the source and image planes when there is only one isolated 
image. If we choose the origin in the two spaces such that a 
source located at 0S = 0 gives an image at 0j = 0, then, for 

suitably oriented Cartesian axes, the time surface locally takes 
the form 

t(0,) = jaxf + jbyj + ■ ■ ■ , (5.1) 

where we have ignored an additive constant. The constants a, b 
can be expressed in terms of the derivatives of the potential ij/ 
by expanding equation (2.6) in a Taylor series. Positivity of the 
surface density implies that a + h < 2. The position of the 
image for a general 0S is given by equation (2.9) as 

1 1 
= yi = 7 ys • (5.2) a b 

The mapping between the two planes is seen to be a simple 
stretching by factors of 1/a and \/b parallel to the two coordi- 
nate axes. A circular source is thus mapped into an ellipse, with 
a magnification given by 

(5.3) 

It should be stressed that equation (5.1) is a local expansion of 
the time surface. The global time surface could well have other 
extrema, with associated images, far from the region of validity 
of this expansion. 

In the case of the fold catastrophe, the time surface is locally 
of the form 

t(0/) = laxj + %bxj + (bc)il2x,yI + jcyj , (5.4) 

where a > 0 without loss of generality. Note that this form is 
more general than the canonical catastrophe function (e.g., 
Poston and Stewart 1978). Now the image locations are given 
by 

(5.5) 

and the magnification of each image is 

2acxj 2a1/2c[xs — (b/c)1/2ys]1/2 ' 

The new feature is that, for > (b/c)1/2ys there are two 
images, while for xs < (b/c)1/2ys there are no images (though 
globally, of course, there must in both cases be at least one 
other image in order to satisfy the odd-number theorem). 
When xs = (b/c)1/2ys, the two images merge at Xj = 0 with 
infinite amplification. The direction of merger is given by 
dyj/dxj = —(b/c)1/2. The lines = 0 and xs = (b/c)1/2ys thus 
represent the caustic in the two planes. (Although the expan- 
sion [5.4] leads to a caustic that is locally a straight line, for 
any finite lens it must globally form a closed non-self- 
intersecting loop.) The two merging images approach each 
other from opposite sides of the caustic and hence by equation 
(5.6) have opposite parities. Both limaçons and lemniscates can 
have fold catastrophes. 

For the cusp catastrophe, the local time surface is of the 
form 

t(0,) = \ax\ + jbxjy! + jcyj . (5.7) 

The images are located at the solutions of the equations 

ax] + bxIy, = xs, \bx2¡ + cy, = ys , (5.8) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

31
0.

 .
5 

68
B 

GRAVITATIONAL LENS IMAGES 577 No. 2, 1986 

Fig. 9.—Cusp caustic in image plane (a) and source plane {b). The case displayed corresponds to a positive cusp. The solid ellipses show the locations and shapes 
of the images when the source is very close to the cusp [solid circle in (h)]. The three images merge simultaneously along a direction tangential to the caustic when the 
source is exactly on the cusp, and for a source just outside the cusp there is only one very bright image. Away from the cusp, the caustic in (b) behaves like a fold. As 
shown by the open circles and ellipses, when the source approaches and crosses the caustic line in this region, two bright elongated images merge and disappear, 
while the third unbrightened image crosses the dashed single-image line. See Hogan and Narayan (1984) for a pictorial description of the fold caustic. 

and the magnification is 

(3ac — b2)xj + bcyL ’ 

The caustic, which is given by the condition M—► 
form 

y i 
b2 — 3ac 

be 
x2i 

in the image plane, and of the form 

yf 
27c2 / 2ac^ 
“sTv1 ~1^|X 

2 
S 

(5.9) 

oo, is of the 

(5.10) 

