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Summary. The main purpose of this numerical investigation of
quasi-periodic orbits in the elliptic restricted three-body problem is
to establish the regions of stable and unstable motions for possible
planetary orbits in double star systems. There are three types of
stable motion for the third, massless, body which are interesting as
regards this problem: the P-type (Planet-type) sorrounding both
primary bodies, the S-type (Satellite-type) orbiting one of the
primaries, and the L-type (Librator-type) librating around the
Lagrangian equilibrium points L, or L [which are stable only in
cases where the mass ratio of the primaries m, /(m,+m,) is less
than 0.04]. The problem in question depends on two parameters,
namely the mass ratio of the primaries and the eccentricity of
their orbit; therefore it is, for the moment, too complex to be
studied as a whole. As the first approximation the mass ratio was
fixed (m,/m, =1). In the numerical experiment thousands of orbits
were integrated for at least hundreds of periods in the elliptic
restricted three-body problem for different eccentricities of the
primaries.

The results show a region of stability far away from the
primaries; then, as one approaches them, within a certain distance
stable and unstable regions are found close together. This limit is
called the Upper Critical Orbit (UCO). The grey region of
“chaotic” motion, chaotic in the sense of unpredictability, is
limited by the Lower Critical Orbit (LCO), within which all the
integrated orbits were found to be unstable. What has been
established here is the dependence of the distance of the LCO and
UCO to the barycentre as a function of eccentricity e of the
primaries. A least squares parabolic fit for the LCO and the UCO
to the discrete numerical results gives the following expressions:

UCO=237+276e—1.04¢2,
and
LCO=2.09+2.79¢—2.07¢>.

These results can be interpreted in the following way. Outside
the UCO all the orbits should be stable, if they initially had only
low eccentricity planet-like orbits. We therefore predict that the
region outside the UCO is the region of possible planetary motion
in double stars in our model of equally massive primaries on
eccentric orbits.

Key words: elliptic restricted problem — stability — quasi-periodic
orbits

1. Introduction

The possible existence of planetary orbits in double star systems is
a question that still has no satisfying answer. Some numerical work
has been undertaken by Harrington (1975 and 1977) in the general
three-body problem, and by Szebehely (1980) and Szebehely and
McKenzie (1981) in the circular problem making use of the
Jacobian constant. Moreover efforts have been made by Hadji-
demetriou (1975) to determine planetary orbits where only one
primary is massive and the two ‘““planets” have comparable, but
small masses. But there exists no detailed study of this question in
the framework of the more realistic elliptic restricted problem for
three bodies. As most double stars have strong eccentricities any
results for the circular restricted problem, which in fact neglects
these effects, cannot be adapted to the underlying problem.

The appropriate method to establish stable regions of possible
planetary motion and unstable regions, as well as the separatix
between them, is an analytical study of the stability of the periodic
orbits (PO). This has been done in a series of papers by Hénon
(1968, 1969) and Hénon and Guyot (1970) for the whole mass ratio
range of the primaries for all the Strémgren families of periodic
orbits in the circular restricted problem. For the elliptic problem
there exist some approaches where the linear stability of selected
periodic orbits is studied (Shelus and Kumar, 1970). Also a detailed
investigation for different eccentricities and mass ratios has been
carried out by Broucke (1969) to find families of POs and their
linear stability. The important point for POs in the elliptic
restricted problem is the *‘strong” criterion for symmetric POs as it
is cited in this article (Broucke, 1969): ““An orbit is periodic if it has
two perpendicular crossings with the syzygy axis and if the
crossings are at moments when the primaries are at an apse.”

Since the time interval is always a multiple of = all the POs have
periods of 2kn. Being interested primarily in the boundaries of
stability around the primaries for possible planetary orbits,
Broucke’s results cannot be used for this determination, because the
integrated orbits which are periodic for any integer k=1,2,3...
are not dense in the physical plane as they are in the circular
problem. It would be necessary to go to even higher commensura-
bilities (corresponding to greater values of k) to establish this kind
of limiting orbit separating stable and unstable POs in the physical
plane. This study of higher commensurabilities is still under
discussion (Erdi, 1985), and it will probably be one of the next steps
in our theoretical study of stability zones in the elliptic restricted
three-body problem.
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Our method of finding stable and unstable regions for the
motions of planets in binary systems in the model of the elliptic
restricted three-body problem is a purely numerical one: as in
general a stable PO in phase space is surrounded by a quasi PO, we
look for quasi POs and then conclude that we are in the vicinity of a
stable PO. This region will be denoted in what follows as a stable
one. By integrating a great variety of such orbits, and separating
the non stable orbits (i.e., escape orbits) from the stable ones (i.e.,
quasi PO) we have found in an earlier paper (Dvorak, 1984) certain
stability zones depending on the eccentricity for specially selected
initial conditions. In this paper a more general picture will be
derived. To include all possible types of orbits in the elliptic
restricted problem the POs should be examined following the
Strémgren families a—m (Stromgren, 1935). Since the main reason
for this work is to establish stability limits for planetary orbits in
double stars it is sufficient to concentrate on three possible types of
orbits which include only some of the Stromgren families, but
which are more appropriate to the problem in question (Dvorak,
1982, 1984):

