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ABSTRACT 

We develop an inviscid fluid theory for nonlinear self-gravitating spiral density waves that adopts, for sim- 
plicity, the most stringent of the asymptotic approximations normally used, but relaxes the assumption of 
small amplitude. Our treatment allows the consideration of both free wave trains and those excited by reso- 
nant forcing. In a frame which corotates with the pattern, the pressure-free problem reduces in a Lagrangian 
description to the solution of a complex nonlinear integral equation. A nonlinear dispersion relation and an 
angular momentum conservation relation can be derived for the far wave zone where WKBJ approximation 
methods apply. Guided by this result and by earlier work on the linear theory of density waves, we are able to 
write down a heuristic ordinary differential equation that mimics many of the properties of the integral equa- 
tion. Numerical solutions of the former are easily obtained for forced density waves of the strengths typically 
seen in Saturn’s rings. These numerical solutions, when substituted back into the integral equation, satisfy the 
latter to acceptable accuracy for practical work, even in the near wave zone where most of the resonant cou- 
pling takes place. 

Although meaningful detailed comparisons with observations of the density waves in Saturn’s rings will 
require the inclusion of wave damping by induced viscous stresses, the theory developed herein already has 
several important implications. First, the nonlinear torques exerted by the satellites orbiting Saturn are not 
very different from those calculated by the linear theory; therefore, the existing difficulty with short lifetimes in 
the Saturn system does not have an escape in this direction. Second, even without the inclusion of pressure or 
viscous stresses, neighboring streamlines never cross, although they come arbitrarily close in the asymptotic 
wave regime. The theoretical wave profiles are qualitatively similar to the broad, shallow troughs and sharp 
symmetric peaks that are seen in many of the Voyager frames of nonlinear density waves in Saturn’s rings. 
Third, the incorporation of the effects of pressure is easy, opening the way for the development of a theory of 
nonlinear density waves that would be applicable to spiral galaxies. 
Subject headings : hydrodynamics — planets : Saturn 

I. INTRODUCTION 

The theory of spiral density waves, invented to explain the 
spiral structure of disk galaxies (Lindblad 1963; Lin and Shu 
1964; Toomre 1977; Bertin 1980), has also been found useful 
for the study of planetary rings (Goldreich and Tremaine 1978; 
Cuzzi, Lissauer, and Shu 1981). The linear theory is by now 
well developed, in regard to both self-excited modes (see, e.g., 
Toomre 1981; Lin and Bertin 1984) and resonantly forced 
waves (see, e.g., Goldreich and Tremaine 1979; Shu 1984). The 
nonlinear theory is less complete; fully nonlinear calculations 
(e.g., Roberts 1969; Sanders and Huntley 1976) usually con- 
sider only locally forced waves in a gaseous medium which is 
itself not self-gravitating (an exception is the study of S. Balbus, 
L. Co wie, and S. Lubow 1983, private communication). Some 
large-scale numerical simulations do consider self-gravitating 
disturbances (e.g., Miller, Prendergast, and Quirk 1970; Hohl 
1971; Woodward 1980; Sellwood and Carlberg 1984), but the 
transitory nature of the results makes them difficult to inter- 
pret, especially with respect to the effects that are unique to the 
nonlinear problem. Analytical calculations which include self- 
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gravitation have, so far, obtained results only in the slightly 
nonlinear regime (e.g., Vandervoort 1971), or have concen- 
trated on partial effects (e.g., the modification of the epicyclic 
frequency, Norman 1978) that are not of primary importance 
to the physical problem at hand. In the present paper, we 
remedy these shortcomings. 

In this first study, we shall adopt the simplest asymptotic 
ordering which can still yield useful results. When we come to 
include the effects of random motions, we shall use an isother- 
mal fluid model for the matter in the disk (for a discussion of 
the merits and drawbacks of a fluid description for stellar disks 
see Lin and Lau 1979). In the fluid model, let c(r) be the isother- 
mal sound speed at a radius r in a disk where the unperturbed 
surface density and epicyclic frequency are o0(r) and K(r). If the 
axisymmetric gravitational field of the disk is a small fraction 
of the overall field, and if the epicyclic excursion of a typical 
free particle is a small fraction of the radius r, the non- 
dimensional quantities 

¿i 
nGa0(r) ^ ç c(r) 

?/ \ and Ö2 = / x rK2(r) rK(r) (1) 

will be very small compared with unity. In Saturn’s rings they 
are of order 1CT8, but in disk galaxies they can be of order 
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10 1 or larger. The ratio of these two quantities, 

Qsh - 
(5 tí G o Q 

(2) 

is the fluid analog of Toomre’s (1964) stability parameter and 
must exceed unity in a galactic disk if it is to be stable to 
axisymmetric disturbances of all scales. (In planetary rings, the 
finite size of the particles can provide a stabilizing influence 
even if 2 = 0; see Shu 1984.) 

When öi and ô2 are <0, it becomes possible to consider 
tightly wound self-gravitating spiral disturbances in the disk 
where the azimuthal variation is much less rapid than the 
radial one. To be more precise, if the pattern is m times periodic 
in 9, so that m/r is the azimuthal wavenumber, and if \k \ — 
2n/À is the radial wavenumber, where À is the radial spacing 
between successive crests, then we may adopt the WKBJ 
approximation, 

for tightly wound spiral waves. The utility of the approx- 
imation (3) is controversial in galactic dynamics (which has 
motivated techniques to relax it, at least within the context of 
the linear theory), but it holds to a very high order of approx- 
imation in Saturn’s rings. 

Within the context of the above discussion, there are two 
distinct regimes in which a forced disturbance can be con- 
sidered to be nonlinear. In the first regime, the external forcing 
is strong enough to cause radial excursions of fluid elements 
that are comparable to r itself. This can happen for interacting 
galaxies (see, e.g., the simulations of Toomre and Toomre 
1972), but never applies to planetary rings, since the satellites of 
the giant planets are all much less massive than the central 
body. In the second regime, the external forcing is strong 
enough to cause radial excursions of fluid elements that are 
comparable to the inverse wavenumber | /c |_ 1 = À/2n of the 
density waves which are excited. The crests of the density 
waves can steepen considerably if a large fraction of the matter 
on either side of a crest crashes in the middle; galactic shocks 
are the most familiar manifestation of this phenomenon (see, 
e.g., Shu, Milione, and Roberts 1973). This type of nonlinearity 
(see Fig. 1) is also encountered in Saturn’s rings; although the 
closer moons are tiny compared with the planet, they have 
masses that are not negligible in comparison with the mass of 
the ring system (cf. eq. [36]). To have enough angular momen- 

tum luminosity to carry away the secular torques exerted by 
the moons at the Lindblad resonances, the density waves 
excited in Saturn’s rings often have to be very nonlinear. 

Our discussion of nonlinear effects is restricted to the second 
of the types listed above. As we shall see in the next section, this 
restriction allows us to make considerable analytic progress. 

Before we begin our formal deliberations, however, we 
should remark that the basic results derived in this paper could 
have been obtained by very different methods using the dis- 
crete streamline approach of Borderies, Goldreich, and Tre- 
maine (1983a) and taking the appropriate continuum limit. 
Indeed, Goldreich and Tremaine (1983, private com- 
munication) have shown that the fundamental nonlinear 
integral equation (48) of this paper would follow also from 
their formalism if they had made full use of the asymptotic 
approximation invoked here. This convergence of results adds 
confidence to our basic approach. 

