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ABSTRACT 
Milgrom’s recent revision of Newtonian dynamics was introduced to eliminate the inference that large 

quantities of invisible mass exist in galaxies. I show by simple examples that a Milgrom acceleration, in the 
form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is 
not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applica- 
tions require extreme caution. The model fails to provide a complete description of particle dynamics and 
should be thought of as a revision of Kepler’s laws rather than Newton’s. 

The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation 
adapted from Newtonian cosmology suggests that a “Milgrom universe” will recollapse even if the classical 
closure parameter Q is <^1. The solution, however, fails to satisfy the cosmological principle. I examine 
reasons for the breakdown of this calculation. A new theory of gravitation will be needed before the behavior 
of a Milgrom universe can be predicted. 
Subject headings: cosmology — galaxies: clustering — 

I. MILGROM ACCELERATION 

The astronomical evidence (Faber and Gallagher 1979; 
Davis et al 1980) for large amounts of “invisible mass” 
(essentially, mass not contained in luminous stars) in and 
around galaxies comes almost entirely from applications of 
Newton’s second law to galaxies and galaxy systems. The 
accelerations in these systems are much smaller than those for 
which the law has been tested in the laboratory or in the solar 
system. 

In three unorthodox pàpers, Milgrom (1983a, h, c) has pro- 
posed to do away with invisible mass by altering the second 
law. Inter alia, he proposes that, at least with respect to gravi- 
tational forces, Newton’s a = FN/m should be replaced, in the 
low-acceleration limit, by 

Here gN is the Newtonian acceleration calculated from the 
mass distribution in the usual way, and a0 is a new physical 
constant having dimensions of acceleration. Law (1) is assumed 
to apply when the true acceleration a is <^a0. Milgrom finds 
that he can explain the flat rotation curves of galaxies and large 
virial velocities in clusters without adding invisible mass. By 
equation (1), small accelerations due to a given galaxy mass are 
larger than they would be in Newtonian theory. He can also 
avoid smaller scale observational limits on non-Newtonian 
forces, e.g., from solar system observations. All this is possible 
provided 

a0 ä 8 x 10-8h2 cm s-2 « (jh)cH0 , (2) 

where H0 is the Hubble constant, and h is the dimensionless 
Hubble constant Ho/(100 km s"1 Mpc“1), of order unity. The 
numerical value 8 x 10"8 in equation (2) is roughly equal to 
the Newtonian acceleration occurring in the inner parts of a 
galaxy. In the outer parts, then, a < a0, and Milgrom’s law (1) 
comes into play. 

galaxies : internal motions — stars : stellar dynamics 

The last form of equation (2), relating a0 to cH0, is inter- 
esting. A “ cosmic acceleration ” cH0 would reduce a speed c to 
speed zero in a Hubble time. From Milgrom’s point of view, 
relation (2) is fortuitous and adds one more to the list of 
“numerical coincidences” in cosmology (Bondi 1960, § 7.1). It 
suggests vaguely a Machian basis for the Milgrom acceleration 
and the constant a0 and is therefore regarded as an asset to the 
model. 

II. DYNAMICAL PROBLEMS 

Without dismissing Milgrom’s ideas out of hand, I wish to 
point out that a dynamical law of type (1) has other conse- 
quences (some undesirable) in addition to the consequences 
sought by Milgrom. Note at once that the accelerations a given 
to a test particle by two or more attracting bodies acting 
jointly do not add linearly; the Newtonian accelerations gN do 
add linearly, so their square roots cannot do so. Next consider 
the dynamics of some simple multiparticle systems. Assume 
that equation (1) gives the correct dynamics for particles with 
low acceleration. Consider a system consisting of two particles 
only, with masses and m2, interacting gravitationally. Let 
them be placed at rest on the x-axis, with x2 — = r > 0. Let 
ml9 m2 be small enough so that equation (1) applies. Set FN = 
Gm^Jr2. Note that the masses are constant, for law (1) is 
intended to apply only in the nonrelativistic limit. Differentiat- 
ing the total momentum p = pl + p2 and using equation (1), 
we find 

p = dfr(a0F^\m^-m2^). (3) 

