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ABSTRACT 
We consider a nonrelativistic potential theory for gravity which differs from the Newtonian theory. The 

theory is built on the basic assumptions of the modified dynamics, which were shown earlier to reproduce 
dynamical properties of galaxies and galaxy aggregates without having to assume the existence of hidden 
mass. The theory involves a modification of the Poisson equation and can be derived from a Lagrangian. The 
total momentum, angular momentum, and (properly defined) energy of an isolated system are conserved. The 
center-of-mass acceleration of an arbitrary bound system in a constant external gravitational field is indepen- 
dent of any property of the system. In other words, all isolated objects fall in exactly the same way in a 
constant external gravitational field (the weak equivalence principle is satisfied). However, the internal 
dynamics of a system in a constant external field is different from that of the same system in the absence of 
the external field, in violation of the strong principle of equivalence. These two results are consistent with the 
phenomenological requirements of the modified dynamics. We sketch a toy relativistic theory which has a 
nonrelativistic limit satisfying the requirements of the modified dynamics. 
Subject headings : cosmology — galaxies : internal motions — gravitation 

I. INTRODUCTION 

The direct application of Newtonian dynamics to astro- 
physical objects on the scale of galaxies and galaxy aggregates 
produces a paradox. Galactic rotation curves do not show the 
expected Keplerian falloff, virial masses for clusters of galaxies 
much exceed mass estimates from luminosities, etc. The con- 
ventional reply to these problems is that there are large quan- 
tities of “ dark mass ” in galaxy systems. However, it is also 
possible to cast the blame for the aforementioned discrepancies 
on the Newtonian theory. 

Over the years, deviations from Newtonian behavior in the 
nonrelativistic limit have been discussed in the literature on 
various occasions. Some recent references can be found in Will 
(1979). Particularly interesting in the present context is 
Newcomb’s suggestion to modify Newtonian gravity to explain 
the excess perihelion shift of Mercury (as described in Wein- 
berg 1972) as an alternative to effects of hidden matter. Such 
deviations were also brought up as possible explanations of the 
mass discrepancy in clusters and galaxies (e.g., Finzi 1963; 
Tohline 1983). As far as we know, all these suggested modifi- 
cations can be described, in the nonrelativistic case, as modifi- 
cations of the distance dependence of the gravitational field 
and are ruled out as the sole explanation of the mass discrep- 
ancy (see Paper II). 

It has been suggested (Milgrom 1983a, b, c, 1984, hereafter 
Papers I, II, III, IV, respectively) that if the motion of objects 
within galaxies, and of galaxies within groups and clusters, are 
described by a certain modified form of nonrelativistic 
dynamics (MOND), there is no need to assume the existence of 
hidden mass in appreciable quantities in these systems. In addi- 

1 Supported in part by a grant from the MINERVA Foundation. 

tion, many of the observed properties of galaxies follow as 
unavoidable consequences of MOND. 

The minimal set of assumptions, on which practically all of 
the results of Papers I-IV were based, is : 

a) A breakdown of Newtonian dynamics (second law and/or 
gravity) occurs in the limit of small accelerations. 

b) In this limit the acceleration, a, of a test particle in a 
gravitating system is given by a(a/a0) ~£N, where gN is the 
conventional gravitational field and a0 is a constant with the 
dimensions of acceleration. 

c) The transition from the Newtonian regime to the small 
acceleration asymptotic region occurs within a range of order 
a0 about a0. The value of a0 was determined (Paper II) to be 
approximately 2 x 10_8(Ho/50 km s_1 Mpc-1)2 cm s-2 

(which approximately equals cH0). 
It is important to realize that more than one interpretation 

can be given to this set of assumptions, and that more than one 
detailed scheme which embodies these assumptions will work 
successfully at the present stage of the analysis. 

The scheme used in Papers I-IV can be described in either of 
the following two ways. A modification of the law of inertia 

mfi(a/a0)a = F , (la) 

where F is an arbitrary static force field assumed to depend on 
its sources in the conventional way and m is the gravitational 
mass of the accelerated test particle. For gravity F = mgN, 
where #N = — V<pN and <pN is the gravitational potential 
deduced in the usual manner from the Poisson equation. Alter- 
natively, the MOND can be described as a modification of 
gravity leaving the law of inertia (ma = F) intact but such that 
for gravity, F — mg and g is a modified gravitational field 
derived from gN using the relation 

Ad/a0)g=gN- (lb) 
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The formulation expressed by equation (la) is equivalent to 
that of (lb) when only gravitational forces are present, but the 
two are, of course, not the same in general (see discussion in 
Paper I). The function n satisfies fi(x > 1) æ 1, so that Newto- 
nian dynamics is recovered in the limit of large accelerations, 
and 1) ~ x. Otherwise ¡j, remained unspecified except 
that it was assumed to be monotonie in its argument. Methods 
for determining ¡x observationally were discussed in Paper II. 

