THE HEAO A-1 X-RAY SOURCE CATALOG

K. S. WOOD, J. F. MEEKINS, D. J. YENTIS, H. W. SMATHERS, D. P. MCNUTT, R. D. BLEACH, E. T. BYRAM,¹ T. A. CHUBB,¹ AND H. FRIEDMAN E. O. Hulburt Center for Space Research, Naval Research Laboratory

AND

M. MEIDAV

Tel Aviv University Received 1983 September 6; accepted 1984 June 21

ABSTRACT

We present a catalog of X-ray sources detected with the NRL Large Area Sky Survey Experiment on the HEAO 1 satellite. The catalog is derived from the first 6 months of data from HEAO 1, during which time one scan of the entire sky was completed. The text describes the instrument and data analysis techniques used for the survey.

Positions and intensities for 842 sources are cataloged, with a limiting flux of 250 nJy at 5 keV, or ~ 0.25 UFU. The catalog is more than 90% complete at a flux level equivalent to 1.5 μ Jy at 5 keV, for a Crab-like spectrum.

This catalog, more so than earlier ones done in X-rays, approximates a representative, instantaneous image of the sky in X-ray wavelengths, in that all sources are observed within a single 6-month interval, and epochs of observation for individual entries can be specified to within a few days. The intensity shown for a source is a mean value over the observing interval rather than an extreme value.

The catalog has been cross-referenced with published literature. Identifications based on coincidence in position are proposed for some of the sources for which previous work has established no firm identification. About one-half of the sources remain unidentified.

Subject heading: X-rays: sources

I. INTRODUCTION

The NRL Large Area Sky Survey Experiment (LASS) on the *HEAO 1* satellite, also referred to as the *HEAO* A-1 Experiment, had as its primary objective the generation of an all-sky catalog of the brightest X-ray sources in the energy range from 0.25 to 25 keV. The instrumentation consisted of an array of large aperture proportional counter modules with collimators of varying fields of view. This array had sufficient sensitivity to detect sources as faint as 0.25 μ Jy at 5 keV, assuming a Crab-like spectrum (1.1 μ Jy at 5 keV = 1 UFU, for a Crab-like spectrum). The modules with the finest collimators (1°×0°5) were not confusion-limited at the low end of this range.

Full sky coverage was achieved in the first 6 months of operation by continuously scanning great circles perpendicular to the Earth-Sun line. The present catalog is derived from those 6 months and thus covers the full sky. The uniformity of the catalog depends upon the exposure, defined as collecting aperture multiplied by accumulated integration time, achieved in various sky regions. Instrumental sensitivity improves as exposure increases, until the confusion limit set by the instrumental field of view is reached. The ideal sky coverage for the instrumental design and satellite scanning geometry would be to accumulate a sufficient minimum exposure everywhere such

¹Also Bendix Field Engineering Corp.

that all sky regions would be uniformly limited by source confusion, and any remaining variations in exposure would not affect limiting sensitivity. Because some detector modules failed during the first 6 months, the flux limit for the present catalog in some sky regions is limited by exposure rather than confusion. The continued life of four of the original seven modules for an additional 11 months past their design goal meant that the ideal coverage was eventually achieved during the balance of the mission. Future addenda to the present catalog will be able to utilize the superior uniformity of the full mission sky exposure. The source list given here is at least 90% complete at a flux level equivalent to ~1.5 μ Jy at 5 keV for a Crab-like spectrum judging from the number versus flux curve and from known sources that do not appear in the list. The main causes for omission of sources brighter than 1.5 μ Jy are local imperfections in sky coverage or source confusion in the $1^{\circ} \times 4^{\circ}$ FOV scan modules, which serve as the principal source finders for the catalog. Thus a 5 μ Jy source might be missed if it were too close to another source brighter than 50 μ Jy. A later publication will utilize the 1°×0°5 modules to improve completeness in this respect. Allowing for these limitations, the all-sky catalog presented in this paper is the most uniform and comprehensive produced to date from a single instrument.

Section II provides a technical description of the *HEAO* A-1 instrument. It is a more comprehensive description than

508

FIG. 1.-Schematic of the A-1 instrument as placed in the HEAO 1 spacecraft

any that has appeared in previous publications and emphasizes aspects of the instrument which are important for understanding how the catalog was produced. Section III describes data analysis procedures used to extract source characteristics. Section IV introduces and describes the catalog tables. Section V is a brief discussion of source classes appearing in the catalog.

II. INSTRUMENT DESCRIPTION

a) Overview of the HEAO 1 Instrument: Principal Subassemblies

The *HEAO 1* instrument was a modular assembly of seven thin-window proportional counters sensitive from 0.25 to 25 keV. Additional principal subassemblies of the instrument were a central electronics module, two ultraviolet stellar aspect sensors, and a central gas reservoir module.

The configuration of the A-1 instrument as mounted in the *HEAO 1* spacecraft is shown in Figure 1. Six of the seven X-ray sensor modules were placed on the -Y side of the spacecraft, and the seventh on the +Y side. The Z-axis of the spacecraft pointed toward the Sun; hence, the view directions of the seven A-1 sensor modules were roughly perpendicular to the solar direction. The exact alignment of sensor view directions is specified in Table 1; the effective collecting areas of the modules are also given there.

Data were formatted within the central electronics module of the A-1 instrument prior to storage on the HEAO 1

 TABLE 1

 X-Ray Sensor View Directions and Open Areas

Sensor Module	View Direction ^a	Open Area (cm ²)
1,2,3,4	- Y	1650
5	$-Y+1/3^{\circ}Z$	1350
6	$-Y-1/3^{\circ}Z$	1350
7	+Y	1900

^aRelative to spacecraft.

spacecraft tape recorder for later transmission. Two commandable standard formats were used, one having timing resolution of 320 ms and the other having 5 ms resolution. Essentially full-sky coverage was obtained in both formats; data taken in either mode are combined in summations used to produce the catalog.

b) X-Ray Sensor Modules

Each X-ray sensor module consisted of three main parts: (a) the grid collimator assembly, with heat shield; (b) the proportional counter; and (c) electronics and gas system assemblies mounted on the back of the counter. A cross-sectional view of the counter is shown in Figure 2. The proportional counter contained three layers of anode wires spaced 2 inches apart. Each layer of wires was read out independently. Over most of the energy range, the A layer (front layer) served No. 4, 1984

FIG. 2.—Cross sectional view of the sensor module, showing heat shield, front strongback, proportional counter, control counter, and gas tank.

as the X-ray sensor, and the B and C layers (middle and back layers, respectively) provided anticoincidence protection against charged particle events. For photon energies ≥ 10 keV (high gain) or ≥ 45 keV (low gain), added sensitivity was provided by the B layer, with the other two layers in anticoincidence. Anticoincidence protection was also provided on the ends and the sides of the A layer by additional backgroundcounting anodes within the counter. (Protection against low to intermediate energy electrons was provided by magnets placed within the grid collimators.) The counter gas was a mixture of 22% methane and 78% xenon, at a nominal pressure of 2 psia (pounds inch⁻² absolute). Incoming X-rays reached the active gas volume by passing through a window of 2.5 µm Mylar film; electrical conductivity of the inward surface was provided by a film of Nichrome, ~ 45 Å thick. The window was held in place by a stainless steel mesh which, in turn, was supported against the gas pressure within the counter by a rectangular cell stainless steel honeycomb strongback (window support structure). This honeycomb provided part of the X-ray collimation as shown in Table 2.

TABLE 2

COLUMATION	ANGLE
COLLIMATION	ANGLE.

Sensor Module	Honeycomb Collimation Angles ^a	Grid Collimation Angles ^a	Resultant Collimation Angles ^a
.2,3,4	8°×4°	1°×45°	1°×4°
5,6	$8^{\circ} \times 4^{\circ}$	$1^{\circ} \times 0^{\circ}.5$	$1^{\circ} \times 0^{\circ}.5$
1	8°×8°	45°×2°	8°×2°

NOTE.—The first dimension is measured in the scan plane; the second, perpendicular to the scan plane.

^aOne-half full width.

c) Collimators

Above the honeycomb strongback, each counter had an additional multigrid collimator, which completed its field of view (FOV) as shown in Table 2. The grid collimators each consisted of a stack of etched molybdenum sheets interleaved with spacer frames. In order to prevent excessive heat loss or gain of the sensor modules while in orbit, a heat shield fabricated from 2 μ m Kimfol polycarbonate film and coated on its inner surface with 800 Å of aluminum was placed in front of each collimator. Incoming X-rays passed through this heat shield as well as the Mylar film, and the net transmission of the two layers determined the response to soft X-rays.

Prior to launch, the angular response of the collimators (grid and honeycomb in series) was estimated for each detector type by performing Monte Carlo simulations. From these simulations the net transmission at normal incidence and the relative angular response of each collimator assembly were determined. The simulations verified that the collimator response function could be factored into two components, $R_p(\theta)$ and $R_s(\phi)$, each a function of only one of the orthogonal angles measured from the two planes of symmetry of the collimators. Factorization was valid at the energies of interest, ≤ 25 keV. The symbols R_s and R_p refer to the response of the collimator in the scan direction and the direction perpendicular to the scan, respectively.

Figures 3, 4, and 5 give the responses R_s and R_p of the 1°×4° collimators, 8°×2° collimator, and 1°×0°5 collimators, respectively. The curves are least squares fits of a cubic polynomial to the values determined by the Monte Carlo simulations.

After launch, data obtained from scans through the Crab Nebula were used to determine the angular response of the four scan sensor modules taken together (sensor modules 1, 2, 3, and 4). These four sensor modules were coaligned (see Table 1). Most of their data were added together by the spacecraft electronics prior to transmission to ground. The resultant angular response is shown in Figure 6. This experimental response agrees, essentially, with that shown in Figure 3, although there are small differences arising from slight misalignments of the four scan sensor modules with respect to one another.

d) Detection Efficiency

The X-ray detection efficiency for a module is shown in Figure 7. The two portions of the figure refer to two gain modes described below. Calculation of the efficiency takes into

1984ApJS...56..507W

FIG. 8.—Sky exposure for first 6 months. The gray scale plot shows exposure (= area \times time) accumulated on each sky bin. The display is an Aitoff projection in celestial coordinates. The two ecliptic poles appear as regions of very high exposure.

1984ApJS...56..507W

electronic component in a feedback loop, adjusting the operating voltage on the detector wires continuously so as to provide a constant gas gain despite density or composition changes in the counter gas.

Two commandable high-voltage modes were used for the bulk of the data collected. One of these (designated the "AGCL" mode) utilized the gain control feedback loop so as to set the ⁵⁵Fe 5.9 keV X-ray peak at 30% of full scale. The second mode ("AGCP") kept the voltage fixed at 1500 V and was equivalent to a comparatively low gain with the 5.9 keV peak at ~ 6% of full scale. A third controlled mode (with gain higher than the AGCL mode) was available but was used only rarely, and never for data contributing to the catalog.

After processing by anticoincidence logic and discriminators, data pulses were passed to a 256 channel linear analog to digital converter (20 mV per channel, 5.1 V full scale) which digitized the height of the pulses. These signals were sent to the central electronics module for further processing, described below.

In-flight calibrations were of two types, ramp calibration, which checked analog-to-digital conversion and amplifier linearity, and active calibration with ⁵⁵Fe sources, which checked the system response to 5.9 keV photons.

f) Central Electronics and Telemetry

The central electronics (CE) module provided the electrical interfaces between the A-1 instrument and the spacecraft. This module received, processed, and formatted data from the sensor modules in preparation for storage by the spacecraft.

The X-ray pulses from each sensor module underwent pulse-height analysis (PHA) into 256 linear channels and then were presented to the CE. There the 256 channels were compressed to 16, using nonlinear sorters as shown by the energy threshold breakpoints in Table 3. One of the 16 channel sorters accumulated the data from sensor modules 1, 2, 3, and 4 taken together, these being the modules with co-aligned 1°×4° fields of view. In contrast, each of the sensor modules 5, 6, and 7 had its own 16 channel sorter. In addition, the telemetry format allowed for one further spectrum to be transmitted. This spectrum used a 40 channel nonlinear sorter analogous to the 16 channel sorters just described, and it could accept inputs from any of the modules, singly or in combination. Count accumulations from all sorters, as well as the total count from each sensor module, were processed by quasi-logarithmic scalers. The data, together with housekeeping information, were stored in an onboard tape recorder in one of two standard formats and subsequently were transmitted to the ground.

Data used in preparation of the catalog consisted either of 320 ms count accumulations from the scan module 16 channel sorter or 640 ms count accumulations from the 40 channel sorter. The latter was used when the instrument was in the 5 ms telemetry format. PHA bins from the 40 channel sorter were, for these purposes, added together so as to be identical to bins from the 16 channel sorter, so that Table 3 applies to both cases. Further details on the instrument may be found in Friedman (1979). An additional capability for timing of X-ray events with resolution as fine as a few microseconds is de-

TABLE 3
16 CHANNEL SORTER LOWER LEVEL BREAK POINTS

Sorter Channel	Linear Channel	Low Gain ^a (keV)	High Gain ^b (keV)
0	0	0 ^c	0°
1	2	0.79	0.15
2	3	1.18	0.23
3	4	1.57	0.31
4	6	2.36	0.46
5	8	3.14	0.61
6	12	4.71	0.92
7	16	6.29	1.22
8	24	9.43	1.84
9	32	12.57	2.45
10	48	18.86	3.67
11	64	25.14	4.90
12	96	37.72	7.35
13	128	50.29	9.80
14	192	75.43	14.69
15	255	100.18	19.52

^a"AGCP" gain mode, 5.9 keV in 15th lineár channel ^b"AGCL" gain mode, 5.9 keV in 77th linear channel. ^cLower limit depends upon commanded discriminator level.

scribed in Meekins *et al.* (1984); this feature is not relevant to the catalog.

g) Performance History and Cumulative Sky Exposure

During the mission, it was discovered that a reset problem existed in the module electronics which limited the determination of X-ray source spectra. When an X-ray event was recorded in layer A or B, it was found that the pulse height reported was not necessarily the pulse height produced by absorption of the X-ray photon. The pulse amplitude analyzed was the larger of the current X-ray event or the pulse height (charge) held in the electronics circuitry. If the preceding event had been an X-ray event, proper reset occurred and the charge held was zero; but if the preceding event had been a coincidence event, reset failed to occur and the charge held was the charge from the coincidence event. The number of pulses reported was a true count of the number of X-ray events, but the pulse height distributions were contaminated by the charged particle spectrum to a degree dependent upon both the X-ray rate and particle event rate. Contamination was more serious for faint sources than for bright ones.

On 1977 September 22, repetitive, short-duration noise bursts were found in data from sensor module 2 resembling continuous discharge. On the following day, the same condition appeared in the data from sensor module 1. All sensor modules were immediately turned off and vented. On 1977 September 26, sensor modules 3, 4, and 5 were turned back on at the lowest possible operating voltage, i.e., the AGCP gain mode. It was anticipated that this reduced high voltage would extend the life of the modules if high-voltage breakdown had been the cause of the noise bursts. On 1978 January 26, sensor module 4 failed in a manner similar to that of the failures of sensor modules 1 and 2 above.

The malfunctions on 1977 September 22 and 1977 September 26 resulted in decreased sky exposure in the regions being scanned on those dates, an effect largely compensated by the coverage available on the dates immediately preceding and following. In addition, the detectors were shut down for most of the time on 1978 February 10–11 and again on 1978 February 14, in order to minimize risks to the hardware associated with intense solar activity that was then occurring. The correlation of these dates of reduced coverage with regions on the sky may be made by a procedure described in § III.

Because of the extension of the *HEAO 1* mission beyond its planned 6 months, the X-ray sky survey eventually exceeded the original goals both in terms of total exposure (area \times time) and in terms of the total time span for which each sky element was monitored. Sky exposure achieved in the first six months is mapped in Figure 8, in celestial coordinates.

III. DETERMINATION OF X-RAY SOURCE CHARACTERISTICS

a) Overview of the Catalog Processing

In order to determine source positions and intensities for the catalog, the detector readouts (in which count accumulations are given as a function of time) must first be combined with the aspect solution (provided by NASA and accurate to $\pm 0^{\circ}01$) in a data summation scheme. Data are summed in bins according to where they fall in the roll of the spacecraft. These summations then are fitted using nonlinear least squares fitting routines. HEAO 1 spacecraft motion was controlled to make this technique comparatively simple: the satellite spin axis was kept pointed toward the Sun and held at one position for 12 hr, after which it was advanced ~ 0.5. This means that scan planes are all normal to the ecliptic plane (i.e., follow meridians of constant ecliptic longitude), intersecting at the ecliptic poles (see Fig. 9 for this geometry). It also means that, over most of the sky, a particular source appears at almost exactly the same phase angle in the scan on each day that it is seen. Lines of position determined on successive days are therefore nearly parallel. The method of reducing source error regions by means of intersecting lines of positions (used, e.g., in the *Uhuru* catalogs) is ineffective, and other techniques must be used to locate a source. Two such techniques are used, one based on the $1^{\circ} \times 4^{\circ}$ modules alone and the other utilizing the $1^{\circ} \times 0^{\circ}5$ modules in conjunction with the $1^{\circ} \times 4^{\circ}$ modules. The stages of source localization will now be described in detail.

b) Data Summations

The first phase of data reduction is a program that unpacks data and moves them to disk storage, simultaneously accumulating a time-averaged value for the direction of the Z-axis (spin axis) for the 12 hr interval. The coordinate system used for data summation is defined as having its pole in the direction of this same spin axis and its zero of longitude at the northward crossing of the ecliptic plane. This is designated the "scan" coordinate system, with coordinates scan longitude and scan latitude. The angular distance along the scan (i.e., the phase of the spacecraft roll) is scan longitude. The system is redefined for each advance of the spin axis. Deviations of actual spacecraft motion to either side of the nominal scan plane defined by the time-averaged Z-axis (in the scan latitude direction) are controlled so as not to exceed 0°.5.

The second phase is a program that reads data back from the disk and bins them according to scan longitude. Two separate arrays of bins are maintained: one for counts as a function of scan longitude, and the other for exposure (equal to detector collecting aperture multiplied by dwell time in the angular range covered by the bin), also as a function of scan longitude. Both quantities are binned to 0°1, i.e., there are 3600 bins in the complete roll. Observed counts, which are read out every 320 ms (during which time the scan nominally advances 0°06), are fractionally rebinned according to the portion of time spent in each 0°1 scan longitude bin. Data are combined into five PHA bins, initially, but for source-fitting purposes, several of these PHA bins are summed together. The final product resulting from the second phase is a number of

FIG. 9.— HEAO 1 scan geometry. All scans run normal to the ecliptic (because the spin axis follows the Sun) and intersect at the ecliptic poles. Arrows indicate how the scan plane advances daily. The plot is in galactic coordinates.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

FIG. 10.—Scan summation. This shows enhancement of signal-to-noise ratio in a selected group of PHA channels as scans are summed. (The vertical scale is *fixed* in counts $cm^{-2} s^{-1}$; hence sources stay at fixed height while noise level decreases.)

NEW SOURCE мки 501 SUM OF FOUR DAYS'

FIG. 11.-1 day scan summations. Each day represents an independent summation. These sums and the 4 day sums are used for first stage fitting, as described in § II.

$\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

FIG. 12.—4 day sum segment, with superposition of first-stage fits is shown at the bottom. The upper portion of the figure shows predicted source positions and intensities based on literature published prior to *HEAO 1*.

sets of scans suitable for summation, each set covering ~ 12 hr, the interval over which the spacecraft spin axis is fixed. Scans are then added in register with one another to enhance the signal-to-noise ratio; the counts and exposure arrays are added separately. (The enhancement obtained in this way is illustrated in Fig. 10, which displays fluxes, or counts divided by exposure). Scans are summed first over 12 hr intervals, and the 12 hr summations are further summed so as to achieve greater sensitivity. Sets of 1, 2, and 4 day summations are produced for the full sky (see Fig. 11). Further summation is possible, but proves useful only at very high ecliptic latitudes. Fine collimator module data as well as those from the scan modules are summed in this manner.

c) Source Localization

These data summations are now suitable for source fitting. First, one fits each of the 4 day summations with a "source search" routine that makes no presumptions as to where it will encounter significant excess flux. The first pass establishes a library of potential source locations in the scan longitude direction using all available 4 day summations. Figure 12 shows an example. (The 4 day summations are redundant, i.e., the first one contains days 1-4, the second one contains days 2-5, and so on, but fits to them are used only for source discovery, not for error box determination.) A second pass using a similar routine is now made on the 1 day sums, which are independent of one another. On this pass, the routine has access to the library of potential locations established on the

first pass; if no excess flux is found at a location, a fit is nevertheless forced and an upper limit is obtained. The redundant fitting of 4 day summations means that the library of potential locations is highly complete. A source may occasionally be missed on 1 day, but it is rare for it not to be in the library of potential locations.

The fitting routine allows two free parameters for each source, intensity and position. It is assumed that the count in the *i*th bin of the data summation can be represented as

$$C_i = B_i + I_j R_s (\rho_i - \phi_j), \qquad (1)$$

where C_i is the count in the *i*th bin, I_j is the intensity of the *j*th source and ϕ_j is its position, and R_s is collimator response in the scan direction (see § II) and is a symmetrical function of the difference between ϕ_j and the bin position, ρ_i . The quantity B_i is the quadratic fit to background, valid locally over 20° of scan longitude.

A nonlinear least-squares fit of the polynomial collimator response function (R_s) to the data provides source intensities and positions as error ellipses in the two-dimensional parameter space. These may be conceptualized as those ellipses that best approximate the 1 σ confidence contour in χ^2 . Because errors are characterized in this way, it is possible to propagate them formally through further fitting in order to determine error boxes. This is done in two ways. One method uses only the fits to the scan module data, while the other also employs fits to the fine collimator modules. In the routines just described, fits to fine collimator summations are forced at all scan module fit positions.

In the fitting scheme based on the scan modules alone, a second-stage least-squares fit is used to establish the source position in the direction perpendicular to the scan, i.e., scan latitude. The second fit takes as inputs only the fits obtained in the first stage; data summations are not presented directly to the second-stage fitting routine. (Hereafter, first-stage fits are called "sightings.") The second-stage fit routine first seeks regions where there are several sightings that may correspond to a single source. Since the collimator extends 8° in scan latitude (full width zero response), and since the scan plane advances 1° each day, a source on the ecliptic plane remains visible for ~ 8 days, yielding up to eight sightings. Sources at higher ecliptic latitudes remain visible for longer periods and yield more sightings.

The second-stage fit determines three parameters characterizing the source, two for position and one for intensity. The position error box is a rectangle that contains the 95% confidence contour interval obtained when the error ellipsoid is projected onto the two-dimensional position subspace of the parameter space. The method assumes that the source maintains constant brightness over the interval of observation. An error box of this kind is referred to as a "constant intensity error box," and it is obtained by fitting the daily intensities to the collimator response function, R_p , in the direction perpendicular to the scan. This is done by a least squares fit in which the source intensity and position are varied, intensity and scan longitude for each sighting are calculated, and χ^2 is minimized (see Fig. 13).

The other second-stage fitting technique utilizes both the scan $(1^{\circ} \times 4^{\circ})$ and fine mapping $(1^{\circ} \times 0^{\circ})$ modules, and yields a type of error box, henceforth referred to as a "fine collimator error box," that is in many ways superior to the constant intensity error box. Each scan module detection of a source by the first-stage fit routine establishes a line of position on the sky whose width (in the scan longitude direction) is defined by 95% confidence contours of the fit and whose length (in the scan latitude direction) is the 8° full width at zero response of the collimator. The simultaneous fits to the fine collimator module summations (forced in the first-stage fitting) are now used to truncate one of these lines of position so as to decrease its length. Since the fine collimator FOV lies entirely within the central portion of the larger FOV of the scan modules (see Tables 1 and 2), a detection in the former is made only when the source is near peak response in the latter. On adjacent days, the source may be detected in the scan modules but not in the fine collimator modules, since it lies outside their FOV. The strongest positive detection in the fine collimator from a group of sightings can thus be used to constrain the source position to that part of the scan module line of position falling within the fine field of view. Allowance of an additional ± 0.5 in scan latitude is made, which is the tolerance in the spacecraft attitude control for perturbations of the spin axis. To summarize, the error region reported in the catalog for a fine collimator error box is the scan module 95% confidence line of position truncated at points $\pm 1^{\circ}$ from the center of the fine collimator FOV. The strongest detection in the fine collimator is used for this purpose. The intensity of the source reported

DAY (θ , Scan Latitude)

FIG. 13.—Visualization of constant intensity second-stage fit technique. *Top*: Representation of variation of source intensity over successive days (compare actual data in Fig. 10.) *Bottom*: By fitting $R_p(\theta)$ to first-stage fits and scan latitudes, source localization in the *r*-direction is obtained.

in this type of error box is that detected by the scan modules on the day when the source is also seen in the fine collimator modules.

Fine collimator error boxes require no assumptions about source constancy and thus are used in preference to constant intensity boxes whenever source variability is suspected. The fine collimator module detection is a second, statistically independent, detection of the source. Use of it minimizes the risk that the position is affected by source confusion, since the fine collimator modules are confusion free well below the catalog limit. Fine collimator error boxes are not available in every case because some sources are too faint to be seen with high statistical significance by the fine collimator modules or because fine mapping module coverage is incomplete near the date when the source transits in the FOV.

A third type of fit is used in the catalog for certain very bright sources with well-determined positions. These sources are bright enough that positions obtained for them are sensitive to small systematic effects, which can be thought of as misalignments of the modules with respect to the spacecraft coordinate system. The fit shown in the catalog in these cases is performed by fixing the source at its known position and varying only its intensity to minimize χ^2 . Thus, the source is shown in the catalog at its known position with an error of 0.0 deg², and with an intensity which is its best fit value during the time when it was in view.

The known positions of these same sources were, however, first used as standards with which to determine and correct for

516

No. 4, 1984

.507W

1984ApJS...56..

the collimator misalignments. The best-fit misalignment corrections were then retroactively applied to all fits used in the catalog, including those for the standard sources. The misalignments detected can be represented as a rotation about the spacecraft spin (Z) axis (which exhibits itself as a slight offset of the measured source position in the scan longitude direction in all detections) and another, smaller, rotation about the module look direction (-Y axis) (which manifests itself as an additional scan longitude offset that varies in a regular manner from day to day, depending on the scan latitude of the source). Any misalignment with respect to the remaining axis proved undetectable. The misalignments could be measured with any single strong source such as Sco X-1 or the Crab Nebula, but the use of a larger ensemble (~ 30) of standard sources permitted a search for long-term variations in the corrections and other systematic effects. No such variations were identified in this search. Correction for misalignments is accomplished by modifying the scan longitude of the sighting when it is used by second-stage fitting routines. The increase in the error box width in the scan longitude direction as source brightness decreases means that these corrections become of diminishing importance for faint sources, i.e., statistical errors become more important than systematic ones.

In all of the second-stage fitting routines, provision is made for elimination of sightings which are judged to be affected by the confusion with nearby sources. In the great majority of cases there is no difficulty obtaining enough unconfused sightings to permit determination of the catalog entry, but it sometimes happens that two sources are so confused that one or both of them fail to appear. We estimate that, over most of the sky, this effect accounts for less than 5% incompleteness in the catalog down to a level of 6×10^{-3} counts cm⁻² s⁻¹. More severe incompleteness is likely in the galactic bulge, but it is difficult to quantify. Over most of the sky, greater incompleteness results from imperfections in sky exposure than from confusion. In future refinements to the catalog, greater use will be made of the data from the fine collimator modules and from the later parts of the mission in order to reduce both sources of incompleteness.

Because of the regular HEAO 1 scan pattern, there is a simple correspondence between the ecliptic longitude of the source and the date when it is in view, with transit occurring when the ecliptic longitude of the Sun differs from that of the source by 90°. Therefore, each catalog entry has an epoch good to about ± 4 days except at the highest ecliptic latitudes, and the full range of these epochs is 6 months, from 1977 August 15 to 1978 February 15. The epoch is calculable as just described from the data in Table 4. The display of the catalog (Fig. 14 [Pl. 20]) is thus a representative near-instantaneous sample of the X-ray sky. Since all intensities are best fits for their epochs rather than extreme values, some bright sources from our Galaxy stand out somewhat less strongly than in the corresponding fourth Uhuru catalog display (Fig. 4 of Forman et al. 1978), where maximum values were used instead. A noteworthy instance of this effect is the entry for Hercules X-1, which made a transition from its "off" to its "on" state while in the field of view, although it was detectable in both states. It thus appears as a substantially lower flux in the HEAO A-1 catalog than in the Uhuru catalog.

d) Acceptance Criteria

Acceptance criteria for the catalog have been adopted to ensure not only the statistical significance of the excess flux in a region but also to exclude as fully as possible the effects of source confusion and transient effects of either instrumental or celestial origin. Accordingly, the basic requirement is that a source must have at least three independent detections at 3 σ significance in either the scan modules or the modules with fine collimators. Furthermore, it is required that the flux measurements in the fine collimator modules be consistent with the cataloged flux, i.e., either a direct confirmation or a lack of coverage at the required date. For sources fainter than ~ 0.002 counts $cm^{-2} s^{-1}$ only marginal detections are expected in the fine collimator modules, and this condition does not apply. The requirement for three independent detections in 1-day summations necessarily excludes transient sources whose duration is less than a day.

IV. THE CATALOG

a) Positions and Intensities

The positions and intensities for 842 sources, as derived by methods outlined in the preceding section, are given in Table 4. Table 4 further provides cross references to other X-ray catalogs and to non-X-ray counterparts. These have either been established or suggested by earlier work or are proposed here on the basis of coincidence with the *HEAO* A-1 position. The latter identifications have been found by searching other comprehensive catalogs, those shown in Table 5. For many of the entries in Table 4, substantial additional information concerning the source exists in the published literature. Table 6 complements Table 4 with brief summaries of current understanding in these cases. The remainder of this section is a detailed description of Tables 4 and 6.

In Table 4 the first column "CATALOG ENTRY," gives the 1H catalog designation. The name is "1H" followed by right ascension in hours and minutes, then followed by declination in degrees and tenths of a degree. The second column, "POSITION RA, DEC" denotes the (1950.0) right ascension and declination for the center of the error box. The upper two entries are right ascension and declination in degrees and decimal fractions of a degree. The lower two are the same values expressed in hours, minutes, and seconds for right ascension and degrees, minutes, and seconds for declination. The third column, "GAL, ECL," gives the center of the error box in galactic longitude and latitude (upper pair) and ecliptic longitude and latitude (lower pair), for 1950.0. The next four columns, "ERROR BOX, RA, DEC," specify the four corners of the 95% confidence error box in right ascension and declination. The notation is the same as that used to specify the center (as in the second column). The eighth column, "AREA," is the solid angle enclosed by the error box in square degrees. The ninth column, "FLUX, ERROR," gives the apparent intensity of the source in counts $cm^{-2} s^{-1}$ for 0.5–25 keV and its error as determined by the methods of § III. The final columns, "IDENTIFICATION," give identification of the source with other cataloged objects.

Fro. 14.—Display, in galactic coordinates, of sources listed in § III. The dot radius represents source intensity, with radius of the dot proportional to the logarithm of the intensity shown in the catalog (§ III). Wood *et al.* (see page 517)

1984ApJS...56..507W

WOOD ET AL.

	TABLE 5		
- T.T		D	r

CATALOGS USED IN SEARCHING ERROR BOXES
--

Catalog	Source
X-Ra	y Catalogs
Fourth Uhuru catalog First Ariel 5 X-ray catalog Second Ariel 5 X-ray catalog HEAO A-2 hard X-ray catalog CGS catalog 1M catalog 2S catalogs	Forman et al. 1978 Seward et al. 1976 Cooke et al. 1976 Marshall et al. 1979 Bradt, Doxsey, and Jernigan 1979 Markert et al. 1979 Bradt 1978; Dower et al. 1978; Apparao et al. 1978 Jernigan et al. 1978; Doxsey et al. 1977a, b; Bradt et al. 1977; Jernigan et al. 1977
Radio, Infrared, an	d Gamma-Ray Catalogs
3C radio catalog Radio sources with optical identifications IR sources (2 μm) AFGL IR survey COS B γ-ray sources	Bennett 1962 Veron and Veron 1974 Neugebauer and Leighton 1969 Price and Walker 1976 Masnou <i>et al.</i> 1977
Galactic/	Stellar Catalogs
Supernova search	Kowal <i>et al.</i> 1974 Ilovaisky and Lequeux 1972 Clark and Caswell 1976 Arp 1965 Wackerling 1970 Kukarkin <i>et al.</i> 1970 Luyten 1970 Gliese 1969 Pettersen 1976 Dreyer 1895, 1908
Extragal	actic Catalogs
Bright galaxies	de Vaucouleurs 1964 Fairall 1970 Arp 1966 Markarian 1974 Abell 1958 Klemola <i>et al.</i> 1969: Duus and Newell 1977

Revised NGC catalog Sulentic and Tiffi 1973

BL Lac objects

BL Lac objects Stein, O'Dell, and Strittmatter 1976

Quasars..... Burbidge, Crowne, and Smith 1977

Weiler and Johnston 1980

An intensity of 10^{-3} counts cm⁻² s⁻¹ in the ninth column, which is the limiting flux in the catalog, corresponds to 3.3×10^{-12} ergs cm⁻² s⁻¹ in 2-6 keV or, 4.78×10^{-12} ergs cm⁻² s⁻¹ in 2-10 keV, both for a Crab-like spectrum. This means that 10^{-3} counts cm⁻² s⁻¹ in *HEAO* A-1 is equivalent to 0.20 UFU or to 0.22 μ Jy at 5.2 keV, again for a Crab-like spectrum. These calibration factors have been established by fitting the Crab Nebula at various elevations in the collimator, correcting the measured fluxes for instrumental dead time and collimator response, and comparing the mean flux so derived with the known spectrum of the Crab Nebula folded through instrumental responses. The conversion has also been checked on a sample of bright clusters of galaxies comparing the flux shown in the table in the ninth column with that given in the fourth *Uhuru* catalog (Forman *et al.* 1978).

The cross reference and identifications shown in Table 4 have been selected according to certain criteria. For X-ray catalogs (such as the 4U, 2A, and 1M catalogs) where error boxes up to several square degrees are sometimes reported, the cross reference is given whenever the other error box intersects the HEAO A-1 error box. It will also be shown in certain cases where boxes do not strictly intersect but are sufficiently close to suggest a possible relationship. The criterion used here is that the separation between box centers must be less than the sum of the two largest dimensions. Few of the X-ray cross references are of this nonintersecting type. This procedure is conservative in that it reports the other catalog entry if it is remotely plausible. The designation "XRS" from the catalog of Amnuel Guseinov, and Rakhamimov (1979), which summarizes much of the older X-ray literature, also appears in some cases.

TABLE 4 X-Ray Source Positions and Intensities

ATALOG	POSITI	NO		E	ROR BOX			FLUX		IDENTIFICATION	S
VTRV	ΥA	GAL	RA	RA	RA	RA	AREA	ERROR	×	-RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
03+200	.80	108.63	359.78	1.72	1.83	359.90	.520	.0028	4U 0005+20	XRS00058+200	Mkn 335
	20.01	-41.31	19.71	20.55	20.31	19.47 73 50 35		9000			
	20 00 43	17.98	19 42 31	20 32 45	20 18 33	19 28 23					(R)
07+731	1.91	119.97	359.79	3.75	4.22	.24	.324	.0054	4U 0000+72	XRS00000+726	CTA 1
	73.17	10.81	72.39	74.03	73.93	72.30		.000			
	00 07 37	53.40	23 59 10	00 15 00	00 16 52	00 00 57					ļ
	73 10 11	60.96	72 23 08	74 01 39	73 55 49	72 17 49					(R)
08-745	2.21	306.60	11.	3.25	4.14	1.06	.479	.0049			STR0000-751?
	-74.59	-42.53	-75.28	-73.76	-73.88	-75.42		.0010			
	00 08 51	305.36	00 00 27 75 16 47	00 13 01	00 16 32	00 04 14 -75 24 58					
10.515	77 66 21-	31715	UC 1	3 81	4 01	1 30	PCP	0036			CTD.012_5159
CIC-01	20.2	-64 80	-52.02	-50.86	-51.03	-52 19	47 4 .	0000			; c1c-7100 11c
	00 10 29	335.33	00 04 47	00 15 15	00 16 03	00 05 34					_
	-51 31 45	-46.85	-52 00 56	-50 51 20	-51 01 33	-52 11 25					(R)
11-239	2.90	53.30	1.68	3.97	4.11	1.81	.640	.0049			A14?
	-23.93	-80.89	-24.30	-23.30	-23.55	-24.55		6000			
	00 11 35	352.57	00 06 43	00 15 53	00 16 25	00 07 14					
	-23 55 46	-22.99	-24 17 52	-23 18 12	-23 33 06	-24 32 53					(R)
14-668	3.74	308.23	1.79	5.09	5.59	2.31	.532	.0019			
	-66.81	-50.24	-67.47	-65.96	-66.12	-67.65		.000			
	00 14 58	318.95	00 01 09	00 20 20	00 22 22	00 09 13					
	-66 48 35	-58.60	-67 28 26	-65 57 21	-66 07 22	-67 39 06					
14+111	3.73	109.77	2.73	4.58	4.72	2.87	.682	.0062			III Zw 2
	11.17	-50.55	10.93	11.73	11.41	10.61		.0015			
	00 14 54	8.76	00 10 55 44	00 18 19	00 18 53	00 11 28					(R)
16-257	4.16	43.70	2.92	5.24	5.40	3.07	718	0045			A15
	-25.79	-82.59	-26.18	-25.12	-25.39	-26.45		6000			
	00 16 38	352.82	00 11 39	00 20 58	00 21 35	00 12 15					
	-25 47 30	-25.16	-26 10 43	-25 07 21	-25 23 40	-26 27 11					(R)
17+073	4.37	109.48	3.39	5.24	5.34	3.49	.512	.0034			
	7.36	-54.41	7.08	7.88	7.64	6.85		.000			
•	00 17 28 07 21 52	6.93 5.02	00 13 33 07 04 57	00 20 5/ 07 52 45	00 21 22 00 21 22 00 07 38 39	00 13 58 06 50 52					
18+280	4.54	114.78	3.43	5.47	5.65	3.61	.740	.0041			A21
	28.05	-34.06	27.78	28.64	28.31	27.44		.0013			
	00 18 08	15.93	00 13 42	00 21 53	00 22 36	00 14 26					
	28 02 49	23.80	27 46 32	28 38 38	28 18 33	27 26 37					(R)

ted
tim
Con
4
Ē
[AB

CATALOG	POSIT	ION		E	ROR BOX			FLUX	Ĩ	ENTIFICATION	S
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R/	\Y	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0018+833	4.65	122.06	7.14	3.89	2.52	5.55	.212	.0028			
	83.31	20.77	83.84	82.72	82.77	83.90		900 .			
	00 18 35	73.97	00 28 33	00 15 33	00 10 04	00 22 12					
	04 07 00	CI.CO	C7 0C C0	C7 C4 70	17 04 70		ş	1001	111 AMA + 42	7	T.ucho CND
1H0022+638	5.51	120.04	5.38	19.6	0.0 0 0	2.4.2	.00.	1001	40 0022 + 03	Cepn AK-1	TYCE OUDE
	63.86	1.42	63.83	63.92	06.50	18.60		4100.	XKSUU224+038		
	00 22 02	42.09	00 21 31	00 22 20	62 52 54	00 21 39 63 48 20					(B)
	C+ IC C0	07.70	CC 4+ CD	10 66 60		67 94 CD		0000	11 000/ 00	100 00000 IN	(VI)
1H0024-296	6.17	8.54	5.08	7.13	7.26	5.21	.500	.0029	4U 0026-29	XKS00268-291	A33?
	-29.67	-84.20	-30.01	-29.10	-29.32	-30.23		9000			
	00 24 41	352.66	00 20 18	00 28 30	00 29 02	00 20 49 20 13 54					(8)
	11 04 67-	-29.43	-30 W 29	cn on 67-	17 61 67-	+C CT AC-					N)
1H0025+588	6.35	119.95	4.75	7.82	8.00	4.94	.312	.0071	A 0026+59	4U 0027+59	
	58.88	-3.58	58.32	59.54	59.42	58.20		.0012	XRS00262+593		
	00 25 23	37.42	00 19 00	00 31 15	00 31 59	00 19 45					
	58 52 35	49.70	58 19 00	59 32 28	59 24 56	58 11 44					(R)
1H0031-197	7.78	93.94	6.75	8.67	8.81	6.88	.576	.0036			
	-19.74	-81.31	-20.03	-19.18	-19.44	-20.29		6000			
	00 31 07	358.93	00 27 00	00 34 41	00 35 13	00 27 30					
	-19 44 14	-21.13	-20 01 36	-19 10 55	-19 26 32	-20 17 18					
1H0039+408	96.6	121.14	8.78	11.12	11.17	8.83	.168	.0085	2A 0039+411	4U 0037+39	M31
	40.89	-21.68	40.45	41.39	41.31	40.38		9000			
	00 39 51	27.07	00 35 06	00 44 27	00 44 39	00 35 19					
	40 53 21	33.26	40 27 06	41 23 22	41 18 53	40 22 40					(R)
1H0042-093	10.50	117.45	9.56	11.41	11.45	9.59	.184	<i>L600</i> .	2A 0039-096	4U 0037-10	A85
	-9.34	-71.87	-9.70	-8.90	-8.98	-9.79		.0007			
	00 42 00	5.91	00 38 13	00 45 38	00 45 47	00 38 22					
	-09 20 36	-12.74	-09 42 04	-08 53 56	-08 58 59	-09 47 07					(R)
1H0043+294	10.82	121.51	9.39	12.10	12.27	9.56	.926	.0038			
	29.41	-33.17	29.02	30.11	29.78	28.70		.0010			
	00 43 17	21.98	00 37 32	00 48 24	00 49 04	00 38 14					
	29 24 34	22.67	29 01 17	30 06 25	29 46 55	28 41 59					
1H0048+250	12.24	122.99	11.50	12.89	12.99	11.59	.296	.0079			PG 0052+251?
	25.02	-37.58	24.84	25.40	25.21	24.64		.0014			
	00 48 58	21.26	00 45 59	00 51 34	00 51 57	00 46 22					
	25 01 28	18.16	24 50 18	25 24 11	25 12 26	24 38 36					(R)
1H0052-015	13.22	125.22	12.70	13.67	13.73	12.76	.164	.0083	2A 0054-015	4U 0050-01	A119
	-1.60	-64.18	-1./3	-1.32	-1.4/	-1.8/		2000.	CIU-44CUUCAA		
	00 52 51	11.53	00 50 48	00 54 40	00 54 55	00 51 02					(R)
=		222		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1 1 4 1 1 1 1 1 1	-				~~~

S	NON X-RAY	Gamma Cas			(R)				(R)					A131?			(R)	STR0056-670								A140			(R)	A133			(R)	STR0103-473?						
DENTIFICATION	RAY	4U 0054+60	XRS00537+604			SMC X-3	XRS00503-727											XRS00520-687												4U 0103-21										
	-X	2S 0053+604	1M 0053+60			2S 0050-727	CGS0050-727											4U 0052-68								2A 0102-242				2A 0102-222	_									
FLUX	ERROR	.0173	.0012			.0144	.0006			.0030	.0006			.0029	.0006			.0036	.0007			.0036	6000.			.0021	.0004			.0037	.0006			.0050	.0008			.0038	9000	
	AREA	.160				.108	_			.582				.504				.462				.832				.500				.396				.496				.384		
	RA DEC	11.69	59.86	00 46 45	59 51 43	12.10	-73.82	00 48 23	-73 49 25	16.19	76.20	01 04 46	76 12 00	13.24	-15.53	00 52 58	-15 31 39	13.34	-67.89	00 53 21	-67 53 14	14.03	-44.77	00 56 06	-44 46 25	14.50	-24.73	00 57 59	-24 44 05	14.42	-22.66	00 57 41	-22 39 47	14.38	-47.60	00 57 31	-47 35 54	14.59	-40.66	00 58 22
ROR BOX	RA DEC	14.97	61.04	00 59 52	61 02 19	14.98	-72.01	00 59 55	-72 00 39	10.92	74.60	00 43 40	74 35 56	15.13	-14.71	01 00 32	-14 42 33	16.04	-66.37	01 04 10	-66 22 00	16.89	-43.48	01 07 34	-43 28 30	16.47	-23.86	01 05 53	-23 51 50	16.38	-21.81	01 05 30	-21 48 23	16.85	-46.40	01 07 24	-46 24 07	16.83	-39.62	01 07 19 -39 37 26
E	RA DEC	14.88	61.10	00 59 30	61 06 16	14.82	-71.99	00 59 16	-71 59 21	11.75	74.43	00 46 59	74 25 41	15.03	-14.48	01 00 06	-14 28 47	15.53	-66.23	01 02 06	-66 13 42	16.63	-43.19	01 06 32	-43 11 19	16.35	-23.64	01 05 24	-23 38 22	16.28	-21.63	01 05 08	-21 37 41	16.65	-46.21	01 06 35	-46 12 30	16.70	-39.46	01 06 47
	RA DEC	11.59	59.93	00 46 22	59 55 31	11.93	-73.80	00 47 42	-73 47 58	17.05	76.01	01 08 12	76 00 37	13.14	-15.30	00 52 33	-15 17 50	12.81	-67.74	00 51 13	-67 44 23	13.78	-44.48	00 55 06	-44 28 52	14.38	-24.51	00 57 31	-24 30 32	14.33	-22.48	00 57 20	-22 29 01	14.18	-47.40	00 56 42	-47 24 00	14.47	-40.50	00 57 51 -40 29 42
ION	GAL ECL	123.49	-2.10	43.18	48.90	302.47	-44.48	312.01	-64.73	123.41	12.73	60.82	59.70	131.44	-77.48	6.91	-19.35	301.64	-50.32	323.71	-62.08	295.26	-73.22	351.67	-45.47	165.43	-85.70	3.88	-28.20	151.92	-84.04	4.80	-26.33	296.34	-70.32	349.43	-47.97	291.32	-77.02	354.83 -42 27
POSIT	RA DEC	13.25	60.49	00 53 00	60 29 34	13.53	-72.91	.00 54 07	-72 54 39	13.84	75.32	00 55 21	75 19 29	14.14	-15.01	00 56 33	-15 00 19	14.47	-67.06	00 57 53	-67 03 41	15.35	-43.99	01 01 23	-43 59 19	15.43	-24.19	01 01 43	-24 11 24	15.36	-22.15	01 01 25	-22 08 53	15.53	-46.91	01 02 06	-46 54 32	15.66	-40.07	01 02 37
CATALOG	ENTRY	1H0053+604				1H0054-729				1H0055+753				1H0056-150				1H0057-670				1H0101-439				1H0101-241				1H0101-221				1H0102-469				1H0102-400		

~
g
3
Ŀ.
11
ō.
\circ
1
ব
ш
Ц
B
≺

ĩ

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

	NON X-RAY	A147? IC16123	10101	(R)					3C31 A156?		(R)	A146								A175?				A159?		į	(R)								(R)			
ENTIFICATIONS	AY																															CGS0115+634						
[Q]	X-R.								2A 0122+338							4U 0134-11								H 0111-149								4U 0115+63	XRS01152+634					
FLUX	ERROR	.0032	1000.		.0103	.001		2000	.0055 0007			.0032	.0007			.0044	.0006			.0024	9000.			.0061	.000			.0032	.0012			.0312	.0018			.0036	.0005	
	AREA	.536			.142			000	.280			.484				.332				.628	-			.292				1.961				.112				.372		
	RA DEC	14.78	00 59 07	01 16 19	15.55	-76.74	01 02 12	-/0 44 20	31 94	01 02 41	31 56 29	15.98	-11.88	01 03 55	-11 52 41	16.76	-13.64	01 07 01	-13 38 14	17.30	13.57	01 09 11	13 34 25	17.53	-15.35	01 10 06	-15 20 50	15.80	-52.48	01 03 11	-52 29 01	17.24	62.94	01 08 57	62 56 26	19.13	-31.37	01 16 31 -31 22 07
RROR BOX	RA DEC	16.63	01 06 31	02 02 26	16.58	-75.89	01 06 20	61 6C C/-	32 77	01 11 10	32 46 14	17.85	-11.08	01 11 24	-11 04 51	18.64	-12.84	01 14 32	-12 50 06	19.20	14.33	01 16 48	14 19 59	19.42	-14.54	01 17 41	-14 32 20	22.03	-49.34	01 28 06	-49 20 27	20.89	64.11	01 23 33	64 06 18	21.20	-30.44	01 24 47
E	RA DEC	16.53	01 06 06	02 17 17	15.95	-75.84	01 03 48	05 NC C/-	37.76	01 11 02	32 53 55	17.75	-10.86	01 11 00	-10 51 33	18.57	-12.68	01 14 16	-12 40 59	19.08	14.62	01 16 19	14 37 26	19.36	-14.41	01 17 26	-14 24 20	21.64	-49.05	01 26 33	-49 02 46	20.82	64.15	01 23 16	64 09 05	21.10	-30.28	01 24 25 -30 16 48
	RA DEC	14.68	00 58 43	01 31 10	14.89	-76.69	00 59 32	-/0 41 40	15.60	01 02 25	32 04 06	15.88	-11.66	01 03 32	-11 39 20	16.69	-13.49	01 06 45	-13 29 06	17.17	13.86	01 08 41	13 51 48	17.47	-15.21	01 09 52	-15 12 49	15.42	-52.17	01 01 41	-52 10 07	17.17	62.99	01 08 40	62 59 06	19.03	-31.20	01 16 08 -31 12 10
NO	GAL ECL	129.95	15.11	-4.52	301.90	-41.08	304.85	-00.48	127.35	28.34	23.29	139.04	-73.39	11.01	-17.10	143.64	-74.89	11.01	-19.05	131.64	-48.10	22.13	5.92	148.97	-76.22	10.11	-20.93	292.72	-66.07	348.54	-52.38	126.00	1.11	49.28	49.80	241.38	-82.32	4.76 -35.99
POSIT	RA DEC	15.66	01 02 37	01 46 49	15.76	-76.29	01 03 02	-/0 1/ 31	16.71 32 42	01 06 51	32 25 28	16.87	-11.37	01 07 28	-11 22 12	17.66	-13.16	01 10 39	-13 09 42	18.19	14.10	01 12 44	14 06 01	18.45	-14.88	01 13 47	-14 52 42	18.83	-50.80	01 15 18	-50 48 05	18.99	63.56	01 15 58	63 33 25	20.12	-30.83	01 20 29 -30 49 41
CATALOG	ENTRY	1H0102+017			1H0103-762				1H0106+324			1H0107-113				1H0110-131				1H0112+141				1H0113-148				1H0115-508				1H0115+635				1H0120-308		

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOI		E	RROR BOX			FLUX	IDE	UTIFICATIO	SN
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RA	Y	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0121-353	20.26	264.45	19.47	20.95	21.05	19.57	.242	.0072	2A 0120-353	4U 0115-36	NGC526A
	-35.39	-79.49	-35.64	-34.98	-35.13	-35.79		.0010	XRS01209-353		
	01 21 03	2.14	01 17 52	01 23 47	01 24 12	01 18 16					į
	01 52 65-	-40.06	41 85 66-	-34 38 45	66 /0 66-	-35 4/ 33					(R)
1H0122-590	20.50	295.03	19.41	21.32	21.57	19.66	.247	.0071	2A 0120-591		Fairall 9
	-59.05	-57.84	-59.51	-58.46	-58.58	-59.63		.0008			
	01 22 01	339.94	01 17 39	01 25 17	01 26 15	01 18 37					
	-59 02 54	-59.15	-59 30 27	-58 27 51	-58 34 48	-59 37 38					(R)
1H0122-281	20.70	220.64	19.64	21.67	21.74	19.72	.304	.0048			
	-28.14	-82.49	-28.52	-27.62	-27.76	-28.66		9000.			
	01 22 46	6.79	01 18 33	01 26 39	01 26 58	01 18 51					
	-28 08 35	-33.83	-28 31 09	-27 37 25	-27 45 32	-28 39 20					
1H0123+075	20.81	137.57	19.87	21.74	21.76	19.89	.128	.0127	H0123+075		HD8357
	7.56	-54.07	7.22	7.96	7.90	7.16		9000.			
	01 23 15	22.06	01 19 27	01 26 57	01 27 03	01 19 33					
	07 33 32	-1.12	07 12 56	07 57 35	07 54 01	07 09 22		_			(R)
1H0128-139	22.15	159.50	21.15	23.05	23.14	21.25	.468	.0035			A209
	-13.98	-73.71	-14.27	-13.47	-13.69	-14.48		.0007		_	
	01 28 35	14.92	01 24 37	01 32 11	01 32 34	01 24 59					
	-13 58 43	-21.54	-14 15 55	-13 28 24	-13 41 16	-14 28 50					(R)
1H0129+303	22.49	133.35	21.37	23.51	23.62	21.48	.496	.0032			M33
	30.40	-31.38	30.12	30.90	30.67	29.89		9000.			
	01 29 57	32.31	01 25 28	01 34 01	01 34 27	01 25 55					
	30 23 54	19.45	30 07 04	30 53 54	30 40 09	29 53 25					(R)
1H0130+473	22.73	130.32	21.36	24.00	24.12	21.48	.356	.0061			
	47.34	-14.67	46.96	47.86	47.70	46.80		6000			
	01 30 54	40.44	01 25 26	01 36 00	01 36 27	01 25 54					
	+1 70 14	04.70	C+ / C 0+	7 10 / 7	4/4140	40 48 14					
1H0132-086	23.02	153.50	22.00	23.86	24.05	22.18	.952	.0047	4U 0129-09?		A217
	-8.63	-08.64	-8./9	-8.03	-8.46	-9.23		<u>-0019</u>			
	01 32 05	17.97	01 27 59	01 35 27	01 36 11	01 28 43					
	-08 37 45	-16.95	-08 47 27	-08 01 32	-08 27 53	-09 13 51					
1H0132+607	23.11	128.29	21.36	24.84	24.92	21.45	.152	.0188	4U 0142+61		
	60.74	-1.42	60.23	61.29	61.22	60.16		.0012			
	01 32 27	49.32	01 25 27	01 39 20	01 39 39	01 25 47					
	60 44 13	46.39	60 13 38	61 17 20	61 13 24	60 09 50					(R)
1H0135-346	23.77	252.13	22.62	24.75	24.91	22.77	.528	.0034			
	-34.64	-77.77-	-35.00	-34.04	-34.27	-35.23		.000			
	01 35 04	5.92	01 30 29	01 39 00	01 39 37	01 31 05					
_	+7 20 40- 1	-40.80		- 34 02 27	- 54 16 10	- xr - rr -				-	

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOL			RROR BOX			FLUX	IDENTIFIC	ATIONS
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-RAY	NON X-RAY
1H0136-681	24.14 -68.11 01 36 33	296.32 -48.67 326.01	23.09 -68.60 01 32 22	24.66 -67.53 01 38 38	25.14 -67.63 01 40 34	23.59 -68.70 01 34 22	.253	.0043 .0006	H 0136-68	
	-68 06 52	-65.78	-68 35 49	-67 31 43	-67 37 32	-68 41 55				(R)
1H0137-403	24.34	268.56 73.41	23:11 40.70	25.35	25.57	23.32	.628	.0021		
	01 37 22	2.49	01 32 26	01 41 23	01 42 15	01 33 17				
	-40 23 50	-46.01	-40 46 43	-39 44 13	-40 00 10	-41 02 55				
1H0140+393	25.24 39.37	133.81 -22 14	23.98 39.10	26.36 39.91	26.51 39.63	24.14 38.82	.604	.0036		
	01 40 57	38.43	01 35 56	01 45 25	01 46 02	01 36 34				
	39 22 14	26.79	39 05 56	39 54 24	39 37 43	38 49 27				
1H0142-291	25.60	224.52 -78.12	24.49 -29.42	26.54 -28.53	26.71 -28.84	24.66 -29.73	.688	0021		
	01 42 25	10.96	01 37 57	01 46 08	01 46 51	01 38 39				
	-29 08 04	-36.65	-29 25 23	-28 31 48	-28 50 11	-29 43 55				
1H0143-239	25.87	200.50	24.82	26.81	26.91	24.92	.432	.0035		
	-23.99	-77.27	-24.31	-23.47	-23.66	-24.51		9000		
	01 43 28	13.93	01 39 17	01 47 13 -23 27 54	01 47 37	01 39 41				
747 1 1410111	10.70	CL 901	20.01	12 12 22	20.00	77 00 17	076	0000		
IHUI44+/4/	74.79	12.59	75.37	23.02 74.07	23.28 74.16	29.04 75.48	807	.0004		
	01 44 49	64.35	01 57 29	01 34 28	01 33 07	01 56 10				
	74 47 20	57.06	75 22 25	74 03 59	74 09 48	75 28 44				
1H0145-832	26.39	301.01	27.71	24.60	25.40	28.77	.220	.0063		
	-83.24	-33.94	-84.23	-82.27	-82.25	-84.21		9000.		
	01 45 32 -83 14 34	286.89 -68.73	01 50 49 -84 14 02	01 38 23 -82 16 00	01 41 37 -82 14 56	01 55 05 -84 12 36				
1H0145-066	26.43	158.60	25.46	27.33	27.40	25.53	.412	.0037		
	-6.68	-65.29	-6.96	-6.21	-6.40	-7.15		.0007		
	01 45 43	22.00	01 41 49	01 49 18	01 49 37	01 42 08				
	-06 40 52	-16.42	-06 57 21	-06 12 48	-06 24 15	-07 08 50	-			
1H0145+326	26.44	136.56	25.26	27.46	27.62	25.43	.732	.0051		A260
	32.70	-28.41	32.48	33.24	32.90	32.15		.0015		
	01 45 44	36.55	01 41 01	01 49 50	01 50 29	01 41 42				
	32 41 57	20.28	32 28 59	33 14 38	32 54 15	32 08 45				
1H0150-535	27.64	283.75	26.66	28.39	28.60	26.86	.255	.0050		
	-53.59	-61.46	-53.97	-53.06	-53.20	-54.11		.0007		
	75 0C 10	10.200	UI 40 3/ -53 58 04	CC CC IN 12 E0 E2-	-53 12 08	-54 06 32				

TABLE 4—Continued

F

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

Continued	
4	
TABLE	

CATALOG	POSIT	ION		E	RROR BOX			FLUX	IDENTIFI	CATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY		NON X-RAY
	DEC	ECL	DEC	DEC	ner	DEC					
1H0151+359	27.88	136.91	27.17	28.52	28.60	27.25	.202	.0104	4U 0148+36 XRS014	486+360	A262
	35.99	-24.92	35.85	36.30	36.14	35.69		1100.			B2 0149+35
	01 51 31	59.09	01 48 40	01 54 05 36 17 45	01 54 22 36 08 11	01 49 00 35 41 22					(a)
	40 40 CC	10.22	20 00 00	C+ / I OC	11 00 00	77 14 00					3
1H0154-340	28.66	242.42	27.54	29.66	29.78	27.65	404	.0035			
	-34.09	-74.41	-34.47	-33.52	-33.70	-34.64		.0006			
	01 54 39	11.02	01 50 08	01 58 39	01 59 07	01 50 36					
	-34 05 17	-42.24	-34 27 55	-33 31 24	-33 42 01	-34 38 40					
1H0155+740	28.85	127.60	31.00	27.48	26.79	30.31	.370	.0043			
	74.05	12.05	74.39	73.50	73.70	74.60		6000			
	01 55 23	64.49	02 04 00	01 49 55	01 47 08	02 01 15					
	74 03 15	56.04	74 23 24	73 29 53	73 41 52	74 36 03		_			(R)
1H0157+142	29.34	146.83	28.33	30.26	30.36	28.42	.512	.0027			
	14.26	-45.17	14.03	14.72	14.48	13.79		9000			
	01 57 21	32.28	01 53 18	02 01 03	02 01 25	01 53 41					
	14 15 20	2.12	14 01 35	14 43 15	14 28 49	13 47 12					
1H0201-029	30.29	161.35	29.34	31.21	31.25	29.38	.236	.0058			
	-2.97	-60.10	-3.27	-2.56	-2.67	-3.38		9000			
	02 01 10	27.12	01 57 20	02 04 50	02 05 00	01 57 30					
	-02 58 11	-14.36	-03 16 07	-02 33 34	-02 40 11	-03 22 45					
1H0203+513	30.75	134.58	29.12	32.04	32.40	29.51	1.104	.0019	1E02063+5212		
	51.40	-9.53	51.21	52.07	51.56	50.72		6000			
	02 03 01	48.39	01 56 29	02 08 09	02 09 35	01 58 01	_				
	51 23 58	36.16	51 12 52	52 03 57	51 33 41	50 43 09					(R)
1H0208-106	32.21	175.19	31.21	33.10	33.21	31.31	.576	.0028			
	-10.70	-64.88	-10.93	-10.20	-10.47	-11.19		.0007			
	02 08 50	26.06	02 04 49	02 12 24	02 12 50	02 05 15					
	-10 41 49	C7.22-		70 11 01-	10 17 01-	/6 11 11-	105	1000			
1HU2U9 + / /4	32.40	12/.48	30.43	00.67	26.19	0/.02	+nc.	0700			
	75.11	59 69	02.77 44	01 58 15	01 55 10	02 22 47		6000.			
	77 25 01	58.09	77 54 15	76 41 03	76 52 32	78 06 53					
1H0212-172	33.04	189.39	32.03	33.97	34.05	32.11	.380	.0041			
	-17.22	-68.28	-17.51	-16.75	-16.92	-17.68		9000			
	02 12 09	24.21	02 08 08	02 15 52	02 16 11	02 08 25					
	-17 13 00	-28.61	-17 30 22	-16 44 48	-16 55 20	-17 40 56					
1H0215-007	33.91	164.59	32.93	34.81	34.90	33.02	.520	.0027	H0206-019		Mkn 590
	76	-56.22	98	30	54	-1.22		.0006			-
	02 15 38	31.40	02 11 42	02 19 14	02 19 35	02 12 03					(8)
	-00 45 34	-13.54	96 86 00-	16 / 1 00-	-00 32 31	-01 13 10	_	_			(K)

525

	T																			_																			
	NON X-RAY		STR0214-643											HB3		ļ	(R)									NGC985?													
IDENTIFICATION	X-RAY					4U 0223+31? XRS02238+312																																	
EI IV	ERROR		.0046	1100.		.0035	0008			.0047	8000.			.0037	9000			.0034	9000			.0031	.0007			.0036	9000.		0046	9000	2		.0056	.0018			.0035	6000	
	AREA		.560			.544				.249				.408				.525				.540				.404			706	067.			.816				009'		
	RA	DEC	33.51	-04.89	-64 53 38	33.51	30.00	02 14 01	29 59 57	35.02	-71.71	02 20 05	-71 42 22	36.64	63.05	02 26 32	63 02 56	35.49	-45.58	02 21 58	-45 34 44	35.73	-30.24	02 22 54	-30 14 35	36.08	-9.84	02 24 18	11 25 22	32.00	02 25 05	-32 52 36	36.47	-36.32	02 25 52	-36 19 17	36.67	19.42	19 25 02
	RA	DEC	35.88	-03.18	02 23 31 -63 10 58	35.69	30.68	02 22 44	30 40 45	35.51	-70.51	02 22 02	-70 30 31	32.79	62.12	02 11 09	62 07 11	37.82	-44.41	02 31 16	-44 24 33	37.81	-29.39	02 31 15	-29 23 31	37.98	-9.15	02 31 55	20.40	30.40	02 33 35	-31 59 46	39.18	-35.32	02 36 43	-35 19 16	38.69	20.05	20 02 56
	RA	DEC	35.35	-63.04	-63 02 28	35.58	30.94	02 22 19	30 56 09	34.90	-70.48	02 19 35	-70 28 53	33.00	61.94	02 12 00	61 56 31	37.61	-44.20	02 30 25	-44 11 58	37.68	-29.15	02 30 42	-29 08 55	37.91	-8.96	02 31 38	20 20	31.86	02 33 17	-31 51 49	39.00	-35.02	02 36 00	-35 00 55	38.59	20.33	07 94 70 03
	RA	DEC	32.96	-64./4	-64 44 36	33.40	30.25	02 13 35	30 15 15	34.37	-71.68	02 17 29	-71 40 38	36.83	62.87	02 27 19	62 51 56	35.28	-45.36	02 21 08	-45 21 53	35.60	-30.00	02 22 23	-29 59 52	36.01	-9.65	02 24 01	36.30	07.0C	02 24 47	-32 44 36	36.30	-36.01	02 25 12	-36 00 43	36.57	0/.61	UZ 20 10 19 42 04
N	GAL	ECL	287.81	-50.75	340.28 -67.40	144.80	-28.34	42.48	15.71	292.90	-44.49	322.19	-70.36	133.20	1.70	57.48	45.16	261.49	-63.89	10.59	-54.63	224.93	-68.43	21.85	-41.39	180.09	-60.53	31.33	727 07	70.7C7	20.90	-44.02	240.28	-66.83	19.24	-47.13	153.18	-36.72	41.03
TIOOD	RA	DEC	34.46	-63.97	02 1/ 20 -63 58 13	34.54	30.47	02 18 09	30 28 18	34.96	-71.09	02 19 49	-71 05 38	34.79	62.51	02 19 08	62 30 26	36.56	-44.89	02 26 15	-44 53 38	36.71	-29.70	02 26 49	-29 41 58	37.00	-9.40	02 27 58	37 30	75 25-	02 29 12	-32 22 28	37.75	-35.68	02 30 59	-35 40 30	37.62	19.88	19 57 41
	ENTRY		1H0217-639			1H0218+304				1H0219-710				1H0219+625				1H0226-448				1H0226-296				1H0227-094			1 110730 272	C7C-6770UI			1H0230-356				1H0230+198		

