
19
84

A
pJ

. 
. .

28
0.

 .
47

03
 

The Astrophysical Journal, 280:470-475,1984 May 15 
f 1984. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

SUPERCLUSTER-SUPERCLUSTER INTERACTIONS 

Edward J. Shaya 
Institute for Astronomy, University of Hawaii 

Received 1983 April 1 ; accepted 1983 November 9 

ABSTRACT 

Monte Carlo simulations are made to determine the probability distribution of peculiar velocities and shear 
velocities of superclusters. Mass fluctuations on the scale of superclusters are represented as mass points dis- 
tributed randomly in three dimensions. Accelerations and the components of the tidal tensor at the center of a 
spherical region due to the gravitation of masses exterior to the sphere are calculated. It is concluded that 
peculiar velocities greater than ~200 km s-1 are expected in a majority of superclusters if Q > 1 and 
N~i/3/R0 = l = 3.2, where N is the number density of substantial superclusters and is the mean super- 
cluster radius at which <5, the fractional density excess internal to R, reaches unity. A peculiar velocity of ~300 
km s_1 for our supercluster implies a 95% probability that Q > 0.2. A shear velocity of ~150 km s_1 at our 
position in the supercluster is expected if superclusters have mass excesses of ~3 x 1015 M0 (Q ~ 1) and are 
at a number density of 1 per (80 Mpc)3. The distribution of tidal strengths in the direction of maximal dis- 
tention is compared with self-gravitational forces in the outer regions of superclusters; tidal fields are found to 
strongly influence the low-density outer contours of superclusters. 

The observed direction of motion of the Local Supercluster is found to be toward Hydra/Centaurus, the 
nearest large supercluster. 
Subject headings: cosmology — galaxies: clustering — galaxies: redshifts 

I. INTRODUCTION 

The motion of the Local Supercluster with respect to the 
microwave background can be derived, in principle, by sub- 
tracting the solar motion with respect to the other galaxies in 
the Local Supercluster from the solar motion with respect to 
the microwave background. It has been noted (de Vaucouleurs 
et al 1981) that the vector of our motion with respect to the 
blackbody radiation is not properly reflected in the radial 
velocities of our surrounding galaxies. A possible interpreta- 
tion of this discrepancy is that dynamical interactions among 
superclusters are causing motions of several hundred kilo- 
meters per second. 

A weighted average of measurements of the dipole moment 
of the 3 K background about the Sun (Clutton-Brock and 
Peebles 1981) is 380 + 17 km s_1 in the direction / = 269°, 
b = 56°. Subtracting the solar motion with respect to galaxies 
with radial velocities less than 3000 km s-1 leaves a motion of 
this nearby region of 491 km s-1 toward / = 290°, = 19° for 
the determination of de Vaucouleurs et al (1981) and 383 km 
s-1 toward / = 291°, 6 = Io for the determination of Aaronson 
et al. (solution 3.1, 1982). Both studies, therefore, indicate sub- 
stantial motion of the entire supercluster roughly toward the 
Hydra/Centaurus Supercluster at / ^ 285°, b ä 25° (Chincarini 
and Rood 1979). The Hydra/Centaurus Supercluster comprises 
the Centaurus, Hydra I, and Antlia clusters plus several smaller 
clusters, all with redshifts in the range 2220 < v < 3600 km 
s_1. This entity skirts the Galactic plane; therefore, there may 
be other significant components associated with this super- 
cluster that remain undetected because of obscuration. For 
now, we resort to statistical arguments to determine how rea- 
sonable it is that our supercluster has such a high velocity, 
regardless of the direction. 

As the following analysis shows, motions of several hundred 
km s-1 are expected to arise between superclusters from the 
summed gravitational interactions of all nearby superclusters if 
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(1) the “average” mass excess of superclusters is ~1015 M0, 
and (2) the number density of these systems is (80 Mpc)-3. If 
superclusters are more massive or numerous, or if clustering on 
scales larger than superclusters is significant, then greater 
typical velocities would be expected, and we would need to 
accept the hypothesis that our supercluster neighborhood is in 
an exceptionally rare arrangement that has generated an 
abnormally low velocity for the Local Supercluster. 