(5.11) 

in the source plane. Note the characteristic three-halves power 
relation in the source plane, illustrated in Figure 9. For source 
positions “inside” the cusp caustic in the source plane, there 
are three images, and for positions “ outside ” only one. When 
Bs = 0, the three images merge simultaneously at 07 = 0, 
leaving behind one infinitely brightened image at the same 
location. In the time surface, three extrema coalesce and the 
critical contour shrinks to a point. As the cusp is approached, 
the images become elongated parallel to the caustic in the 
image plane. Note that a cusp caustic (or higher order catas- 
trophe, if there were more than two control variables) is the 
only way to produce an isolated, highly magnified image—a 
fold caustic is not enough. For other positions of the source on 
the source caustic (5.11), two images merge at a corresponding 
point on the image caustic (5.10), leaving behind a single not- 
so-bright image. The locus of this single image when the other 
two images merge is given by 

(b2 -b 6ac) 
8hc 

(5.12) 

and its magnification is 

M = [^ac-^b2)x2T1 . (5.13) 

Two types of cusp caustic can now be distinguished : 
1. Positive cusp: When b2 < lac, two positive-parity 

images and a saddle point merge to leave behind a positive- 
parity image. The positive-parity images are both minima 
(maxima) if a, c > 0(a, c < 0). This type of cusp is produced 
by the shrinking of a lemniscate and takes place only in the 
topologies of Figures 5b, 6a, 6c, and 6e. The limaçon of 

Figure 5b cannot have a cusp in the one-to-three image 
caustic. However, since the generic limaçon-producing lens 
has a region of five images (Figs. 5 and 10), there will be 
cusps associated with the three-to-five image caustic. 

2. Negative cusp: When b2 > lac, one positive-parity 
image and two negative-parity saddle points merge to leave 
behind a saddle point. The positive-parity image is a 
minimum (maximum) if c > 0 (c < 0). Since this configu- 
ration involves two saddle points, it requires the presence of 
at least five images. Also, since at the cusp the three images 
have the same value of t, the critical isochronal contours are 
degenerate in the sense that the same contour passes through 
both saddles. Negative cusps can form in the topologies of 
Figures 6a, 6c, 6d, and 6e. 

The caustic in Figure 4d contains two positive cusps. The inner 
caustic in Figure 5d contains two positive and two negative 
cusps. 

The importance of caustics is that images in their vicinity are 
highly magnified and so could dominate flux-limited samples 
(this so-called amplification bias was emphasized by Turner, 
Ostriker, and Gott 1984). Both the fold and the cusp have the 
property that the magnification of an image at a perpendicular 
distance Ar7 from the caustic line in the image plane scales 
asymptotically as 

1 
M oc -— . 

Arj 
(5.14) 

The coefficient is sensitive to the model but is typically of the 
order of the critical impact parameter for multiple imaging. 
The asymptotic, integral cross section for producing pairs of 
images, each with magnification in excess of some absolute 
value M0 1, is given using equation (2.16) by 

<7(|M|>M0) = d20s = 
1 
2 

(5.15) 

The factor of ^ is introduced in the second integral to include 
only one image per source position. Introducing a local coordi- 
nate system parallel and perpendicular to the caustic (where 
|M| —> oo) and using equation (5.14), the surface integral is 
transformed into a line integral : 

(j(\M \ > M0) = 
2Mo J 

O 
\d0¡ x\[K\ _ 1 

IV.KI2 00 M2’ 
(5.16) 
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where K = |K0| = 1/M0 (cf. eq. [2.10]), and the integral is 
performed along all caustics, i.e., curves with K = 0. In the case 
of the cusp, there is some cross section for producing three 
comparably bright images. However, it turns out that this 
cross section falls off as a higher power of the magnification 
than the cross section for producing just two comparably 
bright images. We are therefore justified in regarding equation 
(5.16) as asymptotically valid even in the presence of cusps, or 
indeed higher order catastropes. 