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

																			-			-												
	NON X-RAY	STR0237-526											(R)	A376			(R)	NGC1068	3C71	(B)	A 2879	: 1967		(R)				NGC1129	NGC1130	NGC1131	(K)	A400?	3C75?	(B)
ENTIFICATIONS	AY	XRS02352-526									4U 0241+61				•													4U 0253+41	XRS02530+417			XRS02522+060		
9	X-R	2A 0235-526									2S 0241+622	XRS0241+622																2A 0251+413	1M 0255+41			2A 0252+060		
FLUX	ERROR	.0043	CO00-	2000	.0036 .0007			.0046	0000		.0104	.0006		.0039	.0017			.0032	.0010		0030	6000			.0048	.0008		.0201	.0029			.0085	.0014	
	AREA	.296		000	.288			.328			.132			.864	_			.720			576	o r.			.412			.324				.316		
	RA DEC	37.76	02 31 01	-03 14 23	39.36 -59.16	02 37 26	-59 09 33	38.89	-22.0 4 02 35 33	-22 02 22	42.10	62.57	02 48 23 62 34 26	39.20	35.96	02 36 46	35 57 30	40.13	29	02 40 30 -00 17 40	40.60	27.08	02 42 45	27 05 04	40.89	-37.56	02 43 33 -37 33 50	41.54	41.03	02 46 10	41 01 54	42.33	5.43 02 49 18	05 25 53
ROR BOX	RA DEC	40.25	02 41 00	10 00 10-	40.94 -58.15	02 43 44	-58 09 08	40.89	02 43 33	-21 17 34	38.21	61.73	02 32 31 61 43 55	41.54	36.60	02 46 10	36 36 06	42.03	.33	02 48 06 00 19 36	47.84	27.69	02 51 20	27 41 19	43.12	-36.64	-36 38 40	44.07	41.67	02 56 16	41 40 11	44.25	6.02 02 56 59	06.01.12
E	RA DEC	40.09	02 40 21		40.61 -58.01	02 42 26	-58 00 49	40.82	02 43 17	-21 08 28	38.28	61.67	02 33 00 61 40 22	41.38	37.01	02 45 30	37 00 44	41.92	.67	02 47 39 00 40 08	A7 74	27.96	02 50 57	27 57 50	42.99	-36.46	02 51 58 -36 27 45	44.00	41.82	02 56 00	41 49 20	44.20	6.17 02 56 48	06 10 16
	RA DEC	37.60	02 30 23		39.03 -59.02	02 36 07	-59 01 00	38.83	02 35 18	-21 53 13	42.16	62.51	02 48 3/ 62 30 47	39.02	36.37	02 36 03	36 21 56	40.02	.05	02 40 03	40.50	27.36	02 42 20	27 21 30	40.77	-37.38	02 43 05 -37 22 48	41.47	41.18	02 45 53	41 11 04	42.28	5.58 02 49 07	05 34 56
NO	GAL ECL	271.99 57.07	4.22	-01.08	279.02 -53.35	355.38	-66.39	206.06 64 77	-0 1 .2/ 29.29	-35.08	135.65	2.30	6026 43.72	146.85	-20.88	49.32	19.80	172.83	-50.96	38.65 -14 96	153 67	-28.22	47.61	10.91	241.56	-63.23	22.84	146.28	-15.60	53.00	23.80	169.75	-45.27 42.58	00 01
POSIT	RA DEC	38.94	02 35 46	61 76 7C-	40.00 -58.59	02 39 58	-58 35 17	39.86	02 39 26	-21 35 35	40.16	62.14	02 40 38 62 08 11	40.28	36.49	02 41 06	36 29 25	41.02	.19	02 44 05	41.71	27.53	02 46 50	27 31 41	41.95	-37.02	02 4/ 4/ -37 01 05	42.77	41.43	02 51 03	41 20 04	43.26	5.80 02 53 03	05 48 08
CATALOG	ENTRY	1H0235-525		202 000000	1H0239-585			1H0239-215			1H0240+621			1H0241 + 364				1H0244 + 001			1H0246+275	717 I 0170111			1H0247-370			1H0251+414				1H0253+058		

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

	1			-	-									_										_			_	_	_	-						_	_		_	
	NON X-RAY	A399	A401	í	(K)					STR0303-613				A415			(R)																	STR0308-723						
DENTIFICATIONS	RAY	4U 0254+13	XRS02254+132																																					
	X-	2A 0255+132	1M 0254+132																			H 0252+440																		
FLUX	ERROR	.0143	.0016			.0032	6000.			.0036	.0012			.0052	.0016			.0033	6000.			0200.	.0024			.0052	.0017			.0025	6000			.0033	.0005			.0048	.0012	
	AREA	.133				.660				1.102				1.608				.668				.588				.736				.884				.173				.616		
	RA DEC	42.75	12.77	02 50 59	12 40 01	42.54	21.71	02 50 10	21 42 44	42.83	-62.97	02 51 19	-62 58 08	42.83	-13.44	02 51 19	-13 26 30	43.75	-1.96	02 54 59	-01 57 26	46.57	44.89	03 06 16	44 53 27	44.06	-48.96	02 56 13	-48 57 24	44.47	-11.15	02 57 53	-11 09 02	47.19	-72.78	03 08 45	-72 46 47	45.70	-50.63	03 02 48
RROR BOX	RA DEC	44.13	13.17	02 56 31	13 10 28	44.61	22.29	02 58 25	22 17 27	45.96	-60.83	03 03 49	-60 49 31	46.38	-12.27	03 05 31	-12 15 54	45.66	-1.36	03 02 37	-01 21 47	42.67	43.94	02 50 41	43 56 26	46.52	-47.81	03 06 04	-47 48 22	46.41	-10.53	03 05 37	-10 31 30	47.14	-71.76	03 08 32	-71 45 42	48.20	-49.44	03 12 48
E	RA DEC	44.10	13.26	02 56 24	70 01 01	44.51	22.61	02 58 01	22 36 27	45.23	-60.59	03 00 56	-60 35 30	46.23	-11.85	03 04 56	-11 50 59	45.56	-1.04	03 02 14	-01 02 40	42.77	43.75	02 51 04	43 45 10	46.20	-47.51	03 04 47	-47 30 29	46.27	-10.11	03 05 03	-10 06 21	46.59	-71.76	03 06 22	-71 45 49	47.92	-49.20	03 11 40
	RA DEC	42.72	12.86	02 50 52	C7 1C 71	42.44	22.03	02 49 44	22 01 39	42.08	-62.72	02 48 19	-62 43 07	42.69	-13.02	02 50 45	-13 01 27	43.65	-1.64	02 54 35	-01 38 18	46.65	44.70	03 06 37	44 42 00	43.74	-48.65	02 54 58	-48 39 07	44.33	-10.73	02 57 19	-10 43 49	46.61	-72.78	03 06 27	-72 46 53	45.42	-50.38	03 01 40
ION	GAL ECL	163.83	-39.53	44.86	-3.45	157.51	-31.95	47.59	5.30	280.35	-49.65	351.81	-69.93	193.44	-56.42	37.86	-28.24	178.72	-49.59	41.72	-17.67	146.10	-12.39	55.46	26.18	261.22	-57.12	16.19	-60.71	191.18	-54.66	39.46	-26.59	289.67	-41.36	319.93	-74.22	263.00	-55.36	16.00
POSIT	RA DEC	43.42	13.02	02 53 41	13 01 00	43.52	22.16	02 54 04	22 09 46	44.08	-61.79	02 56 19	-61 47 08	44.54	-12.65	02 58 09	-12 39 04	44.65	-1.50	02 58 36	-01 30 03	44.65	44.34	02 58 36	44 20 15	45.14	-48.24	03 00 34	-48 14 14	45.37	-10.63	03 01 28	-10 37 46	46.88	-72.27	03 07 31	-72 16 19	46.83	-49.92	03 07 18
CATALOG	ENTRY	1H0253+130				1H0254+221				1H0256-617				1H0258-126				1H0258-015				1H0258+443				1H0300-482				1H0301-106				1H0307-722				1H0307-499		

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOL		E	RROR BOX			FLUX	Ĩ	DENTIFICATION	S
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	I-X	RAY	NON X-RAY
1H0307-426	46.79	250.73	45.52	47.89	48.03	45.66	.424	.0038			
	-42.65 03 07 08	-28.18	-43.04 03 02 05	-42.06 03 11 32	-42.24 03 12 07	-43.23 03 02 39		/000			
	-42 38 52	-56.60	-43 02 38	-42 03 20	-42 14 18	-43 13 46					
1H0310+576	47.53	140.99	48.64	46.52	46.42	48.54	.183	.0057			
	57.66	.07	57.79	57.38	57.53	57.94		9000.			
	03 10 06 57 39 53	02.05 38.19	03 14 33 57 47 41	03 06 05 57 22 59	03 03 41 57 31 30	03 14 10 57 56 18					
1H0311-348	47.85	235.66	46.68	48.90	49.01	46.80	.456	.0044			
	-34.81	-58.80	-35.12	-34.29	-34.49	-35.32		6000			
	03 11 24 -34 48 33	31.02 -49.99	03 06 43 -35 06 54	03 15 35 -34 17 08	03 16 03 -34 29 31	03 07 10 -35 19 25					
1H0311-227	47.96	212.82	46.91	48.95	49.01	46.97	.304	.0076	2A 0311-227		EF Eri
	-22.72	-57.43	-22.99	-22.31	-22.45	-23.13		6000			
	C ² 11 50 -22 43 28	37.55	03 07 39	03 15 47	03 16 01	03 07 52 -23 08 05					(a)
1H0315-445	48.92	253.15	48.38	49.36	49.45	48.47	105	0077	2A 0316-443	411 0321-45	PK S0316-44
	-44.51	-56.15	-44.66	-44.25	-44.36	-44.77		9000			
	03 15 39	24.56	03 13 31	03 17 25	03 17 47	03 13 53					
	-44 30 45	-58.99	-44 39 37	-44 15 02	-44 21 44	-44 46 21					(R)
1H0316+413	49.13	150.58	49.17	49.09	49.08	49.16	001	.1727	2A 0316+413	4U 0316+41	Perseus Cluster
	41.33	-13.26	41.33	41.31	41.33	41.34		.0013	1M 0316+41	XRS03165+413	A426
	41 19 32	22.33	41 19 30	41 18 26	03 16 20 41 19 34	03 10 38 41 20 39					(R)
1H0323+342	50.99	155.98	52.19	49.86	49.79	52.13	.412	.0043			
	34.30	-18.22	34.45	33.93	34.13	34.65		.000			
	34 17 53	15.16	34 27 08	33 56 02	34 07 56	34 39 07				<u></u>	
1H0324-636	51.07	279.36	49.54	51.92	52.51	50.15	.640	.0029			
	-63.62	-46.02	-64.43	-62.65	-62.80	-64.59		8000.			
	-63 37 21	-73.62	-64 25 30	-62 39 06	-62 48 17	-64 35 17					
1H0324-530	51.14	265.57	50.35	51.72	51.92	50.55	.200	.0060			STR0324-530
	-53.00	-51.57	-53.27	-52.59	-52.74	-53.41		8000.			
	03 24 33 -53 00 16	16.54 -66.81	03 21 24 -53 16 00	03 26 51 -52 35 36	03 27 39 -52 44 15	-53 24 47					
1H0324+674	51.18	137.14	53.15	49.43	49.23	52.98	.360	.0048			
	67.44	9.21	67.54	67.10	67.32	67.77		.000			
	03 24 43	69.45 46.75	03 32 35 67 32 13	03 17 43 67 05 43	03 16 55 67 19 20	03 31 55 67 46 06					

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

	0	NON X-RAY			HR 1099	V711 Tau	į	(R)				NRAO 140		ļ	(R)				(R)				(R)	NGC1399		í,											(R)
NOLT & DIALTIN	MOTIVITIN	X														4U 0344+11																					
301	IDE	X-RA			4U 0336+01							H 0333+317				2A 0335+096	XRS03353+096							H 0333-35													
ET IV	FLUA	ERROR	.0040 .0010		0600.	.001			.0036	1000.		.0044	6000.			.0089	.0008			.0034	.0005			.0146	.0011			1000.			.0062	.0012			.0102	.0008	
		AREA	.436		.292				.488			.459				.228				.356				.077			07.7	.048			.460				.067		
		RA DEC	55.86 79.30	03 43 26 79 18 03	50.91	- 41	03 23 38	-00 24 30	53.73	20.00	26 04 33	54.06	32.04	03 36 13	32 02 12	52.69	9.53	03 30 45	09 31 44	54.63	29.49	03 38 30	29 29 32	53.55	-35.92	03 34 12	+0 +0 00-	40.00 A 0.04	03 32 08	-44 01 12	53.42	-15.66	03 33 40	-15 39 45	54.23	-54.54	-54 32 15
	VOG NON	RA DEC	47.09 78.29	03 08 21 78 17 14	52.84	11.	03 31 22	00 06 33	51.71	03 26 50	25 36 44	52.18	31.65	03 28 43	31 38 44	54.66	10.01	03 38 38	10 00 23	52.40	29.01	03 29 36	29 00 44	54.29	-35.66	03 37 10	24 20 CC-	00.54 00.54	03 41 55	-43 05 23	55.41	-15.11	03 41 39	-15 06 21	54.97	-54.20	-54 11 56
13		RA DEC	47.70 78.11	03 10 48 78 06 23	52.81	.25	03 31 13	00 15 00	51.78	03 27 07	25 21 38	52.26	31.37	03 29 02	31 22 27	54.63	10.12	03 38 31	10 07 02	52.45	28.84	03 29 48	28 50 23	54.24	-35.56	03 36 56	01 CC CC-	17.00	03 41 04	-42 48 18	55.35	-14.89	03 41 22	-14 53 06	54.84	-54.10	-54 06 13
		RA DEC	56.38 79.10	03 45 30	50.87	27	03 23 29	-00 16 03	53.80	20.02	25 49 25	54.13	31.76	03 36 31	31 45 51	52.66	9.64	03 30 38	09 38 23	54.67	29.32	03 38 41	29 19 09	53.50	-35.81	03 33 58	17 04 00-	52.2C	03 31 20	-43 43 51	53.36	-15.44	03 33 25	-15 26 29	54.10	-54.44	-54 26 29
NO		GAL ECL	130.50 18.49	77.11 57.02	184.00	-43.21	49.42	-18.31	162.87	-24.11	6.48	159.15	-19.21	58.54	12.20	175.97	-35.28	53.74	-9.16	161.10	-20.99	58.24	9.66	236.93	-53.83	37.67	70.76-	249.08	32 10	-59.87	204.62	-49.14	47.57	-33.62	266.10	-49.19	18.41 -69.11
TIACO	LUSUI	RA DEC	51.57 78.73	03 26 16 78 43 53	51.86	08	03 27 25	-00 04 45	52.75	27.02	25 43 18	53.16	31.71	03 32 37	31 42 31	53.66	9.82	03 34 38	09 49 28	53.53	29.17	03 34 08	29 10 14	53.89	-35.74	03 35 34	00 44 CC-	01.40	24.24-	-43 25 05	54.38	-15.28	03 37 32	-15 16 33	54.54	-54.32	03 38 09 -54 19 16
	CALALOU	ENTRY	1H0326+787		1H0327 + 000				1H0331+257			1H0332+317				1H0334 + 098				1H0334+291				1H0335-357				1HU336-434			1H0337-152				1H0338-543		

ł

TABLE 4—Continued

$\ensuremath{\mathbb{C}}$ American Astronomical Society $\ensuremath{\, \bullet \,}$ Provided by the NASA Astrophysics Data System

a
ne
tin
inc
ŭ
4
Щ
M
A
F

CATALOG	POSIT	NOI		E	RROR BOX			FLUX		DENTIFICATION	lS .
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	-X	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0339-822	55.00	296.70	59.77	50.05	51.13	60.90	.404	.0037			
	-82.21	-32.98	-83.00	-81.49	-81.37	-82.86		.0006			
	03 39 59 -87 17 71	284.90	03 59 03 -83 00 00	03 20 10 -81 29 10	03 24 31 -81 21 56	04 03 35 82 51 24					
	17 71 70		00000	01 (7 10	00 17 10	17 16 70-	c.	100			
1HU340+392	81.00	155.64	50.03	53.85	53.74	56.53	./10	.0031			
	39.29	-12.22	39.39	38.86	39.17	39.71		.000			
	03 40 43	62.11	03 46 30	03 35 23	03 34 57 30 10 27	03 46 U/ 30 47 72					(a)
	CC / 1 4C	17.10	0+ 07 40	70 10 00	17 01 60	C7 74 6C					(V)
1H0341-537	55.44	265.03	54.02	56.65	56.81	54.18	.296	.0052	2A 0343-536	4U 0339-54	STR0342-538
	-53.79	-48.91	-54.35	-53.09	-53.21	-54.47		.0006	1M 0328-524	XRS03432-536	
	03 41 44	20.50	03 36 05	03 46 35	03 47 14	03 36 43					
	-53 47 19	-69.03	-54 21 15	-53 05 39	-53 12 27	-54 28 14					(R)
1H0342-392	55.67	242.72	54.42	56.78	56.92	54.56	.524	.0047			
	-39.30	-\$2.23	-39.58	-38.76	-39,00	-39.82		1100.			
	03 42 41	37.46	03 37 40	03 47 06	03 47 40	03 38 13					
	-39 17 50	-56.65	-39 34 44	-38 45 51	-39 00 07	-39 49 10					-
1H0343+237	55.97	166.73	56.66	55.32	55.28	56.62	.231	.0055			Pleiades
	23.71	-23.73	23.76	23.47	23.65	23.94		.0007			
	03 43 52	59.10	03 46 38	03 41 17	03 41 06	03 46 27					
	23 42 21	3.84	23 45 24	23 28 23	23 39 07	23 56 10					(R)
1H0345-452	56.40	252.05	55.01	57.51	57.77	55.26	.752	.0021	4U 0321-45?		
	-45.24	-50.83	-45.54	-44.60	-44.92	-45.87		9000			
	03 45 35	33.26	03 40 03	03 50 02	03 51 04	03 41 02					
	-45 14 22	-62.23	-45 32 16	-44 35 45	-44 55 27	-45 52 19					
1H0345+634	56.34	141.27	57.52	55.25	55.16	57.43	.148	.0047			
	63.45	7.27	63.53	63.22	63.35	63.66		.0005			
	03 45 20	70.43	03 50 04	03 41 01	03 40 38	03 49 44					
	63 26 42	42.27	63 31 33	63 13 15	63 21 16	63 39 39					
1H0347-413	56.93	245.92	55.64	58.06	58.20	55.78	.500	.0045			
	-41.39	-51.07	-41.69	-40.85	-41.07	-41.92		6000			
	03 47 42	37.46	03 42 34	03 52 13	03 52 48	03 43 07					
	-41 23 22	-58.95	-41 41 24	-40 50 58	-41 04 29	-41 55 05					
1H0350-735	57.72	288.15	57.88	57.14	57.57	58.33	.101	.0036	4U 0357-74	XRS03576-743	STR0352-742?
	-73.58	-38.13	-73.97	-73.22	-73.19	-73.93		.0003			
	03 50 53	312.93	03 51 31	03 48 33	03 50 17	03 53 20					
	-73 34 34	-77.19	-73 57 58	-73 13 16	-73 11 10	-73 55 46					
1H0350+472	57.71	152.07	58.63	56.87	56.78	58.56	.273	.0050	4U 0404+47	XRS04040+476	
	41.21	-4.89	C7.14	C6.04	4/.10 22 17 00	047.40		8000.			
	03 50 50	66.10	03 54 32	03 47 27	03 47 08	03 54 14					
	47 12 38	26.41	47 15 02	46 57 03	47 09 49	47 27 52					

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

.

	NON X-RAY				X Per			(R)																					40 Eri			(R)	A478			(R)				
DENTIFICATION	RAY				2A 0352+309	1M 0352+30	XRS03522+308																										4U 0410+10	XRS04106+103						
H	I-X				15 0352 + 308	4U 0352+30	CGS0352+309																										2A 0411+103	1M 0405+10						
FLUX	ERROR	.0027	.0007		0448	0011			.0063	.0015			.0075	.0008			.0041	9000.			.0039	.0005			.0025	.0007			.0063	.0008			.0118	.000			.0027	.0005		
	AREA	1.066			000	2000			.564				.252				.175				.241				.656				.194				.048				.477			
	RA DEC	59.37	19.93	03 57 27 19 55 38	58.06	30.90	03 52 14	30 53 43	57.60	-31.54	03 50 22	-31 52 29	57.80	-11.93	03 51 11	-11 55 47	59.63	-67.38	03 58 30	-67 22 38	61.81	57.63	04 07 13	57 37 53	59.79	-57.87	03 59 09	-57 52 12	62.82	-7.66	04 11 17	-07 39 33	62.68	10.36	04 10 42	10 21 37	64.11	53.28	04 16 25	53 16 40
KUK BUX	RA DEC	56.30	19.29	03 45 11 19 17 30	58.06	30.90	03 52 14	30 53 43	59.81	-30.90	03 59 14	56 56 05-	59.78	-11.45	03 59 07	-11 26 50	60.08	-66.51	04 00 19	-66 30 41	59.39	57.31	03 57 32	57 18 44	62.48	-56.50	04 09 54	-56 30 02	61.66	-7.93	04 06 38	-07 55 53	62.08	10.25	04 08 18	10 14 46	60.98	52.86	04 03 55	52 51 28
Ξ	RA DEC	56.38	18.94	03 45 31 18 56 27	58.06	30.90	03 52 14	30 53 43	59.70	-30.63	03 58 48	-30 J C / S US-	59.75	-11.33	03 58 59	-11 19 31	59.60	-66.47	03 58 22	-66 28 17	59.47	57.14	03 57 53	57 08 17	62.06	-56.27	04 08 15	-56 15 55	61.70	-8.09	04 06 48	-08 05 28	62.09	10.17	04 08 22	10 10 04	61.08	52.62	04 04 19	52 37 02
	RA DEC	59.44	19.58	03 5/ 46 19 34 29	58.06	30.90	03 52 14	30 53 43	57.49	-31.27	03 49 58	-31 10 24	57.77	-11.81	03 51 04	-11 48 27	59.12	-67.34	03 56 29	-67 20 09	61.88	57.46	04 07 31	57 27 21	59.38	-57.63	03 57 30	-57 37 34	62.86	-7.82	04 11 26	-07 49 07	62.69	10.28	04 10 45	10 16 54	64.19	53.03	04 16 45	53 02 04
NOI	GAL ECL	171.37	-25.62	06.6c 17	163.08	-17.14	62.51	10.45	229.76	-49.63	46.26	-49.89	202.54	-43.72	53.58	-31.21	280.46	-41.23	344.26	-78.11	146.82	4.01	70.96	35.87	267.86	-44.81	21.13	-73.56	200.28	-38.92	58.41	-28.33	182.30	-28.55	62.35	-10.57	150.64	1.49	71.06	31.30
FISO4	RA DEC	57.87	19.44	03 51 28 19 26 24	58.06	30.90	03 52 14	30 53 43	58.65	-31.09	03 54 36	12 00 16-	58.77	-11.63	03 55 05	-11 37 45	59.61	-66.92	03 58 26	-66 55 28	60.63	57.39	04 02 31	57 23 25	60.95	-57.07	04 03 48	-57 04 22	62.26	-7.88	04 09 02	-07 52 32	62.38	10.26	04 09 32	10 15 51	62.58	52.96	04 10 19	52 57 25
CATALOG	ENTRY	1H0351+194			1H0352+308				1H0354-310				1H0355-116				1H0358-669			,	1H0402+573				1H0403-570				1H0409-078				1H0409 + 102				1H0410+529			

î

TABLE 4—Continued

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

ontinued
1 C
3LE 4
TAI

CATALOG	POSIT	NO		Ξ	ROR BOX			FLUX	IDENTIF	FICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY		NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0412-381	63.17	240.72	61.92	64.32	64.41	62.01	.420	.0044			
	-38.18	-46.42	-38.41	-37.73	-37.93	-38.61		.0007			
	04 12 40	48.26	04 07 41	04 17 15	04 17 37	04 08 02					
	-38 10 30	-57.80	-38 24 23	-37 44 00	-37 55 49	-38 36 18					
1H0413-116	63.44	205.28	64.49	62.44	62.38	64.43	.577	.0043			A483
	-11.64	-39.63	-11.56	-11.99	-11.71	-11.28		8000.			
	04 13 44	58.81	04 17 58	04 09 44	04 09 30	04 17 43					
	11 38 11-	-32.25	-11 33 23	-11 59 12	-11 42 45	-11 16 57					(R)
1H0413+009	63.26	191.61	63.91	62.64	62.60	63.87	.260	.0070			A480
	96 [.]	-33.43	66.	.74	.94	1.18		1100.			
	04 13 01	61.42	04 15 39	04 10 32	04 10 23	04 15 29					
	00 57 38	-19.87	00 59 06	00 44 22	00 56 10	01 10 53					(K)
1H0414-551	63.70	264.63	62.15	64.93	65.21	62.43	.532	.0032	4U 0423-53? XRS0	14234-531	
	-55.14	-43.94	-55.63	-54.42	-54.63	-55.85		.0007			
	04 14 48	29.25	04 08 35	04 19 43	04 20 51	04 09 42					
	-55 08 32	-73.08	-55 37 56	-54 25 28	-54 37 59	-55 50 49					
1H0414+380	63.62	161.50	64.06	63.19	63.17	64.04	.070	.0109	4U 0407+37 H 041	12+378	3CR111.0
	38.04	-8.80	38.06	37.93	38.03	38.16		.0007	XRS04074+379		
	04 14 27	68.59	04 16 15	04 12 45	04 12 39	04 16 09					
	38 02 39	16.54	38 03 28	37 55 50	38 01 43	38 09 23					(R)
1H0419-577	64.97	267.83	63.97	65.67	65.95	64.25	.284	.0035			
	-57.76	-42.54	-58.02	-57.31	-57.50	-58.21		9000.			
	04 19 52	25.34	04 15 52	04 22 40	04 23 48	04 17 00					
	-57 45 45	-75.54	-58 01 06	-57 18 26	-57 29 55	-58 12 49					
1H0419+280	64.96	169.64	60.09	63.86	63.84	66.07	.188	.0059			
	28.03	-14.98	28.15	27.81	27.90	28.24		.0005			
	04 19 51	67.92	04 24 21	04 15 25	04 15 21	04 24 17					
	28 01 48	6.48	28 08 55	27 48 35	27 54 08	28 14 29					
1H0422-086	65.71	203.17	66.73	64.74	64.70	69.99	.380	.0040			
	-8.63	-36.27	-8.53	-8.91	-8.72	-8.34		.0008			
	04 22 51	62.07	04 26 54	04 18 57	04 18 48	04 26 45					
	-08 37 36	-29.75	-08 31 49	-08 54 26	-08 43 14	-08 20 37					
1H0422+601	65.50	146.74	67.62	63.74	63.35	67.33	1.644	.0007			
	60.14	7.74	59.93	59.52	60.32	60.74		.0003			
	04 22 00	74.82	04 30 29	04 14 58	04 13 24	04 29 18					
	60 08 26	37.98	59 55 51	59 31 03	60 18 56	60 44 21					
1H0423 + 096	65.76	185.17	66.73	64.85	64.80	66.68	.639	.0039			
	9.64	-26.32	9.63	9.33	9.66	9.96		6000.			
	04 23 03	65.58	04 26 55	04 19 24	04 19 10	04 26 42					
	09 38 41	-11.77	06 37 30	09 19 35	09 39 43	09 57 39					

ABLE 4-	Continued
ABLE 4	1
Ĥ	TABLE 4

CATALOG	POSIT	ION		E	RROR BOX			FLUX		DENTIFICATION	s
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	I-X	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0426+051	66.70	189.89	11.00	62.45	62.41	70.96	2.241	.0058	4U 0432+05	XRS04355+052	3C120
	5.13	-28.23	5.65	4.32	4.58	5.91		.0286			
	04 26 4/ 05 07 35	65.76 -16.38	05 38 56	04 09 4/ 04 19 09	04 09 37 04 34 30	05 54 20					(R)
1H0427+177	66.92	179.00	68.36	65.52	65.47	68.32	822	0035			
	17.74	-20.41	17.80	17.38	17.67	18.10		.0010			
	04 27 39	68.02	04 33 26	04 22 05	04 21 53	04 33 15					
	17 44 27	-3.96	17 48 01	17 22 30	17 40 16	18 05 49	_				
1H0429-616	67.38	272.32	67.23	67.44	67.53	67.32	.010	.0144	2A 0430-615	4U 0427-61	STR0431-616
	-61.66	-40.24	-61.73	-61.56	-61.59	-61.75		.0004	1M 0426-635	XRS04309-615	Sers 40/6
	04 29 30	15.85	04 28 54	04 29 44	04 30 06	04 29 16					PKS0429-61
	-61 39 26	-79.06	-61 43 39	-61 33 41	-61 35 13	-61 45 12					(R)
1H0430-133	67.73	209.54	68.02	67.46	67.44	68.01	.045	.0120	2A 0431-136	4U 0431-12	A496
	-13.36	-36.57	-13.35	-13.45	-13.38	-13.27		.0007	XRS04312-136		
	04 30 55	63.33	04 32 05	04 29 49	04 29 46	04 32 01					
	-13 21 46	-34.77	-13 20 56	-13 27 17	-13 22 34	-13 16 14					(R)
1H0433-088	68.50	204.99	69.52	67.53	67.47	69.46	.708	.0020			
	-8.88	-33.95	-8.89	-9.23	-8.88	-8.54		.0006			
	04 33 58	65.15	04 38 05	04 30 06	04 29 52	04 37 50					
	-08 53 00	-30.49	-08 53 13	-09 13 32	-08 52 36	-08 32 18					
1H0435-531	68.86	261.15	67.86	69.65	69.85	68.06	.284	.0053			STR0428-540?
	-53.17	-41.39	-53.40	-52.74	-52.93	-53.59		6000.			
	04 35 26	41.97	04 31 27	04 38 35	04 39 23	04 32 14					
	-53 10 14	-73.10	-53 23 58	-52 44 33	-52 56 01	-53 35 37					
1H0435-274	68.79	226.99	69.65	61.99	67.93	69.59	.334	.0051			
	-27.47	-40.28	-27.38	-27.77	-27.55	-27.17		.0008			
	04 35 10	60.85	04 38 36	04 31 58	04 31 43	04 38 21					
	-27 28 12	-48.79	-27 22 51	-27 46 00	-27 33 12	-27 10 07					
1H0435-165	68.83	213.67	70.43	67.31	67.24	70.35	1.222	.0025			
	-16.51	-36.84	-16.42	-16.98	-16.59	-16.03		.0007			
	04 35 20	63.92	04 41 43	04 29 14	04 28 56	04 41 24					
	-16 30 41	-38.06	-16 25 28	-16 58 55	-16 35 11	-16 01 48					
1H0437+206	69.28	178.09	69.94	68.65	68.62	16.91	.268	.0070			
	20.68	-16.83	20.65	20.48	20.70	20.87		.0012			
	04 37 07	70.67	04 39 46	04 34 36	04 34 28	04 39 38					
	20 40 32	-1.39	20 39 02	20 28 49	20 41 53	20 52 07					
1H0441-207	70.38	219.33	71.52	69.30	69.24	71.47	.551	.0028	4U 0505-21	XRS05050-213	A514?
	-20.79	-36.98	-20.71	-21.12	-20.87	-20.46		.0007			PKS0446-206?
	04 41 32	64.79	04 46 05	04 37 11	04 36 58	04 45 52					
	-20 47 38	-42.54	-20 42 49	-21 07 20	-20 52 00	-20 27 32					(R)

Continued	
4	
TABLE	

CATALOG	POSIT	ION		E	REOR BOX			FLUX		ENTIFICATION	IS
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R/	٩Y	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0443+836	70.77	128.89	79.95	62.75	62.07	79.75	.392	.0023			
	83.69	23.98	83.78	83.27	83.45	83.98		.0004			
	04 43 04	85.78	05 19 48	04 10 59	04 08 15	05 18 59					
000 1110111	00 14 00	00.00	CU 14 CO	00 01 00	74 07 09	01 00 00					
I HU444-338	/1.03	0/.052	12.23	69.88	69.83	72.18	٥ د ۲.	.0036			
	-33.89	-39.69	-33.74	-34.19	-34.02	-33.57		.0005			
	-33 53 06	-55.47	-33 44 16	-34 11 40	-34 01 15	-33 33 54 -33 33 54					
1H0445-060	71.29	203 59	PC CL	70.33	70.29	72 26	475	0040			NGC16812
	-6.08	-30.19	-6.04	-6.35	-6.12	-5.81		8000			
	04 45 10	68.79	04 49 10	04 41 18	04 41 09	04 49 01					
	-06 04 46	-28.16	-06 02 31	-06 21 08	-06 06 55	-05 48 18					(R)
1H0445+757	71.38	135.93	77.14	65.99	65.75	77.06	.593	.0049			
	75.77	19.52	75.88	75.33	75.53	76.08		.0068			
	04 45 31	82.54	05 08 34	04 23 56	04 22 59	05 08 13					
	75 46 22	52.81	75 52 33	75 19 59	75 32 03	76 05 05					
1H0446+450	71.64	160.48	71.81	71.48	71.47	71.81	.010	.0241	4U 0446+44	1M 0446+44	3C129 Cluster
-	45.01	.34	45.01	44.98	45.01	45.05		.0003	XRS04466+449		
	04 46 34	76.06	04 47 15	04 45 54	04 45 52	04 47 13				_	
	45 00 40	22.45	45 00 26	44 58 30	45 00 52	45 02 49					(R)
1H0448-041	72.08	202.03	72.55	71.62	71.60	72.54	.113	.0073	H 0448-04		MCG-01-13-025
	-4.10	-28.55	-4.10	-4.22	-4.10	-3.98		.0007			
	04 48 19	69.98	04 50 13	04 46 28	04 46 25	04 50 09					
	-04 06 03	-26.31	-04 05 56	-04 13 18	-04 06 09	-03 58 48					(R)
1H0451-747	72.89	286.94	74.17	71.25	71.68	74.59	.171	.0064	2A 0452-742		
	-74.73	-33.96	-75.13	-74.45	-74.32	-75.01		.0008	H 0452-742		
	04 51 33	296.86	04 56 41	04 45 00	04 46 42	04 58 21					
	-74 43 58	-80.13	-75 08 04	-74 26 42	-74 19 27	-75 00 29					
1H0451-560	72.87	264.46	71.12	74.19	74.58	71.49	.828	.0022	H 0449-55		
	-56.07	-38.68	-56.39	-55.37	-55.72	-56.75		.0007			
	04 51 27	44.08	04 44 29	04 56 45	04 58 18	04 45 58					
	-56 04 08	-76.77	-56 23 28	-55 22 19	-55 43 22	-56 45 05					(R)
1H0453-100	73.40	208.78	74.04	72.79	72.76	74.01	.248	.0058	4U 0443-09		A521?
	-10.05	-30.14	-10.06	-10.25	-10.05	-9.86	*** _	.0008			
	04 53 35	70.54	04 56 08	04 51 10	04 51 02	04 56 01					
	-10 03 12	-32.38	-10 03 19	-10 14 51	-10 03 00	-09 51 28					(R)
1H0455-441	73.76	249.11	74.89	72.73	72.62	74.77	.467	.0034	2A 0456-449	XRS04566-449	
	-44.11	-38.64	-44.00	-44.48	-44.20	-43.73		.0007			
	04 55 01	60.54	04 59 34	04 50 55	04 50 28	04 59 05					
	-44 06 26	-65.90	-44 00 04	-44 28 42	-44 12 07	-43 43 37					

CATALOG	POSIT	NOL			RROR BOX			FLUX	IDENTIFICAT	SNOI
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC				
1H0455+134	73.87	186.86	75.91	71.89	71.83	75.87	1.734	.0018		
	13.49	-17.63	13.48	13.05	13.49	13.91		6000.		
	04 55 29	74.13	05 03 38	04 47 32	04 47 20	05 03 27				
	13 29 29	-9.07	13 28 36	13 03 10	13 29 23	13 54 51				
1H0455+276	73.99	175.25	74.73	73.29	73.26	74.70	.260	.0039		
	27.60	-9.16	27.57	27.43	27.63	27.77		.0005		
	04 55 58	75.80	04 58 54	04 53 08	04 53 02	04 58 49				
	27 36 11	4.94	27 34 15	27 25 51	27 37 53	27 46 19				(R)
1H0455+518	73.81	156.05	74.07	73.56	73.55	74.06	.019	.0122	H 0452+51	
	51.90	5.81	51.89	51.85	51.91	51.95		.0004		
	04 55 14	78.65	04 56 17	04 54 14	04 54 11	04 56 15				
	51 53 57	29.09	51 53 19	51 50 58	51 54 33	51 56 53				(R)
1H0456+304	74.20	173.10	75.34	73.09	73.06	75.31	.422	.0038		
	30.42	-7.29	30.42	30.20	30.42	30.64		.0006		
	04 56 47	76.29	05 01 21	04 52 21	04 52 13	05 01 15				
	30 25 29	7.73	30 25 17	30 12 15	30 25 07	30 38 10				
1H0457+677	74.46	143.39	77.12	71.95	71.78	77.03	.656	.0017		
	67.70	15.59	67.67	67.37	61.69	61.99		.0005		
	04 57 49	81.78	05 08 29	04 47 47	04 47 08	05 08 06				
	67 42 08	44.70	67 40 06	67 22 14	67 41 33	67 59 40				
1H0458-367	74.57	239.87	75.26	73.95	73.89	75.19	.238	.0055	4U 0457-35 XRS04574-35	7
	-36.73	-37.28	-36.70	-36.97	-36.75	-36.49		6000.		
	04 58 17	65.64	05 01 02	04 55 48	04 55 32	05 00 45				
	-36 43 43	-58.88	-36 42 00	-36 58 00	-36 45 11	-36 29 14				(R)
1H0459+230	74.75	179.37	75.73	73.81	73.78	75.70	.392	.0046		3C132?
	23.04	-11.37	23.02	22.83	23.05	23.24		.0008		
	04 59 00	75.99	05 02 54	04 55 13	04 55 06	05 02 48				
	23 02 15	.33	23 01 04	22 49 57	23 03 04	23 14 12				
1H0459+248	74.83	177.96	75.68	74.00	73.97	75.66	.339	.0035		3C133?
	24.81	-10.25	24.78	24.62	24.84	25.00		.0005		
	04 59 18	76.25	05 02 43	04 55 58	04 55 52	05 02 38				
	24 48 50	2.09	24 46 48	24 37 27	24 50 35	24 59 56				(R)
1H0501+592	75.32	150.69	77.29	73.43	73.35	77.25	.492	.0016		12 Cam
	59.23	10.93	59.21	58.97	59.21	59.46		.0003		
	05 01 17	80.75	02 09 09	04 53 42	04 53 24	05 08 58				
	59 13 34	36.25	59 12 51	58 57 55	59 12 30	59 27 32				(R)
1H0502-755	75.74	287.56	76.58	74.64	74.92	76.86	.072	.0069	H 0541-742?	STR0458-755?
	-75.55	-32.99	-75.78	-75.42	-75.32	-75.68	-	.0005		
	05 02 56	290.61	05 06 18	04 58 32	04 59 41	05 07 25				
	-75 33 06	- 79.94	-75 46 34	-75 25 11	-75 19 27	-75 40 42	-			

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

		Ī									
CATALOG	POSIT	NOL			RROR BOX			FLUX	IDE	ENTIFICATIONS	
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-R/	٩Y	NON X-RAY
1H0504-290	76.17 -29.00	230.89 -34.37	77.75 -28.95	74.64 -29.35	74.59 -29.04	77.69 -28.63	.877	.0026 .0006			
	05 04 41 -29 00 07	70.37 -51.51	05 10 59 -28 56 53	04 58 34 -29 21 15	04 58 22 -29 02 14	05 10 45 -28 37 56					
1H0505-386	76.37	242.45	77.67	75.16	75.08	77.57	.566	.0032			
	-38.60	-36.15	-38.48	-38.99	-38.71	-38.21		6000			
	05 05 29 -38 36 08	67.68 -61.00	05 10 40 -38 28 35	05 00 38 -38 59 08	05 00 18 -38 42 49	05 10 17 -38 12 23					
1H0506-039	76.55	204.27	77.55	75.56	75.54	77.54	.324	.0035	4U 0506-03	XRS05065-034	
	-3.94	-24.57	-3.92	-4.13	-3.96	-3.76		.0005			
	05 06 11 -03 56 30	74.94 -26.69	05 10 12 -03 55 04	05 02 14 -04 07 30	05 02 10 -03 57 50	05 10 08 -03 45 25					
1H0507-459	76.94	251.62	77.67	76.26	76.20	77.61	.200	.0046	(1M)0510-44?	H 0517-456	Pic A
	-45.99 05 07 44	-36.49 64.87	-45.98 05 10 40	-46.19 05 05 02	-45.99 05 04 48	-45.78 05 10 25		9000	3U 0510-44		
	-45 59 17	-68.30	-45 58 47	-46 11 16	-45 59 30	-45 47 03					(R)
1H0509+166	77.33	186.10	77.78	76.89	76.88	TT.TT	.086	.0082	4U 0517+17	H 0509+167	
	16.69	-13.07	16.68	16.60	16.70	16.78		9000	XRS05175+175		
	05 09 19	77.80	05 11 07	05 07 32	05 07 30	05 11 05					
	07 14 01	77.0-	00 04 01	+1 0C 01	71 74 01	10 40 01	150	5 YUU	10 1 0500 1 11		
	3.14	-20.23	3.09	2.96	3.18	3.31	107.	00100			
	05 10 03	76.74	05 12 22	05 07 49	05 07 43	05 12 16					
	03 08 13	-19.74	03 05 32	02 57 47	03 10 54	03 18 39					
1H0512-401	78.12	244.51	78.12	78.12	78.12	78.12	000 [.]	.0150	2S 0512-400	2A 0512-399	NGC1851
	-40.10	-35.04	-40.10	-40.10	-40.10	-40.10	9	.0004	4U 0513-40	1M 0513-40	
	-40 06 04	-62.72	-40 06 04	-40 06 04	40 06 04-	40 06 04-			104-7100000	00+-+7100CNV	(R)
1H0513-518	78.30	258.95	79.56	77.10	77.05	79.49	.517	.0023			
	-51.88	-35.77	-51.97	-52.12	-51.78	-51.63		.0004			
	05 13 12 -51 52 50	62.61 -74.21	05 18 13 -51 57 56	05 08 23 -52 07 16	05 08 12 -51 46 56	-51 37 40					
1H0513+717	78.27	140.60	81.47	75.15	75.09	81.44	.220	.0041			
	71.75	18.91	71.80	71.55	71.66	71.90		.0004			
	05 13 04	84.48	05 25 52	05 00 36	05 00 21	05 25 46					
	71 45 14	48.53	71 47 42	71 33 06	71 39 36	71 54 17					
1H0515-488	78.84	255.23	79.85	77.87	77.84	79.81	.306	.0036			
	-48.85	-35.35	-48.89	-49.03	-48.80	-48.65		9000			
	-48 50 51	-71.38	-48 53 11	-49 01 58	-48 47 59	-48 39 15					

Continued
4
BLE
TA

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

NON X-RAY

PKS0521-365

ENTRY RA G. IH0515-363 78.97 24 1H0515-363 -36.36 -3. -36.36 -3. -36.36 -3. 1H0516+063 79.03 19 -4. 1H0516+063 79.03 19 -4. 1H0520+121 05 16 07 7 -4. 05 16 07 19 10.1 -1. 1H0520+121 90.07 19 11 1H0520+121 90.07 19 -1. 05 16 07 19 12.12 -1. 11005 05 12.01 -1. -1. 112.06 55 -1.1 05 20.16 38 11005 80.33 28 -1.1 05 20.18 05 21.18 23 -3.	AL R AL F AL F O.18 0.18 0.18 0.18 0.18 0.18 0.11 2.52 0.12 2.53 0.13 -36 0.01 -36 0.01 -36 0.13 -36 0.13 -36 0.13 -36 0.12 -36 0.12 -36 0.12 -36 0.11 05 0.256 07 0.11 05 0.256 07 0.356 -72	KA hEC 80.08 36.38 36.38 80.04 6.35 6.35 6.35 6.35 6.35 80.04 12.03 80.03 12.03 12.03 12.22 22.20 80.33 21.18 21.1	RA DEC 77.88 -36.56 05 11 31 -36.56 05 13 51 78.03 6.19 6.19 6.19 05 12 07 06 11 85 78.78 78.78 78.78 78.78 78.78 11.85 05 15 06 05 15 06 11 51 08 05 15 06 05 15 06 11 51 08 11 51 07 11 51 07 110 100 100 10000000000000000000000	RA DEC 77.85 -36.33	RA	104				5
IH0515-363 78.97 244 -36.36 -35 -36.36 -36.36 -35 -35 05 15 52 77 -36.21 24 -95 19 1H0516+063 79.03 19 19 6.32 -1. 6.32 -1. 1H0520+121 90.07 19 19 1H0520+121 90.07 19 19 1H0520+121 90.03 12.12 -11 1H0520+121 90.03 28 -11 112 05 12.12 -12 112 05 12 -12 112 05 13 28 110521-720 80.33 28 110521-720 80.33 28 110521-720 05 21 05 05 11 29	0.18 3.74 2.55 9.13 7.29 6.07 6.70 0.6 1.52 8.61 0.5 1.52 0.09 1.52 0.09 1.25 0.09 1.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	80.08 36.38 2.20 20 80.04 6.35 6.35 6.35 6.35 80.04 1.39 11.39 11.39 11.39 11.53 21.18 21.18 21.18 21.18	77.88 -36.56 05 11 31 -36.33 51 -36 33 51 -78.03 6.19 6.19 6.19 05 12 07 06 11 21 78.78 11.85 11.85 05 15 06 11 151 08 -72.01	77.85	DEC	AKEA	ERROR	×	RAY	X NON
		26.38 22.22.22 22.22.22 20.63 20.63 20.63 20.63 20.63 20.50 21.12 21.13	-36.36 31 31 36 33 51 78.03 78.03 78.78 11.85 06 11 21 78.78 11.85 05 15 06 980.33 80.33 -72.01	-30.33	80.05	.427	.0030			PKS052
-36 21 24 -56 -36 21 24 -57 110516+063 79.03 19 6.32 11 05 16 07 11 05 16 07 11 06 19 01 11 12.12 12 90.07 12 05 20 16 80.07 12 12 05 20 16 80.03 28 110521-720 80.33 28 28 05 21 18 29	9.13 -36 6.07 7.29 7.29 6.07 6.07 05 6.70 06 6.71 05 3.36 0.11 0.33 0.011 0.999 11 12.569 12 13.569 12 13.569 12	222 41 6.35 6.36 6.35 20 50 81.39 12.03 12.03 25 32 25 32 01 59 21 18 21 18	36 33 51 78.03 78.03 6.19 05 12 07 78.78 11.85 06 11 21 78.78 05 15 06 80.33 80.33 80.33	05 11 25 1	-36.14		c000			
IH0516+063 79.03 19 6.32 -17 6.32 -17 05 16 07 73 05 16 07 73 06 19 01 -14 00 19 1140520+121 80.07 19 19 1212 12.12 -17 12 1200 12.03 28 10 1100521-720 80.33 28 1100521-720 80.33 28 1202 112 28 1203 28 13 1203 28 13 1203 28 13 1203 28 13 1203 23 13	6.07 7.29 8.61 05 6.70 06 6.70 06 1.1.52 3.3.6 0.11 05 0.99 12 2.2.69 12 2.2.69 7.67 05 7.56 0.93 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.2.69 12 2.3.36 12 2.3.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 12 2.56 2.56 12 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.5	80.04 6.35 6.35 20 50 81.39 12.03 12.03 12.03 80.33 80.33 21 18	78.03 6.19 6.19 05 12 07 06 11 21 78.78 11.85 05 15 06 05 15 06 11 51 08 80.33 80.33	-36 19 30	-36 08 23					(R)
6.32 -17 05 16 07 78 06 19 01 -14 06 19 01 -14 12.12 -15 12.12 -15 12.02 016 12.02 18 12.03 28 12.03 28 110521-720 80.33 28 110521-720 80.33 28 110521 18 29	7.29 8.61 05 6.70 06 6.70 06 1.152 3.3.6 0.0.11 05 0.0.9 12 1.2.69 12.5.69 7.5.67 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 7.5.69 05 05 05 05 05 05 05 05 05 05 05 05 05	6.35 20 08 81.39 112.03 25 32 01 59 01 59 25 32 01 59 25 32 25 32 01 59 21 18	6.19 05 12 07 06 11 21 78.78 11.85 05 15 06 11 51 08 80.33 -72.01	78.02	80.03	.192	.0044	4U 0519+06	XRS05198+065	A539?
05 16 07 78 06 19 01 -16 06 19 01 -16 12.12 -1: 12.02 16 8 12 05 016 80.33 28 110521-720 80.33 28 110521-720 80.33 28 29 05 21 18 29	8.61 05 6.70 06 1.1.52 06 0.11 05 0.011 05 0.09 12 1.2.69 12 7.67 05	20 08 20 50 81.39 112.03 25 32 01 59 01 59 21 18 22 18	05 12 07 06 11 21 78.78 11.85 05 15 06 11 51 08 80.33 80.33	6.28	6.44		.0003			
IH0520+121 0.0 1.0 110520+121 98.07 191 12.12 12.12 -11 05 12 12 -11 110521-720 80.33 28 -11 110521-720 80.33 28 -38 110521-720 80.33 28 -38 1205 05 21 -38 05 21 18 29	0.11 05 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.09 12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	81.39 81.39 25 32 01 59 80.33 21 18	78.78 78.78 05 15 06 11 51 08 80.33 80.33	05 12 05	05 20 07					(B)
12.12 -11 05 20 12 -12 05 20 12 -12 12 06 55 -10 110521-720 80.33 28 -32 110521-720 29 29 29 29 29 29 29 29 29	3.36 0.11 05 0.99 12 13.09 12 12.69 05 13.58 72	25 32 25 32 01 59 80.33 21 18 21 18	05 15 06 05 15 06 11 51 08 80.33 80.33	20 11 00	91 36	870	003			
05 20 16 80 12 06 55 -10 140521-720 80.33 28 -328 -328 -33 -35 -35 -35 -35 -35 -35 -35 -35 -35	0.11 05 0.99 12 3.09 12 2.69 05 7.67 05 3.58 -72	25 32 01 59 80.33 21 18 21 18	05 15 06 11 51 08 80.33 -72.01	12.19	12.37	200	0000.			
12 06 55 -10 1H0521-720 80.33 28: -72.01 -3: 05 21 18 29	0.99 12 3.09 12 7.67 05 3.58 72	01 59 80.33 -72.01 21 18	11 51 08 80.33 -72.01	05 15 00	05 25 27					
1H0521-720 80.33 283 -72.01 -33 05 21 18 29	3.09 2.69 7.67 05 3.58 -72	80.33 -72.01 21 18	80.33 -72.01	12 11 29	12 22 20					
-72.01 -37 05 21 18 29'	2.69 7.67 05 3.58 -72	21 18	-72.01	80.33	80.33	000	.0579	2A 0521-720	4U 0520-72	
67 91 17 CN	0. 1.0/ 0.53 -72	81 17	01 01 10	-72.01	-72.01		.0004	IM 0521-72	LMC X-2	
	3.36 -12		81 17 CD	81 17 CN	81 17 CO			07/-1700000	AKSU3213-/19	
- /2 00 19 -8.	C 2 2	00 19	-/2 00 19	-12 00 19	61 m 7/-					(K)
1H0521 + 373 80.30 170		81.84	78.78	78.75	81.82	.732	.0025	4U 0515+38	XRS05150+384	
20.75	20 70 C	C7.16	3/.08	06 15 00	21.75.30		0000.			
0 11 12 00 01 22 10 42 14	4 15 37	CI 51	00 CT C0	00 57 75	01 17 00					
			10 00 10	00 07 10	01 00 10		0057			
1HU322+283 80.70 177	8.10	17.18	12.08	02.08	81.20	771.	9000			
05 22 49 81	1.79 05	24 50	05 20 50	05 20 47	05 24 48				,	
28 18 51	5.13 28	16 23	28 12 57	28 21 12	28 24 39					
1H0523-118 80.99 214	4.15	81.66	80.33	80.32	81.64	.234	.0044			
-11.81 -24	4.16 -	-11.85	-11.95	-11.77	-11.67		.0005			
05 23 57 79	9.22 05	26 37	05 21 19	05 21 16	05 26 34					
-11 48 37 -34	4.92 -11	51 07	-11 56 49	-11 46 02	-11 40 21					
1H0524-552 81.18 26:	3.00	82.95	79.58	79.40	82.74	.772	.0022			STR052
-55.20 -34	4.06	-55.09	-55.67	-55.30	-54.72		.0007			
	5.34 05	31 47	05 18 19	05 17 36	05 30 57					
/- /1 71 cc-	CC- 60.1	00 00	71 04 00-	cc /1 cc-	50 C+ +C-					
1H0525+340 81.30 17	3.73	82.51	80.10	80.09	82.50	.280	.0036			
34.00	35	66.55	53.8/ 05 20 24	34.01	34.13		4000.			
34 00 00 11	CO 00.7	10 05	47 07 CO	17 07 CO	34 07 40					
	01.0	01 10	01 20	01 00 10	04 10 40	070	1700	915 3130 V C	VDCA5760 270	TV Cal
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.00	04.17	01.70	01.10	07.10	900'	000	07C-07C0 W7	07C-LOTCOCVV	
		70.20	15 25 20	61.26-	71.76-		t 000.	0		
-32 48 10 -54	CO 70.7	- 76 07	10 53 05	-37 47 08	24 07 00-237 43 26					(R)

STR0524-553

TV Col

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

CATALOG	POSIT	ION		<u>ل</u> عا	REOR BOX			FLUX	II	DENTIFICATION	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0529+427	82.42	166.94	84.31	80.55	80.52	84.29	.942	.0050			VRO 42.05.21
	42.72	5.22	42.62	42.46	42.80	42.96		.0013			
	05 29 39	84.10	05 37 14	05 22 12	05 22 03	05 37 10					
	42 43 24	19.43	42 36 55	42 27 41	42 48 01	42 57 18					
1H0530-054	82.66	208.80	83.67	81.66	81.66	83.67	.064	.0198	2A 0532-056	4U 0531-05	M42
	-5.48	-19.89	-5.43	-5.55	-5.52	-5.40		.0004	XRS05328-0566	9	Orion Nebula
	05 30 39	81.67	05 34 40	05 26 38	05 26 38	05 34 39					
	-05 28 30	-28.71	-05 25 56	-05 32 53	-05 30 58	-05 24 01					(R)
1H0531-070	82.76	210.37	83.77	81.76	81.75	83.77	.152	.0070			lota Ori region
	-7.08	-20.53	-7.06	-7.18	-7.10	-6.98		.0004			1
	05 31 03	81.67	05 35 05	05 27 02	05 27 01	05 35 03					
	-07 04 48	-30.32	-07 03 31	-07 10 30	-07 05 56	-06 58 58					(R)
1H0531+219	82.88	184.56	82.88	82.88	82.88	82.88	000	4.1120	4U 0531+21	1M 0531+21	Crab Nebula
	21.98	-5.79	21.98	21.98	21.98	21.98		.0464	Tau X-1	XRS05315+219	Crab Pulsar
	05 31 30	83.40	02 31 30	05 31 30	05 31 30	05 31 30					
	21 58 54	-1.30	21 58 54	21 58 54	21 58 54	21 58 54					(R)
1H0533+607	83.42	151.65	84.55	82.31	82.29	84.54	.286	.0061	4U 0541+60?		
	60.73	15.15	60.61	60.58	60.84	60.87		1100.			
	05 33 41	85.96	05 38 12	05 29 14	05 29 08	05 38 10					
	60 43 55	37.38	60 36 47	60 34 54	60 50 29	60 52 23					
1H0534-667	83.72	276.66	83.71	83.67	83.73	83.77	.048	.0751	2A 0532-664	4U 0532-66	
	-66.70	-32.29	-67.70	-65.70	-65.70	-67.70		.0007	LMC X-4	XRS05328-663	
	05 34 52	353.76	05 34 50	05 34 40	05 34 54	05 35 05		_			
	-66 42 00	-87.50	-67 42 00	-65 42 01	-65 42 00	-67 42 00					(R)
1H0536+263	84.06	181.47	84.40	83.73	83.72	84.39	.048	.0145	1S 0535+26	A 0535+26	HDE245770
	26.32	-2.54	26.29	26.26	26.34	26.37		6000	4U 0538+26	CGS0535+262	V725 Tau
	05 36 14	84.6/	<pre></pre>	05 34 54	05 34 53	05 37 34			XRS05357+262		į
	10 81 97	7.98	CI / I 07	20 15 49	70 20 36	26 22 03					(K)
1H0538-641	84.71	273.58	84.71	84.71	84.71	84.71	000	.0369	2A 0539-642	4U 0538-64	
	-64.11	-32.06	-64.11	-64.11	-64.11	-64.11		.0003	1M 0539-64	LMC X-3	
	05 38 51	45.46	05 38 51	05 38 51	05 38 51	05 38 51			CGS0538-641	XRS05389-641	
	-64 06 47	-86.71	-64 06 47	-64 06 47	-64 06 47	-64 06 47					(R)
1H0538-577	84.68	266.10	85.17	84.23	84.18	85.13	.052	.0044	H 0534-581		
	-57.78	-32.16	-57.77	-57.89	-57.79	-57.67		.0003			
	05 38 42	71.80	05 40 41	05 36 54	05 36 43	05 40 30					
	-57 46 50	-80.89	-57 45 59	-57 53 25	-57 47 35	-57 40 10					
1H0538+401	84.74	170.05	85.84	83.65	83.63	85.84	.470	.0048			
	40.16	5.32	40.04	39.98	40.26	40.32		.0011			
	05 38 57	85.80	05 43 22	05 34 36	05 34 32	05 43 20					
	40 09 33	16.79	40 02 31	39 59 04	40 15 51	40 19 25 1					

$\ensuremath{\mathbb{C}}$ American Astronomical Society $\ensuremath{\, \bullet \,}$ Provided by the NASA Astrophysics Data System

	S	NON X-RAY										í,	(11)	A548			(R)													PKS0537-44?			(R)								
	DENTIFICATION	łAY								4U 0540-69	LMC X-1																											XRS05598-571			
	II	I-X								2A 0540-698	1M 0540-69	CGS0540-697																										4U 0559-57			
	FLUX	ERROR	.0040	9000		0059	1100	1100.		.0946	.0003			.0035	.0008			.0034	.0003			.0039	.0005			.0041	.0005			.0028	.0004			.0018	.0004			.0037	.0004		
inuea		AREA	.248	_		312				000				.562				.132				.194				.205				.320				.200		-		.280			
		RA DEC	85.42	-22.47	05 41 41	86.23	59 13	05 44 55	59 08 04	85.04	-69.76	05 40 09	06 64 40-	86.60	-25.69	05 46 23	-25 41 24	86.36	-40.64	05 45 25	-40 38 09	86.53	-28.83	05 46 07	-28 49 30	86.51	-20.47	05 46 02	-20 28 08	87.77	-43.81	05 51 03	-43 48 20	87.67	-60.02	05 50 39	-60 01 06	88.70	-57.33	05 54 49	-57 19 39
	RROR BOX	RA DEC	84.09	-22.61	05 36 21	02 28	11 65	05 34 47	59 06 49	85.04	-69.76	05 40 09	06 64 60-	84.20	-25.81	05 36 48	-25 48 32	85.12	-40.71	05 40 28	-40 42 22	85.30	-28.86	05 41 11	-28 51 39	85.14	-20.51	05 40 34	-20 30 44	85.55	-43.94	05 42 12	-43 56 33	86.16	-60.05	05 44 38	-60 02 47	85.02	-57.60	05 40 04	-57 35 58
	E	RA DEC	84.11	-22.81	05 36 27	12 02 07 22	58.87	05 34 51	58 52 25	85.04	-69.76	05 40 09	00 04 60-	84.22	-26.07	05 36 52	-26 04 07	85.13	-40.85	05 40 31	-40 50 45	85.30	-29.04	05 41 12	-29 02 27	85.15	-20.67	05 40 35	-20 40 20	85.57	-44.14	05 42 17	-44 08 31	86.18	-60.31	05 44 42	-60 18 45	85.05	-57.74	05 40 11	-57 44 19
		RA DEC	85.45	-22.67	05 41 47	86.23	58.89	05 44 54	58 53 40	85.04	-69.76	05 40 09	DC C+ 60-	86.62	-25.95	05 46 28	-25 56 58	86.37	-40.78	05 45 29	-40 46 32	86.54	-29.01	05 46 09	-29 00 18	86.52	-20.63	05 46 03	-20 37 44	87.79	-44.00	02 21 10	-44 00 16	87.69	-60.28	05 50 46	-60 17 02	88.75	-57.47	05 54 59	-57 27 57
	ION	GAL ECL	226.68	-25.04	83.05 45 06	153 50	14 99	86.81	35.62	280.19	-31.51	297.65	00.00-	230.27	-25.61	83.67	-49.23	246.48	-29.44	82.61	-64.08	233.64	-26.18	84.15	-52.30	224.96	-23.37	84.57	-43.94	250.27	-29.41	83.77	-67.35	268.94	-31.06	76.43	-83.47	265.88	-30.97	79.41	-80.88
	POSIT	RA DEC	84.77	-22.64	05 39 04	84 07	10 65	05 39 52	59 00 37	85.04	-69.76	05 40 09	00 04 60-	85.41	-25.88	05 41 38	-25 53 03	85.75	-40.74	05 42 58	-40 44 33	85.92	-28.93	05 43 40	-28 56 04	85.83	-20.57	05 43 19	-20 34 19	86.67	-43.98	05 46 41	-43 58 44	86.92	-60.17	05 47 41	-60 10 03	86.89	-57.55	05 47 32	-57 32 47
	CATALOG	ENTRY	1H0539-226			1405304590				1H0540-697				1H0541-258				1H0542-407				1H0543-289				1H0543-205				1H0546-439				1H0547-601		-		1H0547-575			

C TABLE 4-

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

pən
Contir
4-0
3LE
TA

CATALOG	POSIT	ION			RROR BOX			FLUX	II	ENTIFICATIONS	5
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-F	LAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0548-322	87.14	237.49	88.32	85.96	85.95	88.32	.132	.0080	4U 0543-31	1M 0545-32	PKS0548-322
	-32.23	-26.18	-32.22	-32.29	-32.22	-32.15		.0004	XRS05438-316		
	05 48 32	85.71	05 53 16	05 43 49	05 43 48	05 53 15					
	-32 13 39	-55.63	-32 13 11	-32 17 25	-32 13 28	-32 09 14		-			(R)
1H0550+541	87.69	158.71	92.42	82.98	82.92	92.46	2.446	.0037			
	54.19	14.04	53.92	53.84	54.28	54.35		.0019			
	05 50 46	88.43	06 09 41	05 31 56	05 31 41	06 09 50					
	54 11 34	30.76	53 54 56	53 50 41	54 16 58	54 21 16					
1H0551-819	87.89	294.04	92.43	83.35	83.47	92.31	.277	.0032			
	-81.93	-29.11	-82.01	-82.01	-81.79	-81.79		9000			
	05 51 33	271.12	06 09 42	05 33 24	05 33 53	06 09 14					
	-81 55 38	-74.62	-82 00 47	-82 00 41	-81 47 32	-81 47 37					
1H0551-074	87.84	213.08	88.29	87.38	87.38	88.29	.126	.0072	H 0550-075		NGC2110
	-7.44	-16.19	-7.50	-7.52	-7.38	-7.36		.0007			
	05 51 20	87.50	05 53 09	05 49 32	05 49 31	05 53 08					
	-07 26 31	-30.87	-07 30 02	-07 31 23	-07 22 59	-07 21 38					(R)
1H0551+463	87.89	165.82	89.34	86.45	86.44	89.34	.248	.0078	2A 0551+446	4U 0558+46	MCG8-11-11
	46 37	10.44	46.32	46.29	46.41	46.44		8000.	1M 0600+46	XRS05512+466	
	05 51 34	88.42	05 57 22	05 45 47	05 45 45	05 57 22					
	46 22 20	22.94	46 19 01	46 17 07	46 24 33	46 26 27					(R)
1H0553-480	88.37	255.14	89.13	87.64	87.62	89.10	.160	.0047	4U 0553-48?		
	-48.08	-28.99	-48.09	-48.22	-48.06	-47.93		.0005			
	05 53 29	86.58	05 56 31	05 50 34	05 50 28	05 56 24					
	-48 04 38	-71.50	-48 05 33	-48 12 56	-48 03 24	-47 56 02					
1H0555-384	88.99	244.67	89.46	88.54	88.53	89.45	.072	.0070	4U 0557-38	XRS05570-381	
	-38.49	-26.47	-38.52	-38.55	-38.45	-38.42		9000			
	05 55 58	88.32	05 57 49	05 54 08	05 54 07	05 57 47					
	-38 29 16	-61.93	-38 31 12	-38 33 13-	-38 27 13	-38 25 13					(R)
1H0555+680	88.81	145.86	91.47	86.15	86.13	91.49	.312	.0041			
	68.03	20.46	67.94	61.91	68.07	68.09		.0005			
	05 55 13	89.37	06 05 53	05 44 35	05 44 30	06 05 56					
	68 01 30	44.58	67 56 14	67 54 51	68 04 11	68 05 35					
1H0556+286	89.23	181.84	90.37	88.09	88.09	90.37	.292	.0051	4U 0548+29	XRS05480+290	
	28.67	2.59	28.60	28.59	28.73	28.74		9000	•		
	05 56 54	89.32	06 01 27	05 52 21	05 52 20	06 01 27					
	28 40 08	5.23	28 35 48	28 35 09	28 43 54	28 44 33					
1H0556+126	89.19	195.71	89.83	88.54	88.54	89.83	.227	.0075			
	12.64	-5.45	12.55	12.55	12.73	12.73		6000			
	05 56 45	89.19	05 59 19	05 54 10	05 54 09	05 59 19					
	12 38 37	-10.80	12 33 14	12 33 06	12 43 54	12 44 02					(R)

