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JABVDKEHUE ITPOBHBIX YACTHUIL B IIOJIE YEPHBIX [bIP
B CIIVYAE KOCMOJIOTUYECKOH ITOCTOSIHHOW OTJIMYHOU OT HVIJIA

Kak cneacTBue COBPEMEHHBIX MHIMKALWA CyIECTBOBAHMS KOCMOJIOTHYECKOM IOCTOSIHHOM OTIMYHOM OT HYJIA
JTECKYTHPYIOTCA HEKOTOpbIE aCIEKThI BiUAHUA A 7 0 Ha XapakTep OBHXCHAS NPOOHBIX YaCTHI[ B IOJIE YCPHBIX
Ieip. Hamacans! ypaBHEHUS IBMKECHEAS dJIEKTPAYECKA 3apsDKEHHBIX YACTHI, H MATHATHBIX MOHOIOJEH B CaMO#
obmel maonnoit Mmerpuke Keppa-Hpromena-ne Currepa. s mpocTpaHcTBa-BpeMenu Keppa-me Currepa
[p¥ HOMOIIH METOA ,, KATalCKAX SIIMKOB  NeTATbHO HCCIIEIOBaHO ITAPOTHOE IBMXCHAE. B anamm3e paquaim-
HOTO IBWKEHHSA B mpocrpaHcTBe-Bpemend IIpapimmnbaa-ne CATTepa BHAMAaHHE OOpAlIeHO HA CYyIIECTBO-
BaHHe H CTA6MIBHOCTH KPYTrOBBIX OpPOMT M HA KayeCTBA YACTO PAJHAJIbHBIX TpaeKTopuwil. B 3akimrouenme 06-
CyXIaeTCs BO3MOXHOCTE HocTpoenus Moenu Beenernoit Qitrmreiina-MTpayca-ne Carrepa (TO €CTh Moaem
xonmencanuit IllBapunmnbaa-ne Cuarrepa, BlIOXeHHBIX BO Beenennyro ®pummana ¢ 4 # 0).

Due to the present indications of the existence of a non-zero cosmological constant, some aspects of the
influence of 4 == 0 on the character of test-particle motion in black-hole backgrounds are discussed. Equa-
tions of motion of electrically charged particles and magnetic monopoles are written in the most general
Kerr-Newman-de Sitter dyon background. For the Kerr-de Sitter spacetime, the latitudinal motion is exa-
mined in detail by using the “Chinese boxes” technique. The radial motion in the Schwarzschild-de Sitter
background is considered with attention devoted to the existence and stability of circular orbits and to the
properties of purely radial trajectories. Finally, the possibility of constructing an Einstein-Strauss-de Sitter
model of the Universe (i.e. a model of Schwarzschild-de Sitter condensations in the Friedman Universe with
a non-zero A-term) is discussed.

1. Introduction with a non-zero cosmological constant and vanishing
energy-momentum tensor is de Sitter spacetime which

Recently two independent experimental groups ... be written in the static form

have given evidence for the existence of the electro-
magnetic neutrino rest energy m, c* ~ 30eV (to be (1)
exact 14eV < m, c* < 46 V) — see Lyubimov et al.
(1980), and Reines et al. (1970). With this non-zero
rest energy relic neutrinos make the main contribution
to the average matter density of the Universe; if the
sum of rest energies of known types of neutrino
(Ves V5 v,) is greater than 20 eV, our Universe turns
out to be closed, and if the sum is greater than 60 eV,
the age of our Universe would be less than 10%°
years in contradiction to the age of the oldest stars,
and a non-zero cosmological constant A must be
introduced in order to eliminate this contradiction
(Ze'dovich and Syunyaev, 1980). Thus in the light
of recent experiments the possibility of a non-zero 4
should be taken seriously, moreover, this possibility
is in agreement with recent ideology of theoretical
physics as stated by Zeldovich and Syunyaev (1980):
if something is not zero inevitably, then it is non-zero.

The simplest solution of the Einstein equations

ds? = —(1 — 34r?)dr* +
+ (1 — 34r*)71dr® + r¥(d6? + sin® 0 de?).

For A = 0 the line element (1) describes Minkow-
skian geometry in spherical coordinates.

For positive values of 4 (corresponding to repulsion)
the metric (1) has an apparent singularity at r, =
= (4/3)""/?, which determines event horizons (cos-
mological) of the observer who is located at the origin
of coordinates — any timelike geodesics can be chosen
as the origin. The de Sitter metric (1) can be ‘“‘kruskali-
zed” and a conformal (Penrose-Carter) diagram
of the geodesically complete de Sitter spacetime can
be constructed; both future and past infinities of
spacetime are spacelike and, therefore, the past
event horizon of the origin is the boundary of the
region which cannot be influenced from the origin,
while the future event horizon is the boundary of the
region which cannot influence the origin (see Gibbons
and Hawking, 1977). The de Sitter spacetime is
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a geodesically complete spacetime of constant curva-
ture (positive if A > 0) with topology R' x S —
see Hawking and Ellis (1973), where the geometry
is also expressed in some other coordinate systems.
(If not stated otherwise, we shall consider the repulsive
Aterm.)

Cosmological models expanding forever with re-
pulsive A approach de Sitter spacetime asymptotically
at large times, when the cosmological fluid can be
treated as test particles. The cosmological event
horizon of an observer is then the boundary of regions
from which light can never reach the observer due
to rapid expansion of the spacetime.

For negative values of 4 (corresponding to attrac-
tion) the metric (1) is regular, and is sometimes called
anti-de Sitter spacetime; — details can be found
in Hawking and Ellis (1973).

The black-hole asymptotically flat solutions (deter-
mined by the Kerr-Newman metric) have been studied
extensively in recent years, but also the black-hole
asymptotical de Sitter solutions were found and
discussed by Carter (1973) and further investigated
by Gibbons and Hawking (1977).

The purpose of this paper is to discuss the properties
of test-particle trajectories in asymptotical de Sitter
black-hole backgrounds with both repulsive and
attractive cosmological 4 term. In Sec. 2 equations
of motion of electrically charged particles and magnetic
monopoles in the most general Kerr-Newman-de Sitter
dyon metric are given, in Sec. 3 the latitudinal
motion of test particles in the Kerr-de Sitter spacetime
is studied, while radial motion of test particles in the
Schwarzschild-de Sitter spacetime is discussed in Sec. 4
with interest devoted to circular orbits and radial
trajectories. Finally the possibility of constructing
a model of the Einstein-Strauss-de Sitter Universe
(i.e. a model of Schwarzschild condensations immersed
in the Friedman Universe with the cosmological
constant A present) is considered in Sec. 5.

2. Equations of Motion of Test Particles
in the Kerr-Newman-de Sitter Dyon Spacetime

The black-hole solutions which are asymptotically
de Sitter were found by Carter (1973). In coordinates
of the Boyer-Lindquist type the Kerr-Newman-
de Sitter dyon metric is described by the line element

@ 45 =

Iz = (dt — asin® 0dg)? +

Ay sin? 0
IZQZ

[adt — (r* +az)dqo:|z
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2 2
+ 2 darr + L qe2,

r 4y
where
(3a) 0* =r* + a*cos? 0,
(3b) 4, = (1 — 34r*) (r* + a®) — 2Mr + Q* + P?,
(3c) 4 =1+ }a*Acos? 0,

(3d) I =1+ 44%4.

The source has mass M, angular momentum per unit
mass a, electric charge Q, and magnetic monopole
charge P; geometrical units with ¢ = G = 1 are used.

The electromagnetic field of the source is given
by the vector potential

1
“) A, = e {(Qr + aPcos 0) 5;, —

— [aQrsin® 0 + (r* + a®) P cos 6] 6%} .

The conformal {Penrose-Carter) diagram of the
symmetry axis of the Kerr-Newman-de Sitter metric
for the case that 4, has four zeros can be found
in Gibbons and Hawking (1977) (or in Carter, 1973).
The Kerr-Newman-de Sitter metric then has two
black-hole horizons (an outer atr,, an inner at r_),
and two cosmological horizons (one for positive radii
at r, ,, one for negative radii at r__).

