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Summary. We show by physical arguments that static spherical systems have a 
coordinate-independent field energy density. For Schwarzschild’s spacetime it is 
+ (g2/87rG) where g={GM/[(l+m/2/:)3r2]} and r is the isotropic coordinate. The 

total field energy outside f is GM2/2f. Schwarzschild’s r=2m corresponds to 
f^ViGM/c1 so the field energy outside a Schwarzschild black hole totals Me2. In 

this sense all the energy remains outside the hole. 

1 Introduction 

The principle of equivalence shows that acceleration due to gravity g cannot be given a wholely 
local definition. Thus field energy in general relativity is controversial and Misner, Thorne & 
Wheeler (1973) insist that no physical tensor exists which does for gravity what Maxwell’s stress 
tensor does for electricity. However, these authors (p. 604, loc. cit.) admit that for spherical 
systems the concept of gravitational potential energy is both correct and useful. 

Expressions for the conservation laws are commonly given in terms of the Einstein 
pseudo-tensor (Schrodinger 1954) Ç or the modifications of it due to Landau & Lifshitz (1966), 
Bergmann (Bergmann & Thomson 1953) or Mdller (1952). However, these quantities are 
coordinate-dependent and do not represent local physical quantities. It is useful to have at least 

one test-bed in which field energy density can be defined unequivocally from the physics without 
any coordinate conditions. The success or failure of more general expressions for conserved 
quantities, such as those suggested by Penrose (1982) and his school, can be tested on such special 

cases. It is also interesting to see whether the expressions of Witten (1981) and of Horowitz & 
Strominger (1983) can be given a local interpretation. 

In special relativity there is no field energy and the matter energy is well known to be 

Eu=^Ti^^gd^ß (1) 

where is the time-like Killing vector of the Minkowski space. 2 is any space-like surface over 
which the energy is to be evaluated. Eu has been written in a form suitable for curvilinear 
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coordinates (even though the space is flat) to expedite the transition to curved space. In special 
relativity EM is conserved. 

In General Relativity a test particle of rest mass Aju moving with 4-velocity ua=dxa/dr in a 
stationary metric with time-like Killing vector £ conserves its energy EM=Aficua^

a. If this 
particle consists of a localized distribution of matter with stress energy tensor AT£ this energy is 
re-expressed as 

AEm=I ATif^d^ I AT0oP~gd3x 

where the integral is taken over a spatial slice. Just as in special relativity, the ‘matter energy’ is 
the sum of the individual particle energies and so we define EM by expression (1) above. This 
definition holds in spaces where £ is defined, i.e. stationary spacetimes. In more general 
spacetimes one would need a generalization of £ but here we need only the simplest static case. 
We take 2 to be a surface constant. EM is not the energy Me2 one finds from the Schwarzschild 
metric at great distances and so we write 

Mc2=E=Em+Ef. 

We attribute EF to the energy of the gravitational field. Einstein wrote EF as an integral over his 
coordinate-dependent pseudo-tensor. For stationary metrics with the correct asymptotic 
properties his EM reduces to ours (equation 1). The classical limit of EM is interesting: 

Eu=jç(c2+V2V2-yj) d3r 

where ip='llGM/r is the (positive) gravitational potential of the Newtonian case. Evidently what 
is called matter energy in relativity actually contains twice the classical gravitational potential 
energy. The two occurs because the sum of the individual particle energies counts mutual 
potential energies twice. Since V=-V2jgip d3r<0 the total energy exceeds the sum of the 
individual particle energies by EF= \V\. In the classical limit we have EF=l/S7cGi\V/ip\2 d3x. 
Relativity avoids the negative field energy of Newtonian theory because its 'matter energy’ EM 

already contains a —fgtp term leaving a positive correction from the field. The source of gravity is 
matter energy (which is smaller in a potential well) rather than the rest mass of Newtonian theory. 
For a discussion of the relation of the Newtonian limit to what is done in electrostatics see the 
Appendix. We now show that provided equation (1) is agreed as the matter energy, the field 
energy density for spheres follows. 