II. MATHEMATICAL FORMULATION 

a) Basic Equations 
We begin our analysis by ignoring, at first, the presence of 

pressure and viscous stresses. A Lagrangian description is then 
natural, since the characteristic equations associated with the 
Eulerian description are just the orbit equations of a free parti- 
cle. If the motions are restricted to a plane, the dynamical 
equations read : 

dV_ 
dt2 r3 dr 

(4a) 

d¿_ ÔV_ 
~dt~ ~~d6' 

(4b) 

d9_¿ 
dt r2 ’ 

(4c) 

where the total gravitational potential K is a sum of contribu- 
tions from the planet, the moon, and the disk (for a galaxy 
these would be the bulge-halo, a satellite galaxy, and the disk) : 

K(r, 0, t) = VP{r) + FM(r, 0, t) + FD(r, 0, t) . (5) 

For VM we are interested only in a particular Fourier com- 
ponent of the moon’s gravitational potential: 

VM(r, 9, t) = </>M(r) cos {œt - m9) . (6) 

For m # 0, VM is time-independent in a frame of reference 

DISTANCE FROM RESONANCE, km 
Fig. 1.—Nonlinear spiral density wave excited in Saturn’s rings near a location where the ring particles orbit Saturn five times for each three times that the 

satellite Mimas does. In the planetary rings literature, this is referred to as the 5:3 density wave associated with Mimas. (Optical depth scan courtesy of L. W. 
Esposito). 
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which rotates with angular velocity = co/m, i.e., in a frame 
where we measure the azimuthal angle according to 

(p = 6-Qpt. (7) 

In a steady state, the forcing potential (6) will result in dis- 
turbances which are functions only of r and cp. The induced 
changes in specific energy, E, and specific angular momentum, 
J, are related to one another, since Jacobi’s integral 

H = E-QpJ (8) 

is a strict constant of the motion. Thus, È — Qpj, and it suffices 
for us to follow angular momentum changes only (see, e.g., 
Lynden-Bell and Kalnajs 1972). 

Given our discussion in § I, we are motivated to look for 
solutions in the perturbation form, 

r = r0 + ri, (9) 

where the unperturbed position r0 is related to the unperturbed 
specific angular momentum J0 by 

= Jo , (10) 

where Q is the angular frequency required for centrifugal 
balance against the planet alone : 

ron
2(r0)^(ro). (11) 

As we discuss later (see footnote 3), it is possible to renormalize 
the right-hand side of equation (11) to include the axisym- 
metric contributions of the disk and all of the satellites. (This is 
more important in the galactic context than in the planetary 
one.) Without this renormalization, we are considering the 
planet without moons and self-gravitating rings to be the refer- 
ence state. 

If we separate the specific angular momentum by writing 

J = J0 + Ji, (12) 

then assume r1 r0 and J1 J0, we may expand all functions 
which are smoothly varying in r about r0. Since \k\rl is not 
small in comparison with unity in a nonlinear density wave of 
radial wavenumber /c, we do not expand VD(r0 + rl, (p) about 
r0. On the other hand, the azimuthal variation of VD is slow in 
comparison with its radial variation, so it helps to write cp as 

(p = (p0 + [D(r0) -iy|i 4- (p! , (13) 

where <p0 is a constant and (pl may be considered to be a small 
perturbation about the mean circular motion. The pertur- 
bational equations for the orbit trajectories now read : 

where 

i/2r1 
+ K2{r0)r1 = 2Q(r0) — - 

8Vm 
dr 

8Vd 
dr 

r°^dt~ = Jl ~ 2r°n^o}ri ’ 

dJ ! _ dVM Wp 
dt dcp dq> 

(14a) 

(14b) 

(14c) 

kVo) T“ C^Vo)] 
r0 ar0 

(15) 

is the square of the epicyclic frequency and does not equal 

Q2(r0) for an oblate planet (or a disk galaxy). In equations 
(14a)-(14c), the slow (rapid) variation of VM (VD) with changes 
in r imply that the derivatives of VM can be evaluated at 
(ro> <Po + [^(ro) — Qp]t), but those of VD must be evaluated at 
(r0 + r1,(p0 + [i!(r0) - fip]i)- 

Our ability to expand VD in cp, but not in r, assumes tightly 
wrapped waves where the (^-derivatives of VD are negligible in 
comparison with its r-derivatives. Consistent with this asymp- 
totic approximation, equation (14c) may be integrated (except 
near corotation, where Q = Qp) to yield 

- ÍXr0) 
COS ll/0 , (16) 

where i¡/0 is the phase of the moon’s potential encountered on 
the unperturbed circular orbit of a ring particle (cf. eq. [6]): 

iAo = ™<Po - O - ™^(ro)]£ . (17) 
For the steady state response, we look for solutions of r1 and 

cp1 in equations (14a) and (14b) that are periodic in \¡j0. The 
time derivatives in these equations are taken holding the 
Lagrangian labels r0 and <p0 constant; thus, if we use ij/0 sls a 
variable to replace i, we may write the equation of motion for 
rj as 

ô^r 
[co - mfi(r0)]2 —Y + K2(r0)rl =gD + gM, (18) 

cnpo 

where gM is the effective perturbational gravity of the moon’s 
forcing, 

with 

gM(ro, •Ao) = — ^M^o) cos lAo , ro 
(19) 

'I'm('o) ^ -roTM + dr o 
2mQ(ro)<M>o) 

œ — mQ(r0) 
(20) 

and where gD is the radial self-gravity of the rings. To the 
asymptotic order of interest in this paper, we may calculate gD 
as the gravitational field due to a local collection of straight 
wires (see, e.g., Borderies, Goldreich, and Tremaine 1983a; Shu 
1984): 

with 

gD(ro^ ^o) = -2G 
<0° °(r\ *Ao) 

Jo r-r' 
dr' , (21) 

>* = ro + r^ro, i¡/0) . 

To obtain the surface density a, we note that the Lagrangian 
form of the equation of continuity, with ip = mcp, reads : 

o(r, \j/)rdrd\¡/ = a0(r0)r0 dr0 dip0 , (22) 

expressing the conservation of mass of a fluid element of unper- 
turbed surface mass density (r0(r0) and area r0dr0dil/0 which 
has been distorted to surface density o(r, ip) and area rdrdip. To 
the order of asymptotic accuracy which we are consistently 
working, the (/(-distortions are much less important than the 
r-distortions, i.e., dip & d\p0, and the Jacobian of the transfor- 
mation becomes 

d(r, ip) ^ dr ^ dr1 

S(r0, iAo) ~ dr0 
+ dr0 ’ 

(23) 
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when we write r as r0 + To this order, therefore, we have 

<7(r, i/0 = o-q^o) 
1 + drjdr0 ’ 

(24) 

with drjdr0 being of order unity for a nonlinear wave. 
If we change to r0 and \¡/0 as the independent variables, and if 

we assume that varies much more rapidly with r0 than does 
<To(r0), equation (21) becomes 

Q D — —2G<7| .wj; 
dr'o 

r0 + i/^o) - r'o - r^r'o, ij/0) 
(25) 

Clearly, most of the contribution to the above integral comes 
from the neighborhood of r'0 = r0. Indeed, the strong opposing 
pulls of matter on either side of r0 requires us to interpret this 
integral in the principal-value sense if we are to retain the 
approximation of an infinitesimally thin disk. 

With gD given by equation (25) and gM by equation (19), 
equation (18) may be regarded as the equations of motion (in 
ij/o) for a set of harmonic oscillators whose displacements are 
externally forced by the moon’s gravity gM and which are 
coupled (in r0) by the oscillators’ self-gravity gD. Because the 
advective terms in an Eulerian description are absorbed by 
using total time derivatives in an Lagrangian formulation and 
because r1 ^ r0, nonlinearity enters solely in the term gD. In 
principle, after equation (18) has been solved for rl5 as a func- 
tion of r0 and i¡/0, the angular displacement (p± could be 
obtained by integrating equation (14b), i.e., 

-rl[œ - mQ(r0)] Cos i//0 - 2r0D(ro)r1 . 
ôil/0 co — mQ(r0) 

(26) 

In practice, this integration is not necessary if the primary 
quantity of observational interest is the surface density dis- 
tribution (24). 

b) Reduction to Nonlinear Integral Equation in a 
Single Variable 

To motivate a simplification of equation (18), we refer to the 
linear theory, which shows good coupling to the external force 
field only near a Lindblad resonance. In the linear theory, the 
disturbances are sinusoidal in angular phase, i.e., 

~ri , (27) 

and we expect this to hold even in the current problem (an 
assumption made at the outset in the treatments of resonantly 
truncated disk edges by Borderies, Goldreich, and Tremaine 
1982) because nonlinearities enter only in the second sense of 
the discussion of § I. To see this formally, add and subtract 
[co — mQ(r0)]2r1 on the left-hand side of equation (18): 

(co — mQ)2 + Dri — g¡) “h 'Em cos > ro 
(28) 

where 

D = K2(r0) - [co - mQ(r0)]2 (29) 

is the usual measure of the distance from Lindblad resonance 
in frequency space. Let the Lagrangian coordinate 

*o = (^o - rL)/rL (30) 

be the fractional radial distance from Lindblad resonance rL 
where D is zero. For small x0, we expand 

D = @x0 , (31) 

with 

^ = 
dD 

ro T~ dr0 
(32) 

For m 1, @ has the value — 3(1 ± m)Q2(rL) in a Keplerian 
disk, with the plus sign applying to outer Lindblad resonances 
and the minus sign to inner ones. Henceforth, we specialize to 
the case of inner Lindblad resonances where ^ > 0, the gener- 
alization to outer Lindblad resonances being trivial. Thus the 
parameter 

2nGa0(rL) 
e = ^— '33> 

is positive, generally of order and very small in planetary 
rings. 

