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ABSTRACT 
The current procedures for analyzing results of y-ray astronomy experiments are examined 

critically. We propose two formulae to estimate the significance of positive observations in 
searching y-ray sources or lines. The correctness of the formulae are tested by Monte Carlo 
simulations. 
Subject headings: gamma-rays: general — numerical methods 

I. INTRODUCTION 

Evaluation of the statistical reliability of positive results in searching discrete y-ray sources or lines is an important 
problem in y-ray astronomy. Since both the signal-to-background ratio and detector sensitivity are generally limited 
in this energy range, one must carefully analyze the observed data to determine the confidence level of a candidate 
source or line, that is, the probability that the count rate excess is due to a genuine source or line rather than to 
a spurious background fluctuation, even though all systematic effects are believed to have been removed. 

Figure 1 shows a typical observation in y-ray astronomy. A photon detector points in the direction of a suspected 
source for a certain time ton and counts Non photons, and then it turns for background measurement for a time 
interval ioff and counts No{{ photons. The quantity a is the ratio of the on-source time to the off-source time, 
a = ion/i0ff (in some cases of searching for lines, Non is the number of counts under a peak in an energy spectrum, 
and the peak is taken to be ns channels wide; Nof{ is the number of counts in nb channels adjacent to the peak; 
then a = ns/nb). Then we can estimate the number of background photons included in the on-source counts Non: 

ÑB = aNoff. (1) 

The observed signal, the probable number of photons contributed by the source, is 

Ns — Non — ÑB = Non — otNo{{. (2) 

For a positive observation of an emission source, the excess counts Non — NB may have been caused only by a 
statistical fluctuation in the background rate. That the background is not known exactly in a y-ray astronomy 
experiment generally and can be inferred only from the limited background counts is a basic difficulty in evaluating 
the statistical reliability of an observational result. 

There have been various procedures adopted by different experimenters to estimate statistical reliability. The 
significances of the published positive results have often been overestimated by the observers because of the 
incorrectness of their methods of analysis. Hearn (1969) has suggested a relative likelihood method for consistent 
analysis of y-ray astronomy experiments. O’Mongâin (1973) applied this approach to the early observations of 
high-energy y-ray sources and found that a very large number of reported y-ray sources could reasonably be 
explained as background fluctuations. Cherry et al (1980) improved the evaluation of relative likelihood and 
used it to reanalyze the reported y-ray lines with similar results. But from the point of view of mathematical 
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statistics, this relative likelihood method is also incorrect. It underestimates the significances of observations 
systematically in most actual cases. In other words, it unreasonably reduces the estimate of the statistical reliability 
of experimental results. 

In this paper we make a critical examination of the current methods in analyses of y-ray astronomy experiments, 
and we propose two formulae to evaluate the statistical significance of an observational result: one is derived by 
immediately estimating the standard deviation of the observed signal Ns (§ II), and the other one by applying the 
method of statistical hypotheses test (§ III). In § IV we test the correctness of the formulae by Monte Carlo 
simulations, and in § V we discuss how to determine the confidence level of a positive result which is obtained 
from many independent observations. 

II. STANDARD DEVIATION OF SIGNAL 

Since on-source counts Non and background counts No{{ are results of two independent measurements, we can 
calculate the variance of the signal Ns defined by equation (2): 

(T2(Ns) = a2(N0n) + (T2(aN0f() = ff2(N0n) + a.2(T2(N0{{). (3) 

Then the estimate of the standard deviation of A/s is 

à(Ns) = y<r2(JVon) + a2â2(Noii) = ^iVon + a2No(( . (4) 

Defining the significance S as a ratio of the excess counts above background to its standard deviation, we have 

^  Ns   Non ocA/pff /^\ 
_ W7) - T^on + «2Nûff ' 

The formula above is simply from the Poisson law of the counts Non and AToff. Considering the fact that the 
discrepancies between the distribution of the significances computed by equation (5) for Monte Carlo simulation 
samples and the expected normal distribution are considerable in the case a ^ 1 (see § IV, Fig. 2), it is necessary 
to improve the above estimate for the standard deviation of Ns further (Ma and Li 1983). 