The motion of a test particle with rest mass m and
electric charge e is determined by the Lorentz equation

(5) m— = eF*u’,
T

where 7 is the proper time of the particle, u* =
= dx*[dr is its 4-velocity,and F% = A}, — A%, is the
electromagnetic tensor of the background. The
equations of motion (5) can be obtained from the
Lagrangean

1 1
(6) % =14, % dx dx dx

ed, —
di di di

where the affine parameter A is related to the proper
time of the particle by © = mA. Thus the normalization
condition is

un
() G dx* dx” — —m?;

A di

the rest mass m is the first constant of motion. As
both the line element (2) and the vector potential (4)
are independent of coordinates ¢t and ¢, the corres-
ponding momenta

X4 dx’
(8 Py =

Adojar) P ar T
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~oagan !

tvd_x_eAt= —E,
di

©® »

must . be constants of the motion. Note, however,
that E and @ cannot be interpreted as energy and
axial angular momenta at infinity due to the presence
of the cosmological A4 term.

As in the case of the Kerr-Newman metric, a fourth
constant of motion 2" can be obtained by using the
Hamilton-Jacobi methods (see for example Misner
et al.,, 1973) which enables us to give the equations
of motion in a separated form:

(10)

2 dr 1/2
— = x [R(r ,
S + [R(r)]

an 3=+ W,
1) e P alP
dAi Agsin? 0 A,
2 2
(13) ng___ __aIP,,_l_(r +a)IP,’
da 4, 4,

where
(14) R = P} — A(m*r* + ),
PO

2
(15) W= (o — a’m?cos® 0) 4, — < ‘ ) ,
sin 6

(16)
(17)

One can also easily find the equations of motion
of the magnetic monopoles in the background (2).
Due to the duality invariance, the motion of a particle

with magnetic monopole charge g is given by the
equation

(%)

P, = IE(r* + a*®) — Ia® — eQr,
P, = IaEsin®> 0 — I9 + eP cos 0 .

m Dt = g*Filu" .

Dz
Since the tensor *F% which is dual to the tensor F%
is determined by the vector potential (4) where changes
Q —» P, P -» —Q are made, one can sece immediately
that trajectories of the magnetic monopoles are again
given by equations (10)—(15), with

(18)
(19)

Notice that the radial motion is influenced by inter-
actions of electric (or magnetic) charges of the source
and the particle, while the latitudinal motion is influ-
enced by their mixed electro-magnetic interaction.
Moreover, from (16)—(19) it is clear that motion of

P, = IE(r* + a*) — Ia® — gPr,
Py = IaEsin? 0 — I — gQcos 6.
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magnetic monopoles in the dyon metric (2) is of
the same character as that of electric charges.

The equations (10)—(19) are valid for both positive
and negative values of the cosmological parameter 4;
for A = 0 we obtain the Carter equations of motion
of test particles in the Kerr-Newman metric (see,
e.g., Misner et al., 1973). If e = g = 0, Egs (10)—(17)
yield timelike geodesics, and if, moreover, m = 0
these equations determine null geodesics.

3. The Latitudinal Motion of Test Particles
in the Kerr-de Sitter Spacetime

Because the latitudinal equation of motion (11) does
not depend on the mass parameter M, the character
of the latitudinal motion will be the same for both
black-hole and naked-singularity spacetimes.

The latitudinal motion of neutral test particles
in the Kerr metric was studied by de Felice and Calva-
ni (1972), and by Bidk and Stuchlik (1976). The
results of these papers hold equally for electrically
charged particles in the Kerr-Newman metric with
P = 0. The more general case of motion of electric
charges or magnetic monopoles in the Kerr-Newman
dyon metric was discussed quite recently by Calvani
and Stuchlik (1982) —in this case the latitudinal
motion is not symmetric with respect to the equatorial
plane of the background.

The most general case with both magnetic monopole
charge P and cosmological A term present in (15)
and (17) is too complex and that is the reason why
we will devote our attention only to the influence
of the cosmological constant on the character of the
latitudinal motion with P = 0.

-
Fig. 1. Behaviour of the curves bgi(e; y)inthecase 0 < y < 1.
The curves are drawn for y = 0-5.
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' Under the assumption P = 0 the expressions (15)
and (17) become considerably simplified and Eq. (11)
can be written as

2
(20) o* <j—z) = (A — a’*m? cos? 6) 4, —
_ I*(aEsin® 6 — &)
sin? 6 )

In order to find the character of the latitudinal
motion, the locus of turning points (solutions of eq.
d6/dA = 0) will be sought. From (20) it follows that
the turning points are located on

I*(aE sin? 0 — @)?

— + a*m?® cos? 6.
Ag sin® 0

Q1) o, =

A ,(0; E, ®,a, m, A) represents a five-parameter family
of curves in the (" — 6) plane. Fortunately, by using
the following rescalings and definitions

A ]
22 Ki=-"—5, b=—3
(222) (aE)? oE
(22v) E=Em y=1a4

we find that it is sufficient to consider only a three-

% ,
16-I

1% -
12 1

10 -

Fig. 2. Constant b-value section of the surface K, = K,(6; E,
b, y) in the case when 6 = const trajectories are possible only
at 8 = 4n, and are stable. The section is drawn for m = 0,
y=0-5, b= 2. The latitudinal motion is allowed along
horizontal lines (K = const) in the unshaded region :and
minima of K,-sections determine stable § = const trajectories,
while maxima of K,-sections give unstable § = const orbits
for all figures of the K,-sections.
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parameter family of curves (for the case E = 0 see
Appendix A)

1 + y)*(sin? 6 — b)* , cos® 0

23) K,(0:, £, y) = .
(@3) KA Y) (1 + ycos?6)sin*6 E?

The behaviour of this family of curves can be studied
most effectively by the ‘““Chinese boxes” technique
(see for example Calvani and Stuchlik, 1982). The
physical dependence on the parameters can be clarified
and illustrated in figures when this technique is used.

First, null geodesics (m = 0) will be discussed,
and then we shall study the case of non-zero rest mass
particles (m + 0); in both cases the discussion will
be divided into four subcases in depending on the
value of parameter y: 0 <y<1l, —1<y<0,
y > 1, y < —1. Recall however that only the first and
the second subcases with l yl < 1 are of astrophysical
interest, as in astrophysical situations the influence
of the cosmological term can only be very small.

Note that from (23) it follows immediately, as in the
case of the latitudinal motion of neutral particles
in the Kerr metric, that the behaviour of the curves
K, = K(6; b, £, y) and of all their characteristics
must always be symmetric with respect to the equa-
torial plane (0 = 4n) of the background. Therefore,

;lA N7
y é
-
/ Z
: / /
AL

Z —8 —= T

Fig. 3. K section in the case when PNC photons on stable

0 = const geodesics are given by the minima of K, with

Kimin = 0. The 6 = const orbit must then always be unstable.
The section is drawn for m = 0, y = 0-5, b = 0-5.
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it is sufficient to consider only 0 €<0,in) in the
discussion.

If y> —1 we can further say that K (0) - + o0
for b + 0, and K,(0) = E~2 for b = 0; the curves
K(0; b, E, y) are always positive-valued, and from
(20) it is clear that only values of K > K,(6; b, £, y)
are allowed. Thus for y > —1 only positive values
of the parameter K are possible.

On the other hand, if y < —1, the situation becomes
more complex, because 4s-term has zero at

(24) . = arccos (—y)~ 12,

Thus for y < —1 the line element (2) is degenerate
at 0,. In this case the metric (2) has signature +2
at 0 > 0,, while at 0 < 6, the signature changes into
—2. Although Carter (1973) has imposed the restric-
tion 1 + y > O for the Kerr-de Sitter spacetime we
also include here the case y < —1 in order to under-
stand its character. The regions 6 > 6, and 6 < 6,
can be considered as two spacetimes disconnected
by the surface of degeneracy 6 = 6, but in the 6 < 6,-
region Eq. (23) determines spacelike "geodesics, i.e.
trajectories of tachyons with m + 0 being the meta-
mass of the tachyons (see Appendix B).