a) the P-type orbit — the Planet-type orbit, where the third
body surrounds both primaries;

b) the S-type orbit — the Satellite-type orbit, where the third
body is orbiting one of the primaries;

c) the L-type orbit — the Librator-type orbit, where the third
body is librating around one of the triangular Lagrangian points.

In the paper of Szebehely (1980) three different types of
planetary orbits in binaries are also distinguished: a satellite orbit,
an inner planet orbit (both of them are incorporated into the S-type
in this study) and an outer planet orbit (i.e., P-type). A detailed
study concerning the S-type orbit is still in progress. The L-type is
not of great interest for planets in double stars, because the
condition for the mass ratio m, /(m, 4+ m,) to be smaller than 0.04,
for stable orbits around the triangular Lagrange points L, or Ls,
is, in general, not fulfilled for binaries. Moreover there exist several
studies concerning librating Trojan orbits in the circular and the
elliptic restricted problem (e. g., Rabe, 1967; Erdi, 1978, 1981). The
main goal of this study is to find for the P-type orbit the stable and
unstable regions in the physical plane, and, correspondingly, the
limiting (critical) orbit separating these stable and unstable
regions. Due to the numerical method used, which will be described
in more detail in the next section, we can just give lower and upper
bounds for such limiting orbits. Because to establish such curves
which depend on both parameters (mass ratio and eccentricity)
seems for the moment too complex for a numerical study we
decided to concentrate on one interesting specific case. The main
goal for this theoretical study is the following one: To derive the
dependence of the upper and lower limiting orbits on the
eccentricity of the orbit of the binary, for the elliptic restricted
problem, where the primaries have equal masses.

2. Numerical method

As numerical method we used the Lie-series method recently
developed for the elliptic restricted three-body problem by Delva
(1985). Many tests with other programs and theoretical in-
vestigations by Lichtenegger (1984) and Hanslmeier and Dvorak
(1984) were carried out to ensure the accuracy and efficiency of our
method in comparison with others (e.g., the well known n-body
program by Schubart and Stumpff, 1966). To establish stable and
unstable regions (with escape orbits) we first have to define what
we understand by stability: “A stable orbit is defined as an orbit
havingelliptic orbital elements with an eccentricity smaller than 0.3

throughout the whole integration time of 500 periods of the
primary bodies.”

This can be regarded as a kind of numerical Laplace stability:
“All solutions stay in bounded regions of the phase space and no
collisions and no escapes of the bodies occur.” The restriction that
the eccentricity should be smaller than 0.3 is just a limit given by
numerical experience. All the numerical experiments have shown
that every orbit with an eccentricity above this value is finally
subject to perturbations which throw the massless body out of the
binary system with a hyperbolic velocity after one or more close
approaches to one of the primary bodies. Another interesting
result is the following: The perturbations act in a similar way on the
eccentricities and the semimajor axes of the stable orbits as for the
“escape” orbits during their ‘“‘phases of stability”’. Thus no
difference at all is recognized between a stable or unstable orbit
before the escape. In the sense of the definition of stability given
above an orbit with an eccentricity greater than 0.3 is not stable
even with a large semimajor axis (e.g. 10 times greater than the
semimajor axis of the primaries), which is in fact a stable one. The
definition of stability used in this work enables us to find low
eccentric orbits (with e < 0.3) around the double star as possible
candidates for planetary orbits.

Our model is the planar elliptic restricted three-body problem
with equal masses for the primaries. At first representative initial
conditions for the third body, a certain subset of the set of all initial
conditions, have to be fixed. The first attempt (Dvorak, 1984) was
to integrate orbits where the initial position of the third body was
on the connecting line of the primaries, and the velocity directed
perpendicularly to it. Different velocities correspond to different
eccentricities and different semimajor axes of the osculating
elements (defined as usual, where the two primary masses are
thought to be replaced by one single mass in the barycentre with
m=m; + m,). We fixed circular initial conditions of the planet
with the argument that nearly circular orbits are the ones we might
expect for planetary orbits around double stars (e. g., the planetary
orbits in the solar system are almost circular).

