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ABSTRACT 
A one-zone model is developed for analysis of properties of nuclear shell flashes on accreting 

degenerate dwarfs and neutron stars. The model provides a description of a steady-state nuclear 
burning and a linear stability analysis with a small number of algebraic equations. Time evolution 
of the accreted layer is described with two first order ordinary differential equations: one for the 
heat balance, the second for the mass balance. A very small computing power is required for the 
analysis. This makes the model attractive for pilot studies, for a simple analysis of many properties 
of compact stars accreting nuclear fuel, and for teaching purposes. 

When the accretion rate is either very low or very high, then column density increases with the 
accretion rate and the models with a steady state nuclear burning are stable. For intermediate 
rates, the surface mass density decreases with increasing accretion rate and the models are thermally 
unstable. Near the transition from stability to instability the eigenvalues of the problem are 
always complex. The models are stable for any value of the accretion rate when either the heat 
flux from the core exceeds some critical value, or the accreted matter is rich in hydrogen but 
has no metals, so that nuclear burning may proceed through the proton-proton chain only. 

Large-amplitude shell flashes develop for all unstable models provided that heat flux from the 
core is below certain value. The time interval between the flashes decreases with increasing surface 
gravity, accretion rate and heat flux from the core. The shortest periods for accreting 
degenerate dwarfs are just 1 month for hydrogen-rich matter and 1 year for helium-rich matter. The 
shortest interflash period for a neutron star accreting helium is only 10 s. The values of these periods 
may be incorrect by a factor of 2 or so, because of simplifications inherent in the one-zone model. 
Subject headings: instabilities — stars: accretion — stars: neutron — stars: white dwarfs — 

X-rays: bursts 

I. INTRODUCTION 

Accretion of hydrogen- or helium-rich matter onto 
degenerate dwarfs or neutron stars may give rise to 
stable or unstable nuclear burning. Hydrogen ignition 
on accreting white dwarfs is believed to be responsible 
for explosions of classical novae (cf. Gallagher and 
Starrfield 1978 and references therein). Accretion of 
hydrogen onto white dwarfs may also be relevant for 
symbiotic stars (Paczynski and Rudak 1980). Helium 
shell flashes on accreting neutron stars may give rise 
to X-ray bursts (cf. Lewin and Joss 1981; Joss 198 Í; and 
references therein). It is believed that if the accretion 
rate is constant, then the shell flashes are recurrent, but 
only a few model computations were carried through 
more than one flash cycle (e.g., Paczynski and Zytkow 
1978; Sion, Acierno, and Tomczyk 1979). Evolutionary 
computations (e.g., Paczynski and Zytkow 1978) and 
linear stability analysis (e.g., Sienkiewicz 1980) indicate 
that nuclear burning becomes stable when the accretion 
rate exceeds some critical value. 
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A number of attempts were made to understand 
qualitatively the nature of nuclear shell flashes and to 
gain some insight without following stellar evolution 
in all details with a large and time-consuming computer 
code. Recently, some semianalytical studies have been 
published or are in press (Paczynski 1980; Barranco, 
Buchler, and Livio 1980; Ergma and Tutukov 1980; 
Sugimoto and Miyaji 1981; Fujimoto, Hanawa, and 
Miyaji 1981 ; Papaloizou, Pringle, and MacDonald 1982; 
Fujimoto 1982). The aim of this paper is to present 
another semianalytical one-zone model for nuclear 
burning on accreting compact stars. I believe this model 
is simpler than the others, while it retains many of the 
essential features of full-scale stellar models. In particular, 
it permits construction of models with a steady-state 
nuclear burning, a linear stability analysis, nonlinear 
flash calculations, and reasonably good evaluation of the 
interflash period. The first two tasks may be easily 
accomplished on a pocket programmable calculator, 
while the latter two may be achieved on a desk-top 
computer. Description of the model with some examples 
of the results are given in the next chapter. A complete 
presentation of the results is given in the subsequent 
sections. 

282 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
83

A
pJ

. 
. .