In cases of high symmetry (spherical, plane, or cylindrical), 
g as given by equation (lb) is derivable from a potential 
<p(£ = — V</>); however, in general, it is not. 

As explained in Paper I, the formulation given by equation 
(1) cannot be considered a theory, but only a successful 
phenomenological scheme for which an underlying theory is 
needed. To avoid problems with momentum conservation, the 
use of equation (1) was restricted to the description of the 
motion of light objects in the static mean field of a massive 
body. If one tries to apply this equation to describe an arbi- 
trary AT-body system, one encounters various problems. In par- 
ticular, momentum is not conserved. This fact has been 
brought up by many colleagues as an argument against 
MOND (see, e.g., Felten 1984). 

In this paper we present a model theory (derivable from a 
Lagrangian) which satisfies the basic requirements of MOND 
listed above. In this theory a0 and n are put in by hand; the 
theory thus does not make use of the near equality of a0 and 
cH0. The theory demonstrates that MOND can be formulated 
in a fashion which is internally consistent, and which is consis- 
tent with the usual conservation laws. We hope that it will be a 
useful step in the development of a more complete theory in 
which perhaps fi and a0 will be expressible in terms of more 
fundamental entities. 

Even in its present form, the theory makes important steps 
beyond the phenomenological scheme presented in Papers 
I-II. Besides the usual advantages which a Lagrangain theory 
offers (e.g., conservation jaws), it enables one to calculate (at 
least in principle) the dynamics of an arbitrary, nonrelativistic 
gravitating system. In particular, this theory can be shown to 
justify two important working assumptions which were made 
in Papers I-IV on a phenomenological basis (see §§ IV, V 
below): 

1. A composite particle (say a star or a cluster of stars) 
moving in an external field, say of a galaxy, moves like a test 
particle according to the MOND rules, even if within it the 
relative accelerations are large. This is the case, provided the 
mass of the particle is small compared with that of the galaxy. 

2. When a system is accelerated as a whole in an external 
field, the internal dynamics of the system is affected by the 
presence of the external field (even when this is constant so that 
no tidal effects are present). In particular, in the limit when the 
external (center-of-mass) acceleration of the system becomes 
much larger than a0, the internal dynamics approaches exact 
Newtonian behavior even when accelerations within the 
system are much smaller than a0. 

Newtonian gravity is recovered at the nonrelativistic limit of 
general relativity, and of a number of other relativistic theories 
of gravity. We, however, need a new relativistic theory of 
gravity which yields various aspects of MOND in the appro- 
priate limit. This is no trivial task, for there is no lore on the 
construction of theories with the specific non-Newtonian limit 
we seek. Such a theory is essential for two main reasons : (a) to 
help incorporate the principles of MOND into the framework 
of modern theoretical physics; (b) to provide tools for investi- 

gating cosmology in light of MOND. This last is particularly 
pressing since some of the arguments adduced in support of the 
MOND from the empirical viewpoint (in Paper III) have a 
cosmological aspect which cannot be treated self-consistently 
without a relativistic cosmology. 

In Appendix B, we describe briefly a relativistic theory the 
nonrelativistic limit of which (in a static universe) is basically 
the same as the theory which is the subject of the present paper. 
So far we have studied some of the properties of this theory 
superficially, and we present it here only to demonstrate that 
the requirements of the MOND can form the basis of a rela- 
tivistically invariant theory. 

In § II we present the nonrelativistic theory. In § III we 
discuss conservation laws. In § IV we consider the center of 
mass motion of composite systems in an external field. Section 
V describes some of the possible influences of an external accel- 
eration on the internal dynamics of a system. In § VI we discuss 
miscellaneous points and summarize our conclusions. 

II. THE FIELD EQUATIONS 

In Newtonian gravity test bodies move with an acceleration 
equal to #N = — V<pN, where (pN is the Newtonian gravitational 
potential. It is determined by the Poisson equation V2<pN = 
47rGp, where p is the mass density which produces <pN. The 
Poisson equation may be derived from the Lagrangian 

Ln — d3r{p(pN + (8jiG) HVcPn)2} . (2a) 

In searching for a modification of this theory we will want to 
retain the notion of a single potential cp from which acceler- 
ation derives. And, as in Newtonian gravity, it is desirable that 
cp be arbitrary up to an additive constant. The most general 
modification of LN which will yield these features is 

L pep + (8tcG) (2b) 

where ^(x2) is an arbitrary function. Note that a scale of 
acceleration is necessary unless we are in the Newtonian case. 