As the primaries are in eccentric orbits two different starting
positions were selected for them: the apoapsis and periapsis, being
the initial conditions for the primaries to show the two extremes
concerning stability or escape of the third body (Benest, 1984). To
better establish the different regions of stability around the
primaries the initial conditions of the planet were chosen in the
following way:

position 1: on the line of apses

position 2: on a line inclined 45 degrees to it

position 3: on a line perpendicular to the line of apses
position 4: on a line inclined 135 degrees to it

as shown in Figs. 1 and 2. The velocities are always perpendicular
to the actual position line and correspond to circular initial
velocity. For the elliptic problem with nonequal primary masses 4
additional positions (inclined 180, 225, 270, and 315 degrees to the
syzygy axis) should be considered. Consequently for the problem
under study (m, = m,) it is necessary to test, 4 different initial
positions for the massless body and 2 different positions for the
primaries (apoapsis and periapsis). They will be denoted by A1
(position 1, apoapsis) to P4 (position 4, periapsis). We now fix a
position and integrate orbits with different distances from the
barycentre i.e., different initial semi-major axes), with an interval
of 0.05AU. For instance we integrated as a first approach for
e=0.0 the sequence of orbits from 1.85 to 2.5 (see Fig. 1),
for e=0.5 the orbits from 2.95 to 3.5 AU (Fig. 2). In this initial
condition diagram the time interval of escape is marked with 1 to
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Fig. 1. Diagram of the initial conditions for planetary orbits in double stars.
The 4 starting positions indicated show quite different stability behaviour. The
inner circle (the two ellipses in Fig. 2 respectively) shows the orbit of the
primaries. Between the outer concentric circles stable orbits are “*”” and unstable
orbits are numbers. These numbers 1 to 9 correspond to instability occurring
after multiples of 50 revolutions of the primaries; e. g. position 1 number 7 means
that this orbit was found to be unstable after 350 revolutions of the double star
system. The two full circles (bold) mark the lower respectively upper critical orbit

10 corresponding to the number or revolutions of the primaries in
units of 50 periods; the stable orbits correspond to “** (in the
figures) or “+” (in the tables). As one can see immediately,
different positions give quite different results for the stability of the
orbits (see Figs. 1 and 2).

As a next step the analysis should show the efficiency of the
method concerning the dependence of stability on the integration
time. In other words: After what time of integration can we be
more or less sure to have found at least most of the escape orbits
(e.g., 90 %)? As an example we have chosen the case e = 0.5 where
there seemed to be a rather complex structure of the grey region
lying in between the stable and unstable regions (Fig. 2), where one
finds stable as well as unstable orbits. Our aim is to find their main
features in the shortest possible integration time. The results of the
test calculations are given in Tables 2 and 3. As one can notice even
after 100 periods most of the structure is visible, but on the other
hand it can be misleading: in P1 two unstable orbits are present,
which have disappeared after 200 more revolutions. Also the LCO
(lower critical orbit, defined as the largest orbit unstable in all 8
starting positions) and the UCO (upper critical orbit, defined as
the orbit with the smallest semimajor axis stable in all 8 positions)
would be wrongly estimated after 100 revolutions. 500 periods
integration time for the primaries seem to give a rather good
picture concerning stable and unstable regions, the numerical value
of the UCO and LCO, and the existence of both islands and lakes.

outer scale inner scale

Fig. 2. See explanation Fig. 1 (for apoapsis)

Table 1. Stability of the initial conditions. The 4 different columns
for e=0.0 (and the 4 different ones for the apoapsis and the
periapsis in the case e=0.5) correspond to the different positions 1
to 4 in Figs. 1 and 2. Stable orbits are marked by ““+”, the number
marking an unstable orbit corresponds to the total number of
revolutions of the primaries, in units of 50, within which the orbit
became unstable