26
4 

. .
28

2P
 

No. 1, 1983 ONE-ZONE MODEL FOR SHELL FLASHES 283 

II. DESCRIPTION OF THE MODEL 

Full-scale evolutionary computations of a number of 
shell flash cycles made by Paczynski and Zytkow (1978) 
provided many details of the interior structure and time 
variations of accreting degenerate dwarfs. It turned out 
that throughout most of the flash cycle all physical 
quantities varied monotonically in space: temperature, 
density, and pressure decreased with radius, while the 
hydrogen content and heat flux increased with radius. 
Also, a bulk of hydrogen-rich matter was close to the 
nuclear burning shell. The degenerate interior did not 
change much throughout the flash cycles. Therefore, it 
is reasonable to describe the whole hydrogen-rich layer 
with just one mass zone overlying a core of a fixed size. 
As in most cases of interest the hydrogen zone is 
geometrically thin and contains little mass, it is sufficient 
to consider a plane-parallel layer with a fixed 
gravitational acceleration g. The stellar structure 
equations may be written as 

dP - dpr _ Kp. dF _ t
ds 

dï.~e~T~Dt’ 

dz _1 dX _ e 
dï.-'p '’ ~di~ ~Ë* ’ 

where P is total pressure, Pr is radiation pressure, p is 
density, T is temperature, S is entropy, E is column mass 
density, t is time, F is radiative heat flux, e is the 
nuclear energy generation rate, k is opacity, c is the 
speed of light, and £* is the energy released by burning 
1 g of hydrogen. The boundary conditions at the top of 
our zone, i.e., at the stellar surface, are 

I = P*0, Pr*0, X=XS; (2) 

and the boundary conditions at the bottom of the shell 
are 

1 = ^^), F = Fb , X = 0, (3) 

where Fb is the heat flux from the hydrogen-depleted 
core. The accretion rate is related to Es by 

and the surface mass density of the whole zone is given as 

a few simplifications. Radiative equilibrium was assumed, 
and only the dominant terms were retained in the heat 
balance equation. Now we are going to make the most 
drastic simplification. We shall replace the functions 
under all integrals in equations (6) with their values at 
the bottom or top of the shell. In the last equation we 
shall effectively adopt a step-like profile of hydrogen 
distribution. Now, these equations may be written as 

P = gXZ ; Pr = - FXZ ; 

F = Fb+ [e 
(£-rf)iï; Az = 

AZ 

X — XÍ.a = — -L AE , 
dt « E* ’ 

(7) 

where P, P„ T, p, S, k, e refer to the values of 
corresponding physical quantities at the bottom of the 
shell, and X, F refer to the values at the surface. One may 
try to improve the accuracy of equations (7) by 
introducing some dimensionless factors, but this is not 
essential for this project. However, there is another 
simplification in the heat balance equation, where the 
derivative DS/Dt has been replaced with dS/dt. 
Fortunately, in most cases this does not introduce a very 
large error. 

Equations (7) describe the conditions of hydrostatic 
equilibrium, radiative equilibrium, heat balance, a 
relation between the zone thickness its density and its 
surface mass density, and finally the mass balance. We 
effectively assume that matter falls onto the surface of our 
zone by accretion, and flows through the bottom of the 
one zone by nuclear burning. The one zone is neither 
Lagrangian nor Eulerian; it is confined to that layer that 
is rich in nuclear fuel, hydrogen in our case. The improper 
modification of the DS/Dt term results in a neglect of 
heat carried with matter flowing through the bottom of 
the one zone. 

The set of equations (7) includes two ordinary 
differential equations which may be written as 

T 
dS 
dt 

e - (F - Fb) 
0 
P’ 

AS = Zs-E6. (5) 

Equations (1) may be integrated over the whole 
hydrogen-rich zone to obtain 

So far our equations were pretty accurate, with only 

dP . eP 
dt 9 a XE*' 

(8) 

This set of equations may be integrated numerically 
provided that gravitational acceleration p, accretion rate 
Ea, chemical composition of accreted matter X and Z, 
and the heat flux at the bottom of the shell Fb are all 
specified. I shall confine myself to the case when all 
these parameters are kept constant in any given model. 
Of course, it is necessary to know the equation of state, 
the opacity, and the nuclear burning rate as a function 
of density, temperature, and chemical composition. 