Variation of L with respect to cp with variation of <p van- 
ishing on the boundary yields 

V*W|V^|/a0)V^]=47rGp, (3) 

with /i(x) = ^'(x2), as the equation determining the modified 
potential. A test particle is assumed to have acceleration g = 
— \cp. We supplement equation (3) by the boundary condition 

I V(p|—► 0 as r—► oo. 
It is useful to write the field equation in terms of the unmod- 

ified Newtonian field #N = — V<pN, for the same mass distribu- 
tion, which satisfies the Poisson equation. By eliminating p we 
get 

V • [p{V(p/a0)\(p - V<pN] = 0 . (4) 

The expression in parentheses in equation (4) is thus a curl 
field, and we may write 

Kg/a0)g = £n + V x Ä . (5) 

We are now ready to make contact with equation (1) and show 
that the present theory satisfies the basic assumptions of the 
MOND. If the curl term in equation (5) can be neglected in a 
certain region of space, the acceleration of test particles as 
given by the field equation is the same as that given by equa- 
tion (1). We shall show in Appendix A that at large distances 
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from a bound object of total mass M the curl term in equation 
(5) decreases faster with r than the other two terms. We thus 
have in this limit 

H(g/a0)g = -Gr/r3 + 0(r"3) = sN + 0(r~3) , (6) 

as in equation (1). 
For our theory to satisfy the assumptions of MOND we 

identify fi in the field equation with that of equation (1). In 
particular, as we require ¡j,(x) & x for x <£ 1 ; we find for an 
arbitrary bound system of mass M that 

g -(MGa0)ll2r/r2 + 0(r“2), (7) 

and thus, in this limit, 

(p->{MGa0)112 In (r/r0) + 0(r-1), (8) 

where r0 is an arbitrary radius. This potential leads to an 
asymptotically constant circular velocity = (MGa0)1/4 as 
observed in the outskirts of spiral galaxies (see Paper II). 

The field equation (3) is nonlinear and difficult to solve in 
general. However, in all cases of high symmetry (i.e., spherical, 
plane, or cylindrical symmetry) the curl term in equation (5) 
vanishes identically and we have the exact result n(g/a0)g = gN 
identical to equation (lb). Solving for cp in such cases is 
straightforward. This result can be readily obtained for 
example by applying Gauss’s theorem to equation (4) on a 
surface of symmetry. Some of the important properties of the 
Newtonian field for systems of such symmetry can be carried 
over to the present theory. For example, the acceleration field 
at distance r from the center in a spherical system depends only 
on the total mass, M(r), interior to r, and in fact is given by 
ß(d/ao)g — -M(r)Gr/r3. 

The field equation (3) is analogous to the equation for the 
electrostatic potential in a nonlinear isotropic medium in 
which the dielectric coefficient is a function of the electric field 
strength. 

It may also be useful to note that our field equation is equiv- 
alent to the stationary flow equations of an irrotational fluid 
which has a density p = /i(| Vç>|/a0), a negative pressure P = 
— 2_1ao J^[(V<p)2/ao]> flow velocity v = V<p, and a source dis- 
tribution S(r) = 47üGp. The fluid satisfies an equation of state 
P(p)= -2-1«2^{[/i-

1(p)]2} 
An equation of the same form as equation (3) has been 

studied in a different context to describe classical models of 
quark confinement using a very different form of the function p 
at both large and small values of its argument (see Adler and 
Piran 1984 and also Lehman and Wu 1983 for a review). 

III. THE CONSERVATION LAWS 

The conservation laws follow from the symmetry of the 
Lagrangian under spacetime translations and space rotations. 
We find it instructive, however, to derive them explicitly from 
the field equation. 

Let g = — V<p be the modified acceleration field produced by 
a bound mass distribution p(r). We consider the motion of a 
subsystem made of all the mass within the arbitrary Eulerian 
volume a (we take a to be such that p vanishes on its surface). 
Each infinitesimal mass element within a moves as a test parti- 
cle, i.e., with an acceleration v = —\(p (for any field quantity q, 
q = dtq + v • Vq.) Note that here we assume a pressureless 
system. The changes in the argument when pressure is impor- 
tant will be discussed briefly at the end of the section. 

Using the continuity equation + V • (pv) = 0 we can 
write the time derivative of any quantity Q of the form 

Q = 
í 

d3rq(r)p(r) , (9) 

0 = d3rq(r)p(r) , (10) 

provided there is no flux of q across the surface of a (for which 
it is sufficient to have pqv vanish everywhere on this surface). 

The total momentum within a is 

-i 
d3rv(r)p(r) . (11) 

The center of mass (c.o.m.) velocity is F = P/m, where m is the 
total mass within a. The c.o.m. acceleration A is determined 
from equations (10,11) and Euler’s (momentum) equation to be 

mA = P : 
-Í 

d3rp(r)\(p . (12) 

The right-hand side of equation (12) is the gravitational force F 
acting on a. Substituting from the field equation (3), we get 

p= -(4nG)-' jVrVfpV • [p(V(/>/a0)V</>] (13) 

Integrating by parts and then writing volume integrals of a 
gradient and a divergence as surface integrals, over the surface 
£ of a, we find 

4nGP 
‘■-I 

- I pV(p(V(p-ds) + y ^ ds . (14) 

Note, in particular, that for an isolated system P = 0 because 
in the limit r-^ co the integrand in each of the terms in equa- 
tion (14) decreases like r 3 (see eq. [7]). Thus the integrals 
themselves must vanish if the surface £ surrounds all the mass 
in the system. In an isolated system made up of separate bodies 
the (vanishing) net force on the system is the sum of the forces 
on the parts (from eq. [12]). Hence “ action equals reaction” in 
this theory. 

