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Summary. A numerical method is presented to calculate steady,
axisymmetric wind models with frozen-in magnetic fields. As a
straightforward generalization of the model of Weber and Davis
(1967), the wind solution along the magnetic field is obtained by an
algebraic Bernoulli equation for the density. There appear two
critical points, the slow mode and the fast mode critical points. The
shape of the poloidal magnetic field should be determined by
requiring the balance of force across the field line. This leads to the
second order partial differential equation for the magnetic stream
function. This equation is singular at the Alfvén surface and the
regularity condition there together with the inner boundary
condition uniquely determines the solution. Examples of com-
putations were carried out by adopting a monopole-like basic
configuration. The important feature found in the numerical
solution is the poleward deflection of the wind flow due to the
magnetic force of spiraling field lines. Asymptotic behavior of the
solution at large distances shows that the flow does not become
radial but is collimated in the direction of the rotation axis. There
arises a dense polar column around the rotation axis, in which the
magnetic pinching force is balanced by the pressure of the confined
gas.
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1. Introduction

The braking of stellar rotation due to stellar winds has been
proposed (Schatzman, 1962) to account for a transition along the
main sequence from rapid to slow rotators around the spectral type
F5. That is, the surface convection zone of the late type stars
provides both the magnetic field (due to a dynamo) and the hot
corona (also due to some magnetic mechanism). And the wind with
the magnetic field exerts a braking torque, which is much larger
than expected for non-magnetic winds, by increasing the effective
length of the torque arm.

The first quantitative theory of magnetic stellar winds was
developed by Weber and Davis (1967). Their model deals with the
steady, polytropic, axisymmetric flow of an inviscid and perfectly
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conducting fluid. The geometry of their model is monopole-like (a
“split-monopole” model), i.e. the poloidal magnetic field is radial
and is oppositely directed above and below the equatorial plane.
This configuration therefore possesses an equatorial current sheet
with a high gas pressure to balance the magnetic forces. This
feature is not essential mathematically, however, as far as the
current sheet is approximated by an infinitely thin layer. Weber
and Davis (1967) solved the problem near the equator and
evaluated the time scale of the spin down of the Sun to be
~7 10°yr (provided the angular momentum is mixed uniformly
within the Sun).

The model by Weber and Davis (1967) has three ‘critical
points” where the flow velocity matches the wave velocity of three
magnetohydrodynamic (MHD) wave modes (slow mode, fast
mode, and Alfvén mode, respectively). This situation is more
complicated than in the case of non-magnetic winds (Parker,
1958), which has one critical point corresponding to sonic waves.
The approach which Weber and Davis (1967) used is applicable
equally to the region outside of the equator (Yeh, 1976). But in any
case the model does not consider the force-balance perpendicular
to the poloidal magnetic field. (The poloidal field is assumed
instead.) Therefore the model is one-dimensional (1-D) and one
only needs to solve the model along each flux tube independently.

On the other hand if one tries to assure the force-balance across
the poloidal field and to determine the field structure self-
consistently, one ends up with a second order partial differential
equation in two spatial coordinates in the poloidal plane (i.e. 2-D
modelling). An attempt to solve this problem was made by
Pneuman and Kopp (1971), Mestel (1968), and by Okamoto (1974,
1975). The iterative method used by Pneuman and Kopp (1971) is
to solve alternatively the wind equation along the field and the
force-balance equation across the field. Okamoto (1975), however,
claimed that the equation for the latter process has a singularity
which was not considered by Pneuman and Kopp (1971) and
cast doubt on their computation (this point will be discussed in
detail in Sect. 4). In a series of papers Mestel (1961, 1967, 1968) and
Okamoto (1974, 1975) presented the analytical formulation of the
problem but they did not give a detailed numerical treatment
comparable to that of Pneumann and Kopp (1971). In addition
one might be sceptical about their analysis because they did not pay
attention to the fast mode critical point.

In this paper we will present a method which solves the 2-D
wind model numerically. The method is a natural extention of the
1-D Weber-Davis model, and in Sect. 2 we will first summarize the
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basic characteristics of the Weber-Davis model briefly. Some of
them are basically the review of previous works (Weber and Davis,
1967; Yeh, 1976), but some new results will also be presented.
Especially an efficient procedure to find the wind solution along
the magnetic field is introduced, which is made use of in the method
described in Sect. 3 to solve the 2-D problem. In Sect. 3 an example
of a 2-D computation will be presented, which shows that the flow
tends to be collimated in the direction of the rotation axis. This
behavior will also be explained by studying the asymptotic solution
atlarge distances. In the light of these results, in Sect. 4 the present
method will be compared to that of Pneuman and Kopp (1971).
One feature which complicates the analysis in extending 1-D
models to 2-D is the appearance of the dead zone (a closed field
region with no outflow). The ratio of the magnetic fluxes in the
dead zone and the wind zone was shown to be an important factor
in determining the spin-down rate of the star (Mestel, 1968). The
present analysis adopts a monopole geometry as the basic
configuration, however, mainly because of the mathematical and
numerical complexity in treating both the wind and the dead zones.
Due to this simplifying assumption, a direct comparison between
the Weber-Davis model and corresponding 2-D models is possible.
A model including the dead zone will be developed in a future
paper. We should keep in mind, however, that in addition to
mathematical/numerical difficulties, the existence of the dead zone
will also introduce physical complications such as the possible
instability of the discontinuity between the two zones.