When ^ m2,p for this isolated system is not conserved. This 
is obvious from equation (1), because the two accelerations are 
not inversely proportional to the masses as in Newtonian 
dynamics. Except for the special case & m2, \p\ is of the 
same order as the larger of | /^ | and | p21- 

Consider a second simple case: a system S consisting of two 
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particles m1 and m2, S being placed in the gravitational field of 
a third and larger body m3. Place these objects at rest on the 
x-axis, with *2 — Xi = r > 0 and x3 — x2 = R > 0. Let m1 and 
m2 be small enough so that the interaction of ml and m2 can be 
neglected, and let R be large enough so that law (1) describes 
the motion of mi and m2 in the field of m3 ; i.e., the accelerations 
of mi and m2, respectively, in the field of m3 are given by 
equation (1), with 

Fn Fní /. i 
— = — = 0Ni (i =12), (4) m mi 

where gNi is the Newtonian acceleration produced by m3 at 
particle i. The center of mass of S is 

_ m1x1 + m2x2 

m1 + m2 
(5) 

Differentiating and using equation (1), we find that the acceler- 
ation of the center of mass is 

XrM — 
V ao 

m1 + m2 
N1 + m2 Va N (6) 

Let us ask whether the usual Newtonian theorem on motion of 
the center of mass is valid for Milgrom accelerations. The 
external forces on system S are FN1 and FN2. Therefore, the 
center-of-mass theorem applied to law (1) would say 

x cm — 
^N1 + ^N2\ 

ml + m2 ) 

m1 + m2 
V^I^W + m2gN2). (7) 

A little algebra shows that expressions (6) and (7) are equal 
only if 0N1 = 0N2-1*1 general then, if individual test particles in 
an external gravitational field obey law (1), their center of mass 
obeys the same law only if the external field is uniform. Equa- 
tion (3) shows in addition that even in the case of zero external 
field, the center-of-mass theorem fails if the particles have 
active gravitational mass too large to be neglected. 

Astronomical data describe multiparticle systems. Milgrom 
therefore assumed explicitly that law (1) applies to the center of 
mass. But the examples above show that if law (1) applies to 
individual particles, it cannot in general apply to the center of 
mass. It can, however, apply to the center of mass in the special 
case of a system of one or more test particles (particles having 
negligible active mass) moving in a uniform external field. The 
galaxy systems studied by Milgrom are in general bound by 
their own active mass, and it is not altogether clear that a 
test-particle approximation is justified. If we simply postulate 
with Milgrom that law (1) applies generally to the center of 
mass, then it cannot apply in general to individual particles. 

Milgrom dynamics is therefore incomplete at present and 
gives no clear prescription for particle motions. Naive applica- 
tions require extreme caution. More or less extensive changes 
in many-body dynamics are implied and cannot be predicted 
without a more complete theory. At present Milgrom’s law 
must be thought of as a phenomenological modification of 
Kepler’s laws rather than a systematic modification of Newto- 
nian dynamics. Milgrom (1983a) is aware of drawbacks in the 
theory and discussed at some length another problem, namely, 
an apparent violation of the principle of equivalence (a freely 
falling elevator is not equivalent to an unaccelerated inertial 

frame). A more complete theory is in course of development 
(Bekenstein and Milgrom 1984). 

III. COSMOLOGICAL IMPLICATIONS 

Despite these difficulties, it is of some interest to speculate on 
the cosmological consequences of a Milgrom-type dynamics. 
Consider the classical Friedmann universes (Friedmann 1922; 
Rindler 1977, §§ 9.9-9.11), i.e., relativistic universes of zero 
pressure, and set the cosmological constant A = 0. The clas- 
sical “ closure parameter ” is 

SnGp 
W’ (8) 

where p is the universal mass density. If Q < 1, the universe is 
open and expands forever. If law (1) holds, Milgrom shows that 
most, if not all, galaxy velocity data can be interpreted with 
mass-to-luminosity ratios for galaxies equal to roughly 1-10 in 
solar units. (This M/L ratio measures all forms of mass which 
are clumped with the galaxies ; uniformly distributed mass is, as 
always, excluded, but there is no evidence for its presence.) A 
ratio M/L ~ 1-4 is roughly characteristic of stellar matter 
(Faber and Gallagher 1979), so there is no longer strong evi- 
dence for substantial quantities of mass other than that con- 
tained in stars. The mean M/L required to give Q = 1 (Davis et 
al 1980; Felten 1977) is much larger, ~1400/i. We conclude 
thatQ 1. 