The rate of change of the angular momentum, 

J = J d3rp(r)r x v , 

is similarly given by 

47tG/ = - 

(15) 

V • (pV(p)r x \cpd3r . 

Again integrating by parts, we write J as a surface integral : 

(16) 

47tG/ = ~ J r x ^ "l" "j x ds . (17) 

In obtaining equation (17) we made use of the identity 

2(V<p • V)(r x Yep) = (r x V)(V(?)2 , (18) 

which is straightforward to prove. 
To show that,/ = 0 for an isolated system, we take a spher- 

ical surface centered at the origin and of radius r—► oo. The 
second term in equation (17) vanishes since ds is parallel to r. 
The integrand in the first term decreases at least as fast as r-3 
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by equation (7). Thus, the integral must vanish for a surface 
surrounding all the mass in the system (and sum of torques on 
separate bodies within an isolated system thus vanish). 

Consider now the energy of an isolated self-gravitating 
system. It would be natural to define the total energy of the 
system as £ = — L + EK, where the kinetic energy is 

Note, however, that here the Lagrangian, formally defined in 
equation (2b), diverges logarithmically because 
l(Vcp)2/a2

0-]-^ Ar~3 as oo. This divergence reflects the fact 
that the potential is confining. The binding energy of any 
system of finite mass is thus logarithmically divergent 
(compared with the energy of the system with the different 
elements infinitely apart), and so also is the difference in total 
energy between two systems with different total masses. We 
can thus speak only of the energy difference of two systems with 
the same total mass (see also the discussion of the energy of 
isothermal spheres in Paper IV). To make L finite it suffices to 
subtract from the integrand in equation (2b) its expression for 
an arbitrary fixed system (such as that of an homogeneous 
sphere of finite radius) and a given mass M. The Lagrangian 
then describes only systems with a fixed total mass M. 

Consider an infinitesimal change ôp in the density of a 
system, such that ÔM = jaôpd3r = 0. This change induces a 
change ôcp in <p, through the field equation. We have for the 
change in L : <5L = ôL^ + <5Lp, where the first term results from 
changing only cp and the second from changing only p in the 
expression for L. Because ÔM = 0, equation (8) implies that ôcp 
vanishes at infinity. For such a change ôcp about a cp which is a 
solution of the field equation, L is stationary. Thus = 0, 
and we have 

ÖL = — (pôpd3r . 
» 

(20) 

We now show that the total energy E, as defined above, is 
conserved, for an isolated self-gravitating system. We describe 
the system, as we did earlier, as a continuous fluid of density 
p(r, t) and velocity v(r, t). The result of the previous paragraph 
tells us (see eq. [20]) that L = —¡0Lcpdp/dtd3r. On the other 
hand (using eq. [10]), 

È _ i 
K — 2 p(v2)d3r d3rpv • \cp 

Ja 

d3r{\ • (cppv) — cp\ • (pv)} . (21) 

The first term can be written as a surface integral and vanishes, 
and the second can be written via the continuity equation as 
— Ja cpdp/dtd3r. We thus have L= £* or £ = 0. 

If we wish to account for some of the kinetic energy by 
internal energy and include the effects of pressure, we must use 
for the momentum equation of motion v = —Vcp — p~1\p. In 
the expression for P (eq. [12]) the pressure term becomes a 
surface integral ¡¿pds, which is just the external pressure force 
on the system (which vanishes for an isolated system). Simi- 
larly, in the equation for J we get an additional term which 
amounts to the external moment §xpds x r. In equation (21) 
for ÈK we get two additional terms: a surface work term 
¡¿pv • ds and a term ¡app(p~1)d3r which is just — £in, where 
£in is the internal energy (we assume no heat transfer). Hence 
the total energy £x + £in — L is conserved if there is no surface 
work. 

Thus we find that in the proposed non-Newtonian gravita- 
tion theory all the usual conservation laws hold. 

IV. THE CENTER-OF-MASS MOTION OF BODIES 
IN AN EXTERNAL FIELD 

The modified dynamics was used in Papers II-IV to calculate 
rotation curves of galaxies, to derive masses of galaxies and 
galaxy systems, to calculate the structure of isothermal spheres, 
etc. In doing so it was assumed that the various bodies the 
motion of which was considered, such as stars in the field of a 
galaxy or galaxies accelerated in the field of a cluster, have the 
same acceleration as does a test particle. Observational evi- 
dences supporting the validity of this assumption, to a good an 
approximation, were discussed in Paper I. 