The typical fractional displacements of concern near reso- 
nance are of order €1/2 ; thus, we are further motivated to scale 

x0 = e1/2£o, r^r^X. (34) 

In the dimensionless Lagrangian displacement X and fluid par- 
ticle label ¿¡o, we may now write the expanded form of equation 
(28), for e 1, as3 

= /cos lAo -- 
n 

dt'o 
_ to + X - Zo-X” 

(35) 

where we have defined 

/= '¥v{rL) (36) 
2nGrh ff0{rL) 

to be the nondimensional external forcing (taken to be real and 
positive), and where we have used the shorthand notations X 
for Y(£0, lAo) and X' for Y(<f0, 

We expect nonlinear effects to dominate if the parameter /, 
which is proportional to the ratio of the moon’s mass to the 
disk’s mass, is not 1. Table 1 gives examples of the values of 
/ applicable to some of the observed density waves in Saturn’s 
rings. Clearly, linear theory would not realistically model many 
of these waves (see also Esposito, O’Callaghan, and West 
1983). 

Nevertheless, a simplification is possible in equation (35) 
because the other nondimensional parameter, 6, which is pro- 
portional to the ratio of the disk’s mass to the planet’s mass, is 

3 Notice that if X = 0 everywhere, then the self-gravity integral on the 
right-hand side vanishes if we interpret the integral in the principal-value 
sense. Our asymptotic approximation therefore ignores the long-range effects 
which would make unequal the pulls of the parts of the unperturbed disk which 
are interior and exterior to the radius corresponding to This effective 
renormalization means that we may, if we like, include the axisymmetric con- 
tributions of the disk (and the satellite systems) in the computations of Q, k, etc 
(cf. discussion in § I). The desirability of taking this approach (rather than 
starting with g — <j0 instead of a in eq. [21]) was pointed out to us by Scott 
Tremaine (1983, private communication). 
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TABLE 1 
Some Resonance Strengths in Saturn’s Rings 

Resonance Resonance Location Forcing Strength3 

Moon Label rL (Saturn radii) / 

Mimas   5:3 2.1929 0.17 
8:5 2.2522 0.02 

Janus (larger co-orbital)  2:1 1.5953 0.24 
6:5 2.2255 0.63 

Inner F ring Shepherd  10: 9 2.1549 0.20 
27:26 2.2533 0.52 

a These /-values assume a surface density equal to 50 g cm 2. All other parameters are from 
Lissauer and Cuzzi (1982). 

1. This allows us to attempt a solution in the form of a 
parameter expansion : 

X = Xy+€ll2X2 + eXi + ■■■ , (37) 

yielding to lowest order for equation (35), 

#o 
+ *i = 0 . (38) 

íoS«o) + 4 

sin \¡j0 ch¡/0 

(£o - to) + (c - C) cos lAo + (S - S') sin i^o 
= 0, (42b) 

where we have written C for C(Ç'0\ etc. 
The \¡/0 integrations in equations (42) may be performed 

analytically by first writing 

The above has the general solution (ío - £o) + (C - C') cos ij/0 + (S - S') sin 

X1 = A«0) cos [^o - O(i0)] , (39) 

where the amplitude A and phase O are to be determined as 
real functions of the Lagrangian label (proportional to the 
unperturbed radial distance from resonance). Equation (39) 
shows the angular dependence of the Lagrangian displacement 
X to be strictly sinusoidal to lowest asymptotic order in e (as 
long as / is of order unity in comparison with €~1/2). To next 
order in e, 

d2X2 

#2 + *2 

-Uo*i+- 
^0 . , , 

io + X.-ii-X, +/“S *° 

(40) 

The form of equation (40) for X2 is that of a forced linear 
oscillator. In order for Y2 to be a periodic function of i/f0, there 
must be no terms in a Fourier decomposition of the right-hand 
side (RHS) of equation (40) which contain cos i//0 or sin i^0 
because such terms would resonantly give rise to a secular 
trend for Z2. This constraint requires 

O(RHS) cos il/0 dij/0 = 0 and O(RHS) sin iAo#o = 0 , 

(41) 

yielding the following coupled nonlinear integral equations 
that determine the unknown functions C(¿0) = A(¿0) cos O(^0) 
andS(£0)EE^0)sinO(£0): 

£o Cito) + L dto 

cos 4i0di¡/0 

(£o - £ó) + (C- C) cos (Ao + (S - S') sin ^ 
-/=0, 

= (¿0 - io)[l + q cos (i/^o - A)] , (43) 
where q and A are defined as functions of and ^'0 through 

C — C S — S' 
q cos A =   — and q sin A =   — . (44) 

Co — Co Co — Co 
Now define S = i¡/0 — A, and recall the trigonometric identities 

cos \¡/0 = cos A cos & — sin A sin ^ , (45a) 

sin ij/0 = sin A cos d + cos A sin $ . (45b) 

Switch the integration over a complete cycle in ij/0 to one in # 
from —n to +7L Noting that the odd parts of the integrand 
give zero contributions, while (Gradshteyn and Ryzhik 1980, p. 
366) 

we obtain 

íoC(£o) + - 

£o%o) + ■ 

I^q) cos A d£o 

I^q) sin A 

£o - <To 

d£0 

£o - ¿0 

7-/=0, 

0. 

(46) 

(47a) 

(47b) 

The pair (47a) and (47b) may be written more compactly by 
multiplying equation (47b) by i and adding the result to equa- 
tion (47a). After a little algebra, we get the fundamental integral 
equation of our problem, 

! 
n 

Z(t'0)-Z(Ç0) 

. (to ~to)2 . 
dÇ'0 + toZito) =/, (48) 

where we have defined the complex function Z of a real vari- 
able ¿o to be 

(42a) Z(£0) EE C(£0) + m0) = A(Q0)e¡^, (49) 
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where we have used equation (44) to write 

t.A _ Z(Q - Z(¿0) 

^0 - ¿0 
and where we have defined 

(50) 

/(q2)^--/1(ii) = 4[(l-92)-1/2-l], (51) q r 

with q2 given through equation (50) by 

2_ Z(^o) - Z(U 
q cTo-io 

In this form we see that q has an immediate geometrical inter- 
pretation, since it is the modulus of the relative radial displace- 
ment of two streamlines measured as a fraction of their original 
unperturbed spacing. Clearly, if q2 were ever to become greater 
than or equal to unity, the corresponding streamlines would 
cross at some angular phase. This would happen first for neigh- 
boring streamlines, i.e., for the limit ¿q—> ¿0; thus, the criterion 
for streamline crossing is whether the quantity 

(52) 

<?o = 
dZ 

dío 
(53) 

ever reaches unity or larger. In § V we shall see that self- 
consistent (long) spiral density waves always adjust their 
properties so that g0 < 1, i-e., so that streamline crossing does 
not formally occur (at least to the order of approximation con- 
sidered here). 