Tidal distortions and rotation are yet another product of 
large scale clustering of matter. Superclusters typically reside 
only a few supercluster radii from one another. Therefore they 
are quite likely to undergo mutual tidal disturbances. For 
instance, Binggeli (1982) found that neighboring Abell clusters, 
separated by less than ~60 /i-1 Mpc, strongly tend to “point 
to each other.” Also, Tully (1982) found prominent clouds in 
the “ halo ” of the Local Supercluster to be prolate structures 
with their long axes directed toward the Virgo Cluster. 

De Vaucouleurs (1958) and Aaronson et al. (1982) suggest 
the Local Supercluster is rotating with a velocity greater than 
100 km s-1 at the position of the Local Group. A natural 
mechanism to explain this motion is the torque of the tidal field 
of neighboring superclusters. This mechanism was investigated 
by Peebles (1969), Thuan and Gott (1977), and Efstathiou and 
Jones (1979) to explain the origin of rotation of galaxies. 

In § II the average value of the square of the acceleration at a 
given point, (g2), is derived analytically for power laws in the 
mass function for superclusters. In § III, the distribution func- 
tion for j öf I due to a random distribution of points all of the 
same mass is found with the aid of computer simulation. Once 
the present net gravitational acceleration is known, the present 
peculiar velocity can be calculated, given the cosmological 
density parameter Q. In § IV, the expected range of velocities as 
a function of Q is examined. 

The tidal field of the net potential field gives rise to shear 
motion in bodies that are still expanding. These effects are 
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examined in § V along with the limits to the overdensities on 
large scales implied by measurements of supercluster rotation 
rates. 

II. ANALYTIC DERIVATION OF MEAN SQUARED ACCELERATION 

We can derive the gravitational acceleration at a given point 
due to randomly distributed mass clumps all of mass and 
at a number density of If we know the mass function, 
i.e., number density for every mass range, then we can add 
stochastically the contributions due to different mass ranges. 

The present gravitational acceleration on a supercluster due 
to another mass Ml and distance R is 

A0! = 
GAÍ! 

R2 ' (1) 

The number of superclusters of mass M1 between R and 
R + dR is 4nR2N(M ^dR. The galaxy two-point correlation 
function falls below unity at scales greater than 5 h~1 Mpc 
(Peebles 1976), and the Abell cluster correlation function falls 
below unity at a scale length of ~25 h~l Mpc (Bahcall and 
Soneira 1983), so Poisson statistics are suitable for a first-order 
approximation of the distribution of superclusters in space if a 
large fraction of all galaxies are contained in superclusters. As 
in all stochastic processes, with N acceleration vectors each of 
which has a magnitude of Ag^ the square of the sum of the 
vectors is gx

2 = A/^AgJ2. 
The average value of g 2 per mass interval is found by multi- 

plying (Agq)2 for a given R with the number of mass centers 
with mass in the interval M1 and M1 + dMl at that distance 
and integrating over all distances, 

(g1
2ydMi = 4nN(M1)G

2M2dMl 

^max 

JjRtnin 
= 47rA(M1)G

2M1
2Rmin-^M1 . (2) 

The integrand falls off fast enough that we need not consider 
general relativistic effects, and we can effectively take Rmax = 
go. The divergence at small R does not present a great difficulty 
since any two superclusters very close to one another rapidly 
fall together resulting in a single system with zero net peculiar 
motion. Also, we are interested only in accelerations correlated 
over the entire supercluster. For these calculations, Rmin is arbi- 
trarily taken to be the radius at which the internal fractional 
overdensity ôp/p reaches unity, with characteristic dimension 
assumed to be 20 /i_1 Mpc. It is important to note the depen- 
dence of (g2} on number density and mass in equation (2). 
The distribution of the accelerations in the following sections 
has the same form as equation (2), but the constant 4n is 
replaced by a probability distribution. 

To obtain the average squared acceleration due to a spec- 
trum of masses, equation (2) is integrated over mass. It is, 
therefore, necessary to assume a form for N(M). Assuming 
N(M) is represented by a power law extending over at least one 
decade in mass with cutoffs at Ml and M2, then the expecta- 
tion value of the squared acceleration is 

<02> = 4nG2Rmin-
1iV0M1

2^|5jj : a > 3 , (3) 

where N0 is the total density given by A/0 = A0 = 

It is not highly informative to know only the expectation 
value of a distribution, and at times, it can be misleading. The 
median value of g2, with certain probability distributions, can 
be much lower than <g2>. For example, the addition of a 

shallow tail onto the high end of a distribution curve can 
greatly increase the expectation value while only slightly 
increasing the mode and median values. To make meaningful 
inferences from observed peculiar motions, the probability 
function of I g I needs to be calculated. 