Here we show that in the framework of the present theory it 
is justified to use the test-particle equation of motion to deter- 
mine the acceleration of the objects mentioned above to high 
accuracy. We consider the center-of-mass acceleration of a 
body of total mass m (which for convenience we shall refer to as 
the “star”) in the presence of some large mass M (the 
“ galaxy ”). We seek to show that the acceleration of the “ star ” 
is independent of its internal structure to so good an approx- 
imation as to justify the procedures used in Papers II-IV. We 
shall assume in what follows that the acceleration field of the 
“ galaxy ” alone can be taken as constant across the “ star ” (no 
tidal effect). 

We have shown above that an isolated object does not accel- 
erate itself [i.e., it has /4(c.o.m) = 0]. In a linear theory, such as 
Newtonian dynamics, this fact is sufficient to make the acceler- 
ation of any object in the field of any mass independent of the 
object’s structure. Our proposed theory is nonlinear; in fact, in 
the general case the acceleration of an object in a given field 
does depend on its mass and structure, as the following 
example will show. Let M and m be two point masses (m M) 
isolated from other masses. We show below that m moves (with 
acceleration am) in the field of M very nearly like a test particle, 
i.e., p(aja0)am = —MGR/R3, where R is the radius vector 
from M to m. From momentum conservation, the acceleration 
aM of M is given by aM = —am(m/M). This acceleration is, 
however, different from the acceleration, at, of a test particle 
produced by m alone, at the position of M. The last acceler- 
ation is given by p(at/a0)at = +mGR/R3. 

We now show, however, that as long as the mass of the 
“ star ” is much smaller than that of the “ galaxy,” the acceler- 
ation of the “star” does not depend on whether the intrinsic 
accelerations within the “star” are large or small (compared 
with a0) or, for that matter, on any property of the “ star.” 

Consider first the case where the “ star ” can be thought of as 
being in a constant acceleration field —\cpg of the “galaxy.” It 
is thus assumed that in the absence of the “star” V<p is exactly 
constant everywhere in space (not just across the “star” as we 
assume anyway) and equals Vcp^. 

We start with the expression for the c.o.m. acceleration as a 
surface integral, equation (14). Denote the first force term in 
equation (14) by Fx and the second by £2- We can write Fl as 

+ ^12 with 

4nGFll = -v<pg 
p\cp * ds 

Js 

= -v<pg 
d3r\ • = —4nGm\<pg, (22) 
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and 

47tGF12 = - J \ôn\(p -ds . (23) 

Here Vcp is the acceleration field produced by the “galaxy” 
plus “star,” and \ö = Vcp — \(pg. The integration is over a 
volume a which contains all the mass in the star and no other 
mass. 

We now make the radius of the integration surface go to 
infinity. In this limit, | V<51 —► 0 on the surface, and we retain 
only the term of lowest order in V<5 in the expression for F12 

and F2. In fact, we show in § V that r21 V<51 —> const, as | r | —► go, 
so only the terms of first order in V<5 contribute (there is no 
zeroth-order contribution to F2). We thus have 

4nGF12 = —¡Hg x \im \ô{\(pg-ds) , 
r~* ao Jl 

and (24) 

4tzGF2 = fig x lim 
r~> oo 

(\ô * \(pg)ds , 

where fig = n(V(pg/a0). The two integrals in equation (24) 
are equal (as both can be easily shown to be equal to 
¡ziVcPg-\)\ôd3r). Hence F12 + F2 = 0, and we obtain the 
desired exact result 

F = mA = —m\(pg . (25) 

Consider now the more realistic case of a system of mass m 
and characteristic size r at a distance R from a mass M. Assume 
that we can take a surface X around m of characteristic radius / 
such that (1) the radius l is small enough compared with R that 
the field of M alone (V<p0) is approximately constant within E, 
and (2) l is large enough that the acceleration Vc> = V<p — ^(pg 
on E is much smaller, in absolute value, than |V<pJ. If m is 
small enough compared with M, it is possible to find such a 
surface. Then equation (25) holds approximately. In the limit 
m/M—>0, M/R2 = const, the acceleration of m becomes 
totally independent of its structure (when tidal effects can be 
neglected). For a finite but small ratio m/M the relative correc- 
tion to equation (25) is bound by a number of order (m/M)1/2 

when \ V(pg\ < a0. When |V<pJ > a0, the relative correction to 
equation (25) is bound by a number of order ju'(| V^^|/fl0) 
(m/M)112 [remember that ß'(x)-> 0 for x—> oo]. 