Thus K(0) > —oo for b+ 0, and K,(0) = E~2
for b=0;if b= (y + 1)/y we have lim,,,,_K, =
= —o0, limy.y,, K, > +co while for b = (y + 1)/y
it is K(6=20,)=—(yE*) *20. From (20) it
follows that for 6€e<0,6,) values of K < K, are
allowed, while for 6 € (0., r) we obtain inequality
K = K,. Consequently, if y < —1 negative values
of K are possible at 6 < 6,.

After these general remarks a detailed discussion
can be begun in which characteristic sections of con-
stant values of the parameter b (and E, y) of the
surface K, = K,(6; b, E, y) will finally be drawn.

a) Zero-Rest-Mass Particles

Assuming m = 0 we arrive at~the two-parameter
family of curves
1 + y)*(sin? 6 — b)?
25 K,(0; b, y) = ( .
29) { ) (1 + ycos® @) sin* 0

The loci of the extrema of K,(6; b, y) are at 6 = im,
andin the (b — 6) plane they are described by functions

(26) b2,(6; y) = sin? 6,
(27) b2_(8; y) = — (L+y)sin*6
¢ 1+ ycos26

(Notice that b2, does not depend on y.) One can show
that the extreme points of curves bJ.(8; y) are at
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6 =4m, where bJ,(3r,y)=1 (a maximum),
bg_(3m; y) = (v + 1)/(y— 1) (a minimum). The com-
mon point of b?, and b2_ is at § = 0, where b2, =
— b2 =0

i) 0<y<l1

The behaviour of curves bJ.(6;y) is illustrated
in Fig. 1; the inequality b2 (3m;y) < —1 holds.
For b> 1 or b < (y + 1)/(y — 1) the characteristic
sections of K,(6; b, y) are given in Fig. 2, for 0 <
< b <1 the sections of K,(6;b, y) are of the type
shown in Fig. 3, and for (y +1)/(y —1) <b <0
the sections are determined by Fig. 4. If b = 0, then

3'2]
| /%/ 2,

Fig. 4. K-section drawn for y = 0-5, E?= 1, b = 05, when
6 = const trajectories are possible at § = ix, but K, . >0.

%

— —= T

N \

T
2

Fig. 5. K-section in the special case b = 0, drawn for y = 0-5,

E?2=1.
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for all y > —1 the characteristic sections of K(0; b =
= 0, y) are the same as those of Fig. 5, but K(6 = 0)=
= 0.

It should be noted that for all values of y the extre-
me points of K/(6;b, y) determined by the curve
b, have K, .. = 0. The photons corresponding
to these extreme points move with constant but
arbitrary latitudes 6 along null geodesics which are
stable with respect to perturbations in the §-direc-
tion. The family of these geodesics is called the princi-
pal null congruence (PNC) and is privileged by the
spacetime geometry (see Carter, 1973; Misner et al.,
1973). Thus we can conclude that in Kerr-Newman-
de Sitter spacetime the PNC photons must have
K = 0, in agreement with results obtained in the Kerr
spacetime (Bit4k and Stuchlik, 1976).

i) -1<y<0

The curves b?,(6, y) are again smooth, but the
inequality —1 < b?_(4n) < 0 must hold (see Fig. 6).
The characteristic sections of the surface K, are given
in the same manner as for 0 < y < 1.

08- I
061
04 4

024

-0.2 4

-04 A

Fig. 6. Behaviour of the curves bgi((); y) in the case —1 <
< y < 0. The figure is plotted for y = —0-5.

i) y>1
In this case the curve bJ_(6; y) is discontinous at
(28)

where limg_,,_ b2_ =

6, = }arccos (—y)7*,

o_ = —oo,limg,g,, b2, = +o0; fur-
ther b2_(37) > 1 (see Fig. 7). The behaviour of sec-
tions of K,(6; b, y) has the following character: for
b<0andb> (y+1)/(y — 1) it is given by Fig. 4,
for 0 < b <1 Fig. 3 is relevant, and for 1 < b <
<(y + 1/(y = 1) it is determined by Fig. 2.

v) y<-1

-1 4

=05 4

-1,0 4
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Fig. 7. Behaviour of the curves b2.(6;y) in the case y >1
(drawn for y = 2).

1.5 A1

— — — o —— ——— — —— —

05

Fig. 8. Behaviour of the curves b2, (6; y) in the case y < —1.
The curves are plotted for y = —2.

Now the curve bJ_(0; y) is again discontinuous at
6,, as given by (28), but 0 < b?_(3r) < 1. The curves
b2, and bl. have point of intersection at 6 = 6,
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as given by (26) (6, < 6,), where b2, (8,) = bJ_(6,) =
= (y + 1)/y, see Fig. 8. Thus for b <0 or b > 1
the section of K, is demonstrated in Fig. 9, while
for (y + 1)/y < b < 1 the section is shown in Fig. 10,
which is relevant also for (y + 1)/(y —1) <b <
< (y + 1)/y, but in this case there is K, = 0 in the
maximum at 0 < 6,. Fig. 9 can also be used if 0 <
<b<(y+1)(y — 1), but again there is K, =0
in the maximum at 6 < 6,. In the special case b =
= (y + 1)/y the section of K,(6;b,y) is given by
Fig. 11, while for b = 0 its behaviour is determined
by Fig. 12 with K,(6 = 0) = 0.

b) Non-Zero-Rest-Mass Particles

The extrema of the surface K,(6; b, E, y) as given
by (23) are located on the curves

_(—ysin® 0 + 4,4)sin* 0

29 b,.(6; E, y) = )
() +( ) 1 + ycos20
where
(30) 4= 1_1+ycos20 1/2
1+ y)?E? ’
and at 6 = 4m.

Now the behaviour of the curves b,.(0; E, y) will
be determined. The reality condition on bei(G; E, y)
(and namely on A) is

(31) E? 2 EX(0, ),

Fig. 9. K,-section plotted for m=0, y= —2, b= —0-2.
For y < —1 orbits with negative values of the parameter K
are possible at & (0, 6,).
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where

1+ ycos26
32 EX6;y) = ————,

The marginal value of 6 #+ 0, where b,, = b,_, is
given by

33) 6, = L arccos [(1—-'-—"]&——1] .
2 y

For zeros of curves b,_,i.(B; E, y) we obtain

200,y _ (14 ycos? 0)?
(34) EX6;y) = Taryy

The extrema of curves b,.(6; E, y) are at 6 = in
(if the curves are defined here) and on curves

1

1+ y)*

A + ycos20) [(1 + y)* — ydgsin® 0] £

(35) El(6;y) =

i 2yAa Sin3 9[_on]1/2} .

Therefore at 6 + 4 the extrema of b,.(0; E. y) can
exist only for y < 0.
One can easily show that the curves E'f(@; ¥),

\

-
1

<R

]
N
N

\\i\

I
w
1

!
>
4
' v w—

|
(3]
1

I
(<]
A

=

Fig. 10. K,section in the case m= 0, y= —2, b= 0-75.
The minima here again determine the PNC photons,
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E2(0;y), E2.(6;y) have only one extreme point
at 0 = 3w, where .

2(17) = 1—y 2(11) = 1
(36) Er (% ) (1 + y)z > Ez (% ) (1 + y)3 4
E2,(4m) = (l—j—; [1 = % + 29(—)""].

Further, for all values of y we have

£0) - B20) - ——

37a >
(372) 14+y .
and for y > —1itis also

1
37b E%L(0)= ——
(370) L0 =15
Qa3

02 1

2

ot

-01 -

-02

Fig. 11. K,-section which characterizes the special case
b= (y+ 1)/y for y < —1. The figure is drawn for m = 0,
y=—2b=05.

(Of course, the curves E*(6;y), EX(6; y), E%(6, y)
are defined only if £% 2 0.)