When one evaluates the statistical reliability of an observational result, that is, estimates the probability that the 
observed signal was due only to the background, it should be assumed that there was no extra source, and all the 
observed counts, not only AToff but also Afon, were due to the background. Under this assumption on-source counts 
Non would follow a Poisson distribution with expectation and variance <A/ß>, and off-source counts No{{ would do 
the same but with (NB}/ot instead of (A/^), where (NB} is the expectation of background counts in on-source time 
ion. Then equation (3) can be written as 

ff2{Ns) = c2(Non) + <x.2g2(No{{) = (1 + a)<JVB> , 

and the standard deviation of Ns, 

a(Ns) = VO + a)<iVB> . (6) 

Usually equation (1) is used to estimate background. But in the case of the assumption that all the recorded 
photons are due to background, we can get a more accurate estimate of <ATB>, the expected number of the 
background photons in ion, by using all the observed data (Non, Nof(): 

<JV.> = ^4^!! = 
‘on + ‘off 1 +a 

(A/on + A/off) . (7) 

Then the estimate of the standard deviation of Afs is 

¿(Ns) = Vi1 + aX^B> = vM^on + Woff) , (8) 

and the significance is 

^  Ns   Non flA/pff 
~ W7) ~ 7^Non + No(i) ' 

An observational result with significance S can be called an “S' standard deviation result.” In the case that the 
numbers of photons counted are not too few (say ATon > 10, Afoff > 10), counts Non and No{{, then Ns, are 
approximately normally distributed. Under the assumption mentioned above that no extra sources exists, <Afs> = 0, 
significance S will approximate a standard normal variable with zero mean and unit variance, and we can take the 
Gaussian probability of S as the confidence level of the observation result. Our Monte Carlo simulation results 
(see § IV, Fig. 2) show that the distributions of significances evaluated by equation (9) are closer to a standard 
normal curve than those evaluated by equation (5). 
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Some variant methods have been adopted to estimate the significances when experimenters reported their positive 
results of y-ray sources or lines. They often overestimate the significance since they do not consider all the statistical 
factors in an observational result. For example, many experimenters use the standard deviation of the number of 
background photons NB as a measure of the statistical error of the observed signal NSy and define the significance as 

Ns ^ Ns 

^nb off 
(10a) 

But in the general case of a # 1, ÑB does not simply follow a Poisson distribution, and its variance should be 
evaluated by the equation (t2{Nb) = oc2Nof{. Then equation (10a) should be rewritten as 

(10b) 

In equations (10a) and (10b), just the statistical fluctuation of the background counts No{{ has been considered, 
and not that of Non. Obviously they underestimate the statistical error of the signal Ns and, therefore, overestimate 
its significance. 

Considering the statistical error of on-source counts Non as the error of an observational result, some other 
experimenters let 

S = (U) 

Equation (11) also overestimates the significance because the statistical fluctuation of the background counts N0{{ 
has not been considered in it. 

Finally, more than a few experimenters use the square root of the number of signal photons as the standard 
deviation of the signal; then the significance 

S = Ns 

VÑs' 
(12) 

But Ns is a quantity derived from the directly observed values (Non, No{{) by equation (2); it does not simply follow 
a Poisson distribution with variance Ns- Hence equation (12) is not correct either. 

III. LIKELIHOOD RATIO METHOD 

Another way of estimating the significance is by use of the method of hypotheses test in mathematical statistics. 
In the present problem there are two unknown parameters: the expectation of the number of source photons, {Ns}, 
and the expectation of the number of background photons, <iVß>. The statistical hypothesis tested here, called 
“null hypothesis,” is: no extra source exists, and all observed photons are due to background, that is, <NS) = 0. 
This is a test problem of a composite hypothesis where just partial parameters are involved. There is a theorem in 
statistics (see Wilks 1962, § 13.8; Eadie et al 1971, § 10.5.2; Li 1980, § 6.3.4) which can be used to solve this 
sort of problem: 