III. PROBABILITY DISTRIBUTION OF NET ACCELERATION 

The magnitude of the acceleration at a point due to a dis- 
tribution of n point objects all of the same mass is given by 

I 9 I GM 
zf?)+1?#* , n 

1/2 
(4) 

If we recast this into a form similar to that given for <g2> in 
equation (2), 

\g\ = AGMN^R^-1'2 , (5) 

where the dimensionless random variable 

^jv-^jW'TZ + I + IU2- 
The probability density for A, PN(A), can be evaluated and 
should change slowly with the ratio Rmin/N

_1/3, since it is 
constrained by the fact that 

'*00 
A2PN{A)dA = 4n . (6) 

Jo 
With the aid of a computer, N points (where N was usually 

greater than 50) were selected at random within a unit cube, 
but outside a smaller centrally located sphere. Choosing N and 
a value for RmiJN~1/3 determines Dmin, the radius of the 
central sphere. The set of random points was reselected 200 
times. Statistics on the frequency of occurrence in discrete 
intervals of values of A were accumulated and the probability 
density PN{A) was, thereby, approximated along with its inte- 
grated probability function. The results are plotted in Figure 1. 

The limiting case of AU1/3 Rmin can be represented by a 
slightly different expression which does not depend on Rmin : 

I £ I = A'GMN213 , (7) 

where Af = AU2/3Q] + X + X]1/2- probability distribu- 
tion of A' is plotted in Figure 2 along with its integrated prob- 
ability. It is enlightening to see that the general shapes of A' 
and A, for the values of RmiJN~1/3 used, are fairly similar, yet 
the shallow tail in the distribution of A' arising from very near 
mass points causes the mean of A' to be infinite. 

Now, in adding up the contributions of various mass ranges, 
notice that each mass range has an associated number density 
given by a presumed mass function. Thus, each mass range 
contributes a probability density for | g | of more or less similar 
shape except for the width, which goes as MNP, where y < ß < 
f. The probability density function for the sum of two indepen- 
dent random variables is the convolution of the probability 
functions of the random variables, so the net probability 
density for g2 is the net convolution of all the distributions for 
g2 due to different mass ranges. The width of the convolution 
of two such functions is approximately equal to the root of the 
sum of the squares of the widths of the original functions. Thus 
the distribution from a spectrum of masses is well approx- 
imated by merely considering the mass range with the 
maximum width or equivalently the greatest MNß. 

IV. VELOCITY DISTRIBUTION OF SUPERCLUSTERS 

The specification of a scale sufficiently large that fractional 
density excesses are less than unity ensures that these pertur- 
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A A 
Fig. 1—Probability per unit interval of A derived from Monte Carlo simulations of N equal mass points in a cube with (a) Rmin = N~1/3/2 and (c) Rmin = 

AT -1/3/8. The integrated probability function of A with (b) Rmin = N- 1/3/2and (d) Rmin = N-1/3/8. 

bâtions have grown linearly. Accordingly, from the time of 
recombination until the present, density perturbations on this 
scale have merely been amplified with minor alteration in 
shape. The net gravitational field arising from these large-scale 
perturbations has changed only in amplitude with time; the 
direction of acceleration on such large-scale objects have 
remained fixed. 

The cosmological relationship between present accelerations 
and peculiar velocities derived in linear perturbation theory is 
(Peebles 1980) 

uo=ljr0
Q-°A ■ (8) 

It is, however, the mass excesses above the mean density that 
contribute to g0 instead of the total masses. 

Redshift surveys of the large-scale space distribution 
(Gregory and Thompson 1978; Kirshner, Oemler, and Schech- 
ter 1979; Tarenghi et al. 1980; Gregory, Thompson, and Tifft 
1981 ; Davis et al. 1982) reveal a substantial fraction of galaxies 
is situated in superclusters. Correspondingly large holes devoid 
of galaxies are also found. These holes also contribute to the 
net acceleration vectors since it is deviations from the mean 
which cause the peculiar motions. Incidentally, the presence of 
these holes should not be surprising. Small density pertur- 
bations grow in proportion to i2/3 in early times for density 
deficits (ôp < 0) as well as for excesses. 