In the special case of b = 0, the expression (23)
is reduced to

2 (in2 2
(38) K(6; E y) = (1 + y)*sin*6  cos® §

1+ ycos?6 E?

the extrema of which are located on the curve E2(6, y),
given by (34), and at § = in. If y > —1, the curves
K(0; E, y) have a maximum at 6 = in for E? >
> (1 + y)73, and a minimum for £% < (1 + y)~3.
If y < —1, then curves K/(6; E, y) have a minimum
at 0 = 4r for all E* = 0.

i) 0<y<1

>

Vol. 34 (1983), No. 3

The curves £7(6; y) and EZ(6; y) are defined and
continuous for all 6; they have no point of intersection,
and from (36) and (37) it follows that E’(3rn) <
< E%(3n) < E?(0) — see Fig. 13. Now the behaviour
of b, (6; E, y) can be determined: for £ > (1 + y)~*
(see Fig. 14a) the curves are defined for all values of 6,
while for (1 + y) ' > E?> (1 + y)~3 (see Fig.
14b), where positive values of b,, are allowed, and
for (1+y)3>E*>(1-y)1+y) (see Fig.
14c), where all values of curves b,, must be negative,
the curves are defined for 0e<{6,,4in)y, with 6,
given by (33). For £2 < (1 — y)/(1 + y)* curves b,
are not defined.

The character of sections of the surface K,(O; b, £ y)
can be found in the following manner: if a line b =

2
V'
VvV

34

N

Xﬁ
!
‘3

Fig. 12. K,section in the special case b= 0. The section
is plotted for y = —2, E2 = 1.

= const #+ O intersects curves b,,, then the charac-
teristic section of K,(6;b, £, y) is determined by
Fig. 4 (stable 6 = const + 4= orbits, and orbits of the
vortical type can exist, but the equatorial orbits are
unstable), while if the b = const + 0 line does not
intersect curves b, (or if these curves are not defined),
the behaviour of sections of K,(6; b, E, y) is demon-
strated in Fig. 2 (no vortical motion, but the equa-
torial trajectories are stable). Thus we can conclude
that the vortical motion is only possible for E? >

> (1= y)/(1 + y)* if be(b, (3n), b, (3n)>, where

) 1 1 172
b (37) = m{—_y + [1 - (Tﬁ)y?] }
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If y < —0-2956, the inequality
(40) E?_(im) > EZ(3n) > EZ (3n) >
> E}(3m) > E(0)

holds (see Fig. 17). There is an intersection point
of curves EZ(6; y) and EZ, (6, y) at

1/2
1+ hcosn—1)]| |
3y 3

Thus we have six different possibilities for curves
b.+(6; E y) which correspond to six ranges of para-
meter E? (see Fig. 18):

0, = arcsin[

where coshy = 32.

a 2> EX (4n
c - — ) (3n),
2 b) _Ef_(%n) > E* > EX3n(,
Fig. 13. Behaviour of the curves E,Z(H; ¥y) (solid curve), c) EZ(%R) s B2 s B2 Gn)
E}(&; ») (dashed curve) for 0 << y < 1; the curves are plotted z et ’
for y = 0-5. d) E;z.,.(%n) > E* > E,z(%ﬂ:) ,
E2:9 2= 04 £2=028
! ! Al
l | |
X
° . .%5’_.“" r ° , K-;;al*’ ’ N — "
-1 1 -1
"2 4 -2 -2
Q % 3]

Fig. 14. Sequence of figures giving typical behaviour of the curves b, (6; £2 ))in the 0 < y < 1 case. The figures are drawn
for y = 0-5. The sequence is labelled by values of E2 for which the figures are plotted.

and the stable 0 = const $ 4w orbits can exist at any 0
for E?> 1)1 +y) only. If E?*<(1+y)?
these orbits can exist at 6 € (6, 4r). For (1 + y)™3 >
> E% > (1 — y)/(1 + y)* motion of the vortical type is
only possible for negative values of b. The vortical
motion is allowed for Ke (K, K(in)), where
K min is value of the curve K,(8; b, E, y) at its minimum,
and K,(3m) = (1 + y)*(1 — b)%

For b =0 the behaviour of the characteristic
sections of K, is shown in Fig. 5 [for E*> > (1 + y)™']
in Fig. 15 [for (1 + y)™!> E?*> (1 4+ y)7%; the
vortical motion is possible], and in Fig. 16 [for

2<(1+y)77]

i) —-1<y<0

In this case all curves EZ(0; y), E2(6; y), E%(6; y)
are defined and continuous for all values of 6.

244 |
K¢
2.2
20 ~
1.8 % %
Fig. 15. K,-section in the special case b= 0 for y = 05
E?=0s5.
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"1
K¢ S
|
S
[. 4
‘3
2 AL
0 ES

Fig. 16. K,-section dre{wn in the special case b= 0 for
y=05E2=02.

e) EX3m) > E* > EX0),
f) E? < E}(0) — curves b,.(6; E, y)

are not defined.

If y > —0-2956, inequality (40) is valid with one
exception: E?,(3m) > EZ(3n); therefore, there is no
point of intersection of curves EZ(6;y); EZ.(6;y)
in Fig. 17. Thus Fig. 18c disappears from the sequence

30
27
264
211
18
15

12 4

Fig. 17. Behaviour of the curves ‘E,z(ﬂ; ¥) (solid curve),
EZZ(H; ») (dashed curve), Eezi(ﬂ; ») (dotted curves) in the

—1 < y < 0 case. The curves are drawn for y = —0-5 and
stherefore curves E2 and E2, must intersect each other at
= 0;.

. Vol. 34 (1983), No. 3

of Figs 18a—e, and for EZ,(in) > E? > E}(4m) the
behaviour of b, (6; E, y) is shown in Fig. 19. The rest
of the sequence of Figs 18 is still relevant, but the
lower boundary in range b) and the upper boundary
in range d) must be replaced.

If there is one intersection of a line b = const % 0
with the curves b,.(6; E, y) at 6 € (0, r) (we shall 0
always be referring to this interval below), the character
of b = const sections of K,(6; b, E, y) is determined
by Fig. 4, while for two points of intersection of
b = const # 0 line with b,.(6; £, y) Fig. 20 charac-
terizes the section of K,(6; b, E, y) — the first point
gives a minimum K, . of the section (with a stable
6 = const trajectory), the second point gives a maxi-
mum K, .. > K(4n) of the section (with an unstable
6 = const trajectory); vortical motion is then allowed
for K € {Kynin» Kimaxy- From Figs 18 and 19 it follows
that for (1 + y)"*[1 — y® = 2y(—y)**] > E* >
> (1 + y)~*! there always exist a range of parameter b
which gives two extrema of K,(6; b, E, y). If the b =
= const = 0 line does not intersect curves b, .. (6; E y)s
the characteristic K,-sections are demonstrated in
Fig. 2.

For b = 0 the behaviour of sections of K,(6; b, E, y)
is illustraten in Fig. 5 [for 2 > (1 + y)~?], in Fig. 16
[for E> < (1 + y)~'],and in Fig. 21 [for (1 + y)™° >
> E2> (1+y)7 1.

i) y>1
Curve EZ(0;y) is defined for 6 e<0,34n), while
curve E}(6;y) is defined at 6 e <6, 4n), where 6,

_is given by (28) — see Fig. 22. At 0, the curve

b.-(6; E, y) is discontinuous; it is lim,_4 _ b,_ = —c0,
and limgy_g , b,_ = + c0; the curve b, is continuous
at 0, — see Fig. 23. There are three different possi-
bilities for b, (6; £, y) corresponding to three ranges
of parameter E? (Fig. 23): :

a) E* > E}(0),
b) E}0) > E?> El(3m),
c) El(4n) > E* > 0.

Thus we can say that for any value of E%> 0
sections of K/(6; b, E, y) are given by Fig. 4 if b >
> b,_(4n) or b < b,,(4n), and are determined by
Fig. 2 if b,,(37) < b < b,_(4n), where b, (3r) are
defined by (39); vortical motion is possible for any
value of £2 > 0. For b = 0 the behaviour of sections
of K/(6; b, E, y) is the same as in the case 0 < y < 1.

iv) y< -1

Curye E2(6;y) is not defined, curve E}(6;y) is
defined for 0 e <#,, 4n), while curves E2 (6; y) are
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E2 = 30
£ g

b !
as | l 08 -
06 - 06 1
04

04

02 021

=

139

! |

04 4

02

7 ¥

-024 -024

a) ®

E2 =62

02

01+

e/ |1

T

=01

d) e)

Fig. 18. Sequence of figures showing typical behaviour of the

curves b, . (8; E2, y) for y € (—1, —0-2956). The sequence is

plotted for y = —0-5 and is labelled by values of E? for which
the figures are drawn.

defined at 6 € <0,, 4n)>, where 0, and 0, are given by
(28) and (24); recall that 6, < 6,. At 0, it is £7(6,) =
= E2%(0,) = — (1 + y)~*. The situation is demon-
strated in Fig. 24 — these curves have no common
point except that at § = 4,.

