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SUMMARY. An exact analytical expression for the emis-
sivity function of vacuum synchrotron radiation in ran-
dom magnetic fields is derived. With this expression
the calculation of the spontaneously emitted power and
the synchrotron absorption coefficient is reduced to
one quadrature (instead of three before) for any given

energy distribution function of the radiating particles.
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1. Introduction

In almost all powerful cosmic synchrotron sources, as
radio galaxies and active galactic nuclei, the measured
degree of linear polarization is rather small (Keller-
mann and Pauliny-Toth, 1981; Miley, 1980; Angel and
Stockman, 1980). This usually (e.g. Moffet, 1975) is
interpreted by a small degree of homogeneity of the
magnetic field B, so that the field line directions are
nearly randomly distributed. A field configuration is
proposed which consists of a small unidirectional part
and a large random component. The spectral power ra-
diated at position r into a particular linear polariza-
tion mode 0 (0=1,2) at frequency v then is expressed
as the sum of the homogeneous (Ph), with percentage q,
and the random (P.), percentage 1-q, contribution:

PP(v,0) = q BL(v,0) + 5 (1-0) P.(V) (1)

q=0 and q=1 refer to the cases of emitted power in 0%
and 1007 ordered magnetic field, respectively. 6 de-
notes the angle between field lines and the direction
of emission. The factor 1/2 arises because only half
of the power Pr(v) is measured in each of the two po-
larization modes.

In a completely random field polarization is absent and
P.(v) is calculated by averaging the total spontaneous-
1y emitted power for a homogeneous field, PLOt(v,9),
over all possible values of the polar (8) and azimuthal
(¢p) angles:
1 2T .
PV = { d¢ojde sin 6 P

tot

h v,8)

o}
™
[ 48 sin6 PL°%(v,0) 2)
(0]

N|—

with (Schwinger, 1949; Westfold, 1959; Pacholczyk,
1970; Moffet, 1975)

2 o
tot _ (o} _ 1
P 7T (v,0) = 021 P (v,0) = Hoj dEN(E) p(v,0,E) (3)

Equation (2) implicitely assumes that B has stochastic
directions on scales small compared to the size of the
cosmic source but large compared to the Larmor radii of
the radiating particles so that the synchrotron formu-
las are still applicable. N(E) in equation (3) denotes
the energy distribution of the radiating particles,
whereas p(v,6,E) is the spontaneously emitted spectral
power of a single electron in vacuum (m: electron mass,
e: electron charge, c: speed of light)

p(v,0,E) = 4m c, B sin® F(v/vc) (4)
with
¢, = 31/2 e3/ (Anmcz),
.y 7
Fu/v) =5 [ dt SYNOP (5)
c v/v
c
_ 3eB E \2 . . _ 2
Ve = Zrme (;;—2—) 31n6—c1BE sin © (6)

K5/3 denotes a modified Bessel function of order 5/3.

From equations (2)-(5) one notices that the calculation
of P.(v) involves the evaluation of three integrals
over t, E, and 0, which normally are done numerically.
It is the purpose of this letter to demonstrate that
two of these integrations can be done rigorously, so
that the calculation of the spectral synchrotron power
from a cosmic source with random magnetic field is re-
duced to one quadrature. Bearing in mind the central
role of the emissivity function in determining not only
the spontaneously emitted power but also the synchrotron
self-absorption coefficient, the importance of this
result is evident.

2. Synchrotron emissivity in large-scale random
magnetic fields

Defining

x = v/(c, BE) )
we may write

PL(V) =c, Boj dE N(E) R(x) (8)
where
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R(x) = —;—Of d8 sin“0 F ( S;e)
Tr [ee]
=5 [dosing [ dt K40 (9
o x/sinb

In the following we prove that R(x) can be integrated
to give

-1 -
R(x) = 77x [W0 i(X) WO l(x) W— _S_(X) w_ié(X)] 10)
>3 ’3 2’6 2’6
where Wy | (x) denotes Whittaker's function (Abramowitz

and Stegin, 1970, p. 505).