Combining equation (8) with equation (5) one obtains for the 
Fig. 2.—Probability function per unit interval of A' per unit interval and 

its integrated function. 
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Fig. 3.—The probability functions of Fig. 1 were used in evaluating the 
upper limit (95%), median, and lower limit of the peculiar velocities of a sphere 
of radius 20 h~1 Mpc as a function of Q assuming Rmin = AT" 1/3/3.2. 

peculiar motion of the spherical volume containing a fractional 
overdensity of unity 

n~1I3/r0 

3.2 

-3/2 R* 
20 h-1 Mpc 

AQ0-6 117 km s' 

(9) 

where h = Ho/100 km s"1 Mpc -1 and Rô = 1 is the mean super- 
cluster radius at which ô, the fractional density excess internal 
to R, reaches unity. 

The combined number density of both superclusters and 
supercluster-sized voids is taken to be one per (63 /i-1 Mpc)3. 
There are eight known superclusters with v < 10,000 km s -1— 
Hydra/Centaurus, Lynx/Ursa Major, Pisces/Perseus, Coma/ 
A1367, A2199/2197, A2634/2666, Indus, and Virgo—which is 
the same as one per (80 /z-1 Mpc)3. The contribution to the 
velocity arising from large-scale density deficits or voids, which 
could be almost as great as the contribution arising from the 
superclusters, was accounted for by simply doubling the 
number density to give the combined number density. 

Several superclusters with i; < 10,000 km s-1 may still 
remain undiscovered for several reasons. There is a large 
section of the southern hemisphere sky that has not been thor- 
oughly investigated because Abell’s original catalog of clusters 
(Abell 1958) did not cover the whole sky. The plane of the 
Galaxy may hide superclusters within this velocity interval. 
Superclusters that are less conspicuous because they do not 
include rich clusters would likely have escaped detection. 
Therefore, it should be kept in mind that the actual number 
density of superclusters, especially inconspicuous superclusters 
of which the Local Supercluster is an example, may be con- 
siderably greater than 1 per (80 Mpc)3. 

The median and 95% upper and lower limits to the peculiar 
velocity of a 20 /z-1 Mpc sphere as a function of the density 
parameter shown in Figure 3 demonstrate the range of velo- 
cities expected. The peculiar velocities vary as the inverse 
square root of the radius of the sphere. Less than 5% of the 
superclusters in a universe with mean density of 0.2 times criti- 
cal density would have velocities greater than 300 km s-1. On 
the other extreme, if the universe is closed or nearly so, then 
peculiar velocities greater than 200 km s -1 would be the norm. 
Improvements in velocity independent distance determinations 
(Tully and Fisher 1977; Aaronson, Mould, and Huchra 1980; 
Bottinelli et al. 1980) may soon make this range of peculiar 
velocities discernible in the nearby superclusters. 

V. TIDAL EFFECTS 

It is also worthwhile to investigate the tidal effects of a 
random distribution of similar masses. The tidal acceleration 
at a point r within a supercluster due to another supercluster at 
a distance D is 

Ricial = 

or in component notation g/,dal = E^rj, where (Olson 1980) 

% = (11) 

For a random distribution one needs to sum each of the ele- 
ments of Eij over n particles. A dimensionless parameter was 
formed for the Monte Carlo simulations : 

3R(R • r) \ GÖM 
R2 r) R3 (10) 

■ (12) 

Figure 4 demonstrates the distribution of the off-diagonal ele- 
ments Bij due to a random distribution of points outside Rmin. 
The tidal tensor is then 

Eu = BijGÔMNll2Rmin~312 . (13) 

a) Shear Motions 
The off-diagonal components of the tidal tensor result in 

nonradial or shear motions which are given by the integration 
over time of the tidal acceleration 

v = EijVjdt . (14) 

For early times, a oc t2/3 and the strength of the tidal field 
Eij oc \_p(<R) — p(RJ] ce a-3[ô(<R) — ¿(Æ)] oc i-4/3. At late 
times in a low density universe {a0/a < (Q0

_1 ~ 1); see Peebles 
1980, p. 51), a oc t and <5 = constant, so £l7oci-3. In the 
expanding outer regions of a supercluster that is bound or 
nearly bound, r cc t2/3 until the present. Let us take, as an 
approximation, i = i0/(Q0

-1 — 1) as the time at which a 
sudden transition from early to late time behavior occurs; then 
equation (14) is easily integrated to yield 

3 :n0~\ 

^(ÍV1 - l)4/3~ 1:C20« 1 • (15) 

The smaller universal density parameter, the greater the shear 
velocity for a given present-day tidal field strength. 

