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ABSTRACT

A linear adiabatic and non-adiabatic survey of pulsation periods (up to the fourth
overtone) was performed in the parameter ranges relevant for double-mode RR Lyrae
stars. It was shown that among the lowest order resonances between the frequencies of
the normal modes the closest is the 2:1 resonance between the fundamental and third
overtone. It is argued that proper inclusion of non-adiabaticity may further improve
the situation for this resonance. However, there is a problem with satisfying
simultaneously constrains imposed by observed periods and resonance condition.

As a by-product of our survey it was shown, that systematic differences exist
between the different pulsational codes, causing uncertainty of 10 —20 percent in mass
determination.

1. Intreduction

It has been known for several decades that there are some stars in
the Cepheid instability strip whose light variation can be reasonably
explained only if we assume that they pulsate simultaneously in two
modes. The first group of these stars (called beat Cepheids) have fundamen-
tal periods between 2 and 6 days and first overtone periods such that their
ratio is 0.697 < P,/P,< 0.711. Except for their double-mode pulsations,
beat Cepheids are indistinguishable from the monomode Cepheids. Their
total number is now 11 (Stobie, 1977), or 12, if we include CO Aur (Anto-
nello and Mantegazza, 1984) which, however, shows a discordant pericd
ratio of 0.797.

The second group of double-mode pulsators (called RE, stars, dwarf
Cepheids or AI Vel stars) have fundamental periods between 0.06 and
0.22 days and period ratios 0.768 < P, /P, < 0.778. There are now altoge-
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ther 7 such stars known (Fitch and Szeidl, 1976). There are strong con-
troversies between different investigators on the physical properties and
evolutionary status of these stars (see e.g. Petersen, 1978, Simon, 1979
and Breger, 1979). They are in many respects very similar to other 3
Scuti stars, but their pulsational characteristics may indicate that they
belong to the stars of Population II.

The only known star showing triple-mode radial pulsation is AC And.
The physical parameters and evolution of this star is also controversial
(see e.g. Fiteh and Szeidl, 1976 and Petersen, 1978).

It is well known that the very promising method of the mass and
radius determination via the P,—P,/P, calibration diagram (introduced
by Petersen, 1973 and hereafter referred as Petersen-diagram) has led to
one of the most severe problem in the pulsation theory, i.e. beat Cepheid
mass discrepancy. These facts and the failure of modelling sustained
double-mode pulsation (Hodson and Cox, 1976, however Stellingwerf,
1975b) suggest that it would be extremely useful to have some new type
of multimode radial pulsators for testing pulsation theory.

The new group of double-mode pulsators emerges from the RR Lyrae
stars. Until 1981, only AQ Leo was known as a double-mode RR Lyrae star
(Jerzykiewicz and Wenzel, 1977). By a period analysis of the photographic
observations of the globular cluster M 15 (Sandage, Katem and Sandage,
1981) Cox, Hodson and Clancy (1981), Cox (1982) and Cox, Hodson and
Clancy (1983, hereafter CHC) have shown that 10 RR Lyrae stars pulsate
in two modes with the same periods than that of the field star AQ Leo,
i.e. P, = 035 4-0%03, P,/P, = 0.746 4-0.001. Further studies in this and
other globular clusters now seem to reveal more double-mode RR Lyrae
stars (for references see CHC). Importance of these stars lies in the fact
that owing to their cluster membership we have a better chance to deci-
pher their physical parameters.

Asg shown by Cox, King and Hodson (1980) and by CHC, double-mode
RR Lyrae stars seem to fit well the linear pulsation and evolution the-
ories. Non-linear hydrodynamic models for these stars are not yet avai-
lable. Before attempting these laborous, complicated computations it
gseems quite useful to make a detailed description of their linear modal
characteristics. In addition, in the light of the possible importance of
resonances in double-mode pulsation (Dziembowski and Kovécs, 1984),
it is hoped that linear theory might help to restrict the parameter ranges
for non-linear computations.

We deal with the accuracy of the mass determination with the aid of
Petersen-diagram in the next section. Our results on the resenances enco-
untered in these stars are given in Section 3. Finally, we speculate on
the significance of our results for further non-linear studies.
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2. Mass determination by use of Petersen-diagram

Inaccuracies in the mass determination introduced by different ef-
fects have been discussed elsewhere (e.g. Petersen, 1978). He concludes
that in the case of Cepheids with periods longer than 2 days the uncerta-
inty in mass determination varies from 4 to 9 percent. For dwarf Ce-
pheids, however, the situation is much worse as, according to their period
ratios, they lie close to the unfavourable upper part of the corresponding
Petersen-diagram. An error of 100 percent is not uncommeon in this region.