The proof starts by noting that because sinf is sym-
metric around 6 = /2 we may write (9) as

m/2 ©
R(x) =x [ d®sin6 [ 4t Ky /5 (0) (11)
o x/sinf

Integrating (11) by parts with respect to 6 gives

R(x) = x [-cos B I dt K (t)]ejn/z
. 5/3 6=0
x/sinf
/2
2 2, . -2 X
+ x J d6 cos“ O sin 6K5/3 (gzag) (12)

The first term evidently is zero. In the second term

we substitute 6 = (m/2) - B, so that

R(x) = I,(x) - I,(x) (13)
with
2 ™2 -2
I1(x) =x J dB cos “B K5/3(x/cos B) (14)
2 m/2
I,(x) = x J' dp K5/3(x/cos B) (15)

Since (Gradshteyn and Ryzhik, 1965, p. 741)

X ™
( cosB )= 2x Wk’u(x) W_A’u(x) (16)

/2
cos (2AB)
g a8 cosB 2U

integral (15) reduces to

I, = -2’1 x W, G W i(x) 17)

2°6 2°6

For the calculation of integral (14) we substitute
cosh t = cos_1B (18)
implying sinB = tanh t, and
dg/dt = coszB cosh t .
We obtain

[ee]
I1(x) = x2 f dt cosh t K (x cosh t) (19)
0

5/3

which solves with (Gradshteyn and Ryzhik, 1965, p. 727)

oo

{ dt cosh (2ut) Kz\)(Za cosht) = -;— KU*'V(&) Ku—\)(a) (20)

(¢}

to

2
L= 5 Ky5(3) Kyys (F) zn

L17

Combining (17) and (21) yields for (13)

2 _Tx

_ X X X

2% 2%
Modified Bessel functions are related to Whittaker
functions as (Abramowitz and Stegun, 1970, p. 377)

K2 = ()" 2w, @2 (23)

which allows us to write (22) in the neater form given
in equation (10). This completes our proof of equation
(10).

Using the asymptotic expansions of Whittaker functions
for small and large arguments we derive

1/3
2—5——1"2(%)}(1/3 = 1.80842){1/3 for x<<1
R(x) = (24)
T -X 99 -1
5 e (1-mx ) for x>>1

Figure 1 shows the exact calculation of the emissivity
function R(x) in comparison with its zeroth order
asymptotic expansions (24). TFor x < 1072 and x > 10
R(x) is well approximated by (24) (error less than 5
percent) whereas at x = 0.28 the largest deviation (67
percent) occurs. In Table 1 R(x) is tabulated in the
range 0.01 £ x £ 10. For smaller and greater values of
x the asymptotic expansions should be used.

10 T T T

EMISSIVITY FUNCTION

-2 ] ] ]
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Fig. 1: Emissivity function R(x) from equation (10) as
a function of normalized frequency x from equation (7)
(full curve) in comparison with its zeroth order asymp—
totic expansions from equation (24) for small x (dashed
curve) and large x (dashed-dotted curve).

It was known for a long time that for power law energy
distribution functions of the radiating electrons,

N(E) = N, E™%, Pr(V) in equation (8) can be integrated
exactly (Moffet, 1975). So we finally demonstrate that
with our emissivity function R(x) we obtain the same
result. For N(E) = N, E78 with (7) and (22) equation
(8) can be written as

1-s
1 vy 2,
Pr(\)) =§-CZBNO(C—1']-3‘ G' (s) (25)
with
o s+
Al :_1_ 2 3{. E -
G(S)'zoI dex T oKy (5) Kyyg () (26)
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Table 1
R(x) = J7x [w0 KS) 0 IORR A CRINCO)
3 3 2°6 26