2. 1-D model of Weber and Davis (1967)

2.1. Definition of the model

This model is described by six equations for six variables, density o,
pressure p, radial and azimuthal components of the velocity and
the magnetic field, V;, V,,, B,, and B,. We use spherical polar
coordinates (r,6, ®) and solves the problem near the equator 6
=n/2. Equations which determine the model are

p=Ke, M
oVt =f, (@)
Bri=9, 3)
(V(p— Qr)Br= V;Bgo’ (4)
B.B

r<V¢_4m—Q;;>=Qri, (%)
| y p GM Q*?

L4+, -Qr)i+—-—-————=E. 6
2+2(<,, Qr) +y—1g . 3 (6)

M is the mass of the star and G is the gravitational constant.
Six integration constants K, f, @, @, r,, and E have been intro-
duced. Equation (1) is the polytropic relation with polytropic in-
dex y (=const). Equations (2) and (3) are respectively the conserva-
tion of mass and magnetic fluxes. Equation (4) is equivalent to the
frozen — in condition expressed in the form that the flow velocity
and the magnetic field are parallel to each other in the coordinate
frame rotating with the angular velocity Q. Equation (5) is the
conservation of angular momentum. Equation (6) is the Bernoulli
integral of the equation of motion in the rotating frame, with the
centrifugal potential — Q?r?/2. Since the magnetic force has no
component in the direction of the flow in the rotating frame, (6) has
no magnetic term. Weber and Davis (1967) used the Bernoulli
integral defined in the rest frame, in which ¥, — Qr is replaced by

V, and a Poynting flux term appears instead of the centrifugal
term — Q2r2/2. Their energy constant is different from Ein (6) by a
constant Q2r%/2.

These six equations determine the solution after the values of
the six parameters X, f, ®, Q, r,, and E are given. Usually Q is
taken as the rotation rate of the central star into which the field
lines are anchored. In addition at the base of the corona r=r,, the
values of density g, , pressure p,., and the field strength B, , can be
specified. Therefore two more conditions are necessary to fix the
solution. In the following it will be shown that the existence of two
critical points supplies these two conditions.

If (1)-(5) are substituted into (6), the equation that only
involves the density ¢ is obtained. This is the Bernoulli equation
which determines the density profile ¢(r), namely,

H(r,0)=E, ©)
where
GM -~
H(T,Q)=——H(X,y), (8)
T4
x=rlry, y=0ley, 0 =4nf*®?, ©
~ B & ., 1 ofx—1/x)7
H =— yml_ o T 2 0
O R St e 1t S L)
and
@2 GM
= =|Vi|—]|, 11
b 4nGMo 41} [A/ r :|A (11a)
YKoy 'ry GM
o=""5%4 T4 = 1
GM Cs roly (11b)
Q%r3 GM
= = QZ 2/ . 1
o=~ |#r% 10

Here C% = yp/g is the sound speed squared and V3, = B2/4m g is the
radial Alfvén speed squared. The subscript 4 stands for the Alfvén
point, because (¢/g ) *?=V,/V,, is the Alfvén Mach number
which is unity if o =g,.

Essential points of the model are summarized as follows.

1. The density profile o(r) is a level contour of the Bernoulli
function H (r, ¢) in the (r, ¢)-plane.

2. At 9= 9y, H(r,0) diverges if r+r, but remains finite if
r=r4. That is, ¢ = ¢ is an infinitely high wall in the (r, ¢)-space
with a hole at (r 4, ¢ 4). Therefore all the solutions which go from
sub-Alfvénic (¢ > ¢ 4) to super-Alfvénic (¢ < g ) regions automati-
cally pass through the Alfvén point (r,, ¢,) in the (r, ¢)- plane.

3. An X-type critical point (or O-type point) of the level
contour g(r) arises where the function H (r, ¢) is locally flat, i.e.

O0H 0H
do  or

4. The curve 0H/09 =0 in the (r, 0)-plane will be called the
slow/fast mode Mach curve, by observing

(12)

0H QZQ V.B,\?
—_— e — Vz_ r-e K r—1
P Ty < B, ) The
V= VHC3+VE+ Vi) + C8VE
__R-vHmi-vi) a3
Vrz_ er
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(Vio=Bz/4m ). Therefore 0H/0g vanishes where V, equals either
the slow mode velocity V;, or the fast mode velocity V/,.

5. The curve 0H/dr =0 in the (r, ¢)-plane will be called the
gravitational throat curve. In regarding the transonic wind as the
flow through de Laval nozzle (Parker, 1963), the throat of the
nozzle is located at 0H/or =0.

6. The intersection of the slow (fast) Mach curve and the
gravitational throat curve gives the slow mode critical point (r, ¢5)
[the fast mode critical point (r,, ¢ )], respectively. Therefore two
conditions are imposed there, i.e.

H(rs5 QS) = E’

H(r;,0;)=E. (14)

Thus the wind solution will be uniquely determined.