541
				_										_			-	_							_							T						
	NON X-RAY									STR0609-657?				V1055 Ori		(R)	IC443			(R)	3C153?			(R)	SC 0620-646			TELOCOL CAL	++C-/70011C		(R)	STR0631-562?						
ENTIFICATIONS	AY													4U 0614+09	CG20014+09		1M 0614+22				XRS06088+497							11 0/01 F4	4C-1700 04									
a	X-R													2S 0614+091	IM 0614+09 YP S06143+001	160 1 CE100CVV	4U 0617+23	XRS06137+224			2A 0608+497							11 0/01 611	ZA 0020-341 XP S06761-541	110-10700CVIV		(1M)0624-55?						
FLUX	ERROR	.0060	.0005			.0075	.0008			.0043	.0003			.1804	+ncn.		.0376	.0021			.0108	.0018			.0043	.0004		0100	0/00			.0045	.0007			.0032	.0004	
	AREA	.070				.128				.037				.077			.022				.354				.075			000	026.	_		.243				.101		
	RA DEC	89.90	-50.23	05 59 36	-50 13 31	92.03	-35.00	06 08 06	-35 00 07	92.60	-65.94	06 10 24	CF 9C C9-	93.66	9.17	66 ti 00	93.33	22.64	06 13 18	22 38 28	94.55	48.04	06 18 13	48 02 17	95.56	-64.80	06 22 13		54.08 -54.08	00.FC-	-54 04 31	97.80	-56.32	06 31 11	-56 19 18	97.63	-60.98	06 30 31
RROR BOX	RA DEC	88.81	-50.28	05 55 14	-50 16 35	91.05	-35.05	06 04 12	-35 03 08	92.10	-65.84	06 08 23	97 06 69-	91.72	17.4 DK DK 53	00 00 02 00 02 00 09 12 40	92.94	22.65	06 11 44	22 38 50	92.40	48.09	06 09 36	48 05 06	95.03	-64.41	06 20 08	07 17 10-	CI.#Y	21.00-	-53 42 57	96.06	-56.05	06 24 13	-56 03 12	96.60	-60.71	06 26 23
E	RA DEC	88.82	-50.38	05 55 16	-50 22 34	91.06	-35.21	06 04 15	-35 12 43	91.92	-65.99	06 07 40	90 65 69-	91.72	9.17 06.06.53	00 10 16	92.94	22.59	06 11 44	22 35 14	92.40	47.84	06 09 35	47 50 20	94.70	-64.49	06 18 47	17 67 40-	53.87	0.01-00	-53 52 21	95.94	-56.29	06 23 44	-56 17 08	96.43	-60.86	06 25 42 -60 51 44
	RA DEC	16.68	-50.33	05 59 39	-50 19 30	92.04	-35.16	06 08 09	-35 09 42	92.42	-66.09	06 09 41	81 CD 99-	93.66	0.13 06 14 30	09 07 37	93.33	22.58	06 13 18	22 34 52	94.54	47.79	06 18 08	47 47 33	95.22	-64.88	06 20 52	10 70 40-	C4.17	06 20 48	-54 14 00	69.76	-56.56	06 30 45	-56 33 20	97.46	-61.14	06 29 50 -61 08 08
NOI	GAL ECL	257.76	-28.72	88.54	-73.74	241.73	-23.55	92.42	-58.54	275.73	-28.88	148.08	-88.92	200.44	-4.14 00 74	-14.25	188.85	2.70	92.89	80	166.15	14.53	92.56	24.53	274.35	-27.58	140.30	C1.10-	C0.202	105 44	-77.12	265.31	-25.41	110.84	-79.26	270.36	-26.20	122.10
POSIT	RA DEC	89.36	-50.30	05 57 26	-50 18 07	91.55	-35.11	06 06 11	-35 06 28	92.26	-65.96	06 09 02	75 / 5 69-	92.69	9.17 06 10 45	00 10 13	93.13	22.61	06 12 31	22 36 52	93.47	47.94	06 13 53	47 56 37	95.12	-64.64	06 20 29	04 00 40-	61.04 62.00	06.22-00	-53 59 09	96.87	-56.31	06 27 28	-56 18 26	97.03	-60.92	06 28 06 -60 55 21
CATALOG	ENTRY	1H0557-503	_		_	1H0606-351		_	_	1H0609-659				1H0610+091			1H0612+226		_		1H0613+479	_	-		1H0620-646	_			600-0700HI			1H0627-563				1H0628-609		

Continued	
1	
FABLE 4	

ATALOG	POSIT	ION		E	RROR BO	1		FLUX		IDENTIFICATIO	SN
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	-x	RAY	NON X-RAY
0633-752	98.40 -75.21	286.33 -27.40	99.65 -75.15	97.35 -75.40	97.14 -75.27	99.43 -75.02	060 [.]	.0032 .0003			PKS0637-75?
	06 33 36 -75 12 49	256.31 -80.94	06 38 37 -75 08 47	06 29 23 -75 24 11	06 28 32 -75 16 25	06 37 42 -75 01 09					(R)
0633 + 049	98.28	206.73	99.20	97.34	97.35	99.22	.484	.0061			3C163
	5.00	-1.21	4.82	4.92	5.18	5.07		.001			NGC2337
	06 33 06 04 59 49	98.68 -18.20	06 36 48	06 29 20	06 29 24	06 36 51					
0635-431	98.87	251.90	99.62	98.08	98.11	99.66	194	0047			
	-43.16	-20.67	-43.31	-43.18	-43.01	-43.14		.0006			
	06 35 27	106.12	06 38 29	06 32 20	06 32 27	06 38 35					
	-43 09 44	-66.11	-43 18 36	-43 10 48	-43 00 33	-43 08 21					
0635-292	98.87	238.21	100.00	. 97.72	97.74	100.02	.400	.0046	4U 0628-28?	XRS06288-284	
	-29.24	-15.69	-29.44	-29.24	-29.04	-29.24		.000			
	06 35 28	102.71	06 39 59	06 30 52	06 30 58	06 40 04					
	-29 14 29	-52.30	-29 26 12	-29 14 09	-29 02 13	-29 14 14					
0636-403	99.03	249.15	100.30	97.70	97.76	100.35	.644	.0033			
	-40.39	-19.65	-40.68	-40.40	-40.08	-40.36		6000'			
	06 36 06	105.45	06 41 12	06 30 46	06 31 02	06 41 25					
	-40 23 07	-63.35	-40 40 36	-40 23 52	-40 04 47	-40 21 26					
637-387	99.30	247.62	100.55	98.01	98.06	100.60	.588	.0033	4U0627-38		
	-38.77	-18.89	-39.04	-38.77	-38.48	-38.75		.0008			
	06 37 12	105.43	06 42 12	06 32 01	06 32 15	06 42 23		_			
	-38 46 02	-61.72	-39 02 31	-38 46 12	-38 28 46	-38 45 01					
637+535	99.49	162.24	101.14	97.79	97.82	101.19	.592	.0031	H 0643+534		Anon 0637+53
	53.53	20.16	53.29	53.44	53.74	53.58	;	.0010			
	06 37 56	96.52	06 44 32	06 31 10	06 31 16	06 44 44					į
1 10	10 10 001	75100	22 101	00 07 00	+1 ++ CC	c0 cc cc	ì	0000			(K)
041-410	100.43	00.101	C/ 101	11.00	91.66	101.80	01C.	2500.			
	06.41.48	109 28	06 47 00	06 36 24	01 35 30	-41.68		/000			
	-41 51 02	-64.63	-42 08 20	-41 48 05	-41 32 52	-41 53 02					
641 + 741	100.35	140.66	103.91	96.68	96.70	103.99	.256	.0050	4U 0638+74	XRS06384+472	
	74.14	25.76	73.93	74.16	74.29	74.06	-	.0005			
	06 41 23	94.46	06 55 38	06 26 42	06 26 48	06 55 58					
	74 08 19	50.85	73 55 56	74 09 26	74 17 06	74 03 30					
0645-633	101.30	273.44	101.52	100.80	101.10	101.81	.088	.0039			
	-63.37	-24.71	-63.64	-63.20	-63.11	-63.54		.0004			
	-63 22 20	-84.27	-63 38 14	-63 12 12	-63 06 25	-63 32 21					

TABLE 4—Continued

Continued
1
E4
ABI
Ê

CATALOG	POSIT	ION		E	RROR BOX			FLUX		DENTIFICATION	
ENTDV	V Q	14.5	V Q	V Q	V Q	V Q	ADEA	CDDDD			V. A V NON
	DEC	ECL	DEC	DEC	DEC	DEC	AKEA	ERRUR	ŀ	IVY	NUN A-KAY
1H0646+152	101.57	199.08	102.59	100.53	100.55	102.62	.536	.0036			
	12.21 DK 46 16	6.38 101 36	00.01	15.22	04 40 11 CF 40	15.32		8000.			
	15 16 25	-7.72	15 03 26	15 13 05	15 29 07	15 19 27					
1H0646+250	101.65	190.21	102.35	100.92	100.94	102.37	.286	.0072			
	25.07	10.75	24.91	25.01	25.23	25.13		.001			
	06 46 35	100.54	06 49 24	06 43 41	06 43 46	06 49 29					
	25 04 13	2.05	24 54 22	25 00 42	25 13 52	25 07 31					
1H0655+375	103.75	179.11	104.99	102.48	102.51	105.03	.532	.0034			
	37.60	17.41	37.36	37.55	37.82	37.62		.0007			
	37 35 42	14.68	37 21 30	06 49 55 37 33 13	06 50 02 37 49 07	37 37 21					
1H0656-525	104.13	262.61	105.81	102.28	102.49	106.01	.701	.0021			
	-52.57	-20.35	-53.18	-52.20	-51.93	-52.91		9000.			
	06 56 30	123.42	07 03 15	06 49 07	06 49 57	07 04 01					
	-52 34 06	-74.37	-53 10 45	-52 12 09	-51 56 04	-52 54 18					
1H0658+595	104.57	156.85	106.47	102.58	102.64	106.57	.700	.0023			
	59.52	24.51	59.21	59.46	59.80	59.55		.000			
	06 58 17	99.14	07 05 52	06 50 18	06 50 34	07 06 17					
	59 31 12	36.54	59 12 29	59 27 21	59 48 15	59 33 13					
1H0659-494	104.93	259.67	105.97	103.78	103.89	106.08	.360	.0048	4U 0708-49	XRS07084-492	
	-49.44	-18.82	-49.77	-49.33	-49.10	-49.53		.0008			
	06 59 42	121.42	07 03 53	06 55 07	06 55 34	07 04 18	-				
	-49 26 19	-71.26	-49 45 59	-49 19 55	-49 06 05	-49 32 02					
1H0659+453	104.87	171.70	106.27	103.44	103.46	106.29	.256	.0071	2A 0710+456	XRS07107+456	Mkn 376?
	45.34	20.84	45.16	45.38	45.51	45.29		.0008			
	45 20 37	22.48	45 09 40	45 22 54	45 30 33 45 30 33	40 c0 /0 45 17 17		_			(R)
1H0703+508	105.83	166.23	107.38	104.24	104.26	107.41	.248	.0071			NGC2321
	50.85	23.07	50.65	50.90	51.02	50.78	-	.000			
	07 03 18	101.25	07 09 31	06 56 57	06 57 02	07 09 37					
	50 50 54	28.02	50 39 13	50 53 57	51 01 21	50 46 35					
1H0705-812	106.39	293.23	110.77	102.54	101.79	109.87	379	.0029			
	-81.23	-26.43	- 20.09	-81.67	-81.43	-80.76		.0007			
	55 CO 10	260.58	CU 23 02	06 50 08	06 4/ 09	07 19 28					
	-81 14 03	- 14.11	77 60 08-	-81 40 12	-81 25 32	-80 45 47					
1H0706-567	106.74	267.39	107.15	106.24	106.34	107.25	.063	.0055	2A 0700-563	H 0700-563	
	0/.0C- 07.0K.58	126.76	14.00-	70.0C-	10 20 20	02.00-		-0004 			
	-56 47 00	01.0C1	-56 58 24	-56 41 12	-56 35 30	-56 52 39					

										_					_			_	_	_	_		_					-		-								
s	NON X-RAY	RNGC2337?											A576?	Mkn 85?		(R)			-								í,											
DENTIFICATION	RAY				4U 0711-38?	XRS07080-357							XRS07202+558								XRS07113-384															XRS07290-379		
	l-X				2A 0708-357	(1M)0657-35						:	4U 0720+55				H 0712-113				4U 0711-38				1E 0716+71											4U 0729-37		
FLUX	ERROR	.0060	.001		.0038	6000			. 1600.	.0008			.0074	.0008			.0068	.0008			.0031	.000			.0030	.0005			.0029	com.		.0056	.001			.0025	9000.	
	AREA	.562			.653				.228				.277				.170				.592				.420				.307			504				608.		
	RA DEC	108.43	44.30	44 18 10	108.71	-36.08	07 14 49	-36 05 05	108.90	18.30	07 15 35	18 18 11	109.48	55.79	07 17 56	55 47 40	108.87	-11.27	07 15 28	-11 15 59	109.88	-39,19	07 19 30	-39 11 36	112.51	71.31	07 30 02	CC 91 1/	112.37	- 14.42	-74 25 13	112.25	-13.22	07 28 59	-13 13 20	113.01	-37.84	07 32 02 -37 50 18
REOR BOX	RA DEC	105.43	44.57	44 34 26	106.25	-35.63	07 05 00	-35 38 02	106.81	18.55	07 07 13	18 32 51	106.76	56.01	07 07 03	56 00 39	107.80	-11.12	07 11 11	-11 06 57	107.39	-38.68	07 09 34	-38 40 41	106.33	71.71	07 05 19	15 74 11	108.72	87.61-	-75 16 33	110.55	-12.90	07 22 12	-12 54 05	110.59	-37.27	07 22 21
æ	RA DEC	105.39	44.32	44 18 55	106.16	-35.95	07 04 38	-35 56 42	106.79	18.43	07 07 10	18 26 03	106.73	55.83	07 06 54	55 49 56	107.78	-11.27	07 11 06	-11 16 28	107.29	-38.96	04 09 09	-38 57 46	106.23	71.50	07 04 55		109.34	04.07-	-75 27 30	110.49	-13.20	07 21 58	-13 11 44	110.48	-37.56	07 21 54
	RA DEC	108.38	44.05	44 02 44	108.62	-36.40	07 14 29	-36 23 51	108.88	18.19	07 15 32	18 11 24	109.43	55.62	07 17 43	55 37 00	108.85	-11.43	07 15 23	-11 25 30	109.79	-39.48	07 19 08	-39 28 49	112.35	71.11	07 29 24	17 00 1/	112.99	92.11.20	-74 35 35	112.19	-13.52	07 28 45	-13 31 01	112.91	-38.13	07 31 37 -38 07 52
ION	GAL ECL	173.23	21.91	21.63	247.60	-11.88	117.08	-57.84	198.90	13.13	106.95	-4.03	161.28	25.57	102.03	33.13	225.78	.12	111.66	-33.35	250.83	-12.36	120.25	-60.59	143.99	28.12	99.20	40.01	286.65	-24.19	-79.26	228.91	1.82	115.59	-34.78	250.70	-9.54	124.22
POSIT	RA DEC	106.91	44.32	44 19 09	107.43	-36.02	07 09 43	-36 01 18	107.85	18.37	07 11 23	18 22 17	108.11	55.82	07 12 25	55 49 16	108.32	-11.27	07 13 17	-11 16 16	108.58	-39.09	07 14 19	-39 05 07	109.39	71.43	07 17 33	CC C7 1/	110.91	- /4.94	-74 56 40	111.37	-13.21	07 25 28	-13 12 38	111.74	-37.71	07 26 57
CATALOG	ENTRY	1H0707+443			1H0709-360				1H0711+183				1H0712+558				1H0713-112				1H0714-390				1H0717+714				1H0723-749			1H0725-132				1H0726-377		

Continued
4
TABLE

CATALOG	POSIT	NOI		E	RROR BOX			FLUX	IDENTIFICATIO	SNC
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-RAY	NON X-RAY
1H0726-259	111.57 -25.99	240.21 -4.15	112.64 -26.27	110.47 -25.84	110.50 -25.71	112.67 -26.14	.280	.0062 .0007	4U 0728-25 XRS07283-258	
	07 26 16 -25 59 38	119.15 -47.28	07 30 34 -26 16 26	07 21 52 -25 50 32	07 22 00 -25 42 21	07 30 41 -26 08 13				(R)
1H0729+316	112.27	187.57	113.41	111.09	111.13	113.46	.508	.0036		A586
	31.69	21.92	31.41	31.72	31.97	31.66		.0007		YY Gem?
	07 29 05 31 41 41	01.001 9.71	07 33 37 31 24 40	07 24 21 31 43 00	07 24 31 31 58 05	07 33 49 31 39 42				(R)
1H0735-438	113.81	256.95	115.26	112.24	112.39	115.39	.708	.0030		
	-43.83	-10.97	-44.33 07 41 02	-43.59	-43.30	-44.04 07 41 34		.0007		
	-43 49 34	-63.89	-44 20 04	-43 35 23	-43 18 00	-44 02 28				
1H0735-372	113.90	251.08	115.01	112.61	112.80	115.19	.984	.0013		
	-37.23	7.80	-37.76	-37.16	-36.69	-37.29		.0005		
	-37 13 46	-57.64	07 40 02 -37 45 36	07 30 25 -37 09 21	07 31 12 -36 41 19	07 40 45 -37 17 20				
1H0737-668	114.41	278.77	114.49	113.67	114.35	115.22	.564	.0030		
	-66.84	-20.46	-67.85	-65.87	-65.83	-67.80		9000.		
	07 37 39	192.90	07 37 56	07 34 39	07 37 23	07 40 53				
	-66 50 20	-80.40	-67 50 54	-65 52 28	-65 49 45	-67 47 58				
1H0738-075	114.66	225.47	115.45	113.81	113.86	115.50	.465	.0046		
	7C.1-	118 10	-7.51	00.7-	77.1-	6C./- 00 42 00		6000-		
	-07 31 04	-28.59	-07 48 35	-07 29 58	-07 13 28	-07 32 04				
1H0739-529	114.87	265.63	116.20	113.39	113.57	116.37	.380	.0037		
	-52.98	-14.52	-53.59	-52.52	-52.36	-53.43	_	9000		_
	-57 58 51	144.07 -71 78	07 44 48 -53 35 20	07 33 34 -52 31 01	07 34 15 -52 21 30	07 45 28 -53 25 35				
1H0739+151	114.86	204.86	115.47	114.23	114.26	115.50	.220	.0071		
	15.13	17.90	14.94	15.14	15.32	15.11		6000		
	07 39 27	114.10	07 41 52	07 36 54	07 37 01	07 42 00				
137 1 1 2011	C# /0 CI	07.0-	14 20 00	04 90 CI	61 61 CI	44 00 CI		0100		05 -174
1C0+14/0H1	65.18	30.18	64.86	65.32	65.48	65.01	01£.	0400.		MKn /8
	07 41 45	104.27	07 50 44	07 32 15	07 32 33	07 51 08				
	65 10 59	42.99	64 51 21	65 19 17	65 28 34	65 00 29				(R)
1H0741+289	115.38	191.33	116.31	114.41	114.46	116.35	.370	.0058		Sigma Gem
	28.97	23.54	28.71	29.00	29.22	28.93		8000.		
	0/ 41 51 28 58 04	112.22	0/ 45 15 28 42 50	01 31 39 28 59 54	0/ 3/ 49 29 12 56	0/ 45 23 28 55 50				(B)

TABLE 4-- Continued

inuea
ont
ĭ
H H
BL
Ţ

CATALOG	LISUA	z		3	KKUK BUX			FLUX	-	DENTIFICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	-x	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0742-566	115.54	269.21	116.86	114.07	114.28	117.06	.352	.0041	4U 0718-54	XRS07183-546	
	-56.64	-15.79	-57.35	-56.06	-55.93	-57.21		9000.			
	07 42 10	152.62	07 47 25	07 36 16	07 37 06	07 48 14					
	-56 38 36	-74.51	-57 20 47	-56 03 34	-55 55 37	-57 12 34					
1H0743+037	115.86	215.98	118.51	113.14	113.20	118.57	1.582	.0068	XRS07394+036		YZ CMi
	3.71	13.78	3.06	4.07	4.36	3.34		.0039			
	07 43 25	117.12	07 54 03	07 32 34	07 32 46	07 54 16					
	03 42 42	-17.33	03 03 32	04 04 19	04 21 25	03 20 36					(R)
1H0743+184	115.92	202.04	117.57	114.21	114.26	117.63	.954	.0050			
	18.49	20.18	18.04	18.63	18.92	18.33		.0015			
	07 43 40	114.52	07 50 17	07 36 49	07 37 02	07 50 31					
	18 29 16	-2.78	18 02 31	18 37 48	18 55 10	18 19 49					(R)
1H0744+499	116.06	168.77	117.81	114.23	114.28	117.88	.472	.0038	2A 0738+498	XRS07380+498	Mkn 79
	49.93	29.25	49.57	50.05	50.25	49.77		.000			
	07 44 14	108.71	07 51 14	07 36 54	07 37 08	07 51 31					
	9 55 34	28.16	49 34 29	50 03 14	50 15 02	49 46 10					(R)
1H0745-191	116.28	236.42	117.62	114.88	114.94	117.68	.692	.0076	4U 0739-19	XRS07390-199	PKS0745-19
	-19.17	2.99	-19.60	-18.99	-18.73	-19.34		.0022			
	07 45 07	122.90	07 50 29	07 39 31	07 39 46	07 50 44					
	-19 10 10	-39.66	-19 35 45	-18 59 09	-18 44 00	-19 20 32					(R)
1H0748-297	117.02	245.88	118.14	115.80	115.92	118.26	695	.0045	4U 0742-28	XRS07426-286	
	-29.76	-1.83	-30.26	-29.56	-29.25	-29.95		.001			
	07 48 05	127.61	07 52 32	07 43 11	07 43 41	07 53 01					
	-29 45 39	-49.74	-30 15 40	-29 33 21	-29 15 03	-29 57 15					
1H0749-600	117.35	272.85	118.43	115.89	116.33	118.89	.612	.0038			
	-60.07	-16.46	-61.06	-59.22	-59.07	-60.90		.0011			
	07 49 24	164.92	07 53 43	07 43 33	07 45 19	07 55 33	Terrere .				
	-60 04 05	-76.27	-61 03 33	-59 13 14	-59 04 07	-60 53 55					
1H0749-554	117.33	268.54	118.65	115.89	116.06	118.82	.300	.0049			
	-55.40	-14.34	-56.08	-54.83	-54.72	-55.96		9000.			
	07 49 20	152.59	07 54 37	07 43 34	07 44 14	07 55 16					
	-55 24 15	-72.92	-56 04 41	-54 49 56	-54 43 00	-55 57 32					
1H0753+456	118.26	173.93	119.41	117.04	117.10	119.48	.367	.0062			
	45.62	30.01	45.33	45.67	45.89	45.54		6000			
	07 53 02	111.30	07 57 39	07 48 09	07 48 23	07 57 55					
	45 36 58	24.24	45 20 01	45 40 29	45 53 13	45 32 40					
1H0754-438	118.56	258.66	119.78	117.25	117.37	119.89	.396	.0037			
	-43.85	-7.99	-44.34	-43.52	-43.34	-44.16		.0006			
	07 54 15	138.46	07 59 07	07 49 00	07 49 28	07 59 33					
	-43 50 45	-62.57	-44 20 33	-43 30 56	-43 20 12	-44 09 40					

CATALOG	POSIT	NOL			RROR BOX			FLUX	01	DENTIFICATION	S
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	LAY	NON X-RA
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0755-218	118.89	239.98	119.66	118.05	118.11	119.72	.325	.0047			
	-21.85	3.71	-22.15	-21.75	-21.54	-21.94		.0007			
	07 55 32	126.88	07 58 39	07 52 12	07 52 26	07 58 53					
	-21 50 48	-41.66	-22 08 47	-21 44 46	-21 32 36	-21 56 35					
1H0757-384	119.44	254.32	120.47	118.29	118.42	120.59	.473	.0046			
	-38.41	-4.61	-38.86	-38.19	-37.96	-38.62		.0008			
	07 57 45	135.47	08 01 53	07 53 10	07 53 39	08 02 21					
	-38 24 43	-57.30	-38 51 37	-38 11 39	-37 57 18	-38 37 08	-				
1H0758+762	119.68	138.30	122.64	116.33	116.56	122.95	.320	.0042			
	76.24	30.68	75.87	76.39	76.58	76.05		9000.			
	07 58 42	101.55	08 10 32	07 45 18	07 46 14	08 11 47					
	76 14 33	53.99	75 52 00	76 23 21	76 34 53	76 03 07					
1H0759-490	119.81	263.61	120.50	119.00	119.14	120.63	.202	.0063	4U 0750-49	XRS07574-484	
	-49.02	-9.89	-49.38	-48.81	-48.66	-49.22		.0008			
	07 59 15	145.79	08 02 00	07 55 59	07 56 32	08 02 32					
	-49 01 11	-66.78	-49 22 39	-48 48 41	-48 39 29	-49 13 20					(R)
1H0801+213	120.30	200.87	121.30	119.20	119.30	121.41	.964	.0019			
	21.35	25.07	20.91	21.31	21.78	21.38		8000.			
	08 01 12	118.03	08 05 12	07 56 48	07 57 12	08 05 37					
	21 20 49	.80	20 54 26	21 18 29	21 46 51	21 22 44					
1H0802-469	120.72	262.12	121.97	119.39	119.50	122.08	.324	.0065	1E08083-4275		
	-46.94	-8.29	-47.48	-46.52	-46.38	-47.33		6000			
	08 02 52	144.60	08 07 51	07 57 32	07 58 00	08 08 18					
	-46 56 10	-64.67	-47 28 32	-46 31 28	-46 22 59	-47 19 54					(R)
1H0806-545	121.68	269.07	122.62	120.49	120.75	122.88	.413	.0048	3U 0804-53		
	-54.58	-11.77	-55.10	-54.29	-54.06	-54.87		6000.			
	08 06 42	157.16	08 10 29	08 01 56	08 03 01	08 11 31					
702 - 0000111		21.01-	60 00 CC-	10 /1 40-	00 00 to-	10 10 40-					
1HU8U9 + /90	122.42	20.51	120.38	70.96	0.811	12/.10	4CC.	1600.			
	08 09 40	10.02	08 25 32	07 49 50	07 52 12	08 28 38					
	79 39 54	57.38	79 07 59	79 51 43	80 08 37	79 23 45					
1H0811+625	122.87	154.12	124.05	121.56	121.67	124.17	.216	.0046			SU UMa
	62.59	33.54	62.33	62.68	62.85	62.50		.0006			
	08 11 28	109.44	08 16 11	08 06 15	08 06 41	08 16 40					
	62 35 37	41.35	62 19 31	62 40 44	62 51 07	62 29 46					(R)
1H0814-073	123.56	229.85	124.06	123.01	123.05	124.10	.174	.0085	2A 0815-075	XRS08152-075	A644
	-7.37	15.12	-7.58	-7.32	-7.16	-7.43		6000			
	08 14 13	127.78	08 16 15	08 12 02 -07 19 10	08 12 12	08 16 24 -07 25 36					(R)

Т

T

Т

Τ

Τ

ntinued
4Co
TABLE

+

T

1 1		·····											~~~~~			_		_	_				_	_													
	S	NON X-RAY		į	(R)	A653	PKS0812+02	(R)	Pup A		(R)									A652		ŝ	(R)														
	ENTIFICATION	AY	A 0813-57?						XRS08215-427					·																				•			
	a	X-R	4U 0814-56 VD 506142 57	10C-74100CVV					4U 0821-42																												
	FLUX	ERROR	.0077	6000.		.0015	9000		.3490	.0023		.0052	.0010			.0039	.0008			.0045	.0008			.0036	9000		.0063	6000			.0048	9000			1000	1000.	
		AREA	.142			.956			.040			.519				.396				.432				.470			.272				.185				907		
		RA DEC	124.77	08 19 05	-57 27 50	125.05	08 20 12	01 45 21	126.24	-43.08 08 24 58	-43 04 53	126.74	4.15	08 26 58	04 08 57	126.98	29.97	08 27 55	29 58 07	127.41	55.95	08 29 38	55 57 11	127.38	-04.45	-64 25 54	127.80	8.81	08 31 11	08 48 47	127.35	-/1.21	08 29 23	04 71 1/-	11.621	08 36 40	48 44 17
	RROR BOX	RA DEC	123.26	08 13 01	-56 38 50	123.11	2.22	02 13 23	123.82	-42.18 08 15 15	-42 10 59	124.72	4.65	08 18 52	04 39 06	124.73	30.44	08 18 56	30 26 34	124.58	56.48	08 18 19	56 28 44	125.54	00.00-	-63 33 39	125.83	9.30	08 23 20	09 17 49	127.29	- //0.08	08 29 08	00 00 0/-	127.30	08 29 10	49.05.35
		RA DEC	123.10	08 12 23	-56 43 58	123.00	08 11 50	01 45 30	123.80	-42.20	-42 12 03	124.66	4.41	08 18 38	04 24 33	124.68	30.25	08 18 43	30 15 00	124.44	56.23	08 17 45	56 13 50	124.87	06 01 00	-63 49 26	125.80	9.17	08 23 12	09 09 54	126.80	- /0.09	-70 05 00	60 CD D1-	12/.22	08 28 51	48 54 00
		RA DEC	124.61	08 18 27	-57 33 05	124.94	1.29 08 19 46	01 17 29	126.23	-43.10 08 24 55	-43 05 57	126.68	3.91	08 26 43	03 54 24	126.93	29.78	08 27 42	29 46 36	127.26	55.71	08 29 01	55 42 29	126.71	04.70	-64 42 11	127.77	8.68	08 31 03	08 40 53	126.84	-/1.21	08 27 21	64 71 1/-	129.08	08.36.19	48 32 47
	NOI	GAL ECL	271.93	165.32	-71.74	221.78	20.08	-17.55	260.20	-3.39	-59.46	220.25	22.75	126.99	-14. /0	193.15	32.56	120.99	10.44	161.86	35.51	113.73	35.58	278.61	-14.92	-74.96	216.19	25.87	126.91	-9.86	284.55	-18.10	213.63	11.0/-	37.07	117.74	28.99
	POSI7	RA DEC	123.93	08 15 42	-57 06 04	124.03	08 16 05	01 45 26	125.02	-42.65 08 20 03	-42 38 51	125.70	4.28	08 22 48	04 16 4/	125.83	30.11	08 23 20	30 06 51	125.93	56.10	08 23 43	56 06 02	126.11	08 24 26	-64 07 59	126.80	8.99	08 27 12	08 59 25	127.07	C0. 0/-	08 28 16 -70 38 55	01 001	45.19	08 32 46	48 49 73
	CATALOG	ENTRY	1H0815-571			1H0816+017			1H0820-426			1H0822+042				1H0823+301				1H0823+561				1H0824-641			1H0827+089				1H0828-706			11100111	1HU832+488		

TABLE 4— Continued

	AΥ				_																							۲1?											-
s	NON X-R	A689		(R)	Pi(1) UMa			(R)																				0846+51V			(R)								_
DENTIFICATION	RAY																											XRS08590+509											
I	I-X																				-			H 0844-531				2A 0859+509?											
FLUX	ERROR	.0034	0000-	_	.0047	.0008			.0013	.0005		.0028	.0010			.0042	.0005			.0022	9000.			0600	.0006			.0011	.0006			.0013	9000.			.0044	.001		
	AREA	.452			.322				.685			1.222				.199				.632				.061				1.184				1.124				1.028			
	RA DEC	129.42	08 37 39	15 10 31	130.06	65.30	08 40 13	65 18 15	130.34	-78.31	08 41 20 -78 18 52	131.02	41.01	08 44 05	41 00 18	130.75	-56.24	08 42 59	-56 14 37	132.51	35.99	08 50 02	35 59 23	132.21	-53.61	08 48 50	-53 36 25	133.41	51.86	08 53 37	51 51 32	134.35	57.80	08 57 25	57 47 43	135.44	10.64	09 01 44	C7 9C 01
RROR BOX	RA DEC	127.41	08 29 37	15 40 14	127.00	65.75	08 28 01	65 44 59	124.78	-80.19	0 61 80 -80 11 19	127.08	41.89	08 28 19	41 53 17	129.20	-55.42	08 36 48	-55 25 03	130.13	36.54	08 40 30	36 32 27	131.37	-53.18	08 45 27	-53 10 52	130.31	52.49	08 41 14	52 29 29	130.80	58.49	08 43 11	58 29 06	132.68	11.41	08 50 44	NC +7 11
E	RA DEC	127.35	08 29 23	15 27 04	126.83	65.52	08 27 18	65 31 17	126.40	-80.35	-80 21 11	126.94	41.51	08 27 45	41 30 22	129.00	-55.54	08 35 59	-55 32 11	130.02	36.24	08 40 05	36 14 09	131.27	-53.25	08 45 03	-53 15 04	130.03	51.93	08 40 06	51 55 32	130.46	57.95	08 41 50	57 57 07	132.58	11.06	08 50 20	17 00 11
	RA DEC	129.36	08 37 25	14 57 24	129.85	65.08	08 39 24	65 04 46	131.77	-78.45	-78 27 09	130.86	40.63	08 43 27	40 37 42	130.54	-56.36	08 42 10	-56 21 53	132.40	35.69	08 49 35	35 41 13	132.11	-53.68	08 48 26	-53 40 39	133.09	51.30	08 52 21	51 18 04	133.97	57.27	08 55 53	57 16 21	135.33	10.29	09 01 19	1 1 1 1 1 1
ION	GAL ECL	210.42	126.86	-3.35	150.31	35.56	111.38	44.81	292.67	-22.30	c4.c42 -73.57	180.35	37.14	120.64	21.89	272.83	-8.64	169.68	-68.57	187.10	38.26	123.95	17.41	271.55	-6.27	167.44	-66.02	166.86	39.17	119.17	32.60	159.15	38.82	117.22	38.38	217.84	33.07	133.35	77.0-
POSIT	RA DEC	128.38	08 33 31	15 18 56	128.45	65.42	08 33 47	65 25 17	128.55	-79.34	-79 20 23	128.99	41.27	08 35 57	41 16 25	129.86	-55.89	08 39 27	-55 53 35	131.27	36.12	08 45 04	36 07 09	131.74	-53.43	08 46 56	-53 25 48	131.72	51.90	08 46 52	51 54 16	132.41	57.89	08 49 38	57 53 19	134.01	10.85	08 56 02	
CATALOG	ENTRY	1H0833+153			1H0833+654				1H0834-793			IH0835+412				1H0839-558				1H0845+361				1H0846-534				1H0846+519				1H0849+578				1H0856+108			

Continued
1
Ξ
^BI
Υ

CATALOG	POSIT	ION		Ľ	REOR BOX			FLUX		ENTIFICATION	S
FNTDV											ALC A NON
ENIKI	DEC	ECL	KA DEC	KA DEC	KA DEC	KA DEC	AKEA	EKKUK	Х-К	AY	NUN X-KAY
1H0857-242	134.49	250.37	135.47	133.42	133.51	135.56	.452	.0044			
	-24.27	14.04	-24.74	-24.02	-23.80	-24.53		.0010			
	-24 16 29	-39.49	-24 44 17	08 53 41 -24 00 54	08 54 03 -23 48 17	09 02 14 -24 31 36					
1H0859-403	135.00	263.03	136.15	133.85	133.86	136.16	.044	.1770	4U 0900-40	Vela X-1	HD77581
	-40.36	3.89	-40.84	-39.89	-39.87	-40.82		.0013	GX263+3	CGS0900-403	GP Vel
	08 59 59	156.28	09 04 36	08 55 22	08 55 26	09 04 39			XRS09002-403		
	-40 21 35	-53.95	-40 50 30	-39 53 08	-39 51 59	-40 49 20					(R)
1H0900-482	135.12	268.96	136.31	133.86	133.95	136.41	.224	.0155	4U 0900-48?		
	-48.21	-1.26	-48.83	-47.68	-47.59	-48.73		.0014			
	09 00 28 -48 12 43	164.08 -60.59	-48 49 32	08 55 25 -47 40 35	08 55 48 -47 35 09	-48 43 59					
1H0900-375	135.24	261.02	136.31	134.05	134.20	136.44	.492	.0040			PKS0902-38
	-37.51	5.93	-38.07	-37.16	-36.94	-37.85		.000			
	09 00 58	154.38	09 05 13	08 56 13	08 56 47	09 05 46					
	-37 30 32	-51.34	-38 03 58	-37 09 37	-36 56 32	-37 50 43					(R)
1H0906-095	136.71	239.43	136.99	136.39	136.43	137.02	.061	.0161	2A 0906-095	4U 0900-09	A754
	-9.56	24.77	-9.70	-9.51	-9.41	-9.61		.001	XRS09062-095		
	09 06 50	142.32	09 07 58	09 05 34	09 05 42	09 08 05					
	-09 33 32	-24.92	-09 42 12	-09 30 26	-09 24 51	-09 36 37					(R)
1H0908-326	137.05	258.39	137.81	136.16	136.31	137.95	.435	.0062			
	-32.69	10.25	-33.16	-32.47	-32.22	-32.91		.0013			
	09 08 12 - 37 41 36	153.20	22 00 26	09 04 38	09 05 14 37 12 10	09 11 48 37 54 73					
200 0000111	00 14 70-	00.04-	00 201	07 07 76-	61 61 76-	C7 +C 7C-					
107-2060H1	13/.03	249.13	13/.98	135.98	136.09	138.08	.568	.0031			
	90 80 60	147.05	09 11 54	09 03 54	09 04 20	09 12 20		1000.			
	-20 47 21	-35.39	-21 16 35	-20 33 41	-20 17 49	-21 00 38					
1H0908+289	137.07	197.51	138.09	135.91	136.04	138.22	.760	.0021			
	28.91	41.77	28.43	29.02	29.38	28.79		.0007			
	CI 80 60 28 54 34	11 90	09 12 21 28 25 36	09 03 38 29 01 16	09 04 08 20 23 05	09 12 52 78 47 18					
1H0910-374	137.67	11 290	130 33	135.83	136.05	130 54	1 120	0040			
	-37.49	7.37	-38.38	-36.89	-36.58	-38.06	071.1	6000			
	09 10 40	157.08	09 17 19	09 03 19	09 04 11	09 18 08					
	-37 29 18	-50.44	-38 22 37	-36 53 14	-36 34 36	-38 03 37					
1H0912+407	138.16	181.51	139.37	136.88	136.94	139.44	.308	.0066			
	40.79	107 05	40.38	41.03	41.18	40.03		6000			
	40 47 09	23.48	40 23 00	41 01 45	41 10 32	40 31 42					

CATALOG	POSIT	ION		E	RROR BOX			FLUX	п	DENTIFICATION	S
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	I-X	RAY	NON X-RAY
1H0917-121	139.28	243.35	140.22	138.29	138.34	140.26	.244	.0087			A780
	-12.10	25.23	-12.50	-11.82	-11.71	-12.38	1	6000			
	09 17 06	145.89	09 20 52	09 13 10	09 13 20	09 21 02					
	-12 06 09	-26.50	-12 29 42	-11 49 16	-11 42 23	-12 22 48					(R)
1H0918-548	139.55	275.70	139.64	139.43	139.46	139.68	.005	.0317	2S 0918-549	4U 0919-54	
	-54.87	-3.83	-54.94	-54.82	-54.80	-54.92		9000.	CGS0918-549	XRS09189-549	
	09 18 13	177.77	09 18 34	09 17 42	09 17 51	09 18 43					
	-54 52 18	-64.01	-54 56 26	-54 49 27	-54 48 09	-54 55 08		!			(R)
1H0919-312	139.86	258.96	140.91	138.79	138.83	140.95	.184	.0100	2A 0922-317	4U 0923-31	
	-31.23	12.99	-31.69	-30.85	-30.76	-31.61		.0008	XRS09233-314		
	09 19 27	155.39	09 23 37	09 15 08	09 15 19	09 23 48					é
	96 61 16-	-44.03	-31 41 34	-30 50 4/	-30 45 48	1 36 95 15-					(K)
1H0920-629	140.16	281.64	140.54	139.53	139.79	140.81	.127	.0085	H 0921-631	3S 0921-630	
	-62.90	-9.28	-63.33	-62.54	-62.47	-63.26		.0008			
	09 20 38	193.89	09 22 09	09 18 07	01 61 60	09 23 14					
	-62 54 05	-68.88	-63 19 43	-62 32 36	-62 28 23	-63 15 23					(R)
1H0921+449	140.25	175.57	141.50	138.86	138.98	141.64	.540	.0033			
	44.95	45.40	44.47	45.17	45.42	44.73		.000			
	09 21 01	128.01	09 26 00	09 15 25	09 15 56	09 26 33					
	44 57 15	27.92	44 28 28	45 09 55	45 25 12	44 43 34					
1H0921+633	140.28	150.89	142.20	138.01	138.28	142.50	.611	.0034	3U 0917+63	XRS09177+634	A804?
	63.39	41.03	62.78	63.70	63.96	63.04		.000			
	09 21 07	119.13	09 28 47	09 12 03	09 13 08	09 29 59					
	63 23 10	44.94	62 46 53	63 41 51	63 57 50	63 02 22					
1H0922-810	140.67	295.45	142.18	140.23	139.01	141.07	.194	.0057			
	-81.03	-21.62	-80.57	-81.54	-81.48	-80.51		.0008			
	09 22 41	248.24	09 28 42	09 20 54	09 16 02	09 24 17					
	-81 01 33	-71.00	-80 33 58	-81 32 24	-81 28 43	-80 30 39					(R)
1H0926-362	141.50	263.59	142.63	140.24	140.39	142.78	.623	.0043			
	-36.26	10.41	-36.84	-35.93	-35.67	-36.58		6000			
	09 26 00	160.37	09 30 31	09 20 56	09 21 34	09 31 07					
	-36 15 45	-47.93	-36 50 33	-35 56 05	-35 40 19	-36 34 36					
1H0927+501	141.77	168.06	143.14	140.25	140.37	143.27	.408	.0037			A793
	50.12	45.67	49.64	50.39	50.58	49.83		.0006			
	09 27 04	126.96	09 32 34	09 21 00	09 21 28	09 33 03					
	50 07 13	33.10	49 38 40	50 23 21	50 34 47	49 49 56					
1H0929+122	142.45	220.83	143.39	141.45	141.51	143.45	.388	.0038			A803?
	12.20	41.10	11.80	12.43	12.61	11.98		9000			
	09 29 48	140.86	09 33 33	09 25 47	09 26 02	09 33 48					

1984ApJS...56..507W

CATALOG	POSIT	ION			RROR BOX			FLUX		DENTIFICATION	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	I-X	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H0932+107	143.11	222.89	144.03	142.10	142.18	144.11	.468	.0039			
	10.79	41.05	10.36	10.99	11.22	10.58		.0007			
	09 32 25	141.92	09 36 08	09 28 25	09 28 43	09 36 26					
030 1 3700111		10.02	47 17 OT	60 60 AT	00 71 11	74 40 01					
1H0945+252	146.26	205.12	147.26	145.18	145.25	147.34	.416	.0035			
	87.02	48.90	24.84	10.02	17.62	00.02		9000			
	25 16 39	11.06	24 50 21	25 30 46	25 42 33	25 02 03					
1H0946-309	146.63	263.09	147.64	145.55	145.63	147.72	.284	.0084	2A 0946-310	4U 0945-30	MCG-5-23-16
	-30.96	17.20	-31.47	-30.58	-30.46	-31.34		.0010	XRS09459-306		
	09 46 31	162.34	09 50 34	09 42 12	09 42 30	09 50 51					
	-30 57 53	-41.28	-31 28 00	-30 34 54	-30 27 18	-31 20 19					(R)
1H0946-144	146.66	250.60	147.61	145.69	145.73	147.64	.188	8600.	2A 0943-140	4U 0937-12	NGC2992
	-14.41	29.16	-14.82	-14.08	-13.99	-14.73		.0008	XRS09433-140		
	09 46 39	154.31	09 50 25	09 42 45	09 42 54	09 50 34					
	-14 24 26	-26.11	-14 49 09	-14 04 43	-13 59 29	-14 43 54					(R)
1H0947+169	146.98	217.30	148.41	145.39	145.53	148.55	1.239	.0047			NGC3041
	16.94	47.03	16.23	17.26	17.64	16.61		.0013			
	09 47 54	143.47	09 53 38	09 41 34	09 42 07	09 54 13					
	16 56 32	3.44	16 13 54	17 15 40	17 38 33	16 36 40					
1H0950+696	147.62	141.80	148.61	146.35	146.60	148.86	.149	.0080	2A 0954+700	4U 1004+70	M82
	69.63	40.64	69.30	69.82	69.95	69.43		.0008	1M 0943+712	XRS09544+700	
	09 50 28	118.38	09 54 25	09 45 23	09 46 22	09 55 26					
	69 37 50	51.80	69 18 06	69 49 14	69 57 14	69 25 54					(R)
1H0951+057	147.93	231.97	148.84	146.95	147.03	148.92	.432	.0039			
	5.73	42.69	5.29	5.97	6.17	5.50		.0007			
	09 51 44 05 44 03	-6 81	05 17 32	05 58 17	09 48 06	09 55 39					
1H0952-770	148 20	203 58	148 60	148 70	AT TAI	147 77	40	0044			
	-77.04	-17.78	-76.04	-78.04	-78.04	-76.04	2	6000			
	09 52 47	235.70	09 54 23	09 54 48	09 50 56	09 51 04					
	-77 02 30	-70.24	-76 02 27	-78 02 27	-78 02 30	-76 02 30					
1H1000-600	150.00	283.33	151.18	148.62	148.88	151.44	.340	.0061			
	-60.05	-4.05	-60.87	-59.32	-59.22	-60.75		6000			
	10 00 00	194.98	10 04 42	09 54 29	09 55 31	10 05 46					
	-60 02 49	-63.41	-60 51 57	-59 19 27	-59 13 05	-60 45 17					
1H1003+428	150.94	177.09	152.14	149.64	149.72	152.23	.312	.0044			
_	42.86	53.31	42.38	43.17	43.32	42.52		.0006			
_	10 03 45	137.01	10 08 33	09 58 33	09 58 53	10 08 54					
	77 10 74	40.02	CC 77 74	1 12 01 04	40 17 00	1 C7 1C 74		_		_	-

TABLE 4—Continued

3 -10.25 .0013 9 10 18 16 .0013 1 -10 14 44 .0065 4 154.66 .391 .0065 1 49.59 .0011
2 49 35 09 2 49 35 09 3 40 35 00 3 40 30 00 3 40 000 3 40 000000000000000000000000

										_										_							_						
St	NON X-RAY	NGC3227 AD Leo?	(R)	A1004		(R)	NGC3267	NGC3268	NGC3271 STR1027-353								A1060	STR1034-272	į	(R)				A1068?							Eta Car	G287.8-0.5	(4)
ENTIFICATION	LAY .	H 1019+203															4U 1033-26				XRS10413-079										4U 1053-58		
	X-F	A 1021+198		H1028+512													2A 1033-270	XRS10335-270			2A 1041-079										A 1044-59	XRS10440-594	
FLUX	ERROR	.0087 .0010		.0043	.0007		.0076	8000.		.0032	9000.		0.00	.0040	/000.		.0136	.000			.0058	/ 000.		.0027	.000		0047	9000			.0258	0100	
	AREA	.227		.407			.149			.488				895.			.040				.308			.616			346	200			.092		
	RA DEC	155.06 20.08	10 20 15 20 04 54	157.17	51.05 10 28 41	51 02 54	157.45	-35.25	10 29 48 -35 15 07	157.85	3.77	10 31 24	03 46 10	159.25	- 14.54	-14 32 25	158.71	-27.38	10 34 51	-21 22 25	160.81	10 43 13	-07 40 12	161 59	39.29	10 46 21	167.78	-64.69	10 49 06	-64 41 16	162.88	-60.42	16 16 01
RROR BOX	RA DEC	153.75 20.56	10 15 00 20 33 48	154.77	51.82 10 19 05	51 49 05	156.49	-34.83	-34 49 36	155.99	4.50	10 23 56	04 30 16	157.26	1/.61-	-13 42 30	158.20	-27 15	10 32 47	11 60 /7-	158 95	-0.90	-06 53 53	159 24	40 15	10 36 57 40 08 40	159.95	-63.39	10 39 48	-63 23 30	160.17	-58.96	10 40 40 -58 57 34
Ξ	RA DEC	153.69 20.40	10 14 44 20 24 10	154.60	51.60	51 36 04	156.39	-34.97	-34 58 20	155.90	4.28	10 23 35	04 16 39	<1./<1	06.61-	-13 57 21	158 16	-27 22	10 32 38	-2/ 13 28	158 89	10 35 33	-07 02 24	159 07	39 87	10 36 17	159 56	-63 53	10 38 13	-63 31 31	160.10	-58.99	-58 59 25
	RA DEC	155.00 19.92	10 19 59 19 55 19	156.99	50.83 10 27 57	50 50 05	157.36	-35.40	-35 23 54	157.76	3.54	10 31 02	13 32 34	1.92.14	-14.79	-14 47 20	158.67	-27.45	10 34 41	-2/2/04	160 75	10 42 59	-07 48 44	161 42	39 01	10 45 39 39 00 49	161.87	-64 83	10 47 29	-64 49 39	162 82	-60.45	CI IC 01-
NOL	GAL ECL	216.34 54.76	148.92 8.98	161.74	53.71 136.31	37.94	272.95	19.13	-40.94	241.38	48.97	11.721 35.35	02.02	200.30	20.05	-21 66	269.50	26.38	171 93	- 33.42	256.20	164 25	-14 68	179 99	60 93	145.89 78.78	289.82	-4.76	208.80	6192	288 04	57 101	-58.87
POSIT	RA DEC	154.38 20.24	10 17 30 20 14 37	155.89	51.33 10 23 34	51 19 54	156.92	-35.11	-35 06 48	156.87	4.02	10 27 29	12 10 40	07.801	10 37 47	-14 15 02	158.44	-27.30	10 33 44	11 81 /7-	28.921 26	10 39 23	-07 1, 22	160.34	39.59	39 35 07	160.89	-64.11	10 43 33	-64 06 46	161.46	10.45.50	-59 42 41
CATALOG	ENTRY	IH1017+202		1H1023+513			1H1027-351			1H1027+040			CF1 CC0111	111032-142			1H1033-273				1H1039-0/3			1H1041+395			1H1043-641				1H1045-597	_	

CATALOG	POSIT	NOI			RROR BOX			FLUX		ENTIFICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	RAY	NON X-RAY
	ner		NEC	חבר	הנר	הבר					
1H1046+547	161.71	153.60	163.05	160.08	160.33	163.31	.580	.0025			
	54.75	134.61	24.04 11 52 01	11.00	05.00	34.33		9000			
	54 43 51	42.61	54 05 09	55 06 32	55 21 40	54 19 53					
1H1051+607	162.76	145.60	164.37	161.00	161.10	164.47	.176	0077	2A 1052+606	3U 1109+59	DM UMa
	60.72	51.21	60.10	61.24	61.31	60.17		.0005	XRS10528+606		
	10 51 03	134.22	10 57 27	10 43 59	10 44 23	10 57 52					
	60 42 58	47.95	60 06 10	61 14 09	61 18 35	60 10 27					(R)
1H1054-665	163.55	291.92	165.64	161.16	161.69	166.20	.834	.0064			
	-66.56	-6.46	-67.94	-65.30	-65.16	-67.78		.0017			
	10 54 12	214.45	11 02 33	10 44 37	10 46 44	11 04 47					
	-66 33 40	-02.44	07 96 /9-	70 / 1 09-	05 60 69-	-6/4/02					
1H1055+299	163.82	200.42	164.94	162.54	162.70	165.10	.757	0900.			Mkn 36?
	29.92	64.99	29.29	30.24	30.54	29.60		.0014			
	10 55 17	153.23	10 59 44	10 50 10	10 50 47	11 00 23					
	29 55 16	21.20	29 17 40	30 14 06	30 32 19	29 35 43					
1H1058-762	164.51	296.41	163.71	166.19	165.43	163.05	.352	.0021	4U 1119-77	XRS11196-778	
	-76.23	-15.07	-75.25	-77.16	-77.21	-75.30		.0003			
	10 58 03	235.05	10 54 51	11 04 44	11 01 43	10 52 11					
	-76 13 56	-66.40	-75 14 52	-77 09 34	-77 12 50	-75 17 43					
1H1059+566	164.96	148.94	166.04	163.65	163.85	166.25	.333	.0051			A1132
	56.70	54.87	56.17	57.03	57.21	56.35		.000			
	10 59 50	138.86	11 04 09	10 54 35	10 55 24	11 05 00					
	56 41 52	45.24	56 10 27	57 01 57	57 12 43	56 20 58					(R)
1H1100-230	165.15	272.95	166.04	164.15	164.27	166.15	.467	.0052	2A 1058-226	4U 1057-21	NGC3513?
	-23.04	33.17	-23.57	-22.73	-22.51	-23.35		.000	XRS10586-226		
	11 00 36	176.10	11 04 10	10 56 36	10 57 03	11 04 37					
0001 1011111	70 771	20.02	CC CC C7-	00 7 77-	10 00 77-	14 07 07-	100	1000	14 11001 201	VBC 1 OCOLL3GV	101 114
1111104 + 382	38.21	180.00	37.72	38.61	38.69	37.80	.100	-0000 0007	2A 1102 T 304	480 1070 107V	
	11 04 14	151.17	11 08 39	10 59 32	10 59 45	11 08 52					
	38 12 42	29.48	37 43 15	38 36 26	38 41 32	37 48 16					(R)
1H1106+026	166.74	253.95	168.21	165.17	165.28	168.32	976.	.0030			A1171?
	2.69	55.29	16.1	3.20	3.47	2.19		.0019			
	11 06 58	166.76	11 12 49	11 00 39	11 01 07	11 13 17					
	02 41 34	-2.75	01 54 47	03 11 54	03 28 16	02 11 07					
1H1109-783	167.33	297.90	166.83	168.88	167.89	165.93	.256	.0040			
	-78.35	-16.74	11.11-	-78.92	-78.99	11.11-		9000.			
	11 09 19	240.55	11 07 19	11 15 30	11 11 34 78 50 00	11 03 43 77 46 05					

S	NON X-RAY		A1204			3CR 255?				V779 Cen			(R)					A1250?	A1237?		(R)	MSH11-54			(R)	B2 1115+31B?				A1314			(R)	1132+04?				NGC3783		(B)
DENTIFICATION	AY									Cen X-3	CGS1119-603			XRS11206-431																								4U 1136-37	<u> </u>	
H	X-R									4U 1118-60	XRS11190-603			4U 1120-43								H 1122-59																2A 1135-373	XRS11357-373	
FLUX	ERROR		.0022	9000		.0041	6000			.0686	.0013			.0030	.0007			.0038	.001		i	.0342	.0010			.0046	.0012			.0060	.000			.0042	.001			.0064	6000	
	AREA		.592			.512				.005				.516				1.270				080.				.938				.272	-	-		-937				355.		
	RA	חבר	168.31	14./1	17 54 29	170.44	-2.93	11 21 44	-02 55 51	169.87	-60.35	11 19 28	-60 20 48	170.87	-43.61	11 23 27	-43 36 53	172.03	41.70	11 28 07	41 42 13	171.72	-59.81	11 26 52	-59 48 44	172.08	30.49	11 28 19	30 29 28	173.83	49.06	11 35 18	49 03 33	173.79	3.99	11 35 10	03 59 32	174.76	80.76-	-37 34 49
RROR BOX	RA	DEC	166.38	11 05 20	18 42 04	168.59	-2.14	11 14 22	-02 08 36	169.62	-60.23	11 18 29	-60 13 41	168.55	-42.55	11 14 11	-42 32 55	168.22	43.39	11 12 53	43 23 14	168.89	-58.44	11 15 34	-58 26 07	169.06	31.75	11 16 14	31 44 53	171.21	50.12	11 24 49	50 06 55	171.41	5.01	11 25 37	05 00 44	172.92	-36./4	11 31 40 -36 44 16
1	RA		166.25	11 05 00	18 25 44	168.49	-2.38	11 13 58	-02 22 43	169.58	-60.25	11 18 19	-60 14 53	168.36	-42.77	11 13 25	-42 45 54	167.96	43.05	11 11 50	43 02 59	168.84	-58.46	11 15 21	-58 27 50	168.90	31.45	11 15 35	31 27 11	171.10	50.00	11 24 23	49 59 55	171.26	4.68	11 25 03	04 40 46	172.79	-36.92	-36 55 07
	RA	DEC.	168.18	11 12 44	17 38 13	170.33	-3.17	11 21 20	-03 09 58	169.83	-60.37	11 19 18	-60 22 00	170.68	-43.83	11 22 43	-43 50 05	171.76	41.38	11 27 01	41 22 31	171.67	-59.84	11 26 39	-59 50 30	171.91	30.20	11 27 38	30 11 59	173.72	48.94	11 34 51	48 56 41	173.65	3.66	11 34 35	03 39 35	174.63	-3/./0	11 20 21 -37 45 48
ION	GAL	ECE	229.52	07.00	11.71	263.24	52.78	171.36	-6.61	292.06	.38	208.48	-56.31	285.99	16.40	191.94	-42.87	167.53	66.52	152.06	34.59	291.92	1.55	207.39	-55.30	60'161	70.71	158.41	24.58	152.10	63.17	149.39	41.62	260.31	60.24	171.43	1.02	287.09	23.06	+C.171 -36.14
POSIT	RA		16/.28	11 00 07	18 10 16	169.46	-2.66	11 17 51	-02 39 18	169.72	-60.30	11 18 53	-60 17 51	169.60	-43.20	11 18 24	-43 11 48	170.02	42.39	11 20 04	42 23 41	170.25	-59.15	11 21 00	-59 08 45	170.50	30.98	11 21 59	30 58 55	172.48	49.54	11 29 54	49 32 13	172.53	4.34	11 30 06	04 20 13	173.77	C7./5-	-37 15 13
CATALOG	ENTRY		1H1109+181	_	_	1H1117-026		,	_	1H1118-602	_	_		1H1118-431		_		1H1120+423	_	_		IH1121-591	_	_		1H1121+309	_			1H1129+495				1H1130+043	_	_		IH1135-372	_	

SN	NON X-RAY				3 HD101379			(R)	Mkn180			(R)									A1367	3C264	į	(R)	HD102567	V801 Cen	(R)	PKS1146-037		1:						A1412?		
ENTIFICATIO	tAY				XRS11357-37.																4U 1143+19				CGS1145-619													
01	X-R				4U 1137-65												4U 1130-14				2A 1141+199	XRS11435+198			4U 1145-61	XKS11400-619												
FLUX	ERROR	.0034	.0007		.0063	6000.			.0042	.0006			.0054	8000.			.0029	.0006			.0120	.0011			.0407	6000.		.0032	.0016			.0028	.0007			.0028	2000	com.
	AREA	.428			.328				.330				.345				.532				.094				.008			3.097				.596				.476	-	
	RA DEC	174.83	-12.89	-12 53 18	176.07	-65.66	11 44 17	-65 39 27	176.11	69.44	11 44 27	69 26 08	176.03	59.01	11 44 07	59 00 42	176.75	-18.11	11 47 00	-18 06 31	176.13	19.86	11 44 30	195149	176.37	-01.82	-61 49 16	179.20	-4.40	11 56 47	-04 23 46	178.51	-50.36	11 54 01	-50 21 21	179.78	10 12	+0.c/
RROR BOX	RA DEC	172.96	-12.07	-12 04 24	172.93	-64.17	11 31 42	-64 10 02	173.04	70.65	11 32 09	70 38 44	173.99	60.04	11 35 58	60 02 36	174.85	-17.27	11 39 22	-17 16 29	175.43	20.16	11 41 42	20 09 32	176.03	-01.07	-61 39 59	173.92	-2.08	11 35 41	-02 04 35	175.95	-49.22	11 43 48	-49 13 20	175.73		/4./0
Ξ.	RA DEC	172.87	-12.27	-12 16 07	172.64	-64.27	11 30 33	-64 16 23	172.58	70.51	11 30 19	70 30 22	173.67	59.87	11 34 40	59 52 24	174.73	-17.52	11 38 54	-17 30 58	175.37	20.04	11 41 28	20 02 25	175.98	-61.69	-61 41 27	173.70	-2.57	11 34 48	-02 34 03	175.69	-49.46	11 42 44	-49 27 52	175.01	1 73 12	00.4/
	RA DEC	174.74	-13.08	-13 05 03	175.78	-65.77	11 43 07	-65 46 11	175.67	69.30	11 42 39	69 18 14	175.70	58.85	11 42 49	58 50 48	176.64	-18.35	11 46 33	-18 21 03	176.07	19.75	11 44 16	19 44 42	176.32		-61 50 45	178.98	-4.89	11 55 55	-04 53 18	178.25	-50.60	11 52 59	-50 36 14	179.09		76.71
ION	GAL ECL	276.56	46.22	-13.97	295.50	-3.42	217.42	-57.99	131.72	46.19	130.11	58.07	138.67	55.79	142.79	50.53	281.64	42.04	183.43	-17.99	235.72	73.17	167.97	16.58	295.47	01	-55.16	274.28	55.56	178.13	-4.61	293.10	11.51	203.11	-45.64	128.56	1001	47.74
POSIT	RA DEC	173.85	-12.58	-12 34 49	174.31	-64.98	11 37 14	-64 58 31	174.39	69.98	11 37 34	69 58 47	174.86	59.45	11 39 27	59 26 52	175.74	-17.82	11 42 57	-17 48 54	175.75	19.95	11 42 59	19 57 08	176.17	-61.76	-61 45 22	176.45	-3.49	11 45 47	-03 29 09	177.08	-49.92	11 48 20	-49 55 07	177.50	0000	13.82
CATALOG	ENTRY	1H1135-125			1H1137-649				1H1137+699				1H1139+594				1H1142-178				1H1142+199				1H1144-617			1H1145-034				1H1148-499				1H1150+738		

I E

1 1		T																								-											
	<i>i</i>	NON X-RAY								A1413		(R)	4C29.45			(R)					A1446				NGC4051	3C268.4	(R)					PKS1208-518		(a)	NCCALST	TELODA	(a)
	DENTIFICATION	RAY																										XRS12036-061							ATT 1206 1 30	XRS12078+397	
	I	-x	4U 1147-12																									4U 1203-06							74 1207 + 207	1M 1207 + 397	
	FLUX	ERROR	.0031	9000		.0040	9000.			.0053	.0005		.0029	9000			.0029	6000'			.0035	9000.			.0029	.0008		.0045	.0015			.0073	.0012		0070	6000	
		AREA	.488			.360				.256			504	-			1.517				.384				.568			1.325				.374			200	201	
		RA DEC	178.92	-13.39	11 55 40 -13 23 33	178.80	3.60	11 55 11	03 36 14	179.16	23.42	11 56 38 23 25 15	179.80	29.12	11 59 12	29 07 11	182.17	-57.31	12 08 40	-57 18 27	181.54	57.56	12 06 09	57 33 32	182.73	43.60	12 10 54 43 36 08	183.50	-7.13	12 14 00	-07 07 50	183.37	-52.22	12 13 29 -52 12 57	183 34	39.15	12 13 21 30 08 46
	ROR BOX	RA DEC	177.05	-12.58	11 48 11 -12 34 38	176.96	4.40	11 47 50	04 24 01	177.18	24.27	11 48 43 24 16 23	177.74	30.01	11 50 58	30 00 29	176.97	-55.08	11 47 53	-55 04 57	178.61	58.83	11 54 26	58 49 50	180.35	44.65	44 38 42	180.60	-5.91	12 02 24	-05 54 42	181.32	+F.1C-	-51 20 21	181 97	39.75	12 07 53 39 45 14
	E	RA DEC	176.94	-12.80	11 47 46 -12 47 59	176.89	4.24	11 47 33	04 14 06	177.12	24.16	11 48 29 24 09 24	177.62	29.78	11 50 27	29 46 53	176.50	-55.40	11 46 01	-55 24 04	178.38	58.68	11 53 31	58 40 47	180.15	44.40	12 00 34 44 24 01	180.44	-6.30	12 01 44	-06 18 05	181.10	+C.1C-	12 04 22 -51 32 10	181.87	39.61	12 07 28 39 36 40
		RA DEC	178.82	-13.62	11 55 16 -13 36 56	178.73	3.44	11 54 54	03 26 20	179.10	23.31	23 18 19	179.67	28.89	11 58 41	28 53 41	181.72	-57.65	12 06 52	-57 38 44	181.31	57.41	12 05 14	57 24 48	182.52	43.36	43 21 43	183.34	-7.52	12 13 20	-07 31 17	183.15	-52.42	-52 25 01	183.23	39.00	12 12 55 39 00 17
	ION	GAL ECL	282.24	47.19	183.40 -12.82	270.12	62.79	176.46	2.74	225.69	76.79	21.00	200.02	77.93	166.21	26.32	295.82	5.49	210.41	-50.07	135.25	58.09	147.37	51.18	147.81	71.25	40.14	285.24	54.46	184.48	-5.38	296.73	10.23	208.51	154.34	75.58	164.08 36 59
	POSIT	RA DEC	177.93	-13.10	-13 05 53	177.84	3.92	11 51 22	03 55 12	178.14	23.79	11 32 34 23 47 31	178.71	29.46	11 54 50	29 27 18	179.26	-56.39	11 57 03	-56 23 12	179.99	58.13	11 59 56	58 07 44	181.44	44.01	44 00 31	181.97	-6.72	12 07 52	-06 43 06	182.23	88.1C-	-51 52 54	182.61	39.38	12 10 25 39 22 51
	CATALOG	ENTRY	1H1151-130			1H1151+039			_	1H1152+237			1H1154+294				1H1157-563				1H1159+581				1H1205+440			1H1207-067				1H1208-518			1H1210+393		

CATALOG	POSIT	NOI			REOR BOX			FLUX	=	DENTIFICATION	70
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	ר X -	RAY	YAN-X NON
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1211+762	182.94	125.93	184.17	180.52	181.55	185.12	.492	.0032			Mkn 205
	76.20	40.99	75.32	76.95	77.08	75.43		9000.			
	12 11 46	122.41	12 16 40	12 02 05	12 06 12	12 20 28					
	76 12 02	63.62	75 19 02	76 56 46	77 04 38	75 26 02					(R)
1H1213+718	183.29	126.96	184.17	181.87	182.36	184.65	.236	.0056			
_	71.81	45.32	71.22	72.29	72.40	71.31		.0007			
	12 13 10	130.76	12 16 40	12 07 27	12 09 26	12 18 35					
	71 48 30	61.49	71 12 58	72 17 34	72 23 47	71 18 50					
1H1215-549	183.96	298.21	185.28	182.45	182.69	185.51	.456	.0027			
	-54.93	7.37	-55.60	-54.42	-54.24	-55.41		.0005			
	12 15 50	212.28	12 21 06	12 09 48	12 10 45	12 22 01					
	-54 55 36	-47.31	-55 35 51	-54 25 27	-54 14 31	-55 24 36					
1H1215-390	183.76	295.84	184.82	182.56	182.72	184.98	.500	.0032			
	-39.03	23.09	-39.62	-38.66	-38.44	-39.40		.0007			
	12 15 02	200.99	12 19 17	12 10 14	12 10 52	12 19 54					
	-39 02 03	-33.88	-39 37 02	-38 39 34	-38 26 29	-39 23 47					
1H1219+301	184.77	188.35	185.13	184.35	184.41	185.19	.094	.0106	2A 1219+305	XRS12192+305	1219+305
	30.17	82.89	29.94	30.28	30.39	30.05		6000.			
	12 19 05	171.16	12 20 31	12 17 23	12 17 38	12 20 46					
	30 09 57	29.32	29 56 25	30 16 46	30 23 26	30 03 04					(R)
1H1221-623	185.38	299.82	185.60	185.09	185.16	185.67	.016	.0286	4U 1223-62	GX301-2	WRA977
	-62.38	.05	-62.51	-62.30	-62.26	-62.47		.0010	CGS1223-624	XRS12238-624	BP Cru
	12 21 31	220.38	12 22 24	12 20 21	12 20 38	12 22 41					
	-62 23 02	-52.71	-62 30 24	-62 17 52	-62 15 38	-62 28 09					(R)
1H1225-303	186.49	297.13	187.47	185.39	185.51	187.59	.484	.0056			
_	-30.33	32.01	-30.87	-29.99	-29.78	-30.65		.001			
	12 25 56	198.70	12 29 53	12 21 32	12 22 02	12 30 22				-	
	-30 19 35	-25.12	-30 52 05	-29 59 38	-29 46 38	-30 38 58					
1H1226+022	186.71	290.13	187.13	186.25	186.29	187.17	101.	.0129	2A 1225+022	4U 1226+02	3C273
	2.29	64.33	2.05	2.43	2.53	2.15		1100.	XRS12260+24		
	12 26 50	185.25	12 28 29	12 25 00	12 25 10	12 28 40					
	02 17 19	4.77	02 03 05	02 25 43	02 31 33	02 08 55					(R)
1H1226+128	186.69	282.26	186.80	186.56	186.57	186.81	600.	.1044	2A 1228+125	4U 1228+12	M87
	12.81	74.51	12.74	12.85	12.88	12.77		.0029	IM 1228+127	XRS12287+126	Virgo Cluster
	12 26 44	180.94	12 27 11	12 26 13	12 26 17	12 27 14					
	12 48 39	14.39	12 44 35	12 50 50	12 52 42	12 46 27					(R)
1H1226+505	186.63	131.96	187.63	185.38	185.61	187.86	.451	.0042			
	50.55	66.46	49.95	50.93	51.15	50.16		6000			
	12 26 31	159.19	12 30 30	12 21 31	12 22 26	12 31 27					Ē
	20 00 NC 1	00.14			01 00 10						2