Equations (48), (51), and (52) constitute our basic set to solve 
for the complex Lagrangian displacement Z(£0). Once Z(i0) is 
known, we may obtain the physical displacement (in non- 
dimensional form) as (cf. eqs. [39] and [49]) 

*(¿0, <Ao) = Re {Z(£0)e->°} , (54) 

from which we may recover the surface density contrast (cf. eqs. 
[24], [30], and [34]): 

<70 1 + dx/dio • 

The observed contrast is a function of cp & <Ao/m and the 
dimensionless Eulerian radial variable Í = €~i/2(r — rL)/rL 
given by 

¿ = + (56) 

The plots in this paper are made for radial cuts, i/^0 = 0 and 
\J/o = tt/2, i.e., for X = Re {Z{i0)} and X = lm {Z(40)}. 

c) Recovery of Linear Theory 
The linear theory may be recovered from equation (48) by 

ignoring all effects of quadratic order or higher, i.e., by taking 
the limit ^f20. In this limit, 

I(q2)~>l as g2—>0, (57) 

so that an integration by parts yields, for equation (48), 

1 
n 

dZ/dj'o 

i'o - ¿o 
dio + £0Z(4o) =/. (58) 

The Cauchy integral in equation (58) can be performed by 
contour integration, yielding the ordinary differential equation 

dto 
(59) 

that governs the propagation of linear trailing density waves 
from inner Lindblad resonance (cf. Shu 1984). The solution to 
equation (59), satisfying the boundary condition Z = 0 at 
i = —co (far evanescent region), reads 

^lineár(^o) = (2n)ll2fW(Ç0), (60a) 

W{¡;0) = i . exp 
(27t) 1/2 (60b) 

Figure 2 shows the real and imaginary parts of the normalized 
wave function W(i0) plotted against ^. Notice that, as £0—► 
+ oo, I VF(<f0) I —> 1, but the local wavenumber | dW/di01 -> £0 • 
Thus, even for/1, linear theory must break down for large 
enough i0 because equation (53) implies that the (streamline- 
crossing) parameter 

(<?o),i„ear = C*)1'2/ 

will become of order unity at 

1 

dW 

dio 

~ (27t)1/2/ • 

III. WKBJ THEORY 

(61) 

(62) 

a) Nonlinear Dispersion Relation 
Another interpretation of equation (62) is that when / is 

~(27r)~1/2, resonantly excited spiral density waves can become 
nonlinear within one inverse wavenumber of the position of 
exact resonance.4 As we shall see explicitly in § IV, the nonlin- 
ear effects prevent the streamline crossings predicted by linear 
theory for large enough i0. Many of the properties of the 
nonlinear waves in the far wave zone can, in fact, be extracted 
analytically by applying WKBJ techniques. For £0> 1, we 
expect the amplitude A(i0) to be much less quickly varying 
than the phase <!>(£0) in equation (49). The wavy nature of Z 
accentuates the importance of local contributions (where io ~ 
i0) to the self-gravity integral of equation (48) because of the 
tendency of distant positive and negative contributions to 
cancel each other out. If we expand <I>(io) and ^(¿o) in a Taylor 
series about i'0 = 

we may write, to lowest WKBJ order, 

Z(i'0) * Z(i0) exp [iK(í'o - io)] , (63) 

where K is the nondimensional wavenumber (for the Lagrang- 
ian displacement), 

K = 
JO 

dio’ 

and is negative in our sign convention for trailing waves. 
To this WKBJ order, we may write 

Z(i'o) - Z(j0 

i'o - ¿o 

: Z(Ío) 
exp [¿K(io - ip)] - 1 

where 

Ho - ¿o) 

i = iK(i'0 - io) • 

(64) 

= iKZ(í0)e* 4^ (65) 

(66) 

4 The relationship between our / and the parameter xNL of Goldreich and 
Tremaine (1978) or Lissauer and Cuzzi (1982) is jcnl / = {e/ln)112. 
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Fig. 2.—The real and imaginary parts of the linear wave function JF(£0), defined by eq. (60b), where is the nondimensional distance from Lindblad resonance 
defined by eqs. (34) and (30). 

Equations (52) and (53) may now be approximated as 

sin2 £ 
' Í0 C2 

: K2A2 , 

(67a) 

(67b) 

and the self-gravity integral has the nonvanishing part 

Kq2) 
'Z(ç'o) - Z(Co) 

(fo - ^o)2 

H(q2
0) = - n 

d£o * KZ(Ç0)H(q2
0) 

sin2 £ 
i(q2) ~72~l dC ? 

(68a) 

(68b) 

where q2 is given in terms of q0 and £ by equation (67a), and 
I(q2) is given by equation (51). 

The substitution of equation (68a) into equation (48), when 
£0 is taken to be very large (i.e., £0 Z > /) results in the disper- 
sion relation (we take K to be real and negative) : 

\K\H(q2) = Ç0, (69) 

which gives the (absolute value of the) wavenumber as a func- 
tion of position £0 when the amplitude A (or ql = K2A2) is 
known. The properties of the integral function H(ql) are given 
in Appendix C; here we merely remark that it is a monotoni- 
cally increasing function of its argument ql, with the limiting 
values 

H(q2)^\ as q2^0, 

tf(4o)-»--^ln(l-<?o) as <îo->-1. n 

(70a) 

(70b) 

b) Nonlinear Amplitude Relation 
It is well known from linear density wave theory that the 

amplitude variation may be obtained either from a second- 
order WKBJ calculation or from a wave conservation principle 
(Toomre 1969; Shu 1970; Dewar 1972; Mark 1974; Goldreich 
and Tremaine 1979). We use the latter method here, i.e., we 
relate the amplitude A to the angular momentum transport. 

Appendix A shows that the torque exerted by the moon in 
exciting the density waves is equal to 

T = mi-^-Je^cx,), (71) 

where ^(£0) f°r arbitrary £0 is the nondimensional quantity 

m0)= -f f° Im{Z(QKS- (72) 

(For inner Lindblad resonances, is negative.) On the other 
hand, Appendix B shows that the nondimensional torque 
^(£0) exerted up to the point £0 must be carried away by an 
angular momentum luminosity (in density waves) through the 
disk whose nondimensional value is given by (S. Tremaine, 
1983, private communication) 

^(ío) = 
'Co 

diö di'0P(i'¿,i'0), (73) 
Í0 

where 

P(io, i'o) = '(f?2L2 iZ*(io)Z(i'o) - Z(io)Z*(i'oy] (74) 2ni (£0 — £0) 
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and the asterisk denotes complex conjugation. In equation (74), 
q2 is given by equation (52) except that replaces ¿0. 

Equation (73) can be given the interpretation that the 
angular momentum luminosity across results from the inter- 
action of the disk particles inside with those outside ¿0. (In 
the linear context, Lynden-Bell and Kalnajs [1972] referred to 
this as the sum of lorry transport and gravitational torque.) 

With £0 replacing ¿0, equation (63) yields the approximation 

nto) * - 
A2(to) ‘Co f CO 

dC Hq2 

-00 JÇo-Ç" 

sin 2C 
di, (75) 

where Co = -UJX C" = ~Uy2, and C ^ -K(<To - Co)/2, 
with K <0 and q2 given by equation (67a). Switching the order 
of integration in equation (75), we obtain 

^o) = - 
A2(t0) dCHq 2

 sin 2Ç 

C2 dC. 

Performing the C integration, we get 

2’(t0)= -A2(t0)L(q2), 

L(q2o) = - 71 

0 2 sin 2C 
) —¡r— dC, 

(76) 

(77a) 

(77b) 

where ql is given by equation (67b). The properties of the 
integral function L(ql) are given in Appendix C. Here we 
merely note that it, like the integral H0(ql), is also a monotoni- 
cally increasing function of its argument ql, but L(ql) has the 
limiting values 

as ql^O, (78a) 

2^3 
L(q%)^- ql) as <7^1, (78b) 

71 

i.e., L(ql)-+ H(ql) only for nearly crossing streamlines. 
Equation (77a) may be regarded as an amplitude relation in 

the following sense. The torque (72) exerted by the moon on the 
disk is accumulated mostly within one wavelength of exact 
resonance (see § IV), so ^ tends (in an oscillatory manner) to a 
constant (negative) value as ^0-> oo. If someone were to give us 
this value (rather than require us to compute it by means of eq. 
[72]), the conservation principle, if = 5", allows us to calcu- 
late the amplitude of the wave as a function of from 

A\tQ)L{ql)=-¿r. (79) 

To be more precise, if 3T is known, equations (67b), (69), and 
(79) give three relations to solve for the streamline-crossing 
parameter q0, the wavenumber K, and the amplitude A, as 
functions of position £0. 

Since the torque ^ that can be exerted is finite, equation (79) 
requires A to be bounded. Equation (69) can then be satisfied 
as <i;0—► +00 only by requiring |K|—► oo, or q0-+ l. In fact, 
both occur, so that when we divide equation (69) by equation 
(79), we obtain 

as \K\A^\ (80) 
/I 

because L and H are equal in the limit g0—► 1. In other words, 
in the far wave zone, nonlinear waves which are not viscously 
damped behave in the following way : 

|K| and A 
(-ÍT 

as ► + °o • 

(81) 

This should be contrasted with the linear theory (obtained by 
assuming qo-^0) where \K\-+Ç0 and ,4—► constant = 
( —2^r)1/2 = (27i)i,2f as +00. 