Figure 1a and b show a typical layout of Mach curves, throat
curves, and the solution curves. The relevant wind solution which
starts with a slow (V,<¥,,) velocity at small r and attains a high
velocity (V,> V,) at large r is shown by the thick curve. The Alfvén
point is a focus of a bundle of solutions and plays no role in
selecting a particular solution. Rigorously speaking, it should be
referred to as the Alfvén point and not as the Alfvén critical point.
As we will see in Sect. 3, however, the Alfvén critical point appears
as the singularity in the cross-field force-balance equation. This is
understandable because the Bernoulli equation is an equation for
the density, and the Alfvén wave, without density perturbation,
will not show up in it.

2.2. Classification of wind models by dimensionless parameters

Some of the wind solutions thus obtained are similar to each other
except for the difference in scaling. To see this point, we will rewrite
(7) in a dimensionless form

H(x,y;p,0,0)=E. (15)

E is a constant which substitutes E[E=E/(GM/r 4)]- The wind
solution is obtained by requiring

0H of _
il Y =F
ox dy » H=E,

(16)

where subscripts s and f refer respectively to slow and fast mode
critical points. Among the eight variables (x,, x,,y,, y;, B, @, @,
and F), six are determined by these equations if the remaining two
are specified. If for example the values of ® and w are specified, the
variables x,, x;, ¥, ¥, E, and B are determined as functions of @
and . Therefore any wind solution is characterized by two
dimensionless parameters @ and w, which respectively measure the
strength of thermal pressure and centrifugal force in accelerating
the wind. The reason why we use these and not the third parameter
which measures the effect of magnetic field [ in (11a)] is that the
magnetic force alone cannot accelerate the wind. The magnetic
force has no component along the magnetic field, so that it will
only play a role in accelerating the wind when it is coupled with the
-rotation (through the centrifugal force).

The relation between dimensional parameters €2, 0., Py, By,
and dimensionless parameters @ and w is found as follows. When
evaluating the constant E at the coronal base by (6), we may neglect
the first two terms. By using (8) and (11¢) we find

2.2
Elo'B = <__” Py GM_Q 2’*) / (GMQ)*>.

v—1 0, Tx

at (x,y)=(xs,ys) and (xfayf)>

(17a)
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Fig. 1. a Solution plane in the Weber-Davis model. The radial flow velocity
exceeds the slow, Alfvén, and fast mode velocities when the solution crosses the
slow mode Mach curve (dashed), the Alfvénic line (solid), and the fast mode
Mach curve (dash-dotted), respectively, from the top toward the bottom in this
(r,0)-plane. Dotted lines show the locus of the gravitational throat of the
equivalent de Laval nozzle. The intersections of the Mach curves and the throat
curves give slow mode (S) and fast mode (F) critical points. The Alfvén point is
denoted by A. b Solution curves. The wind solution relevant to our problem is
shown in a thick curve. The values of parameters (@ = 0.5, w=0.25) are selected
in such a way that the three critical points are well separated from each other

Next we will eliminate r ,and ¢ ,from (11a—c)and use @ =rZ B, to
obtain

B,_Z =1 [/GM 2y—4/3
pr-10w-r = 1P (4_*) /<_) (Qr )25,
Q4 0y T

(17b)

Two equations (17a, b) determine the values of @ and w in terms of
dimensional parameters @, o, , p,, and B,,, since f and E are
known functions of ® and w.

One important point to be stressed is that one need not resort to
the so-called “shooting method” in order to find the wind solution.
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Fig. 2. Parameter space in the Weber-Davis model. The abscissa is ©, which
measures the thermal force, and the ordinate is w, which represents the effect of
the centrifugal force. No wind solution exists in the lower left part because of
insufficient thermal and centrifugal forces. The lower right part is the regime of
thermal winds where the centrifugal force has no essential effects. The upper left
part is the regime of centrifugal winds where in turn thermal pressure is
negligible. The terminal velocity of the wind, V¥, is enhanced [compared to the
case of no rotation (¥, p)] toward the centrifugal wind region. The region to the
left of the curve V,,/V,, p=2 will be called the fast magnetic rotator or FMR
(Belcher and MacGregor, 1976) in contrast to the other regime, the slow
magnetic rotator (SMR). The solar wind model of Weber and Davis (1967) is
indicated by ©. If the rotation rate or field strength, or both, are increased by
factors 2 (indicated by circles), 5 (squares), and 10 (triangles), the model evolves
along the solid curves toward the FMR regime

The simultaneous algebraic equations (16) are easily and quickly
solved by the Newton-Raphson procedure, and after determining
the values of x;, x;, y;, ¥y, E, and B, one may obtain the
dimensionless density profile y (x) of the wind solution by simply
drawing the level contour in the (x, y)-plane. This provides a very
rapid procedure to solve the wind equation, which facilitates the
method of computation described in Sect. 3 for 2-D models.