2 Physical argument evaluating field energy density for static spheres 

Consider any static spherical spacetime. Cut the metric on a sphere labelled a so as to leave the 
exterior spacetime unchanged. Replace the interior spacetime by flat space. This can be done by 
introducing a suitable surface distribution of matter on the sphere. The surface distribution is 
given by the discontinuities in the gradient of the metric tensor introduced by our cut. 

Since the exterior spacetime is unchanged, the total energy as perceived by the Schwarzschild 
metric at infinity is Me2, the same as it was before we cut the system. We can evaluate the field 
energy of the cut system by taking the difference between its total energy and its matter energy. 
The latter will have contributions both from the matter exterior to the cut and from the surface 
distribution we introduced on the cut. We call their sum Em(ö). Thus the field energy of the cut 
system is 

EF{a)=Me2 - Ewfa) • 
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Since a flat spacetime has no field energy, we shall assume that all of it arises from the curved 
spacetime outside the cut. We assume that outside the cut the field energy of the cut system is the 
same as the field energy of the original system, since the spacetimes are the same in all that region. 

Now change the position of the cut from the sphere with coordinate label a to that with label 
a+da. The change dEF/da is the field energy in the volume contained between the spheres a and 
a+da in the original system. From the spherical symmetry this field energy must be uniformly 
distributed over spheres. Hence, if we divide by the volume between the two spheres in the 
original system we have found its field energy density. Notice that for static spheres this energy 
density is physically defined and is therefore independent of the coordinates chosen. This is in 
marked contrast to the field energy density defined by Einstein’s pseudo-tensor. 

As a simple example we evaluate the field energy density in Schwarzschild’s spacetime. 
Cutting Schwarzschild’s spacetime at the sphere whose isotropic radius is a and replacing the 
interior by a flat spacetime, we have the metric 

ds2=A2 dt2-B2[dr2-\-r2(dd2-\-ûn2 6 d(p2)] 

where 

r^a 

r^a 

r^a 

f^a 

yj-g=AB3 r2 sin# 
m=GM/c2. 

In the spherical shell, 

T°0=Mc/ 4jtaz\ 1 + 
m 

2a 

5i 
ô(r-a) 

SO 

Em~ J TQyj-gd3x=Mc2-V2GM2/a. 

Hence the total gravitational field energy is V2GM2/a and the amount between a and a+da is 
V2GM2/a2. The area of the sphere of isotropic radius a is 4jT[l + (m/2a)]Aa2 and the radial distance 
corresponding to da is [l + (m/2a)]2 da so the gravitational field energy density is 

SjtG 

GM t2 

a2(l+m/2ay 

The field energy density at a general point of Schwarzschild spacetime is given by writing r for 0. 
The relationship between Schwarzschild r and isotropic f is 

m 
r=f I 1+—J : 2r=r—m+yr(r-2m) 
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so the total field energy outside r is 

GM2 GM2 

2f r—m+ ^r(r—2m) 

when r=2m, f=m/2 and the above expressions reduce to Me2. Thus the total field energy outside 
the hole gives the total mass. 

Similarly one may demonstrate that the field energy density for a general spherical distribution 
in the metric 

ds2=exp(2v) dt2 - exp(2//) [df2+f2(dd2+sin2 Odcj)2)] 

is 

-c4 

——- exp(—3//) [expO/2)] ' [exp(v+ii/2)] ' (2) 

where a dash denotes a derivative with respect to r. The derivation is straightforward once one has 
the matter energy on the cut. To obtain this, one uses Einstein’s equations to give 

&jiTq= -exp(-2/i) 2//+//2+—fi1 

f 

Integrating T^yj-gd^x across the cut, we find the cut’s contribution to Eu to be 
—¡i'+a

2Qxp[v{a)+ix{a)] where ¡i'+ is ¡a' evaluated as r-^a from above. 
At least for all metrics that correspond to static fluid spheres we have proved that expression (2) 

is positive everywhere. 