We shall look first for steady-state solutions of 
equations (8), i.e., we shall keep dS/dt = 0, and 
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dP/dt = 0. We are left with algebraic equations which 
may be written as 

F-Fb 
eP 

9 
= e&Z , 

eP _ éAZ 
XE*g ~ XË* ’ 

which may be combined to obtain 

F-Fb = ±aXE*-, 

(9) 

(10) 

i.e., the heat flux from the surface is equal to the heat 
flux from the core plus the heat released in a steady 
state nuclear burning. 

Let us define a critical (i.e., Eddington) flux from the 
surface as 

Fc = cg/Ke, (11) 

where Ke is the electron scattering opacity. Let us 
define 1 — /? as the ratio of radiation pressure to the 
total pressure. Combining equations (7), (10), and (11), 
we obtain 

F = Fc — (1 — ß). (12) 
K 

It is well known that while the luminosity of any stellar 
model increases the radiative pressure and electron 
scattering become dominant, i.e., /? -► 0 and K-^Ke. The 
critical value may be approached but not exceeded by 
the luminosity as long as the condition of hydrostatic 
equilibrium is satisfied. In our plane-parallel model the 
radiation flux may approach but may not exceed Fc. 

It is convenient to define a critical and a dimensionless 
accretion rate as 

eg 
KeE*X 5 (13) 

and a dimensionless heat flux from the core 

ft = Fb/Fc . 

Now we may write the equations (8) as 

^ dS eg2 

T —— = 6-1 - 
dt KP P Jv 

mvd\nP eg2 . 
E*X —-— = —e H   a . 

dt KpP 

(14) 

(15) 

These differential equations must be supplemented with 
the following algebraic equations: 

Ke = 0.2(l+20, l-ß = ^ = ^, 

p = p(p,XX,z), = 
d ln T Hd\np 

k = k(p, T, X, Z), kt = 
d In k ô \n k 
d ln T ’ Kp din p \ 

e = e(p, T, X, Z), cT — 
dine 
d ln T ’ 

dine 
din p ’ 

ds ds 
dlnT ’ Sp din p ‘ 

(16) 

We shall study the properties of solutions of these 
equations for many models. First, we consider steady 
state nuclear burning. In that case the time derivatives 
in the equations (15) vanish, and we have two nonlinear 
algebraic equations instead: 

ä + fb=^(i-ß), 
K 

„ C<7 . 
eP = — à . (17) 

These may be solved when combined with equations 
(16). In general there is a discrete set of solutions for a 
given set of model parameters : g, à, ft, A", Z. The details 
of all the calculations will be given in the subsequent 
sections. Here I would like to present some examples 
of the results. 

We shall consider various models with a logarithm 
of gravitational acceleration equal to 8.5. This corre- 
sponds to the surface conditions on a degenerate dwarf 
of 0.929 solar masses. The accreted matter will have a 
normal Population I composition: X = 0.7, Z = 0.03. 
Under these conditions the critical surface radiation flux 
is 2.8 x 1019 ergs cm-2 s-1, the critical luminosity is 
1.37 x 1038 ergs s~ \ and the critical accretion rate onto 
the whole surface is 3.3 x 1019 g s-1. Most models will 
have a dimensionless heat flux from the core of 0.001, 
and a large range of dimensionless accretion rates. 
Notice, that the dimensionless radiative heat flux from 
the surface is given as á + fb. On all the figures the 
column density of hydrogen-rich zone is indicated as 
I rather than ÀE. 

The variation of column density with accretion rate 
is shown in Figure 1 for a number of values of heat 
flux from the core. Each line may be considered to 
display a linear series of stellar models (Gabriel and 
Ledoux 1967; Gabriel and Noels-Grotsch 1968; 
Paczynski 1972,1980). Notice that a line with Fb/Fc = 0.3 
varies monotonically. Other lines have several branches 
separated by turning points at which column mass 
density reaches a local maximum or minimum. 
According to general properties of linear series we may 
expect some branches to be thermally unstable. 