However, we cannot conclude that the universe will expand 
forever, because a Milgrom acceleration implies extensive 
changes in cosmology. To show this, I adapt a familiar argu- 
ment (McCrea and Milne 1934; Bondi 1960, §§ 9.1-9.3; Peebles 
1971, § lb) from “Newtonian cosmology.” Consider a co- 
moving sphere of radius r(t) in the uniform cosmological fluid. 
Within a finite, spherically symmetric system, however large, 
Gauss’s law holds in the Newtonian case and tells us that the 
acceleration of a point on the surface of the sphere depends 
only upon the mass within. We have 

G 4nr0
3p QH0

2r0
3 

0N = r= = 2?~~ 
(9) 

where p is the present density (a constant), and r0 is the present 
radius of our chosen sphere. Integration of this equation gives 
the exact Friedmann equation for the universal scale factor 
R(t), from which we conclude that a zero-pressure universe 
with A = 0 recollapses only for Q > 1. 

It is easy to adapt this argument to a Milgrom acceleration, 
because equation (1) depends only upon gN. In place of equa- 
tion (9), we obtain, for Milgrom acceleration, 

r = 
f n//0VY/2 

(10) 

assuming for the moment that |r| a0, so that equation (1) 
applies. Integrating equation (10) once, we find that 

(r)2 = (r)o2 - {2£lH0
2a0 r0

3)^2 In (r/r0) . (11) 

For any assumed value of the present expansion velocity (r)0, 
r(t) necessarily has a zero; i.e., there is a maximum radius and a 
turnaround. Introducing the usual notation r = r0R and 
imposing the initial condition H0 = (r/r)0, we find that the 
scale factor at turnaround is 

Rm^ = rm^r0 
1 = exp g2 , (12) 
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where 

ß = 
■tfoV\1/4 

2Qa0 ) 
(13) 

Substituting z = RmaJR and integrating again, we find that the 
turnaround occurs after a time 

At = t„ tn =■ 
Hn 

R„ 
r 

dz 
z2(ln z) 1/2 (14) 

The integral is an incomplete gamma function In Rmax) and 
is equal to 7r1/2erf n (Abramowitz and Stegun 1964). Therefore, 

At « nll2fiH0~1Rm¡l if Kmax > 1 • (15) 

Having carried the Milgrom constant a0 along explicitly, let us 
now set a0 ~ cH0 as in Milgrom’s theory. For a cosmological 
turnaround we set r0 ~ rH = c/H0. (Note that, for £1 <0 and 
a0 ~ cH0, the acceleration [10] is and remains <a0 for all 
values of r0 < rH, so law [1] should in fact apply. We have 
neglected any corrections to law [1] associated with i;—>c; 
these corrections should not dominate for r0 < rH and should 
certainly be small for r0 rH.) Then fi ~ (2Q)_1/4. The turn- 
around time depends on D, i.e., on the assumed present density 
p. For Q=10-2 we find p ~ 2.7, Rmax ^ 1200, and 
At ~ 5 x 1013 yr. For Q = 10“3 the numbers are p ~ 4.7, 
^max ~ 5 x 109, and At ~ 4 x 1020 yr. Thus it seems that 
Milgrom universes of all densities recollapse, although the time 
required is very long for Q 1. This result is the cosmic analog 
of Milgrom’s (1983a) observation that the effective Milgrom 
potential of a point mass is logarithmic at large distances. 