A survey of solutions was made for a wide range of parameters
© and o, and the results are summarized in Fig.2. (y=1.2 was
assumed.) No wind solutions are found in the lower left corner of
the (@, w)-plane, in the range of parameters roughly given by @
<y—1 and w<(3/2)*2. This is because both thermal and
centrifugal forces are too weak to support the wind so that a static
atmosphere comes about. The lower right region of the parameter
space is the regime of thermal winds, whereas the upper left region
is the regime of centrifugal winds. In the upper right region both
thermal and centrifugal forces are responsible for the winds. The
terminal velocity of the wind, ¥V, is essentially the same as in the
case of no rotation (V,, p)in the thermal wind regime. The locus of
solutions with V,/V,, p= 2is also plotted in Fig. 2, and toward the
left of this curve ¥V, is significantly enhanced compared with the
Parker value V,, ». This regime is called ““the fast magnetic rotator
(FMR)” in contrast to the case of the slow magnetic rotator (SMR,
Vo=V, p) according to Belcher and MacGregor (1976).

The solar wind model of Weber and Davis (1967) is indicated
by © in Fig. 2, which has ® = 1.5 and w = 0.3. The solar wind is in
the thermal wind regime. If the rotation rate or the field strength,
or both, are increased, the model evolves along the curves shown in
Fig. 2 toward the FMR regime. It is also in principle possible to
plot the whole main sequence in this diagram, if the necessary
boundary conditions (£, ¢,, p,, and B,,) are available. This was
not done here because the values ¢, , p, , and particularly B, are
poorly known.

3. 2-D axisymmetric wind model

3.1. Formulation of the problem

In this section we will generalize the 1-D Weber-Davis model into a
self-consistent 2-D model which satisfies the cross-field balance of
force, by keeping the same basic structure of the magnetic field (i.e.
the split monopole geometry). We will use spherical polar
coordinates (r, 8, ¢). The radius from the rotation axis @ = rsinf is
also used in the following. Equations (1)—(6) are then generalized
as follows. (Mestel, 1968; Okamoto, 1974). The conservation of
magnetic flux is taken care of by writing

B=VaxVo+ @B,Vo, (18)

where a (the magnetic stream function) and the toroidal
component of the field B, are functions of (r,6). The first term
gives the poloidal field B,, and the poloidal field lines are
represented by a family of curves a=const. (The azimuthal
component of the usual vector potential is a/ @.) The velocity can
be written as

G

B+ @*Qa)Ve. 19)
The first term is the velocity, parallel to the magnetic field, in the
frame rotating with the angular velocity Q. The mass conservation
(divg¥=0) and the induction equation [V x(Vx B)=0] are
satisfied if the two scalars « and Q are functions of a. The
dependence of Q on a allows the differential rotation of the star in

the model. It is straightforward to generalize (1), (5), and (6), i.e.

p=K(ae’, (20)

o(v. - 2o ) awia 1)
? 4ma ’

v: o1 y p GM Q*a@*

sty —om)pa 2T _

3 +2( ,— Qo) +y_1 0 7 > E(a), (22)

where ¥, = aB,/¢ is the poloidal velocity and @4(a) is the Alfvén
radius. Insteas of six constants K, f, @, Q, r,, and F in Sect. 2, we
have introduced five ‘“‘field-line constants” K(a), a(a), Q(a),
@ 4(a), E(a), and a stream function a.

If the function a is given, these Egs. (18)—(22) describe the wind
along each field line a=const. Given the rotation rate €, the
boundary conditions on the density and the pressure at the base of
the corona together with the conditions at the slow/fast mode
critical points uniquely determine the constants K (a), «(a), @ 4(a),
and E(a), and consequently, the density profile, as in Sect.2. The
Bernoulli equation for this purpose is

a? (Va 2+1 4na’Q(oi— @*) ]?
202\ @ 2| wo@na*—yp)
2 2
LK L, GM @0

y—1 r 2 =E.

23)
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Therefore the remaining process is to determine a by the the
equation of force-balance across the field lines. After some
manipulation we can rewrite the equation of motion as (Okamoto,
1975; Heinemann and Olbert, 1978)

1 GM
0=—Vp+E(VxB)xB+QVT—Q(w-V)a7

C[/a®> 1\Va
=ve {d” [(z - G) F]

1 pkK
—olE-— 22 | w200
Q( 7—1¢K 7 )

B 2 ’ 1 2y
— — o' — @B,| (Q) — — (@Qa2) |¢, 24
0 @
where prime (') denotes d/da. Since the force-balance in the ¢-
direction and along the magnetic field is already taken care of by
(21) and (22), Eq. (24) has only the cross-field component in the
direction Va. Therefore the equation to be solved is

«> 1\Va 1 pK
div| (L )22 = o(E - —2 2 1 w200
w[(é 4ﬂ> wz] Q( Tl >

B? D
+ ?p oo’ + DI:E Q* oo’ — 2 Q? 0% — 02 QQ (@} — wz)] ,

_Ang(h— @)

= o= ) @)

where ¢ is an implicit function of r, 6, a, and Va via (23).
Equation (25) is a second-order quasi-linear partial differential
equation for a, with the second-order derivatives of a in the left-
hand side. A fundamental property of this equation becomes
transparent if we pick up its principal term. That is,