Once we have models with steady-state nuclear 
burning, we may test them for stability with respect 
to small perturbations with exponential time depend- 
ence: 

<51n T = x exp (at), 

<5 In p = y exp (<tí) |x| ^ 1 , |y| 1 . (18) 

All other perturbations may be expressed in terms of 
<5 ln T and ôlnp.A standard analysis applied to equations 
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log à 
Fig. 1.—The variation of column density Z of hydrogen-rich shell with dimensionless accretion rate is shown for degenerate dwarfs with a 

logarithm of surface gravity of 8.5 accreting matter with a composition: X = 0.7, Z = 0.03. Various lines are labeled with the values of dimensionless 
heat flux from hydrogen-depleted cores. Broken lines correspond to branches with unstable models. Notice that for Fb/Fc > 0.17 all models are 
stable. 

(15) and (16) gives a quadratic equation for the 
eigenvalues 

CiT„Tth<72 + {(Ci + C2)Tth + [C4.(l + a) — C3]T„}cr 

+ (c3 + c4 + c5)(l + a) = 0 , (19) 

where 

Cl = STPP - spPT y C2 = sTep — speT , 

C3 = eTPp-epPT, C4 = Ptkp — Pp(kt — 4), 

presumably the time scale of the perturbation, is much 
shorter than nuclear time scale. Notice that in our model 
constant column density implies constant pressure, and 
the perturbation is isobaric. If the second of equations 
(15) is perturbed adiabatically, then the expression for 
(Tn is obtained. 

Let us consider now a linear series of steady-state 
models with accretion rate changing along the series. 
The two equations (17) must be satisfied, and we obtain 
the relation 

C}=£tkp-£p(kt-4) , 

fb E*X AZ P 
~ 5 ~ ^ 5 ^th (20) 

Equation (19) provides us with two eigenvalues, and 
<t2. Their physical meaning becomes apparent when the 
two characteristic time scales, nuclear and thermal, are 
very different from each other. In that case equation (19) 
is equivalent to the two linear equations: 

— Tth 1[Ca — C4(l + a)]/C! , 
0n = Tn 1(C3 + c4 -F c5)(l + a)/[C3 — C4(l + a)] , 

(21) 

for T„/Tth ^ 1 and \(Tn/(Jth\ < 1. 
Expressions (21) may also be obtained differently. If 

the first of equations (15) is perturbed in such a way 
that the column density of the hydrogen zone remains 
constant then the expression for aih is obtained. This is 
equivalent to a standard thermal stability analysis, with 
the distribution of chemical composition unperturbed. It 
is reasonable while the thermal time scale, and 

d ln (AI) = d\nP = C3 ~ £4(1 + a) 
(C3 + C4 + C5)(l + a) 

d\nà , 

(22) 

which holds along the series. Comparison of equations 
(21) and (22) demonstrates that a local maximum or 
minimum of column density, i.e., a turning point of a 
linear series, coincides with a point at which the thermal 
eigenvalue <7th passes through zero. The corresponding 
model is marginally stable. This is a usual relationship 
between the turning points of linear series and the onset 
of thermal stability or instability (Paczynski 1980 and 
references therein). However, it is clear that this relation 
may only be approximate, as it is a consequence of a 
simplification which led to equations (21). 

At a turning point of a linear series the nuclear 
eigenvalue diverges (cf. eq. [21]) while the thermal eigen- 
value passes through zero. Therefore, within some region 
close to a turning point the two eigenvalues must be 
of the same order of magnitude, and the conditions 
required for equations (21) are not satisfied. In that 
region the coupling between the two equations (15) 
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Fig. 2.—The variation of real eigenvalues (or a real part of complex eigenvalues) with dimensionless accretion rate is shown for a degenerate 
dwarf with a logarithm of surface gravity equal 8.5, and dimensionless heat flux from the hydrogen-depleted core of 0.001, accreting matter 
with a composition: X = 0.7, Z = 0.03. The region between the two open circles has positive eigenvalues, and the models are unstable there. 
The corresponding branch of the linear series of models is shown with a broken line in Fig. 1. 

becomes strong and it is necessary to calculate the two 
eigenvalues with the quadratic equation (19). It may be 
shown that the two eigenvalues become complex in that 
region. 