Theorem.—Letting observed data X = (xl5 x2, xn), unknown parameters 0 = (£, T)=(eu e2, cT, 
t1,t2, ...,ts), and statistical hypotheses: 

Null hypothesis: E = E0 = (e10, e20, ..., £r0), 
Alternative hypothesis: E ^ £0, 

define the maximum likelihood ratio 

L(X\E0,îc) Pr(X\E0,îc) 
L(X|Ê, f) PT(X IÉ, f) ’ { } 

where L(X|0') is the likelihood function of N observed values X given parameters 0 = 0', that is, the probability 
of experimental results X given 0 = 0'; E and T are the maximum likelihood estimates of parameters E and T; 
fc are the conditional maximum likelihood estimates given E = E0. On condition of null hypothesis E = E0 being 
true, variable —2 In À will asymptotically follow a %2 distribution with r degrees of freedom, while N -+ oo, as 
denoted by 

— 2 In A ~ x2(r). 

In our case, the observed data X = (Non, No{{), estimated unknown parameters 0 = «Ns), <iVß», and 
Null hypothesis: <Ns> = 0, 
Alternative hypothesis: <NS) ^ 0. 
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On general condition the maximum likelihood estimates of <VB> and (Ns) can be computed by equations (1) and (2), 
respectively; they are <VB) = ÑB = aVoff and <VS) = Ns — Non — olNo{{. On the other hand, if null hypothesis is 
true, or <VS) = 0, the conditional maximum likelihood estimate of <VB) should be computed by equation (7); that is, 
(ÑBy = [a/(l + a)](Von + A/off). Then we can express the likelihood functions as follows: 

L(X\E0ifc) = Pr 
a 

= Pr 

Non, Nof{\(Nsy = 0, <ATb) = (Non + No{{) 

Non\<N0n>=T^raL(Non + No[[) 

lNon INon'\ exp 

+ a 

Pr 

1 + a 

x exp 

(Non + No{{) 

1 

^off|<^off>=ï— (^on + ^off) 

1 
1 + a (Kn + No{{) 1 + a 

(Non + Nof() 
IVoff 

'JVoff! 

(Non + N0ff) 
1 +a 

L(X\Ê, f) = Pr(Non, Noi(\(Ns) = Noa - aNofi, <NB) = aNo{{) 

= Pr(Non\(Non} = NjPr(Noíí\<Noíí> = N0[f) 
XfHon K[No({ 

"" exp ( — Non) —~ exp ( - No{f) ; 
M off Í N 1 i^on* 

and the maximum likelihood ratio 

WCjEoJj 
Â = 

l(x\e, T) 
« ¡Non + N0ÍA |*°» [_1_ ÍNon + NofA 

1+4 TVon )\ [l + a \ iVoff ) 

Noff 
(14) 

In this case only one parameter, <iVs), is involved in null hypothesis; thus r = 1. According to the theorem above, if 
the null hypothesis is true and both Non and N0{f are not too few, —2 In A will approximately follow a x2 distribution 
with 1 degree of freedom: 

-2\nA~x2(i), or ,/-2 In A ~ *(1). (15) 

As we know, if w is a standard normal variable, then u2 will follow a x2 distribution with 1 degree of freedom: 

^(i), or |h|~x(1). (16) 

Comparing equation (15) with equation (16), we can see that if the null hypothesis (Nsy = 0 is true, in other words, 
if all counts come from the background, the variable ( — 2 In 2)1/2 will be equivalent to the absolute value of a 
standard normal variable; hence, we can directly take the value of ( — 2 In 2)1/2 as the significance of the observed 
result 

+ AU ln (1 + a) / AU \ 
\Non + AU/ 

1/2 
(17) 