If we again take into account negative as well as positive 
density excesses, the shear motion today in objects that are still 
in the linear regime of growth is 

/ ÔM y N~1/3 \-3/2 

V1015 M0/V63/z-1 Mpc/ 

X (20 /^Mpc) ^ 3 h2B‘j km 8-1 MPC_1 • (16) 

Taking 16.8 Mpc (Tully and Shaya 1984) for our distance from 
the center of the Local Supercluster and values of unity for the 
terms in brackets, shear flow of about 50 h2 km s-1 at our 
position is predicted, since the median value of is approx- 
imately unity. An upper limit (95% lower limit of is 0.1) of 
~3 x 1016 h~2 Mq for the excess masses of our neighboring 
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Fig. 4.—Probability per unit interval for the oflf-diagonal tidal field tensor Bij in a random distribution of equal mass points and {a) R ■ = AT 1/3/8 (b) 
Rmin = N-ll3/2. 

superclusters is implied if the shear motions in the Local 
Supercluster are under 150 km s -1 and Q = 1. The upper limit 
is reduced to ~ 1 x 1015 h~2 M0 if Q0 = 0.1. The lower limit 
for ÔM (95% upper limit of Bu is 2.5) is 1.2 x 1015 h~2 M0 
with Q = 1 if the shear motions are greater than 150 km s-1. 
The lower limit is reduced to 4 x 1013 /i-2 M0 if Q = 0.1. A 
higher number density would, of course, reduce these mass 
limits. 

Shear velocities of several hundred km s -1 are measurable in 
other superclusters by modern techniques; however, large 
numbers of velocity measurements for each supercluster are 
required. Measurements of the amplitude of shear motion 
within several superclusters would provide a measure of the 
average mass excess in superclusters. 

b) Tidal Distortion 
Tidal forces can produce distortions of the velocity field 

which in turn result in increases in asphericities. For the case in 
which two or three proto-superclusters were close enough to 
partially merge, a particularly aspherical system arises. A 
Hubble time is not long enough for these large systems to fully 
merge and relax into a spherical system. For this reason, calcu- 
lations of tidal distortion should include the influence of super- 
clusters closer that Dmin. The assumption of a constant 
geometry here strongly underestimates the influence of super- 
clusters with separation velocities that depart significantly 
from Hubble flow. 

When no minimum distance is specified, the tidal field tensor 
can be expressed as 

Eij = Bij'GNÔM . (18) 

It is advantageous in examining tidal distortion caused by a 
random distribution of gravitating systems to rotate the coor- 
dinate axes so that they are aligned with the directions of 
maximum stress and compression. The tidal tensor, being sym- 
metric, can always be diagonalized, an operation equivalent to 
performing the desired rotations. The distribution of the three 
trace elements of the diagonalized tensor for BJ are presented 
in Figure 5. 

Strong tidal influences occur if the acceleration of the tidal 
stress is nearly equal to the self-gravitational accelerations. 
Equality of these quantities, implying tidal disruption, occurs 
when 

17 Roche   GM   4 / „ \ /1 q\ Exx — r3 ^ 3 * (18) 

The limit on Bxx' for disrupting a system of mean internal 
density <p> is 

Bxx 32 ~r{ ï2 
(19) 

If A_1/3/i^¿ = 1 is equal to 3.2, in about 10% of all superclusters, 
the tidal field strength from neighboring superclusters is 
greater than half of that required to tear apart the supercluster 
at the contour where <p>/p = 1. In one-third of all super- 
clusters, the strength of the tidal field is greater than one-fourth 
of the critical level for disruption. 