The variation of the two eigenvalues along a series 
of models is shown in Figures 2 and 3. The variation of 
column density along this sequence was shown in 
Figure 1. The dimensionless eigenvalues are defined as 

wl,2,th,n = Tth loT,2,th,n • (23) 

Transition from thermal stability to instability is 
indicated by the real part of the eigenvalues calculated 
with equation (19) passing through zero. This is close to 
the place where the thermal eigenvalue goes through 
zero (cf. Fig. 3). Therefore, marginal thermal stability 
nearly coincides with a turning point of a linear series. 

Given an unstable steady-state model, we would like 
to ascertain the development of instability in the non- 
linear regime. This may be found by numerical integra- 
tions of the two differential equations (15). An example 
of that is shown in Figure 4 for a model with a 
dimensionless accretion rate of 0.01, located on the 
unstable branch of a linear series shown in Figure 1 
and labeled Fb/Fc = 0.001. According to Figure 2 this 
model is unstable. Numerical integrations of equations 
(15) demonstrated a rapid development of large- 
amplitude relaxation oscillations, with a period of 790 
years. The variation of density and pressure throughout 
the flash cycle of this model is shown in Figure 5, 
together with density and pressure variations along a 
linear series of steady-state stellar models with Fb/Fc = 
0.001. Notice that in a “ high ” state of the flash cycle, when 

Fig. 3.—A blow-up of a part of Fig. 2. The dashed lines indicate 
the thermal and nuclear eigenvalues calculated with eqs. (21). The 
solid lines indicate the eigenvalues (or a real part of complex 
eigenvalues) calculated with equation (Í9). Notice that the transition 
from stability to instability (co = 0) is almost at the same place for the 
dashed and solid lines, and that the two types of lines are very close 
to each other far from the point of marginal stability. 
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Fig. 4—The variation with time of the dimensionless surface radiation flux F/Fc, and column density of hydrogen-rich zone I, for a 
degenerate dwarf with a logarithm of surface gravity equal 8.5 (corresponding to 0.929 M0), accreting matter with a composition: X = 0.7, 
Z = 0.03. The critical radiation flux for this model is 2.8 x 1019 ergs cm-2 s"1, the corresponding critical luminosity is 1.37 x 1038 ergs s~\ 
and the critical accretion rate onto a whole star is 3.3 x 1019 g s-1. The dimensionless heat flux from the hydrogen-depleted core is 0.001, 
and the dimensionless accretion rate is 0.01, which corresponds to M = 3.3 x 1017 g s_ l. The surface flux and surface mass density corresponding 
to the equilibrium model with a steady-state nuclear burning are shown with horizontal dashed lines. The flash cycle period is 790 years. 

FIG 5—xhe variation of surface mass density Z and density p in the hydrogen burning zone throughout a flash cycle is shown with a closed 
loop with arrows for the model shown in Fig. 4. The position of the equilibrium model with a steady-state nuclear burning is shown with a large dot. 
Also shown are three branches of the equilibrium models with dimensionless accretion rate ranging from lO-0 005 to 10"°-23 on branch 1, from 
IO“0 23 to 10“2 93 on branch 2, and from 10-2 93 to 10"7 0 on branch 3. Models on branches 1 and 3 are stable, while those on branch 2 are 
unstable. Notice that pressure at the bottom of hydrogen zone is given as P = pZ. 
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hydrogen is burning, the model evolves close to the 
first branch of the linear series. In a “low” state, when 
hydrogen burning is switched off, the model evolves 
along the third branch. This is very similar to the 
finding of Barranco, Buchler, and Livio (1980, Fig. 1). 

III. HYDROGEN ACCRETION ONTO 
DEGENERATE DWARFS 

I used simple approximate formulae to describe the 
properties of hydrogen rich matter, i.e., pressure P, 
internal energy U, opacity tc, and nuclear energy 
generation rate e: 

Pr = -.T\ P=Pr+~pT + KP
513 , 

3 uH 

- = 2X + 0.75 y + 0.5Z = 0.75 + 1.25X - 0.25Z , 

K = 3.12 x 1012(1 + X)5/3 , 

aT4 3 k ^ 
U= + T + W3 

p 2 pH 

1 + 2 x 1026(0.001 + Z)- k = 0.2(1 + X) 