V. THE EFFECTS OF AN EXTERNAL FIELD ON INTERNAL 
DYNAMICS 

In this section we consider the internal dynamics of a gravi- 
tating system, s, in the presence of an external (modified) gravi- 
tational field. Observational effects which are relevant to this 
question have been discussed in Papers I-III. In particular, it 
was shown, on phenomenological grounds, that the sought for 
theory for the MOND must violate the strong equivalence 
principle in that the internal dynamics of a system embedded in 
an external field is affected by this field. For example, if the 
external acceleration is large compared with a0, the internal 
dynamics of the systems will be approximately Newtonian 
even if the relative internal accelerations are much smaller than 
a0. We will show that the present theory satisfies this require- 
ment. 

The external field manifests itself through the boundary con- 
dition on the accelerating field at infinity. Solutions are sought 

for the field equation (3) with \(p^\(pg = — ^asr-^oo (we 
use the same notation as in § IV). The external acceleration^ 
is to be thought of as the (modified) field of an enveloping 
system, S, in the absence of s. For example, s can be a binary or 
a cluster of stars in the field of a galaxy (S) or a galaxy (s) in the 
field of a cluster of galaxies (S). In general, gg may vary across s, 
thus influencing the internal dynamics of s via tidal effects. 
Since we want to concentrate here on the nontidal effects, we 
take gg to be constant. 

As we have shown in § IV, the acceleration A of the c.o.m. of 
s is ^ The acceleration of a test particle within s, with 
respect to the c.o.m. of s, is thus given by 

a = — V<p — ( —V^) = — V<5 . (26) 

It is thus the field V<5 (hereafter, the internal acceleration field) 
which determines the internal dynamics and which concerns us 
in this section. In Newtonian dynamics V<5 is, of course, identi- 
cal to the solution of the field equation with the boundary 
conditions of vanishing gradient at infinity. The internal 
dynamics is totally unaffected by a constant external acceler- 
ation field in this case. This result is valid for any theory which 
satisfies the strong equivalence principle. This, however, is not 
the case in the present theory. 

We first consider the asymptotic behavior of the internal 
field of an arbitrary finite mass distribution (of total mass M) in 
the presence of an external field. Applying Gauss’s theorem to 
the field equation (3) for a surface E which surrounds all the 
mass, we get 

47üGM = J* n{V(p/a0)\(p • ds . (27) 

We take E to be a large enough radius that everywhere on it 
|Vc>| \ V(pg\. Expanding in V<5, and taking the lowest order 
which contributes to the right-hand side of equation (27), we 
get (the zeroth order vanishes) 

AnGMn~1 = J V.5 • <& + L9 j (<?z • V<5)(e2 • ds). (28) 

Here the constants fig and Lg are given by 

ng = H(Vq>g/a0); Lg = d\n(n)/d\n(x)']x=^ll,g\lao , (29) 

and ez is a unit vector in the direction of gg which we chose as 
the positive Z axis (fig is between 0 and 1, and the same is true 
for Lg if we assume that ^ is a monotonie and convex function 
of its argument [see Paper II]). We use a spherical coordinate 
system with the origin somewhere within the mass distribution. 

Consider the asymptotic behavior of V<5 for r —> oo. Since the 
area of E increases like r2 as the integration surface becomes 
large, we must have | Vc> | ~ r - 2 for the right-hand side of equa- 
tion (28) to remain a finite constant. We can thus write : 

V<5 '—^»r~2k(Q, \j/) + 0(r~3) . (30) 

We write Ar in a general form : 

k(e, i/0 = q(d, if/)[er +f(9, >p)ez + p(0, i/O^] • (31) 

Substituting equations (30) and (31) in the right-hand side 
of equation (28), we find that, in order for this to be indepen- 
dent of the surface chosen, p(6, ij/) = 0 and f(0, ^) = —Lg cos 
6/(1 + Lg). The requirement that \ô have a vanishing curl 
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determines g up to a normalization constant which, in turn, is 
fixed by equation (28). The final result is 

Vc) 22222* MGr~2 x /¿^(l + Lgy
1/2(er - a, cos 6ez) 

x (l — ocg cos2 6)~3/2 + 0(r~3) . (32) 

Here = Lg/(l + Lg). This behavior is to be contrasted with 
the asymptotic behavior of the field of an isolated mass : 
\(p-^ (MGa0)1/2r~1er as r—► oo. Unlike the last which is a con- 
fining field, the first is quasi-Newtonian. Its deviations from a 
Newtonian behavior are : (a) There is an effective increase in G 
(or a decrease in the ratio of the inertial mass to the gravita- 
tional mass) by a factor ny1 which can be very large if |gj 
a0. (b) The asymptotic field is not radial, and its radial part is 
not spherically symmetric. Both its direction and its magnitude 
carry information on the direction of the external field. Note in 
particular that if the external field is Newtonian (i.e., \ Vçg\ > 
ao% Ä ^ 1 and the asymptotic internal field of an arbi- 
trary mass in this field is very nearly Newtonian even though it 
is (asymptotically) much smaller than a0. 