VI. DISCUSSION 
A peculiar velocity of several hundred km s_1 for the Local 

Supercluster has been inferred from a comparison of the dipole 
measurements of the background radiation with the motion of 
our galaxy relative to galaxies of the Local Supercluster. A 
natural explanation for this motion is found when the summed 
gravitational attraction of nearby superclusters is considered. 
However, the “zone of avoidance” may completely hide 
nearby superclusters and surely obscures parts of known ones. 
Interestingly, the direction of this peculiar motion is close to 
that of Hydra/Centaurus, the nearest large supercluster. Maps 
of the Local Supercluster (Tully 1982) show that the longest 
axis of our supercluster is pointing roughly in the direction of 

Fig. 5.—Probability per unit interval for the nonshearing trace elements of 
the diagonalized tensor. Bxx' is the greatest valued of the three elements, 
Bzz' is the lowest one, and Byy' is the intermediate one. 
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the Hydra/Centaurus Supercluster. Perhaps this supercluster 
had an influence that determined the axes of collapse of the 
Local Supercluster as well as its direction of motion. 

Hydra/Centaurus is known to contain three clusters of 
approximately Virgo Cluster size: Antlia at a redshift of 
v = 2600 km s~1 and with velocity dispersion a = 609 km s~1 ; 
Hydra I (A1060) at t; = 3346 km s-1 and with a = 786 km s-1 ; 
and Centaurus at i; = 3261 km s'1 and with a = 945 km s-1 

(Yahil and Vidal 1977). The distance to this supercluster from 
the Virgo Cluster is roughly twice the distance between the 
Virgo Cluster and the Local Group. Thus, it would not be 
surprising if the peculiar velocity of the Local Supercluster due 
to Hydra/Centaurus alone were nearly as great as the peculiar 
velocity of the Local Group due to the Virgo Cluster. A proper 
analysis of the cause of the motion of the Local Supercluster 
would necessarily take into account the influence of other 
nearby superclusters. 

The statistical approach formulated here has been forced on 
us by our limited knowledge of nearby superclusters. The spec- 
ification of the mass function for a random distribution of 
superclusters is needed to determine the probability density 
distribution for the peculiar velocity of a supercluster. 
Assuming there is a limited mass range for superclusters, limits 
to that mass range can be set, given the peculiar velocity of at 
least one supercluster. With N~i/3/R0 = 1 = 3.2, which corre- 
sponds to 0.065 of the mass of the universe in supercluster 
excesses, the 95% upper limit probability to the peculiar vel- 
ocity of a supercluster is ~760 km s_1 for a critical density 
universe, and this value drops to 300 km s-1 for Q = 0.2. 
Determination of deviations from Hubble flow of nearby 
superclusters could be used to better determine the density of 
the universe. 

Shear velocities and distortional velocities are predicted to 
be the same magnitude as the peculiar velocity of the system. 

Although the shear motions are not important for centrifugal 
dynamical effects, they might be observable in other super- 
clusters. Measurements of the rotation of the Local Super- 
cluster (de Vaucouleurs 1958; Aaronson et al. 1982) find a 
shear flow of ~ 150 km s“1 at the Local Group position. For 
this velocity, a 95% upper limit to the mass excess in super- 
clusters is 3 x 1016 h~2 M0. These calculations assume that 
asphericity is of primordial origin, in which case a lack of 
rotation in clusters and superclusters can set cosmologically 
significant upper limits to the mass in superclusters. 

A few superclusters will be strongly aspherical because they 
are the merger of two or three clusters, which were initially 
very close. Such systems would surely remain highly aspherical 
for longer than a Hubble time and would be subject to large 
torques from the tidal fields of neighbors. 

It is, however, conceivable for a high degree of asphericity to 
have been produced without necessarily inducing much rota- 
tion. If a substantial fraction of the mass is clumped into super- 
clusters, then the majority of superclusters are undergoing 
strong tidal interactions. If the tidal distention dominates the 
self-gravitation, it will define the shapes of superclusters. The 
resulting configuration will be locked to the prevailing tidal 
field. This very basic physical process must be going on to 
some degree and may explain at least in part the bridges and 
44 cell-like ” structure of groups of superclusters (Giovanelli and 
Haynes 1982; Einasto, Joeveer, and Saar 1980; Chincarini, 
Rood, and Thompson 1982). 

Guidance and encouragement from Brent Tully are grate- 
fully appreciated. The efforts of Laird Thompson and Alan 
Stockton to improve the manuscript were of great benefit. 
Financial support was provided by the Honolulu Chapter of 
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