Т

Continued
4
ABLE
ĥ

FT

CATALOG	POSITI	NOI		E	RROR BOX			FLUX		IDENTIFICATIONS	
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	x	-RAY	NON X-RAY
1H1228+081	187.16 8.18 12 28 37	287.98 70.19 183.29	188.04 7.68 12 32 09	186.19 8.48 12 24 45	186.28 8.68 12 25 06	188.13 7.88 12 32 30	.432	.0044 0010	4U 1232+07	XRS12329+071	NGC4472
1H1320+100	08 10 55	10.35 271.60	07 40 51	08 29 00 186 45	08 40 53 186 57	07 52 43	348	0048			TON 15429
	16.61	81.32	19.40	20.25	20.41	19.56	0+c.	.0007			27601 NO1
_	12 29 48 19 54 29	178.55 21.16	12 33 29 19 24 13	12 25 47	12 26 05 20 24 27	12 33 48 19 33 40	_				(B)
1H1238-599	189.53	301.63	190.65	187.46	188.46	191.63	1.644	.0118	2S 1239-599	A 1238-59	ì
	-59.96	2.62	-60.88	-59.66	-59.02	-60.22		.0018	4U 1246-58	A 1246-58	
	12 38 05 -59 57 21	220.41 -49.57	12 42 36 -60 53 00	12 29 49 -59 39 42	12 33 50 -59 01 09	12 46 30 -60 13 02			CGS1239-599	XRS12391-599	(R)
1H1238-050	189.59	298.08	190.18	188.91	189.00	190.27	.307	.0084	2A 1238-049	4U 1240-05	NGC4593
	-5.10	57.40	-5.47	-4.93	-4.72	-5.27		.0013	H1238-049		
	12 38 21 -05 05 47	190.81 - 89	12 40 44 -05 28 11	-04 55 35	-04 43 21	12 41 05 -05 15 56					(R)
1H1241+626	190.33	124.53	191.61	188.67	188.99	191.93	.396	.0031			
	62.61	54.77	61.80	63.27	63.41	61.93		.0005			
	12 41 20	148.48	12 46 26	12 34 40	12 35 57	12 47 42					
	62 36 37	57.93	61 48 01	63 16 16	63 24 29	61 55 50					
1H1242+078	190.62	298.19	191.50	189.65	189.74	191.59	.448	.0051			
	17 47 28	186.64	cc./ 12 45 59	0.13	00	CC./		0100			
	07 49 48	11.40	07 19 39	08 07 31	08 19 51	07 31 58			_		-
1H1244-588	191.12	302.42	192.68	189.55	189.62	192.76	.136	.0167	4U 1246-58	XRS12466-588	
	-58.84	3.76	-59.44	-58.27	-58.22	-59.39		6000'			
	12 44 29 -58 50 21	220.40	12 50 43	12 38 10 58 16 17	12 38 29 58 13 01	12 51 01					
1H1244-409	191.19	302.13	192.36	10.001	190.03	197 38	068	0253	2 A 1246-40	411 1246-41	Cen Cluster
-	-40.91	21.68	-41.39	-40.46	-40.43	-41.36	2	9000	1M 1247-410	XRS12462-410	PKS1245-51
	12 44 44	208.05	12 49 25	12 40 02	12 40 07	12 49 30					
	-40 54 42	-32.85	-41 23 07	-40 27 22	-40 25 34	-41 21 18					(R)
1H1247+755	191.99	123.09	192.76	190.11	191.10	193.66	.476	.0028			A1607
_	75.57	41.83	74.63	76.41	76.51	74.71		.0006			_
	12 47 56	125.81	12 51 03	12 40 25	12 44 24	12 54 38					ļ
	75 34 09	65.38	74 37 48	76 24 53	76 30 19	74 42 37					(R)
1H1249-637	192.28	303.01	194.00	190.48	190.64	194.16	.220	8600.	A 1250-66?		
	-63.71	11.11-	-64.37	-63.12	-63.03	-64.29		6000.			
_	10 44 21	\$0.022	12 20 W	oc 14 71	-63 02 01	12 00 3/					

CATALOG	POSIT	NOI		E	RROR BOX			FLUX		DENTIFICATIONS	
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	×	RAY	NON X-RAY
1H1251-291	192.78	303.56	192.98	192.55	192.58	193.01	.025	.0224	2A 1251-290	4U 1249-28	EX Hya
	-29.12	33.48 203.53	-29.24	-29.06	-29.01 12.50.19	-29.18		.0008	CGS1249-289	XRS12492-289	
	-29 07 19	-21.69	-29 14 11	-29 03 42	-29 00 26	-29 10 55					(R)
1H1253-761	193.37	303.28	191.26	196.49	195.74	190.54	.456	.0029	4U 1302-77?	XRS13020-775	
	-76.11	-13.51	-75.25	-76.80	-76.95	-75.38		.000			
	12 53 28	241.88	12 45 03	13 05 58	13 02 57	12 42 09					
	-76 06 31	-60.29	-75 14 48	-76 47 58	-76 57 00	-75 22 54					
1H1254-690	193.59	303.48	193.59	193.59	193.59	193.59	000	.0934	2S 1254-691	4U 1254-69	
	-69.02	-6.42	-69.02	-69.02	-69.02	-69.02		.0029	1M 1254-69	CGS1254-691	
	12 54 20 -69 01 05	-55.40	12 54 20 -69 01 05	12 54 20 -69 01 05	-69 01 05	12 54 20 -69 01 05					(R)
1H1255-567	193.83	303.87	195.22	192.18	192.48	195.51	.588	.0038			
	-56.71	5.88	-57.38	-56.27	-56.03	-57.13		6000'			
	12 55 18	220.36	13 00 53	12 48 43	12 49 55	13 02 02					
	-56 42 33	-45.62	-57 22 35	-56 16 06	-56 01 37	-57 07 40					
1H1255-172	193.88	305.21	194.60	193.07	193.16	194.69	.331	.0083	H 1256-171		A1644
	-17.28	45.29	-17.69	-17.06	-16.87	-17.50		.0012			
	12 55 30	199.50	12 58 24	12 52 16	12 52 37	12 58 44					
	-17 16 53	-10.45	-17 41 26	-17 03 36	-16 52 10	-17 29 58					(R)
1H1257-610	194.48	304.08	194.82	194.04	194.14	194.92	.037	.0373	4U 1258-61	GX304-1	
	-61.10	1.48	-61.27	-60.98	-60.92	-61.21		.0019	CGS1258-613	XRS 12582-613	3
	12 57 55	224.46	12 59 17	12 56 10	12 56 34	12 59 41					
	-61 05 53	-49.03	-61 16 27	-60 58 57	-60 55 16	-61 12 43					(R)
1H1257-010	194.39	307.48	195.24	193.40	193.54	195.38	.740	.0030	4U 1253-00	XRS12539-002	
	-1.06	61.47	-1.61	84	50	-1.27		6000'			
	12 57 33 -01 03 20	193.66 4 70	13 00 <i>57</i> -01 36 45	12 53 34	-00 29 53	13 01 32					
1H1257+281	194.28	56.67	194.37	194.18	194.20	194.38	900	.0596	2A 1257+283	4U 1257+28	A1656
	28.17	88.04	28.12	28.20	28.22	28.14		.0013	1M 1257+281	XRS12574+283	Coma Cluster
	12 57 07	180.78	12 57 28	12 56 43	12 56 46	12 57 31					
	28 10 12	31.31	28 06 54	28 11 45	28 13 29	28 08 38					(R)
1H1300 + 443	195.08	116.11	196.26	193.56	193.86	196.57	.929	.0032			
	44.37	72.88	43.57	44.81	45.16	43.91		6000'			
	13 00 19	171.14	13 05 03	12 54 15	12 55 27	13 06 17					
	44 22 12	45.69	43 34 18	44 48 46	45 09 21	43 54 28					
1H1303-047	195.87	309.76	196.45	195.21	195.29	196.52	.269	.0104			A1651?
	-4.71	57.70	-5.06	-4.55	-4.36	-4.87		.0016			
	13 03 28 -04 42 36	196.43	13 05 46 -05 03 31	13 00 51 -04 32 49	13 01 09 -04 21 38	13 06 05 -04 52 20					(R)

TABLE 4—Continued

11

~
2
0
~
2
-2
2
()
\sim
-
N
- >
LL L
_
-
<u> </u>
·
<
~ ~
H

CATALOG	POSIT	NOI		3	RROR BOX			FLUX		DENTIFICATION	S
ENTRY	RA	GAL.	RA	RA	RA	RA	ARFA	FRROR	X.	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1304-497	196.09	305.54	198.73	193.15	193.57	199.11	2.210	.0029			
	-49.77	12.76	-50.96	-48.98	-48.52	-50.47		.0014			
	13 04 20 -49 45 54	217.01 -38.99	13 14 54 -50 57 22	12 52 36 -48 58 48	12 54 17 -48 30 59	13 16 25 -50 28 24					
1H1305+466	196.38	114.47	197.05	195.54	195.70	197.21	.242	.0047			A1682
	46.60	70.53	46.15	46.89	47.04	46.31	!	.0006			
	13 05 30	170.41	13 08 11	13 02 08	13 02 46	13 08 50					
	46 36 01	48.05	46 09 16	46 53 10	47 02 33	46 18 31					(R)
1H1308-237	197.17	308.77	198.14	196.13	196.20	198.21	.304	.0046			
	-23.74	38.65	-24.20	-23.41	-23.27	-24.06		.0006			
	13 08 40	205.01	13 12 34	13 04 32	13 04 48	13 12 49					
	-23 44 06	-15.17	-24 11 44	-23 24 27	-23 16 05	-24 03 20					
1H1312-161	198.02	311.01	198.52	197.44	197.52	198.60	.218	0089			NGC5044
	-16.13	46.12	-16.43	-16.00	-15.82	-16.25		.0012			NGC5047
	13 12 05	202.76	13 14 05	13 09 46	13 10 05	13 14 23					
	-16 07 34	-7.85	-16 25 54	-15 59 54	-15 49 10	-16 15 09					
1H1312+393	198.03	102.56	198.90	197.00	197.16	199.06	.412	.0054			
	39.36	77.11	38.81	39.69	39.90	39.01		6000'			
	13 12 07	177.45	13 15 34	13 07 59	13 08 37	13 16 13					
	39 21 26	42.61	38 48 28	39 41 35	39 54 00	39 00 43					
1H1313+363	198.46	94.15	199.35	197.39	197.55	199.52	.476	.0067	H1310+371		
	36.37	79.60	35.78	36.72	36.95	36.00		.0017			
	13 13 49	179.85	13 17 24	13 09 32	13 10 11	13 18 04					
	36 22 02	40.20	35 46 56	36 43 20	36 56 43	36 00 10					
1H1315-568	198.93	306.66	200.19	197.46	197.72	200.43	.445	.0122			
	-56.87	5.54	-57.45	-56.50	-56.29	-57.23		.0027			
	13 15 43	223.81	13 20 45	13 09 51	13 10 51	13 21 43					
	-56 52 22	-44.25	-57 26 49	-56 29 44	-56 17 10	-57 13 55					
1H1318+560	199.65	114.48	200.68	198.27	198.59	201.01	.501	.0041			A1734
	56.00	60.90	55.34	56.43	56.66	55.56		.0008			
	13 18 36	163.36	13 22 42	13 13 04	13 14 22	13 24 01					
	56 00 15	56.66	55 20 22	56 26 02	56 39 37	55 33 35					
1H1319+597	199.76	116.02	200.88	198.18	198.58	201.28	.548	.0025	4U 1314+59	XRS13144+595	
	59.76	57.23	58.93	60.40	60.59	59.11		.0005			
	13 19 02	158.41	13 23 31	13 12 43	13 14 20	13 25 06					
	59 45 47	59.36	58 55 50	60 23 44	60 35 08	59 06 45					
1H1320+066	200.02	324.01	200.89	199.03	199.15	201.01	.600	.0038	4U 1317+06	XRS13175+067	
	6.67	68.00	6.15	6.92	7.20	6.43		.0010			
	13 20 05	195.90	13 23 33	13 16 08	13 16 35	13 24 01					
	06 40 22	14.00	06 08 54	06 55 07 1	07 11 45	06 25 30					

ERROR BOX FLUX IDENTIFICATIONS	VL RA RA RA RA AREA ERROR X-RAY NON X-RAY	L DEC DEC DEC DEC	03 201.03 199.14 199.21 201.11 344 0048 NGC5129	.81 13 24 08 13 16 34 13 16 51 13 24 25	.16 13 55 41 14 43 44 14 53 12 14 05 07	.77 200.67 199.33 199.86 201.18 .245 .0039	. 89 68.65 69.76 69.84 68.72 .0006	.03 13 22 40 13 17 18 13 19 26 13 24 43 0.06 68 33 50 69 45 42 69 50 32 68 43 25	.43 201.74 199.60 199.63 201.77 .120 .0123 2A 1326-311 SC 1326-31	.05 -31.42 -30.62 -30.57 -31.36 .0006	.04 13 26 7 13 18 30 13 27 04 .61 -31 25 -30 34 11 -31 21 53	.62 200.95 200.60 200.63 200.98 .014 .0428 2A 1322-427 4U 1322-42 NGC5128	-22/ -42.9/ -42.80 -42.80 -42.93 Cen A 63 13 23 47 13 22 31 13 23 30 13 23 54	.39 -42 58 22 -42 50 51 -42 48 10 -42 55 40 (R)	.50 202.43 200.39 200.48 202.51 .424 .0038	.17 -25.16 -24.40 -24.20 -24.96 .0007		.14 202.58 200.51 200.58 202.65 .312 .0047 A1736	.87 -27.45 -26.68 -26.54 -27.31 .0006			27 202.55 200.69 200.73 202.58 .196 .0078 H1325-020		.05 -02 59 06 -02 14 28 -02 09 01 -02 53 39	.99 203.51 199.54 199.71 203.69 1.665 .0043 VW Com	0.83 16.42 18.13 18.49 16.79 .0015 .	.53 16 25 20 18 07 43 18 29 41 16 47 06 (R)	.81 202.96 201.08 201.16 203.04 .368 .0061 4U 1326+11 XRS13264+119 MKW 11	.52 10.91 11.69 11.86 11.08	1.12 10 54 30 11 41 19 115 129 11 04 39 (R)	.08 203.20 201.41 201.60 203.39 .282 .0052	
ERROR B	RA RA RA	DEC DEC DEC	201.03 199.14 199.2 13 03 14 72 14 9	13 24 08 13 16 34 13 16 5	13 55 41 14 43 44 14 53 1	200.67 199.33 199.8	68.65 69.76 69.8	13 22 40 13 1/ 18 13 19 2 68 38 50 69 45 42 69 50 3	201.74 199.60 199.6	-31.42 -30.62 -30.5	13 26 57 13 18 23 13 18 3 -31 25 12 -30 37 28 -30 34 1	200.95 200.60 200.6	-42.85 -42.85 -42.85 -42.8 13.23.47 13.22.23 13.23	-42 58 22 -42 50 51 -42 48 1	202.43 200.39 200.4	-25.16 -24.40 -24.2	-25 09 40 -24 23 43 -24 12 0	202.58 200.51 200.5	-27.45 -26.68 -26.5	13 30 19 13 22 02 13 22 1 27 27 04 26 45 26 27 26 26	0 75 07- 74 04 -70 40 47 -70 27 0	202.55 200.69 200.7	1.2- 1.3 20 11 12 20 25 13 20 5	-02 59 06 -02 14 28 -02 09 0	203.51 199.54 199.7	13 34 03 13 18 13 18 4	16 25 20 18 07 43 18 29 4	202.96 201.08 201.1	10.91 11.69 11.8	10 54 30 11 41 19 11 51 2	203.20 201.41 201.6	
LOG POSITION	RY RA GAL	DEC ECL	+144 200.13 334.03	13 20 30 192.81	14 24 33 21.16	+692 200.28 118.77	69.25 47.89	13 21 06 142.03 69 14 43 65.06	309 200.68 311.43	-31.00 31.05	13 22 42 211.04 -30 59 57 -20.61	-428 200.79 309.62	-42.89 19.2/	-42 53 16 -31.39	-246 201.45 313.50	-24.68 37.17	13 25 48 209.12 -24 41 01 -14.53	-269 201.58 313.14	-27.00 34.87	13 26 18 210.15	-20 39 48 -10.02	-025 201.64 321.27	13 26 37 200 96	-02 34 05 6.05	+174 201.62 345.99	12 26 20 102 00	17 28 03 24.53	+113 202.06 334.81	11.38 71.52	11 23 04 19.12	+514 202.41 108.08	

TABLE 4-Continued

CATALOG	POSIT	ION			RROR BOX			FLUX	IDI	ENTIFICATION	S
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-R/	AY	NON X-RAY
1H1332-233	203.18 -23.32 13 32 42 23 10 10	315.80 38.19 210.09	204.15 -23.79 13 36 35 23 47 41	202.13 -23.04 13 28 30 73 07 40	202.22 -22.84 13 28 52 72 50 35	204.24 -23.59 13 36 56	.436	.0030 .0005			A1757
1H1332+372	203.21 203.21 37.29 13 32 51 37 17 20	-12.07 82.70 76.47 183.65 42.80	204.21 36.68 13 36 50 36 40 37	202 40 202.04 37.65 13 28 08 17 30 08	-22 00 30 202.20 37.89 13 28 49 13 28 49	20 25 55 55 52 204.38 36.91 13 37 31 36 54 51	.549	.0045 .0009			(K) HR 5110 Mkn 456 (B)
1H1334-340	203.64 -34.05 -34.05 -34 02 49	313.64 27.61 214.80 -22.42	204.31 204.31 -34.37 13 37 13 -34 22 26	202.90 -33.87 -33.87 13 31 35 -33 52 18	202.98 -33.72 -33.72 -33.42.57	204.38 204.38 -34.22 13 37 32 -34 13 02	.216	.0085 .0011	2S 1333-34	Н 1332-336	(R) (R) (R)
1H1338-604	204.69 -60.49 13 38 45 -60 29 30	309.09 1.52 230.09 -45.77	206.32 -61.11 13 45 17 -61 06 31	202.84 -60.07 13 31 22 -60 04 09	203.12 -59.86 13 32 28 -59 51 19	206.58 -60.89 13 46 20 -60 53 17	.508	.0086 .0018	4U 1344-60 1E13405-610	A1343-60	SAO252429 (R)
1H1338-144	204.59 -14.43 13 38 22 -14 25 55	320.50 46.49 208.04 -3.92	205.51 -14.91 13 42 02 -14 54 50	203.58 -14.19 13 34 19 -14 11 18	203.68 -13.95 13 34 43 -13 56 47	205.61 -14.67 13 42 25 -14 40 17	.520	.0025 .0005			A1768? (R)
1H1341+402	205.40 40.21 13 41 36 40 12 49	86.05 73.20 183.62 46.28	206.00 39.77 13 43 59 39 46 13	204.65 40.48 13 38 35 40 28 49	204.80 40.65 13 39 12 40 39 15	206.16 39.94 13 44 37 39 56 32	.263	.0065 .0009	H1350+390		Mkn 460 A1789?
1H1342-733	205.55 -73.33 13 42 12 -73 19 33	306.86 -11.12 242.38 -56.06	201.84 -72.10 13 27 20 -72 06 02	210.56 -74.20 14 02 13 -74 11 58	209.82 -74.48 13 59 16 -74 28 30	201.06 -72.34 13 24 14 -72 20 39	1.115	.0031 .000 8			
1H1344-326	206.07 -32.66 13 44 17 -32 39 33	316.23 28.52 216.24 -20.36	207.16 -33.07 13 48 38 -33 04 05	204.96 -32.31 13 39 51 -32 18 20	205.00 -32.24 13 39 58 -32 14 28	207.19 -33.00 13 48 45 -33 00 11	.140	.022 4 .0012	2A 1344-325	4U 1345-32 XRS13448-325	SC 1344-32 (R)
1H1345-300	206.31 -30.04 13 45 15 -30 02 23	317.21 31.01 215.39 -17.85	206.74 -306.74 -30.26 13 46 56 -30 15 30	205.84 -29.95 13 43 20 -29 56 59	205.89 -29.82 13 43 34 -29 49 11	206.79 -30.13 13 47 10 -30 07 40	.117	.0126 .0012	2A 1347-300	XRS13471-300	IC4329A (R)
1H1348-633	207.20 -63.35 13 48 48 -63 20 53	309.65 -1.52 233.73 -47.59	208.98 -63.98 13 55 55 -63 58 39	205.17 -62.92 13 40 41 -62 55 27	205.50 -62.70 13 42 00 -62 41 50	209.29 -63.74 13 57 08 -63 44 31	.544	.0107 .0025	IM 1353-64		

TABLE 4—Continued

CATALOG	POSIT	ION		E	ROR BOX			FLUX	II	DENTIFICATIONS	
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	I-X	RAY	NON X-RAY
1H1348+267	207.00 26.74 13 48 00	33.53 76.85 193.63	207.31 26.55 13 49 13	206.64 26.84 13 46 34	206.70 26.94 13 46 47	207.36 26.65 13 49 26	.071	.0009	2A 1346+266 XRS13468-300	4U 1348+25	A1795
	26 44 38	35.04	26 32 54	26 50 30	26 56 19	26 38 42					(R)
1H1350+696	207.72	115.20	207.92	207.24	207.52	208.18	.062	.0061	2A 1348+700	XRS13481+700	Mkn 279
	69.62 13 50 52	46.84 143.96	69.32 13 51 39	69.88 13 48 58	69.92 13 50 04	69.36 13 52 44		.0004			
	69 37 02	67.59	69 19 01	69 52 41	69 55 03	69 21 20					(R)
1H1352-105	208.15	327.25	209.31	206.89	206.99	209.41	.716	.0047			
	-10.55 13 52 35	49.04 209.89	-11.13 13 57 13	-10.24 13 47 33	-9.97 13 47 57	-10.8/ 13 57 37		.0013			
	-10 33 13	.94	-11 07 47	-10 14 13	-09 58 24	-10 51 56					
1H1356+566	209.15	105.24	210.04	207.92 57.10	208.24	210.36	.409	.0036			NGC5443
	13 56 37	169.79	14 00 08	13 51 41	13 52 57	14 01 25		1000.			
	56 37 55	60.79	55 58 19	57 06 08	57 17 07	56 08 59					
1H1357+033	209.33	340.17	210.20	208.33	208.47	210.34	.784	.0021			A1835
	3.38	60.96	2.84	3.55	3.92	3.20		.0005			
	13 57 19	206.04	14 00 47	13 53 18	13 53 51	14 01 20 03 12 15					
1111360 + 146	04 77 CO	14.41	61 DC 70	11 00 00	41 CC CO	51 71 CO	100	000			
0+1 + 900 THI	14.69	69.36	14.14	14.91	15.23	14.47	٥ <u>٥</u> /.	CZ00.			
	13 58 56	202.00	14 02 29	13 54 50	13 55 23	14 03 02					
	14 41 22	25.06	14 08 34	14 54 18	15 13 58	14 28 10					
1H1359-645	209.84	310.47	208.59	211.26	211.12	208.45	.161	.0076	1M 1353-64	XRS13539-645	
	-64.57	-2.99	-64.16	-64.85	-64.96	-64.26		.0008			
	13 59 20 -64 33 55	236.15 -48.03	-64 09 42	14 05 02 -64 51 15	14 04 28 -64 57 29	13 53 46 -64 15 47					(R)
1H1359-421	209.99	316.79	211.15	208.67	208.85	211.33	.684	.0039			PKS1355-416
	-42.12	18.57	-42.67	-41.88	-41.57	-42.35		.0011			
	13 59 58	223.38	14 04 36 47 30 58	13 54 39	13 55 24	14 05 18					(0)
1111400 420	07 10 74-	20.12-	00 60 74-	40 CC 14-	11 to 14-	10 07 74-		000			(1)
1H1400-4/8	-47.82	13.06	-48.20	-47.58	-47.42	211.33 -48.04	/ 97.	.0013 100.			
	14 00 56	226.20	14 04 53	13 56 37	13 57 03	14 05 18					
	-47 48 56	-33.04	-48 12 06	-47 34 51	-47 25 16	-48 02 24					
1H1404-450	211.03	316.66	212.17	209.55	209.92	212.51	1.276	.0025	1M 1402-45	E1404-451	
	-45.05	15.55	-45.74	-44.94	-44.36	-45.15		.0013			
	14 04 0/ -45 03 13	-30.29	14 U6 4U -45 44 09	13 36 13	15 29 41 -44 21 37	14 10 02 -45 08 45					(R)

~
~
-2
~
0
- 7 5
\sim
-+
v
- 3
LL I
_
m
_
~
· •
r 7.

1984ApJS...56..507W

CATALOG	POSIT	ION		E	RROR BOX			FLUX	O	ENTIFICATIONS	
ENTRY	RA DEC	GAL BCL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-R	AY	NON X-RAY
1H1405+230	211.36 23.08 14 05 26 23 04 44	23.20 72.20 199.83 33.38	212.31 22.58 14 09 14 22 34 57	210.32 23.40 14 01 17 23 23 44	210.41 23.57 14 01 37 23 34 11	212.39 22.76 14 09 34 22 45 20	.380	.0043			
1H1408-031	212.19 -3.13 14 08 46	338.33 53.92 211.10 0 20	213.11 213.11 -3.56 14 12 25	211.22 -2.87 -2.87 14 04 53	211.28 -2.71 14 05 07	213.17 213.17 -3.39 14 12 39	.348	.0037	2A 1410-029 1M 1410-30	4U 1410-03 XRS14109-030	NGC5506
1H1409-267	212.26 -26.75 14 09 02 -26 45 12	324.25 32.53 32.53 219.23 -12.90	213.27 213.27 -27.21 14 13 05 -27 12 23	211.17 -26.52 14 04 40 -26 30 56	211.26 -26.29 14 05 02 -26 17 34	213.36 213.36 -26.98 14 13 26 -26 58 57	.476	.0043 .0009			
1H1410-468	212.60 -46.82 14 10 22 -46 49 24	317.16 13.53 227.46 -31.49	213.84 -47.38 14 15 22 -47 23 01	211.15 -46.60 14 04 35 -46 35 42	211.37 -46.25 14 05 29 -46 15 00	214.05 -47.03 14 16 12 -47 02 01	.756	.0045 .0015			
1H1411+094	212.81 9.42 14 11 15 09 25 11	354.08 63.55 207.16 21.28	213.44 9.08 14 13 44 09 04 45	212.12 9.58 14 08 28 09 34 34	212.19 9.76 14 08 45 09 45 33	213.51 9.26 14 14 01 09 15 43	.273	.0065 .0009			
1H1415+255	213.77 25.53 14 15 03 25 31 54	32.37 70.67 201.04 36.51	214.09 25.35 14 16 21 25 20 50	213.40 25.63 14 13 35 25 37 55	213.44 25.72 14 13 45 25 42 57	214.13 25.43 14 16 31 25 25 50	.063	.0127 .0008	2A 1415+255 XRS14156+255	4U 1414+25	NGC5548 (R)
1H1419-774	214.95 -77.43 14 19 47 -77 25 36	308.01 -15.72 250.46 -57.76	212.91 -76.92 14 11 38 -76 55 14	217.76 -77.74 14 31 01 -77 44 13	217.15 -77.92 14 28 36 -77 54 58	212.28 -77.09 14 09 06 -77 05 19	.295	.0047 .0007			(R)
1H1419+584	214.91 58.41 14 19 38 58 24 48	102.29 55.20 171.54 64.26	216.04 57.49 14 24 09 57 29 24	213.31 59.14 14 13 13 59 08 08	213.72 59.33 14 14 52 59 19 34	216.45 57.67 14 25 47 57 40 18	.620	.0038 .0007			
1H1420+481	215.22 48.17 14 20 52 48 10 13	88.52 62.63 185.91 56.79	216.34 47.51 14 25 21 47 30 28	213.93 48.69 14 15 42 48 41 35	214.07 48.82 14 16 16 48 49 18	216.48 47.63 14 25 55 47 38 00	.316	.0051 .0007	2A 1418+485	XRS14186 + 485	A1904? (R)
1H1421-808	215.28 -80.83 14 21 06 -80 49 32	306.78 -18.91 254.75 -60.35	211.77 -79.98 14 07 05 -79 59 02	221.21 -81.27 14 44 50 -81 16 10	219.46 -81.63 14 37 51 -81 37 37	209.93 -80.29 13 59 44 -80 17 40	.884	.0020	4U 1450-80	XRS14506-805	

TABLE 4— Continued

ILE 4-	Continued
LE	4
AB	CABLE

CATALOG	POSITI	ION		E	RROR BOX			FLUX	8	ENTIFICATION	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	LAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1422+273	215.61	38.19	216.59	214.54	214.62	216.67	.352	.0038			A1903
	27.31	69.28	26.81	27.64	27.80	26.97		.0005			
	14 22 26	202.02	14 26 21	14 18 10	14 18 29	14 26 41					į
	27 18 43	38.82	26 48 48	27 38 35	27 48 14	26 58 23					(R)
[1424+350	216.24	59.58	217.13	215.21	215.34	217.26	.407	.0051			
	35.10	68.16	34.60	35.38	35.59	34.80		.0012			
	14 24 57	198.04	14 28 30	14 20 50	14 21 21	14 29 01					
	35 05 47	46.05	34 35 45	35 22 55	35 35 25	34 48 07					
11426+120	216.68	3.97	217.60	215.69	215.76	217.67	.368	.0041			Fairall
	12.05	62.45	11.61	12.31	12.48	11.78		9000.			14252+12
	14 26 43	210.01	14 30 24	14 22 45	14 23 01	14 30 40					
	12 02 47	25.08	11 36 24	12 18 40	12 29 00	11 46 43					
H1427+013	216.96	349.49	217.87	215.98	216.06	217.95	.508	.0028			
	1.36	54.81	16.	1.57	1.81	1.15		.0006			
	14 27 51	214.16	14 31 27	14 23 54	14 24 14	14 31 47					
-	01 21 49	15.13	00 54 52	01 34 23	01 48 46	01 09 15					
H1428-714	217.04	310.80	214.67	219.95	219.53	214.19	.653	.0038			
	-71.42	-10.34	-70.87	-71.62	-71.95	-71.18		6000 [.]			
	14 28 08	245.31	14 18 41	14 39 47	14 38 08	14 16 45					
	-71 25 20	-52.49	-70 51 55	-71 37 15	-71 56 52	-71 10 47					
H1429+370	217.45	63.74	218.44	216.23	216.45	218.66	.744	.0037			NGC5684
	37.02	66.70	36.38	37.33	37.66	36.71		.0012			
	14 29 48	197.99	14 33 44	14 24 55	14 25 48	14 34 38					
	37 01 28	48.21	36 22 57	37 19 42	37 39 28	36 42 28					
H1430+423	217.51	75.66	217.93	216.99	217.09	218.03	.108	.0085			
	42.36	64.61	42.07	42.53	42.64	42.18		.0008			
	14 30 03	193.87	14 31 44	14 27 58	14 28 21	14 32 07					
	42 21 19	52.86	42 04 13	42 31 47	42 38 18	42 10 42					
H1433-006	218.38	349.11	219.30	217.41	217.47	219.36	.376	.0065			
	68	52.33	-1.09	45	27	16		.0010			
	14 33 32	216.23	14 37 12	14 29 37	14 29 51	14 37 26					
	-00 40 56	13.66	-01 05 31	-00 27 00	-00 16 20	-00 54 50					
H1434-567	218.71	317.17	217.20	220.53	220.27	216.92	.728	.0020	4U 1436-56	XRS14365-566	NGC5662
	-56.72	2.94	-56.15	-56.94	-57.28	-56.48		.0006			
	14 34 50	236.53	14 28 47	14 42 06	14 41 05	14 27 40					
	-56 43 28	-39.09	-56 08 54	-56 56 40	-57 16 53	-56 28 42					
H1438-623	219.52	315.30	219.30	219.77	219.73	219.27	.010	.0279	4U 1425-61? VDS14105 514	IM 1418-61	MSH14-63
	-02.35	240 12	07.20-	14 39 04	-04.20-	-02.29			+10-C01+1CVV		
	-0 20 21	-44 02	-62 15 27	-62 21 32	06 06 11	C0 / C ±1					(R)
		4221		1) 11 10			_			-	

CATALOG	POSITI	NOI			RROR BOX			FLUX		DENTIFICATION	S
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	I-X	RAY	NON X-RAY
1H1439+393	219.76	67.69	220.26	219.13	219.25	220.39	.195	.0092			A1947
_	39.35 14 39 02	64.25 198.72	39.01 14 41 02	39.52 14 36 31	39.68 14 37 00	39.17 14 41 33		.0012			
	39 20 46	51.12	39 00 25	39 31 01	39 41 00	39 10 20					(R)
1H1444-553	221.10	318.98	219.54	222.79	222.70	219.44	.284	.0038	4U 1446-55	XRS14468-554	
	-55.31	3.68	-54.86	-55.61	-55.74	-54.99		.0004			
_	14 44 24	237.39	14 38 09	14 51 09	14 50 48	14 37 45					
	-55 18 28	-37.26	-54 51 19	-55 36 26	-55 44 24	-54 59 08					
1H1448+415	222.13	70.99	223.16	220.85	221.08	223.40	.704	.0037	4U 1444+43	XRS14446+430	
	41.60	61.79	40.94	41.94	42.24	41.24		.001			
_	41 35 45	53.97	40 56 14	41 56 17	42 14 41	41 14 22					(R)
1H1449+316	222.27	49.54	223.17	221.24	221.36	223.30	.451	.0041			A1968?
_	31.64	63.62	31.15	31.91	32.13	31.37		.0007			
_	14 49 04	206.68	14 52 41	14 44 56	14 45 25	14 53 11					
	31 38 31	45.16	31 08 42	31 54 21	32 07 55	31 22 10					(R)
IH1450+190	222.54	22.84	223.48	221.50	221.59	223.58	.516	.0031	4U 1455+19	XRS14550+191	A1991
-	19.07	61.03	18.60	19.30	19.54	18.84		.0007			
	14 50 09	213.23	14 53 54	14 45 59	14 46 22	14 54 18					į
	19 04 23	33.64	18 35 52	19 18 05	19 32 36	18 50 19					(R)
1H1456-826	224.10	307.17	218.60	232.10	230.83	217.09	.685	.0027			
_	-82.62	-21.07	-81.83	-83.04	-83.32	-82.07		.0000			
	14 20 22 -82 37 10	96 09-	-81 49 59 -81 49 59	- 82 82 61	61 67 61 82 01 88-	14 28 20 -82 04 21					
1H1457+214	224 45	28.60	225.41	22 32 40	22347	22 51 28	364	0039	411 1456+22	XRS14566+255	
	21.43	60.17	20.99	21.70	21.87	21.16		9000			
	14 57 46	214.26	15 01 39	14 53 36	14 53 53	15 01 55					
	21 25 52	36.48	20 59 24	21 41 45	21 52 00	21 09 35					
1H1458-416	224.56	327.38	225.82	223.27	223.31	225.86	.176	.0159	4U 1458-41	XRS14580-415	SN 1006
_	-41.69	14./3	-42.03	-41.41	-41.33	-41.95		.0012			
_	-41 41 07	-234.48	-42 01 47	-41 24 37	-41 19 37	-41 56 44					(R)
1H1504+035	226.09	2.62	227.02	225.11	225.16	227.08	.408	.0085			NGC5864?
_	3.59	49.89	3.20	3.79	3.99	3.40		.0018			
_	15 04 22	222.52	15 08 04	15 00 25	15 00 39	15 08 19					
	03 35 39	20.10	03 12 09	03 47 24	03 59 06	03 23 51					
1H1504+473	226.07	79.29	227.15	224.71	224.95	227.40	909.	.0064			A2024
	47.37	56.94	46.68	47.80	48.05	46.93		.0020			A2018?
	15 04 15 47 22 17	198.22 60.35	15 U8 36 46 41 02	14 58 49 47 47 49	14 59 48 48 02 55	15 09 36 46 55 48					44 Boo? (R)

	K NON	A2029		9	A 2034			ß	MSH15		ĺ	æ					A2052	3C317	(2				BR Cir		ĺ	(N) A 2065		_	ß					A2063		é
ENTIFICATIONS	АҮ	1M 1514+068							1M 1510-59								1M 1514+06							4U 1516-56	Cir X-1	XRS15168-569	411 1521 1 289	1711 1711 01							XRS15190+082		
E E	X-R	2A 1508+062	XRS15087+062						4U 1510-59	XRS15101-590							H 1513+070							2S 1516-569	1M 1516-56	CGS1516-569	74 1518+774	XRS15212+285							2A 1519+082		
FLUX	ERROR	.0165	.0014		0026	9000	2000 .		.0211	9000.			.0058	.0006			.0152	.0017			.0040	0000		.1136	.0016		0078	0012			.0040	.0004			.0078	.0010	
	AREA	.119			747	1			.084				.189				.168				.162			00 0.			356	2			.244				.320		
	RA DEC	227.63	6.00		778.97	33.71	15 15 41	33 12 31	225.99	-58.59	15 03 57	-58 35 21	227.75	-39.99	15 10 59	-39 59 11	229.17	7.18	15 16 40	10 01 /0	229.42	79.00	65 37 22	229.20	-56.99	15 16 48	N7 4C 0C-	28.05	15 21 46	28 02 49	229.06	-46.35	15 16 13	-46 20 47	231.31	8.18	CI CZ CI
ROR BOX	RA DEC	226.77	6.26		226 50	34 20	15 05 59	34 12 11	229.63	-59.28	15 18 30	-59 16 49	229.03	-40.29	15 16 07	-40 17 41	228.22	7.49	15 12 53	0/ 29 10	0/.877	00.48	66 28 59	229.20	-56.99	15 16 48	N7 6C 0C-	28.67	15 14 49	28 36 59	231.85	-46.92	15 27 23	-46 54 57	229.37	8.74	62 / 1 CI
EH	RA DEC	226.74	6.13	0C 0U CI	226.33	33.01	15 05 18	33 54 20	229.65	-59.24	15 18 36	-59 14 25	229.10	-40.12	15 16 24	-40 07 07	228.17	7.33	12 12 40	00 61 /0	87.877	00.42	66 25 28	229.20	-56.99	15 16 48	07 60 00-	28.41	15 14 29	28 24 42	231.90	-46.80	15 27 34	-46 47 54	229.33	8.59	81 /1 (1
	RA DEC	227.59	5.87	17 01 01	22 20 00 278 74	32.01	15 14 58	32 54 52	226.02	-58.55	15 04 04	-58 33 00	227.82	-39.81	15 11 17	-39 48 40	229.12	7.02	15 16 28	CT 10 /0	10.672	10.20	65 33 59	229.20	-56.99	15 16 48	07 4C 0C-	27.84	15 21 25	27 50 36	229.11	-46.23	15 16 26	-46 13 48	231.27	8.02	40 C2 C1
NO	GAL ECL	6.70	50.57	02.222	53 77	20.05	211.55	48.78	320.47	-1.22	243.38	-39.32	330.83	14.62	236.97	-21.26	9.57	50.07	224.02	20.42	102.8/	42.24	73.75	322.12	<u>4</u>	243.44	62./C-	41 12	216.73	44.48	328.45	8.35	240.57	-27.09	12.43	49.34	225.40
POSITI	RA DEC	227.18	6.06	06 03 40	27 63	13 56	15 10 30	33 33 50	227.80	-58.93	15 11 12	-58 55 40	228.42	-40.05	15 13 41	-40 03 16	228.67	7.25	15 14 40	/1 CI /0	228.80	16 16 75	66 01 29	229.20	-56.99	15 16.48	U2 40 00-	28.23	15 18 08	28 13 56	230.47	-46.58	15 21 52	-46 34 52	230.32	8.39	12 21 17
CATALOG	ENTRY	1H1508+060			141510+335				1H1511-589				1H1513-400				1H1514+072				000+CICIHI			1H1516-569			1111510-1-202	707 01/1111			1H1521-465				1H1521+083		

A2052 3C317 (R)

BR Cir

NON X-RAY

A2029

(R) MSH15-52

(R) A2034

ontinued
Ũ.
4
Ш
L)
B
<
H

CATALOG	POSIT	ION		E	RROR BOX			FLUX	IDENTIFICATIO	SN
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC				
1H1521+308	230.34	48.16	231.06	229.54	229.63	231.14	.305	.0085		A2061
	30.81	56.70	30.46	30.94	31.14	30.67		.0012		
	15 21 22	216.32	15 24 13	15 18 09	15 18 30	15 24 34				Į
	30 48 18	47.13	30 2/ 45	30 36 12	31 08 38	30 40 07				(R)
1H1522-552	230.64	323.75	229.02	232.35	232.29	228.95	.252	.0046		
	-55.21	1.09	-54.83	-55.45	-55.57	-54.95		.0004		
	15 22 33	243.68	15 16 04	15 29 23	15 29 08	15 15 47				
	-55 12 49	-35.31	-54 50 02	-55 27 04	-55 34 18	-54 57 09				
1H1525-680	231.42	316.85	229.13	234.11	233.83	228.79	.630	.0030		
	-68.07	-9.78	-67.54	-68.29	-68.58	-67.82		9000.		
	15 25 41	249.92	15 16 30	15 36 27	15 35 18	15 15 08				
	-68 04 29	-47.30	-67 32 07	-68 17 13	-68 34 51	-67 49 10				
1H1530-754	232.62	312.71	229.27	236.51	236.20	228.88	.428	.0043		
	-75.50	-16.03	-74.97	-75.78	-75.98	-75.16		.0008		
	15 30 28	255.01	15 17 04	15 46 02	15 44 48	15 15 32				
	-75 29 56	-54.00	-74 57 57	-75 46 52	-75 58 53	-75 09 20				
1H1530+585	232.67	92.55	233.15	231.92	232.18	233.41	.178	.0042		Mkn 290?
	58.58	48.17	58.14	58.91	59.02	58.25		.0005		
	15 30 40	187.35	15 32 35	15 27 40	15 28 43	15 33 37				
	58 34 49	71.41	58 08 18	58 54 19	59 01 14	58 15 04				(R)
1H1530+629	232.72	97.97	233.30	231.65	232.12	233.75	.378	.0033		
	62.97	45.79	62.22	63.61	63.73	62.32		9000.		
	15 30 53	175.28	15 33 11	15 26 34	15 28 27	15 35 00				
	62 58 24	73.97	62 12 56	63 36 49	63 43 42	62 19 29				
1H1532-662	233.22	318.51	230.97	235.63	235.54	230.87	.236	.0049		
	-66.23	-8.68	-65.82	-66.49	-66.61	-65.93		.0005		
	15 32 53	249.92	15 23 53	15 42 31	15 42 09	15 23 27				
	-66 13 46	-45.33	-65 49 07	-66 29 40	-66 36 25	-65 55 41				
1H1535-445	233.86	331.58	232.53	235.24	235.20	232.48	.228	.0048	4U 1530-44 XRS15307-443	
	-44.58	8.62	-44.26	-44.77	-44.88	-44.37		.0005		
	15 35 25	242.50	15 30 06	15 40 57	15 40 47	15 29 56				
	-44 34 46	-24.53	-44 15 31	-44 46 26	-44 53 05	-44 22 06				
1H1535+685	233.89	103.83	233.94	232.95	233.83	234.78	.412	.0028		
	68.51	42.16	67.87	69.06	69.16	67.96		.0005		
	15 35 32	155.42	15 35 44	15 31 47	15 35 20	15 39 07				
	68 30 45	76.27	67 52 02	69 03 41	69 09 27	67 57 30				
1H1536+840	234.10	118.33	226.86	240.78	242.80	228.96	.632	.0024		
	84.04	31.76	83.44	84.80	84.54	83.23		9000		
	15 36 23	100.81	15 07 25	16 03 07	16 11 11	15 15 50				
	84 02 40	71.07	83 26 17	84 47 54	84 32 11	83 13 42				

		NON X-RAY	QV Nor		(R)					A2127											(R)	A2124		-	(R)								(R)							(R)
NOITACIAITNA	EN LIFICATION	AY	4U 1538-52	CGS1538-522														4U 1543-62	Nor XR-2	XRS15435-624										CGS1553-542								4U 1556-60	CGS1556-605	
		X-R	2S 1538-52	1M 1538-52	77C-09661CNY													2S 1543-624	1M 1543-62	CGS1543-624										1M 1553-54	XRS15539-542							2S 1556-605	1M 1556-60	XRS13367-6U3
ET IV	FLUA	ERROR	.0182	.001		.0038	.0005			.0020	.0005			.0079	.0013			.1377	.0015			.0081	.001			.0038	.0005			.0078	.0004			.0032	9000.			.0446	.0021	
		AREA	000			.348				.857				.362				000.		_		.237				.311				.140				.468				000.		
		RA DEC	234.66	-52.23	-52 13 38	233.49	-18.09	15 33 57	-18 05 11	233.71	75.05	15 34 49	75 03 02	236.12	33.67	15 44 28	33 40 08	235.89	-62.41	15 43 33	-62 24 51	236.82	35.86	15 47 17	35 51 18	237.15	52.16	15 48 36	52 09 22	237.29	-55.01	15 49 08	-55 00 36	237.57	-32.44	15 50 17	-32 26 15	239.20	-60.60	15 56 4/ -60 35 45
	VOG VOV	RA DEC	234.66	-52.23	-52 13 38	235.54	-18.55	15 42 09	-18 32 54	237.48	76.81	15 49 55	76 48 38	234.38	34.27	15 37 31	34 16 08	235.89	-62.41	15 43 33	-62 24 51	235.33	36.35	15 41 19	36 21 00	235.83	53.01	15 43 18	53 00 23	240.69	-55.50	16 02 44	-55 30 17	239.90	-32.86	15 59 34	-32 51 35	239.20	-60.60	-60 35 45
		RA DEC	234.66	-52.23	-52 13 38	235.58	-18.38	15 42 19	-18 22 44	235.81	77.02	15 43 13	77 01 02	234.28	34.05	15 37 06	34 03 15	235.89	-62.41	15 43 33	-62 24 51	235.25	36.18	15 40 59	36 10 52	235.51	52.82	15 42 02	52 49 17	240.71	-55.44	16 02 51	-55 26 11	239.95	-32.63	15 59 48	-32 37 50	239.20	-60.60	15 56 47 -60 35 45
i		RA DEC	234.66	-52.23	-52 13 38	233.53	-17.92	15 34 08	-17 55 02	232.18	75.23	15 28 43	75 13 58	236.01	33.46	15 44 02	33 27 20	235.89	-62.41	15 43 33	-62 24 51	236.74	35.69	15 46 56	35 41 14	236.83	51.97	15 47 20	51 58 29	237.32	-54.94	15 49 16	-54 56 33	237.64	-32.21	15 50 32	-32 12 34	239.20	-60.60	-60 35 45
N		GAL ECL	327.42	2.16	-31.76	349.75	28.67	236.55	1.19	111.20	37.21	124.17	75.62	53.81	52.75	220.43	51.49	321.76	-6.34	249.76	-41.35	57.36	52.09	220.17	53.75	82.90	48.88	203.86	68.34	327.55	-1.78	249.25	-34.00	342.40	15.52	243.46	-11.93	324.14	-5.93	221.08
TISOG	LIGDI	RA DEC	234.66	-52.23	-52 13 38	234.54	-18.24	15 38 08	-18 14 07	234.68	76.04	15 38 44	76 02 10	235.20	33.87	15 40 47	33 51 54	235.89	-62.41	15 43 33	-62 24 51	236.04	36.02	15 44 09	36 01 14	236.34	52.49	15 45 20	52 29 30	238.99	-55.24	15 55 57	-55 14 06	238.76	-32.54	15 55 02	-32 32 22	239.20	-60.60	15 26 47 -60 35 45
CATALOC		ENTRY	1H1538-522			1H1538-182				1H1538+760				1H1540+338				1H1543-624				1H1544+360				1H1545+524				1H1555-552				1H1555-325				1H1556-605		

Continued
.E4-(
TABI

CATALOG	POSIT	NOI			RROR BOX			FLUX		DENTIFICATION	S
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	I-X	LAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1556+273	239.04	44.15	239.61	238.41	238.46	239.66	.164	.0151	2A 1556+274	4U 1556+27	A2142
	27.32	48.71	27.08	27.42	27.56	27.22	-	.0018	H 1556+274	XRS15565+272	
	15 56 08	228.48	15 58 27	15 53 37	15 53 49	15 58 39					Į
	27 19 27	46.41	27 04 59	27 25 26	27 33 47	27 13 19					(R)
1H1600-757	240.03	314.00	237.29	243.11	242.90	237.03	.274	.0047	2A 1556-756	XRS15561-756	
	-75.77	-17.42	-75.42	-75.91	-76.09	-75.59		.0006			
	16 00 08	258.07	15 49 10	16 12 26	16 11 36	15 48 06					
	-75 46 16	-53.57	-75 25 23	-75 54 48	-76 05 11	-75 35 25					
1H1604+158	241.07	29.12	239.16	243.03	242.97	239.11	.840	.0062	2A 1600+164	4U 1601+15	A2147
	15.85	43.47	16.38	15.51	15.30	16.16		.0030	XRS16011+59		
	16 04 17	234.97	15 56 38	16 12 06	16 11 53	15 56 26					
	15 50 43	35.84	16 22 43	15 30 31	15 17 42	16 09 51					(R)
1H1607-189	241.89	354.63	241.29	242.52	242.49	241.26	.189	.0044			
	-18.97	23.21	-18.78	-19.00	-19.16	-18.94		.0005			
	16 07 33	243.52	16 05 09	16 10 03	16 09 56	16 05 02					
	-18 58 05	1.93	-18 46 41	-18 59 55	-19 09 22	-18 56 07					
1H1607+031	241.84	14.86	241.16	242.56	242.52	241.13	.281	.0046			
	3.15	36.86	3.37	3.12	2.92	3.18		.000			
	16 07 22	239.05	16 04 39	16 10 14	16 10 05	16 04 30					
	03 08 55	23.62	03 22 21	03 07 08	02 55 27	03 10 40					
1H1608-522	242.22	330.93	242.22	242.22	242.22	242.22	000	1.5880	2S 1608-523	4U 1608-52	Norma Burster
	-52.30	85	-52.30	-52.30	-52.30	-52.30		.0250	1M 1608-52	CGS1608-522	Norma Transient
	16 08 52	250.64	16 08 52	16 08 52	16 08 52	16 08 52			XRS16088-523		
	-52 17 42	-30.70	-52 17 42	-52 17 42	-52 17 42	-52 17 42					(R)
1H1608+447	242.01	70.33	243.16	240.61	240.84	243.40	.796	.0025			
	44.73	47.00	44.12	44.96	45.32	44.48		.0008			
	16 08 02	221.56	16 12 38	16 02 26	16 03 21	16 13 36					
	44 43 33	63.54	44 07 14	44 57 21	45 19 11	44 28 45					
1H1611-286	242.81	347.84	241.71	243.94	243:91	241.67	.332	.0031	4U 1614-27	XRS16146-277	
	-28.61	15.95	-28.34	-28.71	-28.87	-28.51		.0004			
	16 11 13	246.14	16 06 49	16 15 46	16 15 38	16 06 40					
	-28 36 47	-7.39	-28 20 38	-28 42 37	-28 52 25	-28 30 24					
1H1613-097	243.42	3.47	242.31	244.58	244.53	242.25	.730	.0029			
	-9.76	28.07	-9.40	-9.81	-10.13	-9.71	-	.000			
	16 13 40	243.28	16 09 14	16 18 20	16 18 06	16 09 00					
	-09 45 47	11.25	-09 23 46	-09 48 43	-10 07 36	-09 42 38					(R)
1H1613-060	243.34	6.79	242.91	243.80	243.77	242.88	.144	.0060			A2163
	-6.05	30.40	-5.88	-6.05	-6.21	-6.04		.0007			
	16 13 22	242.51	16 11 39	16 15 12	16 15 05	16 11 31					
	-06 02 48	14.89	-05 53 00	-06 03 10	-06 12 36	-06 02 25					(R)

1984ApJS...56..507W

76	NON X-RAY			V818 Sco		(R)				G334.9-0.3			(R)					Rho Oph region		(4)	A 7704			(R)	KZ TrA		(B)							
DENTIFICATION	AY			4U 1617-15	Sco X-1	XRS16170-155				4U 1626-49	Nor X-1			XRS16256-333				XRS16212-234			411 1636 + 05	22.22.2			2A 1627-673	IM 1626-67	XRS16272-673	VDC16784+786						
I	X-R			2A 1616-155	IM 1617-15	CGS1617-155				2S 1624-490	1M 1624-49	CGS1624-490		4U 1625-33				4U 1621-23			2A 1630+057	XRS16364+052			2S 1627-673	4U 1626-67	CGS1627-673	411 1678 + 786	007 1 0701 04					
FLUX	ERROR	.0038		37.2000	.7372		.0057	.0005		.0916	.0016			.0081	.0008			.0020	.0012		0045	.0005			.0789	6000.		003.7	1000			.0055	1100.	
	AREA	.153		000 [.]			.157			000 [.]				.106				.512			248	2			000			\$10	010			.476		
	RA DEC	244.28 65.19	16 17 07 65 11 29	244.27	-15.52	16 17 04 -15 31 15	243.63	-75.12	16 14 30 -75 07 03	246.08	-49.09	16 24 19	-49 05 06	245.84	-33.31	16 23 22	-33 18 35	244.61	-24.32	-24 19 06	245.64	5.94	16 22 32	05 56 16	246.81	-67.35	-67 21 14	745 87	30.30	16 23 16	30 17 48	248.16	66.36	10 32 37 66 21 33
ROR BOX	RA DEC	243.69 66.05	16 14 46 66 02 44	244.27	-15.52	16 17 04 -15 31 15	247.40	-75.30	16 29 35 -75 18 04	246.08	-49.09	16 24 19	-49 05 06	246.74	-33.43	16 26 58	-33 25 44	248.58	-24.89	16 34 19 -24 53 35	247 62	5.58	16 30 27	05 34 59	246.81	-67.35	-67 21 14	747.95	29.83	16 31 24	29 50 01	247.72	68.35	10 00 10 106 106 106 106 106 106 106 106
EH	RA DEC	243.29 66.00	16 13 08 65 59 50	244.27	-15.52	16 17 04 -15 31 15	247.50	-75.14	16 29 58 -75 08 34	246.08	-49.09	16 24 19	-49 05 06	246.77	-33.29	16 27 04	-33 17 25	248.60	-24.75	16 34 24 -24 45 16	247.64	5.71	16 30 32	05 42 18	246.81	-67.35	-67 21 14	247 04	30.10	16 31 45	30 06 13	247.07	68.33	10 28 17 68 19 45
	RA DEC	243.89 65.14	16 15 32 65 08 41	244.27	-15.52	16 17 04 -15 31 15	243.76	-74.96	16 15 02 -74 57 41	246.08	-49.09	16 24 19	-49 05 06	245.87	-33.17	16 23 28	-33 10 17	244.63	-24.18	16 18 31 -24 10 49	245 66	6.06	16 22 38	06 03 35	246.81	-67.35	-67 21 14	745 00	30.57	16 23 35	30 34 05	247.57	66.34	66 20 18
NOL	GAL ECL	97.89 40.33	173.05 79.41	359.09	23.78	245.14 5.73	315.49	-17.98	259.95 -52.55	334.92	26	252.65	-27.07	346.49	10.54	249.96	-11.49	353.34	16.23	248.80	20.69	34.12	243.68	27.16	321.79	-13.09	257.64 -44 90	50.07	42.51	237.32	51.06	99.20	38.24	104.0U 81.26
POSIT	RA DEC	243.79 65.60	16 15 09 65 35 42	244.27	-15.52	-15 31 15 -15 31 15	245.56	-75.14	16 22 14 -75 08 18	246.08	-49.09	16 24 19	-49 05 06	246.31	-33.30	16 25 13	-33 18 03	246.60	-24.55	-24 32 58	246.64	5.82	16 26 32	05 49 20	246.81	-67.35	-67 21 14 -67 21 14	246.88	30.20	16 27 31	30 12 16	247.64	67.35	67 20 42
CATALOG	ENTRY	1H1615+655		1H1617-155			1H1622-751			1H1624-490				1H1625-333				1H1626-245			1H1626+058				1H1627-673			COS + 7CA1H1	700 1 701111			1H1630+673		

TABLE 4—Continued

ΙŤ

Continued
1
LE 4
PB I
È

CATALOG	POSITI	NO		ER	ROR BOX			FLUX		IDENTIFICATION	S
FNTPV	₽ d	1 V C	₽ d	V d	₹ d	▼ d	ADEA	EDDOD	>	A V	NON V D AV
	DEC	ECL	DEC	DEC	DEC	DEC	VINC	ENNOR	4-V		I WALK NON
1H1631+394	248.00	62.74	249.18	246.71	246.80	249.27	.476	.0146	2A 1626+396	4U 1627+39	A2199
	39.48	42.71	39.06	39.66	39.88	39.28		.0037	XRS16278+396		
	16 31 58 39 28 35	234.38 60.73	16 36 42 39 03 24	16 26 50 39 39 22	39 53 02	30 16 57					(a)
1H1632+736	248.05	106.35	244.93	250 33	251 47	246.04	988	0000			
001 - 7001111	13.64	35.60	C3 CL	74 67	74.107	10.012	002.	0700			
	16 32 11	126.56	16 19 43	16 41 18	16 45 53	16.24 09		0000			
	73 38 08	79.82	72 49 29	74 40 29	74 23 45	72 34 28					
1H1634-281	248.70	351.81	247.59	249.83	249.81	247.57	.240	.0056	H1645-284		
	-28.15	12.45	-27.94	-28.23	-28.35	-28.06		9000.			
	16 34 48	251.21	16 30 21	16 39 19	16 39 15	16 30 16					
	-28 08 59	-6.08	-27 56 26	-28 13 51	-28 21 00	-28 03 33					
1H1634+117	248.51	28.12	247.52	249.53	249.51	247.50	.252	.0039			MC2 1635+119?
	11.74	35.20	11.98	11.63	11.51	11.85		.0004			
	16 34 03	244.59	16 30 04	16 38 06	16 38 01	16 29 58					
	11 44 38	33.31	11 58 43	11 37 47	11 30 21	11 51 16					(R)
IH1635-642	248.83	324.70	246.60	251.12	251.10	246.58	.072	.0184	2A 1631-644	4U 1631-64	
	-64.29	-11.69	-64.07	-64.45	-64.49	-64.10		.0005	1M 1632-64	XRS16315-643	
	16 35 20	257.88	16 26 23	16 44 28	16 44 25	16 26 18					
	-64 17 35	-41.74	-64 03 56	-64 27 00	-64 29 08	-64 06 02					(R)
IH1636-731	249.18	317.76	247.09	251.52	251.34	246.86	.295	.0061			
	-73.14	-17.45	-72.85	-73.20	-73.42	-73.06		6000.			
	16 36 43	260.70	16 28 21	16 46 04	16 45 21	16 27 27			_		
	-73 08 35	-50.37	-72 50 51	-73 12 10	-73 25 00	-73 03 25					
1H1636-536	249.23	332.92	249.23	249.23	249.23	249.23	000	.4709	2S 1636-536	4U 1636-53	V801 Ara
	-53.65	-4.82	-53.65	-53.65	-53.65	-53.65		.0054	MXB1636-53	CGS1636-536	
	16 36 56	255.77	16 36 56	16 36 56	16 36 56	16 36 56			XRS16364-536		
	-53 39 14	-31.23	-53 39 14	-53 39 14	-53 39 14	-53 39 14					(R)
1H1639-109	249.79	6.64	248.72	250.94	250.87	248.65	1.051	.0056			Zeta Oph?
	-10.92	22.38	-10.53	-10.82	-11.30	-11.00		.0019			
	16 39 10	249.78	16 34 52	16 43 44	16 43 29	16 34 36					
	-10 54 59	11.12	-10 31 51	-10 49 28	-11 17 54	-11 00 15					(R)
1H1640+316	250.10	52.65	248.68	251.64	251.51	248.56	1.092	.0018			
	31.65	40.06	32.17	31.51	31.11	31.77		.0005			
	16 40 25	241.14	16 34 43	16 46 34	16 46 02	16 34 15					
	31 38 56	53.12	32 10 23	31 30 49	31 06 32	31 45 55					
1H1642-455	250.54	339.59	250.54	250.54	250.54	250.54	000	.7523	2S 1642-455	4U 1642-45	G339.6-0.1
	-45.52	08	-45.52	-45.52	-45.52	-45.52		0600	IM 1642-45	GX340+0	
	16 42 10	255.31	16 42 10	16 42 10	16 42 10	16 42 10			ARA X-1	CGS1642-455	
	-45 31 12	-23.06	-45 31 12	-45 31 12	-45 31 12	-45 31 12			XRS16421-455		(R)

<u> </u>	_						_					_			_	_				_			_	_						-	_	_			_				_		
		NON X-RAY	NGC6221?	NGC6215?	NGC6215A?	(R)								(R)	Mkn 501			(R)					Wolf 630			(R)					HZ Her	_	į	(R)							(R)
	DENTIFICATIONS	RAY	XRS16450-575												XRS16518+399												XRS16518-065				4U 1656+35	Her X-1							MXB1659-29	XKS16290-298	
	II	I-X	H 1649-595								GX341+1				4U 1651+39				H 1648-185?								4U 1651-06				2A 1655+353	IM 1656+35	XRS16560+354			_			4U 1704-30	CGS1658-298	
	FLUX	ERROR	.0095	9000.		!	.0047	.000			.0685	.0007			.0087	.0004			6900.	.0007			.0030	9000			9900.	.0015			.0233	.000			.0054	.0000			.0263	6000	
		AREA	.050				.208				.048				.034				.166				999.				.451				00 .				.205				000		
		RA DEC	250.71	-59.66	16 42 49	-59 39 36	249.71	-51.83	16 38 50	-51 50 02	249.97	-44.11	16 39 53	-44 06 50	252.72	39.90	16 50 51	39 53 51	252.61	-18.09	16 50 25	-18 05 29	252.19	-8.37	16 48 45	-08 22 16	252.61	-6.35	16 50 26	-06 20 58	254.01	35.42	16 56 01	35 25 05	253.76	-3.77	16 55 01	-03 46 25	254.73	-29.87	CC 8C 9C-
	ROR BOX	RA DEC	251.92	-59.76	16 47 40	-59 45 27	252.92	-52.13	16 51 41	-52 07 35	252.74	-44.39	16 50 57	-44 23 16	253.24	39.78	16 52 58	39 46 54	253.69	-18.21	16 54 46	-18 12 41	254.58	-8.63	16 58 19	-08 37 57	254.07	-6.51	16 56 15	-06 30 30	254.01	35.42	16 56 01	35 25 05	255.03	-3.92	17 00 07	-03 55 18	254.73	-29.87	CC 8C 01
	EI	RA DEC	251.94	-59.68	16 47 46	-59 40 43	252.94	-52.02	16 51 46	-52 01 23	252.74	-44.36	16 50 58	-44 21 50	253.27	39.86	16 53 05	39 51 31	253.71	-18.05	16 54 50	-18 03 09	254.61	-8.35	16 58 26	-08 21 15	254.10	-6.20	16 56 24	-00 12 00	254.01	35.42	16 56 01	35 25 05	255.05	-3.76	17 00 11	-03 45 46	254.73	-29.87	CC 8C 91
		RA DEC	250.73	-59.58	16 42 55	-59 34 52	249.74	-51.73	16 38 57	-51 43 53	249.98	-44.09	16 39 55	-44 05 25	252.74	39.97	16 50 58	39 58 28	252.63	-17.93	16 50 30	-17 55 57	252.22	-8.09	16 48 52	-08 05 34	252.65	-6.04	16 50 35	-06 02 29	254.01	35.42	16 56 01	35 25 05	253.77	-3.61	16 55 05	-03 36 53	254.73	-29.87	CC 8C 01
	NOI.	GAL ECL	329.06	-9.60	258.32	-36.98	335.05	-4.65	256.91	-29.34	340.93	.31	255.73	-21.72	63.64	38.91	241.78	61.67	2.56	15.52	253.96	4.44	11.07	20.91	253.05	14.11	12.92	22.09	252.76	16.18	58.15	37.52	245.30	57.50	15.81	22.56	253.54	18.79	353.83	7.27	40.0C2
	FOSIT	RA DEC	251.32	-59.67	16 45 17	-59 40 14	251.32	-51.94	16 45 17	-51 56 22	251.36	-44.25	16 45 25	-44 14 50	252.99	39.88	16 51 58	39 52 42	253.16	-18.07	16 52 38	-18 04 22	253.40	-8.36	16 53 35	-08 21 52	253.36	-6.28	16 53 25	-06 16 31	254.01	35.42	16 56 01	35 25 05	254.40	-3.77	16 57 36	-03 46 06	254.73	-29.87	CC 8C 91
	CATALOG	ENTRY	1H1645-596				1H1645-519			_	1H1645-442				1H1651+398				1H1652-180				1H1653-083				1H1653-062				1H1656+354				1H1657-037				1H1658-298		