There are five ranges of parameter £2 which deter-
mine the corresponding five types of behaviour of

be+(6; E, y):
a)
b)
c)
9
e)

£? > B2 (im),
E? (3n) > E* > EX(3n),
E%,(3n) > E* > E3n),
B(in) > B? > E2(6.),
31(98) S>>0,

One can see immediately that for any value of
E? > 0 curves b, (0; E, y) cover all the range (— oo,

t

-024

e)

2,0

0.2 1

01 1

=01 -

=02 1

Fig. 19. Behaviour of the curves b,.(0; EZ, y) for ye

€ (—0-2956,0) in the case when Fig 18c is irrelevant; in other

cases Figs 18a,b, d, e are valid. The figure is plotted for
y=—2E*=2.
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” j g
10 -: b %
{ %
ak -
09 +
7 %
7
/
084~
071
T
0 T = T

Fig. 20. K,section for y= —02, E*=2, b= —01. In
this case unstable 6 = const = %1: trajectories occur beside
the stable # = const orbits.

+), and for E* > —(1 + y)~' they are always
defined at 0e<0,0,) —in this interval curves
b..(0; E, y) determine maxima of K, sections, if
b+ (y+ 1)y, and b + 0.

If a line b = const % (y + 1)/y + 0 has no inter-
section with b, (6; E, y) at 0 € (0,, 4r), the behaviour
of K,-sections is depicted in Fig. 9, if there is one in-
tersection at 0 € (6,, 3n) the section of K,(6; E, y) is
characterized in Fig. 10 (with K, > 0), and for
two points of intersection at € (6,, 7) the behaviour
of K,sections is given in Fig. 26 — then one stable
and one unstable 6 = const trajectories are possible

028 - 1
0.26-

0.24

Vol. 34 (1983), No. 3

0224

020

pd
b
2

Fig. 21. K,-section in the special case b= 0 (for y = —0-5,
E?2=5),

0 2

-yl —e0Q —-gr

N[

Fig. 22. Behaviour of the curves E2(9; y) (solid curve) E2(6; y)
(dashed curve) in the y > 1 case. The figure is plotted for y = 2.

£2- 1 £2 = 01 B2 = 003
I 1 i | 1 ]
5.,’, | ‘ s [ l s-l ! l
| : T ! o !
4-| | | o] | I [ 4-' [ |
|
3 | | 3 I | ' 34 |
1 I | I I
2 1 I | 2 4 [ I 24 | ;
1 ! ! 1 4 : : 1 I[ I
) ol N ) N s e SR S IO IO
s T 1\—e- ! | —o—|"
-1 | 2{ - -1 l 2[ 1 z "
f
-2 | | -2 , : -2 : I
I I I 1
-3 4 -3 4 -3
3 | | 3 | { l |
-4 4 | ] -4 | ] -4 4 |
- | ] i I [ -5 4 *
s ! ! ’ l ! ? '
1 1 . | | | l
ay 4 c)

Fig. 23. Sequence of figures giving typical behaviour of curves b, (6; Ez, y) for y > 1. The sequence is given for y = 2, and is
labelled by values of E 2 for which the figures are drawn.
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at fe (99, im), note that this situation can arise only
if(1+y)*[1 = y® = 2(=y)"*] > E* > —(1+y)*
(see Figs 25b—d). Further information can straight-
forwardly be read out from Fig. 25.

For b = 0 and any £? > 0 the K,-section is charac-
terized by Fig. 12. If b = (y + 1)/y, we obtain two
possibilities for the behaviour of K,-sections: that
of Fig. 11 for £Z > (1 — y)/(1 + y)?, and that of Fig.
27 for E* < (1 — p)/(1 + y)*

There is one important feature of the latitudinal
motion in the case y < —1: no test particle can cross
the barrier at 6 = 6, hyperboloid which is the sin-
gularity of the metric coefficient 4,.

Finally we can conclude that for repulsive cosmo-
logical constant the latitudinal motion in the Kerr-

Fig. 24. Behaviour of the curves Ef(e; y) (solid curve),
E2,(0; ) (dotted curves) in the y << —1 case. The figures
are drawn for y = —2.

E2=¢

—_— — ]

a)

1

10 4

054

m2

2. 98

151

051

4

IS
L
@
t

[NEh

- 051

d

—8—=

-05

e

I B

-051

e

de Sitter metric has similar character as in the Kerr
metric, while for the attractive cosmological constant
new feature arises as unstable 8 = const trajectories
can exist outside the equatorial plane in addition
to the stable trajectories. The presented analysis is
valid also for latitudinal motion of electrically charged
test particles in the Kerr-Newman-de Sitter space-
time with P = 0.

Fig. 25. Sequence of figures determining behaviour of the

curves b, 4 (6; E2,y)inthe y < —1 case. The sequence is given

for y = —2, and is labelled by values of E? for which the
figures are drawn.
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\S\

Nyl

Fig. 26. K,section for y = —2, E? =28, b= 0-6. Again,

unstable § = const = % trajectories exist.

7

03

NS

N
N

A\

021

Of 1

N\

_OJ .

Fig. 27. K,-section in the -special case b= (y + 1)/y for
y < —1. The figure is plotted for y = —2, £2 = 28, b = 0-5.

4. The Radial Motion of Test Particles
in the Schwarzschild-de Sitter Spacetime

The radial motion of charged test particles in the
most general Kerr-Newman-de Sitter dyon spacetime
is governed by Eq. (10), where expression R can be
written as :

Vol. 34 (1983), No. 3

R = 3Am?*r® +
+ [IPE? — m*(1 — $a®4 + 344 ]r* +
+ 2(IeQE + m*M) r® +
+ [2I?aE(aE — ®) + €2Q* — m*(a® + Q) —
— (1 = 3a?A) H] r* + 2(Ia>QeE + MA) r +
+ I2a%(aE — @) — (a® + Q7).

(41)

From (41) it is clear that for a repulsive cosmo-
logical term (4 > 0) infinity can be reached by
particles with arbitrary value of the energy para-
meter E (recall that for 4 = 0 only particles with
E = m can escape to infinity) for both nonzero and
zero rest mass particles.

-On the other hand, for an attractive cosmological
term (4 <0) no particle with m # 0 can reach
infinjty by following a geodesic trajectory — see also
Hawking and Ellis (1973) where "this is exhibited
in the conformal diagram of the-anti-de Sitter space-
time. A particle with m = 0 can escape to infinity
if its energy parameter E satisfies the condition
A

317

A more detailed discussion of radial motion in the
most general background (2) is very difficult due to the
great complexity of (41). Therefore we restrict our
attention to the much simpler case of the Schwarz-
schild-de Sitter spacetime

(42)  ds? = —(1 — 2MJr — 3A4r%) 4P +
+ (1 = 2M[r — 34r*)~1dr?* + r*(d6* + sin? 0 dg?),

v -

£

as the metric describes the simplest black-hole asymp-
totically de Sitter background. :

If A <0, the metric (42) has only one apparent
singularity (horizon) which is located at

| 3IM | (OM? 1\

M (9M>  L\VA]R
+-= (=5 - = :
-0 o) ]

One can show that 0 <r, <2M; for A =0 we
arrive at the well known results r, =2M. If 4 > 0
we obtain three well defined cases. For 9M?4 < 1
there are three distinct apparent singularities of (42)
the loci of which are at

(44a) r, = =247 Y2 cos Ly,

(44b) rn= 24712 cos(in + §Y),
(44c¢) re= 247'%cos(in — 1),
where

(45)

Y = arccos (3M4"?).
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As the inequality 2M < r, < 3M < r, is satisfied we
can say that r, is the black-hole horizon, and r, is
the cosmological horizon; since r, < 0, it is an un-
realistical apparent signularity, as the physical singu-
larity at r = 0 (which is present for any values of 4,
and M + 0) is inevitable in the spherically symmetric
Schwarzschild case. (The conformal diagram of the
Schwarzschild-de Sitter spacetime in the case 9M? A4 <
< 1is given in Gibbons and Hawking, 1977 — there
is an infinite sequence of singularities r = 0 and
spacelike infinities r = 00.) When 9M?4 =1 the
horizons r;, and r, coalesce at

(46)
For 9M2A4 > 1 only the unrealistic apparent singular-
ity r, < 0 remains, which is now determined by (43).