In order to apply equations (81), we must know the value of 
the torque This knowledge comes reliably only from 
solving the nonlinear wave excitation problem, especially in 
the partially evanescent and near wave zones (near ¿;0 = 0) that 
contribute the bulk of the integral on the right-hand side of 
equation (72). It is thus to the numerical solution of the wave 
equation (48) that we turn next. 

IV. REPLACEMENT BY A DIFFERENTIAL EQUATION 

a) Motivation 
The singular and nonlinear nature of the integral equation 

(48) makes it rather nasty to tackle numerically. On either side 
of £'0 = £0 are large contributions of opposite sign to the self- 
gravity integral. They cancel, leaving a small fraction of the 
original parts to be balanced by the rest of the equation. These 
difficulties are compounded in the far wave zone, where q2 can 
be exceedingly close to 1 for neighboring streamlines, bringing 
on the singular behavior of the function I(q2) defined by equa- 
tion (51). We are therefore strongly motivated to replace equa- 
tion (48) by an alternative that would be easier to handle 
numerically. 

Our hopes are buoyed by the reminder that, in the linear 
case, the integral equation can be rigorously reduced to an 
ordinary differential equation (see § He). Thus we are moti- 
vated to ask the following question. Can we write down an 
ordinary differential equation (of first order, preferably, in the 
complex function Z) which has the properties that (1) it reduces 
in the linear limit, qo^0 (which applies nearly everywhere for 
small /, and for the evanescent region < 0 f°r almost an /), 
to equation (59), and (2) it contains, in the asymptotic limit 
¿o > 1, both the dispersion relation (69) and the amplitude 
relation (79)7 The answer we discovered, by inspection, is yes. 
The desired equation—or more accurately, a usable 
equation—is 

— 2iL1/2 (1}I2Z) + =/, (82) 
dío H 

where L and H are the integral functions of ql = \dZ/di0\
2 

defined by equations (68b) and (77b) (see also Appendix C). 
Clearly, equation (82) satisfies criterion 1 listed above, since 

L—and H—► 1 in the limit qo-+0. Moreover, if we multiply 
equation (82) by Z* and take the imaginary part, we obtain 

2 Re Íl1/2Z* A- (L1/2Z)1 =/Im (Z) . (83) 
l dio J 

But the left-hand side of the above can be written as 

L1/2Z* A- (Lll2Z) + ÜI2Z 4t {Üi2Z*) = A- (LZZ*), 
dio di0 di0 

(84) 

so that, with ZZ* = A2 and Z = 0 at = — co, the integra- 
tion of equation (83) gives 

L(q2)A2(U =f f ° Im {Z(Q}^'0 , 
J - 00 

which is equation (79). Finally, the substitution of Z = Ael° 
into equation (82), plus the assumption that T, //, and L are 
slowly varying in comparison with el<t>, and the near-equality 
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; L 3s H for <^0 |> 1, yield the approximation 

¿ _d®=Jo_ 

S H(ql) ’ (T) 
^ which is the dispersion relation (69) for \K\ = —dQ)/dÇ0 >0. 

This completes the verification that criteria 1 and 2 are satis- 
fied. 

We should emphasize that equation (82) has in no sense been 
derived from equation (48) under some rigorously statable set 
of assumptions. We have merely written it down as a heuristic 
equation which has many desirable properties; it is a model 
equation, not a physical one. However, the model is testable 
because its solution can be substituted back into equation (48) 
to see how well the latter is satisfied. We expect for moderate / 
that the satisfaction will be reasonable, since the model equa- 
tion gives the correct description at both ends (<i;0 large, nega- 
tive or positive), so the middle (| £01 ~ 1) is likely to work out 
too. If the “interpolation” fails, we may always regard the 
solution of the ordinary differential equation (82) as merely a 
means to generate a first iterate for the numerical solution of 
the integral equation (48). 

"Before we leave this subsection, we make one final comment. 
The differential equation (82) lends itself naturally to a simple 
Runge-Kutta scheme only if we define q0 to be A( — d<î)/dÇ0) 
rather than | dZ/d^Q \, where Z = Ae1®. With this slight 
readjustment (which is justifiable since a model equation is 
always arbitrary to some extent), we can easily write down the 
system of first-order differential equations that govern O, A, 
and q0. (In particular, one of the equations is simply dQ}/d£0 = 
— q0/A.)WQ move now to a discussion of the numerical results. 

b) Numerical Results 
Figure 3 shows the solution of equation (82) for/= 0.1. 

Comparison with Figure 2 (cf. eq. [60a]) shows that nonlinear 
effects indeed do begin to manifest themselves after <^0 has 
attained values comparable to those given by equation (62). 
Figure 4 gives the associated nondimensional torque, as 
defined by equation (72). Notice that approaches, via 
damped oscillations, a constant asymptotic value which is very 
close to the value nf2 implied by linear theory (see Appendix 
A). The total torque is accumulated mostly within one wave- 
length of exact resonance, where nonlinear effects are not very 
large and where compensating mechanisms (smaller ampli- 
tudes but longer wavelengths) are at work for the nonlinear 
effects which affect the torque. Figure 5, which plots the 
logarithm of the surface density contrast o/o0 against the 
Eulerian variable ¿ shows that nonlinear effects are 
most pronounced for observed optical depth profiles. In par- 
ticular, because the peak-to-average densities are in the ratio 
1/(1 — q0\ while the trough-to-average densities are in the 
ratio 1/(1 + q0), we see that density waves can be strongly 
peaked when the streamline crossing parameter g0—> 1, as they 
are when (i;0—► go. By the same token, however, the trough 
densities can never drop below one-half the average value in 
the wave propagation region. We expect viscous effects to limit 
how closely q0 can approach unity; thus, in a realistic calcu- 
lation, the peaks are not likely to be nearly as strong as indi- 
cated by the inviscid theory presented here, although broad 
troughs, with o/oq > j, will probably remain a feature of the 
more general theory. 

Figure 6 indicates how well the solution to the differential 

Fig. 3.—The real and imaginary parts of the Lagrangian displacement Z, for the case/ = 0.1, as a function of the nondimensional (unperturbed) distance from 
resonance. 
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Fig. 4.—The accumulated nondimensional torque — ^r, for the case /= 0.1, as a function of the nondimensional (unperturbed) distance £0 from Lindblad 
resonance. 

? 
Fig. 5.—The normalized surface density o¡o0, for the case /= 0.1, of two radial cuts through the disk at orthogonal phases, as a function of the nondimensional 

Eulerian distance £ from Lindblad resonance. 
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Fig. 6.—Measure of how well the solution of the differential equation (82) 
represents the solution of the integral equation (48) when /= 0.1. (See text for 
details.) 

equation (82) satisfies the original integral equation (48) : 

I(q2 Z(£o) - Z(^0) 

. (£o-£o)2 . 
d£o = -£oZ(£o)+/. (85) 

The solid and dashed curves represent the imaginary and real 
parts of the right-hand side of equation (85) when the solution 
for Z(£0) from the differential equation (82) is substituted in it. 
The filled and open circles represent the imaginary and real 
parts of the left-hand side of equation (85) when the (principal- 
value) integral is evaluated at selected points <^0 by using the 
same solution for Z (see Appendix D for details). The good 
agreement between the filled circles and the solid curve and 
between the open circles and the dashed curve shows that the 
differential equation (82) gives a good representation of the 
integral equation (48) when/ =0.1 (or smaller). 