Continued
4
ΓË
TAB

F +

SN	NON X-RAY					(R)								(R)				(R)	A2244			(R)				(R)	UGC 106838			(R)		_			3C351?			(R)	Nova Oph 1977	V2107 Oph	
DENTIFICATIO	RAY		1M 1658-48	CGS1659-487			XRS17056-322				CGS1705-440				4U 1702-36	Sco XR-2	XRS17023-363		3U 1706+32								XRS17166-016								XRS17052+609				XRS17051-250		
	- X		4U 1658-48	GX339-4	XRS16589-487		4U 1705-32				4U 1705-44	XRS17053-440			2S 1702-363	1M 1702-36	CGS1702-363		2A 1659+337	XRS16592+337							4U 1716-016								2A 1705+609				CGS1705-250		
FLUX	ERROR	i	.1683	.0030			.0066	.000			.0560	6000			1.6610	.0189			.0046	.0007			.0012	.0005			.0068	9000			.0056	.000			.0045	.0010			4.2110	.0668	
	AREA		000				.160				090.				000				1.644				.916				.134				.192				.496				000		
	RA	DEC	254.76	-48.72	16 59 01	-48 43 05	253.64	-31.66	16 54 33	-31 39 29	254.17	-43.66	16 56 40	-43 39 48	255.60	-36.36	17 02 23	-36 21 26	254.24	33.44	16 56 57	33 26 25	254.17	45.72	16 56 39	45 43 22	255.50	-1.35	17 02 00	-01 21 17	254.98	-19.82	16 59 54	-19 49 29	257.77	59.97	17 11 05	59 58 15	256.29	-25.03	17 05 10
ROR BOX	RA	DEC	254.76	-48.72	16 59 01	-48 43 05	255.98	-31.87	17 03 55	-31 52 09	256.92	-43.88	17 07 41	-43 52 33	255.60	-36.36	17 02 23	-36 21 26	256.59	33.09	17 06 22	33 05 09	256.92	45.20	17 07 40	45 12 10	256.46	-1.46	17 05,50	-01 27 21	257.09	-20.02	17 08 22	-20 01 01	254.64	61.25	16 58 34	61 15 08	256.29	-25.03	17 05 10
	RA	DEC	254.76	-48.72	16 59 01	-48 43 05	255.99	-31.79.	17 03 57	-31 47 22	256.92	-43.85	17 07 41	-43 50 46	255.60	-36.36	17 02 23	-36 21 26	256.78	33.89	17 07 07	33 53 34	257.10	45.64	17 08 24	45 38 34	256.47	-1.32	17 05 53	-01 18 59	257.10	-19.92	17 08 24	-19 55 17	254.32	61.06	16 57 17	61 03 28	256.29	-25.03	17 05 10
	RA	DEC	254.76	-48.72	16 59 01	-48 43 05	253.65	-31.58	16 54 36	-31 34 43	254.17	-43.63	16 56 41	-43 38 01	255.60	-36.36	17 02 23	-36 21 26	254.40	34.25	16 57 36	34 15 03	254.33	46.17	16 57 18	46 10 01	255.52	-1.22	17 02 04	-01 12 56	254.99	-19.73	16 59 56	-19 43 45	257.45	59.78	17 09 47	59 47 01	256.29	-25.03	17 05 10
ION	GAL	ECL	338.94	-4.33	258.89	-25.86	352.39	6.08	256.96	-8.97	343.20	-1.73	258.87	-20.87	349.10	2.75	258.11	-13.50	56.29	35.99	248.12	56.02	71.19	37.38	242.72	67.78	18.96	22.46	254.93	21.38	2.70	12.26	256.87	2.93	89.73	36.39	217.78	81.38	358.59	9.06	257.59
POSIT	RA	DEC	254.76	-48.72	16 59 01	-48 43 05	254.82	-31.73	16 59 15	-31 43 45	255.54	-43.76	17 02 10	-43 45 47	255.60	-36.36	17 02 23	-36 21 26	255.51	33.67	17 02 01	33 40 23	255.63	45.69	17 02 32	45 41 32	255.99	-1.34	17 03 57	-01 20 08	256.04	-19.88	17 04 09	-19 52 35	256.08	60.53	17 04 18	60 31 31	256.29	-25.03	17 05 10
CATALOG	ENTRY		1H1659-487				1H1659-317				1H1702-437				1H1702-363				1H1702+336				1H1702+456				1H1703-013				1H1704-198				1H1704+605				1H1705-250		

ŧ
1.2																		_		_														-				
	, .	NON X-RAY	HD154791		(R)	A2256		(a)				(R)												(R)	A2252		(R)	A2255			(R)							(R)
	ENTIFICATIONS	AY	4U 1700+24			4U 1707+78	XRS1707+786		1M 1709-40												XRS17108-340															4U 1704-30	CGS1715-321	
	a	X-R	2A 1704+241	XRS17040+241		2A 1705+786	1M 1706+78		411 1708-40	XRS17083-407							4U 1715-39				A 1710-34															2S 1715-321	IM 1716-31 VBC17166 331	17C-001/10VV
	FLUX	ERROR	.0049	9000		.0108	.0004		0870	.0015			.0044	.0005			.0634	.0005			.0425	.0108			.0024	.0004		.0041	.0003			.0018	9000.			.0450	.0029	
		AREA	.212			.016			004				.252				.048				.168				.355			.048				.864				000		
		RA DEC	256.00	24.11 17 04 00	24 06 43	255.98	78.60	17 03 55 78 35 52	11 250	-40.59	17 08 26	-40 35 17	256.25	10.64	17 05 00	10 38 06	256.36	-38.71	17 05 25	-38 42 26	257.00	-33.70	17 08 00	-33 41 53	257.10	49.12	49 07 02	258.50	64.01	17 14 00	64 00 18	257.04	42.48	17 08 09	42 29 05	258.88	-32.12	
	RROR BOX	RA DEC	257.28	23.95	23 56 43	257.18	78.71	17 08 43 78 42 24	12 22 21	-40.60	17 09 16	-40 36 13	258.27	10.43	17 13 05	10 22 30	258.91	-38.88	17 15 39	-38 53 04	259.40	-33.86	17 17 36	-33 51 49	259.27	48.71	48 42 28	257.90	64.32	17 11 36	64 19 24	260.20	41.96	17 20 48	41 57 36	258.88	-32.12	-32 07 16
	E	RA DEC	257.31	24.12 17 09 14	24 07 24	257.06	78.76	17 08 13 78 45 41	CE 150	-40.58	17 09 17	-40 34 40	258.29	10.55	17 13 09	10 33 01	258.92	-38.86	17 15 39	-38 51 37	259.41	-33.78	17 17 37	-33 46 47	259.37	48.94	48 56 14	257.69	64.25	17 10 46	64 14 57	260.32	42.31	17 21 16	42 18 35	258.88	-32.12	-32 07 16
		RA DEC	256.03	24.29 17 04 07	24 17 25	255.85	78.65	17 03 24 78 39 07	11 150	-40.56	17 08 27	-40 33 44	256.26	10.76	17 05 03	IU 45 3/	256.36	-38.68	17 05 26	-38 41 00	257.01	-33.61	17 08 02	-33 36 52	257.20	49.35	49 20 56	258.30	63.93	17 13 10	63 55 54	257.14	42.84	17 08 33	42 50 15	258.88	-32.12	-32 07 16
	ION	GAL ECL	45.43	32.55 252 10	46.74	110.99	31.80	102.02 77 30	346.49	81	259.85	-17.59	31.21	26.95	254.97	33.38	348.12	8	260.01	-15.77	352.48	2.59	260.04	-10.71	75.44	35.76	71.47	93.94	34.93	200.55	84.49	67.37	34.92	249.89	65.07	354.13	3.07	-9.04
	POSIT	RA DEC	256.66	24.12	24 07 09	256.52	78.68	17 06 03 78 40 48	CC 13C	-40.58	17 08 51	-40 34 58	257.27	10.59	17 09 04	10 55 55 95	257.63	-38.79	17 10 32	-38 47 27	258.20	-33.74	17 12 49	-33 44 41	258.24	49.03	49 01 58	258.10	64.13	17 12 23	64 07 40	258.68	42.41	17 14 43	42 24 32	258.88	-32.12	-32 07 16
	CATALOG	ENTRY	1H1706+241			1H1706+786			1H1708-405		_		1H1709+105				1H1710-387				1H1712-337				1H1712+490			1H1712+641				1H1714+424				1H1715-321	_	_

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

241100	DOGITI	NO						PI I V		NOIT VULLEIUN	
								T L C C			THE REAL PARTY
ENTRY	RA DEC	GAL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	4-X	tAY	NON X-RAY
1H1718-010	259.62	21.17	258.63	260.62	260.61	258.62	.208	.0056	4U 1716-01	XRS17166-016	3C353?
	-1.05	19.46	92	-1.08	-1.18	-1.03		.0005			
	01 03 06	258.80	17 14 30	17 22 28 01 04 37	17 22 26	17 14 28					
010 1 0121111	00 CO 10-	1.57	07 07 090	10 10 10-	0C 01 10-	37 83C		0100			
1H1/18+747	00.402	40.04	228.49	/9.002	200.03	24.8CZ	80/.	2000			V 390 Her
	12.42	60.0c	17 13 56	17 20 40	06.07	17 13 47		com.			
	24 15 54	47.20	24 32 36	24 19 51	23 58 45	24 11 28					(R)
1H1719+033	259.98	25.46	258.99	260.98	260.98	258.98	.164	.0078	4U 1715+02	XRS17154+028	
	3.34	21.27	3.46	3.31	3.23	3.38		.0005			
	17 19 55	258.82	17 15 56	17 23 56	17 23 54	17 15 55					
	03 20 39	26.40	03 27 42	03 18 26	03 13 32	03 22 48					
1H1720-669	260.20	325.34	259.19	261.24	261.22	259.17	.082	.0080			NGC6362?
	-66.91	-17.02	-66.82	-66.89	-67.00	-66.92		.0005			
	17 20 48	264.71	17 16 46	17 24 56	17 24 52	17 16 40					
	-66 54 44	-43.65	-66 49 23	-66 53 35	-66 59 42	-66 55 29					
1H1720+117	260.20	33.78	259.58	260.84	260.82	259.56	.223	.0046	4U 1722+11?	XRS17228+119	
	11.79	24.85	11.94	11.82	11.64	11.76		.0005			
	17 20 48	258.29	17 18 18	17 23 21	17 23 17	17 18 14					
	11 47 26	34.84	11 56 10	11 49 23	11 38 38	11 45 25					
1H1720+269	260.21	49.68	259.28	261.17	261.14	259.25	.374	.0038			A2263
	26.90	30.35	27.11	26.91	26.69	26.89		.0007			
	17 20 50	256.39	17 17 06	17 24 41	17 24 34	17 17 00					
	26 54 13	49.89	27 06 33	26 54 36	26 41 30	26 53 26					(R)
1H1720+573	260.01	85.60	258.34	261.76	261.64	258.23	.324	.0034			
	57.34	34.66	57.78	57.01	56.86	57.63		9000			
	17 20 02	238.49	17 13 21	17 27 03	17 26 34	17 12 54					
	90 07 / C	/9.08	5/ 4/ U3	5/ 00 44	70 10 90	46 16 16					
1H1726-058	261.61	17.85	260.30	262.94	262.92	260.27	1.056	.0032			
	-5.86	15.33	-5.57	-5.75	-6.15	-5.97		6000			
	17 26 25	261.25	17 21 11	17 31 46	17 31 40	17 21 04					
	-05 51 41	17.33	-05 34 19	-05 44 55	-06 08 52	-05 58 15					
1H1727+308	261.91	54.52	261.27	262.57	262.55	261.26	.202	.0036			
	30.82	30.05	30.96	30.85	30.67	30.78		.0004			
	17 27 39	258.16	17 25 05	17 30 17	17 30 12	17 25 01		_			
	30 48 57	53.93	30 57 20	30 51 08	30 40 23	30 46 34					
1H1728-334	262.16	354.56	261.78	262.54	262.54	261.77	.013	.3168	MXB1728-34		Grindlay 1
	-33.49	.03	-33.46	-33.49	-33.51	-33.48		.0300			
	-33 29 06	263.36	17 27 06 -33 27 30	17 30 09 -33 29 26	-33 30 38	17 27 05 -33 28 42					(R)

TABLE 4—Continued

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	ION		E	RROR BOX			FLUX	Ī	ENTIFICATION	S
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-R.	AY	NON X-RAY
1H1728-247	262.15 -24.70 17 28 36	1.90 4.87 262.87	261.05 -24.63 17 24 12	263.25 -24.74 17 33 00	263.25 -24.77 17 33 00	261.05 -24.66 17 24 12	.048	.0574 .0006	2S 1728-247 GX1+4 XRS17289-247	4U 1728-24 CGS1728-247	V2116 Oph
IHI 728-213	-24 42 13 262.15 -21.40 17 28 36	-1.43 4.68 6.67 262.69	261.98 261.98 -21.37 17 27 55	262.33 262.33 -21.39 17 29 18	262.32 262.32 -21.43 17 29 17	261.98 261.98 -21.41 17 27 55	.013	.0209 .0006			Kepler SNR
1H1728-169	-21 25 48 262.21 -16.92 17 28 50 -16 55 19	8.52 8.52 9.04 262.50 6.32	-21 22 03 262.21 -16.92 17 28 50 -16 55 19	-21 25 07 262.21 -16.92 17 28 50 -16 55 19	262.21 262.21 -16.92 17 28 50 -16 55 19	-21 24 28 262.21 -16.92 17 28 50 -16 55 19	000.	.8652 .0127	2S 1728-169 1M 1728-16 XRS17288-169	4U 1728-16 GX9+9	
1H1730+500	262.74 50.03 17 30 57 50 01 40	76.85 32.90 253.82 73.07	261.24 50.37 17 24 58 50 21 55	264.32 50.02 17 37 16 50 01 08	264.22 49.67 17 36 51 49 40 17	261.16 50.02 17 24 38 50 00 55	.708	.0014 .0004			I Zw 186 (R)
1H1731-075	262.94 -7.54 17 31 45 -07 32 08	17.06 13.34 13.73 15.73	261.36 -7.28 17 25 25 -07 17 01	264.54 -7.44 17 38 09 -07 26 18	264.52 -7.78 17 38 05 -07 46 54	261.34 -7.63 17 25 21 -07 37 37	1.088	.0029 .0007			
1H1732+439	263.19 44.00 17 32 45 43 59 52	69.80 31.89 257.31 67.14	261.82 44.23 17 27 17 44 13 45	264.59 43.99 17 38 21 43 59 09	264.54 43.75 17 38 10 43 45 01	261.79 43.99 17 27 09 43 59 33	.476	.0018 .0003	3U 1736+43		
1H1733+356	263.48 35.66 17 33 54 35 39 18	60.31 30.03 259.71 58.87	262.64 35.89 17 30 33 35 33 37	264.36 35.68 17 37 26 35 40 52	264.31 35.41 17 37 13 35 24 38	262.59 35.62 17 30 22 35 37 21	.387	.0035 .0006			
1H1735-444	263.83 -44.42 17 35 19 -44 25 18	346.05 -6.99 265.28 -21.08	263.83 -44.42 17 35 19 -44 25 18	263.83 -44.42 17 35 19 -44 25 18	263.83 -44.42 17 35 19 -44 25 18	263.83 -44.42 17 35 19 -44 25 18	000.	.3694 .0051	2S 1735-444 MXB1735-44 XRS17353-444	4U 1735-44 CGS1735-444	V926 Sco (R)
1H1735+388	263.94 38.83 17 35 46 38 49 59	63.99 30.38 259.89 62.07	262.54 39.18 17 30 10 39 10 39	265.41 38.79 17 41 37 38 47 11	265.33 38.47 17 41 19 38 28 20	262.48 38.86 17 29 54 38 51 41	.723	.0022 .0005			
1H1735 + 400	263.81 40.06 17 35 14 40 03 29	65.35 30.74 259.42 63.28	263.06 40.23 17 32 14 40 13 38	264.59 40.06 17 38 21 40 03 44	264.55 39.88 17 38 13 39 53 03	263.03 40.05 17 32 07 40 02 56	.212	.0031 .0004			A2278? (R)

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

	VON V B V V	NUN A-KAT												1742+33?			(R)				(R)					GCX region			(R)				(R)					NGC6441		(B)
PNTIFICATION		CA I				H 1734-127																				4U 1743-29	CGS1743-288			4U 1744-26	GX3+1	Sgr XR-1						4U 1746-37	XRS17468-370	
		I-V				4U 1807-10	XRS18079-108											H 1743-322	-							2S 1742-267	MXB1743-29	XRS17436-285		2S 1744-265	1M 1744-26	CGS1744-26						2S 1746-370	1M 1746-37	
A11 15	PDD0	EKKUK	.0042	.0005		.0064	9000.			.0027	.0004			.0033	.0005			1.4930	.0296			.0028	.0003			.2582	.0056			.8754	.0155			.0034	.0004			.1271	.0024	
	1774	AKEA	.223			.147				.184				.272				00 0.				.116				.004				000				.272				00 .		
		DEC	263.50	17 34 00	17 19 06	264.25	-12.72	17 36 59	-12 42 56	263.80	74.32	17 35 11	74 18 55	264.31	32.95	17 37 15	32 56 46	265.44	-32.21	17 41 46	-32 12 25	264.84	58.65	17 39 22	58 39 17	266.11	-29.39	17 44 27	-29 23 23	266.21	-26.55	17 44 49	-26 32 49	265.19	.76	17 40 44	00 45 19	266.70	-37.04	1/ 40 4/
	VOG NOV	DEC	264.80	17 30 11	17 14 44	265.25	-12.75	17 41 00	-12 45 11	265.79	74.20	17 43 08	74 11 56	265.93	32.84	17 43 42	32 50 10	265.44	-32.21	17 41 46	-32 12 25	265.94	58.41	17 43 45	58 24 40	266.37	-29.40	17 45 27	-29 23 44	266.21	-26.55	17 44 49	-26 32 49	267.19	.70	17 48 44	00 41 50	266.70	-37.04	1/ 40 4/
		DEC	264.81	17 30 14	17 25 31	265.26	-12.60	17 41 02	-12 36 11	266.07	74.52	17 44 16	74 31 27	265.95	33.04	17 43 47	33 02 07	265.44	-32.21	17 41 46	-32 12 25	266.08	58.58	17 44 19	58 34 54	266.37	-29.38	17 45 27	-29 22 32	266.21	-26.55	17 44 49	-26 32 49	267.19	.83	17 48 45	00 49 59	266.70	-37.04	1/ 40 4/
	-	DEC	263.51	17 34 02	17 29 53	264.25	-12.57	17 37 00	-12 33 56	264.04	74.64	17 36 09	74 38 34	264.33	33.15	17 37 19	33 08 44	265.44	-32.21	17 41 46	-32 12 25	264.98	58.83	17 39 55	58 49 35	266.11	-29.37	17 44 27	-29 22 11	266.21	-26.55	17 44 49	-26 32 49	265.19	88.	17 40 45	00 53 28	266.70	-37.04	1/ 40 4/ -37 02 23
N		BCL	41.07	23.61	40.67	13.50	9.18	264.79	10.69	105.61	30.95	99.78	81.96	57.77	28.02	262.62	56.31	357.13	-1.61	266.10	-8.82	87.10	31.76	253.22	81.80	359.89	71	266.71	-5.98	2.29	62.	266.60	-3.15	26.18	14.59	265.82	24.18	353.53	-5.00	201.27
DACT		DEC	264.16	17 36 37	17 22 23	264.75	-12.66	17 39 00	-12 39 35	264.93	74.42	17 39 42	74 25 21	265.13	32.99	17 40 31	32 59 36	265.44	-32.21	17 41 46	-32 12 25	265.46	58.62	17 41 51	58 37 11	266.24	-29.38	17 44 57	-29 22 58	266.21	-26.55	17 44 49	-26 32 49	266.19	.79	17 44 45	00 47 40	266.70	-37.04	-37 02 23
		ENTRY	1H1736+173			1H1739-126				1H1739+744				1H1740+329				1H1741-322				1H1741+586				1H1744-293				1H1744-265				1H1744+007				1H1746-370		

ТÌ

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOI		E	RROR BOX			FLUX	Π	DENTIFICATION	6
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	-X	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1746+475	266.55	74.28	265.62	267.49	267.48	265.61	.253	.0021			
	47.53	30.11	47.65	47.60	47.40	47.45		.0003			
	47 31 34	262.87	47 38 42	47 35 58	1/ 49 54 47 73 59	1/ 42 25 47 76 47					
1H1747+675	76 77	63 60	266.18	267.00	75 73	35 996	088	0033			
	67.52	31.05	67 42	67 74	19 19	62.73	000.				
	17 47 05	141.13	17 44 43	17 48 00	17 49 28	17 46 11					
	67 30 59	88.42	67 25 25	67 44 41	67 36 24	67 17 15					
1H1748+685	267.23	98.67	263.19	268.08	271.08	266.48	4.660	.0030			Mkn 507?
	68.51	30.83	68.98	70.02	67.95	67.00		.0013			
	17 48 54	117.16	17 32 45	17 52 18	18 04 19	17 45 55					
	68 30 42	87.77	68 58 46	70 01 02	67 57 04	67 00 09					(R)
1H1752+081	268.02	33.87	267.43	268.62	268.62	267.43	.214	.0056			
	8.19	16.35	8.29	8.27	8.09	8.10		.0008			
	17 52 05	267.70	17 49 43	17 54 28	17 54 28	17 49 42					
	08 11 16	31.62	08 17 09	08 16 15	08 05 19	08 06 14					
1H1752+289	268.21	54.40	266.88	269.55	269.53	266.87	.625	.0038	4U 1745+29	XRS17456+292	
	28.98	24.29	29.17	29.05	28.78	28.90		.0010			
	17 52 49	267.43	17 47 31	17 58 11	17 58 06	17 47 28					
	28 58 58	52.41	29 10 16	29 02 56	28 46 53	28 54 13					
1H1754-338	268.74	357.17	268.59	268.88	268.88	268.59	.005	.3431	2S 1755-338	4U 1755-33	
	-33.80	-4.80	-33.79	-33.79	-33.81	-33.81		.0064	1M 1755-33	Sco XR-6	
	17 54 56	268.93	17 54 21	17 55 31	17 55 31	17 54 21			CGS1755-338	XRS17553-338	
	-33 48 04	-10.36	-33 47 23	-33 47 32	-33 48 44	-33 48 35					(R)
1H1758-482	269.63	344.68	268.13	271.13	271.13	268.12	.348	.0053			
	-48.27	-12.38	-48.18	-48.18	-48.35	-48.35		.0008			
	17 58 30	269.73	17 52 30	18 04 30	18 04 31	17 52 28					
	07 01 04-	C0.42-	0C 01 84-	NC NI 94-	11 17 94-	00 07 84-					
1H1758-250	269.51	5.08	269.51	269.51	269.51	269.51	000	2.2860	2S 1758-250	4U 1758-25	
	17 58 03	70.1-	17 58 03	17 58 03	17 58 03	17 58 03		+060.	CC-261758-23	VDS17580-250	
	-25 04 38	-1.63	-25 04 38	-25 04 38	-25 04 38	-25 04 38				007-000 1000	(R)
1H1758-205	269.64	9.07	269.64	269.64	269.64	269.64	000	1.5230	2S 1758-205	4U 1758-20	
	-20.53	1.15	-20.53	-20.53	-20.53	-20.53		.0243	1M 1758-20	GX9+1	
	17 58 33	269.66	17 58 33	17 58 33	17 58 33	17 58 33			CGS1758-205	Sgr XR-3	
	-20 31 56	2.91	-20 31 56	-20 31 56	-20 31 56	-20 31 56					(R)
1H1759+099	269.79	36.28	268.77	270.81	270.80	268.78	.552	.0035			
	9.92	15.54	10.06	10.06	9.78	9.78		.000			
	17 29 09 09 09 09	269.12	CU CC /1 10 03 34	18 03 13	18 03 13 09 46 48	17 55 06 09 47 01					

ī

TABLE 4— Continued

T

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	ION			RROR BOX			FLUX	II	ENTIFICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	I-X	LAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1801+579	270.38	86.54	268.48	272.27	272.26	268.50	.480	.0026			
	57.97	29.14	58.06	58.09	57.85	57.82		.0005			
	18 01 30	271.34	17 53 55	18 09 03	18 09 02	17 54 00					
	11 00 /0	14.10	47 CN 9C	CC CD 9C	71 10 /0	00 64 10					
1H1803+696	270.90	99.95	268.05	273.78	273.71	268.01	.308	.0030	H1801+698		3C371
	69.66	29.49	69.83	69.60	69.44	69.67		.0004			
	18 03 36	84.24	17 52 10	18 15 06	18 14 49	17 52 03					
	69 39 28	86.88	69 49 34	69 35 46	69 26 38	69 40 21					(R)
1H1810+182	272.67	45.33	271.55	273.79	273.78	271.55	.678	.0054			
	18.21	16.51	18.37	18.37	18.05	18.05		.0016			
	18 10 40	273.39	18 06 12	18 15 08	18 15 07	18 06 12					
	18 12 48	41.63	18 22 29	18 21 55	18 02 44	18 03 17					
1H1811-171	272.91	13.52	272.91	272.91	272.91	272.91	000	.8270	2S 1811-171	4U 1811-17	
	-17.17	Ξ.	-17.17	-17.17	-17.17	-17.17		.0148	1M 1811-17	GX13+1	
	18 11 37	272.79	18 11 37	18 11 37	18 11 37	18 11 37			CGS1811-171	Sgr XR-2	
	-17 10 14	6.25	-17 10 14	-17 10 14	-17 10 14	-17 10 14					(R)
1H1811+670	272.81	97.02	273.63	271.51	271.94	274.03	.356	.0057			1803+676
	67.08	28.72	66.13	67.95	68.03	66.20		.0008			
	18 11 15	26.77	18 14 30	18 06 01	18 07 44	18 16 07					
	67 04 55	88.77	66 07 52	67 57 09	68 01 42	66 12 06	,				(R)
1H1812-182	273.13	12.69	272.08	274.18	274.18	272.08	.060	.1470	A 1805-18		
_	-18.23	59	-18.24	-18.19	-18.22	-18.27		.0025			
	18 12 31	272.98	18 08 18	18 16 43	18 16 43	18 08 18	-				
	-18 13 56	5.18	-18 14 10	-18 11 33	-18 13 21	-18 15 58					(R)
1H1813-140	273.29	16.43	273.29	273.29	273.29	273.29	000.	1.3690	2S 1813-140	4U 1813-14	
	-14.05	1.28	-14.05	-14.05	-14.05	-14.05		.0188	IM 1813-14	GX17+2	
	-14 03 13	9.35	-14 03 13	-14 03 13	-14 03 13	-14 03 13			CU21813-140	Ser AK-2	(R)
IH1814+498	273.74	77.86	273.74	273.74	273.74	273.74	000	.0119	2A 1815+500	4U 1813+500	AM Her
	49.85	25.88	49.85	49.85	49.85	49.85		.0004	(1M)1814+49	XRS18149+498	
	18 14 58	278.37	18 14 58	18 14 58	18 14 58	18 14 58					
	49 50 49	73.18	49 50 49	49 50 49	49 50 49	49 50 49					(R)
1H1815-121	273.81	18.33	273.66	273.96	273.96	273.66	.012	.0429	4U 1812-12	1M 1812-12?	
	-12.17	1.74	-12.15	-12.14	-12.18	-12.19		.0025			
	18 15 14	273.80	18 14 37	18 15 51	18 15 51	18 14 37					
	-12 09 56	11.23	-12 08 58	-12 08 29	-12 10 53	-12 11 22	-				(R)
1H1815+538	273.99	82.30	273.29	274.73	274.68	273.24	.249	.0027			
_	53.89	26.55	54.08	53.98	53.69	53.78		.0005			
	00 C1 01 80 83 83	280.04	54 04 31	00 81 81	18 18 42 53 41 30	12 12 18 12 27 05					

TABLE 4—Continued

CATALOG	POSIT	ION		E	RROR BOX			FLUX	II	DENTIFICATIONS	10
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	Я-Х	LAY	NON X-RAY
1H1820-303	275.12	2.79	275.12	275.12	275.12	275.12	000	.8627	2S 1820-303	4U 1820-30	NGC6624
	-30.39 18 20 27	-7.91 274.44	-30.39 18 20 27	-30.39 18 20 27	-30.39 18 20 27	-30.39 18 20 27		.0114	MXB1820-30 XRS18204-303	CGS1820-303	
•	-30 23 10	-7.02	-30 23 10	-30 23 10	-30 23 10	-30 23 10					(R)
1H1820+303	275.21	57.98	274.53	275.87	275.89	274.55	.186	.0056			
	30.30	19.03	30.34	30.42	30.26	30.18		.000			
_	18 20 50	277.59	18 18 07	18 23 29	18 23 32	18 18 10					
	30 18 04	53.61	30 20 31	30 25 00	30 15 25	30 10 56					
1H1820+643	275.17	94.07	274.80	275.32	275.55	275.02	.052	.0056	H 1824+644		
	64.39	27.53	64.42	64.54	64.37	64.24		.0005			
	18 20 41	317.17	18 19 11	18 21 17	18 22 11	18 20 05					
	64 23 31	86.95	64 24 59	64 32 32	64 22 00	64 14 30					(R)
1H1822-371	275.60	356.85	275.60	275.60	275.60	275.60	000	.0459	2A 1822-371	4U 1822-37	V691 CrA
	-37.13	-11.29	-37.13	-37.13	-37.13	-37.13		.0011	1M 1822-37	CGS1822-371	
	18 22 22	274.59	18 22 22	18 22 22	18 22 22	18 22 22			XRS18222-371		
	-37 08 01	-13.78	-37 08 01	-37 08 01	-37 08 01	-37 08 01					(R)
1H1822 + 000	275.70	29.94	275.70	275.70	275.70	275.70	000	.0825	2S 1822-000	4U 1823-00	
	04	5.79	04	04	04	04		.0015	1M 1822-00	CGS1822-000	
	18 22 48	276.21	18 22 48	18 22 48	18 22 48	18 22 48			XRS18228-000		
	-00 02 23	23.28	-00 02 23	-00 02 23	-00 02 23	-00 02 23					(R)
1H1828-593	277.24	335.96	275.27	279.17	279.20	275.28	.336	.0044	H1829-591		
	-59.32	-20.87	-59.28	-59.16	-59.32	-59.45		.0006			
	18 28 56	274.56	18 21 05	18 36 41	18 36 48	18 21 07					
	-59 19 03	-35.99	-59 16 51	-59 09 26	-59 19 28	-59 26 55					
1H1828-105	277.20	21.29	276.95	277.46	277.46	276.95	.034	.0221	A 1829-10?	XRS18310-109	MSH18-113
	-10.60	45	-10.57	-10.55	-10.62	-10.64		.0010			
	18 28 48	277.26	18 27 46	18 29 50	18 29 50	18 27 47					
	-10 35 43	12.67	-10 34 29	-10 32 52	-10 36 57	-10 38 33					(R)
1H1831+114	277.87	41.24	276.84	278.87	278.90	276.87	.844	.0017			
	11.44	9.07	11.58	11.71	11.29	11.16		.0006			
	18 31 28	279.38	11 24 20	18 35 29	18 35 36	18 27 27					
	11 20 00	34.62	11 34 39	11 42 30	11 1/ 20	11 09 24					
1H1832-652	278.09	330.02	275.70	280.44	280.48	275.71	.248	.0058	H 1834-653		ESO 103-G25
	17.00-	00.62-	17.00-	00.00-	-05.18			9000.			
	18 32 21	2/4.00	18 22 48	18 41 46	18 41 54	18 22 50					í
	-65 12 40	-41.89	-65 12 20	-65 03 20	-65 10 44	-65 19 46					(R)
1H1832-076	278.18	24.37	277.17	279.18	279.19	277.17	.076	.0348	A 1829-06	Sct X-1	
	-7.61	60.	-7.65	-7.53	-7.57	-7.69		.0010	H1833-077		
	18 52 42 07 36 43	2/8.42	18 28 40 -07 39 02	18 36 44 -07 31 59	18 36 44 -07 34 15	18 28 41 -07 41 18					(R)

	NON X-RAY	3C382		(R)	STR1839-787			(R)			(0)	(N)	CU-8581 NNC		(R)	A2310?			(R)							(e)	(Y)			(R)	NGC6712			(R)				
ENTIFICATIONS	AY	4U 1825+33?			1M 1849-77				4U 1837+04	Ser XR-1	XRS18374+049	TER LOADE OF	1c0-c7681cXX			4U 1859+69								A 1845-02	CGS1845-024			XRS1852+370			4U 1850-08	CGS1850-087						
8	X-R	H 1832+325			H 1846-786				2S 1837+049	MXB1837+049	CGS1837+049	10000	40 I832-03			2A 1854+683	XRS18543+683							2S 1845-024	4U 1850-03	XRS18456-024		4U 1852+370			2S 1850-087	MXB1850-08	XRS18503-087					
FLUX	ERROR	.0076	9000		.0061	6000			.5869	.0066		0000	8800.	1000.		.0027	.0005			.0048	.0006			.0285	.0017			.0082	8IM.		.0151	.0007			.0043	.0012		
	AREA	.115			.295				000.				.184			452				.280				000		6. <u>.</u>		.396			000				.718			
	RA DEC	278.38	32.52	32 31 08	275.71	-78.79	18 22 50	-78 47 15	279.37	4.99	18 37 29	17 (6 10	2/9.13	01.0- 12 36 31	-05 10 47	277.06	73.40	18 28 14	73 24 05	280.12	28.93	18 40 29	28 55 40	281.42	-2.48	18 45 40	70 07 70-	281.51	10./0	18 46 UI 37 36 30	282.59	-8.77	18 50 20	-08 46 00	281.08	25.99	18 44 19	25 59 08
ROR BOX	RA DEC	279.35	32.59	32 35 21	282.54	-78.66	18 50 08	-78 39 34	279.37	4.99	18 37 29	17 66 40	281.13	CU.C-	-05 01 57	282.73	72.30	18 50 53	72 17 58	282.39	29.18	18 49 34	29 10 46	281.42	-2.48	18 45 40	70 07 70-	283.12	C6.15	37 56 49	282.59	-8.77	18 50 20	-08 46 00	284.15	26.51	18 56 36	26 30 24
EB	RA DEC	279.33	32.73	32 43 43	282.37	-78.44	18 49 28	-78 26 31	279.37	4.99	18 37 29	17 66 40	281.13	19 44 20	-04 56 27	283.17	72.48	18 52 40	72 28 54	282.37	29.32	18 49 29	29 19 06	281.42	-2.48	18 45 40	70 07 70-	283.03	38.24 10 50 01	38 14 15	282.59	-8.77	18 50 20	-08 46 00	284.10	26.76	18 56 24	26 45 32
	RA DEC	278.36	32.66	18 33 28 32 39 30	275.67	-78.57	18 22 40	-78 34 03	279.37	4.99	18 37 29	17 67 10	21.6/2		-05 05 17	277.47	73.60	18 29 52	73 35 43	280.10	29.07	18 40 24	29 03 59	281.42	-2.48	18 45 40	70 07 70-	281.41	DC./C	18 45 37 37 53 51	282.59	-8.77	18 50 20	-08 46 00	281.02	26.24	18 44 05	26 14 11
NO	GAL ECL	61.46	17.00	55.66	315.67	-26.20	273.13	-55.29	36.12	4.84	280.60	10.02	SC.12	19 080	18.01	103.87	26.70	65.90	82.71	58.95	13.74	286.04	51.95	30.42	-40	282.19	41 TA	67.68	10.42	60.53 60.53	25.36	-4.32	282.83	14.12	56.90	11.53	287.34	49.07
POSITI	RA DEC	278.85	32.62	10 33 24 32 37 29	279.09	-78.63	18 36 21	-78 38 00	279.37	4.99	18 37 29	17 66 40	280.13	19 40 20	-05 03 40	280.19	72.96	18 40 46	72 57 52	281.25	29.13	18 44 59	29 07 40	281.42	-2.48	18 45 40	70 07 70-	282.26	C6.1C	18 49 03 37 55 31	282.59	-8.77	18 50 20	-08 46 00	282.59	26.38	18 50 20	26 22 48
CATALOG	ENTRY	IH1835+326			IH1836-786				1H1837+049			111010 010	UCU-0481H1			IH1840+729				1H1844+291				IH1845-024				IH1849+379			1H1850-087				1H1850+263			

TABLE 4—Continued

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

NON X-RAY

(R) V1223 Sgr

(R

W44?

CATALOG	POSIT	ION		E	RROR BOX			FLUX	Ð	ENTIFICATION
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	R-X	tay
H1851+100	282.76 10.08	42.20 4.17	281.71 10.12	283.78 10.33	283.81 10.05	281.74 9.83	.591	.0037 .0007		
	18 51 02 10 05 05	285.01 32.87	18 46 50 10 07 06	18 55 07 10 20 02	18 55 14 10 02 51	18 46 57 09 49 55				
H1852+015	283.10	34.74	282.10	284.09	284.10	282.11	.132	.0165		
	10 57 73	05	19 48 73	1.65	1.59	18 48 25		.0008		
	01 31 24	24.32	01 27 25	17 06 01 01 01 12 01 01 01 01 01 01 01 01 01 01 01 01 01	01 35 21	01 23 29				
H1853-312	283.29	5.06	282.12	284.45	284.45	282.12	.148	.0088	4U 1849-31	XRS18492-312
	-31.24	-14.62	-31.29	-31.11	-31.18	-31.36		.0005		
	-31 14 24	-81.45	18 48 28 -31 17 25	-31 06 20	18 5/ 49 -31 10 45	18 48 29 -31 21 50				
H1858+031	284.67	36.94	283.67	285.66	285.67	283.68	.176	.0036	4U 1901+03	XRS19017+031
	3.19	68	3.12	3.34	3.26	3.03		.0005		
	18 58 40	286.31	18 54 40	19 02 37	19 02 40	18 54 42				
	03 11 20	18.02	03 0/ 13	03 20 39	03 13 24	8C 10 50		2000		
H1858+797	284.60 79.74	76 51	283.26	286.23 79.64	285.90	282.95	.072	.0036	4U 1847+78 XRS18476+780	H 1843+797
	18 58 24	79.10	18 53 01	19 04 54	19 03 34	18 51 47		2000.		
	79 44 08	76.25	79 55 44	79 38 28	79 32 13	79 49 19				
H1903+689	285.94	99.86	286.43	285.07	285.41	286.75	.244	.0049	2A 1854+683	XRS18543+683
	68.94	24.14	67.96	69.69	69.92	67.98		.0005	4U 1859+69	
	19 U3 40 68 56 26	20.03 83.53	67 57 18	69 53 37	19 UL 38 69 55 29	67 59 00				
H1905+000	286.48	35.03	286.48	286.48	286.48	286.48	000	.0365	2S 1905+000	4U 1857+01
	60.	-3.71	60 [.]	60 [.]	6 0:	6 8 <u>.</u>		8000.	MXB1906+00	CGS1905+000
	19 05 54	287.88	19 05 54	19 05 54	19 05 54	19 05 54			XRS19059+000	
	15 CO M	70.22	15 CU UU	15 CU UU	15 CU W	15 cu w				
(H1905+550	286.37 55.03	85.55 19.91	285.26 54.83	287.32 55.42	287.50	285.44 54.63	304	0035		
	19 05 29	312.15	19 01 01	19 09 17	19 09 59	19 01 44				
	55 01 42	76.07	54 50 02	55 25 12	55 12 44	54 37 45				
H1907+074	286.85	41.75	286.53	287.16	287.17	286.54	.049	.0186	4U 1909+07	XRS19092+076
	14.7	62	10.02.01	10.06.27	7.48	7.39		1100.		
	07 28 24	29.79	07 28 05	07 33 19	19 U8 40 07 28 41	07 23 27				
H1908+047	287.02	39.42	286.55	287.47	287.49	286.57	.124	6600.	4U 1908+05	XRS19094+047
	4.75	-2.03	4.76	4.88	4.75	4.62		6000		
	19 08 04	289.12	19 06 11	19 09 52	19 09 56	19 06 15				
	04 45 15	27.08	04 45 22	04 53 05	04 45 07	04 37 24				

3C390.3

(R) A2315?

ß

ß

(R) SS433 W50 V1343 Aql (R)

POSITION	5	 						ET I'V		ENTIFICATIONS	
		-			VOG VOV			FLUA		CULTURE CONTRACTOR	
RA GAL RA R DEC ECL DEC DI	L RA R	DEC DI	~ D	▲ 22	RA DEC	RA DEC	AREA	ERROR	X-R	IAY	NON X-RAY
287.38 43.93 287.28 287 9.66 - 06 0.67 0	3.93 287.28 287 - 06 067 0	287.28 287 0 67 0	287	.48	287.48 0.65	287.28 0.63	800.	.0315	4U 1907+09 VBC10070+005	1M 1906+09	
19 09 30 290.29 19 09 06 19 09 09 39 36 31.89 09 39 55 09 41	0.29 19 09 06 19 09	19 09 06 19 09 09 39 55 09 41	19 09	5 2 4	19 09 55	19 09 07					(8)
287.42 62.54 286.25 288.5	2 54 286 25 288 5	286.25 288.5	288.5		288.60	286.33	688	003));;
30.49 9.47 30.46 30.8	9.47 30.46 30.8	30.46 30.8	30.8	5	30.51	30.12		.0007			
19 09 41 295.04 19 04 58 119 14 06	15.04 19 04 58 19 14 06	19 04 58 19 14 06	19 14 06		19 14 23	19 05 18					
CO 12 OF 92 70 57 57 50 50 50 50 50 50 50 50 50 50 50 50 50	CU 1C UC 02 / 20 1C 02 / 20 1C 02 / 20 1C 02 / 20 / 20				30 30 48	30 0/ 24					
28/.93 33/.86 285.99 289.82	7.86 285.99 289.82	285.99 289.82	289.82		289.86	286.02	.236	.0053	2A 1914-589	4U 1924-59	STR1914-588
-30.37 - 20.0630.0230.72 19 11 43 281 35 19 03 58 19 16 16	1 35 19 03 58 19 19 16	19 03 58 19 19 16	2/.00-		20.0C- 19 19 25	-19 04 05		cono.	AK519140-389		
-58 56 24 -36.20 -59 01 08 -58 42 58	6.20 -59 01 08 -58 42 58	-59 01 08 -58 42 58	-58 42 58		-58 49 56	-59 08 10					(R)
287.95 358.93 286.65 289.20	8.93 286.65 289.20	286.65 289.20	289.20		289.24	286.68	.372	.0040			
-38.99 -20.98 -39.01 -38.76	0.98 -39.01 -38.76	-39.01 -38.76	-38.76		-38.94	-39.20		9000			
19 11 46 284.46 19 06 36 19 16 48 -38 59 10 -16.44 -39 00 52 -38 45 33	(4.46 19 06 36 19 16 48 6.44 -39 00 52 -38 45 33	19 06 36 19 16 48 -39 00 52 -38 45 33	19 16 48 -38 45 33		19 16 56 -38 56 36	19 06 43 -39 11 57					
288.48 18.24 287.65 289.27	8.24 287.65 289.27	287.65 289.27	289.27	+	289.30	287.68	400	.0050			
-19.35 -14.09 -19.32 -19.13	4.09 -19.32 -19.13	-19.32 -19.13	-19.13		-19.38	-19.58		6000			
19 13 54 287.42 19 10 35 19 17 04 -19 1 7 9 8 -19 10 10 26 24 34	7.42 19 10 35 19 17 04 2 08 _10 10 10 _10 07 34	19 10 35 19 17 04 -19 19 19 19 17 34	19 17 04 -19 07 34	_	19 17 12	19 10 43					
788 60 65 87 787 48 780 87	5 87 387 48 389 87	787 48 780 87	780.87	_	780 01	787 57	919	000	ATT 10201-24	VDC10001 740	
33.57 9.87 33.50 33.95	9.87 33.50 33.95	33.50 33.95	33.95		33.62	33.18	0/0.	0000	+C + 0761 0+	04C + 70761CVV	
19 14 45 297.91 19 09 54 19 19 17	7.91 19 09 54 19 19 17	19 09 54 19 19 17	19 19 17	_	19 19 37	19 10 17					
33 34 09 55.22 33 30 16 33 57 08	5.22 33 30 16 33 57 08	33 30 16 33 57 08	33 57 08		33 37 19	33 10 33					
289.04 31.36 289.04 289.04	1.36 289.04 289.04	289.04 289.04	289.04		289.04	289.04	000	.0737	2S 1916-053	4U 1915-05	
-5.33 -8.46 -5.33 -5.33	8.46 -5.33 -5.33	-5.33 -5.33	-5.33		-5.33	-5.33		.0022	MXB1916-05	CGS1916-053	
-05 19 50 16.81 -05 19 50 -05 19 50	9.83 19 10 08 19 10 08 6.81 -05 19 50 -05 19 50	-05 19 50 -05 19 50	-05 19 50		-05 19 50	-05 19 50			XRS19167-053		(R)
289.38 48.81 288.83 289.90	8.81 288.83 289.90	288.83 289.90	289.90	+	289.93	288.86	.171	.0083			
14.15 .33 14.14 14.32	.33 14.14 14.32	14.14 14.32	14.32		14.16	13.98		.0010			
19 17 30 293.44 19 15 18 19 19 36	3.44 191518 191936	19 15 18 19 19 36	19 19 36		19 19 42	19 15 25					
14 09 04 36.03 14 08 36 14 19 03	6.03 14 08 36 14 19 03	14 08 36 14 19 03	14 19 03		14 09 28	13 59 01					
289.57 349.71 288.02 290.97	9.71 288.02 290.97	288.02 290.97	290.97		291.12	288.14	1.168	.0012			STR1922-483
-48.20 -24.74 -48.05 -47.75	4.74 -48.05 -47.75	-48.05 -47.75	-47.75		-48.33	-48.63		9000.			
19 18 16 284.35 19 12 05 19 23 53	4.35 19 12 05 19 23 53	19 12 05 19 23 53	19 23 53		19 24 28	19 12 32					
-48 11 55 -25.72 -48 02 50 -47 45 1	5.72 -48 02 50 -47 45 1	-48 02 50 -47 45 1	-47 45 1	~	-48 19 44	-48 37 35					
289.85 75.70 289.62 290. 43.88 13.55 43.85 43	5.70 289.62 290. 2.56 42.05 42	289.62 290.	290.	40 %	290.07	289.65	610.	.0232	2A 1919+438	4U 1919+44	A2319
19 19 22 305.25 19 18 29 19 20 1	5.25 19 18 29 19 20 1	19 18 29 19 20 1	19 20 1		16 20 16	19.04		6000.	11M 1921 743	AK31919/7430	
43 53 05 64.92 43 51 36 43 57 49	4.92 43 51 36 43 57 49	43 51 36 43 57 49	43 57 49	-	43 54 32	43 48 18					(R)

TABLE 4—Continued

F

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

-
1000
5 0 325
5 19 18 15 1 15 07 10
19 26 25 15 28 11 202 00
19 26 09 15 49 13
19 17 59 15 28 11
295.11 37.14
19 22 12 15 28 20
, , , , , , , , , , , , , , , , , , ,

ī

1

TABLE 4— Continued

FT

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOL		3	RROR BOX			FLUX	IDENTIFICA	TIONS
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY	NON X-R/
		ECL B		DEC.	הבר	DEC.				012201011
1H1934-063	C0.292.05	13.03	96.262 96.39	294.31	294.34 -6 34	292.99	.245	1900		010081CH
	19 34 35	294.39	19 31 49	19 37 13	19 37 20	19 31 57		2000		
	-06 21 56	15.10	-06 23 28	-06 09 42	-06 20 20	-06 34 07				(R)
1H1936+541	294.17	86.51	292.93	295.20	295.44	293.17	.412	.0032		
	54.12	15.39	53.78	54.66	54.45	53.57		.0006		
	19 36 41	324.98	19 31 42	19 40 48	19 41 45	19 32 41				
	54 07 17	72.96	53 46 57	54 39 53	54 26 51	53 34 11				
1H1937-106	294.26	28.84	293.38	295.09	295.13	293.42	.408	.0077	2A 1938-105 XRS19386-10	5 NGC6814
	-10.65	-15.46	-10.67	-10.38	-10.62	-10.91		.0012		
	19 37 01	294.27	19 33 31	19 40 20	19 40 30	19 33 41	-			
	-10 38 43	10.78	-10 40 13	-10 22 53	-10 37 04	-10 54 25				(R)
1H1937+233	294.44	59.18	293.35	295.47	295.53	293.42	.496	.0043		
	23.35	.59	23.24	23.70	23.46	23.00		6000.		
	19 37 46	301.95	19 33 24	19 41 53	19 42 08	19 33 39				
	23 21 06	44.12	23 14 21	23 41 54	23 27 23	22 59 54			1	
1H1939-405	294.87	358.96	293.74	295.93	296.00	293.80	.476	.0044		
	-40.56	-26.53	-40.57	-40.26	-40.53	-40.85		.0009		
	19 39 28	289.73	19 34 56	19 43 43	19 44 00	19 35 11				
	-40 33 25	-18.80	-40 34 09	-40 15 33	-40 32 02	-40 50 42				
1H1940+212	295.00	57.60	293.94	296.03	296.07	293.98	.344	.0056		
	21.23	92	21.08	21.54	21.37	20.92		.0008		
	19 40 00	301.98	19 35 45	19 44 07	19 44 16	19 35 55				
	21 13 48	41.94	21 05 04	21 32 13	21 22 09	20 55 02				
1H1942+607	295.65	93.14	294.27	296.80	297.10	294.57	.368	.0037		
	60.79	17.53	60.05	61.63	61.51	59.94		9000.		
	19 42 36	345.06	19 37 05	19 47 11	19 48 22	19 38 15				
	00 4/ 11	10.11	CC 70 00	CC / C 10	CC DC 10	CI 0C 6C				
1H1948+2/6	297.04	64.04	295.54	298.46	298.22	29.262	.932	.0038		
	20.12	71.202	14.12	20.08	4/./2	112 01 01		6000.		
	27 36 55	47.67	27 28 23	28 04 58	27 44 29	27 08 00	-			
1H1950-552	297.50	342.76	295.73	299.14	299.27	295.83	.616	.0026		
	-55.27	-30.75	-55.32	-54.88	-55.18	-55.63		.000		
	19 50 00	288.41	19 42 54	19 56 33	19 57 04	19 43 20				
	-55 15 59	-33.57	-55 19 26	-54 53 05	-55 11 00	-55 37 33				
1H1950+366	297.74	72.10	296.39	298.75	299.08	296.74	1.644	.0080	4U 1943+36 XRS19434+:	364
	36.64	4.84	36.69	37.36	36.58	35.92		.0013		
	19 50 56	312.05	19 45 33	19 55 00	19 56 19	19 46 57				
	36 38 32	56.11	36 41 25	37 21 28	36 34 45	35 55 06				

ΙĒ

CATALOG	POSIT	NOI			RROR BO	x		FLUX	Ξ	DENTIFICATION:	6
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-F	RAY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H1953+654	298.32	98.09	297.24	298.74	299.48	297.94	.628	.0021	3U 1956+65		
	65.42	18.44	64.52	66.42	66.32	64.42		9000			
	19 53 17	7.49	19 48 57	19 54 58	19 57 56	19 51 44					
	65 25 25	78.52	64 31 15	66 25 16	66 19 05	64 25 29					
1H1954+575	298.73	90.89	297.61	299.55	299.87	297.94	.365	.0038			
	57.57	14.68	57.15	58.16	57.98	56.97		8000.			
	19 54 54	339.65	19 50 25	19 58 11	19 59 29	19 51 44					
	57 34 11	74.04	57 08 57	58 09 47	57 58 48	56 58 16					
1H1956+115	299.25	51.30	299.16	299.32	299.33	299.17	.004	.1116	2S 1957+115	4U 1957+11	
	11.57	-9.32	11.56	11.60	11.58	11.54		.0018	CGS1957+115	XRS19570+115	
	19 56 59	304.20	19 56 39	19 57 17	19 57 18	19 56 40					
	11 34 18	31.61	11 33 52	11 36 07	11 34 43	11 32 28					(R)
1H1956+350	299.04	71.29	299.00	299.07	299.08	299.00	<u>.001</u>	1.1710	4U 1956+35	Cyg X-1	HDE226868
	35.05	3.12	35.04	35.07	35.05	35.03		.0112	CGS1956+350	XRS19564+350	
	19 56 09	312.86	19 55 59	19 56 17	19 56 18	19 56 00					
	35 02 54	54.26	35 02 40	35 03 56	35 03 08	35 01 53					(R)
1H1958+325	299.51	69.39	298.38	300.63	300.65	298.40	.112	.0144	4U 1954+31		
	32.58	1.48	32.28	32.92	32.86	32.23		9000			
	19 58 02	312.15	19 53 30	20 02 30	20 02 35	19 53 35					
	32 34 41	51.79	32 16 58	32 55 00	32 51 48	32 13 48					
1H1958+406	299.59	76.32	299.21	299.93	299.97	299.25	.046	.0173	4U 1957+40	XRS19572+406	Cyg A Cluster
	40.67	5.69	40.59	40.82	40.75	40.52		.0010			
	19 58 22	317.29	19 56 51	19 59 43	19 59 52	19 57 01					
	40 40 09	59.35	40 35 21	40 49 12	40 44 53	40 31 03					(R)
1H2003+511	300.99	85.89	299.72	302.07	302.29	299.94	.446	.0033			
	51.19	10.36	50.79	51.78	51.57	50.59		9000			
	20 03 57	330.46	19 58 52	20 08 15	20 09 08	19 59 46					
	51 11 12	68.22	50 47 33	51 46 41	51 33 59	50 35 08					
1H2004+729	301.18	105.74	301.49	299.62	300.83	302.58	969.	.0028			
	72.95	20.82	71.94	73.86	73.96	72.02		.0008			
	20 04 42	44.69	20 05 57	19 58 29	20 03 18	20 10 18	-				
	72 56 49	77.67	71 56 10	73 51 35	73 57 25	72 01 24					
1H2005+162	301.36	56.43	299.95	302.66	302.77	300.06	1.057	.0046			
	16.26	-8.64	16.09	16.80	16.42	15.71		.0015			
	20 05 26	307.95	19 59 48	20 10 39	20 11 04	20 00 14					
	16 15 28	35.66	16.05 20	16 47 46	16 25 03	15 42 41					
1H2006+646	301.62	98.05	300.45	302.23	302.85	301.05	.564	.0024	4U 2003+64	XRS20036+643	
	64.66	16.85	63.79	65.64	65.53	63.68		9000			
	20 06 27	6.43	20 01 49	20 08 54	20 11 24	20 04 11					
	64 39 46	C6.9/	63 4/ 1/	65 38 22	65 31 40	63 41 02					

TABLE 4—Continued

F

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

	Y	T				6	_	_														1				36			T									
S	NON X-RA					STR 2008-56		-	(R)													STR 2018-53				SNR 2015+		(R)									V1521 Cyg	
DENTIFICATION	RAY					XRS20091-569																				XRS20190+395											Cyg X-3	XRS20305+407
Ξ	I-X	11 1055 68	00-CC41 04			2A 2009-569																				4U 2019+39?			4U 2028+42								4U 2030+40	CGS2030+407
FLUX	ERROR	Notes a	+con.	0000		.0130	.0008			.0034	.0005			.0030	.0005			.0030	.000			.0046	6000 [°]			.0080	.0007		.0114	9000.			.0034	.0007			.5927	.0046
	AREA	167	767.			.072				.234				.370				.516				.482				.200			.041				.472				.001	
	RA	200 77	11.662	19 59 05	-70 07 55	302.58	-56.86	20 10 19	-56 51 40	303.70	61.10	20 14 48	61 06 07	302.00	77.92	20 08 00	77 55 12	303.52	-2.48	20 14 04	-02 28 36	303.28	-53.33	20 13 07	-53 19 35	303.41	36.25	36 15 00	304.43	43.74	20 17 42	43 44 39	304.08	-4.75	20 16 18	-04 44 42	307.49	40.74
ROR BOX	RA DFC	205.76	07.000	20 21 03	-69 29 24	303.87	-56.67	20 15 28	-56 39 55	305.13	62.11	20 20 31	62 06 52	305.19	76.55	20 20 45	76 32 58	305.46	-2.01	20 21 51	-02 00 20	306.05	-52.87	20 24 10	-52 52 24	305.71	37.02	37 01 13	305.09	43.99	20 20 21	43 59 36	306.03	-4.27	20 24 06	-04 16 22	307.55	40.77
EI	RA DEC	205.12	CT.COC	20 20 31	-69 22 22	303.82	-56.57	20 15 17	-56 34 16	304.79	62.22	20 19 10	62 13 22	306.13	76.65	20 24 30	76 39 06	305.40	-1.76	20 21 36	-01 45 18	305.92	-52.60	20 23 39	-52 36 17	305.66	37.11	37 06 47	305.04	44.06	20 20 09	44 03 39	305.97	-4.04	20 23 52	-04 02 36	307.55	40.78
	RA DFC	100.67	10.07.	19 58 40	-70 00 40	302.54	-56.77	20 10 08	-56 45 59	303.37	61.21	20 13 28	61 12 25	303.02	78.03	20 12 04	78 02 01	303.46	-2.23	20 13 49	-02 13 33	303.17	-53.06	20 12 40	-53 03 18	303.36	36.34	36 20 30	304.38	43.81	20 17 30	43 48 41	304.02	-4.52	20 16 05	-04 30 56	307.48	C/.04
NO	GAL	375.63	22.02	286.17	-48.15	341.17	-33.98	291.73	-35.75	95.98	14.32	357.90	74.50	110.28	22.09	60.82	75.33	41.67	-20.63	306.27	17.09	345.71	-34.81	293.89	-32.36	75.09	90 OCE	54.19	81.12	4.27	326.93	60.67	39.80	-22.21	306.28	14.75	79.76	11.
POSITI	RA DFC	302 50	0C.20C	20 10 00	-69 46 22	303.20	-56.72	20 12 49	-56 43 03	304.24	61.66	20 16 56	61 39 49	304.17	77.29	20 16 39	77 17 38	304.46	-2.12	20 17 50	-02 06 58	304.61	-52.97	20 18 26	-52 58 22	304.53	30.69 20.18.07	36 41 12	304.73	43.90	20 18 55	43 54 11	305.02	-4.39	20 20 05	-04 23 41	307.52	40.70
CATALOG	ENTRY	H2010-607	160-010711			1H2012-567				1H2016+616				IH2016+772				1H2017-021				IH2018-529				(H2018+366			1H2018+439				IH2020-043				1H2030+407	

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOL		ш	RROR BOX			FLUX	IDEN	TIFICATION	S
ENTRY	RA	GAL	RA	RA	RA	ŘA	AREA	ERROR	X-RAY		NON X-RAY
	ner	ECL	ner	ner	ner	ner					
1H2031-330	307.76	10.20	307.00	308.47	308.52	307.05	.206	.0102			AT Mic
	-33.05	-34.85	-33.13	-32.81	-32.97	-33.29		.0015			
	20 31 02	301.89	20 28 00	20 33 52	20 34 04	20 28 11					í.
	-33 02 59	-13.69	-33 0/ 48	32 48 31	-52 57 54	-33 1/ 13					(K)
1H2032-358	308.09	6.92	306.94	309.16	309.24	307.02	.484	.0063			
	-35.83	-35.67	-35.94	-35.46	-35.71	-36.19		.0012			
	20 32 22	301.44	20 27 45	20 36 37	20 36 57	20 28 04					
	-35 49 49	-16.45	-35 56 14	-35 27 43	-35 42 45	-36 11 22					
1H2034+493	308.61	87.08	307.27	309.81	309.98	307.45	.404	.0037	4U 2056+49		
	49.31	5.28	48.82	49.96	49.79	48.66		9000			
	20 34 26	337.85	20 29 05	20 39 13	20 39 54	20 29 47				<u> </u>	
	49 18 49	63.94	48 49 26	49 57 22	49 47 15	48 39 33					
1H2034+734	308.52	107.29	308.70	307.63	308.32	309.32	.376	.0052			
	73.43	19.21	72.43	74.40	74.43	72.45		8000.			
	20 34 05	44.85	20 34 47	20 30 31	20 33 17	20 37 16					
	73 25 51	75.49	72 25 40	74 24 16	74 26 01	72 27 14					
1H2036+170	309.23	61.36	307.45	310.90	311.03	307.59	1.345	.0029			
	17.04	-14.49	16.65	17.79	17.43	16.28		1100.			
	20 36 56	317.06	20 29 48	20 43 34	20 44 06	20 30 20					
	17 02 39	34.30	16 38 46	17 47 32	17 25 36	16 16 58					
1H2041-108	310.49	36.06	309.95	310.98	311.03	310.00	.174	.0105	2A 2040-115 XR	tS20407-115	Mkn 509
	-10.88	-29.96	-10.93	-10.66	-10.82	-11.09		.0012			
	20 41 57	309.99	20 39 48	20 43 56	20 44 06	20 39 59					
	-10 52 41	7.12	-10 56 01	-10 39 40	-10 49 17	-11 05 38					(R)
1H2041+352	310.40	76.75	309.14	311.38	311.67	309.44	1.208	1100.			
	35.23	-4.40	35.09	35.91	35.36	34.54		.0005			
	20 41 36	327.20	20 36 32	20 45 29	20 46 41	20 37 46					
	35 13 57	50.96	35 05 31	35 54 49	35 21 36	34 32 38					
1H2041+756	310.47	109.53	310.92	308.87	309.95	311.87	.516	.0035	3U 2041+75		VW Cep
	75.62	19.97	74.61	76.55	76.62	74.67		.0007			
	20 41 51	52.75	20 43 40	20 35 29	20 39 47	20 47 27					
	75 36 54	74.55	74 36 48	76 32 52	76 36 56	74 40 22					(R)
1H2044-032	311.15	44.11	309.64	312.53	312.65	309.76	1.365	.0038			
	-3.25	-27.03	-3.43	-2.64	-3.07	-3.87		.0013			
	20 44 35	312.69	20 38 33	20 50 08	20 50 37	20 39 02	-	2			
	-03 15 04	14.31	-03 25 31	-02 38 06	-03 04 28	-03 51 54		_			
1H2045-733	311.26	320.71	308.47	313.59	313.97	308.80	.394	.0043			STR 2038-736
	-73.31	-34.36	-73.54	-72.84	-73.05	-73.76		.0007			
	20 45 02	288.10	20 33 51	20 54 21	20 55 53	20 35 12					
	-73 18 50	-52.46	-73 32 34	1 -72 50 13	-73 02 55	-73 45 48					

TABLE 4—Continued

IF

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

Continued
9
4
щ
BL
ΤA

CATALOG	POSIT	ION		E E	RROR BOX			FLUX	IDENTIF	FICATION	S
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY		NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H2048-224	312.09	23.99	311.01	313.10	313.16	311.07	.440	.0042			
	-22.43	-35.73	-22.59	-22.06	-22.27	-22.80		.000			
	20 48 20	308.42	20 44 02	20 52 22	20 52 38	20 44 17					
	16 67 77-	(4 .4)	C7 CC 77-	17 50 77-	CN 01 77-	01 94 77-					
1H2050-558	312.62	341.71	310.88	314.23	314.34	310.97	.344	.0052			
	-55.86	-39.26	-56.10	-55.43	-55.59	-56.26		.0007			
	20 50 28	298.22	20 43 30	20 56 54	20 57 20	20 43 53					
	-55 51 22	-36.51	-56 05 54	-55 25 46	-55 35 24	-56 15 42					
1H2050-006	312.71	47.52	312.06	313.30	313.35	312.11	.230	.0063			
	65	-27.08	74	38	55	92		.0008			
	20 50 49	314.98	20 48 14	20 53 12	20 53 24	20 48 26					
	-00 38 48	16.38	-00 44 41	-00 22 40	-00 32 54	-00 54 55					
1H2050+310	312.54	74.63	312.49	312.59	312.60	312.50	.002	.1873	4U 2046+31 XRS20	9467+319	Cygnus Loop
	31.09	-8.39	31.08	31.12	31.10	31.06		.0021			
	20 50 10	327.18	20 49 57	20 50 21	20 50 23	20 49 59					
	31 05 23	46.45	31 04 45	31 07 00	31 06 01	31 03 46					(R)
1H2100-526	315.06	345.55	312.89	317.02	317.20	313.05	.756	.0049			
	-52.69	-41.12	-53.03	-52.04	-52.30	-53.30		.0010			
	21 00 15	301.17	20 51 33	21 08 05	21 08 48	20 52 11					
	-52 41 12	-34.01	-53 01 58	-52 02 39	-52 18 05	-53 17 46					
1H2102-796	315.64	313.29	310.18	319.42	320.73	311.31	.820	.0018			
	-79.63	-32.72	-79.96	-78.89	-79.22	-80.32		9000.			
	21 02 34	284.24	20 40 43	21 17 41	21 22 55	20 45 14					
	-79 38 04	-58.48	-79 57 43	-78 53 41	-79 13 15	-80 19 24					
1H2102+392	315.63	82.50	314.44	316.72	316.83	314.55	.348	.0041			
	39.22	-5.01	38.82	39.76	39.61	38.67		9000.			
	21 02 30	336.10	20 57 46	21 06 53	21 07 18	20 58 11					
	39 13 22	52.72	38 49 26	39 45 50	39 36 34	38 40 17					
1H2105+460	316.49	87.98	315.27	317.68	317.74	315.33	.164	.0105	4U 2048+44		
	46.05	88	45.52	46.62	46.55	45.46		.0007			
	21 05 57	343.20	21 01 03	21 10 41	21 10 57	21 01 19					
	46 02 45	58.28	45 31 29	46 37 22	46 33 13	45 27 25					
1H2107-097	316.84	40.54	315.84	317.78	317.83	315.89	.320	.0045			
	-9.73	-35.06	-9.94	-9.36	-9.51	-10.10		.0006			
	21 07 20	316.35	21 03 22	21 11 07	21 11 19	21 03 33					
	-09 43 42	6.50	-09 56 33	-09 21 31	-09 30 41	-10 05 44					
1H2108+019	317.14	52.70	316.50	317.73	317.79	316.56	.248	.0079			
	1.96	-29.46	1.85	2.25	2.07	1.67		.001			
	21 08 34	320.22	21 05 59	21 10 54	21 11 08	21 06 13				0	
	01 57 43	17.57	01 51 16	02 15 08	02 04 10	01 40 18					

	r		_																		_																	
	NON X-RAY				(R)												II Zw 122	RNGC7056			STR2126-580								NGC7078	CIW	(R)	STR2133-624				V1727 Cyg		(R)
ENTIFICATIONS	AY																												4U 2129+12 VB231375 1110	AU32121217119						CGS2129+470		
9	X-R																												2A 2127+120	611 ± 1717000						4U 2129+47	XRS21296+471	
FLUX	ERROR		.0029	+000.	_	.0037	6000.			.0047	.0006		0015	0005			.0036	.0008			.0062	.0023			.0044	.0006			1810.	8000 [.]		.0045	.0008			.0207	.0007	
	AREA		.179			.875				.304			884				.827				1.211				.340				.032			.416				.084		
	RA	חבר	315.10	02.29 21 00 24	82 17 29	318.01	-1.11	21 12 02	-01 06 42	318.40	-34.64	21 13 35	31918	-10.65	21 16 43	-10 39 05	318.84	17.87	21 15 20	17 51 58	317.52	-59.30	21 10 04	-59 17 59	319.60	-53.43	21 18 25	NC C7 CC-	321.84	16.11	11 54 22	320.54	-63.01	21 22 09	-63 00 25	321.71	46.73	21 26 49 46 43 37
RROR BOX	RA	חבר	318.30	21 13 11	81 24 23	320.35	34	21 21 22	-00 20 38	320.69	-34.01	21 22 46	321 12	-10.04	76 26 16	-10 02 18	321.34	18.75	21 25 21	18 45 01	323.42	-57.92	21 33 39	-57 55 27	322.68	-52.66	21 30 43	++ 6C 7C-	322.28	01.20 07 10	12 03 49	324.43	-62.12	21 37 43	-62 07 11	324.11	47.89	21 36 26 47 53 13
Ξ	RA	הבר	319.39	01.10	81 28 57	320.23	01	21 20 56	-00 00 21	320.63	-33.86	21 22 32	320.98	69 6-	21 23 54	-09 37 05	321.22	19.06	21 24 53	19 03 23	323.11	-57.60	21 32 27	-5/3608	322.57	-52.51	21 30 16	C7 DC 7C-	322.26	C1.21	12 07 46	324.22	-61.94	21 36 53	-61 56 10	324.08	47.92	21 36 18 47 55 17
	RA	חבר	316.29	01 01 10	82 22 35	317.90	77	21 11 35	-00 46 25	318.34	-34.50	21 13 22	319.04	-10.23	21 16 10	-10 13 50	318.71	18.17	21 14 51	18 10 15	317.26	-58.96	21 09 02	-58 57 53	319.50	-53.27	21 18 00	4C CI CC-	321.81	16.11	11 58 19	320.35	-62.82	21 21 23	-62-49 04	321.67	46.76	21 26 41 46 45 38
NO	GAL	ECL	115.82	0C.22	71.13	51.49	-32.49	321.37	14.56	10.73	-44.70	311.28	41.89	-38 10	91.00	5.16	69.19	-21.72	329.21	32.21	337.06	-42.76	301.98	-40.50	344.24	-44.65	305.19	4C.CC-	65.19	607 845	25.49	331.50	-42.28	300.91	-44.55	66'16	-3.06	356.86
POSIT	RA	חבר	317.35	20.10	81 53 33	319.12	56	21 16 29	-00 33 32	319.52	-34.26	21 18 05	320.08	-10.14	91.00.10	-10 08 10	320.02	18.47	21 20 05	18 27 54	320.38	-58.48	21 21 32	-58 28 23	321.10	-52.98	21 24 24	00 90 70-	322.05	11 96 16	12 01 04	322.41	-62.48	21 29 39	-62 29 01	322.88	47.33	21 31 30 49
ĊATALOG	ENTRY		1H2109+818			1H2116-005				1H2118-342			1H2120-101				1H2120+184				1H2121-584				1H2124-529		,		1H2128+120			1H2129-624				1H2131+473		