If an event (Non, AU) was obtained by a single observation where Non and No{{ are not too few, and the value 
of the significance of this event evaluated by equation (17) (or by eq. [9]) is 5, then one can say that an 
“5 standard deviation event” has been observed. In the case that only emission sources or lines are interesting, that 
is, just the case of ATS > 0 is considered (or for an absorption case, Ns < 0), the significance level of the event, 
or the probability that an event with a significance which is not less than S is produced by background, denoted 
by p, can be evaluated by the Gaussian probability 

p = N(u = S;0, 1), (18) 

where N(u; 0, 1) is the standard normal distribution function, that is, the distribution function of the normal 
variable u with zero mean and unit variance. Then the probability that a real source exists, that is, the confidence 
level, denoted by £, is 

£=l-p. (19) 

The confidence level for an event obtained from many observations will be discussed in § V. 
In the relative likelihood method used by Hearn (1969), O’Mongain (1973), and Cherry et al. (1980), the confidence 

level of a single observation is evaluated by 

£=1-A', (20) 
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where the likelihood ratio X is defined as 

PÁNJB) 
Pr(Non\S + B)’ 

(21) 

where Pr(Non \ B) is the probability that the counts Non are due only to background, and Pr(Non | S' + Æ) is the 
probability that Non are due to a hypothetical source plus background. 

According to mathematical statistics, the confidence level can be evaluated from X by equation (20) only if the 
variable —2 hi X follows a x2 distribution with 2 degrees of freedom. But —2 In X is not distributed as %2(2), so 
equation (20) is not correct. As has been stated, variable —2 In 2 approximately follows the distribution of x2(l) where 
the maximum likelihood ratio À is defined by equation (14), and the significance can be evaluated from À by 
equation (17); but generally the relative likelihood X defined by equation (21) does not follow the distribution of 
X2(l), and therefore, we cannot take a procedure similar to equation (17) to evaluate the significance from X. The 
foregoing discussion illustrates that the relative likelihood method mentioned above has no correct foundation in 
mathematical statistics. The author has pointed out (Li 1980) that the attempt to simply calculate the confidence 
probability directly from the value of the likelihood function comes from misinterpreting the meaning of likelihood 
function. 

IV. MONTE CARLO SIMULATIONS 

For the purpose of checking the methods of estimating statistical significance, we have done Monte Carlo 
simulations by means of computer. First we assumed a certain expected value of background counts, <Noff>, and 
the ratio of on-source observation time to off-source time, a. Under the hypothesis that only background photons 
have been detected, we have <iVon> = a<iVoff>, where <Non> is the expected value of the counts in the on-source 
time. Then we obtained a random sample of observations, (Non, Noff), by generating the random number Non from 
the Poisson distribution with expectation <iVon> and the random number No{{ from the other Poisson distribution 
with expectation <Noff>, and evaluated the signal of the sample by Ns = Non — olNo{{ and its significance S by 
equations (5), (9), and (17), respectively. The procedures of sampling and evaluating described above were repeated 
about 105 times for each set of assumed values of <Noff> and a. The integral frequency distributions of the 
significances of all apparent source events (Ns >0) in our Monte Carlo simulation samples are shown in Figures 
2a-2f. The lines indicate the standard normal distribution. It can be seen from the simulation results shown in 
Figure 2 that compared with the Gaussian probability, equation (5) systematically underestimates the significances 
for the case a < 1 and overestimates for a > 1. (In contrast, for an absorption source, Ns < 0, eq. [5] overestimates 
the significances for a < 1 and underestimates for a > 1.) Equation (9) is better than equation (5), but the 
distributions of the significances calculated by equation (17) from the maximum likelihood ratio method are 
generally most consistent with the expected Gaussian probabilities. 

Figure 3 shows the scattering of the significances of some reported positive observations of y-ray lines, where 
the data are taken from the summary of Cherry et al (1980, Table 1), the abscissae of the points are the significance 
values evaluated by equation (17), and their ordinates are the significance values given by experimenters (for the 
points indicated by pluses) or by Cherry et al (indicated by open circles) or by equation (17) of this paper 
(indicated by filled circles). The correctness of equation (17) has been illustrated by our Monte Carlo simulations; 
therefore, the significance values indicated by closed circles should represent the real significance distribution of the 
observational results. It is clear in Figure 3 that the experimenters overestimated the significances considerably, 
whereas Cherry et al (1980) underestimated them (except for a few cases with significance S > 7). In connection 
with the latter, the upper limit fluxes obtained by the relative likelihood method of Hearn (1969) are often 
overestimated. 