For the double-mode RR Lyrae stars, errors in the mass determina-
tion might be similar to those of the beat Cepheids, because by decreasing
heavy element content, the P,—P/P, curves become separated in the
relevant region of the diagram (compare Figs. 2 and 7 of Petersen, 1978).
To elarify the problem we studied further the influence of various effects
on the Petersen-diagram for RR Lyrae stars.

We adopted Dziembowski’s eode for the computation of the static
model envelopes and full linear (adiabatic and non-adiabatic) modal cha-
racteristics. The details of model construction are given by Dziembowski
(1977). All models consisted of about 400 mass shells down to some 3
percent of the radius. At the edge of the core the temperature was not
higher than 10’K and the envelope contained about 10 percent of the
total mass. Experience showed that such a depth of the envelope was
sufficient to obtain accurate periods and growth rates for all modes up
to the fourth overtone (see Section 4 for some details of the tests).

Masses, luminosities and effective temperatures were changed in the
ranges 0.56 < M /M, < 0.85, 50 < L/L, < 80 and 3.81 < logT,(K) < 3.87
with steps of 0.1, 10 and 0.02 respectively. Beside of this standard series
we chose the models of M /M = 0.65, a (ratio of the mixing length to
pressure scale height) = 0.0, X = 0.7, Y = 0.299 with finer steps, i.e.
5 and 0.01 in the above luminosity and effective temperature ranges,
respectively. Except for the red edge, the above ranges cover the possible
parameters relevant for RR Lyrae stars.

Studying the sensitivity of the periods and period ratios to change
in chemical composition, a, position of models on the HR-diagram and
including non-adiabaticity, we got essentially the same result as Petersen
(1978). In Figs. 1 and 2 we show the Petersen-diagrams calculated with
o = 0, a =1 for adiabatic models and for the non-adiabatic ones for the
model series with X = 0.7, ¥ = 0.299. The effect of increasing heavy
element content is shown in Fig. 3. Except for the last figure, we do not
recognize any systematic shifts in the calibration lines. Calculations made
with different light element contents (X, Y) = (0.65, 0.349), (0.7, 0.299),
(0.75, 0.249) yielded smaller than 0.001 non-systematic changes in the
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period ratios. Position effect caused a broadening smaller than 0.002 in
the period ratio coordinate of the calibration lines. Summing up all these
effects we may say that the maximum broadening of the constant mass
lines corresponding to the adiabatic, @ =0, X = 0.7, Y = 0.299 case is
smaller than 0.002 in the period ratio coordinate and that periods them-
selves are estimated with an accuracy better than one percent. The
broadening of the constant mass lines results in an inaccuracy in the mass
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Fig. 1. Comparison of the Petersen-diagrams with and without convection. Periods of
our model series with standard steps of parameters (described in the text) are plotted.
Only two different series with masses 0.85M g and 0.65M o are shown to avoid confusion.
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Fig. 2. Same as in Fig. 1, but for adiabatic and non-adiabatic periods.
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determination for RR Lyrae stars of about +40.03 M, which corresponds
< to the relative error for beat Cepheids given by Petersen (1978).

& Now there is another source of inaccuracy, i.e. model dependence.

Though it was shown by previous studies (see Petersen, 1978 and referen-

ces therein) that the beat Cepheid mass anomaly is quite model indepe-
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Fig. 3. Same as in Fig.
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Fig. 4. Comparison of the Petersen-diagrams of CHC (dashed lines) and ours (dots

with continuous lines drawn by free-hand). Numbers at the lines denote masses in

Solar units. Models with standard steps of parameters (described in the text) were

used in the parabolic interpolation to get series with steps 5 and 0.01 in luminosity and
log T.(K) respectively.
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ndent, (see however Simon, 1982) it is not sure that small errors do not
occur at the level claimed by the inner accuraey of our model construction.
Fig. 4 compares our Petersen-diagram obtained for adiabatic periods
with ¢ =0, X = 0.7, Y = 0.299 with that given by CHC. Systematic
shift of 0.002 — 0.003 is observed in the direction of the period ratio co-
ordinate for each constant mass line, giving an average mass of (0.7 —0.75)
M for double-mode RR Lyrae stars instead of 0.65 M as given by CHOC.
It is not known whether this discrepancy is merely due to the different
treatment of opacities (i.e. use of Stellingwerf’s interpolation formula for
the King’s mixtures, Stellingwerf, 1975a, b in Dziembowski’s code and
use of the original tables by CHC). CHC claim that their period ratios for
the model series with M = 0.58 M, agree within 0.001 with those of
Stellingwerf (1975a); however, their line for this mass is systematically
above the corresponding Stellingwerf’s values (see Fig. 2 of Cox, King
and Hodson, 1980). Though the effect is smaller than in our case, it is
clearly noticeable and might be accounted for by opacity effects. In ad-
dition, Jerzykiewicz and Wenzel (1977) get a mass of 0.70 M , 4-0.02 M, for
AQ Leo using Stellingwerf’s (1975a) period fitting formula.