3 Relationship to other expressions 

We have shown that energy density is well-defined for one very simple class of systems. Do the 
expressions given by Penrose and his school measure the same quantity? The answer is no. The 
Penrose mass of a Schwarzschild hole is all within the hole, whereas ours is all outside it, see Tod 
(1983). Witten (1981) has given a positive definite expression for energy in relativity which has 
been generalized by Horowitz & Strominger (1983). Both give expressions as integrals of positive 
quantities which one might be led to interpret as energy densities. Witten’s expression does not 
have our matter term in its classical limit; this can be obtained by taking n=2 in Horowitz & 
Strominger’s expression but evaluating their integrand in Schwarzschild spacetime leads to a 

different energy density with part of the ‘mass’ left inside the hole. Adler, Bazin & Schiffer (1965) 
evaluated Einstein’s pseudo-tensor expression in isotropic coordinates and from it derived the 
expression ViGM2/? for the field energy outside f in Schwarzschild space. They pointed out that 
all the energy lay outside the hole. Both these results are in agreement with ours. However, theirs 
is a coordinate-dependent result. Our physical argument demonstrates that anyone who agrees 
that the ‘matter energy’ is given by expression (1) must agree to expression (2) for the field energy 
density whatever coordinates he uses. The relationship of Einstein’s expression to the Komar 
integrals (1959) is elucidated by Katz (1985). Landau & Lifshitz’s expression in isotropic 
coordinates does not give the correct result. Even in a stationary metric their expression denies 
the possibility of evaluating their ‘matter energy’ before coordinates are chosen. This is because 
their expression has the wrong weight in ^f-g. Hawking’s expression (1968) is designed to give the 
same mass within any sphere around a black hole. Finally, although we gave strong physical 
arguments leading to formula (1), there may be mathematicians who would have preferred 
formula (1) to have been weighted by extra redshift factor | £ | n~2. Any such formula replacing (1) 
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is unphysical. Consider a large heavy hollow sphere. Inside it space is flat, special relativity holds. 
Now consider physical bodies inside with negligible gravity. Their matter energy density isTo 
measured locally. However, this energy is worth less on the ‘international’ energy scale at . The 
correct redshift factor is the length of the time-like Killing vector §. Thus expression (1) gives the 
correct contributions to the matter energy and any extra |§|n-2 factor is wrong. For any 
misguided mathematicians who persist, our earlier argument can be used with their formula. 
Provided n>l all these formulae lead to all the black hole’s mass being accounted for by field 
energy outside the hole. 
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Appendix 

Dr Schutz has asked us to eludicate the background to our choice of (1) as the matter energy 
formula. He points out that in electrostatics the energy of a particle is mc2+e(j) so that summing 
these and associating the result with the matter as we have done for gravity would yield a matter 
energy 2(mc2+e0). As the total energy is in reality 2(me2+Via/)) we would be left with a field 
energy of —'ZV2e(p=—fE2/8jzdV which is negative and not correct. 

The correct procedure, as determined by the coupling of the stress tensor in general relativity is 
to associate only Zmc2 with the matter energy and rewrite the etp energy as a field energy. 
Considering now Newtonian gravity and following the procedure correct for electrostatics, we 
would find a negative field energy -fg2/8jrGdV and a matter energy Zmc2. However, this 
procedure regards rest-mass as the source of gravity. If instead of regarding rest-mass as the 
source we regard the energy E=m(c2-,ip) as the source, then we get a total matter energy of HE 
leaving the positive field energy fg2/8jvG as derived in the text from the simplest relativistic 
expression for matter energy - the one used by Einstein. 

This difference between gravity and electricity stems from the fact that rest mass is not the true 
source of gravity (a truth that is only fully seen in general relativity). 

3p 
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