This derivation is a fraud, although it points the way to 
further work. Note the presence of r0 in equation (13). There 
should be no need to set r0 equal to rH or to any other specific 
value. In the analogous Newtonian derivation, r0 drops out as 
soon as the initial-value condition H0 — (r/r)0 is applied. The 
presence of r0 in equation (13) shows that Rmax and At are 
different for spheres of different initial size. Therefore, the 
“universe” described by equations (10)-(15) does not admit a 
universal scale factor R(t) and, by the theorem of Robertson 
and Walker (Rindler 1977, § 9.5), cannot be homogeneous and 
isotropic. To improve this situation we might entertain the 
obvious possibility, suggested by Milgrom (1983c), that the 
constant a0 is variable on a cosmic time scale. For example, we 
might set a0 ~ cr¡r instead of a0 ~ cH0. It may be evident, 
however, that this does not help. The parameter r0 still fails to 
drop out of the equations, and we are still stuck with a universe 
which does not satisfy the cosmological principle. 

To understand this paradox we must think about the logical 
basis of “ Newtonian cosmology.” There is an extensive liter- 
ature on this (e.g., Layzer 1954; McCrea 1954; Raychaudhuri 
1979, §§ 2.1-2.3), centering on the objection that the Newtonian 
potential is infinite in an infinite sea of mass. Two schools of 
thought have emerged to explain the remarkable success of the 
Newtonian calculation. The first school (Heckmann and 
Schücking 1959; Bondi 1960, §§ 9.1-9.3; Rindler 1977, §§ 9.2, 
9.8) points out that the Newtonian argument leading to equa- 
tion (9) above can be carried out within any finite sphere of 
mass, however large, and that the solution in an infinite sea 
must be the limit of the finite-sphere solutions and must there- 
fore be the same. One might object that an infinite sea is also 
the limit of a finite cube or ellipsoid, and that these shapes 
certainly will give different solutions. The answer is that these 
solutions, unlike that in the spherical case, are not homoge- 

neous and isotropic. It is argued that requiring the cosmo- 
logical principle to be satisfied makes the large but finite sphere 
a unique and correct Newtonian model for cosmology. Thus in 
Newtonian cosmology the cosmological principle plays the 
role of, or replaces, a boundary condition. This justification 
cannot be extended to the “Milgrom universe” developed in 
equations (10)-(15). These equations describe a large, finite 
spherical universe, but observers within this sphere do not find 
its motion isotropic and homogeneous. It appears that a solu- 
tion for a finite sphere satisfying the cosmological principle and 
equation (1) cannot be obtained. 

The second school of thought on Newtonian cosmology 
(Callan, Dicke, and Peebles 1965; Peebles 1971, § 1^; Weinberg 
1972, § 15.1) appeals to Birkhoffs theorem in general relativity 
(Lemaître 1931; Bonnor 1962). BirkhofTs theorem, the rela- 
tivistic analog of Gauss’s law, implies that the four- 
dimensional curvature is zero inside a concentric spherical 
cavity in a spherically symmetric mass distribution. This means 
that the gravitational field at the surface of a uniform sphere 
depends only upon the mass within the sphere and may be 
calculated by the Newtonian approximation when the sphere is 
small enough. The well-known weak-field linearity of general 
relativity is used implicitly in reaching this conclusion. This 
argument provides the strongest justification for the Newtonian 
calculation, although it is not a Newtonian argument. Once 
again we find that the argument breaks down when applied to 
a quasi-Newtonian calculation with a Milgrom acceleration. In 
a Milgrom universe, a new theory of gravitation will have to be 
found, which reduces to a Milgrom acceleration in certain 
limits, for general relativity does not. Birkhoffs theorem may 
not be valid in such a theory of gravitation. Weak-field linear- 
ity will certainly fail, because equation (1) is nonlinear, as noted 
earlier. 