If the sources that are being lensed have a luminosity func- 
tion 

(p(L > L0) oc LqP , (5.17) 

then the differential cross section for a given magnification in a 
flux-limited sample is 

dan(M) oc Mß'2d ln M , (5.18) 

where we have used the scaling > M0)ccMq2 from 
equation (5.16). If bright quasars have a steep luminosity func- 
tion (ß >2; Schmidt and Green 1983), then the observed 
sample of lensed quasars could be dominated by high- 
magnification events. In fact, the bright end of the quasar 
luminosity function could be populated largely by magnified 
faint sources. Moreover, there would be a tendency for these 
magnified sources to be associated with foreground galaxies 
(Cañizares 1981 ; Vietri and Ostriker 1983). 

The scaling law (5.16) is derived by making a Taylor expan- 
sion of the potential in the image plane. The universality of the 
scaling law is illustrated by the fact that Turner, Ostriker, and 
Gott (1984) obtained the same result even though they con- 
sidered a nongeneric catastrophe. In their example of a circu- 
larly symmetric lens, the catastrophe in source space 
degenerates to a point. A source located at this position forms a 
circular image in the shape of a ring around the lens. Since the 
caustic in image space is still a line, as in the generic catas- 
trophes we have considered, equation (5.14) continues to hold. 

So far we have considered a source confined to a plane at 
constant redshift. If we now allow the redshift to vary as well, 
we have three control parameters, and this introduces three 
more types of caustic, the so-called swallow-tail, elliptic umbilic, 
and hyperbolic umbilic catastrophes (e.g., Berry and Upstill 
1980). Cusp catastrophes now form lines in this three- 
dimensional space, and fold catastrophes form sheets. Figure 
10 shows the arrangement corresponding to a lens with an 
elliptical mass distribution. Note the occurrence of two inter- 
penetrating caustic sheets. The source has to lie inside one of 
the sheets to produce three images and inside both to produce 
five images. Also note the two hyperbolic umbilic catastrophes 
which transfer two cusps from one sheet to the other as they 
cross. Therefore, far from the lens, the inner sheet has four 
cusps and the outer none. Figure 5d shows a section at con- 
stant redshift in this “far field” regime, while Figure 4d corre- 
sponds to a section closer to the lens, between points A and B 
in Figure 10, where the second sheet has not yet formed. 

If we follow a congruence (or bundle) of rays back from the 
observer toward the source, the rays may cross one another. 
The point at which this happens in a given congruence is 
termed conjugate to the observer and must lie on a caustic 
sheet. In general, the rays do not focus to a point (which 
requires nongeneric high symmetry) but to a line. An image 
that corresponds to a saddle point in the time surface must 
have at least one conjugate point, while for a maximum there 
must be at least two conjugate points along the ray. 

We can use the same time-delay surface, computed for a 
complex lensing potential and a particular source redshift, to 
derive the image properties when the source is at different 
redshift, simply by rescaling the potential contribution to the 
arrival time (eq. [2.6]). 

VI. IMAGING BY MULTIPLE LENSES 

So far we have restricted our attention to the case when 
there is a single deflector and well-defined angular diameter 
distances between observer, source, and deflector. Real exam- 

L 

Fig. 10.—Caustic sheets in three-dimensional source space for a fixed observer position O and an elliptic lens L. The source redshift zs increases to the right. A 
bundle of rays reaching O in a horizontal plane through the center of the lens have a conjugate point at A, which forms the apex of one caustic sheet. A bundle in a 
vertical plane focuses at B, the apex of the second caustic sheet. The lemniscate of Fig. 3 corresponds to a section at constant zs between A and B. The source has to 
be within the sheet to produce three images. As zs increases, beyond the point B, the inner sheet expands and penetrates the outer one at two hyperbolic umbilics 
marked U. Beyond this point, one sheet has four cusps, while the other has none. The limaçon in Fig. 4 corresponds to a source at the right-hand end of the figure, 
located in region 2. The topologies of the time surface in the regions marked 1,2, and 3 are shown at the bottom of the figure. 
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Fig. 11.—Impact parameters rt and scattering angles af at n intervening screens, of a ray from the source S to the observer 0. Lfj. is the angular diameter distance 
from the ith to the jth lens. 