Figures 7-10 display the same information as Figures 3-6, 
for/ = 0.5. Notice from Figure 10 that the agreement between 
the circles and the curves is not as good; the fractional error 
reaches as high as 15% in the peaks and valleys. Nevertheless, 
the differential equation still gives a useful first approximation 
to the solution of the integral equation, and the main features 
of the wave profile in Figure 10 can be trusted. In particular, 
the increase in the wavelength because of nonlinear effects 
(compare Fig. 7 with Fig. 2), which prevents streamline cross- 
ing, is a general property of both the differential equation and 
the integral equation. Figure 8 shows that the accumulated 

torque — even for this quite nonlinear case, has asymp- 
totically almost its full linear value of nf2. Table 2 gives the 
formal values for the torque ratio 7y7¡in as a function of the 
forcing parameter / but the precise values should not be given 
too much credence in light of the errors in the differential 
equation representation of the integral equation for/ = 0.5 and 
larger. In particular, a direct attack on the integral equation is 
probably necessary to get reliable answers for/> 1. Neverthe- 
less, since most of the observed density waves in Saturn’s rings 
are characterized by/ < 0.5, one of the most important conclu- 
sions of this paper is that nonlinear torques are not significantly 
smaller than their corresponding linear values, and therefore the 
difficulties with angular momentum transport time scales in the 
Saturn system cannot be relieved by appeal to nonlinear effects 
(Goldreich and Tremaine 1982; Lissauer, Peale, and Cuzzi 
1984; Borderies, Goldreich, and Tremaine 1984). 

v. DISCUSSION 

Because of the inviscid and pressure-free assumptions, we do 
not expect a good detailed correspondence between the theory 
developed so far and the nonlinear spiral density waves 
observed in nature; nevertheless, some preliminary compari- 
sons are instructive. The peaky appearence of most of the 
observed density waves in Saturn’s rings (e.g., Fig. 1) is a clear 
indication that the linear theory, which predicts sinusoidal 
variation, is inadequate (Lane et al 1982; Holberg, Forrester, 
and Lissauer 1982; Esposito, O’Callaghan, and West 1983; 
Cuzzi et al 1984). Peaked wavecrests had previously been 
encountered in the theory of spirally forced galactic shocks 
(Fugimoto 1968; Roberts 1969; Shu, Milione, and Roberts 
1973), but, since streamlines never cross, shocks never formally 
occur for the resonantly forced, self-consistent, “ long ” waves 
studied in this paper (see also Vandervoort 1971). However, the 
very close packing of streamlines which occurs in the far wave 
zone yields “ cusplike ” solutions which are asymptotically 
close to the critical condition necessary to produce shocks. A 
similar situation seems to arise in Yuan’s (1984) non-self- 
gravitating calculation of the response of interstellar gas in the 
“ 3 kpc arm ” to an oval distortion in the central regions of the 
galaxy. 

When streamlines come close but do not actually cross 
(q0 = 1 — ), equations (53) and (55) predict that the troughs of 
the wave satisfy <t/ct0 % j, explaining the broad, flat minima 
that appear in Figures 5 and 9. That the surface density in the 
troughs never falls below one-half the average ambient value 
seems consistent with observed optical depth profiles of non- 
linear density waves in Saturn’s rings (refer back to Fig. 1), but 
this point should be checked more carefully. Beyond this pre- 
diction, we cannot comment on any of the finer details of the 
observed wave profiles without modeling the effects of viscosity 
in limiting the asymptotic wave amplitudes to realistic values. 

The most successful application of (linear) density wave 

TABLE 2 
Nonlinear Torques 

/ nf2 T/TUn 

0.1   0.03136 0.03142 0.9982 
0.2...... 0.1251 0.1257 0.9957 
0.5.  0.7669 0.7854 0.9764 
1.0...... 2.921 3.142 0.9297 
2.0   10.63 12.57 0.8456 
5.0   22.26 28.27 0.7873 
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Fig. 7.—The real and imaginary parts of the Lagrangian displacement Z, for the case/ = 0.5, as a function of the nondimensional (unperturbed) distance £0 from 
resonance. 

Fig. 8.—The accumulated nondimensional torque, — for the case / = 0.5, as a function of the nondimensional (unperturbed) distance £0 from Lindblad 
resonance. 
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Fig. 9.—The normalized surface density o/g0, for the case / = 0.5, of two radial cuts through the disk at orthogonal phases, as a function of the nondimensional 
Eulerian distance £ from Lindblad resonance. 

theory to Saturn’s rings has been the derivation of local surface 
mass densities (e.g., Cuzzi, Lissauer, and Shu 1981; Lane et al. 
1982), leading to fairly precise estimates of the overall ring 
mass (Holberg, Forrester, and Lissauer 1982; Holberg 1982; 
Cuzzi et al. 1984; Esposito et al. 1984). In the linear theory, the 
dispersion relationship predicts a local wavelength / (spacing 
between successive crests) that is inversely proportional to the 
radial distance from resonance, with the coefficient yielding a 
measure of the surface density a0. Figure 11 shows that the 
relationship between wavelength and distance from resonance 
departs from the predictions of linear theory for a forcing 
amplitude of/ = 0.2 typical of many of the observed waves in 
Saturn’s rings. The departure is largest at large distances £, 
where the nonlinear inviscid theory (cf. eq. [81]) predicts 
/ x £-1/3 instead of / oc £ If inclusion of the effects of vis- 
cosity have the net effect of pinning down q0 to some definite 
value smaller than unity (P. Goldreich 1983, private 
communication), then the relationship Toc^“1 would be 
recovered, but the proportionality constant would be different 
from the relationship of linear density wave theory by a factor 
of H(ql) (see eq. [69]). Since H(ql) > 1, it is possible that the 
surface mass densities in Saturn’s rings have heretofore been 
systematically somewhat overestimated. Empirical determi- 
nations of the value of q0 (from observed cr/<70 at the peaks) 
would allow one method of obtaining the correction factor 
H(ql) for this effect. 

On the theoretical side, the biggest obstacle that remains to 
prevent detailed application to Saturn’s rings is the proper 
incorporation of viscous effects. A powerful formalism for 
treating the effects of viscosity has been developed by Bord- 
eries, Goldreich, and Tremaine (19836) in their attack on the 

problem of the resonant origin of sharp outer edges, and their 
technique should be equally useful in the present context. The 
incorporation of viscous effects would complete the program of 
using spiral density waves as a diagnostic of the physical state 
that prevails in Saturn’s rings; however, it is becoming increas- 
ingly clear that the numerical value of viscosity derived for 
regions of wave propagation will probably not be representa- 
tive of the disk as a whole, since the presence of the nonlinear 
wave itself (or of neighboring nonlinear waves, as is often the 
case in the A ring) tends to raise the viscosity above the value 
appropriate to an unperturbed disk. Nevertheless, the problem 
remains an intriguing theoretical challenge. 

For application to spiral galaxies, the most important gener- 
alization would be the inclusion of the effects of finite velocity 
dispersion (which then introduces the possibility of “short” 
waves in addition to the “ long ” waves studied here). If this 
effect is simulated by the inclusion of a fluid pressure, with the 
gas remaining isothermal, we would need to add to the right- 
hand side of equation (14a) the term 

c2 da 
a dr ’ 

where c is the isothermal speed of sound. Appendix E then 
shows that this term ultimately results in an additional term on 
the left-hand side of equation (48) of the form 

— € -1/2 (86) 

where ô1 and g are defined by equations (1) and (2) and I(ql) is 
defined by equation (51) with g0 replacing q. Since the pa- 
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Fig. 10.—Measure of how well the solution of the differential equation (82) 
represents the solution of the integral equation (48) when / = 0.5. (See text for 
details.) 