> 1\Va o? Va 1 [a®> 1
div(Xo )2l g, L (e
o {( 0 4n> a)z} 0? ¢ + @*\ g 4n a4

+ (lower-order terms). (26)
The differentiation of (23) yields
2 V& _V2(C24V2 V2 Cl V2
aZV(Va)Z— P p( s+2AP+2 A(P)+ s APVQ
2m Vp — VAp
+ (lower-order terms) =0, (X))

where V'3, = B%/4ng, V], = B,/47no. Therefore (25) can be written
as

1 V2 .
47 @* Vﬁl,

1v2a VVa:VaVa vy
Va)?>  Vi—Vi(C3+Vi+Viy)+CiVy,
=g(r,0,a,Va), (28)

with the dyadic notation

3 02
VVa:VaVa= ) 2

i,j=1

da Oa
0x;0x; 0x; 0x; (29)
and the explicit form of g is easily obtained from (25). The
important character of the equation is that the coefficient of the
second order derivatives vanishes if ¢ = 4na?, or equivalently, if
V,=V,,. The equation is singular at the Alfvén point. We will
select a solution regular at the Alfvén singularity as follows. First

125

(28) itself requires g = 0 at the Alfvén point. Therefore the second
derivatives there can be finite but are represented as zero divided by
zero. A definite expression for the second derivatives is however
obtained by applying the I’'Hopital’s rule to (28). That is, by
differentiating (28) with respect to r at the Alfvén point 4, we
obtain

p2g_ Va:vava Vy ]
(Vay  Vy—=V3(C3+Vip+Vig)+ CiVipl,

=4nm? % 9 V_p2_1
“Vor |,/ Lor \V3, 4

Consequently, two equations must be satisfied at the Alfvén point,
and (30) based on I’'Hopital’s rule is regarded as the boundary
condition. Therefore two boundary conditions are imposed on a,
one at the coronal base where a is specified, and the other at the
Alfvén point by 'Hopital’s rule. The regularity condition at the
Alfvén point is equivalent to eliminating the standing Alfvén
shock. Without the regularity requirement, the field lines may have
a “kink” at the Alfvén point. These two conditions are sufficient to
determine g, and in particular it is not necessary to assume any
boundary conditions at infinity.

Another important character of (28) is that it is of mixed type,
i.e. it is elliptic in some part of the volume and is hyperbolic in the
rest. To see this we will replace V2a and VVa by —k?aand — kka
in the principal term of (28). The wave vector k is found as

k_ﬁz VPZ(C§+V}p+ ij)_ C.% Vip
k2 VF—VZ(CE+V3,+V3,)+ CEV3,
_(B=V2)(CE+ Vit Vi)
V=V =vg)

(30)

(3D

where k; and k, refer to the components of k parallel and
perpendicular to the poloidal magnetic field B,, and

C3Viy

| A .
P CE+Vi+ Vi,

(32)
If the right-hand side of (31) is positive (negative), k is real
(imaginary) and the equation is hyperbolic (elliptic), respectively.
Namely the equation is elliptic if ¥V, < V,, or V,,<V,<V,,and is
hyperbolic if V,, <V, <V, or ¥, <V, (Heinemann and Olbert,
1978). [V,, and V;, are poloidal components of slow/fast mode
wave velocities, defined similarly as in (13).] The fact that the
equation for a does not require a boundary condition at infinity is
now understood, because the flow far from the star is faster than
the fast mode speed so that no MHD signal can propagate
upstream and the solution there is completely determined by the
condition within the fast mode critical point.

3.2. Computational procedure

Equation (25) will be solved in the region r;,<r=<r,,and 0= 6
=< n/2. (Equatorial symmetry is assumed.) The inner boundary ry,
is chosen to be sufficiently smaller than the smallest value of r
(slow mode critical radius) over the field lines in 0 < 0 < 7/2. We
will impose the boundary condition B, = const (i.e. a monopole
field) at r =r;,. The outer boundary r,,, is taken to be slightly larger
than the largest value of r, (fast mode critical radius). As was
described previously, the outer boundary condition on a is given at
the Alfvén radius so that (25) might look solvable even in the region
rin S r=<r, if the density profile is known. As a matter of fact the
density profile depends, among others, on the location of the fast
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mode critical points. Therefore the volume ry; <r < r,, must be
solved simultaneously. On the other hand the solution outside the
radius rg, can simply be obtained by integrating (25) outward,
since (25) is hyperbolic there and the value of a itself and its
derivative are given at r=r, through the solution found in
rll'.l S r = rO'th *

The monopole field (B, = ®/r?) is represented by a= 2@ sin®
(6/2). Therefore it is useful to introduce a variable 6, instead of a by
the relation a(#,)=2®sin?(8,/2). And for computational con-
venience we will change the independent variables from (r, 0) to
(r, 0,) and will look for the solution 0 = 8 (r, ). The left-hand side
of (25) is now expressed as

div © 1 @—

! 0 4n)@®
_ 2[o o6 -1 6 ot sinf, (90 \~1a0
T2 er o o 4n)sin?0\060,) or
N ¢ [0\ ' o oc2 sm90< -t ]
rsinf \06,) a6, |\ o 00,) r*sinf |’

(33)

and in theleft-hand side of (25), d/da = (P sin6,) "' d/db,, and B2 is
given by

B Va\* _(® sin00>2 ( 00 )‘2 [ 1 (69)2}

»=\o) ~\Gsmo ) \Go,) [#7\&) [
Equation (25) is then solved numerically by dividing the (r, 6,)-
space into a finite-sized grid. Since field lines are labelled by 6, the
method used here is Lagrangian across the field (the grid moving
together with the field lines), and is Eulerian in the r-direction. The
grid in the r-direction is not fixed, however, but is flexible in such a
way that, for each field line, one grid point is always located exactly
at the Alfvén point. Thisis necessary to handle the singularity at the
Alfvén point properly. In the examples shown below, we used 10
grid points in 6, (10° spacing) and 15-20 grid points in r, nearly
equally spaced in logr. The boundary condition at r =r,, is simply
written as 0 =0,, and of course §=0 at §,=0 and 0 =mn/2 at
0, =m/2.