The equations of geodesic motion in the Schwarz-
schild-de Sitter background are governed: by Eqgs
(10)—(17) with @ = Q@ = 0. Due to the spherical
symmetry of the background the motion can always
be considered in the equatorial plane (6 = 4m) —
the latitudinal equation (11) then yields d6/dA = 0 as
A = I? (Lis a constant corresponding to the total
angular momentum of the particle motion) in spheric-
ally symmetric backgrounds and for the motion
in the equatorial plane there is I? = 2.

The character of the radial motion can convemently
be clarified by properties of circular orbits and purely
radial trajectories. The radial motion is determined
by Eq. (10), and for Schwarzschild-de Sitter spacetime
given by

(47) = r[44m?r® +
+ (E2 - m?+ %Atpz)r +2m*Mr? — &*r + 2M?].

ra=A"12 =3M.

a) Circular Orbits

For a circular orbit with radius r the conditions

(48) R(r)=0,
and -
(49) dR(r)fdr = 0

must be satisfied simultaneously. By solvmg eqs (48)
and (49) with respect to the constants of motion E,
&, one finds that for a circular orbit at a given r test

particles must have constants of motion determined.

by the conditions
(50) Ejm = (1 — 2M]r — 34r%) (1 — 3M[r)~*2
(51) Q/m +[r(M = 342 (1 - 3M/r)_1/2 ;

only particles in positive-root states (see e.g. Misner
et al., 1973) are considered.

143

Equations (50) and (51) impose the following
restrictions on the existence of circular orbits:

(52) r < (3MJA)'3, -

if A> 0. For A < 0 circular orbits do exist for all
r 2 3M. From (52) it is clear that for 9M?4 = 1
~only circular null orbits, which are lgcated at the
" degenerate horizon ry, are poss1ble, while for 9M24 >
> 1 there are no circular orbits at all.

Unstable circular null orbits with

r=3M,

“‘impact” para-
meter
3/2
(53) 1= 2 = ¥ M

E (1 - 9M?4)'7

are located at r = 3M. (Notice that the radius of the
circular orbits of photons, if defined, is not effected
by the cosmological constant explicitly.)

The stability condition of circular orbits with respect
to perturbatlons m the r-dlrectlon is

(54) AR()dr < <0.

By solving (54) with E[m and d5j m given by (51), (50)
we arrive at condition

(55) $4r* '—A’15M/_1’7"3 - Mr + A6M‘2 <0

which determines the loci of 'stable circular orbits
in the background with given M, A. (The equality
in (54) and (55) holds for marginally stable orbits.)
Notice that (55) can be considered as a quadratic
expression in M and, therefore, the stable orb1ts do
exist for

(56)

M(r; A) < M < M,(r; 4).

where ‘
(57)  My(r; A) = 5r(54r* + 1 + B'?)
with -

= 25A%* — 2247% + 1.

(58)
If A>0, curves My(r; A) are deﬁned for r < ry,
and r > r,, where

(59a)” : 1 [22 = 38412742 02193

Al/z 50 _ Alu s

(59b) r, = L [22 3847 12, 09121 09121
Parl s | T a4

Nevertheless, one can show that curves M . (r; 4) deter-
mine stable circular orbits only if r < r;, while they
are irrelevant at r > 'r,. Why? Because the restrictive
conditions (52) and 9M?A < 1 on the existence of
circular orbits must be taken into account; there is the
point of intersection of curves M_(r; 4), M.= r/[3,
M = r¥/(34) at r = A~ '/?; where condition 9M?A =

= 1 is satisfied — as Mi(rz; A) > 1,3, curves My
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Fig. 28. Stable circular orbits in Schwarzschild-de Sitter:spacetime with repulsive A-term. The parameter M and radii r are both

given in units of length, and the cosmological constant iszgiven in units of (length) ™ 2. Circular orbits occur at M < 3r and

M= %rslA, while the stable orbits are possible in the shaded region only. Thus the existence of stable orbits is limited in values
of both radii » and the mass parameter M.
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Fig. 29. Stable circular orbits in Schwarzschild-de Sitter

spacetime with attractive A-term. The parameter M and radii

r are both given in units of length, and the cosmological

constant is given in units of (length) ~ 2. Existence of circular

orbits is restricted by condition M= }r only, the stable

orbits are allowed in the shaded region — stable orbits can
exist for all values of the mass parameter M.

(r; A) do not satisfy the restrictions (52) if r > r, —
see Fig. 28.

From Fig. 28 it is clear that the existence of stable
orbits is restricted not only for the radii (r < ry),
but also for the mass parameter M. There are no
stable circular orbits if M > M_y,(A), where M, ,(4)
is the value of the curve M ,(r; A) at its maximum.

On the other hand, for 4 < 0 curves M i(r; A) are
defined for all values of r, and stable orbits exist for
all values of M — see Fig. 29.

b) Radial Trajectories

For purely radial trajectories we have & =0,
and (47) is simplified to
(60) R = m*r3(34r® + I'r + 2M),
where new constant of motion
(61) r=£g-1

has been introduced. By using (10) the radial trajecto-
ries can be given in terms of the proper time of test
particles with m = 0:

+rdr

(62) dr = [r(34r® + I'r + 2M)]*/? ;
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note that for purely radial photons we have

v

(62) ’

The radial trajectories can also be given in terms of
the coordinate time t; from (10) and (13) we obtain

(63)
df = +FEr? dr
(473 + r — 2M) [r(34r% + T'r + 2M)]12

In (62) and (63) the + sign corresponds to outgoing
geodesics, and the — sign gives ingoing geodesics.

First, turning points of the radial trajectories must
be found. The loci of turning points are determined
by non-negative roots of (60). There is always a root
of (60) at r = 0 where the physical singularity of
Schwarzschild-de Sitter spacetimes is located — thus
outgoing geodesics can originate at the past singulari-
ty, while ingoing geodesics can terminate at the future
singularity. The other roots of (60) will be discussed
in dependence on A:

i) 4>0
If 9M2A4 = 1, no turning points of radial geodesics
are possible. Therefore, attention will be devoted
to the case 9M?4 < 1, when two horizons are pre-

sent. If I' < —(3M)*3 A' (recall that I' 2 —1
always), then (60) yields two turning points

(64a) 1,y =2(=T|A)/*cos (3n + 10),
(64b) 1,y =2(—I[A)Y?cos (3n — 1),
where

1/2
(65) { = arccos %

Thus in this case there are two possibilities — in the
first one geodesics originate at the past r = 0 singu-
larity, have a turning point at r,, and terminate
in the future r = 0 singularity, in the second one geo-
desics are ingoing from the past infinity and from
the turning point r,, are outgoing to the future
infinity (see e.g. the conformal diagram of the Schwarz-
schild-de Sitter metric in Gibbons and Hawking,
1977). One can easily show that both the turning
points must be located between the black-hole (r,)
and the cosmological (r,.) horizons. This in fact beco-
mes clear immediately if we rewrite Eq. (10) in the
form
(drfdc)? + Ve = E?
with
Ve = (1 — 2M[r — 14r?).

If I' = —(3M)*3 A2, we obtain a static radius
(66) re = (3M|A)'3 .
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Notice that r; imposes the upper restriction on the
existence of circular orbits — see (52). For a particle
at the static radius the attraction of the mass M is
just compensated by the repulsion of the cosmological
A-term — from (51) we have @/m = 0 — while for
circular orbits the attractive effect of M is compen-
sated by repulsive effects of both the A-term and the
orbital motion. Particles at the static radius are in
unstable equilibrium (there is a maximum of the effect-
ive potential V¢ at r,) so that any perturbation causes
them to escape to infinity or to fall into the r = 0
singularity.