All these facts suggest some systematic difference between the different
codes and may invalidate our optimistic estimation of the errors in the
mass determination for double-mode RR Lyrae stars. The total inaccuracy
of the mass determination due to opacity treatment and/or model con-
struction effects can now be estimated to 10-20 percent.

3. Survey of the resonances

Orne of the most intriguing and still unsolved problems of the pulsa-
tion theory is what causes the observed stable multimode pulsation. The
view that double-mode pulsation is simply a transient state from one
kind of single-mode pulsation to another has met the problem of the ob-
served stability and large number of double-mode pulsators. The idea
of the existence of stable double-mode states has not been confirmed yet
by hydrodynamical calculations. Hodson and Cox (1976) have failed to
confirm the validity of the mixed-mode model of Stellingwerf (1975b).

It is not known what is the reason for failure in finding stable models
of double-mode pulsation. If it is caused by a wrong guess of the model
parameters, then any information which can restrict the parameter space
is highly valuable. In this respect the resonance hypothesis might give
some help.

Dziembowski and Kovaces (1984) showed by means of a simplified
analysis that stable double-mode pulsators may exist in the “single-mode
only” regions if one of the excited modes is in a close 2 : 1 resonance


http://adsabs.harvard.edu/abs/1985AcA....35...37K

© Copernicus Foundation for Polish Astronomy ¢ Provided by the NASA Astrophysics Data System

Vol. 35 43

with a higher order damped mode. According to their formalism, Simon’s-
type three-mode resonances (Simon, 1979) promote single-mode states
rather than double-mode ones.

Resonance surveys made up to now were restricted only to beat and
dwarf Cepheids and focused the attention mainly on the three-mode
resonances (Simon, 1979 and Petersen, 1979), and the bumyp Cepheids with
the 2 :1 resonances (Simon and Schmidt, 1976 and Simon, 1977). These
surveys have shown that the appropriate resonance condition is always
nearly satisfied. However, Simon (1979) remarks: “... those models whose
interaction frequency was resonant (i.e. models for which d; = 0) also
exhibited two other near resonances, invididually involving the excited
modes, and that their period ratios always fell within the following ranges:
0.51 < P,/P, < 0.53 and 0.476 < P,/P, < 0.488. What role, if any, these
additional resonances might play in the maintenance of double-
mode pulsations is a question that must be left for the future.” A similar
observation was also made by Petersen (1979).

So, it might be useful to compare the proximities of various resonan-
ces in order to determine which one might play the leading role in pro-
moting double-mode pulsation.

By use of the adiabatic periods for our standard series with a = 0,
X = 0.7, Y = 0.299 we got by parabolic interpolation a series of model
periods with much finer steps in the mass, luminosity and log T, (K) (steps
of 0.05, 2.5 and 0.005, respectively). Then, models with 0351 < P, < 0359,
0.744 < P,/P, < 0.748 were selected and their frequency distances were

oto- (0+03) (1+14) {0+1,3) {0+14) (0+24)
- ' .!
I TPITTTIY STHIL
2 l!!cll.“
=
®» 00
o
o
5-0.05-
LR 1 H
S 1AL JIREARLL
£ -o010-
. ] 3
plpitlit
_0.15L' 1 11 ] 14 1 Ll L 141 1 !
386 384 382 log Te (K)

Fig. 5. Adiabatic frequency distances versus log T, (X) plots for our fine interpolated
model series with 0951 < P, < 0359,0.744 < P,/P;< 0.748,a= 0, X = 0.7, ¥ = 0.299.

The type of resonance is shown in the upper part of the figure. The log T, (K) scale is
the same in all boxes asg indicated in the first omne.
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plotted versus effective temperature. Our result is shown in Fig. 5. We
used the same notation for the frequency distances as Petersen (1979), i.e.

Jitf;
fo
where f; denotes the frequency of the 4-th mode.