In general, it is difficult to describe in simple terms the differ- 
ences between the internal field of a given system with and 
without an external field. There are, however, some aspects of 
this question about which we can make clear-cut statements 
(such as the asymptotic behavior we have just discussed). 

VI. DISCUSSION 

We have presented a nonrelativistic potential theory for 
gravity which deviates from Newtonian theory in the limit of 
small accelerations. The theory was built on the basic rules of 
MOND, and is in some sense the simplest such theory of 
gravity which is derivable from a Lagrangian. 

It is worth noting that if we relax the requirement of a single 
potential in the theory, a more general family of such theories 
can be constructed. For example, we could write a theory 
which involves two potentials <p1 and (p2 determined by the 
field equations 

= 47üG(1 - 2)p(r), 

V • [/ï(V<p2 x ^/öo)V^2] = 47cG2p(r), (33) 

AND MILGROM Vol. 286 

where 0 < 2 < 1 is an arbitrary parameter and 

X>1 _ X<1 
p(x) ^ 1 , /i(x) ^ x . 

Again we supplement the field equations with the boundary 
condition |V^-l—► 0 as r—► oo. The way À appears in the field 
equations is chosen in accordance with assumption (c) of 
MOND (§ I). The acceleration a of a test particle is here regard- 
ed as given by a = — V((p1 + (p2)- It is easy to show that the 
conservation laws hold in this theory, and it is also straightfor- 
ward to generalize the results of the previous sections for this 
theory and show, in particular, that the c.o.m. acceleration of 
an arbitrary system in a constant external field is independent 
of internal properties of the system. 

The two-potentials theory is derivable from the Lagrangian 
density 

<? = -picp, + (p2) - (ZnGy'iil - XrWç,)2 

+ ¿-3a2o^[(Vcp2)2X2/a2
0-]} . (34) 

The relativistically invariant theory which we sketch briefly in 
Appendix B reduces to a theory of this type in the nonrelativis- 
tic limit in a static universe. 

Using the present (single potential) theory instead of the 
semiempirical approach of Papers I-IV makes practically no 
difference for the applications described in these papers. The 
latter are based essentially only on the basic requirements of 
MOND which are satisfied by the present theory. Some of the 
main results of this theory which cannot be obtained from the 
formalism used in Papers I-IV are: (a) the demonstration of 
the consistency of the usual conservation laws with the 
assumptions of MOND; (b) the justification for the use of 
MOND to describe the c.o.m. motion of composite objects in 
an external field; and (c) its consistency with the conclusion 
(based on the study of open clusters) that a full theory of 
MOND must violate the strong equivalence principle in that 
the internal dynamics of a system is affected by a constant 
external acceleration field. 

APPENDIX A 

PROOF THAT u = \(pN - p(\V(p\/a0)\(p VANISHES AT LARGE DISTANCES FROM 
A MASS AT LEAST AS 0(r~3) 

Consider a bound density distribution of total mass M with the origin at the center of mass. The vector field u defined above 
satisfies V • il = 0 and vanishes at infinity. We can thus write u in terms of the vector potential A : 

f V' x wO't 
u = VxA; A(r) = (4n)~1 — d3r'. (Al) 

J k-r I 

Thus the only term with an r~2 behavior at infinity which w can have is u(2) = \ x (r~1B) = r~3r x B, where 
B = (4ny1 J V' x u'd3r', which is the lowest order term in the multipole expansion of equation (Al). If we then show that Z? = 0, we 
get that the lowest contributing multiple term to u vanishes at least as fast as r _ 3. 

To this end we make use of the fact that u is not an arbitrary divergenceless field but has the special form given above. In the limit 
of larger, 

p(\V(p\/a0)\(p = \cpN — u — r~3{MGr — r x B) -\- 0(r~3) (A2) 
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Taking the absolute value of this relation, we can express |V(p| as a function of the absolute value of the right-hand side. Then 
dividing by ¿¿(I V<p |/a0) (which for r —► oo can be replaced by | V<p |/a0), we get 

V<p = al,2r~2(MGr — r x B)/(M2G2 + B2 sin2 0)1/4 + 0(r~2) . (A3) 

Here 6 is the angle between r and B which we can take along the z-axis. Now, requiring that the azimuthal component of V x (V<p) 
vanishes gives B = 0. 