X R(x) X R(x) X R(x)
0.01  0.371 0.7 0.559 3.0 0.068
0.02 0.455 0.8 0.517 3.5 0.042
0.03  0.508 0.9 0.477 4.0 0.026
0.04  0.546 1.0 0.439 4.5  0.016
0.05 0.576 1.1 0.403 5.0 0.010
0.06 0.600 1.2 0.370 5.5 0.0059
0.07 0.620 1.3 0.338 6.0 0.0036
0.08 0.636 1.4 0.309 6.5 0.0022
0.09 0.650 1.5 0.283 7.0 0.0013
0.1 0.661 1.6 0.258 7.5 0.00081
0.2 0.711 1.7 0.235 8.0 0.00049
0.3 0.705 1.8 0.214 8.5 0.00030
0.4  0.678 1.9 0.195 9.0 0.00018
0.5  0.641 2.0 0.178 9.5 0.00011
0.6  0.600 2.5 0.111 10.0  0.000068

i
- E-f dx x 1 5(X) W 1 5(X) (26)
° 276 2°%

Using (Gradshteyn and Ryzhik,
al., 1954, p. 334)

1965, p. 858; Erdelyi et

o T(o+1) T4y +1) TE+ - 1)

faxx""w, W 0= 2 2 2 2

o oM oM MT1+§+K)F(1+§—K)
(Rep > 2 |Rep|-1) (27)

fdxxp—1 Ku(ax) Kv(ax) =203 70 [I“(p)]—1

0]

© TIy (orusw)] T (omu)] T (orumw) ] TES (ommw) ]

(Rep > |Reu| + |Rev]) (28)

and straightforward algebra of gamma functions gives

(s+5
_ 1/2
G' (S) = E ™ —I—‘—-(—W— G(S) (29)
where
53
G(s) =2 * S p 31y (387, (30)

which agrees with the well-known result.

3. Applicability of results

The formalism developed in this paper considers cosmic
radio sources that are represented by a magnetic field
of arbitrary strength with a random distribution of
field line directions on scales small compared to the
size of system (v 1017 cm for active galactic nuclei)
but large compared to the Larmor radii of the radiating
electrons (rL = 10% cm (Y/103) (B/1G6)71; Y: Lorentz
factor of relativistic electrons). In particular, the
formalism can be applied to inhomogeneous synchrotron
models for radio sources (e.g. Marscher, 1977) with any
assumed radial variation of the magnetic field strength
appearing both, in the argument of the emissivity func-
tion R(x) through x (see eq. (7)), and as multiplica-
tion factor in front of the integral in equation (8).

However, with respect to opacity effects a more thorough
discussion is required. 1In general, the synchrotron
intensity is calculated from solving the radiation
transfer equation

dI(z,v)

o " P(v,0) - u(r,v,8) I(r,v) (31
where the synchrotron absorption coefficient y is de-
termined by the same emissivity function F(v/v.) de-
termining P(x,v,0):

(:2c2 Bsine? g d

- N(E r))E F(

11(}:,\),9) == dE ) (32)

If absorption processes are neglected (U =0) the inten-
sity calculation is reduced to the integration of the
emissivity P(x,v,0) along the line of sight, and the
angle-averaged emissivity P (r V) would directly yield
the synchrotron intensity from a source with large-scale
random magnetic field. 1In case of sources with absorp-
tion one may average equation (31) over all possible
values of the polar (6) and azimuthal (¢) angles to ob-
tain
T dI(z,v)
j'de SIHGT =P (r V) —— fde sin® u(r v, G)I(r V)
(33)

In cases where I(r,v) = I(r,v) is independent of the
angles, equation (33) reduces to

dIr(r,v)
ds

N} —

=P (r,v) - ur(r,v) Ir(r,v) (34)

and the synchrotron intensity is determined by the
averaged emissivity coefficient P, and absorptlon coef-
ficient p, which both are related to the emission coef-
ficient R(x).

So to summarize: our formalism of using the emissivity
function R(x) averaged over field line inclinations
along the line of sight in sources with large-scale ran-
dom magnetic fields for the computation of the emitted
synchrotron intensity is without restrictions applicable
to optically thin sources, whereas for optically thick
sources the formalism is justified when the local inten-—
sity is independent of 0 and ¢.
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