It is seen that models with appropriate periods and period ratios (dots)
digplay the closest resonance between the fundamental and third overtone.
Beside this two-mode resonance, there is a three-mode one between the
fundamental, first and fourth overtones which has similar d value. It
is also seen that there is no preferred temperature range for the models.
A plot on the HR-diagram (Fig. 6), however, shows that there is a well-
marked dependence of the allowed luminosities on the effective tem-
perature.
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Fig. 6. HR-diagram for adiabatic models with a= 0, X = 0.7, Y = 0.299,
0451 < Py < 0359, 0.744 < P, /P, < 0.748 (hatched area). Dashed lines show the area

tested. Red and blue edges (continuous lines) were taken from Fig. 4 of CHC.

Another representation of our results is shown in Fig. 7. Here, simi-
larly as Simon (1979) and Petersen (1979) did, we plotted the period
ratio as a function of various frequency distances. In order to avoid dis-
turbing overlap between the curves of the different resonances the (01, 4),
(0--2, 4) resonances were not plotted. Some of these curves show remar-
kably small dispersion, giving a better than -40.003, +0.002 correspon-
dence between the frequency distances and period ratios respectively.

It is clear, that the requirement of perfect resonance of any kind
gives quite wrong period ratio. In contrast to Cepheids (Simon, 1979)
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in double-mode RR Lyrae stars we always encounter only approximate
resonances. This problem will be discussed further in the next section.

So far, we examined only adiabatic periods with one chemical compo-
sition and neglected convection. Now, the question is how the frequency
distances change by allowing some variations of the above parameters.
This problem was studied in the same manner as that of the period ratios.
In summary, except for non-adiabaticity, none of the parameter changes
in the ranges mentioned in Section 2 resulted in systematic or significant
(> 0.001) changes in the frequency distances. Non-adiabaticity, however,
caused a decrease of the fundamental and first overtone periods and an
increase of the periods of higher-order modes. This effect resulted in con-
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Fig. 7. Period ratio versus frequency distances plot.YAdiabatic periods for our standard
geries witha = 0, X = 0.7, ¥ = 0.299 were used. The period ratio of the double-mode
RR Lyrae stars is shown by dashed line.
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Fig. 8. Same as in Fig. 7, but for non-adiabatic periods. Dots denote the (0+0,3) and
(0 +1,3) resonances, crosses are for the (1+1,4) one. For comparison, the free-hand
drawn version of the adiabatic result shown in Fig. 7 is also plotted.
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siderable changes in the frequency distances, while leaving the period
ratios practically unaltered. We compare the adiabatic and non-adiabatic
frequency distances with the aid of the period ratio versus frequency
distances plot in Fig. 8. Again, to avoid confusion the (01, 4), (0+2, 4)
resonances were not plotted. It is seen that non-adiabaticity causes a sig-
nificant broadening of the lines and the (0-0,3) resonance becomes
clearly the closest one. The (0-+1,4) and (0-+2,4) resonances behave
in a similar manner than the (040, 3) and (141, 4) ones respectively,
however, the (011, 4) resonance remains always weaker than the (040, 3)
one.

Finally, we give the parameters of some representative models with
proper periods and small d(0+0,3) values in Table 1.

Table 1

Representative models of double-mode RR Lyrae stars with small d(0+0,3) values.
M and L are measured in Solar units, periods are given in days. Consecutive numbers
in each column denote the corresponding adiabatic, non-adiabatic values and growth

rates
Model No. M L log T(K) P, P, P, Py R, P, /Py d(0+0,3)
1. 0.7 60, 3.83 0.5546 0.,4132 0.3293 0,2658 0.2217 O©.745 0,041

0.5537 0.4126 0.3305 0.2676 0,2236 0,745 0,033
+0.,015 40,062 40,023 0,084 0,189

2. 0.7 70. 3,85 0,5396 0,4025 0.3216 0.2602 0.2176 0,747 0,036
0.,5384 00,4010 0,3225 0,2627 00,2210 0,745 0,024
40,003 40,038 +0,003 0,141 0,289

3. 0.85 70. 5.83 0,5809 0,4338 Q,3472 0,2809 0.,2%5 0,747 0.033
0.,5800 0.,4329 0,3483 0,2827 0,2363 0,746 0,025
+0.,012 +0.,053 +0.031 0,070 0,176

4, 0.85 @80, 3.8 0.5557 0,4157 0,3337 0.2706 0.2265 0,748 0,026
0.5546 0.4141 0,3343 0,273 0,2297 0,747 0,016
40,002 +0,032 +0.013 .0.115 0,262

4. Discussion

It is clear that the present survey did not result in a significant res-
triction of the range of parameters for double-mode pulsation. Relying
only on periods and period ratios we got a relatively large area in the
HR-diagram occupied by appropriate models. Of course, it is possible
to restrict this area further by using the observed luminosities (as actually
CHC did), but one should be aware of large observational errors in volved.