TABLE 4—Continued

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

CATALOG	POSIT	NOL		E	ROR BOX			FLUX	Ð	ENTIFICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	AY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
H2132-277	323.03	20.61	321.92	324.03	324.14	322.02	.570	.0040			
	-27.74	-46.67	-27.92	-27.28	-27.55	-28.19		.0008			
	21 32 07	316.40	21 27 40	21 36 07	21 36 33	21 28 05					
	-27 44 25	-12.43	-27 55 12	-27 16 48	-27 33 06	-28 11 36					
H2138+579	324.68	98.66	323.31	325.83	326.09	323.57	.376	.0034	4U 2135+57	Cep X-4?	HR 8281?
	57.92	4.12	57.23	. 58.72	58.59	57.11		.0005	XRS21370+567		
	21 38 42	7.29	21 33 14	21 43 19	21 44 22	21 34 17					
	57 55 18	64.10	57 14 02	58 43 21	58 35 38	57 06 38					(R)
H2140+433	325.02	90.43	324.75	325.24	325.29	324.80	.028	.0164	CGS2140+433	XRS21407+433	SS Cyg
	43.31	-7.06	43.23	43.45	43.39	43.17		.0007			
	21 40 04	349.56	21 38 59	21 40 57	21 41 08	21 39 11					
	43 18 38	52.68	43 13 36	43 27 00	43 23 39	43 10 15					(R)
H2140+460	325.15	92.34	323.90	326.27	326.43	324.06	.392	.0034			
	46.09	-5.03	45.59	46.73	46.57	45,43		9000.			
	21 40 37	352.30	21 35 35	21 45 05	21 45 43	21 36 14					
	46 05 14	54.94	45 35 33	46 43 51	46 34 05	45 25 58					
H2142+248	325.54	79.7T	324.20	326.73	326.88	324.36	.867	.0035			
	24.87	-21.02	24.51	25.53	25.22	24.20		.0008			
	21 42 08	337.90	21 36 48	21 46 54	21 47 31	21 37 26			_		
	24 52 12	36.16	24 30 41	25 32 03	25 13 01	24 11 48					
H2142+380	325.63	87.31	325.55	325.69	325.70	325.57	.002	1.9370	2A 2142+381	4U 2142+38	V1341 Cyg
	38.09	-11.31	38.07	38.12	38.11	38.05		.0213	Cyg X-2	CGS2142+380	
	21 42 30	345.98	21 42 13	21 42 45	21 42 47	21 42 15			XRS21426+380		
	38 05 06	47.96	38 03 54	38 07 21	38 06 18	38 02 51					(R)
H2148-200	327.09	33.11	326.04	328.05	328.14	326.14	.520	.0028			A2384
_	-20.00	-48.22	-20.21	-19.54	-19.78	-20.46		.0006			
_	21 48 22	322.54	21 44 10	21 52 11	21 52 33	21 44 32			_		ļ
	CN NN N7-	00-	-20 12 43	c7 75 61-	c0 / 4 / 1-	17 17 07-					(K)
H2150+1/1	327.55	73.54	326.55	328.48	328.56	326.63	.380	.0048			A2390
_	21 50 12	336 37	10.00 21 46 11	21 53 56	14./1	0/ 01		2000.			
_	17 10 28	28.35	16 52 42	17 38 30	17 27 56	16 42 11					(R)
H2156-304	329.04	17.76	328.90	329.17	329.19	328.92	.011	.0346	H 2154-304		PKS2155-304
_	-30.45	-52.29	-30.48	-30.39	-30.43	-30.52		6000			
_	21 56 10	320.54	21 55 35	21 56 41	21 56 45	21 55 39					
	-30 27 07	-16.77	-30 28 35	-30 23 17	-30 25 38	-30 30 57					(R)
H2158-602	329.57	332.20	328.28	330.67	330.84	328.44	.230	.0078	2A 2155-609	1M 2140-60	STR2159-602
_	77.00-	CC.04-	-00.40	18.90-00	06.60-00	10.00-		6000	XKS21554-609	40 2126-60	
. –	1 96 17	0.000 -44 12	00 CC 17	22 U2 41	22 U 22 44	04 CC 17					
-	-> > > >>		10 17 00-	10 01 10-							2

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~
~ 7
2
2
- 52
0
<u>ر ۲</u>
$\sim$
1
1
$\mathbf{A}$
ĽĽ.
<b>_</b>
-
$\mathbf{m}$
<
~
H

	TIOCH			<u>[</u>						SIGITADIAT	
CALALUG	LIGUT				KKUK BU			FLUA	IDEN	IIIIICALIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-RAY		NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H2158-150	329.53	41.34	328.51	330.46	330.54	328.59	.456	.0029			2155-152
	-15.05	-48.53	-15.28	-14.59	-14.81	-15.49		.0005			
	21 58 06	326.42	21 54 03	22 01 49	22 02 09	21 54 22					
	-15 02 46	-2.48	-15 16 48	-14 35 38	-14 48 28	-15 29 41					(R)
1H2158+046	329.58	64.16	328.59	330.46	330.58	328.70	.644	.0022			2201 + 044?
	4.60	-37.86	4.39	5.11	4.81	4.09		.0006			
	21 58 19	333.37	21 54 21	22 01 51	22 02 18	21 54 48					
	04 36 05	15.93	04 23 39	05 06 29	04 48 25	04 05 37					(R)
1H2159+642	329.78	105.78	328.43	330.89	331.21	328.73	.320	.0037			
	64.23	7.45	63.42	65.11	65.02	63.34		.0005			
	21 59 07	22.75	21 53 43	22 03 34	22 04 50	21 54 56					
	64 13 46	65.96	63 25 20	65 06 44	65 01 25	63 20 20					
1H2200+609	330.04	103.89	329.20	330.61	330.90	329.50	.199	.0058			
	60.95	4.76	60.60	61.41	61.29	60.48		.0008			
	22 00 10	16.59	21 56 48	22 02 25	22 03 36	21 57 59					
	60 56 45	63.96	60 35 54	61 24 38	61 17 16	60 28 43					
1H2202+501	330.71	97.80	329.41	331.86	332.03	329.59	.360	.0031			
	50.18	-4.13	49.62	50.86	50.72	49.48		.0005			
	22 02 49	1.86	21 57 38	22 07 26	22 08 07	21 58 20					
	50 10 36	56.03	49 37 09	50 51 45	50 43 11	49 28 47					
1H2205+538	331.33	100.29	330.02	332.32	332.66	330.37	.550	.0029	4U 2206+54 A	2204+54	
	53.90	-1.34	53.38	54.62	54.40	53.16		.0007	XRS22063 + 544		
	22 05 18	6.85	22 00 05	22 09 16	22 10 38	22 01 28					
	53 53 48	58.62	53 22 49	54 37 23	54 23 55	53 09 44					(R)
1H2206-052	331.68	55.43	330.36	332.87	333.00	330.49	996.	.0038			A2415
	-5.22	-45.52	-5.52	-4.58	-4.92	-5.86		6000			
	22 06 42	331.82	22 01 26	22 11 28	22 11 59	22 01 56					
	-05 13 07	6.00	-05 31 00	-04 34 45	-04 55 04	-05 51 21					(R)
1H2207+268	331.81	83.94	330.73	332.75	332.90	330.88	.612	.0032	4U 2209+26 XI	RS22092+261	
	26.83	-23.28	26.54	27.40	27.12	26.26		.0008			
	22 07 13	345.24	22 02 54	22 10 59	22 11 34	22 03 30					
	26 49 58	35.58	26 32 07	27 23 56	27 07 18	26 15 37					
1H2207+455	331.78	95.69	330.87	332.54	332.71	331.04	.298	.0047			AR Lac
	45.60	-8.27	45.28	46.08	45.91	45.11		.000			
	22 07 08	358.21	22 03 28	22 10 09	22 10 49	22 04 09					
	45 35 48	51.91	45 16 36	46 05 00	45 54 34	45 06 18					(R)
1H2207+829	331.78	118.08	331.46	333.23	332.04	330.09	.173	.0050			A2387?
	82.96	21.96	83.51	82.45	82.42	83.47		.0006			
	22 07 05	72.47	22 05 50	22 12 56	22 08 10	22 00 21					
	82 57 41	69.00	83 30 21	82 26 52	82 24 59	83 28 10 1					(R)

1017172	TIOOD							1112		ONOLT VUISILINAS	
CALALUG					KKUK BU			FLUA		DENTIFICATIONS	
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	I-X	RAY	NON X-RAY
1H2209-470	332.33	349.87	331.34	333.18	333.31	331.46	.296	.0065	2A 2209-471	H 2209-471	NGC7213
	-47.06 22 09 19	316.05	22 05 21	-40.09 22 12 43	-40.88 22 13 14	-4/.43 22 05 51		6000			4/4-007711C
	-47 03 34	-33.08	-47 13 41	-46 41 05	-46 52 55	-47 25 39					(R)
1H2213+484	333.38	98.24	332.14	334.55	334.65	332.24	.224	.0054			
	48.47	-6.54	47.91	49.11	49.02	47.82		.0005			
	22 13 31	2.44	22 08 32	22 18 12	22 18 36	22 08 57					
	48 28 06	197.61	47 54 24	49 06 24	49 00 58	47 49 05					
1H2214-358	333.66	8.71	332.63	334.55	334.68	332.76	.444	.0044			
	-35.84	-56.31	-36.04	-35.38	-35.62	-36.28		8000.			
	-35 50 08	-23.20	22 10 31 -36 02 32	-35 22 49	22 18 43 -35 37 13	-36 17 03					
1H2214-313	333.54	16.71	332.22	334.73	334.86	332.35	.671	.0037	2A 2151-316		
	-31.40	-56.22	-31.71	-30.80	-31.07	-31.98		.0008			
	22 14 10	323.95	22 08 52	22 18 54	22 19 27	22 09 22					
	-31 23 45	-19.06	-31 42 33	-30 48 17	-31 04 07	-31 58 33					
1H2214+589	333.58	104.16	331.97	334.57	335.24	332.64	.940	.0024	4U 2238+60	XRS22389+607	
	58.91	2.07	58.32	59.81	59.48	58.01		6000			
	22 14 19	15.69	22 07 53	22 18 16	22 20 58	22 10 34					
	58 54 35	61.29	58 18 55	59 48 19	59 29 00	58 00 24					
1H2217-392	334.39	2.41	333.14	335.51	335.62	333.25	.440	.0031			STR2220-389
	-39.28	-56.50	-39.57	-38.77	-38.97	-39.78		.0006			
	22 17 33	321.32	22 12 34	22 22 01	22 22 29	22 13 01					
	10 01 40-	00.02-	67 tC 6C-	C7 04 0C-	07 00 00-	40 04 40-					
1H2218+197	334.55	81.18	333.52	335.46	335.58	333.64	.564	.0033			
	22 18 11	344.46	10.61	22.02	22 22 19	22 14 34		1000.			
	19 47 26	28.13	19 30 32	20 19 28	20 03 59	19 15 08					
1H2219-527	334.78	340.20	333.48	335.88	336.07	333.66	404	.0042			STR2218-528
	-52.73	-52.46	-52.99	-52.23	-52.45	-53.21		.0007			
	22 19 07	314.71	22 13 54	22 23 30	22 24 16	22 14 38				,	
	-52 43 42	-38.86	-52 59 30	-52 14 04	-52 27 03	-53 12 42					
1H2221-017	335.35	62.54	334.36	336.23	336.34	334.47	809.	.0027	2A 2220-022	H 2216-027	A2440
	-1.79	-46.38	-2.01	-1.28	-1.56	-2.29		.0007	XRS22204-022		3C445?
	22 21 23	336.51	22 17 26	22 24 53	22 25 20	22 17 53					
	-01 47 14	7.89	-02 00 37	-01 16 49	-01 33 48	-02 17 36					(R)
1H2226-269	336.73	25.48	335.63	337.71	337.82	335.74	.500	.0031	2A 2237-256	1M 2244-24	NGC7313
	-26.94	-58.50	-27.20	-26.45	-26.68	-27.44		.0006	XRS22204-022		NGC7314
	22 26 54	328.42	22 22 32	22 30 49 -26 26 43	22 31 12 -26 40 32	22 22 57					(B)

ATIONS	NON X-RAY														*															STR2242-453	_			B2 2240+29				STR2247-472			
IDENTIFIC	X-RAY																	H 2233-378																							
FLUX	ERROR		.0059	7100.		.0046	.0008			.0066	.0013			.0048	.0007			.0061	.0007			.0042	.0005			.0035	6000			.0023	.0005			.0048	.0006			.0014	.0005		
	AREA		.429			.388				.453				.333				191.				.292				.222				.528				.320				.864			
	RA	DEC	336.16	C/.4C-	-54 44 43	336.44	15.20	22 25 45	15 11 44	337.24	39.99	22 28 56	39 59 19	337.61	51.32	22 30 26	51 19 05	338.41	-37.61	22 33 39	-37 36 26	337.93	49.07	22 31 43	49 04 26	338.39	-12.87	22 33 34	-12 51 54	338.65	-46.01	22 34 36	-46 00 22	339.01	28.93	22 36 03	28 55 53	338.95	-48.73	22 35 48	-48 43 59
RROR BOX	RA	DEC	338.80	19.00-	-53 52 00	338.34	15.99	22 33 22	15 59 41	339.14	40.86	22 36 33	40 51 33	339.58	52.29	22 38 19	52 17 13	339.70	-37.14	22 38 48	-37 08 11	340.38	50.29	22 41 32	50 17 23	340.84	-11.89	22 43 21	-11 53 36	341.20	-45.10	22 44 48	-45 06 16	341.06	29.84	22 44 14	29 50 26	341.61	-47.80	22 46 26	-47 48 03
E	RA	DEC	338.59	00.66-	-53 39 31	338.26	16.17	22 33 03	16 10 22	338.96	41.09	22 35 50	41 05 25	339.37	52.46	22 37 27	52 27 21	339.61	-36.98	22 38 26	-36 58 56	340.25	50.41	22 40 59	50 24 25	340.81	-11.81	22 43 13	-11 48 50	341.03	-44.87	22 44 06	-44 52 14	340.98	29.98	22 43 54	29 59 01	341.30	-47.42	22 45 12	-47 25 18
	RA	DEC	335.96	- 34.33	-54 31 58	336.36	15.37	22 25 26	15 22 22	337.05	40.22	22 28 12	40 13 00	337.39	51.48	22 29 34	51 29 01	338.33	-37.45	22 33 18	-37 27 08	337.79	49.19	22 31 09	49 11 18	338.36	-12.79	22 33 26	-12 47 07	338.49	-45.77	22 33 56	-45 46 07	338.93	29.07	22 35 43	29 04 23	338.66	-48.35	22 34 38	-48 20 50
NO	GAL	ECL	336.80	10.66-	-40.90	80.61	-35.21	345.33	23.30	96.78	-15.02	359.88	45.17	102.84	-5.36	10.40	54.29	5.01	-60.41	325.92	-26.27	102.11	-7.41	8.66	52.37	52.71	-55.96	336.54	-3.48	349.24	-58.63	322.51	-33.89	92.07	-25.30	354.58	34.73	344.58	-57.65	321.25	-36.33
POSIT	RA	DEC	337.39	12.40-	-54 12 29	337.35	15.69	22 29 24	15 41 10	338.09	40.54	22 32 22	40 32 33	338.48	51.89	22 33 54	51 53 25	339.01	-37.30	22 36 03	-37 17 46	339.07	49.75	22 36 17	49 44 46	339.60	-12.34	22 38 24	-12 20 31	339.85	-45.44	22 39 24	-45 26 40	339.99	29.46	22 39 57	29 27 40	340.14	-48.08	22 40 34	-48 05 00
CATALOG	ENTRY		1H2229-542			1H2229+156				1H2232+405				1H2233+518				1H2236-372				1H2236+497				1H2238-123				1H2239-454				1H2239+294				1H2240-480			

## TABLE 4—Continued

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

2	NON X-RAY	27 / 100 d.10	21K2240-04/			STR2254-590				STR2242-716				MR 2251-178			(R)	AO Psc			(R)	HD216489			(R)	EV Lac?		(	(K)								A2507?		(R)
DENTIFICATION	RAY													XRS22514-178								XRS22591+161																	
	-X-													2A 2251-179				H 2252-035				4U 2259+16																	0
FLUX	ERROR		0010			.0040	6000'			.0046	.0015			.0055	.0012			.0800	.0014			.0075	6000			.0076	6000			.0049	6000.		.0026	.000			.0049	.0010	
	AREA	.00	067.		-	.830				.938				.817				.280				.186				.260				404			.702				.642		
	RA	DEC.	540.22 -65.19	22 40 52	-65 11 09	339.48	-60.81	22 37 54	-60 48 23	340.39	-72.06	22 41 32	-72 03 28	341.73	-18.61	22 46 55	-18 36 36	342.40	-3.95	22 49 35	-03 56 55	342.47	16.49	22 49 52	16 29 19	342.14	44.58	22 48 32	44 34 30	342.15	14.10	61 24 50	339.66	-82.06	22 38 37	-82 03 18	343.10	5.18	22 52 24 05 10 33
ROR BOX	RA	DEC	542.84 -64.35	22 51 20	-64 20 48	343.65	-59.45	22 54 36	-59 26 48	345.87	-70.24	23 03 28	-70 14 25	344.24	-17.60	22 56 57	-17 36 16	343.66	-3.43	22 54 37	-03 25 47	343.55	16.96	22 54 11	16 57 37	343.84	45.41	22 55 21	07 77 77	344.61	07.20 77 58 76	62 46 44	347.92	-80.09	23 11 40	-80 05 31	345.26	6.07	23 01 01 06 04 26
E	RA	DEC	542.24 -64.18	22 50 08	-64 10 46	343.28	-59.17	22 53 07	-59 10 20	345.06	66.69-	23 00 14	-69 59 33	344.11	-17.31	22 56 25	-17 18 51	343.58	-3.24	22 54 18	-03 14 22	343.48	17.11	22 53 54	17 06 35	343.70	45.56	22 54 47	41 00 10	344.24	26.70 27 56 56	62 55 39	346.42	-79.94	23 05 40	-79 56 33	345.15	6.33	23 00 36 06 19 43
	RA	JIN OI	.6.9.c -65.01	22 39 42	-65 00 49	339.13	-60.52	22 36 30	-60 31 15	339.58	-71.79	22 38 18	-71 47 09	341.60	-18.32	22 46 24	-18 19 05	342.32	-3.76	22 49 16	-03 45 30	342.40	16.64	22 49 35	16 38 15	341.99	44.73	22 47 57	44 43 40	341.78	90.10	61 33 21	337.97	-81.87	22 31 52	-81 52 12	342.99	5.43	22 51 58 05 25 48
NOI	GAL	111 DO	-47.89	309.89	-50.81	327.15	-51.24	314.00	-46.99	315.67	-43.36	303.77	-56.05	46.03	-61.43	337.37	-9.90	68.27	-53.31	342.94	3.36	86.85	-37.47	351.17	22.13	102.22	-12.75	7.70	1.00	19.601	10.7	59.90	308.28	-35.17	289.04	-62.68	79.42	-47.13	347.63
POSIT	RA	241.40	-64.69	22 45 35	-64 41 14	341.43	-60.00	22 45 42	11 00 09-	342.85	-71.04	22 51 23	-71 02 23	342.92	-17.97	22 51 41	-17 57 56	342.99	-3.59	22 51 57	-03 35 39	342.97	16.80	22 51 53	16 47 59	342.91	45.07	22 51 38	11 +0 0+	543.16	07.57.20	62 10 28	343.43	-81.01	22 53 43	-81 00 51	344.13	5.75	22 56 29 05 45 11
CATALOG	ENTRY	242 3400111	040-0477111			1H2245-600				1H2251-710				1H2251-179				1H2251-035				1H2251+167				1H2251+450				179+7677HI			1H2253-810				1H2256+057		

I F

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

Continued	
1	
TABLE 4	

CATALOG	POSIT	NOI		3	RROR BOX			FLUX		DENTIFICATIONS	
ENTRY	RA	GAL	RA	RA	RA	RA	AREA	ERROR	X-R	AY	NON X-RAY
	DEC	ECL	DEC	DEC	DEC	DEC					
1H2258+585	344.71	109.03	343.34	346.07	346.13	343.40	.092	.0177	H 2309+59	XRS23086+597	G109.1-1.0
	58.52	-1.06	57.83	59.24	59.20	57.80		.000			
	22 58 50	22.93	22 53 22	23 04 17	23 04 32	22 53 37					(a)
780 1 1060111	07 1C 0C	20.00	PC CF IC	00 FI CC	00 71 70	00 14 10	107	0000	301 0310 10		NCC7460
1H 2301 + 080	CC.C4C	83.33 15 50	744.//	00.040	66.04C	344.83	C01.	8600.	201 2227505 1 005	40 23W + US	101/100
	8.08 73.01.73	340.06	20.05 00	0.90	5.64 73.03.47	0.38 27 50 10		0100	C00+C6C77CNV		
	08 40 47	13.76	08 31 10	08 58 57	08 50 20	08 22 34		_			(R)
1H2303-089	345.75	64.36	344.79	346.66	346.71	344.85	288	.0061	2A 2302-088	4U 2305-07	
	-8.96	-58.93	-9.28	-8.50	-8.64	-9.41		.000	XRS23022-088		
	23 03 00	343.43	22 59 09	23 06 37	23 06 51	22 59 23					
	-08 57 24	-2.64	-09 16 31	-08 30 12	-08 38 09	-09 24 29					
1H2303+039	345.86	79.81	344.79	346.82	346.94	344.91	.670	.0054			
	3.94	-49.63	3.65	4.51	4.23	3.37		.0011			
	23 03 27	348.54	22 59 09	23 07 17	23 07 45	22 59 37					
	03 56 17	9.20	03 38 49	04 30 28	04 13 41	03 22 02					
1H2307-222	346.90	40.08	345.78	347.76	348.01	346.03	1.144	.0015			A2550
	-22.22	-66.46	-22.36	-21.56	-22.08	-22.88		.0007			
	23 07 35	339.17	23 03 08	23 11 02	23 12 02	23 04 07					
	-22 13 20	-15.28	-22 21 30	-21 33 23	-22 04 43	-22 53 01					(R)
1H2308-309	347.00	17.86	345.84	347.95	348.16	346.05	.856	.0017			PKS2306-312?
	-30.91	-67.72	-31.14	-30.30	-30.68	-31.53		.0006			
	23 08 00	335.47	23 03 21	23 11 47	23 12 38	23 04 10	-	_			
	-30 54 51	-23.24	-31 08 13	-30 17 42	-30 40 52	-31 31 36					
1H2313+783	348.34	118.10	349.53	347.97	347.24	348.75	.163	.0038			
	78.34	16.66	78.80	77.83	77.88	78.85		.0004			
	23 13 21	60.68	23 18 06	23 11 52	23 08 57	23 14 58		_			
	78 20 39	66.17	78 48 13	77 50 02	77 52 49	78 51 16					
1H2314+285	348.51	99.00	347.29	349.58	349.73	347.44	.640	.0049			
	28.56	-29.59	28.16	29.19	28.94	27.91		.0011			
	23 14 01	1.97	23 09 10	23 18 19	23 18 54	23 09 46		_			
	28 33 19	30.54	28 09 48	29 11 26	28 56 11	27 54 43					
1H2315-423	348.97	348.55	347.73	350.12	350.18	347.79	.192	.0094	2A 2315-428	XRS23153-428	NGC7582
	-42.39	-65.86	-42.82	-41.87	-41.96	-42.90		.0008			
	23 15 51	331.24	23 10 56	23 20 28	23 20 43	23 11 10		_			
	-42 23 33	-34.22	-42 48 57	-41 52 19	-41 57 22	-42 54 04					(R)
1H2315+257	348.79	97.89	346.94	350.47	350.67	347.14	1.405	.0035			Mkn 322
	25.70	-32.29	25.06	26.68	26.32	24.71		.0010			3C463?
	23 15 10	<i>LL</i> .	23 07 45	23 21 53	23 22 40	23 08 33		_			
	25 42 16	27.88	25 03 41	26 40 38	26 19 25	24 42 45		-			(R)

DOSITION	NO							ET IV		SNOLT & DIGITING	
		ENNUN BUA	ENNUN BUA	VOG NOVN				FLUA		TENTIFICATIONS	
RA GAL RA RA RA DEC ECL DEC DEC DEC	GAL RA RA RA ECL DEC DEC DEC	RA RA RA DEC DEC DEC	RA RA DEC DEC	RA DEC		RA DEC	AREA	ERROR	I-X	tay	NON X-RAY
349.58 105.43 348.38 350.67 350.79	105.43 348.38 350.67 350.79	348.38 350.67 350.79	350.67 350.79	350.79		348.50	.344	.0038			
41.76 -17.74 41.30 42.35 42.20	-17.74 41.30 42.35 42.20	41.30 42.35 42.20	42.35 42.20	42.20	ć	41.16		.0005			
23 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<	41.66 41 18 01 42 20 55 24 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 00 25 25	23 13 21 23 24 40 23 23 06 23   41 18 01 42 20 56 42 12 04 41	42 20 56 42 12 04 41 41	42 12 04 41	44	00 18					
349.80 323.74 347.07 351.94 352.42	323.74 347.07 351.94 352.42	347.07 351.94 352.42	351.94 352.42	352.42		347.53	1.323	.0027			STR2323-581
-58.24 -55.41 -58.96 -57.12 -57.45	-55.41 -58.96 -57.12 -57.45	-58.96 -57.12 -57.45	-57.12 -57.45	-57.45		-59.31		.000			
23 19 12 320.72 23 08 17 23 27 45 23 29 39 2. 58 14 07 47 08 58 57 40 57 07 17 57 77 05 56	320.72 23 08 17 23 27 45 23 29 39 2: 77 08 68 57 40 57 07 17 57 37 05 56	23 08 17 23 27 45 23 29 39 2: 68 67 40 67 07 17 67 37 05 66	23 27 45 23 29 39 2 57 07 17 57 27 05 56	23 29 39 2	2 2	3 10 06					
				C- C0 17 1C-	,	10 40		1200			
18.87 -38.95 18.71 19.19 19.19 19.04		18.71 19.19 19.19 18.71 19.19 19.04	19.19 19.19 19.04	19.04		349.49	.188	1/00.			A25/2?
23 19 59 358.64 23 17 40 23 22 00 23 22 18 23	358.64 23 17 40 23 22 00 23 22 18 23	23 17 40 23 22 00 23 22 18 23	23 22 00 23 22 18 23	23 22 18 23	53	17 57		2000-			
18 52 21 21.23 18 42 25 19 11 13 19 02 11 18	21.23 18 42 25 19 11 13 19 02 11 18	18 42 25 19 11 13 19 02 11 18	19 11 13 19 02 11 18	19 02 11 18	~	3 33 24					(R)
350.11 88.99 349.21 350.92 351.02	88.99 349.21 350.92 351.02	349.21 350.92 351.02	350.92 351.02	351.02		349.31	.483	.0050			NGC7615?
8.47 -48.22 8.22 8.95 8.71	-48.22 8.22 8.95 8.71	8.22 8.95 8.71	8.95 8.71	8.71		7.98		.0011			NGC7623?
23 20 27 354.30 23 16 49 23 23 40 23 24 05 23	354.30 23 16 49 23 23 40 23 24 05 23	23 16 49 23 23 40 23 24 05 23	23 23 40 23 24 05 23	23 24 05 23	8	8 17 14					
08 27 55 11.69 08 13 07 08 57 01 08 42 35 0	11.69 08 13 07 08 57 01 08 42 35 0	08 13 07 08 57 01 08 42 35 0	08 57 01 08 42 35 0	08 42 35 0	ò	7 58 42					
350.02 93.07 349.01 350.90 351.02	93.07 349.01 350.90 351.02	349.01 350.90 351.02	350.90 351.02	351.02		349.14	.604	.0025			A2593
14.60 -42.78 14.33 15.15 14.88	-42.78 14.33 15.15 14.88	14.33 15.15 14.88	15.15 14.88	14.88		14.06		.0006			
23 20 03 356.78 23 16 02 23 23 34 23 24 05 23	356.78 23 16 02 23 23 34 23 24 05 23	23 16 02 23 23 34 23 24 05 23	23 23 34 23 24 05 23	23 24 05 23	2	3 16 33					
14 36 17 17.34 14 19 47 15 09 05 14 52 31 1-	17.34 14 19 47 15 09 05 14 52 31 14	14 19 47 15 09 05 14 52 31 1	15 09 05 14 52 31 14	14 52 31 1-	-	4 03 18					(R)
350.31 111.75 350.25 350.35 350.36	111.75 350.25 350.35 350.36	350.25 350.35 350.36	350.35 350.36	350.36		350.27	100	.3214	4U 2321+58	XRS23212+585	Cas A
58.56 -2.11 58.55 58.59 58.58	-2.11 58.55 58.59 58.58	58.55 58.59 58.58	58.59 58.58	58.58		58.54		.0028			
23 21 13 26.73 23 21 00 23 21 22 23 21 27 2	26.73 23 21 00 23 21 22 23 21 27 2	23 21 00 23 21 22 23 21 27 2	23 21 22 23 21 27 2	23 21 27 2	7	3 21 04					
58 33 46 54.86 58 32 44 58 35 26 58 34 49 5	54.86 58 32 44 58 35 26 58 34 49 5	58 32 44 58 35 26 58 34 49 5	58 35 26 58 34 49 5	58 34 49 5	ŝ	8 32 07					(R)
350.61 29.30 348.67 352.28 352.54	29.30 348.67 352.28 352.54	348.67 352.28 352.54	352.28 352.54	352.54		348.91	1.854	.0050			A2609
-26.96 -70.77 -27.49 -25.95 -26.41	-70.77 -27.49 -25.95 -26.41	-27.49 -25.95 -26.41	-25.95 -26.41	-26.41		-27.96		.0026			
23 22 26 340.36 23 14 39 23 29 08 23 30 09 23 -26 57 44 -20.98 -27 29 10 -25 56 52 -26 24 43 -27	340.36   23 14 39   23 29 08   23 30 09   23 -20.98   -27 29 10   -25 56 52   -26 24 43   -27	23 14 39 23 29 08 23 30 09 23 -27 29 10 -25 56 52 -26 24 43 27	23 29 08 23 30 09 23 -25 56 52 -26 24 43 -27	23 30 09 23 -26 24 43 -27	-1 -1	1538 5723					
350.85 95.21 350.18 351.43 351.52	95.21 350.18 351.43 351.52	350.18 351.43 351.52	351.43 351.52	351.52		350.28	.280	.0060	2A 2322+166	4U 2315+15	A2589
16.55 -41.40 16.38 16.92 16.72	-41.40 16.38 16.92 16.72	16.38 16.92 16.72	16.92 16.72	16.72		16.18		6000	XRS23221+166		
23 23 23 23 358.40 23 20 44 23 25 42 23 26 04 2	358.40 23 20 44 23 25 42 23 26 04 2:	23 20 44 23 25 42 23 26 04 2	23 25 42 23 26 04 2	23 26 04 2	2	3 21 06					
16 33 04 18.78 16 22 36 16 55 07 16 43 24 16	18.78 16 22 36 16 55 07 16 43 24 16	16 22 36 16 55 07 16 43 24 16	16 55 07 16 43 24 16	16 43 24 16	ž	6 10 56					(R)
351.92 57.68 350.32 353.37 353.50	57.68 350.32 353.37 353.50	350.32 353.37 353.50	353.37 353.50	353.50		350.45	976.	.0033			
-17.02 -68.55 -17.52 -16.23 -16.51	-68.55 -17.52 -16.23 -16.51	-17.52 -16.23 -16.51	-16.23 -16.51	-16.51		-17.80		1100.			
23 27 39 345.78 23 21 17 23 33 28 23 34 00 2	345.78 23 21 17 23 33 28 23 34 00 2	23 21 17 23 33 28 23 34 00 2	23 33 28 23 34 00 2	23 34 00 2	7	3 21 48					
-17 01 20 -12.42 -17 31 12 -16 13 59 -16 30 43 -1	-12.42 -17 31 12 -16 13 59 -16 30 43 -1	-17 31 12 -16 13 59 -16 30 43 -1	-16 13 59 -16 30 43 -1	-16 30 43 -1	-	7 48 03					
354.15 304.30 346.94 355.43 358.71	304.30 346.94 355.43 358.71	346.94 355.43 358.71	355.43 358.71	358.71		352.05	.458	.0038			
-86.41 -30.81 -87.21 -85.53 -85.58	-30.81 -87.21 -85.53 -85.58	-87.21 -85.53 -85.58	-85.53 -85.58	-85.58		-87.29		.0008			
23 36 36 278.79 23 07 45 23 41 42 23 54 50 2	278.79 23 07 45 23 41 42 23 54 50 2	23 07 45 23 41 42 23 54 50 2	23 41 42 23 54 50 2	23 54 50 2	2	3 28 11					
	-65 94 -87 12 20 -85 31 30 -85 34 44 -8	-87 12 20   -85 31 30   -85 34 44   -8	-85 31 30   -85 34 44   -8	-85 34 44   -8	Ŷ	7 17 32 1					

TABLE 4—Continued

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

	NON X-RAY	Lambda And (R)	A2657 (R)	Klemola 44 STR2345-284 (R)		A2675 (R)		II Peg (R)	2357-348
ENTIFICATIONS	AY		XRS23440+086	4U 2344-27				A 0000+28	
ID	X-R		4U 2344+08	2A 2344-285 XRS23448-285	4U 0009-33			4U 2345+27 XRS23465+273	4U 0009-33
FLUX	ERROR	.0083	.0077 .0018 .0016 .0010	.0048 .0006	.0024 .0006	.0031 .0006	.0060 .0013 .0035 .0035	.0060 0006	.0072 .0007
	AREA	.340	.575 .368	.308	.644	.484	.512 .352	.248	.236
	RA DEC	353.12 45.70 23 32 29 45 41 44	353.36 69.43 69 25 30 354.98 354.98 8.56 23 39 55 08 33 21	356.09 -28.65 23 44 22 -28 39 05	356.96 -32.18 23 47 49 -32 10 34	357.19 10.43 23 48 46 10 25 57	357.57 -18.25 -18.25 23 50 16 -18 14 47 357.29 46.52 23 49 09 46 31 13	357.72 28.05 23 50 52 28 03 15	357.80 -35.54 23 51 10 -35 37 28
REOR BOX	RA DEC	355.19 46.65 23 40 44 46 38 58	356.41 70.70 23 45 38 70 42 00 356.83 9.36 23 47 19 09 21 41	358.14 -27.78 23 52 32 -27 46 39	359.06 -31.27 23 56 13 -31 16 29	359.05 11.24 23 56 13 11 14 30	359.28 -17.51 -17.51 23 57 08 -17 30 41 359.76 47.60 23 59 02 47 36 12	359.76 28.94 23 59 02 28 56 34	359.96 -34.61 23 59 49 -34 35 33
E	RA DEC	355.03 46.82 23 40 06 46 48 55	355.60 70.93 70.93 70.55 33 70.55 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9	358.06 -27.64 23 52 14 -27 38 22	358.88 -30.99 23 55 32 -30 59 20	358.96 11.46 23 55 49 11 27 48	359.16 -17.25 -17.25 23 56 38 -17 15 04 359.62 47.75 23 58 29 47 45 09	359.70 29.05 23 58 47 29 03 15	359.89 -34.51 23 59 33 -34 30 19
	RA DEC	352.96 45.86 23 31 50 45 51 31	352.57 69.64 23 30 16 69 38 15 354.90 8.72 23 39 36 08 43 26	356.02 -28.51 23 44 04 -28 30 44	356.79 -31.89 23 47 09 -31 53 14	357.09 10.65 23 48 21 10 39 12	357.45 -17.99 23 49 47 -17 59 06 357.15 23 48 35 46.67 46.67 46.67 46.67 23 48 35 46.67	357.66 28.16 23 50 37 28 09 53	357.73 -35.44 -35.44 23.50.55 -35.76.10
NOL	GAL ECL	110.12 -14.52 17.88 43.73	116.98 8.41 45.56 61.18 97.18 -50.25 359.84 9.93	26.27 -76.57 345.43 -24.52	10.99 -76.86 344.46 -27.92	101.38 -49.26 2.64 10.80	67.12 -73.98 351.27 -15.60 -113.35 -14.42 -14.42 22.00 22.00	108.87 -32.56 11.08 26.52	356.00 -76.25 343.44
LISO4	RA DEC	354.07 46.26 23 36 15 46 15 34	354.44 70.18 23 37 45 70 10 44 355.87 9.04 23 43 28 09 02 38	357.08 -28.15 23 48 19 -28 08 56	357.93 -31.59 23 51 42 -31 35 10	358.07 10.95 23 52 17 10 56 57	358.37 -17.75 -17.75 -23 53 28 -17 45 02 358.44 47.14 23 53 46 23 53 46 47 08 32	358.70 28.56 23 54 49 28 33 28	358.85 -35.03 -35.03 23 55 23 -35 01 40
CATALOG	ENTRY	1H2336+462	1H2337 + 701 1H2343 + 090	1H2348-281	1H2351-315	1H2352+109	1H2353-177 1H2353+471	1H2354+285	1H2355-350

TABLE 4—Continued

F

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

Continued	
1	
TABLE	

	POSITI	ION		-	<b>ERROR BOX</b>			FLUX	IDENTIF	ICATIONS
ENTRY	RA DEC	GAL ECL	RA DEC	RA DEC	RA DEC	RA DEC	AREA	ERROR	X-RAY	NON X-RAY
IH2357-126	359.41	81.35	357.62	.95	1.19	357.86	2.079	.0030		A2704
	-12.63	-70.96	-13.07	-11.64	-12.17	-13.60		.0012		
	23 57 38	354.37	23 50 29	00 03 47	00 04 45	23 51 26				
	12 37 31	-11.33	-13 04 02	-11 38 13	-12 10 17	-13 36 17				(R)
(H2358+484	359.68	114.47	358.35	88.	1.03	358.51	.368	.0033		
	48.48	-13.29	48.00	49.10	48.94	47.85		.0005		
	23 58 43	23.95	23 53 25	00 03 31	00 04 07	23 54 02				
-	48 28 38	43.50	47 59 53	49 05 47	48 56 28	47 50 45				

	TABLE 6
	SUPPLEMENTARY INFORMATION ON CATALOG SOURCES
1H0003 + 200 Mkn 335	Seyfert galaxy; type 1, $z = 0.025$ (WEED77).
1H0007+731 CTA1	Supernova remnant; distance = 1.6 kpc (ILOV72).
1H0010-515 STR0012-515 ?	Cluster of galaxies; optical (ROSE76).
1H0011-239 A14 ?	Cluster of galaxies; X-ray (JOHN83,ULME81a); $z = 0.064$ (SARA82), $z = 0.113$ (LEIR77).
1H0014+111 III Zw 2	Seyfert galaxy; X-ray (PICC82); type 1, $z = 0.090$ (WEED77); X-ray image (KRIS80); X-ray and radio (SCHN78); optical (PUET81).
1H0016-257 A15	Cluster of galaxies; $z = 0.213$ (SARA82).
1H0018+280 A21	Cluster of galaxies; X-ray (JOHN83); $z = 0.090$ (LEIR77).
1H0022+638 Ceph XR-1 Tycho SNR	Supernova remnant; distance = 5 kpc (ILOV72); X-ray spectrum (COLE73,DAVI76c); EINSTEIN SSS spectrum (BECK80); Si,S,Fe line emission (PRAV80a); X-ray image; circular 8 arc min diameter open shell of emission (REID82,FABB80); radio (DUIN75); optical (KAMP78); early X-ray (FRIE67,GORE70).
1H0024-296 A33	Cluster of galaxies; X-ray (JOHN83); $z = 0.280$ (LEIR77).
1H0025 + 588 A0026 + 59 4U0027 + 59	Variable X-ray source (CARP77).
1H0039+408 M31 NGC 224	Galaxy; distance = 670 kpc, magnitude = 3.5 (ALLE73); X-ray (BOWY74); soft X-ray (MARG74); X-ray image: 69 unresolved sources and 7 diffuse or confused regions (SPEY79).
1H0042-093 A85	Cluster of galaxies; $z = 0.079$ (LEIR77), $z = 0.0518$ (SARA82); EINSTEIN image (JONE79,FORE82); other X-ray (JOHN83,ULME81a,MCKE80,PICC82,MURR76).
1 <b>H0048+250</b>	Quasar, $z = 0.155$ (SCHM83).
1H0052-015 A119 3C29	Cluster of galaxies; X-ray (JOHN83,MCKE80,PICC82); $z = 0.045$ (LEIR77), $z = 0.0416$ (NOON81); radio (PACH78)

	TABLE 0— Commuted
1H0053+604 4U0054+60 2S0053+604 Gamma Cas	Star, Gamma Cas (DOWE78); distance = 300 pc (BRAD77); Type B0.5(II-V)E, variable (HUTC70,MOFF73); Periodicity searched, comparison with X-Persei (WHIT82a); optical (BRAD77).
1H0054-729 SMC X-3	Transient stellar source in SMC (LI77b); X-ray spectrum: photon power law index = 2.0 (CLAR78b); variability (CLAR79); optical (ALLE77,SAND77,CRAM78a).
1H0056-150 A131	Cluster of galaxies; X-ray (JOHN83); $z = 0.123$ (LEIR77).
1H0101-241 A140	Cluster of galaxies; $z = 0.181$ (LEIR77), $z = 0.149$ (SARA82).
1H0101-221 A133 4U0103-21	Cluster of galaxies; $z = 0.06$ (REIC81); $kT = 1$ keV (REIC81).
1H0102+017 A147 ?	Cluster of galaxies; X-ray (JOHN83); $z = 0.0438$ (NOON81), $z = 0.040$ (LEIR77).
1H0106+324 NGC 383 3CR 31 A156 ?	Cluster of galaxies; $z = 0.0163$ (HUMA56), $z = 0.130$ (JOHN83); optical (CASW67,FANT73); radio (PACH78).
1H0113-148 A159 ?	Cluster of galaxies; $z = 0.143$ (LEIR77); other HEAO-1 (PICC82).
1H0115+635 4U0115+63	Binary pulsar, recurrent transient; distance = 3 kpc (HUTC81a); period 3.6 s (COMI78b,ROSE79); 24 d binary period (RAPP78b); orbital elements (RAPP78a); pulse profile (JOHN78b); flares (CLAR78a,FORM76a,HOLT77); X-ray spectrum: photon power law index = 0.6 and varies with phase in pulsar cycle (ROSE79); Fe line (ROSE79); cyclotron absorption feature at 20 keV (WHEA78); position (COMI78b,JOHN78b,JOHN78d); other X-ray (KRIS83); optical spectroscopy (HUTC81a).
1H0121-353 NGC 526A	Seyfert galaxy; $z = 0.018$ (PICC82); X-ray spectrum: photon power law index = 1.5 (MUSH82).
1H0122-590 Fairall 9	Seyfert galaxy; $z = 0.0461$ (PICC82), $z = 0.045$ (HEWI80).
1H0123+075 HD8357	RS CVn binary system (GARC80); distance $\approx$ 70 pc (AMBR83); binary period 12.3 days (HALL82); variable in optical (HALL82); X-ray flaring (AMBR83).

605

	TABLE 6—Continued
1H0128-139 A209	Cluster of galaxies; $z = 0.213$ (SARA82).
1H0129+303 M33 NGC 598	Galaxy; distance = 730 kpc, magnitude = 5.7 (ALLE73); X-ray map: 11 point sources, brightest coincident with nucleus (LONG81); EINSTEIN image (MARK83).
1H0132+607 4U0142+61	X-ray and possible optical candidate (DOWE78,REID80); optical candidate unlikely (BRAD83).
1H0136-681 H0136-68 3A0143-681	Cataclysmic variable X-ray source (NUGE83,AGRA83); distance = 0.180 kpc (PATT84); AM Her type, orbital period = 0.0764 d (VISV82).
1H0151+359 A262	Cluster of galaxies; $z = 0.0164$ (JOHN83), $z = 0.015$ (LEIR77); EINSTEIN image (FORE82).
1H0155+740	Possibly confused.
1H0203 + 513 1E02063 + 5212	Seyfert galaxy, $z = 0.05$ (HERT83).
1H0215-007 Mkn 590 NGC 863	Seyfert galaxy (PICC82,MARS79b); type 1, $z = 0.027$ (WEED77); annular structure, poorly resolved spiral arms (ADAM77); other HEAO-1 (DOWE80).
1H0219+625 HB3	Supernova remnant; distance > 2 kpc (ILOV72,CLAR76b, GALA80); soft X-ray spectrum, $kT = 0.18$ keV (GALA80); other HEAO-1 (SHUL79a,NUGE83).
1H0227-094 NGC 985 VV 285	Seyfert galaxy; $z = 0.043$ (DEVA75); type 1 (DEVA75), type 2 (WEED77); disturbed galaxy, annular main body structure (ADAM77).
1H0240+621 2S0241+622 4U0241+61	Quasar; z = 0.0438 (MARG78b);variable over months (WORR80); X-ray spectrum: photon power law index = 1.93 (WORR80); X-ray variability (MARS81b); other HEAO-1 (SHAR79a); other X-ray (APPA78b,MARA78,TANA79); radio (TZAN78); optical (SOIF79); gamma-ray (HERM77,MARA78, PERO80).
1H0241+364 A376	Cluster of galaxies (JOHN83); $z = 0.0489$ (NOON81).
1H0244+001 NGC 1068 3C71.0	Seyfert galaxy; type 2, z = 0.0036 (WEED77); X-ray (ELVI78); IR,optical,UV (LACY82,WEED77,ADAM77); IR (TELE80); radio (WEED77,PACH78).
1H0246+275 A377 ? A387 ?	Cluster of galaxies (JOHN83); $z(A377) = 0.2070$ (JOHN83).
	606

507W	TABLE 6—Continued
: 1H0251+414 : AWM 7 Sfort 4478	Compact group of galaxies; X-ray identification (COOK78, SCHW80a,b); z = 0.017 (STAU80b); X-ray spectrum kT = 4.0 keV plus Fe line (SCHW80a,MUSH78d); optical identification (SCHW80a); group includes NGC1129,1130, 1131, I265; other HEAO-1 (NUGE83)
1H0253+058 A400 ? 3C75.0 ?	Cluster of galaxies (JOHN83); $z(A400) = 0.0232$ (NOON81), z(3C75) = 0.0217 (WEST69); 3C75 a db galaxy in A400, radio and optical (PACH78); X-ray image (FORM82).
1H0253+130 A401/A399	Cluster of galaxies (JOHN83,PICC82); $z(A401) = 0.0748$ , z(A399) = 0.0715 (NOON81); X-ray spectrum: $kT(A401) =5.3-7.6 keV (MITC77,MITC79,MUSH78d), Fe line (MUSH78d);X-ray structure: diffuse emission (ULME79a), structure(A401) by lunar occultation (ULME79a,b), by EINSTEIN(ULME81b); radio (SLIN74,DULD79); optical (CART80).$
1H0258-126 A415 PKS0304-12	Cluster of galaxies; $z = 0.093$ (LEIR77).
1H0311-227 EF Eri 2A0311-227	Degenerate dwarf in a binary system; optical identification, 15th mag blue star (GRIF78d,BOLE79, HILT79); optical period of 81 min and flaring in V and B (WILL79,BOND79,HUTC82,YOUN82); optical quasi-periods of 13.7 and 20.2 min (WILL82); optical spectrum (WILL79, GRIF79c,SCHN80,CRAM81); complex line structure (YOUN82, CRAM81); optical polarization (TAPI79); magnetic cataclysmic variable (CHAR79e); X-ray flares and light curve (PATT81b,WHIT81c); X-ray spectrum: $kT = 18$ keV with Fe line (WHIT81c); 1/4 keV eclipse (PATT81b); X-ray image (VIAI81); IR light curve (ALLE81).
1H0315-445 2A0316-443 PKSO316-443	Cluster of galaxies; $z = 0.09$ (MACC78); X-ray (PICC82).
1H0316+413 Perseus Cluster A426	Cluster of galaxies including NGC1275; $z = 0.0177$ (BURB79); $z = 0.0183$ (HINT79); X-ray (JOHN83); optical identification (BAHC74); X-ray image: compact source coincident with NGC1275, and a 15 arc min extended emission region (MUSH81,BRAN81); X-ray halo extending to 2.5 degrees (ULME80c); X-ray spectrum: two-components, $kT =$ 1.0 and $kT = 6.7$ keV, plus line emission from Si,S,Fe (MUSH81), hard X-ray spectrum (PRIM81); radio (ERIC780); infrared (RIEK75,RUDY82); early X-ray (FRIT71a).

-

	TABLE 6—Continued
1H0327+000 HR 1099 V711 Tau	Transient, RS CVn system; distance = 33 pc (SPAN77); period = 2.8 d (BOPP76);X-ray transient (WHIT78a, WALT81a); 1/4 keV emission (WALT78); SSS: emission components with different temperatures required to account for lines and continuum (SWAN81); coordinated ultraviolet, optical and radio observations (WEIL78); radio flare (SPAN77,WEIL78).
1H0332+317 NRAO 140	Quasar (MARS81a); $z = 1.258$ (HEWI80); X-ray image (MARS79a); optical magnitude 17.5, radio (PACH78).
1H0334+098 2A0335+096 4U0334+11	Compact groups of galaxies; $z = 0.04$ (SCHW80b); X-ray (PICC82).
1H0334+291	Possibly confused with UX Ari.
1H0335-357 H0335-35 NGC 1399 ?	X-ray (NUGE83). The identification proposed by Nugent et .al. is NGC 1365 which lies outside the 1H error box.
1H0338-543	Confused with 1H0341-537.
1H0340+392 4C39.12 ?	Active galactic nucleus; $z = 0.0209$ (BURB79).
1H0341-537 CA0342-538 2A0343-543	Cluster of galaxies; $z = 0.052$ (MELN75), $z = 0.0576$ (HINT79); X-ray spectrum: $kT = 17.2$ keV (HINT79); optical (MELN75); X-ray (PICC82).
1H0343+237 Pleiades	Star cluster; X-ray (NUGE83).
1H0352+308 X Per	Binary Pulsar; distance = 350 pc (BRUC72); Be star (BRUC72); period, 13.9 min, P/(dP/dt) = -5880 yrs (WHIT77b, MASO77); period, 581 d (HUTC74a, WHIT77b, HUTC75); period at various epochs (WHIT82a); X-ray spectrum: $kT = 12$ keV hardening to 20 keV near X-ray minimum for E > 20 keV, no evidence for Fe line emission (BECK79a); energy power law index approximately -0.3 for E > 2 keV (MUSH77,WORR81a); polarization about 1% in V band (BARB78); ultraviolet (HAMM80,BERN81).
1H0409-078 40 Eri	K1 dwarf, DA white dwarf, dwarf M4 flare star in triple system; distance = 5 pc (CASH79); IPC fluxes for 40 Eri A and 40 Eri BC (VAIA81); other HEAO-1 (NUGE83,SHUL79b).

608

	TABLE 6—Continued
1H0409+102 A478	Cluster of galaxies; z = 0.09 (BAHC77c); includes cD galaxy (SCHN77b); 2.3 arcmin in X-ray (SCHW79c); EINSTEIN image (JONE79); X-ray spectrum: kT = 6 keV (MITC79); radio (SCHN77b); other HEAO-1 (NULS79,PICC82;JOHN83).
1H0413-116 A483	Cluster of galaxies; X-ray (JOHN83); $z = 0.292$ (LEIR77).
1H0413+009 A480	Cluster of galaxies; $z = 0.18$ (ULME80a); $z = 0.0473$ (SARA82).
1H0414+380 3CR111.0	N-galaxy; $z = 0.0350$ (BURB79); $z = 0.0485$ (SMIT76); X-ray (MARS78); radio (ERIC78).
1H0426+051 3C120	Seyfert galaxy, N-galaxy (MARS78); z = 0.0334 (BURB79); variable on timescale of days (AMBR79); X-ray spectrum: (SCHN77a); other X-ray (MARS81b,ELVI78); radio (KELL71); infrared (RIEK72); optical (SHIE72,OSTE77); other HEAO-1 (MARS78,DOWE80).
1H0429-616 Sers 40/6 STR0431-616	Cluster of galaxies (PICC82); $z = 0.079$ (LUGG78); z = 0.0601 (VIDA75).
1H0430-133 A496	Cluster of galaxies; $z = 0.042$ (LEIR77); $z = 0.057$ (LUGG78); probably includes E-galaxy, with $z = 0.036$ (BURB79); X-ray (SCHW79c,MCKE80); radio (FELD77); other HEAO-1 (NULS79,PICC82).
1H0441-207 PKS0446-206 ? A514 ?	PKS 0446-206, N-galaxy; $z = 0.0732$ (BURB79); A514, cluster of galaxies; $z = 0.0353$ (LEIR77).
1H0445-060 NGC 1681 ?	Galaxy; explosion suspected (SULE73).
1H0446+450 3C129 cluster	Cluster of galaxies; $z(3C129) = 0.0208$ , $z(3C129.1) = 0.0222$ (BURB79); X-ray spectrum: photon power law index = 2.5 or kT = 5 keV with Fe line (MUSH78d,MITC79); other X-ray (LUGG78); radio (ERIC78).
1H0448-041 MCG-01-13-025 H0447-037	X-ray (SHUL79,MARS79b).
1H0451-560 H0449-55	Transient; duration 1 min to 2 d (KALU78); X-ray spectrum is Crab-like (KALU78); optical identification with M dwarf system (GRIF79f).
1H0453-100 A521	Cluster of galaxies; X-ray (ULME80a, JOHN83); $z = 0.20$ (LEIR77).

	TABLE 6—Continued
1H0455+276 3C133 ?	X-ray (SHAR79b).
1H0455+518 H0452+51	X-ray (NUGE83).
1H0458-367 4U0457-35	Possibly confused.
1H0459+248	X-ray (SHAR79b).
1H0501+592 12 Cam HR 1623	RS CVn System; distance = 0.18 kpc, orbital period = 80.17 days (HALL84).
1H0507-459 Pic A PKS0507-45	N-galaxy, $z = 0.035$ (BURB79).
1H0512-401 NGC 1851 MXB0513-40	Globular cluster; distance = 9.5 kpc (PETE75); high central density and small core radius (BAHC77a); X-ray burster (LEWI79); burst duration 25 s (FORM76b); X-ray spectrum: photon power law index = 1.4 (CLAR75); X-ray source 10 arc sec from center of globular cluster (SHAW80, GRIN81a).
1H0515-363 PKS0521-365	BL Lac object; $z = 0.055$ (HEWI80), $z = 0.0617$ (BURB79); X-ray (KINZ78); optical (DANZ79).
1H0516+063 A539 ?	Cluster of galaxies; $z = 0.0267$ (JOHN83).
1H0521-720 LMC X-2	X-ray; distance = 55 kpc (BOK66); X-ray variable (RAPL74,LEON71,MARK75,JOHN78c); early X-ray (MARK69).
1H0527-328 2A0526-328 TV Col	Cataclysmic variable, UX-UMa type (WARN80,WATT80); distance = $0.160$ kpc (PATT84); orbital period 0.2286 d, rotation period 0.2163 d (HUTC81b); X-ray variability on the order of 1 min (WARN80); X-ray spectrum: kT = $0.2$ keV (COE81); optical spectra (MOTC81).
1H0530-054 M42	Galactic Nebula; distance = 460 pc (ALLE73); X-ray (DENB78).
1H0531-070	X-ray active region in Orion; distance = 450 pc; X-ray image: 25 sources (KU79,PRAV81).
1H0531+219 Crab Nebula	Pulsar in supernova remnant; distance = 2.022 kpc (TRIM68); nebula X-ray size 0.5 to 2 arc min (BOWY64a,

	TABLE 6—Continued
Crab Pulsar NP0532	HAWK74, DAVI75b, KEST75, WOLF75, STAU75, PALM75, RICK75a), size dependence on energy (KU76); pulsar period 33 ms (STAE68, COCK69, COME69, FRIT69a, NEUG69, LYND69, KURF71, KINZ71), slow-down rate = 36.5 ns per yr (RICH69); pulsar variability (RANK74, RYCK77); polarization 11% optical (FORM71), 19% X-ray (WEIS78a, LONG79), 50% radio (VAND73); X-ray spectrum, nebula: evidence for thermal kT = 0.5  keV for E < 3 keV (TOOR76), energy power law index = 1 for E < 80 keV (BOLD69, FRIT71b, STRI79), energy power law index = 1.4 for E > 80keV (STRI79); X-ray spectrum, pulsar: energy power law index = 0.2 for E < 10 keV (FRIT71b, HENR72), energy power law index = 1 for E > 10 keV (DOLA77, STRI79), 73 kev line feature (MANC82, STRI82), hard X-ray spectrum (KNIG82); other radio (HOWA65); infrared (MORO64); IR observations of pulsar (PENN81); optical (ODEL62); UV spectrum (IUE) (DAVI82a); gamma-ray (FAZI72, GRIN72, THOM77, BENN77); early X-ray (BOWY64b, FRIE67).
1H0534-667 LMC X-4	Binary pulsar; distance = 55 kpc (BOK66); eclipsing binary (WHIT77a,WHIT78d); binary period = 1.41 d (CHEV77,HUTO78,LI78a); pulsar period = 13.5 s (KELL82), precession period = 30.5 d (LANG81); X-ray variability and flaring (WHIT78d,LI78a,EPST77b,SKIN80); position (EPST77b,COOK78,DELV76); optical counterpart (PAKU76, PESC76,BLAN77,HILT77,SAND76); ultraviolet (BONN81); early X-ray (MARK69).
1H0536+263 HDE 245770 4U0538+26 V725 Tau	Binary pulsar, recurrent transient, irregular variable variable Be star (LILL75,STIE76); distance = 1.8 kpc (WADE77); 16 d rise time (ROSE75), 30 d decay time (KALU75,RICK75b); periods: 104 s (ROSE75,CARP77), > 17 d (RAPP76), and 111 d (PRIE83); X-ray spectrum: $kT = 18$ keV keV (RICK76a), at maximum, $kT = 8$ keV (COE75); other X-ray (EYLE75b,CHAR77c); infrared (PERS79); transient outburst in 1980 (NAGA82), transient outburst in 1977 (VIOL82).
1H0538-641 LMC X-3	Black hole candidate (COWL83,WHIT83a); OB star (WARR75); distance = 55 kpc (BOK66); X-ray variable (RAPL74); other X-ray (JOHN79); other HEAO-1 (JOHN78c); early X-ray (MARK69,LEON71).
1H0540-697 LMC X-1	Black hole candidate (WHIT83a); optical and radio supernova remnant (MATH73) or star R148 (JOHN78c); distance = 55 kpc (BOK66); companion mass exceeds 3 solar masses (HUTC83); X-ray variable (GRIF77); complex structure X-ray spectrum, kT = 1 keV (EPST77a); other X-ray (RAPP75, JOHN79); early X-ray (MARK69, LEON71).

	TABLE 6—Continued
1H0541-258 A548	Cluster of galaxies; $z = 0.0390$ (JOHN83).
1H0546-439 PKS0537-441 ?	Quasar; X-ray image (ZAMO81); optically variable, magnitude 13.8-15.5 (PACH78).
1H0548-322 PKS0548-322	BL Lac object (DISN74); $z = 0.069$ (FOSB76), $z = 0.042$ (LUGG78); X-ray spectrum, two component: photon power law index variable, $\sim 2.8$ (WORR81b); nonthermal component and elliptical galaxy (WEIS79); other X-ray (SCHW79a); other HEAO-1 (PICC82,MUSH78b).
1H0551-074 NGC 2110	Seyfert galaxy (MARS81b); $z = 0.071$ (BRAD78b); $z = 0.0076$ (SHUD80); X-ray (BRAD78b,GRIF79b,MARS81b); X-ray spectrum: photon power law index = 1.8 (MUSH82); X-ray variability (MUSH82).
1H0551+463 MCG 8-11-11	Seyfert galaxy; z = 0.0205 (MARS81b); includes compact radio source (COND77); X-ray variable (WARD77); X-ray spectrum: kT = 28 keV or energy power law index = 0.66 (MUSH80a,MUSH80b); other X-ray (ELVI78,FRON79,GRIF79a, MARS81a); optical (MILL79); IR, optical, UV (LACY82).
1H0555-384 4U0557-38	X-ray (PICC82).
1H0556+126	X-ray (SHAR79b).
1H0610+091 4U0614+09 V1055 Ori	Sco X-1 like, long term variable (MURD74), possible X-ray burster, burst duration $\sim 50$ s (SWAN78); distance = 4 - 8 kpc (DAVI74); optical identification 18th mag B star, UV excess (MURD74, DAVI74), variable star V1055 Ori (BRAD83); X-ray spectrum: kT = 2.4 - 3.2 keV or energy power law index = 1.6 - 1.7, correlated intensity and spectral slope, variability on 1 hour timescale (PARS78), kT = 2.5 - 6 keV (MASO76), burst spectrum, kT = 1.1-2.5 keV (SWAN78); X-ray binary period 5.2 days (MARS81d); other X-ray (GREE79a,DOWE78); radio (DULD79).
1H0612+226 IC443	Supernova remnant; distance = 1-2 kpc (ILOV72,WOLT72); X-ray spectrum: kT ~0.9 keV or photon power law index ~4.5 (PARK77); other X-ray (SHUL76, MALI76,LEVI79); radio (COLL71,HILL72b); early X-ray (GIAC72).
1H0613+479 3C153 ?	Active galaxy in cluster; $z = 0.2771$ (BURB79,PACH78); radio (PACH78,SMIT76).

507W		TABLE 6—Continued
1984ApJS565	1H0623-539 STR0627-544 ?	Cluster of galaxies; $z = 0.05$ (VIDA75); X-ray spectrum: kT = 4.4 - 6.3 keV (MITC79,MUSH78d), kT = 7.8 keV plus Fe line (BERT79); other X-ray (MACC78, NULS79); other HEAO-1 (PICC82); X-ray image, double structure (FORM81, FORM82).
	1H0633-752	Quasar; $z = 0.651$ (HEW180).
	1H0637+535 ANON 0636+53 PKS0637+535	Galaxy; suggested source identification: compact, paired with galaxy ANON 0637+53, and X-ray luminosity comparable to type 1 Seyfert (MARS79b).
	1H0659+453 Mkn 376	Seyfert galaxy; type 1, $z = 0.056$ (WEED77); possible member of a cluster (ADAM77); IR,optical,UV (LACY82, WEED77); radio (WEED77); no radio emission detected (DEBR76); X-ray variability (MARS81b); other X-ray (ELVI78).
	1H0712+558 A576	Cluster of galaxies; $z = 0.133$ (LEIR77); X-ray (NULS79, HINT79); X-ray structure (WHIT80b).
	1H0717+714 1E0716+71	BL Lac object; flat UV and optical spectrum, variable and 14% polarized in optical (BIER81); radio variable (KUHR81); X-ray image (BIER82); optical (WING73).
	1H0726-259 4U0728-25	Binary X-ray source, Be star, distance = 5.0 kpc, variability indicated (STEI84).
	1H0729+316 A586 YY Gem ?	Cluster of galaxies; $z = 0.171$ (JOHN83); X-ray (ULME81a); the flare star YY Gem is also near this position and may be confused with this source (TSIK82, VAIA81).
	1H0741 + 289 Sigma Gem	RS CVn binary system; distance = $0.059$ kpc (HALL84).
	1H0741+651 Mkn 78	Seyfert galaxy; type 2, $z = 0.038$ (WEED77,ADAM77).
	1H0743+037 YZ CMI	Flare star; distance = 6 pc (PETT76); X-ray flaring (HEIS75,KAHN79,KAHL82); X-ray image (KAHL82); X-ray, optical, and radio observations (KARP77).
	1H0743+184	Possibly confused.
	1H0744+499 Mkn 79	Seyfert galaxy; z = 0.0219 (MARS81b); optical (ADAM75, OKE78); ultraviolet (OKE78); X-ray (MARS81b, STEI81b, ELVI78).