APPENDIX B 

A RELATIVISTIC THEORY WHICH SATISFIES THE REQUIREMENTS OF MOND 

The main ingredients which must go into a relativistic theory for the MOND are (a) recovery of the non-Newtonian behavior in 
the nonrelativistic limit and (b) a violation of the strong equivalence principle as deduced from the phenomenological study of open 
clusters in the solar neighborhood (Paper I). To introduce the second ingredient into the theory, we include a scalar field i/f as a 
dynamical degree of freedom in addition to the usual metric tensor gßV, in the spirit of scalar-tensor theories. The theory we sketch 
here (we intend to publish a more detailed account separately) can be given two equivalent formulations involving a metric tensor 
and one scalar field. In one, gßV satisfies the usual Einstein equation but test particles do not follow geodesics of gßV. In the other 
formulation, particles do follow geodesics of a metric tensor which, however, does not satisfy the usual Einstein equation. 
Instead, the field equation for gßV contains the scalar field explicitly. This dual description corresponds to the use of two different sets 
of units (gravitational units in the first description and atomic units in the second) and has been discussed extensively in the 
literature in connection with theories with variable rest masses (e.g., Dicke 1962; Hoyle and Nalikar 1974; Bekenstein and Meisels 
1980). The field equations in the atomic units for example, are derivable from the action 

S = Sg + + Sm , (Bl) 

where the gravitational action is 

S9 = c4(167rGo)-
1|e-2^2[R®MV) + 6c-V,a'/',a](-0)1/2^, (B2) 

the “ scalar field ” action is 

s* = -ao2/J(l + ß)2(8itG0) 
'i* 

-4ij//c2F 
L«o (i + ßf 

(-g)1,2d*x , (B3) 

with F(x) « x for x > 1 and F(x) ~ 5/3 2 for X U and the particle action is Sm = — me2 J <I~ with dz the element of proper time. The 
form of Sm implies that particles move on geodesics of gßV. 

In the strong field limit (x > 1) this theory goes exactly to the Brans-Dicke scalar-tensor theory with ß = 2co + 3, where m is the 
parameter of the Brans-Dicke (BD) theory (Brans and Dicke 1961; Dicke 1962; Misner, Thorner and Wheeler 1973). All observa- 
tional constraints on the BD theory to date (e.g., Will 1979, 1982) are in the form of lower limits on a>. Such constraints were 
obtained in field regimes corresponding to ^ > 1. As in such cases our theory gives the same predictions as the BD theory, the lower 
limits on co give lower limits on our parameter ß. 

For small velocities and weak potentials (not to be confused with the limit of small accelerations) and assuming a static universe 
(so that the cosmological contribution to dij//dt can be assumed to vanish) the theory involves two potentials and is of the type 
described in § VI. The nonrelativistic limit of the theory thus satisfies the requirements of MOND. 

We now consider gravitational waves (GW). All systems which are thought to emit gravitational waves, in quantities which may 
be detectable, involve very large accelerations and so the emission for such systems can be calculated to high accuracy using the BD 
theory. We have not attempted the calculation of GW emission by low acceleration systems where our theory may differ from that 
of BD. 

There are some aspects of GW propagation distinctive to our theory which are of great importance in principle. In particular, 
under certain circumstances, we find acausal propagation of a certain component of the wave. Consider the propagation of weak 
GW in the background of a weak static acceleration field (e.g., in intergalactic space). The wave is assumed to be a small disturbance 
on the background, and we linearize the field equations in the wave amplitude. We also assume that the wave length is short 
compared with the scale over which the background field varies. 

The measurable metric (atomic units) can in this approximation be written as a sum of a conformally flat part and a transverse 
part 

« (1 - 2iA/c2)rç„ï + V , (B4) 

where is the Minkowski metric. The transverse contribution is found to propagate with the speed of light. The propagation of xj/ 
is anisotropic. If 9 is the angle between the wave vector and the direction of the background field, the ij/ wave propagates with 
velocity 

v(6) = c(l + 2vb cos2 9)1/2 . (B5) 

Here vb = d In F'(x)/d In (x) at the value of x corresponding to the background field. 
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It is not clear whether the acausal propagation rules out the relativistic theory. First, we have not yet thoroughly investigated 
whether the acausal component can be emitted. Second, it appears that the acausal waves cannot induce acausal effects in the 
behavior of particles or electromagnetic fields. Of the two types of waves, only one propagates acausally. This component is, 
however, only a “conformal factor” multiplying a causally propagating metric. The fact that the light cone is the same for 
conformally related metrics means that the acausal propagation of the conformal factor in gßV does not affect the light cone structure 
of the measurable metric. Thus, particles will not start crossing the light cone due to a metric distortion propagating faster than c 
and shoving the light cone past them. The waves cannot accelerate particles to transluminal velocities. For a similar reason a 
transluminal pulse of i// passing by does not affect electromagnetic phenomena. 

It is possible that the present theory may be modified so as to avoid the acausal behavior while retaining the desired nonrelativis- 
tic behavior and relativistic invariance. This is a subject for the future. 

We have not yet studied cosmology in the present theory. The study of cosmology has a twofold importance. First, it may provide 
us with additional constraints on the theory, and expose it to further tests. Secondait may provide the key to an improved theory in 
which the function F and the constants a0 and ß will be determined from first principles. 
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