pies of gravitational lensing may be much more complex than 
this. Consider the case when there are n discrete lenses separat- 
ing the observer from the source. Let a ray intersect each lens 
at a proper distance rt- measured from the intersection of the 
unperturbed ray (Fig. 11). If the angular diameter distance 
separating the ith lens from the jth lens is and the light 
travels along null geodesics between lenses, then the time delay 
along the ray (relative to the unperturbed trajectory) is given 
by 

t 
i=l L zaii+l \a0i+l 

where rn +1 is the source position. 
Fermat’s principle states that we observe images along rays 

for which the arrival time is an extremum for all possible varia- 
tions. In this case it is sufficient to vary with respect to the 2n 
coordinates r*. The images are maxima, minima, or Morse 
saddles in' the corresponding 2n-dimensional space. If we 
perform the variation, then we obtain the n vector equations 

H 
js 
dm J d: : 

^0 i + 1 1 + Zi - 1 

doi d0i_1J dt-n 

1 +Z; 

do i-i + a¿ = 0 , 1 < z < n , (6.2) 

where a^) is the deflection associated with the zth screen, and 
r0 = 0. This reduces to 

ri = n + Ï dß*j, 2 <j < n — 1 , (6.3) 
“01 j= 1 

which has a straightforward geometrical interpretation. 
We follow the spirit of the one-lens calculation and compute 

the curvature tensor K, 

Kaß — àap ■ ■I 
k=l 

dok dfç h +1 rk 

d aß a0n+l 
r,_1 n d d d , a0kaklal n + Í s^k 

^~L L j 
fc=l l = k+1 a0n+l y 

■EE E 
fe=l l = k+l m — l+1 

dok dvi dim dt 0k ukl ulm um n + 1 
don+1 

(6.4) 

where the tensor = dockJôrkp. The first sum on the right-hand 
side of equation (6.4) describes the separate focusing of the 

individual lenses. The second sum accounts for the change in 
the final magnification when a deflection caused by one lens 
changes the deflection caused by a subsequent lens. Succeeding 
sums describe higher order interactions. The nonlinear terms 
introduce an important change. Although the individual 2x2 
matrices C1 are symmetric, their products are not, and so the 
curvature tensor K is also not symmetric in general This means 
that the source position $s cannot be the gradient of a scalar 
function of the image position as is true in the case of a 
single lens. Another change introduced when there is more 
than one lens plane is that in general a small image is related to 
its source by a rotation in addition to an expansion and a 
shear. This may provide an important diagnostic of multiple 
lensing (cf. § II). 

In the continuum limit, the multilens equations must be 
replaced by the optical scalar equations of Sachs (1961) (cf. also 
Alcock and Anderson 1984). These equations are usually pre- 
sented in the form of propagation equations for the rate of 
expansion and shear of a congruence of null geodesics passing 
through a point. In our case, we are interested in rays that 
reach the observer, and so we must consider the evolution of 
the congruence backward in time (or, more properly, affine 
parameter 2). In Newtonian language, we relate #*, the small 
transverse displacement of a ray (measured in local 
coordinates) from some fiducial ray, to its rate of change of 
transverse displacement (velocity), dr/dÀ, by the equation 

dr fQ + or <Ji \ 
iU \ CTj 0 — oj 

(6.5) 

where 6 is the rate of expansion and <7 = err + ztjf is a complex 
representation of the rate of the shear. Note that there is no 
antisymmetric part of the matrix (angular velocity) in equation 
(6.5). 

The quantities 0 and o evolve according to the propagation 
equations 

^ + 02 + M2 = -(<p,n + (p,22) = -4np , 

^ + 20<T = -(?,!!+ (P'22 - 2i<p i2 , 

(6.6) 

where the second derivatives of the local Newtonian potential 
are well defined locally. 