Fig. 11.—Relationship between the dimensionless wavelength, 2k\K\~1 

(spacing between successive peaks), and the nondimensional distance £ from 
Lindblad resonance for/ = 0.2. 

where R(r0) is the complex radial part of the Lagrangian dis* 
placement ri and 

2 R(r'0) - R(r0) 2 

T =  ^  > 
r0 - r0 

with q0 = I dR/dr01. Applied to a disk galaxy, could rep- 
resent the forcing by a central bar or a (small) companion. 
Many (but not all) of the physical processes studied for spiral 
galaxies in the linear regime can be approached in the nonlin- 
ear context by means of equation (87). The inclusion of viscous 
terms would allow one to address related issues in protostellar 
nebulae and binary star accretion disks, as well as such prob- 
lems as disk truncation and the like. 

rameter^j is of ordere (see eq. [33]), pressure efifects are negli- 
gible in Saturn’s rings unless Q2I(ql) is large (of order e-1/2). 
This may happen in the far wave zone for some waves (where 
the viscosity is also important). For galaxies, e is not such a 
small parameter, and the effects of finite velocity dispersion are 
always important. In this case the Taylor series expansion (31) 
is also of limited utility, and it is more informative to write the 
governing wave equation in the dimensional form 

dr0 
ml) 

dR 
dr $ 

+ 2Go0(r o) I(q Rir'o) - R(ro) 
(r'o - ro)2 dr'o 

1 
+ [k2 - (co - mD)2]R = — ^m^o) , (87) 
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APPENDIX A 

THE NONLINEAR TORQUE 

In an Eulerian description, the torque T exerted by the moon on the entire disk can be calculated from 

T = rdr d) d6<j(r, 9, t) (r, 0, t) . 
Ö0 

(Al) 
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The use of equation (22), with cp = 9 — Q t, allows us to convert the above to a Lagrangian calculation : 

T = rdr0(T0(r0) á)di¡/0 
SVm 

dcp 

where dVM/dcp is to be evaluated at (r, cp\ with r given by equation (9) and <p by equation (13). If we now write (cf. eq. [39]) 

'I'o) = riÂro) cos il/0 + ru(r0) sin \p0 , 

Tic = e1/2rL Re {Z(^0)} , ru = e1/2rL Im {Z(^0)} , 

we may integrate equation (26) to obtain 

<Pi = 
2Q sin i/>o |   

rl(m — mil)2 r0(w — mil) (ric «in «Ao - ru cos i/^o) • 

(A2) 

(A3a) 

(A3b) 

(A4) 

Let if/1 = mcp1, and expand the smoothly varying function dVM/dq> with respect to the small quantities r, and i/^. To quadratic order 
in </>M, f-!, on/',, equation (Al) becomes 

= Go(r0. )r0dr0 ()#0 
d$M 
dr0 

(sin iIj0 + i/í! cos i/í0) . (A5) 

The linear term (j)M sin \¡/() integrates to zero over a complete cycle of i¡/0, as does the cubic term r^l/ ^dip^/drQ) cos i]/0, which is small 
in any case. With equations (A4) and (A5), we now have 

T = m 

which upon integration over ij/0 gives 

Go(ro)rodr0 O# m • 2 / 2m£l(j)M 2 sin ~ cos 
r0(œ — mLÏ} 

T = mn voiro] 
d(¡)M 2mn0A 

0 dr0 (co — mQ)_ ris(ro)dr0 . 

(A6) 

(A7) 

We switch variables from r0 to = e 1/2 (r0 — rL)/rL and note that rls is a rapidly varying function of (cf. Fig. 2). Thus, we may 
approximate the rest of the integrand with its value at r0 = rL, and write equation (A7) as 

T= — mnrl <j0(r JT* M(r L)e Im (Z)dÇ0 , (AS) 

where is defined by equation (20). The introduction of the symbols e and /, as defined by equations (33) and (36), allows us to 
write equation (A8) in the form (71 ) quoted in the text. 

To check formula (A8), we compute the linear torque (i.e., that which results from applying linear density wave theory). Consider 
the integral (whose imaginary part is of interest to us) 

-i: 
^linear ^0 > 

where Zlinear is given by equation (60a). Written out explicitly, 

N = if d£0 exp (-/£, 
fío 

*£o/2) 
J- 00 

exp (ir¡o/2)dri0 . 

Take the complex conjugate of the above and switch the order of integration : 

N* 
-4” 

dti0 exp ( —i/?o/2) exp (içl/2)dç0 r 

Interchange what we call an(i Vo in equation (All) and calculate 

Im (N) = ji(N-N*) = ^ exp U0Û - cl)ll\dç0dn() 

If we rotate the axes by 45° by defining 

y = ^ß(no - io) ^ (»io + £0), 

and note that the Jacobian of the transformation is 

Six, y) 

>1o) 
= 1 , 

(A9) 

(A 10) 

(AH) 

(A 12) 

(A 13) 

(A 14) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
85

A
pJ

...
29

1.
.3

56
3 

NONLINEAR SPIRAL DENSITY WAVES 371 No. 1, 1985 

we obtain 

Im (AT) = ^ exp (ixy)dxdy . (A 15) 

The integral over x gives 2nô(y); the integral over y then gives 2;:. Therefore, Im (N) = tt/. Since e and / are defined by equations (33) 
and (36), equation (A8) can be written as 

T- = -mn 
ÇoirQ 

L'ÍV'-l)]2 (A 16) 

which is a result of Goldreich and Tremaine (1978,1979). For the nonlinear problem, we will often express the actual torque (A8) as 
a fraction of the linear value (A16): 

T If” 
= - Im (Z)dÇ0 . (A17) 

Minear J-oo 

One of the major results of § IV is that for / < 1 (which covers the forcing values encountered by all the observed density waves in 
Saturn’s rings), the ratio (A 17) is not very reduced from the value unity. Thus, although nonlinear effects are important for the 
observed wave profiles, they do not appreciably affect any of the torque considerations which have been made use of previously. 

APPENDIX B 

TRANSPORT OF ANGULAR MOMENTUM 

In an inviscid self-gravitating disk, all of the torque resonantly deposited by an external moon must be carried away by the spiral 
density wave which is excited by the forced oscillations. The angular momentum luminosity may be calculated by a method due to 
Borderies, Goldreich, and Tremaine (S. Tremaine 1983, private communication). To motivate the derivation here, note that 
the nondimensional torque density (cf. eq. [72]) is equal to —/ times the imaginary part of Z. Since Im (ZZ*) = 0 and Im (Z*) = 
— Im (Z), if we multiply equation (48) by Z* and take the imaginary part, we obtain 

1 f00 I(a2) 
,,, Im {Z*(£o)Z(£,)}^0 = -/Im {Z(£0)} • (Bl) 

^ J— oo (Co Co) 

Integrate the above from - oo to ^0, and introduce the symbol ^ for the partial dimensionless torque of equation (72). To avoid 
confusion, call the dummy integration variable instead of and write Im {Z*(¿o)Z(^0)} as [Z*(¿o)Z(ío) - Z(¿o)Z*(¿o)]/2l Then 

fío f 00 
dío\ P(<r¿, Co)¿ío = ^(ío) , (B2) 

J — oo J — oo 

where P(Çq, Ç0) is the function defined by equation (74), and q2 is given by equation (52) except that ç/ replaces c0. To derive 
equation (73), notice that q2 is even in parity with respect to the interchange of c'0 and Co 1 thus, P(io, c'0) is odd, i.e., 

P(£o, Q = - P(Zo, Q • (B3) 

Consequently, if we interchange what we call c/ and Co in equation (B2) and use the property (B3), we obtain 

dU'o P(tö, H'0)da = nto) ■ (B4) 

The addition of equation (B2) to equation (B4) gives 

2^(lo) = 
Í0 

dtoPitl £>) 
*,0 

di’o d^Pdl ÍÓ) (B5) 

The domains of integration of the first and second integrals are shown in Figure 12. The net contributions which do not cancel by 
symmetry considerations are therefore given by 

2^o) = 
fio fco 

d£¿ \ d^p(a,ío) 
J-oo Jío 

1 ío 
dtó d{'¿m, ¿ó) • 

ío 
(B6) 

If we interchange what we call ¿o and cö in the second integral and again use equation (B3), we obtain, upon division by 2, 
fío foo 

^0)= d& d{om,{'0). (B7) 
Í0 

In accordance with the principle of conservation of angular momentum, the right-hand side of equation (B7) must represent the 
nondimensional angular momentum luminosity .y'(c(l) that is identified in equation (73). 
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Fig. 12.—The domains of integration represented by the two integrals on the right-hand side of eq. (B5). In the crosshatched region of overlap, the contributions 
of the two integrals cancel. 

APPENDIX C 

THE FUNCTIONS H(q2
0) AND L(ql) 

To begin a discussion of the properties of the functions H(ql) and L(ql), defined respectively by equations (68b) and (77b), we first 
derive a relation between them. Write equation (68b) as 

mq2o) = ■ I(q2 
sin2 Ç 

dC , 

where q = (q0 sin O/c, and integrate once by parts : 

H(q2o) 7 4 U(q2) sin2 CM = 2L(<j¿) + - 
0 .C «C n 

sin2 C SI 

c sc 
dt, 

where 

L(ql) a. 