distance e = 0.0 distance e = 0.5
apoapsis periapsis
+ + + + + + + +
3.6 + + + + + o+ + 4+
+ o+ 4+ + + 4+ + +
2.5 3.5 + 4+ + + + 4+ + 4+
+ o+ o+ o+ + o+ + + 3+ + +
2.4 + 4+ + 4+ 3.4 + 9 + + 1+ 4+ 7
+ 4+ + + + + 4+ + 5+ + +
2.3 + 4+ + + 3.3 + o+ 4+ + 2 + + +
+ + 4 + + 4+ 4+ + 3+ 4 +
2.2 + + 1 + 3.2 + + + + 1+ + +
+ + 1 + + + + + 1+ + +
2.1 + + 1 + 3.1 +2 34 17+ +
+ + 1 + 7321 122
2.0 +111 3.0 3111 11+1
+111 1111 1141
1.9 1111 2.9 1111 1111
1111 1111 1111
.8 1111 2.8 1111 1111
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Table 2. Numerical test of the method (for e = 0.5 and periapsis).
Columns 1 to 10 correspond to the number of revolutions of the
primaries in units of 100. Stable orbits are marked by “+” and
unstable ones by “0”. For the 4 different positions of the third
body the time scale of stability is indicated (e. g. orbit 3.4 in position
P4 becomes unstable between 300 and 400 revolutions of the
primaries)

POSITION P1 POSITION P2

12345678910 AU 123456782910
++++++++++ 3.7 ++++++++ 4
+ 4+t o+ o+t + 4+ + + o+ o+t
+++++ 4+ ++++ 3.6 + 4+ 4+ ++++ + + 4+
++ + 4+ ++ o+ o+ + 4+ + o+ o+t
++++ 4+ +++++ 3.5 4+ 4+ 4+ ++++ ++ 4+
++ 4+ + +++ o+ o+ + 4+ 4+ + +++ o+ o+
0000000000 3.4 ++++++++ +0
++ 00000000 0 00O0O0O0OO0OOO OO
0000000000 3.3 + 4+ + + + + + + + +
+ 0000000O0O + o+ + 4+ ++ o+ o+
0000000000 3.2 + + + + + + + + + +
00000O0O0OOO O ++ 4+ + + o+ o+
ocoooooooo0oo0o0 3.1 +++0000000
0 000O0O0OOGO OO 0O000000OOO
ocoooooooo0oo0oo0o 3.0 coo0o0000O0GOCO
00000O0O0OOOO O 00000O0OO0OOOO
POSITION P3 POSITION P4
++ ++ 4+ 4+ 4+ +++ 37 4+t
+ o+ F + o+ o+ o+ L S S
+ 4+ + 4+ ++++++ 3.6 ++++++++ ++
++ + o+ o+ o+ o+ + 4 b+t o+ o+
+++++ 4+ 4+ +++ 3.5 + 4+ 4+ +++ +++ o+
++ 4+ o+ o+ o+ + 4+ 4+ + o+ o+
++++++++++ 3.4 +++0000000
+ + + + 4+ + + 4+ + o+ + o+ + 4+
++ + ++ 4+ 4+ 4+ 4+ + 3.3 4+ 4+ 4+t
+0000000O0OO + o+ o+ o+ o+
+ 4+ + +F F+++ 4+ 3.2 4+ 4+t o+ o+ o+
+ 4+ + + + 4+ o+ o+ R S S S S S S A
++++++++++ 3.1 +4+4+++++++0
++ 4+t + o+ o+ 0O0O000O0O0OOOO
++++++++++ 3.0 oooo000000O0O0
+ 00000O0O0OOO 0 000O0O0OO0OOO O

Figure 3 shows numerically the dependence of the escape orbits
discovered with respect to the integrated time span.

An interesting feature is the appearance of two new excapes
even after 1000 revolutions in P2 and P4. Therefore we can
conclude that even 900 periods would not be sufficient. In fact
during a long time integration over 5000 periods one orbit became
unstable between 2500 and 3000 periods (the orbit 3.35 AU for the
position P2, so that the lake at 3.4 turned out to be larger). Another
point is the “certainty” of having found the nearest stable orbits in
all 8 positions for defining the LCO respectively the most distant
unstable orbits (UCO). For this reason with an interval of 0.05 AU
8 additional orbits outside the UCO and 8 inside the LCO were
calculated. As no stable or no unstable orbits were found in these
regions we thought it would be a reasonable compromise to limit
ourselves in all the other computations to search for 4 stable
(unstable) orbits for all 8 positions to define the UCO (LCO), to
minimize computer time (only the stable orbits are cumbersome in
this respect); but not all of these integrated orbits are shown in
Tables 2 and 3. As an important consequence of these experiments

Table 3. Numerical test of the method (for e = 0.5 and apoapsis).
For explanation see Table 2