613

_
TABLE 6— Continued		
1H0745-191 4U0739-19 PKS0745-19	N-Galaxy, $z = 0.1028$ (BURB79).	
1H0759-490 4U0750-49 HD64740?	X-ray (BACH75,SEWA76b); optical candidates discussed (GROO78).	
1H0802-469 1E08083-4275	Variable object, seen in EINSTEIN IPC, $V > 15$ (HERT83).	
1H0811+625	Cataclysmic variable, U Gem type (PATT84); orbital period = 0.0763 d (WADE82); EINSTEIN image (CORD84).	
1H0814-073 A644	Cluster of galaxies (JOHN83); $z = 0.084$ (LEIR77).	
1H0815-571 4U0814-56	X-ray (SEWA76b).	
1H0816+017 PKS0812+02 A653	Quasar; z = 0.402 (BURB77).	
1H0820-426 Pup A SNR	Supernova remnant (BURG73b,GORE74); estimated distance = 1.2 kpc (MILN70); X-ray line emission (ZARN78); spatial structure (CHAR78,LEVI79,HEAR80); EINSTEIN HRI image (PETR82); Spectrum: O VII, O VIII lines (WINK81a,WINK81b).	
1H0823 + 561 A652	Cluster of galaxies; $z = 0.1938$ (SARA82).	
1H0833+153 A689	Cluster of galaxies, $z = 0.1430$ (JOHN83).	
1H0833+654 A665 PI(1) UMa	Cluster of galaxies (A665), $z = 0.1816$ (JOHN83); or PI(1) UMa, a main sequence, type G, rapidly rotating dwarf (VIAI81).	
1H0846+519 0846+51W1 2A0859+509 ?	BL Lac object, highly variable; $z = 1.86$ (ARP80).	
1H0859-403 Vela X-1 HD77581	Binary pulsar; distance = 1.2 kpc (HILT72); orbital period 8.97 days (FORM73,ULME72); pulse period 283 s (MCCL76); other measurements of pulsar spin period (RAPP77,OGEL77,BECK78); orbital elements and mass estimate (RAPP76); X-ray spectrum: power law with adsorption and Fe line (BECK78), high-energy spectrum (DOLA81,STAU80a), EINSTEIN SSS spectrum (KALL82).	

TABLE 6—Continued		
1H0900-375 PKS 0902-38	Supernova remnant, distance = 4.3 kpc (ILOV72).	
1H0906-095 A754	Cluster of galaxies; $z = 0.0539$ (PICC82, JOHN83); $z = 0.052$ (LEIR77).	
1H0917-121 A780	Cluster of galaxies; $z = 0.0522$ (JOHN83).	
1H0918-548 4U0919-54	X-ray, position (REID80,DOWE78); other X-ray (SEWA76b).	
1H0919-312 4U0923-31	X-ray (SEWA76b).	
1H0920-629 H0921-631	Binary X-ray source; position (LI78b); orbital period 9 days (COWL82b); distance = 8 kpc (PATT84).	
1H0922-810	Possibly confused.	
1H0929+122 A803 ? AKN 202 ?	Cluster of galaxies; note the Seyfert galaxy AKN202, z = 0.028 (WEED78), lies well outside this HEAO A-1 error box (see DOWE80).	
1H0946-309 MCG-5-23-16	Seyfert galaxy; X-ray spectrum: photon power law index = 1.84 (MUSH82).	
1H0946-144 NGC 2992	Seyfert galaxy; $z = 0.0062$ (PICC82), $z = 0.034$ (LUGG78), z = 0.00752(SHUD80); X-ray spectrum: photon power law index = 1.84 (MUSH82).	
1H0950+696 M82	Seyfert galaxy; $z = 0.0013$ (PICC82), $z = 0.00072$ (SHUD80).	
1H1008+343 3C236	Galaxy in a cluster; $z = 0.0988$ (PACH78).	
1H1012-574 RCW 48W A1014-57	Supernova remnant; distance = 8.6 - 12.3 kpc (DOWN71, ILOV72); X-ray (SEWA76b); possibly not a SNR (DOWN71, CLAR76b).	
1H1012-098 A970 ? PKS1020-103?	Cluster of galaxies (JOHN83,ULME81a); z = 0.115 (LEIR77); possibly confused.	
1H1013+498 A950	Cluster of galaxies, $z = 0.202$ (LEIR77).	

	TABLE 6—Continued
1H1017+202 NGC 3227 AD Leo ?	Seyfert galaxy, z = 0.0033 (WEED77); uncertain class: type 1 (MARS79b,ELVI78), type 2 (WEED77,ADAM77,PICC82); X-ray identification (ELVI78); X-ray variability (MARS81b); IR,optical,UV (LACY82); IR, radio summary (WEED77); alternate identification, the dMe star AD Leo (KAHN79).
1H1023+513 A1004	Cluster of galaxies; $z = 0.117$ (LEIR77); Abell cluster is in HEAO-1 error box, an alternate identification very near error box is Mkn 142 (MARS79b,ELVI78), Seyfert galaxy, type 1, $z = 0.045$ (WEED77,ADAM77).
1H1033-273 A1060 STR1034-272	Cluster of galaxies (JOHN83,PICC82), $z = 0.0114$ (NOON81); X-ray spectrum: $kT = 3.1-3.5$ keV (MUSH78d, MITC77,MITC79), two temperature components plus 6.7 keV Fe line, $kT = 1.8-2.2$ keV and $kT = 14.4-11.9$ keV (MITC80).
1H1045-597 Eta Carina NGC 3372	Star formation region, historical Nova; X-ray (BECK76, SEWA76b), low energy survey (HILL72a); X-ray image and spectra; star Eta Car, several O stars, and diffuse nebula (SEWA79); UV (WALB82,DAVI82b); IR (THAC78).
1H1051+607 2A1052+606 BD +61 1211 DM UMa	RS CVn binary system; distance = 0.16 kpc (SCHW79a); other HEAO-1 X-ray (plus optical) (WALT80,CHAR79b, SCHW79a); EINSTEIN X-ray (WALT81a,WALT81b); optical (CRAM79,KIMB81).
1H1059+566 A1132	Cluster of galaxies; $z = 0.1363$ (NOON81).
1H1104+382 Mkn 421 A1103+38	BL Lac object; z = 0.031 (ULRI75); optical identification (MILL75,MILL77a); optical spectrum (MAZA78,ULRI78); optical polarization (RIEK77,BAIL81); optical and radio (MARG78a,ULRI75); X-ray spectrum (MUFS80,MUSH78b,MUSH79); X-ray transient, Mkn 421 proposed as identification (COOK76a); other X-ray (BOKS78,HEAR79,RICK76c,SCHW79a).
1H1118-602 Cen X-3	Binary pulsar; distance = 8 kpc (KRZE74); optical identification (MARG72a,KRZE74,GIAC74); X-ray periods: 4.85 s (GIAC71,TUOH76,ULME74b), 2.09 d (SCHR72); period changes (FABB77,HENR77,VAND80); orbit, from X-ray (SCHR72,FABB77); mass limit (AVNI74,WEED72,WILS72); hi-low states, dips (POUN75, SCHR76,CARL79); long term behavior (BENN76,SCHR76); X-ray spectra (COE76,BLEE73, BAIT74,HAYA73); other X-ray (BRAD79,CHES78,HOLT79b, LONG75,LONG77,CARP77,MAUD75,PARK74); infrared (GLAS79).

1984ApJS...56..507W

	TABLE 6— Continued
1H1120+423 A1250/A1237	Cluster of galaxies; $z(A1250) = 0.165$ (LEIR77), z(A1237) = 0.149 (LEIR77); X-ray (A1237) (JOHN83).
1H1121-591 MSH 11-54 H1122-59	Supernova remnant; distance = 10 kpc (AGRA80); X-ray image (TUOH82); other X-ray (SHAR78b,AGRA80).
1H1129+495 A1314 Mkn 178	Cluster of galaxies; $z = 0.0341$ (SARA82).
1H1135-372 NGC 3783	Seyfert galaxy; $z = 0.0085$ (BURB79); X-ray (COOK76b, ELVI78, MUSH80a, PICC82).
1H1137-649 4U1137-65 HD101379	RS CVn binary system; distance = 75 pc (GARC80); radio (GARC80); optical (WEIL79); X-ray (SEWA76b,BRAD83).
1H1137+699 Mkn 180	Active galactic nucleus; $z = 0.046$ (MUFS81); EINSTEIN observation (MUFS81); coordinated observations, radio, optical, UV, X-ray (MUFS83).
1H1142+199 A1367	Cluster of galaxies; $z = 0.019$ (LEIR77), $z = 0.0213$ (JOHN83); Einstein image (JONE79,FORE82,BECH83); X-ray spectrum: two components, $kT = 1.3 \text{ keV}$ and 2.8 keV plus Fe line (MUSH78d), $kT = 1.3 \text{ keV}$ (HINT79); steep spectrum radio source (BALD73); other X-ray (ULME81a).
1H1144-617 HD102567 HEN 715 1E11451-6141 2S1145-619	Binary pulsar(s); two pulsars spatially unresolved in HEAO A-1; distance(1145-614) = 1.50 kpc (BRAD77, WHIT78b); optical identification (SOFI74); optical spectral types B1 Vne (1145-619) (FEAS61) and B1I (1145-614) (HUTC81c); X-ray flux (JERN78a,BRAD79, FORM76c); X-ray periods, 292 s and 297 s (WHIT78b); X-ray spectrum: photon power law index = 1.5 and Fe line (WHIT80c); X-ray flares (WATS81b); two X-ray pulsars resolved (WHIT80c,LAMB80); other X-ray (BRAD79,DOWE78, SEWA76b).
1H1150+738 A1412	Cluster of galaxies; $z = 0.0839$ (SARA82).
1H1152+237 A1413	Cluster of galaxies; $z = 0.121$ (LEIR77), $z = 0.1427$ (JOHN83,SARA82); EINSTEIN image (JONE79); X-ray spectrum: $kT = 8.1 \text{ keV}$ (PERR81); other HEAO-1 (ULME81a).

WLC	
	TABLE 6— Continued
⁹ 1H1154+294 <b>4C</b> 29.45	Quasar; $z = 0.729$ (BURB77).
^d 1H1205+440 NGC4051	Seyfert galaxy; type 1, $z = 0.0023$ (WEED77); X-ray image and rapid variability, (MARSH83).
1H1208-518 PKS 1208 G296.5+10.0	Supernova remnant, distance = 1.9 kpc(ILOV82); spectral index alpha = 0.5 in radio (WHIT68); radio polarization map (MILN75).
1H1210+393 NGC 4151	Seyfert galaxy; z = 0.0033 (WEED77); X-ray spectrum: photon power law index = 1.43 (MUSH80a,FRON79,BAIT75); EINSTEIN SSS and HEAO A-2 (HOLT80); 0.02 to 19 Mev photon power law spectral index = 1.3 (PER081); simultaneous spectrum from radio to X-ray (BEAL81); X-ray variability (IVES76,ELVI78,ULME77,MUSH78c,MEEG79); variable absorbing column (BARR77); other X-ray (PICC82); early X-ray (GURS71a); Radio jets (JOHN82).
1H1211+762 Mkn 205	Quasar; z = 0.070 (HEWI80); Einstein X-ray images (TANA79,ZAMO81)
1H1219+301 2A1219+301	BL Lac object (WILS79a;SCHW79b); z estimated 0.13 (WEIS81); hard X-ray spectrum (WORR81b); X-ray variability (WILS79a); other X-ray (PICC82); optical and infrared (LEDD81).
1H1221-623 GX301-2 WRAY 977 BP Cru	Binary pulsar; distance = 2 kpc (BRAD77); pulse period 699 s; star WRAY 977 (GIAC74,MAUD76,BRAD77); distance = 2 kpc (VIDA73): hard X-ray spectrum and variability (LEWI71a,MCCL71,RICK76b); orbit parameters (KELL80); hard X-ray flaring (MAUR82); radio (SEAQ77).
1H1226+022 3C273	Quasar; z = 0.158 (BURB79); X-ray spectrum (MARG72b, WORR80); EINSTEIN observation (BLUM82); supraluminal expansion in radio (COHE77,PEAR81); early X-ray (BOWY70,BYRA71); other X-ray (PICC82,TANA79).
İH1226+128 Virgo Cluster M87	Cluster of galaxies; z = 0.0037 (JOHN83); 1.1 keV Fe line (LEA82), spectrum (MUSH78d, JONE78); shows two spectral components (REIC81, ULME80c); FPCS spectrum, O VIII Lyman alpha (CANI82); EINSTEIN SSS spectrum and temperature gradients (LEA82); other X-ray (PICC82, ULME81a); extended emission (LAWR78, ULME80c); X-ray image: (FORM82), high resolution observations (SCHR82); mass determined from extent of X-ray emission (FABR80);
	early X-ray (BYKA00, FKIE0/, BYKA/1b).
1H1226+505	Possibly confused.
	618

	TABLE 6— Continued
1H1229+199 TON 1542	Quasar; $z = 0.064$ (BURB77).
1H1238-599 2S1239-599	Binary pulsar; pulse period 191 s (HUCK77); X-ray position (DOWE78); hard spectrum (HUCK77); other X-ray (CARP77).
1H1238-050 NGC 4593	Seyfert galaxy (PICC82); $z = 0.48$ (BURB79).
1H1244-588 4U1246-58	X-ray (SEWA76b,CARP77).
1H1244-409 Centaurus Cluster	Cluster of galaxies, X-ray (GURS71c,PICC82); $z = 0.0118$ (JONE78); X-ray spectrum: $kT = 3.6 \text{ keV}$ (JONE78), other spectra (MUSH78d,MITC80), two spectral components (REIC81), Fe line (MITC77).
1H1247+755 A1607	Cluster of galaxies; $z = 0.131$ (LEIR77).
1H1249-637 A1250-66	X-ray (SEWA76b).
1H1251-291 EX Hya	Cataclysmic variable; U Gem type, orbital period = 0.454 days (GILL82); position and identification (JOHN78a); soft X-ray survey (CORD79); EINSTEIN observation (CORD81).
1H1254-690 4U1254-69	Binary X-ray source; X-ray spectrum: photon power law index = $1.6$ (COE76), kT = $3 - 7$ keV (JONE77); other X-ray (GRIF78a, DOWE78).
1H1255-172 A1644	Cluster of galaxies, X-ray (PICC82,MCKE80); $z = 0.061$ (LEIR77), $z = 0.0453$ (SARA82).
1H1257-610 GX304-1	Binary pulsar; optical counterpart (GIAC74,BRAD77); pulse period = $272 \text{ s}$ (MCCL77a); optical counterpart Be star (PARK80); distance = $1 - 3 \text{ kpc}$ , hard X-ray spectrum and variability (RICK73); radio (SEAQ77).
1H1257+281 Coma Cluster	Cluster of galaxies; z = 0.023 (NOON73); X-ray spectrum (MALI78), Fe line (JOHN81a); X-ray structure (GORE79); upper limit on extended halo (ULME80c); early X-ray (MEEK71,GURS71c); other X-ray (JOHN83,MCKE80).
1H1303-047 A1651?	Cluster of galaxies; X-ray (PICC82,MCKE80); $z = 0.094$ (LEIR77); $z = 0.0825$ (SARA82); A1651 is outside 1H error box
1H1305+466 A1682/A1697 ?	Cluster of galaxies; $z(A1682) = 0.069$ , $z(A1697) = 0.197$ (LEIR77); other HEAO-1 (A1697) (JOHN83).

	TARIF 6—Continued
1H1322-309	Cluster of galaxies: $z = 0.073$ (PICC82): X-ray spectrum:
SC1329-314	two component, $kT = 1 - 6 \text{ keV}$ and $kT \sim 15 \text{ keV}$ (REIC81); Fe line emission (MUSH78d).
1H1323-428 Cen A NGC 5128	Active galactic nucleus, elliptical galaxy; z = 0.0016 (BURB79); X-ray variable on timescale of days (DAVI75, MUSH78a,WINK75,BEAL78); X-ray spectrum: photon power law index = 1.4 - 2.4 and variable (DAVI75c,GRIN75b,LAMP72, MUSH78a,STAR76,TUCK73), two components, photon power law index = 1.6 for 2 to 140 keV and = 2.0 for 0.14 to 2.3 MeV (BAIT81), Fe line (MUSH78a,STAR76); X-ray structure: i. point source, ii. emission coincident with inner radio lobes and with dust lane, iii. 4 arc min extended region, iv. X-ray jet (SCHR79,DELV78,FEIG81,MARS81c); optical structure (BLAN75,DUFO78,GRAH79,GRAH80,GRAH81, OSME78); radio (BEAL78,CHRI77,COOP65,FOGA75); gamma-ray (GRIN75a); early X-ray (BYRA71a,BOWY70).
1H1326-269 A1736	Cluster of galaxies; X-ray (JOHN83), $z = 0.0431$ (NOON81).
1H1326+174 VW Com 1331+170	Flare Star (VW Com), dist = $0.015$ kpc (BUSK74,PETT84); or alternatively, quasar (1331+170), z = $2.081$ (BURB77).
1H1328+113 MKW 11	Compact group of galaxies; $z = 0.023$ (SCHW80b).
1H1332-233 A1757	Cluster of galaxies; $z = 0.139$ (JOHN83).
1H1332+372 HR5110	RS CVn system, distance = .053 kpc (HALL84); possible alternate identification: Mkn 456.
1H1334-340 MCG 6-30-15	Seyfert galaxy; $z = 0.006$ (PICC82), $z = 0.0144$ (LUGG78); optical (PINE80).
1H1338-604 1E13405-6107 4U1344-60	Source identified with 8th magnitude object, variable (HERT83); other X-ray (SEWA76b,VILL76).
1H1338-144 A1768 ?	Cluster of galaxies; $z = 0.152$ (JOHN83).
1H1344-326 SC1344-32	Cluster of galaxies; $z = 0.0144$ (LUGG78); X-ray MARK76a, CANI75a); other HEAO-1 (PICC82).
1H1345-300 IC4329A	Seyfert galaxy (ELVI78); $z = 0.0138$ (WEED77); other HEAO-1 (PICC82).

	TABLE 6—Continued
1H1348+267 A1795	Cluster of galaxies; $z = 0.0621$ (JOHN83), $z = 0.084$ (LEIR77); EINSTEIN image (JONE79); other X-ray (MURR76); other HEAO-1 (PICC82,MCKE80).
1H1350+696 Mkn 279	Seyfert galaxy (ELV178); $z = 0.031$ (ADAM77).
1H1359-645 MX1353	X-ray (MARK77,SEWA76b).
1H1359-421 PKS1355-416	Quasar; $z = 0.31$ (BURB77).
1H1404-450 H1409-45 1M1402-245	Cataclysmic variable, AM Her type (MASO83); recurrent transient (JENS82); orbital period = 0.0706 days (BAIL83).
1H1408-031 NGC 5506	Seyfert galaxy or narrow emission line galaxy; $z = 0.0056$ (DEVA76), $z = 0.0061$ (ELVI78,SHUD80); X-ray identification (ELVI78); X-ray spectrum: photon power law index = 1.6 - 1.75 (MUSH82,STAR78), possible Fe feature (MUSH82); X-ray intensity variable, hours to days (MACC82,MUSH82,STAR78); optical (SHUD80).
1H1415+255 NGC 5548	Seyfert galaxy (PICC82), type 1, $z = 0.0166$ (WEED77, ADAM77); X-ray identification (ELVI78); X-ray spectrum: photon power law index = 1.56 (MUSH80a) to 1.9 (STAR78); X-ray variability (MARS81b); other HEAO-1 (DOWE80, MUSH80a); IR, optical, UV line emission (LACY82).
1H1419-774	Possibly confused.
1H1420+481 A1904 ? 2A1418+485	Cluster of galaxies; $z = 0.0714$ (HILL80).
1H1422+273 A1903	Cluster of galaxies; $z = 0.152$ (LEIR77).
1H1438-623 MSH 14-63 RCW 86 SNR 185 G315.4-2.3 PKS1439-62 Cen XR-1	Supernova remnant AD185 (HILL67), filamentary nebula; distance = 2.5 (WEST69) to 3.2 kpc (CLAR76b); X-ray spectrum: $kT = 0.22$ -0.52 keV (NARA77), two components kT = 0.22 keV and $kT > 5$ keV (WINK78); other X-ray (VILL76, SEWA76b); early X-ray (FRIE67,HILL72a); optical (LUCK79); radio (HILL67).
1H1439+393 A1947	Cluster of galaxies (JOHN83); $z = 0.163$ (LEIR77).
1H1439+393 A1947	Cluster of galaxies (JOHN83); $z = 0.163$ (LEIR77).

1984ApJS56507W	1H144 4U 1H144 A1
	1H145

	TABLE 6—Continued		
1H1448+415 4U1444+43	X-ray (MURR76).		
1H1449+316 A1968	Cluster of galaxies; $z = 0.289$ (LEIR77).		
1H1450+190 A1991	Cluster of galaxies; $z = 0.0589$ (HOES80); X-ray image (FORM82).		
1H1458-416 SN1006 G327.5+14.6 PKS1456-41	Supernova remnant; distance = 4.0 (ILOV72) to 4.9 kpc (DOWN71); X-ray spectrum: $kT = 4 \text{ keV}$ or energy power law index = 1.3 (WINK76); other X-ray (MARK77,TOOR80); optical (VAND76); radio (DOWN71).		
1H1504+473 A2024/A2018	Cluster of galaxies; $z(A2018) = 0.1120$ (JOHN83).		
1H1508+060 A2029	Cluster of galaxies; z = 0.0782 (JOHN83); kT = 6.2 keV (HINT79,PERR81,MITC79); X-ray (PICC82,MCKE80); photon power law index = 2.2 (MUSH78d,MITC79); steep radio spectrum (MILL77c).		
1H1510+335 A2034	Cluster of galaxies; $z = 0.151$ (JOHN83).		
1H1511-589 MSH 15-52 RCW 89 G320.4-1.2	Supernova remnant/pulsar; distance = 4.2 kpc, radio counterpart is MSH 15-52 (CLAR76b,ILOV72); pulsar period 150 ms (SEWA82).		
1H1514+072 A2052 MX 1514+06 3C317	Cluster of galaxies; z = 0.0345 (JOHN83); X-ray MARK76b,PICC82,MCKE80).		
1H1516-569 Cir X-1 BR Cir	Black hole candidate (FORM76c); distance > 8 kpc (GOSS77); highly variable 100 ms to days (JONE74); random 10 ms pulsations (TOOR77); semi-periodic bursts (SADE79a,SADE79b); period 16.59 d (KALU76,GLAS78,THOM78, KOCH79); X-ray spectrum: two component kT > 15 keV and kT < 3 keV (JONE77); other X-ray (GURS78,WILS76); radio (DULD79); infrared (GLAS79); optical (MAY076,WHEL77); early X-ray (MARG71,HILL72a,FRIE67).		
1H1518+282 A2065 H1521+282 ?	Cluster of galaxies; $z = 0.0721$ (JOHN83,SPIN77); X-ray spectrum: $kT = 2.4 - 4.5$ keV (HINT79); X-ray (PICC82, HINT79,MCKE80); X-ray identification (MCKE81).		
1H1521+083 A2063	Cluster of galaxies; $z = 0.0337$ (JOHN83); EINSTEIN image (JONE79, FORE82).		

	TABLE 6 Continued
	IABLE 6—Continued
1H1521+308 A2061	Cluster of galaxies; X-ray (MCKE80, JOHN83); $z = 0.0768$ (SARA82, JOHN83).
1H1530+585 Mkn 290 ?	Seyfert galaxy, $z = 0.03$ (ADAM77).
1H1538-522 2S1538-522 QV Nor	Binary pulsar; distance = 7 kpc, orbital element (CRAM78b); periods: 529 sec and 3.75 d (DAVI77b,DAVI77d, BECK77b); X-ray spectrum: kT = 6 keV or photon power law index = 2.1 (CRUD72); other X-ray (SEWA76b,APPA78a, WILS79b); infrared (GLAS79); optical (COWL77b,COWL78, PARK78,ILOV79a); early X-ray (FRIE67).
1H1543-624 Nor XR-2	Optical candidate, UV excess (MCCL78b); X-ray spectrum: kT = 3 - 7 keV (JONE77); other X-ray (SEWA76b,APPA78a, WILS79b); other HEAO-1 (GRIFF78c); early X-ray (FRIE67).
1H1544+360 A2124	Cluster of galaxies; $z = 0.0671$ (JOHN83); X-ray (MCKE80).
1H1555-552 MX1553-54	Pulsar/recurrent transient; early X-ray (WALT76); transient nature (APPA78a); 9.3 s X-ray pulsations and hard X-ray spectrum (KELL82); no optical identification.
1H1556-605 1M1556-602	X-ray (APPA78a,REID80); optical identification (CHAR79c); infrared (GLAS79); early X-ray (FRIE67).
1H1556+273 A2142	Cluster of galaxies; $z = 0.0904$ (JOHN83); X-ray spectrum: $kT = 10.3 \text{ keV}$ (HINT79,MITC79), photon power law index = 1.37 (MUSH78d); X-ray (PICC82,MCKE80); steep radio spectrum (ERIC78).
1H1604+158 A2147	Cluster of galaxies; z = 0.0365 (JOHN83); EINSTEIN image (JONE79); X-ray spectrum: kT = 7.2 Kev (MUSH78d); other HEAO-1 (PICC82); other X-ray (COOK77,MITC79, NULS79,MCKE80).
1H1608-522 Norma Burster Norma Transient QX Nor	X-ray burster; distance < 3 kpc (MURA80); two burst modes: bright mode < 2s rise and 5-10 s decay, weak mode > 2 s rise and > 10 s decay, $\sim$ 10 h between bursts, time averaged burst luminosity/steady luminosity = 1/70 to 1/500, bright source recurrence quasi period $\sim$ 600 d (MURA80); X-ray spectrum: steady component kT = 4 - 10 keV, burst component kT = 2 - 12 keV (TANA76), average kT = 8 keV (FABB78); other X-ray (MARK77, APPA78a); optical (GRIN78a); other HEAO-1 (SHAR79a); early X-ray (HILL72a).
1H1613-097	X-ray (SHUL79b).

.

M 7 0 3		TABLE 6—Continued
565	1H1613-060	Cluster of galaxies; $z = 0.180$ (ULME80a), $z = 0.1698$
ApJS	A2163	(SARA82); X-ray (ULME80a); other HEAO-1 (SHUL79b, JOHN83).
1984	1H1617-155	Binary, probable old nova (SAND66); estimated distance:
1	Sco X-1 V818 Sco	<ul> <li>0.5 kpc (PAT184), 1.0 kpc upper limit (HIL170);</li> <li>correlated X-ray and optical, X-ray variability</li> <li>is highest when optically bright and X-ray</li> <li>spectrum is hard (CANI73,MATS74,CANI75a,MOOK75,BRAD75);</li> <li>variability, timescales minutes to hours (BURG70,LEWI70,</li> <li>PELL73,HOLT76a,WHIT76a); 0.1 - 1 s oscillations (ANGE71);</li> <li>orbital period, 0.787 d seen in optical (GOTT75, WRIG75,</li> <li>COWL75); X-ray spectrum: variable, kT = 4 - 12 keV</li> <li>(FRIT68,CHOD68,HILL68,MEEK69,GRAD70a,TOOR70,PARS78);</li> <li>Fe line (PARS78); polarization ~1% (LONG79); 1 s time</li> <li>structure in X-ray flares (PETR81); O absorption, 0.5 -</li> <li>0.7 keV (KAHN81); other X-ray (GURS66,FRIT69b); radio</li> <li>(HJEL71a,WADE71); optical (MOOK71); infrared (GLAS79);</li> <li>gamma-ray (HAYM72); early X-ray (GIAC62,BOWY64b,CHOD65, FISH66).</li> </ul>
	1H1624-490 Nor XR-1 G334.9-0.3	X-ray spectrum: kT = 2.3 keV, Fe line (PARS78); other X-ray (SEWA76b,WILS77,APPA78a,REID80); radio (SAND74); early X-ray (FRIE67,HILL72a).
	1H1626-245 Rho Oph	Star Cluster, Rho Ophiuchi Dark Cloud, distance = 0.160 kpc (MONT83).
	1H1626+058 A2204	Cluster of galaxies; X-ray (ULME81a); $z = 0.1524$ (JOHN83).
	1H1627-673 4U1626-67 KZ TrA	Binary pulsar; orbital period = 0.0288 days (MIDD81); period = 7.7 sec (RAPP77,MCCL80), P/(dP/dt) = -5300 yrs (PRAV79b); X-ray spectrum: photon power law index = 0.22 - 0.56 and varies with phase (PRAV79b); other X-ray (SEWA76b,BRAD78); optical (MCCL77c).
	1H1631+394 A2199	Cluster of galaxies; X-ray (PICC82, JOHN83); $z = 0.027$ (LEIR77), $z = 0.0305$ (NOON81); EINSTEIN image (FORE82); X-ray spectrum: $kT = 3.2$ keV with Fe line (MUSH78d, MITC79).
	1H1634+117 MC2 1635+119	Quasar; $z = 0.146$ (ZAMO81); X-ray/optical energy power law index = 1.2 (TANA79); EINSTEIN flux substantially lower than the 1H flux.
	1H1635-642 4U1631-64	Binary X-ray source; X-ray (COOK78,SEWA76a).

	TABLE 6—Continued		
1H1636-536 MXB1636-53 V801 Ara	X-ray burster (SWAN76a); orbital period = 0.148 days (PEDE81); burst duration ~50 s, time between bursts 9 - 12 h, time average burst luminosity/steady luminosity = 1/245 (HOFF77a); X-ray spectrum: burst kT = 3 keV (HOFF77a), average kT = 3 keV or power law index ~2 (PARS78); other X-ray (WILL74, SEWA76b,WILS77,GURS78,COMI80); optical bursts (PEDE82); optical (MCCL77b); radio (THOM79); early X-ray (FRIE67).		
1H1639-109 Zeta Oph?	O star, distance = 190 pc; X-ray image (LONG80); X-ray (SHUL79b); possibly confused; identification with Zeta Oph is uncertain.		
1H1642-455 Ara X-1 GX340+0 G339.6-0.1	Binary X-ray source; distance = 2 kpc (MARG71b,SEAQ77); H II region, probably O star (SEAQ77); X-ray variable $\sim$ 1 d (FORM76c); X-ray spectrum: energy power law index = 1.6 - 2.6 or kT = 2.8 - 5 keV plus possible Fe line (PARS78), blackbody kT = 1.3 keV (MARG71b); other X-ray (SEWA76b,WILS77,APPA78a,GURS78); radio (SAND74); infrared (GLAS79); early X-ray (FRIE67,FISH68,RAPP71c, BRAD71,HILL72a).		
1H1645-596 NGC 6221 ? NGC 6215 ? NGC 6215A ?	X-ray (MARS79b); proposed counterpart NGC 6221 questioned on spectroscopic grounds (PHIL79); NGC 6221 lies outside the 1H error region.		
1H1645-442 GX 341+1	X-ray position (MAYE70); other X-ray (THOM75); possibly confused with 1H1642-455.		
1H1651+398 Mkn 501	BL Lac object (SCHW78); z =0.0337 (ULRI75); X-ray spectrum: variable, energy power law index 0.2 - 1.5 (MUSH78b,SNIJ79,KOND81,WORR81b); other X-ray (KINZ78, WOOD79); other HEAO-1 (ULME80a,PICC82).		
1H1653-083 Wolf 630	Flare star; X-ray image (VAIA81,SWAN82).		
1H1656+354 Her X-1 HZ Her	Binary pulsar; distance ~5 kpc (BAHC76a); X-ray periods 1.24 s, 1.7 d, and 35 d (TANA72a,DOXS73,GIAC73,JONE76, HOLT76,KEND77,JOSS78,HOLT79c); also seen in optical (BAHC72,DAVI72,JONE73,MARG76,NELS77) and ultraviolet (GURS80); X-ray spectrum: power law with Fe line, with dependence on 35 d cycle phase and on 1.24 s cycle phase (BECK77a,PRAV77a,PRAV77b,BUNN78,PRAV79a,GRUB80); other X-ray (CLAR72,ULME73a,SHUL75,FRIT76); optical (STJ076); hard X-ray and gamma-ray, including cyclotron features (COE77,TRUM78,PRAV78,GRUB80); cyclotron line (VOGE82), pulse timing (DEET81), pulse phase spectroscopy (MCCR82); periodicity in turnons (LEVI82, KATZ82); long term variability 13-80 keV (GORE82).		

	TABLE 6—Continued
1H1658-298 MXB1659-29	X-ray burster (LEWI76d); distance = 10 kpc (PATT84); orbital period = 0.296 d (COMI83); X-ray burst intervals 2 - 2.6 hrs (LEWI77c) with persistent X-ray emission (LEWI78, SHAR78a); other X-ray (DOXS79,COMI80); optical (DOXS79); early X-ray (GURS67,FISH68) (note, this is an earlier detection of the persistent emission from this source than that reported in LEWI78 and SHAR78a. The early rocket measurements and 4U1704-30 may represent still earlier detections).
1H1659-487 GX339-4	Black hole candidate (SAMI79); X-ray variability < 100 ms time scale (SAMI79); X-ray spectrum: kT = 1.7 keV, harder in low state (MARK73,JONE77); other X-ray (SEWA76b,MARK77,WILS77,PARS78,WILS79b); optical (GRIN79, DOXS79); hard X-ray spectra in 77-78 (NOLA82); rapid optical variability (MOTC82).
1H1702-437 4U1705-44	X-ray burster; surveys (HILL72a,THOM75,FORM76c); position (WILS77,JERN78b); bursts (MAKI82).
1H1702-363 Sco XR-2 Sco X-2 GX349+2	Sco X-1 type variable; correlated X-ray intensity and spectral slope $\sim$ 1h timescale variability (MASO76, GREE79); X-ray spectrum: variable, kT = 5 keV (PARS78), two component kT = 6 keV and kT = 30 keV (GREE79a); other X-ray (WILS77, JERN78b, GURS78, REID80); infrared (GLAS79); early X-ray (BOWY65a, BRAD71, FRIE67).
1H1702+336 A2244	Cluster, X-ray (JOHN83,ULME81a); $z = 0.0996$ (KOWA83).
1H1702+456	X-ray (SHUL79b).
1H1703-013 UGC106838	Seyfert galaxy; $z = 0.0308$ (WILS81); X-ray and optical (WILS81).
1H1704+605 3C351?	Active galactic nucleus (ZAMO81,BLUM82); EINSTEIN flux is substantially lower than that reported here.
1H1705-250 Nova Oph 1977 V2107 Oph	Transient and optical nova; distance = 3 kpc (GRIFF78b); 2 - 3 month decay (WATS78); X-ray spectrum: past maximum kT ~3 keV (GRIF78b,WATS78); other X-ray (KALU77b, KALU77c); optical (GRIF78b).
1H1706+241 HD154791	Binary X-ray source; distance = $0.083 \text{ kpc}$ (GARC80).
1H1706+786 A2256	Cluster of galaxies; z = 0.055 (LEIR77), z = 0.0603 (LUGG78); note optical and radio galaxy NB78.26, z = 0.0586 (BURB79); EINSTEIN image (JONE79, FORE82); X-ray spectrum: kT = 7 keV and Fe line (MUSH78d,MITC79); other X-ray (NULS79,MCKE80); radio (COST72); other HEAO-1 (PICC82,JOHN83).

0	
S	
•	
Q	
ی. ما	
oJS.	
4ApJS	
84ApJS.	
984ApJS.	

TABLE 6— Continued		
1H1708-405 4U1708-40	X-ray (FISH68,MARK77).	
1H1712-337 A1710-34	X-ray (FISH68,HILL72a,CARP77).	
1H1712+490 A2251	Cluster of galaxies; $z = 0.1147$ (KOWA83), $z=0.1880$ (JOHN83); X-ray (SHUL79b,ULME80a).	
1H1712+641 A2255	Cluster of galaxies; X-ray (MCKE80); $z = 0.062$ (LEIR77), z = 0.0810 (JOHN83); EINSTEIN image (FORE82).	
1H1715-321 2S1715-321	X-ray burster; X-ray flare 5 - 10 m duration (MARK76b); fast transient event (HOFF78); other X-ray (MARK77, JERN78b,REID80,MAKI81); infrared (GLAS79).	
1H1718+242 V396 Her 1720+249	Quasar, $z = 0.175$ (BURB77); X-ray (TANA79,ZAMO81,BLUM82); optical (PUET81).	
1H1720+269 A2263	Cluster of galaxies; X-ray (JOHN83); $z = 0.118$ (LEIR77).	
1H1728-334 MXB 1728-34 MXB 1730-335 ?	X-ray burster, bursting at 4-8 hour intervals (LEWI76a); enhanced soft X-ray emission during early part of burst (HOFF77b); bursts with double temporal structure (HOFF79); identification with globular cluster, distance = 10 kpc (GRIN81b); resolved risetimes for 4 bursts, evidence for a 12 ms period during one burst (SADE82a); early X-ray (FRIE67). MXB 1730-335, which was active when HEAO-1 scanned it in 1977 (DOXS78), is confused with MXB 1728-34 in the HEAO A-1 scan modules, hence the intensity shown in the catalog may include some contribution from that source.	
1H1728-247 GX1+4 V2116 Oph	Binary pulsar, compact nebula surrounding central source (DAVI76a); $P \sim 135$ s (LEWI71b); period = 2 min (DOTY81), 4 min (STRI8O); other X-ray (GLAS73,RICK73,THOM75, RICK76b,WHIT76b,DOXS77,BRAD79); distance = 10 kpc (DAVI77a); hard X-ray (MAUR82).	
1H1728-213 Kepler's SNR	Supernova remnant; distance = 5 kpc upper limit, EINSTEIN SSS spectrum (BECK80).	
1H1728-169 GX9+9 Oph XR-1	Sco X-1 type variable; distance = 4.4kpc (DAVI76a); correlated X-ray intensity and spectral slope (MASO76, CHAR77a,GREE79a); X-ray spectrum: variable, kT = 4.5 - 7 keV (MASO76,PARS78); other X-ray (WILL74,DOXS77a,WILS77, GURS78); radio (DULD79); infrared (GLAS79); early X-ray (BOWY65a,BOWY65b,FRIE67,BRAD68).	

	TABLE 6—Continued
1H1730+500 I ZW 186	Quasar; BL Lac object, z = 0.055 (OKE78); optical spectral index 0.97 (WEIS81); X-ray (CHUB78,SHUL79b).
1H1735-444 MXB1735-44 V926 Sco	X-ray burster; distance = 10 kpc upper limit (MCCL78a); estimated distance = 7 kpc, orbital period = .18 days (PATT84); X-ray burst duration 3 - 7 s (LEWI77a), and intervals 1 h - 2 d (LEWI77c), also in optical (GRIN78b); Sco X-1 type behavior (WHIT80a); X-ray spectrum: variable $kT = 5 - 8.5 \text{ keV}$ (PARS78,WHIT80a); other X-ray (WILS77,GURS78,LEWI79,LEWI80,COMI80); radio (DULD79); early X-ray (FRIE67).
1H1735+400 A2278	Cluster of galaxies; $z = 0.190$ (LEIR77).
1H1740+329 1742+33 ?	Active galactic nucleus; $z = 0.757$ (BURB79).
1H1741-322 H1743-322	Bright X-ray transient; duration ~200 d (KALU77a, KALU77c, DOXS77c, GURS78, WOOD78b).
1H1744-293 Sgr XR-1 GCX Region MXB1743-29	Galactic center region; includes a number of X-ray sources (CRUD78,PROC78,EYLE79), including X-ray bursters (WILS77,LEWI79) one of which (MXB1743-29) emits bursts of duration $\sim$ 30s at 35 h intervals (HOFF80); peak burst X-ray luminosity (INOU81); X-ray map of region (WATS81a); X-ray spectrum: 3 keV < kT < 7 keV (JONE77); other X-ray (EYLE75a,CARP77,JERN78b); radio (DAVI76b); infrared (GLAS79); optical (MURD80); early X-ray (BOWY65a,FRIE67,FISH68).
1H1744-265 GX3+1 Sgr XR-1	X-ray variability ~1 d (FORM76c); X-ray spectrum: kT = 3 - 5 keV with Fe line (PARS78); other X-ray (JANE73, DOXS77a,REID80); early X-ray (ODA65,GURS67,BRAD68, FISH68,SCHN70); peak burst X-ray luminosity (INOU81).
1H1746-370 NGC 6441	Globular cluster; distance = 9.3 kpc (ILLI76); X-ray emission highly variable (CLAR75,CARP77); burst reported (LI77a); X-ray spectrum: kT = 4 - 7 keV or energy power law index = 1.6 (JONE77); other X-ray (GRIN76b,WILS77, JERN79); radio (PURT77,SEAQ77); early X-ray (GURS67).
1H1748+685 Mkn 507?	Seyfert galaxy, $z = 0.056$ (ADAM77); possibly confused.
1H1754-338 Sco XR-6	Cataclysmic variable with orbital period = $0.182$ (WHIT83B); X-ray spectrum kT $\sim 2$ keV (PARS78); other X-ray (WILS77, JERN78b); optical (MCCL78b), optical position (SHAW80).

	TABLE 6—Continued
1H1758-250 GX5-1 Sgr XR-3	Sco X-1 type variable, correlated X-ray intensity and spectral slope $\sim 1$ h time scale variability (MASO76, GREE79a); X-ray spectrum: variable, $kT = 3 - 8$ keV or energy power law index $\sim 2$ and possible Fe line (PARS78, MASO76); other X-ray (HOFF73,WILL74,WILS77,JERN78b, REID80); optical (DAVI76a); infrared (GLAS79); early X-ray (GURS67,BRAD68,FISH68,SCHN70).
1H1758-205 GX9+1 Sgr XR-3	Variable X-ray source; 1 d time scale (FORM76c); X-ray spectrum: kT ~4 keV (PARS78); other X-ray (WILL74, DOXS77a, DAVI77c, WILS77, REID80); radio (ZAUM72) infrared (GLAS69); early X-ray (GURS67, FRIE67, BRAD68, FISH68, SCHN70).
1H1803+696 3C371	Quasar; $z = 0.0500$ (BURB79); 80 day X-ray light curve (SNYD82); EINSTEIN observation (BLUM82,SCHW83).
1H1811-171 Sgr XR-2 GX13+1	X-ray variability ~1 d timescale (FORM76c), no significant variability (WHIT78c); X-ray spectrum: kT = 2.4 - 3.2 keV with Fe line (PARS78); other X-ray (DOXS77a,WILS77); infrared (GLAS79); early X-ray (BOWY65a,BOWY65b,FRIE67,GURS67,FISH68,BRAD68).
1H1811+670 1803+676	Quasar; $z = 0.136$ (ZAMO81); X-ray image (ZAMO81); other HEAO-1 (SHUL79b).
1H1812-182	X-ray (MAYE70,DOLA70,BRAD71,CRUD72,SEWA72); optical (DAVI76a), confused with 1H1811-171.
1H1813-140 Ser XR-2 GX17+2	Sco X-1 type variable (GREE79a); G dwarf star (DAVI76a, HJEL78); distance = 1.4 kpc (MARG78e); X-ray variability $\sim$ 6000 s (TANA71b); flaring $\sim$ 1 h (WHIT78c); X-ray spectrum: variable, kT = 9.3 keV (KAST76), kT = 4 - 5 keV with Fe line (PARS78); other X-ray (DOXS77a,WILS77); radio (WHIT78c); infrared (GLAS79); early X-ray (FRIE67, BRAD68,FISH68).
1H1814+498 AM Her	Cataclysmic variable; distance estimates = .075 kpc (PATT84) and .300 kpc (CHAN77,SWAN77); orbital period = 186 min in X-ray, UV, optical, and IR (HEAR77,SZKO77,COWL77a,TAPI77,PRIE77,PRIE78a, JAME78,RAYM79); X-ray spectrum: soft component, kT 0.04 keV (BUNN78,TUOH78,HAYA79), during soft X-ray eclipse kT ~180 keV (SWAN77), hard X-ray spectrum (ROTH81); other X-ray (SZKO80,FABB81); optical (BERG77, GREE77); eclipse in low state (FABB82); UV (SZKO82).
1H1815-121 4U1812-12	X-ray (VILL76).

TABLE 6 — Continued		
1H1820-303 NGC 6624 MXB1820-30	Globular cluster; distance = $8.3 \text{ kpc}$ (LILL78); X-ray bursts $\sim 3 \text{ min}$ duration, $\sim 0.14 \text{ d}$ interval (GRIN75c, CANI75b,CLAR76a,GRIN76a,CLAR77,LEWI79); X-ray spectrum: energy power law index = $0.4 - 1.1$ or kT = $4.3 - 15 \text{ keV}$ plus possible Fe line (PARS78); other X-ray (CLAR75, WILS77,JERN79); optical (BAHC76b); optical position (SHAW80); early X-ray (FRIE67,GURS67).	
1H1820+643 H1822+643	Quasar, $z = 0.297$ , optical and EINSTEIN IPC (PRAV84)	
1H1822-371 4U1822-37 V691 CrA	Binary X-ray source; distance > 0.6 kpc (MASO80); distance = 0.5 kpc (PATT84); period = 5.57 h in optical (CHAR80); X-ray spectrum: black body kT ~2.4 keV (CHAR80); other X-ray and optical (GRIF78a); X-ray period = 5.57 h (MASO80); IR,optical,UV (MASO82b); UV detection of disk bulge (MASO82a); orbital elements (COWL82a); X-ray flux modulated at 5.57 h (WHIT81b).	
1H1822+000 4U1823-00	X-ray spectrum: 3 - 7 keV (JONE77); other X-ray (SEWA76a,DOXS77b,WILS79b,REID80).	
1H1828-105 MSH 18-113	Supernova remnant; distance = 3.5 kpc (ILOV72); X-ray (SEWA76a,VILL76); X-ray image (BECK81).	
1H1832-652 ESO 103-G25	Seyfert galaxy; X-ray (PICC82); $z = 0.013$ (WEED79).	
1H1832-076 Sct X-1	X-ray (HILL74); X-ray position (REID80).	
1H1835+326 3C382	Galaxy; $z = 0.058$ (SMIT78); X-ray (MARS78,DOWE80); optical classification D3 (BURB79).	
1H1836-786 STR1839-787 ?	Cluster of galaxies; $z > 0.2$ (DUUS77); X-ray (PICC82).	
1H1837+049 Ser XR-1 MXB1837+05	X-ray burster (SWAN76c,LI76b); distance = 7 kpc (VANP78); X-ray burst duration 3 - 10 s, burst interval ~6.3 h (LI77c); significant X-ray variability ~0.1 s timescale (LI77c,COE78); simultaneous X-ray and optical bursts (HACK79); X-ray spectrum: kT ~4 keV (PARS78); other X-ray (SEWA76a,DOXS77b,BERN79,COMI80); optical (DAVI75a,MARG78d,THOR78,THOR80); early X-ray (BOWY65a,FRIE67).	
1H1840-050 4U1832-05 G27.3+0.0	Supernova remnant, distance = 3.2 kpc (ILOV72); X-ray observation (SEWA76a).	

TABLE 6—Continued

1H1840+729 A2310	Cluster of galaxies; $z = 0.148$ (LEIR77); X-ray (SHUL79b).
1H1845-024 4U1850-03	X-ray (VILL76,SEWA76a,DOXS77b); infrared (GLAS79).
1H1849+379 4U1852+370	Possible confusion.
1H1850-087 NGC 6712 MXB1850-08	X-ray burster in globular cluster (SWAN76b); distance = 6.8 kpc (PETE75); multiple-peaked X-ray burst structure (HOFF80); other X-ray (SEWA76a,COMI77,DOXS77b); optical (JERN79).
1H1852+015 W44	Supernova remnant, distance = $3.0 \text{ kpc}$ (DOWN71).
1H1853-312 V1223 Sgr	Cataclysmic variable, orbital period = 0.1408 days (PATT84); rotation period 13.2 min, distance < few hundred pc. (STEI81a).
1H1858+797 3C390.3	N-galaxy; $z = 0.0569$ (BURB79); X-ray (CHAR75a,MARS78, ELVI78); radio (SMIT76); optical (SHEN72,OSTE77).
1H1903+689 A2315 ? A2312 ?	Cluster of galaxies (JOHN83); $z(A2315) = 0.104$ (LEIR77).
1H1905+000 MXB1906+00	X-ray burster (LEW176c); X-ray burst duration ~20 s, burst interval ~8.9 hr, time average burst luminosity/ steady luminosity ~1/80 (LEW176b); other X-ray (REID80, LEW179,DOXS77b,VILL76,SEWA76a); early X-ray (FRIE67).
1H1907+074 4U1909+07 3A1907+074	X-ray (SEWA76a,REID80).
1H1908+047 SS433 W50 V1343 Aql	Compact binary source with high intensity optical line emission located in supernova remnant; distance = 3.3 - 5.5 kpc (RYLE78,HJEL81b); variable in X-rays, optical and radio (CLAR78c,SEAQ79,JOHN81b); X-ray image: extended X-ray emission aligned with jets (SEWA80); X-ray spectrum, kT = 14 keV with Fe line (MARS79c); period, 164 d (MILG79, MARG79,HJEL81b); 6.3 d short-term periodicity (due to "nodding" motions of precessing accretion disk) (KATZ82); simultaneous X-ray and radio (SEAQ82); other X-ray (SEWA76a); radio and optical (MARG79,KAPL80); radio image (GILM80,GILM81,HJEL81a,HJEL81b).

ΜLΟ		
.5		TABLE 6 Continued
1984ApJS56.	1H1909+096 4U1907+09	Binary, OB supergiant? distance = 2 - 13 kpc (SCHW80c); period = 8.38 d (MARS80); X-ray spectrum: photon power law index = 0.73 (SCHW72); rapid variability (SADE82b); variability timescales down to 20 sec (SCHW80c; other X-ray (SEWA76a).
	1H1911-589 ESO 141-G55	Seyfert galaxy (MARS81b); type 1, $z = 0.0368$ (WEED78); X-ray variability (MARS81b); X-ray spectrum: photon power law index = 1.8 (MUSH80a); other X-ray (ELVI78).
	1H1916-053 MXB1916-05	X-ray burster (LEWI77b); burst duration = 8 s (BECK77b); 3 - 6 hours between recurrent bursts (SWAN84); 50 min binary period (absorption dips) (WHIT82b,WALT82); X-ray spectrum (BECK77); other X-ray (SEWA76a,DOXS77b); optical counterpart (WALT82); optical (CHAR79c).
	1H1919+438 A2319	Cluster of galaxies (JOHN83,NUGE83); $z = 0.044$ (LEIR77), z = 0.0529 (NOON81); X-ray spectrum: $kT = 12.5$ keV (MUSH78d), soft X-ray $kT = 6.9$ keV (REIC81); X-ray image (JONE79,WHIT80b); other X-ray (ROWA75,GRIN77a,SCHW79c, NULS79,MITC79); radio (GRIN77a).
	1H1922+154 4U1918+15 A1918+14	X-ray transient; UHURU position (FORM78) in better agreement with HEAO-1 than Ariel V (VILL76,SEWA76a); X-ray spectrum: energy power law index = 1.25, kT = 6 keV (COMI78a); early X-ray (GURS67).
	1H1930+302 G65.2+5.7	Supernova remnant; distance = $1.2 \text{ kpc}$ (GULL77); X-ray spectrum, kT = $0.2 - 0.4 \text{ keV}$ with line emission near 0.8  keV (MASO79b); located near edge of X-ray superbubble in Cygnus (CASH80); other X-ray (SNYD78).
	1H1934-063 HD185510	RS CVn system (HALL84).
	1H1937-106 NGC 6814	Seyfert galaxy; type 1, z = 0.0053 (WEED77); X-ray spectrum: photon power law index = 1.74 or KT = 26 keV (MUSH80a); X-ray variability (MARS81b), 100 sec variability (TENN81), alternate interpretation assuming constant source (BEAL83); other X-ray (ELVI78).
	1H1956+115 4U1957+11	X-ray (SEWA76a,DOXS77b).

1H1956+350 Cyg X-1 HDE 226868	Black hole candidate; optical companion, orbital period 5.6 d (WEBS72,BOLT72); distance = 2.5 kpc (BREG73, MARG73) spectral type O9.7 Iab (WALB73); constraints on X-ray secondary (MARG73,HUTC73,HUTC74b,SHAF80) rapid X-ray variability, characterized as shot noise with timescales down to milliseconds (ODA71,ROTH74,ROTH77, WEIS78b,CANI77,MEEK79,GILE81,MEEK83); X-ray flares with durations 1-10 s (CANI77); high and low states (TANA72b, HOLT79a); low state power law spectral index 1.5 (MEEK69,ROTH77); high state spectrum softer (HOLT79a, DOLA79); EINSTEIN and IUE spectrum, UV to X-rays (PRAV80b); HEAO-1 hard X-ray spectrum (NOLA81); radio (HJEL71b); early X-ray (FRIE67,GIAC67b,ODA71,GURS71b).
1H1958+406 Cyg A Cluster 3C405	Cluster of galaxies (BRIN77,FABB79); z = 0.0570 (BURB79); X-ray spectrum: photon power law index = 1.1-1.3 (LONG74,BRIN77); optical (OSTE75).
1H2012-567 SC2008-569	Cluster of galaxies; $z = 0.06$ (BAHC77d); other HEAO-1 (PICC82).
1H2018+366 4U2019+39? G74.8+0.6	Supernova remnant; distance = $12.3 \text{ kpc}$ (ILOV72); interpretation of source as SNR disputed (CLAR76b).
1H2030+407 Cyg X-3 V1521 Cyg	Binary X-ray source; distance = 10.5 kpc (LAUQ72); orbital period 4.8 hours (PARS72), change in orbital period (LAMB79); light curve modulations, apsidal motions (ELSN80,VAND82); Fe line (PARS76,SANF75, KEST77); optical counterpart(LAUQ72); radio outbursts (GREG72,HJEL72,LEDD76,GELD83); radio structure changes at near-relativistic velocities (GELD83); early X-ray (FRIE67).
1H2031-330 AT Mic	Flare star (TSIK82); X-ray flares, distance = 0.0082 kpc (KAHN79).
1H2041-108 Mkn 509	Seyfert galaxy; z = 0.0355 (WEED77); X-ray spectrum, 14-140 keV (DIL81); X-ray (ELVI78); other HEAO-1 (PICC82).
1H2041+756 VW Cep	W UMa star; X-ray (CARR80); X-ray image, spectrum (CRUD83).
1H2050+310 Cygnus Loop	Supernova remnant; distance = 800 pc (ILOV72); EINSTEIN image (TUOH79); low-energy spectrum as function of position within SNR (KAYA80); X-ray line emission, O and Fe in 0.6 - 0.9  keV, kT = $0.3  keV$ (KAHN80,GRAD70b,BUNN73).
1H2109+818	X-ray (SHUL79b).

•

M 20 2	TABLE 6 Continued
:	
99 1H2128+120 1 M15 Sp NGC 7078 10 MGC 7078	Globular cluster; distance = 10 kpc (PETE75); X-ray position (GRIN81a, JERN79); cluster structure (BAHC76b, BAHC77b, NEWE76, PETE75); X-ray identified with cluster core (GIAC74, CLAR75, GRIN81a); X-ray highly variable (CLAR75); UV peaked in core (DUPR79); radio (JOHN76); optical (GRIN77b); other X-ray (PYE76, ULME76, BRAD79, LEWI81).
1H2131+473 4U2129+47 V1727 Cyg	Binary X-ray source; distance = 1.2 - 1.6 kpc (THOR79); orbit period = 5.2 h (THOR79,ULME80b,MCCL81,THOR82); X-ray light curve independent of energy, 1 - 7 keV band (MCCL82); compact object mass ~0.5 solar mass (THOR82); similar to HZ Her (MCCL81); X-ray position (THOR79); optical (THOR79,THOR82).
1H2138+579 Cep X-1	Transient; X-ray spectrum, kT $\sim$ 20 keV (ULME73b).
1H2140+433 SS Cyg	Cataclysmic variable, U Gem type (PATT84); distance estimates = 0.095 kpc (PATT84), 0.150 pc (CORD81); period = 7.3 to 9.7 s (CORD78,PATT78,HORN80,CORD80, HILD81), 6.6 h binary period (JOY56,COWL80); X-ray pulsations, random walk of pulse phase (CORD80); optical oscillations (HILD81) other optical (KIPL79, FABB81, WALK81); UV (MARG78c,FABB81); other X-ray (HEIS78, MASO79a,RAPP74,RICK79,WATS78b,FABB81).
1H2142 + 380 Cyg X-2 V1341 Cyg	Binary X-ray source; distance = 250 pc (BRAN80); distance = 8 kpc (MARA80a); proposed binary periods 9.8 d to 13.6 d (ILOV79b,HOLT76b,CHEV75,COWL79,CRAM78c) and 20.6 h (CRAM76); mass of X-ray (BURG73a,TANA71a,TOOR71); X-ray spectrum: kT = 3 to 10 keV (ULME74a,BLEA72); X-ray luminosity (BRAD79); optical variations (BOPP74,JOHN69); radio (HJEL71b); UV (MARA80a); early X-ray (FRIE67,GIAC67A).
1H2148-200 A2384	Cluster of galaxies; $z = 0.0943$ (SARA82); other Abell clusters nearby; X-ray (JOHN83,ULME81a).
1H2150+171 A2390	Cluster of galaxies; $z = 0.1950$ (JOHN83).
1H2156-304 PKS2155-304	BL Lac object; $z = 0.17$ (CHAR79a); X-ray variability 1 s to 1 d (AGRA79), but see (SNYD80), factor of 2 in 6 h (SNYD80,URRY82); photon power law index ~2.4 (AGRA79, GRIF79c,URRY82); X-ray position (PICC82); polarization 2 to 5 % in optical (GRIF79c); infrared (GLAS81); optical (GREE79b); UV (MARA80); X-ray (SCHW79b).
1H2158-602 STR2159-602	Cluster of galaxies; $z = 0.1008$ (PICC82); other X-ray (MARK76b, MURR76).
1H2158-150 2155-152	Quasar, $z = 0.200$ , X-ray image (ZAMO81).

TABLE 6 — Continued	
1H2158+046 2201+044 ?	BL lac object; $z = 0.0281$ (BURB79); rapid optical variability (MILL77b).
1H2205 + 538 4U2206 + 54	Recurrent transient; X-ray (VILL76,ULME73b); Be star/neutron star binary system at 2.5 kpc (STEI84).
1H2206-052 A2415	Cluster of galaxies (JOHN83,ULME81a); $z = 0.069$ (LEIR77); other HEAO-1 (MCKE80).
1H2207+455 AR Lac	RS CVn system, distance = 0.050 kpc, orbital period = 1.98 days (HALL84).
1H2207+829 A2387 ?	Cluster of galaxies (JOHN83); $z = 0.1420$ (JOHN83).
1H2209-470 NGC 7213 STR2206-474	Seyfert galaxy (MARS79b); $z = 0.0058$ (DEVA76); other HEAO-1 (DOWE80).
1H2221-017 A2440 3C445	Cluster of galaxies (JOHN83,ULME81a,MCKE80,MARS79b); z(A2440) = 0.0573 (NOON81); alternate identification Seyfert galaxy (MARS79b,PICC82); $z(3C445) = 0.0562$ (BURB79).
1H2226-269 NGC 7313/4	Seyfert galaxy or narrow emission-line galaxy (PICC82, MARS81b); z(7314) = 0.0056 (DEVA76); X-ray variability (MARS81b).
1H2251-179 MR 2251-178 2A2251-179	Quasar (RICK78); $z = 0.0653$ (PHIL80) to 0.0680 (MARS81b); X-ray variability (MARS81b); optical (PHIL80).
1H2251-035 H2252-035 AO Psc	Binary pulsar/cataclysmic variable (MARS79b,PATT81a); distance = 100 to 750 pc (WHIT81a); optical: pulse period 858 sec, orbital period = 3.6 hrs (PATT81a); X-ray: period = 805 sec arising from beating of optical periods (WHIT81a); X-ray spectrum: photon power law index = 1.4 or kT > 20 keV with Fe line (WHIT81a).
1H2251 + 167 HD216489	RS CVn system, distance = $.055$ kpc (HALL84).
1H2251+450 EV Lac	Flare star, distance = .005 kpc (VAN72); type dM4.5e, period = 4.37 days (PETT84); X-ray flares with decay times = 22 and 78 min, ratio of flare to quiscent luminosity = 40 (AMBR84).
1H2256+057 A2507 ?	Cluster of galaxies (JOHN83,ULME81a); $z = 0.196$ (LEIR77).
1H2258+585 H2309+59 1E2259+586 G109.1-1.0	Binary pulsar (FAHL81); distance = 3.6-4.7 kpc (GREG80,HUGH81); pulse period = 3.49 s (FAHL81); orbital period = 0.0266 (MIDD82); X-ray detection (WOOD78a); X-ray image: point source in supernova remnant shell plus jet (GREG80); optical counterpart (FAHL82); SNR radio structure (HUGH81).

МLО		
·		TABLE 6— Continued
1984ApJS56	1H2301+086 NGC 7469	Seyfert galaxy; $z = 0.0167$ (PICC82).
	1H2307-222 A2550 ?	Cluster of galaxies; X-ray (ULME81a); $z = 0.1660$ (LEIR77), $z = 0.1543$ (KOWA83).
	1H2315-423 NGC 7582	Seyfert galaxy; z = 0.0048 (PICC82); X-ray variable on timescale < 1 week (MUSH82); X-ray spectrum: for 2 - 20 keV band, photon power law index ~1.8 (MUSH82); X-ray images (MACC81).
	1H2315+257 3C 463	Quasar; $z = 0.875$ (BURB77).
	1H2319+188 A2572 ?	Cluster of galaxies; X-ray (ULME81a); $z = 0.046$ (LEIR77).
	1H2320+146 A2593	Cluster of galaxies; X-ray (ULME81a); $z = 0.0440$ (NOON81), $z = 0.046$ (LEIR77).
	1H2321+585 Cas A	Supernova remnant; distance = 2.8 kpc (ILOV72); EINSTEIN SSS Spectrum (BECK79b); X-ray spectra and line emission (Si, S, Ar, Fe) (BECK79,DAVI76c,HILL75,PRAV76, SERL73); X-ray spectrum: two component kT $\sim$ 1 keV and $\sim$ 4 keV (CHAR75b,DAVI76c); X-ray structure similar to radio (CHAR77b) but with two concentric shells (FABI80); EINSTEIN HRI image (MURR79); radio (BELL75, ROSE70); early X-ray (FRIE67,GORE70).
	1H2323+165 A2589	Cluster of galaxies; z = 0.0421 (JOHN83); X-ray spectrum (MITC79,MUSH78d).
	1H2336+462 Lambda And	RS CVn system; distance = 0.024 kpc, orbital period = 20.5 days (HALL84).
	1H2343+090 A2657	Cluster of galaxies; X-ray (JOHN83,MCKE80,ULME81a); $z = 0.0414$ (PICC82), $z = 0.045$ (LEIR77).
	1H2348-281 Klem 44	Cluster of galaxies; $z = 0.0276$ (CHIN78).
	1H2352+109 A2675	Cluster of galaxies; $z = 0.0726$ (SARA82).
	1H2354+285 II Peg HD224085	RS CVn binary system (SCHW81); distance = 26 pc (WALT81a); radio (SPAN77).
	1H2357-126 A2704	Cluster of galaxies; $z = 0.227$ (LEIR77).