Using the chain rule, we calculate 

di di dq di C Ícos Ç sin Ç 

äc= « = ¡hü q°\— C 
Vo 

dl (cos C 1 

thus equation (C2) becomes 

H(ql) = 2L{ql) + q0 - q0 

dq0 Vsin C C 

dH 

which in turn can be written as 

dq0 ™ dq0 ’ 

J-(qoH) = — -^-(qlL). 
dq0 q0 dq0 

If we multiply the above by q0 and integrate from 0 to q0, we obtain the desired relation, 

1 
L(q2o) = H(q2

0l 2 4o % 
tío H(qo)dq'0 . 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

This formula provides the most convenient way to evaluate Uqo) once we have tabulated H(ql). 
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The singularities, real and apparent, of /(g2), as defined by equation (51), make it inconvenient to calculate H(ql) directly from 
equation (Cl). Instead, write equation (Cl) out in full as 

H(q2o) = -\ ~2 
n Jo 4o 

1-^ 
sin2 ( -1/2 

- 1 dt. (C8) 

Now note the identity 

, 2 sin2 ^~1/2 
1 -4o-^ dC = d[C2 - qo si«2 C)1/2] + y sin 2£(Ç2 - q% sin2 Ç) ll2dt (C9) 

The integration of the first term on the right-hand side of equation (C9) and the second term in the brackets of equation (C8) gives 
zero in the limits £ = 0 or (—> oo. Thus, equation (C8) becomes 

H(q2o) = - n 
sin 2(d£ 

0 (Í2 - sin2 O1'2 ’ 

which provides a convenient form for numerical computation. 
For < 1> the function H(ql) may be expanded as the infinite series 

where (Gradshteyn and Ryzhik 1980, p. 457) 

sin £ 

T 

The corresponding series solution for L(ql) reads 

4 
¿n = - 71 

00 (2n - 1)” 
«= I 

n = 0 nlZ 

cos £¿£ = 2(2n + 1) X (“) 
(n + 1 — k)2n 

k\(2n + 1 - /c)! 

00 (2n + l)11 

(CIO) 

(Cll) 

(Cl 2) 

(Cl 3) 

as may easily be verified by substitution in equation (C6). The limiting values (70a) and (78a) follow directly from these expressions. 
For ql near unity, the dominant contribution to the integral (CIO) comes from ( « 0, where we may make the approximation 

sin 2( « 2( and expand : 

i:2-q2o sin2 £ = (1 — <7oK2 + "T C4 + ß2t2 + 
^4 

3 ’ 

with ß2 = 1 — ql < 1. If we now divide the range of integration in equation (CIO) into 0 to y and y to oo, where ß <£ y < 1, we obtain 

H(q2
0) : 

V3 
arcsinh 

m 
1/2 + • 

sin2 W£ 
(£2 - sin2 £)1/2 * 

(Cl 4) 

The integral in equation (Cl4) is well behaved, while the first term on the right-hand side diverges logarithmically as ß—► 0 in the 
manner prescribed by equation (70b). A similar set of manipulations applied to equation (C3) yields equation (78b). 

When ql is neither very small nor very close to unity, it is more efficient to use contour integration (see Fig. 13) to turn the 
oscillatory integrand in (cf. eq. [CIO]) 

H(q2
0)=-- 

e2Kdt; 
C(l - ql sin2 £/i2)1/2 

to a pole contribution minus a branch-cut contribution with an exponentially decaying integrand, 

1 
H(q2

0) = 
(1 - q2o)112 - B(r¡0) , 

where rioiql) i$ defined by the transcendental equation 

Qo 
no 

sinh r]0 ’ 

and the branch-cut contribution is 

2 
B(r¡o) = - sinh t]0 n 

~ 2,ldt] 

jrl0 (iio sinh2 q -q2 sinh2 fy0)1/2 ' 
Notice that B(q0) vanishes in the linear limit qo^>0 because the branch point £ = iq0 then moves infinitely far off the real axis. 

(Cl 5) 

(Cl 6) 

(Cl 7) 
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lm(f) 

Vol. 291 

Fig. 13.—The contour in the complex (-plane that is needed to turn eq. (CIO) into eq. (CIS). There is a simple pole at ( = 0, and branch points at( = ±irj0, where 
i/o is defined through eq. (Cl6). 

Using the formulae derived above, we have tabulated the functions H(ql) and L(ql) for a variety of values of ql between 0 and 1. 
To an accuracy better than a fraction of a percent, the values so tabulated can be fitted throughout this range by the analytical 
fitting formulae 

H(qo) = - \n ß + ß-aql + bq% - cq% (Cl 8a) 

where ß = (\ — 
equation (82). 

L(q2
0) = H(q2

0)-- (Qo + 2ß2 hi /?) + 71 
- (1 — /?3)J + - 4o ~ ^ 4o + g > (C18b) 

4o)1/2 and a = 0.12041, b = 0.005659, c = 0.17194. The formulae (Cl8) allow the rapid step-by-step integration of 

APPENDIX D 

CHECKING THE INTEGRAL EQUATION 

Once a solution Z(^0) of the ordinary differential equation (82) has been generated, it behooves us to check how well it satisfies the 
original integral equation (48). This numerical check is complicated, however, by the large cancellations that occur in the neighbor- 
hood of £o = £o (see the discussion of § IVb). Clearly, it would be desirable to divide the range of integration on the left-hand side of 
equation (85) into — oo to ¿o — <5, £0 — <5 to <i;0 + Ô, and <i;0 + <5 to + oo, where Ö is some small but finite number (say, 0.01), and to 
evaluate the central piece 

'£o + <5 
I(q2 

Ï0-Ô 

z(£o) - z(t0y 

. (to-io)2 . 
dío (Dl) 

by a more careful technique than the standard integration schemes. The technique we used is the following. For given ¿0, define a 
new integration variable u = <f0 — ¿;0. From the stored data points (on a grid) for Z(^'0), calculate the function 

F(u) EE I(q2) Z(£q) - Z(¿0) 
fo-£o 

where q2 is given by equation (52). Construct the odd part of this function, 

Fodd(u) = i[F(u)-F(-u)], 

and fit the tabulated data by the polynomial 

f odd(M) = Fl « + F3 “3 + Fsu
5 . 

In terms of Fodd (it), the principal-value integral (Dl) can be expressed as 

2 p5 2 ( <53 <55 

- [FodM¥u = -(fiô + F3 — + F1 — 71.0 n\ 3 5 

(D2) 

(D3) 

(D4) 

(D5) 
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a formula which is well matched by a four-step Runge-Kutta scheme to integrate the ordinary differential equation (82) and a 
fourth-order quadrature method to evaluate the rest of the left-hand side of equation (85). 

APPENDIX E 

INCLUSION OF PRESSURE 

Given the approximate Lagrangian equation of continuity, 

(rdrttG0dr0, 

or the equivalent relation (24), we may express an isothermal pressure term as 

c2 do 
o dr 

1 
o0 dr0 ~ dr0 \1 + drjdr0) ’ 

if we assume that o0(r0) is slowly varying. In the nondimensional variables introduced in § lib, this becomes 

(El) 

(E2) 

c2 do 
o dr 

-1/2 . 1 
rL V + dX/dÇ0i 

In accordance with equations (37) and (39), the term to be differentiated with respect to in equation (E3) is, to lowest order in e, 

(E3) 

, dC ' dS . I I + — cos\l/0+-— sin i¡/0 
dQo «Co 

which, subjected to the operation (41), gives the two additional terms 

cos i¡/0dil/0 1 ^ -(J) 
71 

1 

1 + q0 cos (i^o - A0) 

sin iAo^o 

7T J 1 + go COS (lj/o - A0) 

where /i(g0) is defined through equation (46) and where 

= 2/1(g0) cos A0 , 

= 2/1(g0) sin A0 , 

dC 
q0 cos A0 = —- , 

d£o 
q0 sin A0 = 

dS_ 
dH0 

(E4) 

(E5a) 

(E5b) 

(E6) 

(E7) 

When the right-hand side of equation (E5b) is multiplied by i and added to the right-hand side of equation (E5a), we obtain 

2 dZ dZ 
21 = - It(q0) Jr- = -ml) — , 

q0 dç0 dç0 

where I(ql) is defined through equation (51), except that q0 replaces q. The differentiation of the term (E7) and multiplication by the 
appropriate coefficients in accordance with equation (E3) lead to the addition of the term (86) to the left-hand side of equation (48). 
The derivation of equation (87) then follows in a straightforward manner. 
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