POSITION Al POSITION A2

12345678910 AU 123456782910
+ 4+ 4+ ++++ 37 4+ 4
+ 4+ 4+ o+t EE e TR G R
4+ +++++++ 3.6 + 4+ 4+ + 4+
+ 4+ + o+ o+ o+ o+ + 4+ ++ ++ o+t
++ + 4+ 4+ +++++ 3.5 + 4+ 4+ 4+ 4+ +++ + 4+
+ 4+ 4+t + o+ o+ + 4+ 4+ o+ o+ o+ o+
++++++++++ 3.4 ++++0000O00O0
++ 4+ + o+t +++++++ 000
FE+ b FF 4+ 3.3 b+ ko
+ o+t + o+ o+ ++ + + + + 4+ 4+ + o+
+ 4+ ++++++++ 3.2 4+ +++++++++
++ + + + + 4+ 4+ ++ + + + + + 4+ o+
++++++++++ 3.1 oooo0o000O0O0OO
+++0000000 + 00000O0OOO
+000000000 3.0 00000O0O0OOO
00000O0OOGOO 0O0000O0OOOO
POSITION A3 POSITION A4
+ 4+ + 4+ ++++++ 37 4+ 4+t o+
+ 4+ + o+ + + o+ + o+ o+ o+
+ 4+ + 4+ ++++++ 3.6 + 4+ + A+ + o+
+ o+ + o+ o+ B T T T
+++++ 4+ + 4+ 4+ 4+ 3.5 + 4+ 4+ 4+ 4+ + 4+ + + +
+ 4+ 4+ + o+ o+ + + + + + 4+ 4+ + + o+
++++++++++ 3.4 ++4++++0000
+ o+ + + 4+ + +++++++000O0
+ 4+ +++++++ 4+ 3.3 +++++ 4+ o+ o+
+ o+ + + 4+ 4+ o+ o+ o+ + o+ F o+ o+t
+ 4+ 4+ 4+ ++++++ 3.2 +++ o+
+ o+ + 4+ o+ o+ A T
+000000000 3.1 +00000O0O0O0O0
0O 00O0O0O0OO0OOOO 000000O0O0OO
ocooooooo0oo0o00 3.0 coo0o000O0O0OOO
000O0O0O0OOOO 0 000O0O0OO0OOOO O

the results presented here should be treated with caution because
they are established purely numerically.

3. Results

As a result of our numerical experiments for different values of the
eccentricity from 0.0 to 0.9, UCOs and LCOs were established, and
between these a “grey” region was found. For an orbit within this
region no conclusion at all can be drawn. Escape orbits are found
as well as stable orbits, lakes of unstable orbits are found in larger
regions of stable orbits, and, vice versa, islands of stability are
found in the ergodic sea [a well known phenomenon according to
many numerical experiments in dynamical systems, e.g., Hénon
and Heiles (1964) and Contopoulos (1967)]. The “main land” of
stable single periodic orbits (corresponding in our results to the
quasiperiodic orbits), with initial conditions corresponding to
circular orbits in the two body case, is outside this zone of chaos
(see Fig. 1 and 2).
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Fig. 3. A Nomogram showing the number of escape orbits (ordinate) in
depending on the integrated times scales for the test case e=0.5 for all eight
positions (Tables 2 and 3)

For e=0.0 we can compare our numerical results with the
theoretical ones by Hénon and Guyot (1970). We found (Table 1)
1.9 as the LCO and 2.3 as the UCO. We note that our value found
numerically for the LCO is very close to the analytically derived
value for the Critical Periodic Orbit (CPO) of 1.91 AU. How can
we now explain the existence of escape orbits in the region of stable
PO? It is in fact not surprising that we have in the vicinity of the
CPO [separatrix between stable and unstable POs as defined by
Hénon and Guyot (1970)] orbits which do not lie on the torus
around the stable PO in phasespace; only in sufficiently large
distance from the CPO do we have orbits which lie on a torus
around a stable PO. The UCO of 2.3 is close to the value found by
Szebehely and McKenzie (1981) in the circular restricted problem
using the Hill stability criterion. They found a critical value of
2.165 for the lower limit for the radius; the massless body will never
come close to the primaries (for m,; = m,).

As mentioned above for eccentric orbits of the primary bodies
we have to distinguish for the starting positions of the planets
between two different positions of the primaries: either the two
massive bodies are at apoapsis or periapsis. The maximum and the
minimum distances of the third body to the primaries, and the
corresponding different velocities, lead to different forces acting on
the planet. The results of the integration are presented in detail in
Tables 1 and 4a—4c. Table 5 summarizes the main features
concerning the width of the grey zone, the number of the unstable
lakes, the area they cover, and also the location of the LCO and the
UCO by the the corresponding initial position.