### **REFERENCES TO TABLE 6**

Adams et al., (1975), Ap. J. 199, 19 Adams, (1977), Ap. J. Suppl. 33, 19 Agrawal et al., (1979), Ap. J. 231, L25 Agrawal et al., (1980), Ap. J. 237, L33 Agrawal et al., (1983), Nat. 301, 318 Allen et al., (1981), MNRAS 195, 155 Allen, (1973), Astrophysical Quantities, 3rd Ed., (London: Athlone Press) Allen, (1977), IAUC 3143 Ambruster et al., (1979), Bull. APS 24, 583 Ambruster et al., (1983), Preprint Ambruster et al., (1984), Submitted to Ap. J. Angel et al., (1971), Ap. J. 169, L57 Apparao et al., (1978a), Nat. 271, 225 Apparao et al., (1978b), Nat. 273, 450 Arp et al., (1980), Ap. J. 230, 68 Avni et al., (1974), Ap. J. 192, L139 Bahcall et al., (1972), Ap. J. 178, L1 Bahcall et al., (1975), MNRAS 171, 41P Bahcall et al., (1977a), Ap. J. 213, L105 Bahcall et al., (1977b), Ap. J. 213, 93 Bahcall et al., (1977d), Ap. J. 217, L19 Bahcall, (1974), Ap. J. 193, 529 Bahcall, (1976a), LECTURES at Fermi Summer School, Varenna, on the Physics and Astrophysics of Neutron Stars and Black Holes (Amsterdam: N. Holland Publishing Co.) Bahcall, (1976b), Ap. J. 204, L83 Bahcall, (1977c), Ap. J. 217, L77 Bailey et al., (1980), Nat. 285, 306 Bailey et al., (1981), MNRAS 197, 627 Bailey et al., (1983), MNRAS 205, 1P Baity et al., (1974), Ap. J. 187, 341 Baity et al., (1975), Ap. J. 199, L5 Baity et al., (1981), Ap. J. 244, 429 Baldwin et al., (1973), MNRAS 165, 259 Barbour et al., (1978), IAUC 3205 Barr et al., (1977), MNRAS 181, 43P Beall et al., (1978), Ap. J. 219, 836 Beall et al., (1981), Ap. J. 247, 458 Beall et al., (1983), PREPRINT Bechtold et al., (1983), Ap. J. 265, 26 Becker et al., (1976), Ap. J. 209, L65 Becker et al., (1977a), Ap. J. 214, 879 Becker et al., (1977b), Ap. J. 216, L101 Becker et al., (1978), Ap. J. 221, 912 Becker et al., (1979a), Ap. J. 227, L21 Becker et al., (1979b), Ap. J. 234, L73 Becker et al., (1980), Ap. J. 235, L5 Becker et al., (1980), Ap. J. 237, L77 Becker et al., (1981), Ap. J. 248, L23 Bell et al., (1975), Nat. 257, 463 Bennett et al., (1976), Astr. and Ap. 51, 475 Bennett et al., (1977), Astr. and Ap. 61, 279

Bernacca et al., (1981), Astr. and Ap. 94, 345 Berthelsdorf et al., (1979), MNRAS 187, 17P Biermann et al., (1981), Ap. J. 247, L53 Biermann et al., (1982), Ap. J. 252, L1 Blanco et al., (1975), Ap. J. 198, L63 Blanco, (1977), IAUC 3039 Bleach et al., (1972), Ap. J. 171, 51 Bleeker et al., (1973), Ap. J. 183, L1 Blumenthal et al., (1982), Ap. J. 257, 499 Bok, (1966), Ann. Rev. Astr. Ap. 4, 95 Boksenberg et al., (1978), Nat. 275, 404 Boldt et al., (1969), Ap. J. 156, 427 Boley et al., (1979), IAUC 3324 Bolton, (1972), Nat. 235, 271 Bond et al., (1979), Ap. J. 234, L113 Bonnet-Bidaud et al., (1981), Astr. and Ap. 101, 184 Bopp et al., (1976), A.J. 81, 771 Bopp, (1974), Nat. 247, 139 Bowyer et al., (1964a), Science 146, 912 Bowyer et al., (1964b), Nat. 201, 1307 Bowver et al., (1965a), Science 147, 394 Bowyer et al., (1965b), Annales d'Astrophys. 28, 791 Bowyer et al., (1970), Ap. J. 161, L1 Bowyer et al., (1974), Ap. J. 190, 285 Bradt et al., (1968), Ap. J. 152, 1005 Bradt et al., (1971), Nat. 229, 96 Bradt et al., (1975), Ap. J. 197, 443 Bradt et al., (1977), Nat. 269, 21 Bradt et al., (1978b), Ap. J. 226, L111 Bradt et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W.A. Baity and L. E. Peterson (Oxford: Pergamon Press) p. 3 Bradt et al., (1983), submitted to Ann. Rev. Astr. Ap., vol. 21 Bradt, (1978a), AAS MTG AUSTIN, Tx. Jan., 1978 Branduardi et al., (1980), Ap. J. 235, L153 Branduardi et al., (1981), Ap. J. 248, 55 Bregman et al., (1973), Ap. J. 185, L117 Brinkman et al., (1977), Ap. J. 214, 35 Brucato et al., (1972), Ap. J. 173, L105 Bunner et al., (1973), Ap. J. 179, 781 Bunner, (1978), Ap. J. 220, 261 Burbidge et al., (1979), Ap. J. Suppl. 40, 583 Burginyon et al., (1973a), Ap. J. 179, 615 Burginyon et al., (1970), Ap. J. 161, 987 Burginyon et al., (1973b), Ap. J. 180, L75 Busko et al., (1974), Inf. Bull. Var. Stars No. 939 Byram et al., (1966), Science 152, 166 Byram et al., (1971a), Science 169, 366 Byram et al., (1971b), Nat. 229, 544 Canizares et al., (1974a), Ap. J. 192, L61

L984ApJS...56..507W

Canizares et al., (1975b), Ap. J. 199, L97 Canizares et al., (1975a), Ap. J. 197, 457 Canizares et al., (1974b), Ap. J. 193, L65 Canizares et al., (1977), Ap. J. 214, L119 Canizares et al., (1973), Ap. J. 179, L1 Canizares et al., (1982), Ap. J. 262, 33 Carlberg, (1979), Ap. J. 232, 878 Carpenter et al., (1977), MNRAS 179, 27P Carroll et al., (1980), Ap. J. 235, L77 Carter et al., (1980), MNRAS 191, 325 Cash et al., (1979), Ap. J. 231, L137 Cash et al., (1980), Ap. J. 238, L71 Caswell et al., (1967), MNRAS 135, 231 Chanmugam et al., (1977), Ap. J. 213, L13 Charles et al., (1975a), MNRAS 170, 17P Charles et al., (1975b), Ap. J. 197, L61 Charles et al., (1977a), IAUC 3096 Charles et al., (1977b), MNRAS 178, 307 Charles et al., (1978), MNRAS 185, 15P Charles et al., (1979a), Nat. 281, 285 Charles et al., (1979b), Nat. 282, 691 Charles et al., (1979c), Bull. AAS 11, 720 Charles et al., (1979d), Ap. J. 231, L131 Charles et al., (1979e), Ap. J. 232, L25 Charles et al., (1980), Ap. J. 241, 1148 Chartres et al., (1977c), IAUC 3154 Chester, (1978), Ap. J. 219, L77 Chevalier et al., (1977), Astr. and Ap. 59, L9 Chevalier et al., (1975), IAUC 2859 Chincarini et al., (1978), Ap. J. 221, 34 Chodil et al., (1965), Phys. Rev. Lett. 15, 605 Chodil et al., (1968), Ap. J. 154, 645 Christensen et al., (1977), MNRAS 181, 183 Chubb, in Pittsburgh Conf. on Bl Lac Obj., Wolfe, Ed (1978) P163 Clark et al., (1972), Ap. J. 177, L109 Clark et al., (1975), Ap. J. 199, L93 Clark et al., (1976a), Ap. J. 207, L105 Clark et al., (1976b), MNRAS 174, 267 Clark et al., (1977), MNRAS 179, 651 Clark et al., (1978a), IAUC 3161 Clark et al., (1978b), Ap. J. 221, L37 Clark et al., (1978c), Nat. 276, 44 Clark et al., (1979), Ap. J. 227, 54 Cocke et al., (1969), Nat. 221, 525 Coe et al., (1975), Nat. 256, 630 Coe et al., (1976), MNRAS 177, 31P Coe et al., (1977), Nat. 268, 508 Coe et al., (1978), MNRAS 184, 355 Coe et al., (1981), Nat. 290, 119 Cohen et al., (1977), Nat. 268, 405 Coleman et al., (1973), Ap. J. 185, L121 Colla et al., (1971), A.J. 76, 953 Comella et al., (1969), Nat. 221, 453

Cominsky et al., (1977), IAUC 3163 Cominsky et al., (1978a), Ap. J. 224, 46 Cominsky et al., (1978b), Nat., 273, 367 Cominsky et al., (1980), Ap. J. 242, 1102 Cominsky et al., (1983), IAUC 3822 Condon et al., (1977), private communications in Ward + Astr. Ap. 59, L19 Cooke et al., (1976b), MNRAS 177, 121P Cooke et al., (1977), Astr. and Ap. 58, L17 Cooke et al., (1978), MNRAS 182, 489 Cooke, (1976a), Nat. 261, 564 Cooper et al., (1965), AUS. J. PHYS. 18, 589 Cordova et al., (1978), IAUC 3235 Cordova et al., (1979), MNRAS 188, 103 Cordova et al., (1980), Ap. J. 235, 163 Cordova et al., (1981), Ap. J. 245, 609 Cordova et al., (1984), MNRAS 206, 879 Costain et al., (1972), Ap. J. 175, L15 Cowley et al., (1975), Ap. J. 201, L65 Cowley et al., (1977a), Ap. J. 212, L121 Cowley et al., (1977b), Ap. J. 218, L3 Cowley et al., (1978), IAUC 3201 Cowley et al., (1979), Ap. J. 231, 539 Cowley et al., (1980), Ap. J. 241, 269 Cowley et al., (1982a), Ap. J. 255, 596 Cowley et al., (1982b), Ap. J. 256, 605 Cowley et al., (1983), Preprint Crampton et al., (1976), Ap. J. 207, L171 Crampton et al., (1978a), Ap. J. 223, L79 Crampton et al., (1978c), IAUC 3292 Crampton et al., (1978b), Ap. J. 225, L63 Crampton et al., (1979), Ap. J. 234, 993 Crampton et al., (1981), Ap. J. 243, 567 Cruddace et al., (1972), Ap. J. 174, 529 Cruddace et al., (1978), Ap. J. 222, L95 Cruddace et al., (1983), Ap. J., in press Cruise et al., (1971), Nat. 233, 468 Danziger et al., (1979), MNRAS 188, 415 Davidsen et al., (1972), Ap. J. 177, L97 Davidsen et al., (1974), Ap. J. 193, L25 Davidsen et al., (1976a), Ap. J. 203, 448 Davidsen et al., (1977a), Ap. J. 211, 866 Davidsen, (1975a), IAUC 2824 Davidson et al., (1982b), Ap. J. 254, L47 Davidson et al., (1982a), Ap. J. 253, 696 Davies et al., (1976b), Nat., 261, 476 Davison et al., (1975b), Nat. 253, 610 Davison et al., (1975c), Ap. J. 196, L23 Davison et al., (1976c), Ap. J. 206, L37 Davison et al., (1977b), MNRAS 181, 73P Davison et al., (1977c), MNRAS 178, 53P Davison, (1977), MNRAS 179, 35P De Bruyn et al., (1976), Astr. and Ap. 53, 93 Deeter et al., (1981), Ap. J. 247, 1003

Delvaille et al., (1978), Ap. J. 219, L81 Delvaille, (1976), IAUC 2936 Den Boggende, (1978), Astr. and Ap. 62, 1 deVaucouleurs, (1975), Ap. J. Suppl. 29, 193 deVaucouleurs et al., (1976), 2nd Ref.Cat.of Bright Galaxies (Austin: University of Texas Press) Dil et al., (1981), Ap. J. 250, 513 Disney, (1974), Ap. J. 193, L103 Dolan, (1970), A.J. 75, 223 Dolan et al., (1977), Ap. J. 217, 809 Dolan et al., (1979), Ap. J. 230, 551 Dolan et al., (1981), Ap. J. 250, 355 Doty et al., (1981), Ap. J. 243, 257 Dower et al., (1978), Nat. 273, 364 Dower et al., (1980), Ap. J. 235, 355 Downes, (1971), A.J. 76, 305 Doxsey et al., (1973), Ap. J. 182, L25 Doxsey et al., (1977a), Nat. 270, 586 Doxsey et al., (1977b), Nat. 269, 112 Doxsey et al., (1977c), IAUC 3113 Doxsey et al., (1978), Ap. J. 221, L53 Doxsey et al., (1979), Ap. J. 228, L67 Dufour et al., (1978), Ap. J. 226, L73 Duin et al., (1975), Astr. and Ap. 39, 33 Duldig et al., (1979), MNRAS 187, 567 Dupree et al., (1979), Ap. J. 230, L89 Duus et al., (1977), Ap. J. Suppl. 35, 209 Elsner et al., (1980), Ap. J. 239, 335 Elvis et al., (1978), MNRAS 183, 129 Epstein et al., (1977b), Ap. J. 216, 103 Epstein, (1977a), Ap. J., 218, L49 Erickson et al., (1978), Ap. J. 222, 761 Eyles et al., (1975a), Nat. 257, 291 Eyles et al., (1975b), IAUC 2774 Eyles, (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p. 233 Fabbiano et al., (1977), Ap. J. 214, 235 Fabbiano et al., (1978), Ap. J. 221, L49 Fabbiano et al., (1979), Ap. J. 230, L67 Fabbiano et al., (1980), Ap. J. 235, L163 Fabbiano et al., (1981), Ap. J. 243, 911 Fabbiano, (1982), Ap. J. 262, 709 Fabian et al., (1980), MNRAS 193, 175 Fabricant et al., (1980), Ap. J. 241, 552 Fahlman et al., (1981), Nat. 293, 202 Fahlman et al., (1982), Ap. J. 261, L1 Fanti et al., (1973), Astr. and Ap. 24, 69 Fazio et al., (1972), Ap. J. 175, L117 Feast et al., (1961), MNRAS 122, 239 Feigelson et al., (1981), Ap. J. 251, 31 Feldman, (1977), private communications, in Cooke, et al., (1978), MNRAS 182, 489 Fisher et al., (1966), Ap. J. 143, 203

Fisher et al., (1968), Ap. J. 151, 1 Fishman et al., (1969), Ap. J. 156, L107 Fogarty et al., (1975), Nat. 254, 124 Forman et al., (1971), Nat. 229, 39 Forman et al., (1973), Ap. J. 182, L103 Forman et al., (1976a), Ap. J. 206, L29 Forman et al., (1976b), Ap. J. 207, L177 Forman et al., (1976c), Ap. J. 208, 849 Forman et al., (1978), Ap. J. Suppl. 38, 357 Forman et al., (1981), Ap. J. 243, L133 Forman et al., (1982), Ann. Rev. Astr. Ap. 20, 547 Fosbury et al., (1976), Ap. J. 207, L75 Friedman et al., (1967), Science 156, 374 Fritz et al., (1968), Ap. J. 153, L199 Fritz et al., (1969a), Science 164, 709 Fritz et al., (1969b), Ap. J. 156, L33 Fritz et al., (1971a), Ap. J. 164, L81 Fritz et al., (1971b), Ap. J. 164, L55 Fritz et al., (1976), Ap. J. 207, L29 Frontera et al., (1979), Ap. J. 234, 477 Galas et al., (1980), Ap. J. 236, L13 Garcia et al., (1980), Ap. J. 240, L107 Garcia et al., (1982), Ap. J. 267, 291 Geldzahler et al., (1983), Preprint Giacconi et al., (1962), Phys. Rev. Lett. 9, 439 Giacconi et al., (1967b), Ap. J. 148, L119 Giacconi et al., (1967a), Ap. J. 148, L129 Giacconi et al., (1971), Ap. J. 167, L67 Giacconi et al., (1972), Ap. J. 178, 281 Giacconi et al., (1973), Ap. J. 184, 227 Giacconi et al., (1974), Ap. J. Suppl. 27, 37 Giles, (1981), MNRAS 195, 721 Gilliland et al., (1982), Ap. J. 261, 617 Gilmore et al., (1980), A.J. 85, 1486 Gilmore et al., (1981), A.J. 86, 864 Glass et al., (1973), Nat. Phys. Sci. 245, 39 Glass, (1978), MNRAS 183, 335 Glass, (1979), MNRAS 187, 807 Glass, (1981), MNRAS 194, 795 Gorecki et al., (1982), Ap. J. 256, 234 Gorenstein et al., (1974), Ap. J. 192, 661 Gorenstein et al., (1979), Ap. J. 230, 26 Gorenstein et al., (1970), Ap. J. 160, 947 Goss et al., (1977), MNRAS 181, 255 Gottlieb et al., (1975), Ap. J. 195, L33 Grader et al., (1970a), Ap. J. 159, 201 Grader et al., (1970b), Ap. J. 161, L45 Graham et al., (1980), Ap. J. 239, L97 Graham et al., (1981), Ap. J. 247, 813 Graham, (1979), Ap. J. 232, 60 Gratton, (1972), Nat. 237, 329 Greenhill et al., (1979a), MNRAS 189, 563 Greenstein et al., (1977), Ap. J. 218, L121 Greenstein et al., (1979b), IAUC 3324

Gregory et al., (1972), Nat. 239, 440 Gregory et al., (1980), Nat. 287, 805 Griffiths et al., (1979c), Ap. J. 232, L27 Griffiths et al., (1978b), Ap. J. 221, L63 Griffiths et al., (1979d), Ap. J. 234, 810 Griffiths et al., (1978c), IAUC 3251 Griffiths et al., (1979a), MNRAS 188, 813 Griffiths et al., (1979e), in X-ray Astronomy (COSPAR), ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p. 93 Griffiths et al., (1978d), Bull. AAS 10, 662 Griffiths et al., (1978a), Nat. 276, 247 Griffiths et al., (1977), MNRAS 180, 75P Griffiths et al., (1979b), Ap. J. 230, L21 Grindlay et al., (1975a), Ap. J. 197, L9 Grindlay et al., (1975c), IAUC 2879 Grindlay et al., (1975b), Ap. J. 201, L133 Grindlay et al., (1976a), Ap. J. 205, L127 Grindlay et al., (1976b), Ap. J. 206, L23 Grindlay et al., (1977b), Ap. J. 216, L105 Grindlay et al., (1977a), Ap. J. 214, L57 Grindlay et al., (1978b), Nat. 274, 567 Grindlay et al., (1978a), Ap. J. 220, L127 Grindlay et al., (1981b), Ap. J. 247, L17 Grindlay, (1972), Ap. J. 174, L9 Grindlay, (1979), Ap. J. 232, L33 Grindlay, (1981a), X-ray Astronomy with the Einstein Satellite, (R. Giacconi: Reidel Pub. Co.), p.79 Groote et al., (1978), Astr. and Ap. 63, L9 Gruber et al., (1980), Ap. J. 240, L127 Gull et al., (1977), Ap. J. 215, L69 Gursky et al., (1966), Ap. J. 146, 310 Gursky et al., (1967), Ap. J. 150, L75 Gursky et al., (1971a), Ap. J. 165, L43 Gursky et al., (1971b), Ap. J. 167, L15 Gursky et al., (1971c), Ap. J. 167, L81 Gursky et al., (1978), Ap. J. 223, 973 Gursky et al., (1980), Ap. J. 237, 163 Hackwell et al., (1979), Ap. J. 233, L115 Hakucho et al., (1983), IAUC 3624,3628 Hall et al., (1982), Ap. J. 257, L91 Hall et al., (1984), Ap. J. (in press) Hammerschlag-Hensberge et al., (1982) Ap. J.(Letters) 254, L1 Hammerschlag-Hensberge et al., (1980), Astr. and Ap. 85, 119 Harden et al., (1979), Ap. J. 234, L51 Hawkins et al., (1974), MNRAS 169, 41P Hayakawa et al., (1973), Ap. J. 183, L5 Hayakawa et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.159 Haymes et al., (1972), Ap. J. 172, L47

Heao - A3 et al., IAUC 3238 (1978) Hearn et al., (1977), Ap. J. 213, L115 Hearn et al., (1979), Ap. J. 227, L63 Hearn et al., (1980), Ap. J. 235, L67 Heise et al., (1975), Ap. J. 202, L73 Heise et al., (1978), Astr. and Ap. 63, L1 Henry et al., (1972), Ap. J. 174, 389 Henry et al., (1977), Ap. J. 212, L13 Hermsen et al., (1977), Nat. 269, 494 Hertz et al., (1983), sub. to Ap. J. Hewitt et al., (1980), Ap. J. Suppl. 43, 57 Hildebrand et al., (1981), Ap. J. 243, 223 Hill et al., (1968), Ap. J. 154, 655 Hill et al., (1972a), Ap. J. 171, 519 Hill et al., (1974), Ap. J. 189, L69 Hill et al., (1975), Ap. J. 200, 158 Hill et al., (1980), Ap. J. 242, L69 Hill, (1967), Aus. J. Phys. 20, 297 Hill, (1972b), MNRAS 157, 419 Hiltner et al., (1970), Ann. Rev. Astr. Ap. 8, 139 Hiltner et al., (1972), Ap. J. 175, L19 Hiltner et al., (1979), IAUC 3324 Hiltner, (1977), IAUC 3039 Hintzen et al., (1979), Ap. J. 232, L145 Hjellming et al., (1971b), Ap. J. 168, L21 Hjellming et al., (1972), Nat. 239, 443 Hjellming et al., (1971a), Ap. J. 164, L1 Hjellming et al., (1981b), Ap. J. 246, L141 Hjellming et al., (1981a), Nat. 290, 100 Hjellming, (1978), Ap. J. 221, 225 Hoessel et al., (1980), Ap. J. 241, 486 Hoffman et al., (1973), Nat. 244, 347 Hoffman et al., (1977a), Ap. J. 217, L23 Hoffman et al., (1977b), MNRAS 179, 57P Hoffman et al., (1978), Ap. J. 221, L57 Hoffman et al., (1979), Ap. J. 233, L51 Hoffman et al., (1980), Ap. J. 240, L27 Holt et al., (1976a), Ap. J. 205, L79 Holt et al., (1976b), Ap. J. 205, L143 Holt et al., (1976c), Nat. 263, 484 Holt et al., (1977), IAUC 3161 Holt et al., (1979a), Ap. J. 233, 344 Holt et al., (1979b), Ap. J. 227, 563 Holt et al., (1980), Ap. J. 241, L13 Horne et al., (1980), Ap. J. 237, 845 Howard et al., (1965), Ap. J. Suppl. 10, 1 Huckle et al., (1977), MNRAS 180, 21P Hughes et al., (1981), Ap. J. 246, L127 Humason et al., (1956), A.J. 61, 97 Hutchings et al., (1974a), Ap. J. 191, L101 Hutchings et al., (1973), Ap. J. 182, 549 Hutchings et al., (1974b), Ap. J. 191, 743 Hutchings et al., (1975), MNRAS 170, 313 Hutchings et al., (1981a), Ap. J. 247, 222

Hutchings et al., (1981b), Ap. J. 249, 680 Hutchings et al., (1981c), A.J. 86, 871 Hutchings et al., (1982), Ap. J 252, 690 Hutchings et al., (1983), IAUC 3791 Hutchings, (1970), MNRAS 150, 55 Illingworth et al., (1976), Ap. J. Suppl. 30, 227 Ilovaisky et al., (1972), Astr. and Ap. 18, 169 Ilovaisky et al., (1979b), IAUC 3325 Ilovaisky et al., (1979a), Astr. and Ap. 71, L17 Inoue et al., (1981), Ap. J. 250, L71 Ives et al., (1976), Ap. J. 207, L159 Jameson et al., (1978), Nat. 271, 334 Janes et al., (1973), Nat. 244, 349 Jensen et al., (1982), Ap. J. 261, 625 Jernigan et al., (1978a), IAUC 3225 Jernigan et al., (1978b), Nat. 272, 701 Jernigan et al., (1979), Ap. J. 231, L125 Johnson et al., (1969), Ap. J. 155, L91 Johnson et al., (1983), Ap. J. 266, 425 Johnson, (1976), Ap. J. 208, 706 Johnson, (1978a), IAUC 3184 Johnston et al., (1978b), Ap. J. 223, L71 Johnston et al., (1978c), Ap. J. 225, L59 Johnston et al., (1978d), IAUC 3163 Johnston et al., (1979), Ap. J. 233, 514 Johnston et al., (1981a), Ap. J. 245, 799 Johnston et al., (1981b), A.J. 86, 1377 Johnston et al., (1982), Ap. J. 262, 61 Jones et al., (1973), Ap. J. 182, L109 Jones et al., (1974), Ap. J. 191, L71 Jones et al., (1976), Ap. J. 209, L131 Jones et al., (1978), Ap. J. 224, 1 Jones et al., (1979), Ap. J. 234, L21 Jones, (1977), Ap. J. 214, 856 Joss et al., (1978), Ap. J. 225, 994 Joy, (1956), Ap. J. 124, 317 Kahler et al., (1982), Ap. J. 252, 239 Kahn et al., (1979), Ap. J. 234, L107 Kahn et al., (1980), Ap. J. 242, L19 Kahn et al., (1981), Ap. J. 250, 733 Kallman et al., (1982), Ap. J. 261, L35 Kaluzienski et al., (1977a), IAUC 3106 Kaluzienski et al., (1977b), IAUC 3104 Kaluzienski et al., (1977c), IAUC 3099 Kaluzienski et al., (1978), IAUC 3174 Kaluzienski et al., (1976), Ap. J. 208, L71 Kaluzienski et al., (1975), Nat. 256, 633 Kamper et al., (1978), Ap. J. 224, 851 Kaplan et al., (1980), A.J. 85, 64 Karpen et al., (1977), Ap. J. 216, 479 Kasturirangan et al., (1976), Nat. 260, 226 Katz et al., (1982), Ap. J. 260, 780 Kayat et al., (1980), MNRAS 191, 729 Kellerman et al., (1971), Ap. Lett. 8, 153

Kelley et al., (1980), Ap. J. 238, 699 Kelley et al., (1982), IAUC 3667 Kelley et al., (1983), Ap. J. 264, 568 Kendiziorra et al., (1977), Ap. J. 217, L93 Kestenbaum et al., (1977), Ap. J. 216, L19 Kestenbaum et al., (1975), Ap. J. 202, L21 Khachikian et al., (1974), Ap. J. 192, 581 Kimble et al., (1981), Ap. J. 251, 585 Kinzer et al., (1971), Nat. 229, 187 Kinzer et al., (1978), Bull. AAS 10, 503 Kiplinger, (1979), Ap. J. 234, 997 Knight, (1982), Ap. J. 260, 538 Koch-Miramond, (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.277 Kondo et al., (1981), Ap. J. 243, 690 Kowalski et al., (1983), Ap. J. Suppl., in prep. Kriss et al., (1980), Ap. J. 242, 492 Kriss et al., (1983), AP. J. 266, 806 Krzeminski, (1974), Ap. J. 192, L135 Ku et al., (1976), Ap. J. 204, L77 Ku et al., (1979), Ap. J. 234, L59 Kuhr et al., (1981), A.J. 86, 854 Kurfess, (1971), Ap. J. 168, L39 Lacy et al., (1982), Ap. J. 256, 75 Lamb et al., (1979), Ap. J. 229, L19 Lamb et al., (1980), Ap. J. 239, 651 Lampton et al., (1972), Ap. J. 171, L45 Lasker, (1974), Nat. 250, 308 Lauque et al., (1972), Nature Phys. Science 239, 119 Lawrence, (1978), MNRAS 185, 423 Lea et al., (1982), Ap. J. 262, 24 Ledden et al., (1976), Nat. 262, 669 Ledden et al., (1981), Ap. J. 243, 47 Leir et al., (1977), Ap. J. Suppl. 34, 381 Leong et al., (1971), Ap. J. 170, L67 Levine et al., (1979), Ap. J. 228, L99 Levine et al., (1982), Ap. J. 262, 294 Lewin et al., (1970), Ap. J. 162, L109 Lewin et al., (1971a), Ap. J. 166, L69 Lewin et al., (1971b), Ap. J. 169, L17 Lewin et al., (1976b), MNRAS 177, 93P Lewin et al., (1976c), IAUC 2984 Lewin et al., (1976d), IAUC 2994 Lewin et al., (1977a), IAUC 3075 Lewin et al., (1977b), IAUC 3087 Lewin et al., (1977c), Nat. 270, 211 Lewin et al., (1978), IAUC 3190 Lewin et al., (1980), MNRAS 193, 15 Lewin et al., (1981), Sp. Sci. Rev. 28, 3 Lewin, (1976a), IAUC 2922 Lewin, (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.133

Li et al., (1976a), IAUC 2983 Li et al., (1976b), IAUC 2983 Li et al., (1977a), IAUC 3095 Li et al., (1977b), IAUC 3154 Li et al., (1977c), MNRAS 179, 21P Li et al., (1978a), Nat. 271, 37 Li et al., (1978b), Nat. 276, 799 Liller et al., (1978), Ap. J. 224, 383 Liller, (1975), IAUC 2780 Long et al., (1975), Ap. J. 197, L57 Long et al., (1977), Ap. J. 212, 427 Long et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.105 Long et al., (1980), Ap. J. 239, L65 Long et al., (1981), Ap. J. 246, L61 Longair et al., (1974), MNRAS 168, 479 Lucke et al., (1979), Ap. J. 228, 763 Lugger, (1978), Ap. J. 221, 745 Lynds et al., (1969), Ap. J. 155, L121 Maccacaro et al., (1981), Ap. J. 246, L11 Maccacaro et al., (1982), Ap. J. 257, 47 Maccagni et al., (1978), Astr. and Ap. 62, 127 Makishima et al., (1982), Ap. J. 255, L49 Makishima et al., (1981), Ap. J. 244, L79 Malina et al., (1976), Ap. J. 207, 894 Malina et al., (1978), Ap. J. 219, 795 Manchanda et al., (1982), Ap. J. 252, 172 Maraschi et al., (1978), Nat. 272, 679 Maraschi et al., (1980b), Nat. 285, 555 Maraschi et al., (1980a), Ap. J. 241, L23 Margon et al., (1971a), Ap. J. 169, L23 Margon et al., (1971b), Ap. J. 169, L45 Margon et al., (1972a), Ap. J. 174, L141 Margon et al., (1972b), Ap. J. 174, 471 Margon et al., (1973), Ap. J. 185, L113 Margon et al., (1974), Ap. J. 191, L117 Margon et al., (1976), Ap. J. 208, L35 Margon et al., (1978a), A.J. 83, 1021 Margon et al., (1978b), Ap. J. 224, L43 Margon et al., (1978c), Ap. J. 224, 167 Margon et al., (1978d), IAUC 3246 Margon et al., (1979), Ap. J. 233, L63 Margon, (1978e), Ap. J. 219, 613 Mark et al., (1969), Ap. J. 155, L143 Markert et al., (1973), Ap. J. 184, L67 Markert et al., (1975), Ap. J. 196, L55 Markert et al., (1976a), Ap. J. 206, 265 Markert et al., (1976b), Ap. J. 208, L115 Markert et al., (1977), Ap. J. 218, 801 Markert et al., (1983), Ap. J. 275, 571 Marscher et al., (1979a), Ap. J. 233, 498 Marscher et al., (1981a), Ap. J. 249, 406 Marshall et al., (1978), Nat. 275, 624

Marshall et al., (1979b), Ap. J. Suppl. 40, 657 Marshall et al., (1979c), Ap. J. 230, L145 Marshall et al., (1980), MNRAS 193, 7P Marshall et al., (1981b), MNRAS 194, 987 Marshall et al., (1981c), Ap. J. 245, 840 Marshall et al., (1981d), Nat. 293, 379 Marshall et al., (1983), Ap. J. 269, L31 Mason et al., (1974), Ap. J. 192, L65 Mason et al., (1976), MNRAS 177, 513 Mason et al., (1979a), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.121 Mason et al., (1979b), Ap. J. 230, L163 Mason et al., (1982a), Ap. J. 255, 603 Mason et al., (1982b), Ap. J. 262, 253 Mason et al., (1983), Ap. J. 264, 575 Mathewson et al., (1973), Ap. J. 180, 725 Matsuoka et al., (1974), Nat. 250, 38 Mauder, (1975), Ap. J. 195, L27 Mauder, (1976), IAUC 2946 Maurer et al., (1982), Ap. J. 254, 271 Mayer et al., (1970), Ap. J. 159, L115 Mayo et al., (1976), IAUC 2957 Maza et al., (1978), Ap. J. 224, 368 McClintock et al., (1978a), Ap. J. 223, L75 McClintock et al., (1980), Ap. J. 235, L81 McClintock et al., (1971), Ap. J. 166, L73 McClintock et al., (1982), Ap. J. 258, 245 McClintock et al., (1976), Ap. J. 206, L99 McClintock et al., (1981), Ap. J. 243, 900 McClintock et al., (1978b), IAUC 3251 McClintock et al., (1977a), Ap. J. 216, L15 McClintock et al., (1977b), Nat. 270, 320 McClintock, (1977c), IAUC 3088 McCray et al., (1982), Ap. J. 262, 301 McGee et al., (1972), Aus. J. Phys. 25, 619 McKee et al., (1980), Ap. J. 242, 843 Meegan et al., (1979), Ap. J. 233, 510 Meekins et al., (1969), Ap. J. 157, 197 Meekins et al., (1971), Nat. 231, 107 Meekins et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.205 Meekins et al., (1983), Ap. J. in press Melnick et al., (1975), Ap. J. 198, L97 Michalsky et al., (1975), Ap. J. 198, L101 Middleditch et al., (1981), Ap. J. 244, 1001 Middleditch et al., (1982), IAUC 3745 Milgrom, (1979), Astr. and Ap. 76, L3 Miller et al., (1977a), Ap. J. 217, 382 Miller, (1975), Ap. J. 201, L109 Miller, (1977b), Ap. J. 212, 34 Miller, (1979), Ap. J. 227, 52 Mills et al., (1977c), Aus. J. Phys. 30, 509

Milne et al., (1970), Austr. J. Phys. 23, 425 Milne et al., (1975), Austr. J. Phys. 28, 209 Mitchell et.al., (1977), MNRAS 181, 25P Mitchell et al., (1979), MNRAS 189, 329 Mitchell et al., (1980), Ap. J. 236, 730 Moffat et al., (1973), Astr. and Ap. 23, 433 Montmerle et al., (1983), Ap. J. 269, 182 Mook et al., (1971), Ap. J. 163, L69 Mook et al., (1975), Ap. J. 197, 425 Moroz, (1964), Sov. Astr. - AJ 7, 755 Motch et al., (1981), Astr. and Ap. 100, 277 Motch et al., (1982), Astr. and Ap. 109, L1 Mouchet et al., (1980), Astr. and Ap. 90, 113 Mufson et al., (1980), Ap. J. 241, 74 Mufson et al., (1981), Ap. J. 248, L61 Mufson et al., (1983), Preprint Murakami et al., (1980), Ap. J. 240, L143 Murdin et al., (1974), MNRAS 169, 23 Murdin et al., (1980), MNRAS 192, 709 Murray et al., (1976), Ap. J. 210, 230 Murray et al., (1979), Ap. J. 234, L69 Mushotzky et al., (1978c), NASA Tech Memo 79551 Mushotzky et al., (1977), Ap. J. 211, L129 Mushotzky et al., (1978b), Ap. J. 226, L65 Mushotzky et al., (1979), Ap. J. 232, L17 Mushotzky et al., (1978a), Ap. J. 220, 790 Mushotzky et al., (1978d), Ap. J. 225, 21 Mushotzky et al., (1981), Ap. J. 244, L47 Mushotzky et al., (1980a), Ap. J. 235, 377 Mushotzky et al., (1980b), Ap. J. 239, L5 Mushotzky, (1982), Ap. J. 256, 92 Nagase et al., (1982), Ap. J. 263, 814 Naranan et al., (1977), Ap. J. 213, L53 Nelson et al., (1977), Ap. J. 212, 215 Neugebauer et al., (1969), Ap. J. 156, L115 Newell et al., (1976), Ap. J. 208, L55 Nolan et al., (1981), Ap. J. 246, 494 Nolan et al., (1982), Ap. J. 262, 727 Noonan, (1973), A.J. 78, 26 Noonan, (1981), Ap. J. Suppl. 45, 613 Nousek et al., (1983), Ap. J. 226, L39 Nugent et al., (1983), Ap. J. Suppl. 51, 1 Nulsen et al., (1979), MNRAS 189, 183 O'Dell, (1962), Ap. J. 135, 809 Oda et al., (1971), Ap. J. 166, L1 Oda, (1965), Nat. 205, 554 Ogelman et al., (1977), Astr. and Ap. 58, 385 Oke et al., (1979), Ap. J. 231, L13 Oke, (1978), Ap. J. 219, L97 Osmer, (1978), Ap. J. 226, L79 Osterbrock et al., (1975), Ap. J. 197, 535 Osterbrock, (1977), Ap. J. 215, 733 Pacholczyk, (1978), Hdbk. of Radio Sources, Pachart Press

Pakull, (1976), IAUC 3017 Palmieri et al., (1975), Ap. J. 202, 494 Parkes et al., (1977), MNRAS 179, 55 Parkes et al., (1978), MNRAS 184, 73P Parkes et al., (1980), MNRAS 190, 537 Parkinson et al., (1974), Nat. 249, 746 Parsignault et al., (1972), Nat. Phys. Sci. 239, 123 Parsignault et al., (1976), Symp. on X-ray Binaries, (NASA Pub. Sp-389:GSFC), p.267 Parsignault et al., (1978), Ap. J. 225, 970 Patterson et al., (1978), Ap. J. 226, L137 Patterson et al., (1981b), Ap. J. 245, 618 Patterson et al., (1981a), Ap. J. 243, L83 Patterson et al., (1984), Ap. J. (in press) Pearson et al., (1981), Nat. 290, 365 Pedersen et al., (1982), Ap. J. 263, 340 Pelling, (1973), Ap. J. 185, 327 Pennypacker, (1981), Ap. J. 244, 286 Penston et al., (1975), MNRAS 172, 377 Perotti et al., (1980), Ap. J. 239, L49 Perotti et al., (1981), Ap. J. 247, L63 Perrenod et al., (1981), Ap. J. 247, L1 Persi et al., (1979), MNRAS 187, 293 Pesch, (1976), IAUC 3023 Peterson et al., (1975), A.J. 80, 427 Petre et al., (1982), Ap. J. 258, 22 Petro et al., (1981), Ap. J. 251, L7 Pettersen, (1976), Catalog of Flare Star Data, Rept 46, Inst. Theor. Ap., Blindern-Oslo Phillips, (1979), Ap. J. 227, L121 Phillips, (1980), Ap. J. 236, L45 Piccinotti et al., (1982), Ap. J. 253, 485 Pineda et al., (1980), Ap. J. 237, 414 Pounds et al., (1975), MNRAS 172, 473 Pravdo et al., (1976), Ap. J. 206, L41 Pravdo et al., (1977a), Ap. J. 215, L61 Pravdo et al., (1977b), Ap. J. 216, L23 Pravdo et al., (1978), Ap. J. 225, 988 Pravdo et al., (1979a), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.219 Pravdo et al., (1979b), Ap. J. 231, 912 Pravdo et al., (1980a), Ap. J. 235, L9 Pravdo et al., (1980b), Ap. J. 237, L71 Pravdo et al., (1981), Ap. J. 248, 591 Pravdo et al., (1984), Ap. J. (in press) Priedhorsky et al., (1983), Nat. 303, 681 Priedhorsky et al., (1978), Ap. J. 219, 597 Priedhorsky, (1977), Ap. J. 212, L117 Primini et al., (1981), Ap. J. 243, L13 Proctor et al., (1978), MNRAS 185, 745 Puetter et al., (1981), Ap. J. 243, 345 Purton et al., (1977), MNRAS 180, 97P Pye et al., (1976), Nat. 260, 410

Rankin et al., (1974), Ap. J. 193, L71 Rapley et al., (1974), Ap. J. 191, L113 Rappaport et al., (1976), Ap. J. 208, L119 Rappaport et al., (1971b), Ap. J. 168, L43 Rappaport et al., (1971c), Ap. J. 169, L93 Rappaport et al., (1978b), IAUC 3171 Rappaport et al., (1977), Ap. J. 217, L29 Rappaport et al., (1978a), Ap. J. 224, L1 Rappaport et al., (1974), Ap. J. 187, L5 Rappaport et al., (1971a), Ap. J. 168, L17 Rappaport et al., (1975), Ap. J. 196, L15 Reichert et al., (1981), Ap. J. 247, 803 Reid et al., (1980), A.J. 85, 1062 Reid et al., (1982), Ap. J. 261, 485 Richards et al., (1969), Nat. 222, 551 Ricker et al., (1973), Ap. J. 184, 237 Ricker et al., (1975a), Ap. J. 197, L83 Ricker et al., (1976a), Ap. J. 204, L73 Ricker et al., (1976b), Ap. J. 207, 333 Ricker et al., (1978), Nat. 271, 35 Ricketts et al., (1975b), Nat. 256, 631 Ricketts et al., (1976c), Nat. 259, 546 Ricketts et al., (1979), MNRAS 186, 233 Rieke et al., (1975), Ap. J. 200, L67 Rieke et al., (1977), Ap. J. 218, L37 Rieke, (1972), Ap. J. 176, L95 Rose et al., (1979), Ap. J. 231, 919 Rose, (1976), Astr. and Ap. Suppl. 23, 109 Rosenberg et al., (1975), Nat. 256, 628 Rosenberg, (1970), MNRAS 151, 109 Rothschild et al., (1981), Ap. J. 250, 723 Rothschild et al., (1977), Ap. J. 213, 818 Rothschild et al., (1974), Ap. J. 189, L13 Rowan-Robinson et al., (1975), MNRAS 170, 199 Rudy et al., (1982), Ap. J. 257, 570 Ryckman et al., (1977), Nat. 266, 431 Ryle et al., (1978), Nat. 276, 571 Sadeh et al., (1979a), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.209 Sadeh et al., (1979b), Nat. 278, 436 Sadeh et al., (1982a), Ap. J. 257, 214 Sadeh et al., (1982b), Ap. J. 258, 770 Samimi et al., (1979), Nat. 278, 434 Sandage et al., (1966), Ap. J. 146, 316 Sanduleak et al., (1974), Ap. J. 187, L73 Sanduleak et al., (1977), IAUC 3134 Sanduleak et al., (1976), IAUC 3023 Sanford et al., (1975), MNRAS 173, 9P Sarazin et al., (1982), Ast. and Ap. 108, L7 Schmidt et al., (1983), Ap. J. 269, 352 Schneider et al., (1980), Ap. J. 238, 946 Schnopper et al., (1978), AP. J. 222, L91 Schnopper et al., (1977a), Ap. J. 215, L7

Schnopper et al., (1977b), Ap. J. 217, L15 Schnopper et al., (1970), Ap. J. 161, L161 Schreier et al., (1971), Ap. J. 170, L21 Schreier et al., (1972), Ap. J. 172, L79 Schreier et al., (1976), Ap. J. 204, 539 Schreier et al., (1979), Ap. J. 234, L39 Schreier et al., (1982), Ap. J. 261, 42 Schwartz et al., (1972), Ap. J. 173, L51 Schwartz et al., (1978), Ap. J. 224, L103 Schwartz et al., (1979a), A.J. 84, 1560 Schwartz et al., (1979b), Ap. J. 229, L53 Schwartz et al., (1980c), A.J. 85, 549 Schwartz et al., (1980a), Ap. J. 238, L53 Schwartz et al., (1980b), Ap. J. 238, L59 Schwartz et al., (1981), MNRAS 196, 95 Schwartz et al., (1983), Ap. J. 266, 459. Schwarz et al., (1979c), Ap. J. 231, L105 Seaquist et al., (1979), A.J. 84, 1037 Seaquist et al., (1982), Ap. J. 260, 220 Seaquist, (1977), Ap. J. 211, 547 Serlemitsos et al., (1973), Ap. J. 184, L1 Seward et al., (1972), Ap. J. 178, 131 Seward et al., (1976a), MNRAS 175, 39P Seward et al., (1976b), MNRAS 177, 13P Seward et al., (1979), Ap. J. 234, L55 Seward et al., (1980), Nat. 287, 806 Seward et al., (1982), Ap. J. 256, L45 Shafter et al., (1980), Ap. J. 240, 612 Share et al., (1978a), IAUC 3190 Share et al., (1978b), IAUC 3169 Share et al., (1979a), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.535 Share et al., (1979b), Nat. 282, 692 Shawl et al., (1980), Ap. J. 239, L61 Shen et al., (1972), Ap. J. 171, 457 Shields et al., (1972), Ap. J. 176, 75 Shuder, (1980), Ap. J. 240, 32 Shulman et al., (1971), Ap. J. 168, L49 Shulman et al., (1975), Ap. J. 199, L101 Shulman et al., (1976), Ap. J. Lett. 17, 15 Shulman et al., (1979a), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.337 Shulman, (1979b), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.423 Skinner et al., (1980), Ap. J. 240, 619 Slingo, (1974), MNRAS 168, 307 Smith et al., (1976), Pub. ASP. 88, 621 Snijders et al., (1979), MNRAS 189, 873 Snyder et al., (1978), Ap. J. 222, L13 Snyder et al., (1980), Ap. J. 237, L11 Snyder et al., (1982), Ap. J. 259, 38

Sofia, (1974), Ap. J. 188, L45 Soifer et al., (1979), Nat. 278, 231 Spangler et al., (1977), A.J. 82, 989 Speybroeck et al., (1979), Ap. J. 234, L45 Spinrad, (1977), P.A.S.P. 89, 116 St.John, (1976), Ap. J. 208, L31 Staelin et al., (1968), Science 162, 1481 Stark et al., (1976), MNRAS 174, 35P Stark et al., (1978), MNRAS 182, 23P Staubert et al., (1975), Ap. J. 201, L15 Staubert et al., (1980a), Ap. J. 239, 1010 Stauffer et al., (1980b), Ap. J. 235, 347 Steiner et al., (1981a), Ap. J. 249, L21 Steiner et al., (1984), Ap. J. (in press) Steiner, (1981b), Ap. J. 250, 469 Stier et al., (1976), Ap. J. 206, 257 Strickman et al., (1979), Ap. J. 230, L15 Strickman et al., (1980), Ap. J. 240, L21 Strickman et al., (1982), Ap. J. 253, L23 Sulentic et al., (1973), The Revised New General Catalog of Nonstellar Astronomical Objects(Tuscon:U. of Arizona) Swank et al., (1976a), IAUC 3000 Swank et al., (1976b), IAUC 3010 Swank et al., (1976c), IAUC 2963 Swank et al., (1977), Ap. J. 216, L71 Swank et al., (1978), MNRAS 182, 349 Swank et al., (1981), Ap. J. 246, 208 Swank et al., (1982), Ap. J. 259, L67 Swank et al., (1984), Ap. J. 277, 274 Szkody et al., (1977), Ap. J. 212, L113 Szkody et al., (1980), Ap. J. 241, 1070 Szkody et al., (1982), Ap. J. 257, 686 Tananbaum et al., (1971b), Ap. J. 168, L25 Tananbaum et al., (1972b), Ap. J. 177, L5 Tananbaum et al., (1976), Ap. J. 209, L125 Tananbaum et al., (1972a), Ap. J. 174, L143 Tananbaum et al., (1979), Ap. J. 234, L9 Tananbaum et al., (1971a), Ap. J. 165, L37 Tananbaum et al., (1978), Ap. J. 223, 74 Tapia et al., (1982), IAUC 3685 Tapia, (1977), Ap. J. 212, L125 Tapia, (1979), IAUC 3327 Telesco et al., (1980), Ap. J. 235, 392 Tennant et al., (1981), Ap. J. 251, 15 Terrell, (1972), Ap. J. 174, L35 Thackeray, (1978), MNRAS 182, 11P Thomas et al., (1975), MNRAS 170, 569 Thomas et al., (1978), MNRAS 185, 29P Thomas et al., (1979), MNRAS 187, 299 Thompson et al., (1977), Ap. J. 213, 252 Thorne et al., (1975), Ap. J. 195, L101 Thorstensen et al., (1980), Ap. J. 238, 964 Thorstensen et al., (1982), Ap. J. 253, 756

Thorstensen et al., (1979), Ap. J. 233, L57 Thorstensen et al., (1978), IAUC 3253 Toor et al., (1970), Ap. J. 160, 209 Toor et al., (1971), Ap. J. 168, L15 Toor et al., (1976), Ap. J. 207, 96 Toor, (1977), Ap. J. 215, L57 Toor, (1980), A.J. 85, 184 Trimble, (1968), A.J. 73, 535 Trumper et al., (1978), Ap. J. 219, L105 Tsikoudi, (1982), Ap. J. 262, 263 Tucker et al., (1973), Ap. J. 180, 715 Tuohy et al., (1978), Ap. J. 226, L17 Tuohy et al., (1979), Ap. J. 234, L101 Tuohy et al., (1982), Ap. J. 260, L65 Tuohy, (1976), MNRAS 174, 45P Tzanetakis et al., (1978), MNRAS 185, 63P Ulmer et al., (1972), Ap. J. 178, L121 Ulmer et al., (1973a), Ap. J. 181, L33 Ulmer et al., (1973b), Ap. J. 184, L117 Ulmer et al., (1974a), Ap. J. 189, 339 Ulmer et al., (1974b), Ap. J. 191, 593 Ulmer et al., (1976), Ap. J. 208, 47 Ulmer et al., (1979a), Ap. J. 227, L73 Ulmer et al., (1979b), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.405 Ulmer et al., (1980a), Ap. J. 235, 351 Ulmer et al., (1980b), Ap. J. 235, L159 Ulmer et al., (1980c), Ap. J. 236, 58 Ulmer et al., (1981a), Ap. J. 243, 681 Ulmer et al., (1981b), Ap. J. 246, L99 Ulmer, (1977), Ap. J. 218, L1 Ulrich et al., (1975), Ap. J. 198, 261 Ulrich, (1978), Ap. J. 222, L3 Urry et al., (1982), Ap. J. 253, 38 Vaiana et al., (1981), Ap. J. 245, 163 Van Den Bergh, (1976), Ap. J. 208, L17 Van Paradijs, (1978), Nat. 274, 650 Van der Klis et al., (1982), Astr. Ap. Suppl. 50, 129 Van der klis et al., (1980), Astr. and Ap. 88, 8 Vandenberg et al., (1973), Ap. J. 180, L27 Vidal et al., (1975), Pub. A. S. P. 87, 625 Vidal, (1973), Ap. J. 186, L81 Vidal, (1975), P.A.S.P. 87, 625 Villa et al., (1976), MNRAS 176, 609 Violes et al., (1982), Ap. J. 263, 320 Visvanathan et al., (1982), IAUC 3658 Voges et al., (1982), Ap. J. 263, 803 Wade et al., (1971), Ap. J. 170, 523 Wade et al., (1977), Ap. J. 215, 568 Wade et al., (1982), Bull. A.A.S. 14, 880 Walborn et al., (1982), Ap. J. 252, 156 Walborn, (1973), Ap. J. 179, L123

Walker, (1981), Ap. J. 248, 256 Walter et al., (1978), Nat. 274, 569 Walter et al., (1980), Ap. J. 236, 212 Walter et al., (1981a), Ap. J. 245, 671 Walter et al., (1982), Ap. J. 253, L67 Walter, (1976), IAUC 2959 Walter, (1981b), Ap. J. 245, 677 Ward et al., (1977), Astr. and Ap. 59, L19 Warner et al., (1980), MNRAS 190, 69P Warren et al., (1975), MNRAS 172, 41P Watson et al., (1978a), Ap. J. 221, L69 Watson et al., (1978b), MNRAS 184, 79P Watson et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.101 Watson et al., (1981a), Ap. J. 250, 142 Watson et al., (1981b), MNRAS 195, 197 Watts et al., (1980), MNRAS 191, 25P Webster et al., (1972), Nat. 235, 37 Weedman et al., (1972), Ap. J. 176, L19 Weedman, (1977), Ann. Rev. Astr. Ap. 15, 69 Weedman, (1978), MNRAS 184, 11P Weedman, (1979), invited talk at Montreal IAU General Assembly Weiler et al., (1978), Ap. J. 225, 919 Weiler et al., (1979), A.J. 84, 1372 Weisskopf et al., (1978a), Ap. J. 220, L117 Weisskopf et al., (1978b), Ap. J. 221, 228 Weistrop et al., (1979), Ap. J. 233, 504 Weistrop et al., (1981), Ap. J. 249, 3 Westerlund et al., (1969), A.J. 74, 335 Wheaton et al., (1978), IAUC 3238 Whelan et al., (1977), MNRAS 181, 259 White et al., (1976a), MNRAS 176, 91 White et al., (1976b), Ap. J. 209, L119 White et al., (1977a), IAUC 3095 White et al., (1977b), Nat. 267, 229 White et al., (1978a), Nat. 274, 569 White et al., (1978b), Nat. 274, 664 White et al., (1978c), Ap. J. 220, 600 White et al., (1980a), MNRAS 193, 731 White et al., (1980b), Ap. J. 241, 864 White et al., (1980c), Ap. J. 239, 655

White et al., (1981a), Ap. J. 249, L25 White et al., (1981b), Ap. J. 247; 994 White et al., (1982a), Ap. J. 263, 277 White et al., (1982b), Ap. J. 253, L61 White et al., (1983a), IAUC 3806 White et al., (1983b), IAUC 3882 White, (1978d), Nat. 271, 38 White, (1978e), Nat. 271, 38 White, (1981c), Ap. J. 244, L85 Whiteoak et al., (1968), Ap. J. 154, 807 Williams et al., (1979), Nat. 281, 48 Williams et al., (1982), Ap. J. 252, 277 Willmore et al., (1974), MNRAS 169, 7 Wilson et al., (1976), IAUC 2965 Wilson et al., (1977), Ap. J. 215, L111 Wilson et al., (1979a), MNRAS 187, 109 Wilson et al., (1981), A.J. 86, 1289 Wilson, (1972), Ap. J. 174, L27 Wilson, (1979b), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.229 Wing, (1973), A.J. 78, 684 Winkler et al., (1975), Ap. J. 199, L139 Winkler et al., (1976), Ap. J. 204, L111 Winkler et al., (1981a), Ap. J. 245, 574 Winkler et al., (1981b), Ap. J. 246, L27 Winkler, (1978), Ap. J. 221, 220 Wolff et al., (1974), Ap. J. 193, L53 Wolff et al., (1975), Ap. J. 202, L15 Woltjer, (1972), Ann. Rev. Astr. Ap. 10, 129 Wood et al., (1978a), IAUC 3169 Wood et al., (1978b), IAUC 3203 Wood et al., (1979), in (COSPAR) X-Ray Astronomy, ed. W. Baity and L. Peterson (Oxford: Pergamon Press) p.97 Worrall et al., (1980), Ap. J. 240, 421 Worrall et al., (1981a), Ap. J. 247, L31 Worrall et al., (1981b), Ap. J. 243, 53 Wright et al., (1975), Ap. J. 200, 171 Young et al., (1982), Ap. J. 252, 269 Zamorani et al., (1981), Ap. J. 245, 357 Zarnecki et al., (1978), Ap. J. 219, L17 Zaumen et al., (1972), Nat. 235, 378

Non-X-ray cross references are made on several bases. Whenever an identification has been firmly established, for example, by a precise position from a modulation collimator or from the Einstein Observatory, it is always shown, but so are many additional tentative identifications. Some of these have been suggested by earlier work (in which case the earlier literature appears either in Table 5 or Table 6) and the remainder have been found by searching the non-X-ray catalogs in Table 5. Sources found in such searches are not shown invariably but rather are required to meet additional criteria appropriate to what is presently known concerning the class to which the candidate counterpart belongs. Thus, quasars fainter than 17th magnitude are not reported, nor are galaxies fainter than 10th magnitude unless there is reason to suspect they either contain active galactic nuclei or are members of small groups or clusters that would have escaped cataloging in the cluster catalogs listed in Table 5. This procedure may tend to suppress identification of new source classes, but it has the compensating virtue of minimizing the number of incorrect identifications proposed in the list. Objects shown as counterparts all belong to classes for which there is a demonstrated excess number of coincidences over chance expectation. Thus for example, Abell clusters in distance class 6 are reported because there is a highly significant excess number of such clusters falling inside 1H boxes.

Whenever "(R)" appears in Table 4, it signifies that additional references and comments appear in Table 6. The entries in Table 6 are intended primarily to provide a sketch of the basic background and current state of knowledge concerning the sources, to direct readers to further literature, and to clarify ambiguities. They are not intended as a comprehensive bibliography, and many references are omitted. Catalog references appearing in Table 4 are, in general, not repeated in Table 6. Effort has been made to include in Table 6 early detections, the identification history, references establishing key parameters such as distance, spectrum, and temporal variability characteristics, and the basic classification of a source. We have also made special effort to provide cross references to other HEAO 1 literature wherever possible, since other HEAO 1 observations are simultaneous with and complementary to those shown in the catalog.

## V. DISCUSSION

No detailed statistical analysis of the catalog is presented here. We offer brief remarks on the makeup of the catalog by source classes and on comparison with other catalogs and surveys.

Source classification summaries for the catalog appear in Table 7. Totals shown there are made by assuming that all proposed identifications in the catalog are correct (although there must in reality be a number of coincidental misidentifications). No new source class appears in that table, i.e., all classes occurring there were represented by at least one instance in literature published prior to the launch of *HEAO 1*. The source classes with soft spectra (for example, supernova remnants and stars with coronal activity) are seen in greater numbers than in the *Uhuru* and *Ariel V* catalogs, and individual members of these classes often appear at higher flux levels than in those catalogs (e.g., the Puppis supernova remnant).

 TABLE 7

 Classifications of Identified Sources

Active Galactic Nuclei:		
BL Lacertae objects	13	
N Galaxies	4	
Quasars	20	
Seyfert galaxies	37	
Other AGNs	16	
Clusters, Groups, and Galaxies:		
Clusters	158	
Loose groups	14	
Other galaxies	4	
Binary X-Ray Sources (galaxy plus Magellanic clouds):		
Black hole candidates	5	
Binary pulsars	14	
Cataclysmic variables	10	
X-ray bursters	16	
Globular clusters	2	
Transients	2	
Other compact sources	49	
Supernova Remnants:	22	
Stellar Coronae:	28	
RS CVn systems	12	
Flare stars	6	
W Ursae Majoris stars	1	
Other stars	4	
Star formation regions, associations	5	
No Classification Proposed:	428	

Both of these effects are consequences of the response of the A-1 instrument to soft X-rays.

There remain 428 sources for which no classifications are proposed at this time. Of this total, ~ 80 are consistent with being confirmations of unidentified sources appearing in earlier catalogs and *HEAO 1* literature. The unidentified sources are all fainter than  $1.2 \times 10^{-2}$  counts cm⁻² s⁻¹. Of 66 sources in the range from 0.6 to  $1.2 \times 10^{-2}$  counts cm⁻² s⁻¹, or ~1.5-3 UFU, 27 are seen in other catalogs. Below this limit, the coverage in other surveys becomes uneven and the fraction of confirmations drops, as would be expected.

One possible interpretation of the unidentified sources is that, when identified, they will yield primarily further instances of the source classes appearing in Table 7. This is supported by several considerations. First, the surveying of the optical sky for the counterpart classes is, in general, uneven. The most thoroughly surveyed class is probably clusters of galaxies. The catalog shows 114 members of this class at fluxes above  $4 \times 10^{-3}$  counts cm⁻² s⁻¹; the number-flux relation observed in the catalog for clusters alone follows a power-law of index of -1.5 down to about this flux, but the count increases much more slowly as flux is further decreased. At a flux a factor of 2 lower, a deficiency of  $\sim 150$  clusters is evident from comparison of the actual count with an extrapolation of the power law. Two hundred nine unidentified sources fall in this same flux range. Hence, it is possible that many of the unidentified sources are clusters of galaxies. (However, it should also be noted that the Einstein medium sensitivity survey (Maccacaro et al. 1982) found that the ratio of clusters

to active galaxies declines significantly at flux levels well below our threshold, so that extrapolation of the power law is not necessarily correct.) Similar conclusions could be drawn for the other classes, but even more strongly, since they are far less thoroughly surveyed than the clusters. For example, only optically identified radio sources have been listed as possible counterparts, and these identifications are more complete for the northern than for the southern hemisphere. The medium level and deep surveys from the Einstein Observatory further support the idea that the remaining identifications will be primarily clusters, various kinds of active galactic nuclei, and stars, although the proportion may change at lower fluxes, and may vary with galactic latitude.

There is some possibility that extreme examples of long-term source variability remain to be demonstrated within the source classes already recognized. This conclusion derives in part from comparison with the fourth Uhuru and second Ariel V catalogs. Of 107 sources in the 2A catalog, we detect all but eight. Of these, two are known to be highly variable. There are 101 sources in the 4U catalog not detected by HEAO A-1. We have excluded from this total several known transients and highly variable objects, plus two sources seen in the A-1 data, but not appearing in the catalog, so that the total reflects the number whose absence cannot be accounted for in terms of previously established intrinsic variability. Of these 101 sources, 60 are at galactic latitudes greater than 15°, and at least 37 carry no indication of source variability, source confusion ("C"), or marginal acceptance ("X") in the 4U catalog. If these sources had been present at the flux levels shown in the 4U catalog, they would have been readily detectable in A-1; moreover, in searching the 4U catalog for counterparts we have taken not only 4U error boxes that geometrically intersect our own but also those judged to be in sufficient proximity that the same source may be responsible for both detections. Thus, the only recourses for explaining the nondetections are that the unconfirmed sources were spurious or that they had decreased in brightness at the epoch of HEAO 1. Decreases by factors of 3-10 are required to account for the discrepancy. Since the unconformed Uhuru sources are by no means limited to those flagged as confused or marginal, source variability appears the more plausible explanation. If this is correct, then the present catalog may well contain further examples of this same type, since a corresponding number of sources should have brightened to levels above the HEAO A-1 threshold. It is possible that differences in the time interval over which the satellite scans a given region affect the number of detections of this kind appearing in the resulting catalog. The scanning pattern of HEAO 1 is favorable for detection of sources that have active periods lasting a few days. It is partly because of this that the known flare stars and RS CVn systems appearing in the catalog were able to be identified. These are issues that will be pursued in further work.

The authors wish to express their appreciation and gratitude to many colleagues and coworkers who were involved with HEAO A-1 during the payload construction, mission operations, and production of the catalog. We thank particularly D. Brousseau, E. McDonald, D. Moody, and R. Giroux for engineering and management assistance during the hardware development and subsequent mission. R. Wagner and his associates at New Mexico State University provided further electronic design and fabrication support. Support with technical aspects of mission operations was provided by C. McDonald, M. Swinney, W. Griffith, F. Feldt, and K. Scala. W. Evans, R. Morin, R. Hedler, S. Shulman, R. Kinzer, and W. Johnson developed much of the data processing system used to prepare the data base; G. Share, R. Kinzer, W. Snyder, C. Ambruster, R. Cruddace, and M. Strickman helped with preparation of data summations; J. Samimi and R. Kinzer carried much of the burden of determining best fit collimator response functions; technical support in data processing was provided by J. Johnson, C. McDonald, M. Stitts, L. Stanbery, and S. Klein. R. Kinzer, C. Ambruster, W. Snyder, P. Hertz, M. Kowalski, and J. Beall have generously provided many consultations regarding source identifications. We thank S. Klein and T. Long for production assistance in preparing the catalog tables, and we thank M. Wesley and J. Mangrum for typing the manuscript. Finally, we take this opportunity to express our gratitude to the many NASA personnel who helped make the HEAO 1 mission successful and particularly those associated with the HEAO Project Office at Marshall Space Flight Center. This work was supported by the National Aeronautics and Space Administration and the Office of Naval Research.

### REFERENCES

- Abell, G. 1958, Ap. J. Suppl, 3, 211. Amnuel, P. R., Guseinov, O. H., and Rakhamimov, Sh. Yu. 1979, Ap. J. Suppl., 41, 327.
- Apparao, K., Bradt, H., Dower, R., Doxsey, R., Jernigan, J., and Li, F. 1978, Nature, 271, 225.
- Arp, H. 1965, in Stars and Stellar Systems, Vol. 5, Galactic Structure, ed. A. Blaauw and M. Schmidt (Chicago: University of Chicago Press), p. 401.
- . 1966, Ap. J. Suppl., 14, 1. Bennett, A. S. 1962, Mem. R.A.S., 68, 163.

- Bradt, H. 1978, Proc. AAS Meeting, Austin. Bradt, H., Apparao, K., Dower, R., Doxsey, R., Jernigan, J., and Markert, T. 1977, Nature, 269, 496.
- 1. 1717, Nature, 209, 490.
  Bradt, H., Doxsey, R., and Jernigan, J. 1979, in X-Ray Astronomy, Proc. 21st Plenary Meeting of the Committee on Space Research, ed. W. Baity and L. Peterson (New York: Pergamon), p. 3.
  Burbidge, G., Crowne, A., and Smith, H. 1977, Ap. J. Suppl., 33, 113.
  Clark, D., and Caswell, J. 1976, M.N.R.A.S., 174, 267.
  Cooke, B., et al. 1978, M.N.R.A.S., 182, 489.
  de Vancouleurs, G. 1964. Petersone Cashes of Pricht Calculate (1st ed.).

- de Vaucouleurs, G. 1964, Reference Catalog of Bright Galaxies (1st ed.; Austin: University of Texas Press).

- Dower, R., Apparao, K., Bradt, H., Doxsey, R., Jernigan, J., and Kulik, J. 1978, Nature, 273, 364.
- Doxsey, R., Apparao, K., Bradt, H., Dower, R., and Jernigan, J. 1977a, Nature, 269, 112.
  - _. 1977b, Nature, 270, 586.
- Dreyer, J. L. E. 1895, Index Catalog of Nebulae Found in the Years 1888 to 1894; with Notes & Corrections to the New General Catalogue (Mem. R.A.S., 51, 185) (reprinted by the Royal Astronomical Society, London [1962]).
- . 1908, Second Index Catalogue of Nebulae & Clusters of Stars, Containing Objects Found in the Years 1895 to 1910; with Notes & Corrections to the New General Catalogue and to the Index Catalogue for 1888 to 1894 (Mem. R.A.S., 59, 105) (reprinted by the Royal Astronomical Society, London [1962]).

- nomical Society, London [1962]). Duus, A., and Newell, B. 1977, Ap. J. Suppl., 35, 209. Fairall, A. P. 1970, M.N.A.S. So. Africa, 29, 48. Forman, W., Jones, C., Cominsky, L., Julien, P., Murray, S., Peters, G., Tananbaum, H., and Giacconi, R. 1978, Ap. J. Suppl., 38, 357. Friedman, H. 1979, Proc. Roy. Soc. London, A, 366, 423. Gliese, W. 1969, Catalogue of Nearby Stars (Astr. Rechen-Institute, Heidelburg, Rept. No. 22).

507W

.56.

1984ApJS

- Ilovaisky, S., and Lequeux, J. 1972a, Astr. Ap., 18, 169.
- ______. J. 1972 b, Astr. Ap., 20, 347. Jernigan, J., Apparao, K., Bradt, H., Doxsey, R., and McClintock, J. 1977, Nature, 270, 231.
- Jernigan, J., Apparao, K., Bradt, H., Doxsey, R., Dower, R., and McClintock, J. 1978, Nature, 272, 701.Klemola, A. 1969, Ap. J., 74, 804.
- Kowal, C. T., Huchra, J., and Sargent, W. C. W. 1976, Pub. A.S.P., 88, 521.
- Kowal, C. T., Zwicky, F., Sargent, W. C. W., and Searle, L. 1974, Pub. A.S.P., 86, 516.
- Kukarkin, B., et al. 1970, General Catalogue of Variable Stars (3d. ed.; Moscow: Soviet Academy of Sciences).
- Luyten, W. J. 1970, White Dwarfs (Minneapolis: University of Minnesota Press).
- Maccacaro, T., et al. 1982, Ap. J., 253, 504. Markarian, B. 1974, Astrofizika, 10, 307.

- Markett T., et al. 1979, Ap. J. Suppl., **39**, 573. Marshall, F., Boldt, E., Holt, S., Mushotzky, R., Pravdo, S., Rothschild, R., and Serlemitsos, P. 1979, Ap. J. Suppl., **40**, 657.

- Masnou, J. L., et al. 1977, Proc. 12th ESLAB Symposium (ESA Spec. Pub. 124).
- Nuclei, J. F., Wood, K. S., Hedler, R. L., Byram, E. T., Yentis, D. J., Chubb, T. A., and Friedman, H. 1984, Ap. J., 278, 288.
  Neugebauer, B., and Leighton, R. 1969, NASA SP-3047.
- Pettersen, B. R. 1976, *Catalog of Flare Star Data* (Institute of Theoretical Astrophisics, Blinder-Oslo, Rept. No. 46). Price, S., and Walker, R. 1976, AFGL-TR-76-0208.
- Seward, F., Page, C., Turner, M., and Pounds, K. 1976, M.N.R.A.S., 175, 39P. Stein, W., O'Dell, S., and Strittmatter, P. 1976, Ann. Rev. Astr. Ap., 14,
- 173.
- Sulentic, J. W., and Tifft, W. G. 1973, The Revised New General Catalog of Nonstellar Astronomical Objects (Tuscon: University of Arizona Press). Veron, M., and Veron, P. 1974, Astr. Ap. Suppl., 18, 309. Wackerling, L. 1970, Mem. R.A.S., 73, 153.
- Weiler, K., and Johnston, K. 1980, M.N.R.A.S., 190, 269.

R. D. BLEACH, E. T. BYRAM, T. A. CHUBB, H. FRIEDMAN, D. P. MCNUTT, J. F. MEEKINS, H. W. SMATHERS, K. S. WOOD, and D. J. YENTIS: Naval Research Laboratory, Washington, DC 20375

M. MEIDAV: Department of Physics, Tel Aviv University, Tel Aviv, Israel