However, we are mostly interested in the expansion, shear, 
and rotation of the image as described above. Let us relate the 
transverse displacement of a neighboring ray to a fiducial ray 
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at some affine parameter k (measured backward along the fidu- 
cial ray) to the angle this ray makes with the fiducial ray at the 
observer, {dr/dk)0, by a second matrix equation, 

ÍKr + nr n¡ + k¡\ _ / dr\ 
\Hi - Ki Kr - nj \cU.)() ' 

(6.7) 

In this equation, the real part of /c, viz., describes the expan- 
sion of the image; the imaginary part, /cf, is due to rotation of 
the image; and the complex quantity n corresponds to the 
shear of the image (cf. eq. [2.13], which gives the diagonalized 
form of the matrix with no rotation). The complex quantities k 
and jn satisfy propagation equations 

dh: _ dfi 
-77 = OK + OH, —7 = 0fA + OK 
dk dk 

(6.8) 

(cf. Penrose 1966). The magnification, equation (2.15), must 
now be replaced by 

M = (kk — nñ) 1 • (6.9) 

The advantage of using the optical scalar equations is that they 
can be used to identify the location of the caustics in an inho- 
mogeneous universe. The congruence emanating from the 
observer will be focused according to equations (6.6) by the 
matter it passes through and by the shearing action of the 
matter outside the beam. A conjugate point is produced if the 
rate of expansion diverges, i.e., 0 —> — oo (cf. Hawking and Ellis 
1973). Equivalently, the transformation tensor becomes 
singular (i.e., |k:| = |/i|). Individual rays may pass through 
several conjugate points, and the loci of these conjugate points 
are the caustic surfaces discussed in § V. (Note, however, that 
not all rays produce foci as they cross a caustic surface.) 

We can use this approach to understand qualitatively the 
influence of small matter perturbations along a ray on the 
shape of a caustic. If the perturbation has a surface density 
comparable to the critical density introduced in equation (2.5), 
then it may produce a drastic change in the shape of the caustic 
and perhaps create additional foci. However, smaller pertur- 
bations will merely wrinkle the caustic surfaces and will not 
alter their overall topology. For this reason, we believe that 
estimates of high-magnification cross sections computed 
according to the method outlined in the preceding section 
assuming a smooth universe will also be appropriate for mild 
inhomogeneity. 

It then becomes of interest to determine the conditions of 
inhomogeneity under which the topological results of §§ III 
and IV are strictly preserved. Let us introduce a screen some- 
where in between the source and the observer. Suppose the 
location can be chosen such that each point on the screen can 
be connected by only one ray to the observer. Similarly, let 

each point on the screen be connected by just one ray to the 
source. Then we can define a time delay t(07) for a virtual ray 
that propagates along a geodesic from the source to the screen 
and along a different geodesic from the screen to the observer. 
The conditions for this construction to be possible are that (a) 
there should be no caustic surfaces between the observer and 
the screen and (b) all rays connecting the observer to the source 
plane should pass through no more than two conjugate points. 
If these conditions are met, t(07) can be uniquely defined and 
the topological properties of the time surface are similar to 
those described for the single-lens case. In particular, maxima, 
minima, and saddle points can be distinguished, and have the 
same parities as before. Unfortunately, rotation of the con- 
gruence may make it difficult to distinguish maxima from 
minima observationally. 

When the rays connecting the source to the observer pass 
through several conjugate points, the caustic structure 
becomes much more complex. However, it remains true that 
the first image to vary in response to a change in the source will 
still have positive (i.e., the majority) parity. To show this, let us 
assume that the parity of the first image to vary is in fact 
negative, in which case there would be at least one conjugate 
point along the ray between the observer and the source. The 
construction in Figure 12 shows that it should then be possible 
to find a virtual ray with less time delay than the reference 
geodesic. However, this is not possible, since the first image 
must correspond to a global minimum in the time surface. 
Therefore, there can be no conjugate points, and the parity 
must be positive. 