In general no conclusion can be drawn for the stability
dependence either on the positions of the planet (1-4), or on the

383

Table 4. Stability of the initial conditions. For explanation see
Table 1

e=0.1 distance e = 0.2
apoapsis periapsis apoapsis periapsis
+ + + + + + + +
3.1 + 4+ 4+ + + + + +
+ o+ o+ o+ + o+ o+ o+
3.0 + + + + + + + o+
+ 3 + + + + 4+ +
2.9 + o+ o+ o+ + + o+ +
+ + + + + o+ o+ o+ + + o+ + + o+ o+ o+
+ + + + + 4+ + + 2.8 + + + 4+ + + + +
+ + + + + o+ o+ o+ + + 3 + + 4+ o+ o+
+ + + 4+ + + + + 2.7 +221 1 ++9
++ 26 + + + 6 4111 1211
+ + 12 2134 2.6 3111 1111
5512 1622 1111 1111
2122 2121 2.5 1111 1111
1111 1111
1111 1111 2.4
e=0.3 distance e = 0.4
apoapsis periapsis apoapsis periapsis
+ o+ + o+ + o+ o+ o+
3.3 + o+ o+ o+ + + + +
+ + + + + + + + + + + + + o+ o+ o+
+ + + + + o+ + + 3.2 + o+ + + + o+ o+ o+
+ + + + + + + + 2 + 4+ + + + + +
+ + + + + + o+ + 3.1 + o+ o+ o+ + o+ o+ +
+ + 2 + 2 + + + + 32 + 28 + +
+ 835 33+ 4 3.0 +211 12+ 4
8521 +162 3211 3132
3431 +222 2.9 1211 1131
+2 31 3226 1111 1121
+322 1328 2.8 2111 1111
+211 1223
3111 1121 2.7
1111 1111
1111 1111 2.6
1111 1111

position of the primaries at their apoapsis and periapsis. Whereas
in one position for a fixed eccentricity the orbits are stable, the
picture can be completely different for the same position but with
another eccentricity. Nevertheless there seems to be a certain
priority for the positions 1 and 3 to determine the CO. The LCO is
determined in most of the cases through the position A1 (5 cases)
and P3 (5), and the UCO through the positions P1 (4 cases), A3 (3)
and P3 (3). All the other positions only define a CO once or twice.
It should be mentioned that sometimes a CO can even be defined
through 3 positions, e.g., the LCO for e=0.2 is defined through
the last stable orbit in the positions A1, P2 and P3 at a distance of
2.7 AU from the barycentre. But in most cases, especially for higher
eccentricities, the COs are defined through one single stable orbit
(i.e., LCO) or one single unstable orbit (i.e., UCO), which is in
almost all cases (except e=0.0, e=0.1 and e =0.5) an unstable
lake.