If I > —(3M)*® A'73, there are no turning points
and therefore only geodesics ingoing from past
infinity to the future r = O singularity or outgoing
from the past r = 0 singularity to the future infinity
are possible.

i) 4<0

For radial timelike geodesics one turning point
must always exist, while all purely radial photons
can escape to infinity — see (62), (62').

If 0<TI < —(3M)**A'3 the turning point is
given by

(67) r, = [—3M|A + (OM?|A* + T3[A3)H2]1/3 4
+ [—3M//1 — (9M2/A2 + F3/A3')1/2]1/3 ,
while for I' > -'(3M)2/3 A3 it is determined by

(68)

where

re = 2(—=I[A)"* cos 3¢,

¢ = arccos [3M(—A)Y2 1~317],
and for I' < 0 we arrive at

(69) r, = 2(—IJA)"? cosh 3¢,
where
& = arccosh [3M(—A)"/2 r=3/2] .

Equations (62) and (63) can be integrated and
given in terms of elliptic integrals in all cases discussed
above. Here we shall consider in detail only the case
A4>0, 9M?’4 <1, T < —(3M)*3 A3 when two
horizons and two turning points are present. Accord-
ing to Gradstein and Ryzhik (1971) we find that for
a particle which originates at the r = 0 singularity
and from r,; returns to r = 0 it is

m>r®=iGY’ 2

X
A [rtZ(rtl - rtu)] 1/2

xﬁm—mnW%50+mmm*

and

(71)

r) = +E(3[4)3* x iA,,I,,
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where
2

(re = 712) (ra = 741) [1e2(reg = 7)]1? X
o oni )
+ (e — 72) Flx, z)} :

here o = ¢, h, u. The parameters of the elliptic inte-
grals are given by the following formulas

(70) ®x = arcsin [M]m s

(712) 1,=

r r1(" 2 7')
) [meznn”
rt2(rt1 - T,,,)

and the unrealistic turning point r,, is determined by
(70") ra = —2(=T[A)"*cos 3¢ .

The constants A, are given in the following manner:

2

(711) Ac = Te ’
(rc - ru) (rc - rh)
2 2
Ay = T 4, = u

‘(rh - 7'.:) (rh - "u) ’ (ru - rc) ("u - rh) '

At r = r, we find that t - — oo for outgoing geode-
sics, and t —» + oo for ingoing geodesics — compare
this situation with Fig. 31.1 in Misner et al. (1973).

For a particle which originates at infinity with the
same parameter I' and from r,, returns to infinity
we arrive at

@) o) = + (3)”2, 2

X
4 [rtz(rtl - rm)]l/z

= r I (s 22 0) 4 ps D)
Ty — Ty

and

(74) (r) = +E(3[A)? x iAJa,
where ‘

(73) 1, = 2

(ra = 122) (ra— re1) ["tz(ru _ rm)]l/z X

xgm_nonoxm—nom—nqg+

(rtl - rtu) (ra - rt2)
+ (re = 7i2) F(v, 7)}

The parameter v is given by

e

(73') v = arcsin [(r”

(rtz -
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In this case we obtain that at r = r, t > + o0 for
outgoing geodesics, and t - —oo for ingoing geo-
desics; at infinity t = 0 for both ingoing and out-
going geodesics.

Note that the integrals (70)—(75) are chosen to
yield T = O and ¢t = 0 at both r,; and r,,, respectively.

If ' > —(3M)*”® A'* (no turning points present)
the expressions for t and ¢t become quite complicated.
Therefore as an illustration we shall only give the
expression for the proper time of a particle with
I > 0 which is outgoing from the r = 0 singularity
to infinity: at r < g the proper time is determined by

(76) (r)=F, — £,
where
N (pPy + qM,) (p — q) L
(772) £, (v + M) (M. — M )17 F(i h) +
(rp—a)?P, 8
(P, + M,)(PM; — MP,)*?
- P\ -
x H(L,h (1 +-M—1),h>,
(77b) gy=—_(2=4a

2(—MM,C)'>
 In '2 [C‘(Mz + P)(Myz + Pl)]1/2+ 2C
(z - 1)?

The parameters of the elliptic integrals are

+ B|.
z—1

1/2
(77’) ¢ = arcsin (1 _ MP, M,z ,
M,P) M,z + P,

i MP \
M,Pp — MP,) ~

and the coefficients and the variable z are given by
the following relations:

_N\2
= ("4 s
p—r

(7)

A ~2
o= Ty, oo 1B,
4 4 m
where
m = (F/A)I/Z Sinh ‘%‘ﬁ ,
i = (I'[4) (sinh® 3B + 3 cosh® 6),
B4 S
4cosh?ip —1°
B = arcsinh [3M A2 ~3%7] ;
further

M = p(p + 2m), p(p — 2m) + A%,
P =gq(q +2m), P, =gq(q —2m) + fi*,
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and
B =2MM, + M,P + MP,,

C=(M+P)(M, +P,).
At r = g the proper time of the particle is given by
(78) ()=, +F, + K,
where the constant of integration must be chosen as

(r—a)?

(79)K=_W

In[2(CPP,)"*—2C + B|.

5. A Possibility of Constructing a Model
of the Einstein-Strauss-de Sitter Universe

The Einstein-Strauss universe is referred to as
a model of Schwarzschild condensations immersed
in a dust Friedman cosmological model (see Jantzen
and Ruffini, 1981). It is the simplest approximation
to the problem of localized mass distribution in our
Universe.

In the Einstein-Strauss universe, the Schwarz-
schild vacuum solution is smoothly matched on a time-
dependent outgoing (or ingoing in the collapsing
universe) sphere to a co-moving sphere of cosmo-
logical fluid in the dust Friedman model. Thus the
interior of a spherical shell Sy of cosmological fluid
in dusty Friedman spacetime is replaced by the
interior of a spherical tube S, in a Schwarzschild
spacetime. (Here the Schwarzschild geometry is
combined with a Friedman exterior; in the model
of gravitational collapse of a dusty star — see e.g.
Misner et al. (1973) — Schwarzschild geometry is
matched to a Friedman interior, but the matching
conditions are identical in both cases.)

As for dust particles in Sy all spatial Friedman
coordinates are constant, the particles must move
along timelike radial geodesics in Sg, if Sy and Sg
are identified. The matching is possible only if the
proper times on the geodesics in Sy and Sg can be
synchronized in such a manner that the circumferences
of Sy and S5 are the same at corresponding proper
times — see Jantzen and Ruffini (1981) and references
therein.

Here we shall show that the synchronization of
proper times is possible also in the case of matching
of Schwarzschild-de Sitter spacetime to dust Fried-
man models with a non-zero cosmological constant.
We shall restrict the discussion on the case of repul-
sive A-term, but the results can also be extended
to the case of attractive A-term. -

The geometry of a homogeneous and isotropic
Friedman universe is given in the co-moving co-

-
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ordinates T, g, 0, ¢ by
(80) ds* = —dT? +
+ (1) [ + T2(2) (d6° + sin® 0 dg)]
where
(81) Y(x) =sing

for spatially closed universes; k = +1,

X)) =«

for spatial flat universes; k = 0,

>(x) = sinh g
for spatially hyperbolic universes; k = —1.
For dusty Friedman model the scale factor a(T) is
governed by
(82) (da/dT) = Snea® + 34a® — k,

and by energy conservation law (recall that pressure
is zero)

(83)
see e.g. Misner et al. (1973). Thus we can find that

the proper time of the cosmological-fluid particles is
given by '

(84)

One can show that if a a, < 2472 closed univer-
ses (k = +1) have two turning points of the expansion
factor at

8 3 — .
3Mea” = const = a, ;

+da

dT = .
[34a* — k + a,fa]'?