VII. OBSERVATIONAL IMPLICATIONS 

The primary motivation for this investigation is the fact that 
none of the gravitational lens candidates has been understood 
satisfactorily. The image separations are too large to be 
explained in terms of galaxy lenses, most known examples of 
lensing violate the odd-number theorem, and in many cases 
plausible lenses are not seen in the field of the lensed images. It 
is therefore imperative to decide whether or not the difficulties 
are simply associated with having a far less regular distribution 
of lensing mass along the line of sight than is assumed in the 
models, or instead are an indication that the models are incor- 
rect in a qualitative sense. For example, these observations may 
herald the existence of more exotic forms of matter or a more 
complex topological structure of spacetime than usually 
assumed. To this end, we have concentrated on topological 
invariants of the image geometry, such as the arrival-time 
sequence and image parities. We have also made a detailed 
investigation of certain “universal” characteristics of high- 
amplification events in the vicinity of caustics. 

There is a simple but qualitatively powerful theoretical pre- 

s' 

s 

Fig. 12.—Construction to demonstrate that the first image to vary cannot have negative parity. SCAO is a null geodesic from the source S to the observer 0, and 
S'CBO is a neighboring null geodesic that also reaches 0 after intersecting the first geodesic at the conjugate point C. To second order, the time delays along CAO 
and CBO are equal, but the time delay along CXC2 is less than that along C^C + CC2- Hence the time alongOßC1C2 S is less than that along OACS. Therefore, the 
geodesic OACS cannot correspond to a global minimum in the time delay. 
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diction that transparent lenses always produce an odd number 
of images (e.g., Burke 1981). It is most disturbing that we 
usually observe an even number of images. Five resolutions of 
this discrepancy have been advanced, none of them com- 
pelling. 

1. The missing images are too faint to have been detected. 
Here there are two possibilities. The pairs of bright images 
may straddle a fold caustic and be highly amplified, with the 
odd image having magnification M ~ 1. If so, our discussion 
of caustics becomes highly relevant and the asymptotic cross 
section formula, equation (5.16), should be useful. Alterna- 
tively, the pairs of images may have M ~ 1 and the missing 
image may be highly deamplified by its proximity to a deep 
potential well such as a galaxy core (cf. Narayan, Blandford, 
and Nityananda 1984). 

2. The lensing potentials have a much larger size than 
typical galaxies, and the missing images are far away from 
the observed images (Narayan, Blandford, and Nityananda 
1984). In this scenario, the separation of the observed images 
is small compared with the scale of the lens, and again our 
discussion of caustics should be relevant. The apparent 
homogeneity of the universe on scales >30 Mpc argues 
against the missing images being too distant. 

3. Some rays may be strongly absorbed by passing 
through the center of a galaxy. This is, however, unlikely to 
be a consideration at radio wavelengths. 

4. The potential may be singular, in which case the odd- 
number theorem does not apply. We have shown in this 
paper how the two most popular candidates, viz., black 
holes and strings, can be distinguished with the help of 
image parities (§ II, Figs. 4 and 5). 

5. The unobserved rays may intersect stars within the 
core of a lensing galaxy (Chang and Refsdal 1984; Sub- 
ramanian, Chitre, and Narasimha 1985). This explanation 
fails if the source is sufficiently extended, as in the case of 
broad emission line regions and radio components of 
quasars, or if the optical depth to “ minilensing ” is large (e.g., 
Nityananda and Ostriker 1984), as will be true for lines of 
sight through the center of a galaxy. The ideas developed in 
this paper may be applicable to minilensing, where the 
brightest subimages will occur near caustics. However, the 
network of caustics will be highly irregular in this case, and 
statistical methods are needed. 
This last possibility highlights an important restriction. We 

have implicitly assumed that the lensing potential is smooth, at 
least on the scale of the separation of the brightest images. If, 
instead, the projected surface density of the lensing matter is 
highly granular, then the scaling laws we have given cannot be 
used. The observation that the A1 and A2 images in 
Q1115+ 080 have similar apparent magnitudes indicates that 
the potential is fairly smooth in this object. 