We take y=1.2 as in the 1-D model described in Sect.2. We
assume that Q(6,) is a constant given by the angular velocity of the
(rigidly rotating) star. We will also assume that K(6,) and E(6,)
are constants, being independent of 6, . This assumption is justified
if the star rotates slowly so that the atmosphere near the stellar
surface is almost static and spherically symmetric. For fast rotators
this assumption may be violated. The parameters o (a) and w ,(a)
are to be determined self-consistently at each iteration stage, by
requiring that the density profile passes through slow and fast
critical points. (The location of the critical points is also updated in
each iteration.)

Before solving (25), we first determine the Weber-Davis model
for the same parameter setting. The Alfvén radius r ,and the Alfvén
density g 4 are thus obtained, which will be designated here as r 4
and g 4 p respectively in order to make it explicit that these values
are for the Weber-Davis model. Then (25) will be solved in the
dimensionless form in which r, y,, and g 4 wp are used as the length
and the density units, respectively.

As in Sect.2, the model is specified by two dimensionless
parameters © and w,

(34)

0 — VKO nT 4 wp

35

2.3
_ W rgwp
GM

(35b)

Solutions were looked for in the part of parameter space (Fig. 2)
where g, r4, and r are of the same order and the computation is
easiest, namely, @, w ~ 1. The discretized version of (25) was solved
iteratively by the Newton-Raphson procedure. The initial guess for
the solution can be the radial field if w is small. Once the solution is
obtained, it is used as the initial guess for the next solution with a
larger value of w.

3.3. Computational results

Figures 3—6 show an example calculated for ® = 0.5 and w0 = 1.75.
First we will discuss the behavior of the solution in the region r
= Iout (Fou =47 4 wp in the example shown below). Figure 3a shows
the location of three (slow, Alfvén, fast) critical surfaces in the
poloidal plane before the iteration (i.e. for the fixed radial
magnetic field). Figure 3b is the self-consistent solution after the
iteration was carried out. The poloidal field lines are deflected
toward the pole significantly as compared to the original radial
field. This is mainly due to the build-up of the toroidal magnetic
field (see Fig. 4). Since the field lines are more tightly wound near
the equator while B, =0 on the rotation axis, Bj is larger near the
equator and is smaller near the pole and the gradient in the
magnetic pressure —V B3/87 is directed away from the equator.
This effect was first noticed by Suess (1972), Winge and Coleman
(1974) and by Nerney and Suess (1975) in the case of the solar wind.
In addition the magnetic tension due to B, is also directed toward
the pole. Because of this poleward deflection of the field lines, the
cross section of the flow channel near the rotation axis becomes
smaller than the radial (~r?) opening. Therefore the efficiency in
accelerating the wind is decreased, the transition to the supersonic
velocity is postponed to larger distances, and the critical surfaces
are pushed outward consequently. On the other hand near the
equator a wider opening of the flow channel gives a more efficient
acceleration and the critical surfaces are displaced inward. The
mass flux per unit magnetic flux [i.e. « in Eq. (19)] is also enhanced
near the equator. The terminal velocity of the wind V, is found as
V2[2=E+ Q*®}/2 from the Bernoulli equation (23) [see
Eq. (37)]. Therefore if the wind model is in the SMR regime, the
flow velocity quickly (slowly) reaches the same terminal velocity

V., ~ /2 E near the equator (the pole) respectively, because of the
flow geometry described above. For FMR’s of course the terminal
velocity is significantly enhanced near the equator.

Figure 4 shows the structure of magnetic field lines and stream
lines in the equatorial plane. Circles represent slow, Alfvén, and
fast mode critical surfaces, respectively, from inside to outside. The
field lines exhibit a spiral pattern showing the build-up of the
toroidal magnetic field. The stream lines show that the flow is
nearly ballistic far from the star. It is also seen that the flow carries
the angular momentum because the outer, straight part of the
stream lines, if extended inward, does not go through the origin.
Figure 5 depicts the out-of-equator structure of magnetic field lines
projected onto the meridional plane. The winding of field lines
becomes increasingly tight near the rotation axis as well.