Concerning the lakes it is evident that they become more and
more numerous with increasing width of the grey zone and
consequently their number in general increases with the eccen-
tricity of the primaries. In a stability diagram of the initial
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Table 4b. Stability of the initial conditions. For explanation see = Table 4c. Stability of the initial conditions. For explanation see
Table 1 Table 1
e = 0.6 distance e = 0.7 e = 0.8 distance e = 0.9
apoapsis periapsis apoapsis periapsis apoapsis periapsis apoapsis periapsis
+ 4+ + + + + 4+ 4+ + o+ o+ o+ + + + +
4.0 + + 4+ + + + + + + + 4+ 4+ + 4+ 4+ + 4.1 + + 4+ + + + + +
+ + + + + + + 4+ + o+ o+ 4+ + + + + + 4+ + o+ + 4+ 4+ 4+
3.9 + + + + + + + 4+ + o+ + 4+ + + + + 4.0 + 4+ + + + 4+ + +
9+ + + + + + 4+ + 4+ + 4+ 5+ + + + 4+ + + + + 4+ +
3.8 9+ + + + + + + + 4+ o+ 4+ + o+ o+ o+ 3.9 9+ + + + + + +
+ 4+ + + + + + 4+ 8 + + + + o+ o+ + + + + + + o+ 4+
+ + + 4+ + 4+ + + 3.7 + 4+ + + + + + + + + + o+ + 4+ + 3.8 + + + 4+ + 4+ + +
+ + + + + + + + + 4+ + 4+ 2 + + + + 4+ o+ o+ + + + + + 4+ + + 29 + 7
+ 4+ + + + + 4+ + 3.6 + + + + 2 + + + + o+ o+ o+ 2 + + + 3.7 + + + + 1+ + +
+ 4+ + + + + 4+ + + + + + 3+ + + + 4+ + + 1+ + + + 4+ + 4+ 1+ + +
+ 4+ + + 34+ + + 3.5 + + + + 2 + + + + 4+ 4+ 1+ + + 3.6 6 + + + S + + 4+
+ + 4+ + + 4+ + 4+ 4 3 +2 1+ + + + + + + 1+ + 4+ 6 + + + 1+ 4+ 4+
+ 4 + 2 1+ + + 3.4 + 4 + 2 15+6 3+ + + 1+ + + 3.5 9+ + + 1+ + +
+ 479 14+ 5 ++ 31 15+ 5 + + + 2 1+ + + + 2 + 2 1+ + 4+
+ 4+ + + 2 + + + 3.3 + 4+ + + 13+7 + 3 + 3 13+3 3.4 + 3+ 2 1244
+ + + + 1+ + + 4 + + 9 18+ + +223 15+ 4 + 4 + 2 1244
+ 0+ 2 1+5+ 3.2 36+ 2 136 + + 852 13+3 3.3 1223 1222
+ 8+ 8 1+ + + 2447 1227 + 6 7 + 15+ 3 1451 1+22
2421 14+3 3.1 2732 1333 13+1 16+3 3.2 1251 1322
1211 12+ 2 3112 1253 12+1 12+ 3 21 +1 11+1
2111 11+1 30 1111 21723 21 +1 1142 3.1 11+1 1141
1111 11+1 2111 1221 11+1 1131 11+1 1321
1221 1211 2.9 1121 1111 2121 1141 3.0 1121 1121
1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 2.8 1111 1111 1111 1111 2.9 1121 1111
1111 1111 1111 1111 1111 1111

Table 5. Characteristics of the grey zone. For all the calculated orbits for different
eccentricities of the primaries (column 1) the width of the grey “‘chaotic” region
(column 2) and the number of the unstable lakes (column 3) in the “main land” of
stable quasi periodic orbits are shown. In column 3 also the area of a lake is given in
parentheses; e.g. 1 big lake can consist of 2 unstable orbits, like in Table 4b for A1
and e= 0.7 the orbits 3.8 and 3.85 were found to be unstable (area=2). The last 2
columns show the largest orbit which is unstable in all 8 positions (LCO) and the
nearest orbit which is stable in all 8 positions (UCO). In parentheses in these 2
columns we indicate the position which defines the critical orbit. All distances are
measured from the barycentre

eccentricity width of the number(area) LCO uco
grey region of lakes

0.0 0.35 0 1.9 (1) 2.3 (3)

0.1 0.1 0 2.55 (Al,2) 2.7 (A3,4,P4)
0.2 0.3 1 (1) 2.65 (A1,P2,3) 3.0 (A2)

0.3 0.3 2 (4) 2.7 (A1) 3.1 (A3,P1)
0.4 0.4 1 (1) 2.95 (Al,P3) 3.2 (Al)

0.5 0.5 3 (3) 2.95 (P3) 3.5 (P1)

0.6 0.6 7 (9) 2.9 (P3) 3.55 (P1)
0.7 0.9 7 (16) 2.95 (P3) 3.9 (A1)

0.8 0.95 5 (10) 3.0 (A3) 4.0 (P1)

0.9 0.9 7 (17) 3.0 (A3) 3.95 (A1)
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conditions with a smaller interval for the eccentricities of the
primaries and the initial positions (i.e., ssmimajor axis) of the third
body (e.g. 4e =0.02 instead of 4e=0.1 and 4a=0.01 instead of
Aa=0.05AU) it is highly probable that one would recognize the
lakes appearing, growing, shrinking and disappearing (and
similarly for the stable islands). These details cannot be seen in this
determination of the LCO and UCO; for example, for the position
P3 at the distance 3.25 from the barycentre for e = 0.4 the orbit is
stable, for e = 0.5 it becomes unstable between 150 and 200 time
steps, and for e = 0.6 the orbit is again stable. The lakes themselve’s
seem to appear more or less randomly in the grey zone. It is certain
that some of them would disappear with longer integration times,
as they would then be connected with the sea of unstability (which
is equivalent to the disappearance of a stable island). But, as a
detailed study of this phenomenon shows, new lakes and islands
appear with longer integration time. There is no doubt that some of
them are real, but at the moment the mechanism for protecting
their stability is still under study. The whole phenomenon is well
known in dynamical systems with more than two degrees of
freedom when approaching the stability limit.