V. CONFIDENCE LEVEL 

Equation (19) for evaluating the confidence level is correct if only a single observation is made. In practice, 
however, many observations could be made in an experiment by repeating the measurement many times, or by 
scanning an area of the sky or a range of energies. In the case of getting a candidate source or line event 
with a significance S after M attempts being made, the confidence level of this event is not only dependent on its 
significance, S, but also on the total number of analyzed samples, M. The probability, p, that an event with a 
significance not being less than S is produced by the background in a single observation can be evaluated by 
equation (18). Then the probability of producing k such events by the background is 

pk = Ck
Mp

k(l-p)M-k, 

where Cj* is the binomial coefficient. From this equation it is easy to compute the probability that none of such 
apparent source events (k = 0) is produced by the background in all M observations, or the probability that such 
an event is due to a real source, that is, the confidence level, as follows: 

£ = Po = (1 - p)M . (22) 
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Fig. 2a Fig. 2b 

Fig. 2c Fig. 2d 

Fig. 2. Integral frequency distributions of the significances of the Monte Carlo samples. 

Pluses, from eq. (5): S = - iV°n ~ aN"" 

Crosses, from eq. (9): S = - 

(Non + a2JVoff)
1/2 ‘ 

N0n aiVoff 
[a(iVon + Noff)]1/2 • 

Filled Circles, from eq. (17): S = 21/2 iVon In 1 +a Nor 
a \Non + Nof 

)j+Noffln[(l+«)(^L-j 

N is the number of samples for the Monte Carlo procedure. The curves indicate the standard normal distribution. 
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Hearn (1969) and Cherry et a/. (1980) suggested using the following formula to compute the confidence level: 

(^ = 1 - M2' . 

This formula is not based on a correct statistical foundation. One can even get a negative confidence level when 
M is large enough, which is obviously unreasonable. 

VI. CONCLUSIONS 

For the observation of the kind illustrated by Figure 1, we derived a formula, equation (17), to evaluate the 
significance of an observed event (Non, No{{) by using the method of maximum likelihood ratio test. Our 
Monte Carlo simulation results show that in the case that the observed counts are not too few (say Non > 10, 
No{{ > 10), the significance distributions evaluated by equation (17) are reasonably consistent with the Gaussian 

Fig. 3.—Significances of some reported y-ray lines. Pluses, significance S by experimenters; open circles, significance S by Cherry et al. (1980); 
filled circles, significance S by eq. (17) of this work. 
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probabilities. Compared with equations (5) and (9), which are derived simply from the Poisson-Gaussian distribution 
of counts, equation (17) can be applied to the case with fewer observed counts (see Figs. 2c and Id). The other 
important advantage of this formula is that it can be applied to the general case of a ^ 1. In many practical 
experiments, the on-source observation time is not equal to background time. In some observations, including a few 
for which important results are reported, the ratios of on-source time to background time, a, are quite far from 
unity because of the limitations of the objective conditions of the experiments. The Monte Carlo results shown in 
Figure 2 illustrate that equation (17) is satisfactory at least in the wide range a = 0.1-10. For the case a ~ 1, 
say 0.5 < a < 1.5, one can use the simpler formula of equation (9) to evaluate the significance. Finally, after the 
significance of an event has been determined, the confidence level to which one may claim the presence of a source 
or a line should be computed by equation (22). 

The Monte Carlo calculations in this work are performed by the NUMAC computer system during the period 
of the authors’ visit to the Department of Physics, University of Durham, UK. For many pleasant memories of this 
visit we would like to express our thanks to Professor A. W. Wolfendale, Drs. M. G. Tompson, C. A. Ayre, 
P. N. Bhat, A. W. Strong, P. A. Riley, M. R. Issa, C. X. Xu, Mr. R. M. Myers, Mr. B. Houston, and other 
colleagues. 
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