3.4. Asymptotic behavior of the solution at large distances

Next we will study the behavior of the solution at large distances
from the star. The outward integration of (25) in the hyperbolic
region r > r, revealed that the deflection of the field lines toward
the rotation axis becomes slower and slower but continues
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Fig. 3. a Location of slow, Alfvén, and fast mode critical surfaces (from inside to outside, respectively) in the poloidal plane when the magnetic field is radial. The unit
oflengthis r 4 yp . b Self-consistent configuration of the magnetic field. Field lines are bent toward the pole, and the critical surfaces are displaced outward (inward)
near the pole (equator), respectively, compared to a

Fig. 4. Magnetic field lines (solid) and flow stream lines (dashed) in the

equatorial plane (0=<r=4r, yp). Three circles represent the location of the
three critical surfaces shown in Fig.3b

indefinitely. Figure 6 shows the structure of the solution in the
polar coordinates (logr, 6), instead of the usual (r, 6), in order to
cover the wide range in r. (Near the rotation axis 0 decreases
roughly as 6 ~ 1/r so that @ ~ constant. The apparent convergence
toward the axis is because of the logarithmic scaling in r.) There is
no indication that the solution approaches to the radial con-
figuration (0 — const).
This behavior of the solution can be studied semi-analytically

as follows. The numerical solution indicates that, for large values
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Fig. 5. Meridional view of the spiraling field lines (0=<r=<50r4 pp). The
horizontal line indicates the equatorial plane. Field lines are on the nested cones
that represent the magnetic surfaces 6, = const (=10°, 30°, 50°, 70°). In this
figure are drawn only those parts of the field lines which run away from us on the
left-hand side of the picture, pass behind the polar axis, and then return toward
us on the right. The other parts, which are in front of the plane of the paper, are

omitted to avoid overlapping. A part of the magnetic surfaces which is behind
other magnetic surfaces is also suppressed

of r, the behavior of the solution is described by dividing the 6,-
space into three regions. In the inner (polar) region 0= 6, =< 6,,,
both the tension and the pressure forces due to B, are directed
poleward and are counterbalanced by the gas pressure. In the
intermediate region 0,,=< 6, =< 6,,, the tension and the pressure
forces of B, are balanced by themselves, and the effect of gas
pressure is negligible. And in the outer (equatorial) region 0,, < 6,
= 7/2, the poleward force due to B, is compensated by the inertia
of the flow o (V- V)V (in other words the flow is deflected by the
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Fig. 6. The structure of the poloidal field at large distances, plotted in
logarithmic scale in r. The flow is continuously deflected toward the rotation
axis. Atr=10°r 4 p, the field lines with 6, < 50° are bundled into a cone 6 < 5°

magnetic force). In the inner and the intermediate regions 00/0r is
negligible so that the equation to be solved reduces to an ordinary
differential equation which only involves 0/06, . In the outer region
we can assume a separable form 6 ~mn/2 +f(r) (6, —n/2). The
approximate solutions in the three regions are then connected at
0,,and 0, to give an asymptotic solution valid for the whole range
in 6,.

The “cut and paste” procedure described above leads to
the following results. The angle 0, scales as 0,,~ (logr) ™2 <1.
In the polar region 0 =0, = 0,, the density decays very slowly
in r, i.e. g~ (logr)~Y¢=Y, and the pressure of this dense gas
balances the pinching force due to B,,. The radius of this inner
region increases only logarithmically, that is, the flow is almost
cylindrical. The effect of the poloidal magnetic pressure is negli-
gible compared to the gas pressure, because p ~ (logr) ~"¢~Dwhile
B2 ~ (logr)=24=Y, This dense polar column is a typical pinch
configuration and could be unstable due to sausage/kink insta-
bilities. In the very central part of this column, however, B2 > B3
holds so that the stabilizing effect of B, might be important. The
angle 6,, is close to n/2, i.e. m/2— 0y, ~ (logr)™* <1. In the
intermediate and outer regions 0,,=0,=m/2, 6 behaves like
0 ~ r =", where the exponent v (9,) varies from ~1 near the rotation
axis to ~ 0 near the equator. The asymptotic form 6 ~ r " means
that, if  is very large, 0 is almost zero everywhere except in the very
vicinity of 0, = n/2 (equator). That is, almost all the field lines are
deflected toward the direction of the rotation axis. The density
decays as ¢ ~ r ~2*?"/log r. Therefore the density at the equator is
much less than that on the rotation axis.

The asymptotic behavior of the solution described above is a
natural consequence of the build-up of B,. Therefore, however
small Q1is, the wind will finally be collimated. The wind model with
Q=0 (B,=0), in which the flow will become radial far from the
star, is qualitatively different from our model. Further, from the
Bernoulli equation (22) we find that the terminal velocity ¥V, is
given by

V2 (eo?)
P=—FE+Q*oi|1— 1.
2 EF ‘”"[ @),

(36)

If the solution approaches to a radial configuration at infinity,
(o ®?),, converges to a finite value (this is also the case for the 1-D
Weber-Davis model). In our asymptotic solution we found
om? ~1/logr—0, therefore,

V2
2 =E+Q*m3.

: (37

The same ratio R=(¢®@?),/(¢@®@?), appears also in the ratio
between energy densities at infinity, 1 oV?: B?/8n=E+ Q> m3
(1—R): Q?> @3 R. The angular momentum decrease of the star is
due to the sum of the angular momentum carried away by the flow
and the magnetic braking torque. The ratio between the two is
1 — R: R. Although R ~ 3/4 in the solar wind model of Weber and
Davis (1967), our analysis shows that the magnetic torque plays
less and less a role (R—0 as r— o0) in braking the rotation of the
star.