(85a) ay =24"1"2cos(in + ¥y),
(85b) a,, =247 cos (n — ¥y),
where

2.
y = arccos 3ay,A'/? ;

(86)
a,, determines the maximal value of the expansion
factor of the recollapsing universe, while a,, gives
the minimal value of the scale factor of the ‘“‘turn
around” universe without a big-bang singularity (see
Misner et al., 1973). For a, = 34'/?> we obtain the
unstable static Einstein universe with

(87)
If a, > 34712 the universe must expand forever
from the big-bang singularity (a = 0). i

On the other hand, Eq. (62), giving the proper time
of particles moving along radial geodesics in the
Schwarzschild-de Sitter spacetime can be rewritten
in the form

a, = A"12,

+dr

®9) 4 = MR CRrejM — k + K
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by defining
(89)
If we now choose the hypersurface Sy to be the

coordinate surface y = x, the spatial sections T =
= const of which are spheres with circumference

(90) 2nR, = 2m a(T) Y (%) »

then by comparing (84) and (88) we can see immedia-
tely that Sy and Sg can be identified if the matching
condition

(1) ry = a(T) X.(x)
is satisfied. Really, the circumferences 2nr, and 2nR,
and proper times t and T given by (88) and (84) are

identified if (91) holds and the following conditions
are satisfied:

I = —k(2M|R).

(92a) R =aoY (%),
(92b) R(ERIM)'? = a, .
Thus

(53) S (t) = (2M]ag)”

The cosmological matching problem in the case
of a vanishing cosmological constant is discussed
in Jantzen and Ruffini (1981). Note that our matching
conditions (90)—(93) are the same as those obtained
for A = 0; nevertheless there is one exception to this
accordance. In the A = 0 case for closed universes
it is ay = a,,, Where a,, is the maximal value of the
expansion factor; on the other hand in the 4 # 0
case we always have a, =+ a,, but it is

(94a) ra = dn 2(%)
(94b) T2 = i Y1)
(94c) re = a, ) (%) -

In the case of the static Einstein universe the matching
surface consists of particles in unstable equilibrium at
r, as given by (66). Finally it should be emphasized
that in order to prove the possibility of constructing
the Einstein-Strauss-de Sitter Universe, one must
show that the extrinsic curvature of the matching
surface has the same components in both the Schwarz-
schild-de Sitter interior and the Friedman exterior
(see Misner et al., 1973).

Appendix A

The Latitudinal Motion of Particles with E = 0

As the parameters K = %[(aE)? and b = ®[(aE)
have been used in Sec. 3, the latitudinal motion
in the case E =0 must be considered separately.
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The turning points of the f-motion are then given
by the two-parameter family of curves

- 1+ y)?
(A1)  HY0; B, y) = (—LX)—(D— + cos20,
4, sin? 0
where
Xﬂ:iz’ ~=£; (m;éo)_
(am) am
If & + O there is limy_, o ', = + 00 for y > —1, while
lime_,o %; = limo_,og_ f; = — 00, and limo_,oe+ f; =

= + oo for y < —1. The same limits hold for X,
in the case of m = 0. The extreme points of the
curves (Al) are located at § = 4n and along curves

_ A7 sin* 0
(1+ y)* (1 + ycos26)

Curves (A2) are defined (i.e. > 0) only for |y| > I.
Thus for | y| < 1 the curves ", have only minimum
at 0 =4n. If y > 1, & is defined at 0€(6,, 3n),
diverges at 6 = 6, and has minimum &7, at § = }=;
therefore 7, has a minimum at 6 = ix for &2 <&Z ;.
and a maximum for &% > &Z;..

If y < —1, @2 is defined at 0€<0, 6,); &? is zero
at § = 0 and diverges at 0 = 6,. As 0, < 6, curves
&2 determine the extrema of ', in regions where4, <O0.
In the case of y < —1 Eq. (20) must be used if & = 0

(E=0):
(A3) ¢*d6[dA = £[(# — a’m? cos® 6) 4,]"/*.

(A2) &=

Thus for o + — (am)?|y particles must always have
a turning point at 6,, while if % = —(am)?|y, particles
can approach 6, only asymptotically as W(f) has
double zero at 6,. Therefore, neither particles with
E =-0 can cross the barrier at 6,.

Appendix B

The Character of the Kerr-Newman-de Sitter
Metric with y < —1

At 0 > 0, the Kerr-Newman-de Sitter metric (2)
has the quite usual form with signature +2, while
at 6 < 0, the signature of the metric is —2. Thus at
the region 6 < 6, for 4, > 0 the third term, and for
4, < 0 the first term, in the r.h.s. of (2) are timelike —
this behaviour is inverse to that of the § > 6 ,-region.

Due to the normalization condition (7) egs (10)—(17)
determine the motion of tachyons in the 6 < 6 -region.
Moreover, in the metric with signature —2 it is p, =
= 0Z[0(dp|dA) = =D, p, = 0L[0(dt/dA) = E, so
that in Eqs (16), (17) the parameters E, & must be
taken with opposite signs. Of course, these changes
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of sings with respect to (8) and (9) have no influence
on the discussion of the latitudinal motion in the
Sec. 3., as we consider parameter b = @[qE. On the
other hand, the motion of test particles in the 0 < 6,-
region will be governed by the same equations as the
motion of tachyons in the 6 > 0, -region or in Kerr-
Newman-de Sitter metrics with y > —1 (but, again,
with opposite signs of E and @). One can immediately
find that in the 8 > 6,-region tachyons with metamass
i will be moving along spacelike geodesics, which will
be determined by eqs (10)—(13) with

(B1) R(r) = P} — At — m*r?),

(B2) W(0) = (# + a®m? cos? 0) 4y — (P[sin 6)?,
(B3) P, =I[E(r* + a?) — a?],

(B4) P, =1I(aEsin’6 — @).

(Assuming that tachyons carry electric charge e,
and their interaction with the black-hole background
is given by Lagrangean (6), we find that (B3) = (16)
and (B4) = (17).)

It is clear from eqs (15) and (B2) that no timelike,
null or spacelike geodesic or test-particle trajectory
can cross the surface of degeneracy 6 = 0, as 4 = 0
at 0,, and (P,/sin 6)* enters the expression for W(6)
with negative sign. (Note that for the r-motion we
have P} with positive sign in the expression for R(r),
and that is the reason why geodesics can cross the
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horizons where 4, = 0.) In the special cases (see e.g.
Appendix A) we have trajectories which approach the
surface of degeneracy 6 = 60, only asymptotically.
Therefore we can conclude that regions 6 < 0, and
0 > 0, are geodesically disconnected by the surface
0 = 60,, and that these regions can be considered as
separated spacetimes.
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3ABMCHUMOCTD IIOBEPXHOCTHBIX I BHYTPEHHUX XAPAKTEPUCTUK
TEOPETYECKUX 3BE3AHBLIX MOJEJIEN, PACCUUTAHHBIX C MEPEMEHHBIM G,
OT BO3PACTA MN30XPOHBI ) i

DBOJIOLUST [OBEPXHOCTHBIX M BHYTPEHHWX XApaKIEPHCTMK TEOPETHYECKHMX MOJEIIEH 3Be3N PaCCYHTAHHBIX
B NIPETOJIOXECHHH kocMosiorun Bpanca-/luxke (yMeHbIICHHE IOCTOSHHOM TATOTEHHs: G BO BPEMEHH) 06CYyX-
JlaeTCs I MOJIENe! OMMHAKOBBIX MACC HAa TPEX M30XPOHAX (BO3PAacTOM B OIWH, TP M NATh MHJLUTHADPIOB JIET).
IIpm ysemryeHun Bo3pacTa M30XPOHBI MEHEE MACCHBHBLIE MOZEIH BeOyT cebs Bce-Gonee m 6onee Kak MoIenu
6ojiee MAaCCHBHBIE H30XPOHBI MEHBINETO BO3pPacTa, TeopeTHYecKde HM30XPOHBEI HE MOTYT HCIONB30BATHCS
Kax MHOAKATOPHI BO3PACTa, IO KpaiiHel Mepe He TaK, KaK W30XPOHBI IPHHATHIE C IMOCTOSHHBIM G, IOTOMY
YTO MONIOXKEHHE B (hOPMA H3OXPOHBI 7SI CKOIUICHHI PABHOTO BO3PACTa M XMMHYECKOI O COCTABA 3aBHCHT TaKKe
OT HA4YaJBHOTO 3Ha4YeHus: G, PaBHO KaK Or 3aKOHA M3McHeHHs G. .
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