Another way of restricting parameter ranges is to make use of the
resonance hypothesis and select models fitting the desired resonance
condition in the best way. In the case of Cepheids, this method has not
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resulted in a parameter restriction, as all models with appropriate period
ratios showed a rather close (041, 3) resonance (Simon, 1979). If in the
case of double-mode RR Lyrae stars we turn to the probably more impor-
tant 2 : 1 resonance between one of the excited mode and a higher order
overtone we might restrict the parameter ranges. However, due to the
conflict between the observed periods and the avoided crossing of resonan-
ce center and the presence of other resonances of similar proximity, this
process can be questioned. In the light of these, one may resist to attri-
bute any importance to the resonance hypothesis. It is clear that our
linear pulsation models cannot be as wrong as the requirement of perfect
resonance (of any kind) would demand. It is possible, however, that the
mechanism of resonant mode coupling requires non-perfect resonance
(inclusion of non-adiabatic resonant coupling for example, may cause such
an effect). Though we must wait for the final conclusion until thorough
hydrodynamical modelling, it is thought that the resonance playing the
leading role in double-mode pulsation comes from the closest ones. In
this frame, the present survey clearly supports the resonance hypothesis.

It was seen in the previous section that the (040, 3) and (041, 4)
resonances are most likely. Relying upon the result of Dziembowski and
Kovacs (1984) and treating the two resonances separately, we must con-
sider only the (040, 3) one because three-mode resonances are unimpor-
tant in maintaining double-mode pulsation. In this frame we may specu-
late on the predictions of the above two-mode resonance.

Because the fundamental mode is involved in the resonance, it is
expected that the star is located near to the non-resonant “either-or” —
— “fundamental only” transition. If the positions of Stellingwerf’s non-
linear transition lines given for 0.578 M, do not depend too much on
stellar masses, a star with log L/L, = 1.78, log T (K) = 3.84 (i.e. with
the medium parameters for double-mode RR Lyrae stars given by CHC)
might be really close to this transition, actually much closer than to the
other one. In contrast to the mode switching hypothesis, sustained double-
mode pulsation with two-mode resonance does not require evolution
in a certain direction. It is necesasary only to have a close resonance with
a damped higher order mode and to satisfy some other not very restrict-
ing conditions (for the details see Dziembowski and Kovées, 1984).
The required proximity of the resonance depends mainly on how far the
star is from the transition line (the closer to the transition line the weaker
is the resonance required).

It is seen that our guess of the possible importance of the (040, 3)
resonance is not in contradietion with the behaviour suggested by non-
linear results. There may, of course, exist several effects which may
help or hinder the work of this resonance. Non-adiabaticity helps, as it
was shown in the previous section. Presence of three-mode resonance
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might hinder, as it promotes single-mode states. Other effects (non-
adiabatic resonant coupling, multimode resonant and non-resonant inter-
action) not included in the resonance theory yet might modify but not
invalidate the suggested importance of the 2 :1 resonance.

Finally, it seems to be worthwhile to remark that a proper inclusion
of resonances in the non-linear hydrodynamical computations require
the consideration of sufficiently deep envelopes. Though our M = 0.65 M,
L =60L,, logT,(K) =3.84, a =0, X =0.7, Y = 0.299 model yielded
not very discordant periods when we lowered the envelope mass from
10 to 2 percent of the total mass (period ratios decreased by 0.0005, fre-
quency distances increased by 0.004), this was not the case with Stel-
lingwerf’s (1975a) mixed-mode model (model 2.6 in his series). Again,
decreasing the fractional envelope mass from 10 to 1 percent, the period
ratio increased by 0.003, while frequency distances decreased by 0.03-0.04.
During this, the (141, 4) resonance went through zero, while the others
remained in absolute value greater than 0.02 and, the (040, 3) resonance
greater than 0.11. As the star is at the very cool end of the “fundamental
only” region, the possible double-mode state promoted by the 2 :1 re-
sonance involving the first overtone is unstable. The (040, 3) resonance is
also unable to maintain double-mode pulsation because of its very large
d value. Our guess for the failure to repeat Stellingwerf’s results is that
his model was either started in the tiny region of the occasionally existing
stable three-mode equilibrium state in the three-mode resonance case or
slided by chance to this state (see Dziembowski and Kovéacs, 1984).
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