4. Summary and discussion

In this paper we have developed a method to calculate steady,
axisymmetric wind models with frozen-in magnetic fields, as a
straightforward extention of the one-dimensional Weber-Davis
model. The wind solution along the magnetic field is given by an
algebraic equation (the Bernoulli equation) for the density. There
appear two critical points, the slow mode and the fast mode critical
points. The shape of the magnetic field should be determined in
such a way that the force-balance across the field is satisfied. This
leads to a second order partial differential equation for the
magnetic stream function a and two boundary conditions are
necessary to determine the solution. One condition is given at the
inner boundary (i.e. the coronal base) where a is specified, and the
other condition is supplied at the Alfvén surface where the
coefficients of the second order derivatives of a vanish. In order
to have well-behaved second order derivatives of a there,
I’Hopital’s rule is applied and gives the constraint. A numerical
scheme was developed following this basic formulation, and an
example of solution was presented in Sect. 3. The basic feature of
the solution is the poleward deflection of the flow due to the build-
up of toroidal magnetic field in the wind. The asymptotic behavior
of the solution at large distances shows that almost all the field lines
are deflected toward the direction of the rotation axis, i.e., the flow
becomes collimated. The wind is almost cylindrical near the
rotation axis, and there arises a polar column in which high gas
density is produced by the pinching effect of the toroidal magnetic
field.

If we compare our method with that of Pneuman and Kopp
(1971), the apparent lack of the Alfvén singularity in their
treatment is striking. Our Eq. (28) can be written in the form

Via= 73 VZa %)
Vi
VVa:VaVa Ve WslVi,—1) +4nm’g
Vay  Vi—Vi(Ci+Vi+Vi)+Car3,

Their iterative procedure is to evaluate the right hand side of (38)
for the n-th iterate a, and to calculate the (n+ 1)-th iterate a, , ; by
solving (38) as the Poisson equation. Thus the singularity at
V,=V,, is apparently lost because the term (1— Vil Vjp) V2a
was split into two: F2a, ,, on the left hand side and V2/V3,V *a, on
the right hand side as the source term. Instead of losing the
regularity condition at the singularity, they imposed the additional
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boundary condition that the field lines become radial at infinity. A
question that could be asked is then whether the difference between
their and our methods is only a methodological one or not. As was
pointed out by Okamoto (1975) and also is clear from the
argument given in Sect. 3, their formulation of the problem has no
explicit condition to exclude singular solutions and therefore a
unique regular solution may not be obtained by their method. The
solution they gave, however, looks smooth at the Alfvén point. It
could be possible that the solution of their iterative procedure may
depend on the initial guess and, by starting from a smooth initial
state, the iteration may converge toward a smooth solution. In any
case their method is not applicable if Q= 0, because the solution
does not become radial at infinity.

Our method has some mathematical uncertainty, too. Firstly,
the equation was solved in the volume r;, < r <, as a boundary
value problem. The existence of hyperbolic regions in the volume
practically caused no problem so far, but there might be a more
rigorous treatment for them. Secondly, since the outer boundary
condition is given at r ;, our method might be regarded as solving
the Cauchy problem in the elliptic region r <r<r,. As is well
known, this is an ill-posed problem and the method will be
unstable. Physically the instability may develop as follows.
Suppose the mass flux [or o (a) of Eq. (19)] is kept constant. Then if
the two neighboring field lines are perturbed and come closer to
each other in the region ry< r < r, the flow velocity between the
two field lines increases and the density there decreases. The
pressure force therefore makes the field lines converge further and
the instability will grow. However in the actual computation this
behavior is never found because a(a) is not fixed but changes in
response to the variation of the field geometry. What actually
happens in the above process is that, if the flux tube is compressed,
the acceleration is suppressed because of a narrowed flow channel
and the density increases instead. We might say that the type
of equations (elliptic or hyperbolic) is a local character and will

Fig. 7. The structure of the current sheet expected for an oblique rotator. The
field lines constituting the magnetic surface, which can be regarded as the current
sheet in the split monopole model, are selected from the model shown in
Figs. 3-6
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not fully describe the non-local feedback mentioned above. On
the other hand when we tried to solve (25) for a fixed density
profile [fixed «(a)], the scheme was unstable in the elliptic region
r4<r<r;. Therefore the wind equation along the field and the
force-balance equation across the field should be solved simul-
taneously and cannot be solved alternatively.

Finally, let us consider the wind due to an oblique rotator as a
simple application of our model. Of course the monopole has no
magnetic axis, but the philosophy of the split monopole model is
that any magnetic surface can be a current sheet separating positive
and negative magnetic regions. Figure 7 depicts the structure of the
magnetic surface which is tilted 10° with respect to the equator near
the star, showing the ‘““ballerina skirt” behavior. Needless to say,
the oblique rotator generally needs a 3-D modelling.

The next step in improving our model is to include the dead
zone in order to construct a more realistic model. Another
interesting possibility is the application of the present method to
accretion disks permeated by magnetic fields. Although self-similar
solutions for this problem have been worked out e. g. by Blandford
and Payne (1982), our present method makes it possible to explore
solutions in much wider variety. These projects will be carried out
in the following papers.
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