We have emphasized in this paper that it is important to 
monitor the variability of gravitational lens images, since the 
order of arrival times contains important information about 
the geometry, particularly in combination with image parities. 
Various authors have advocated that the quantitative value of 
the delay will provide an accurate estimate of the Hubble con- 
stant H0. We agree with those who are skeptical of this (e.g., 
Alcock and Anderson 1984; Falco, Gorenstein, and Shapiro 
1984). It has been our experience that fairly small changes in 
the lensing potential may introduce much larger differences in 
the delays than in the image properties. This is most easily seen 
by considering the arrival-time surface and realizing that 

observations can give only partial information about the loca- 
tions and relative curvatures of some of the extrema. Therefore, 
to deduce H0 from time delays, one will need to make (possibly 
unwarranted) assumptions about the nature and distribution 
of the lensing matter. 

Most of our theoretical development as well as much of the 
earlier work in the field has been predicated on the assumption 
that the deflecting mass is localized in redshift. We believe that 
this is likely to be a good approximation in most cases simply 
because the probability of lensing is known to be small. 
However, we cannot be sure about this until we determine the 
slope of the distribution function of lens surface densities. We 
have shown in § VI that our topological results and scaling 
laws should be valid even in the presence of mild inhomoge- 
neity along the line of sight, or if there are several “ subcritical ” 
lenses in a situation where multiple imaging ceases in the 
absence of any one of the lenses. Another assumption is that 
the lensing matter is stationary during the time taken by the 
light to cross it. This is quite valid for conventional lenses such 
as stars, galaxies, or clusters, whose motions are subrelativistic, 
but could be a limitation in the case of cosmic strings. Moving 
lenses can produce interesting variability in quasars (Chang 
and Refsdal 1979; Gott 1981; Hogan and Narayan 1984; Sub- 
ramanian, Chitre, and Narasimha 1985). 

We have emphasized the probable importance of caustic 
surfaces and discussed the details of multiple imaging of 
sources located near these surfaces. It is possible that some of 
the known examples of gravitational lensing are located close 
to caustics, and so we believe that it is a particularly good 
observational strategy to search for additional examples of 
multiple imaging in the same regions of the sky. In particular, it 
is worth seeking examples of close galaxy pairs elongated 
along their lines of separation. The discovery of further multi- 
ple images would help map out the underlying caustic surface 
and also define the relevant source luminosity function. More- 
over, if a quasar were multiply imaged close to a caustic and 
had VLBI core-jet structure, then velocities in the jet would be 
magnified into “ superluminal ” motion parallel to the direction 
of separation of the pair of merging images (cf. Chitre et al 
1984). 

As we have mentioned, there is already very good evidence 
that many lenses are dominated by cosmological dark matter. 
In fact, even in the best-understood case, viz., Q0957 + 561, it 
seems that the lensing mass is not traced by the visible light 
(Greenfield 1981). If lensing is caused by dark matter, then we 
have no idea about the mass distribution, and therefore 
properties of lensed images will be most useful in helping to 
draw qualitative conclusions about the underlying potential. 
The discovery of multiply imaged compact radio sources 
whose relative parities can be determined by VLBI is particu- 
larly important in this regard. Alternatively, if the host galaxies 
of lensed quasars have irregular morphologies, these could be 
resolved by Space Telescope, giving valuable information on 
image parities. 

In summary, the purpose of this paper is, first, to present 
Fermat’s principle as a useful way to understand gravitational 
lensing and, second, to draw attention to the variety of quali- 
tative and semiquantitative inferences that can be drawn in a 
model-independent way from observations of the parities, rela- 
tive magnifications, and sequence of arrival times of gravita- 
tionally lensed images. It is hoped that these ideas will aid the 
interpretation of existing and future observations of gravita- 
tional lens images. 
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The importance of applying Fermat’s principle to the con- 
temporary problem of gravitational lensing was made clear to 
us by Rajaram Nityananda. We are indebted to him for this 
and for other insights that he has shared with us. We also 
thank Peter Quinn for help with computer graphics, Richard 

Price for discussions on the optical scalar equations, Craig 
Hogan and Bill Saslaw for comments on the manuscript, and 
Charles Lawrence for general discussions on gravitational 
lenses. Support for this work was provided by the National 
Science Foundation under grant AST84-15355. 
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