The failure of Birkhoff s theorem would not be a fatal objec- 
tion to a gravitational theory ; in fact, some might see it as an 
advantage. Birkhoffs theorem, which in effect limits the con- 
nection between local and global phenomena, limits general 
relativity’s ability to account for numerical coincidences in cos- 
mology. Relationships such as Milgrom’s a0 ~ cH0 might 
more readily be explained in the absence of Birkhoffs 
theorem. It is clear, however, that cosmology will be in a state 
of confusion if a Milgrom-type acceleration is verified. Naive 
intuition suggests that all universes may indeed recollapse 
because of the long-range character of the force, but we do not 
know how to prove this. A new theory of gravitation will be 
needed. This difficult task should perhaps not be undertaken 
unless there is clear evidence that the Milgrom acceleration law 
holds on the scale of galaxies. Dressier and Lecar (1983) 
suggest that Milgrom’s law does not explain the velocity data 
adequately. 

Note added in manuscript 1984 June 6.—Finzi (1963a, b) 
proposed a gravitational force varying like r~n(n < 2) for r 
larger than a characteristic distance r0. This is related but not 
identical to Milgrom’s idea. Tohline (1983, 1984) showed that 
for n = 1 such a force can stabilize the disks of galaxies. Yabu- 
shita (1964) had objected that large random cosmic acceler- 
ations arise from such a force, a difficulty which will be absent 
or much reduced in Milgrom’s theory. I am grateful to V. C. 
Rubin and J. E. Tohline for providing these references. 
Milgrom (1983h) argued that a force law of the type favored by 
Finzi and Tohline can be ruled out by the Tully-Fisher 
relationship. 
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It is of some interest that the “cosmology” of equations 
(10)-(15) possesses a natural length scale rc. This may be 
defined as the present radius of the shell which is now turning 
around, i.e., the largest shell which has been perturbed substan- 
tially out of the Hubble flow and has begun to recollapse. 
Smaller shells are further advanced in recollapse; larger shells 
still have the Hubble motion. We may estimate rc very roughly 
by setting At = H^1 in equation (15) and solving equations 
(15) and (13) for r0. The result, for a0 ~ cH0, is rc ~ 103 Q/i-1 

Mpc, i.e., 10 Mpc for Q = 10-2. A better estimate, done 
retrospectively rather than prospectively, gives rc ~ \40h~1 

Mpc for Q = 10“ 2 and rc ~ 30/z“1 Mpc for Q = 10 “3. (A more 
accurate calculation cannot be done until the new law of accel- 
eration is specified for accelerations ~a0.) It is curious that 
these estimates agree roughly with the largest scale of observed 
inhomogeneities in the universe. Note that this simple cosmol- 
ogy does not describe a universe with random lumps; what it 
describes is a single condensation developing around the 
observer. But if a new theory of gravitation, taking proper 
account of the influence of distant matter, could nevertheless 
preserve this natural length scale of the simplest Milgrom cos- 
mology, it might have application to inhomogeneities in the 
real universe. 

Bekenstein and Milgrom (1984) propose a new and more 
complicated classical potential equation for gravitational 

acceleration to replace the Poisson equation. Their equation 
reduces to Milgrom’s law (1) above in cases of high symmetry. 
Their theory, however, preserves the law F = ma, essentially by 
making it a definition of force. In this way they avoid the 
difficulties discussed in § II above. On the other hand, the 
calculation of force becomes more difficult. The force can no 
longer be obtained from Newton’s law of gravitation, but only 
by solving the potential equation. 

The discussion of cosmology in § III above applies fully to 
the classical Bekenstein-Milgrom potential equation, and one 
can conclude that the equation possesses no homogeneous iso- 
tropic dynamical solution. In an appendix, Bekenstein and 
Milgrom sketch a new gravitational theory to replace general 
relativity. It will be of interest to see whether these equations 
possess any cosmologically useful solution. 

I wish to thank K. Brecher, R. J. Gould, C. W. Misner, H. 
Moseley, M. L. Wilson, and A. M. Wolfe for advice, but they 
do not share responsibility. Mordehai Milgrom kindly 
answered some queries and showed me unpublished material. 
Mike Hauser aroused my interest in this problem. My research 
has been supported by NASA through grant 21-002-033 to the 
University of Maryland, College Park, and grant NAGW-12 
(Basic) to the University of California, San Diego. 
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