4. Conclusion

What can be concluded from about 2000 integrated orbits for at
least 500 periods of the primaries? Concerning the P-type orbits in
the elliptic restricted three-body problem there exist orbits which
are little perturbed, if they are at least 4 units away from the
barycentre of the primaries (with the relative semimajor axis taken
as unity). Then coming closer to a critical limiting orbit (LCO and
UCO, which depend on the eccentricity of the primaries) the
perturbations acting on the third body become more and more
important and lead to growing variations da and de. Then further
decreasing the semimajor axis (initial distance from the barycenter)
the grey zone between the COs is entered through the UCO and
more and more excape orbits are found. From a certain other
limiting critical orbit (LCO) all the integrated orbits with the
corresponding initial positions smaller than the LCO are found to
be escape orbits.

In Fig. 4 the dependence of the initial semimajor axis of the
planet on the eccentricity of the primaries is shown. As already
mentioned the LCOs can be regarded as close to the CPOs as
defined by Hénon and Guyot (1970).

The UCO is a reasonable good stability limit for planetary
orbits in double stars. Outside the UCO we expect stable quasi PO
of planets with moderate eccentricities. We now recap on the
escape process as it happens according to our numerical
experiments: the third body becomes unstable after its eccentricity
increases above 0.3. In this case a close approach to one of the
primaries occurs, the perturbations still increase the eccentricity
and after one or more close encounters with one of the primaries
the massless body escapes with a hyperbolic velocity.

In Fig. 4 are also marked the initial positions of the primaries
with respect to the barycentre and to the planets; further more the
change of the corresponding distances (always for the one which is
closer to the planet) with increasing eccentricity is evident from
the 2 lower lines. The chaotic region is between the UCO and the
LCO. The diagram extends up to e = 0.9, although some tests were
made for e = 0.95. In real double stars such eccentricities have not
yet been observed, and are certainly very rare (if they exist at all)
and are only of theoretical interest. For the limiting case of e= 1.0
an analytical approach seems possible for primaries with equal
masses and is still under study. The decrease of the fitted curve

Frtrrrrrrrrrrrrrr o1 v
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S _'//' UNSTABLE REGION -
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) 0.2 04 06 0.8

ECCENTRICITY

Fig. 4. Critical orbits depending on the eccentricities of the primaries. The
triangles mark the UCO and the LCO due to the results of the numerical
experiments (Table 5). The two parabolas represent the UCO and LCO given by
a least square fit. The two lines at the bottom indicate the initial distance of the
nearer primary for starting in the apoapsis (upper line) and in the periapsis
(lower dashed line)

Table 6. Parabolic fit. Analytical expression for the upper critical
orbit and the lower critical orbit (UCO and LCO) depending on
the eccentricity of the binary. The result is a least square parabolic
fit of the numerical data: a, +a, - e+a, - €

co a, +/~ ay +/- a, +/-
LCO 2.09 0.30 2.79 0.53 -2.08 0.56
uco 2.37 0,23 2.76 0.40 -1.04 0.43

(Fig. 4) of the LCO for higher eccentricities will not reflect the real
behaviour of the LCO. It is an indication that close to the case e
= 1.0 the parabola fit should not be used. Least square solutions of
the LCO and the UCO yield the numerical values depending on the
eccentricity using the ansatz a, + a, * ¢ + a, * €* which is shown in
Table 6.

It should be mentioned that a more rigorous study using the
stability of POs could be undertaken only for selected POs for a
fixed value of m, /m, and e. Since the criterion of strong periodicity
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defined earlier (Broucke, 1969) is valid for the elliptic problem
there exist no families of orbits for one specific problem, but only
for varying values of e or m,/m,.

We finally emphasize again what we mean by stability or, more
precisely, what we define as stable motion. Due to the units chosen
(AU for the semimajor axis of the primaries and the Solar mass for
the sum of the masses of the primaries) the period of revolution of
the primaries is 1 year for all different integrated orbits. Therefore
stability during the integration time means exact stability over
500 yr. This is in fact a very short time in comparison with the life
times of the planetary orbits. But even for longer integration times
the test of the numerical method showed no dramatic changes of
the stability diagram. It is evident that whatever the length of the
integration one never will arrive at a complete picture of stable and
unstable regions. The most relevant confirmation of the results
presented is the good accord with the circular problem with Hénon
and Guyot’s work on one hand and with Szebehely’s study on the
other where both used analytic criteria.
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