£ = £Cn = 8 x 1021XXCNpT6~
2/3 

x exp (— 152.313T6
_1/3), 

T6 = T/106 , Xcn = Z/3, E* = 6x 1018 ergs g"1 

eg 2.5 x 10~8 

Ke E*X X(1+2Q 

1.50 x 1011 

ö' g em 2 s 1 

Fc = g ergs cm 2 s 1 

(1+*) 
(24) 

These determine uniquely all the quantities in equations 
(16), and make the analysis of equations (17), (20), and 
the numerical integrations of equations (15) possible. 
Some results were already presented in the preceding 
chapter. Those were the examples of linear series of steady 
state models (Fig. 1), the variation of eigenvalues along 
one such series (Figs. 2 and 4), and an example of 
full-amplitude shell flashes for one model on that series 
(Figs. 4 and 5). All those computations were done for a 
logarithm of gravitational acceleration equal to 8.5, 
which corresponds to a degenerate dwarf of 0.929 M0. 

In this section I shall present the results of one zone 
model computations for a large range of parameters. 
Surface gravity will be varied from 107*5 to 109,5 cm s“2, 
which corresponds to degenerate dwarfs ranging from 
0.336 to 1.373 M0. The line separating stable and 
unstable models in the (fb, á)-plane [i.e., in the heat 
flux from the (core, accretion rate)-plane] is shown in 
Figures 6 and 7 for models with various chemical 
compositions and gravitational accelerations. All the 
curves of marginal stability are similar. In all cases the 
unstable models are to the left of the lines. Notice that 
if the heat flux from the core is above some critical value, 
then models are stable for any value of the accretion 

rate. If the heat flux from the core is below the critical 
value, then models are stable for very high and for 
very low accretion rates, and they are unstable for the 
intermediate rates. The transition from stability to 
instability is little affected when the opacity is assumed 
to be due to electron scattering only and the effect of 
electron degeneracy is neglected, as seen in Figure 6. 

The influence of metal content on the stability is 
systematic but small (cf. Fig. 6). However, when the 
metal content was taken as zero and the proton- 
proton cycle was the only source of nuclear energy, then 
all models were found to be stable. The stability lines 
as presented in Figure 6 are most likely incorrect for 
models with a very low metal content, as the energy 
generation rate due to the CNO cycle may be limited 
with beta decays. The stability was little affected by 
variation of hydrogen content, unless the variation was 
very large (cf. Fig. 7). The effect of gravity was small 
but systematic. In general, the range of unstable models 
increased when the metal and hydrogen contents were 
increased and when the gravitational acceleration was 
decreased. 

The one-zone model offers a possibility to calculate 
a period of shell flash cycles, like those shown in 
Figure 4. The variation of that period with the accretion 
rate is shown in Figure 8 for models with a Population I 
composition, a logarithm of gravitational acceleration 
equal to 8.5, and for various values of heat flux from the 
core. Notice that the period is roughly inversely pro- 
portional to the accretion rate, and it decreases with 
increasing heat flux from the core. The variation of 
flash cycle period with gravity is shown in Figure 9 for 
many values of accretion rate and heat flux from the core. 
The ámax corresponds to the largest accretion rate at 
which the models were still unstable. That was about 0.5 
for Fb = 0, and about 0.4 for Fb/Fc = 0.1. Notice that 
the shortest flash cycle was only 1 month long, for 
log g = 9.5, Fb/Fc = 0.1, à = ámax æ 0.35. This corre- 
sponds to a white dwarf of 1.373 M0 accreting at a 
rate of 2.7 x 10“7 M0 per year. On average it would 
radiate about 1.8 x 104 L0, i.e., about 40 % of the output 
from a red giant of the same core mass. 

It is interesting to look for a relationship between 
the period of nuclear shell flashes and some other time 
scales which may be calculated with less effort. One such 
characteristic time scale may be nuclear, i.e., tw as 
defined by the last of equations (20). Another may be a 
period of small-amplitude oscillations which may be 
readily calculated for marginally stable models as 
27r/Im (<7). The three time scales are shown in Figure 10 
for marginally unstable models with a logarithm of 
gravitational acceleration equal to 8.5 and with 
Population I composition. These models correspond to 
the lines of marginal stability shown in Figures 6 and 7. 
The three nearly horizontal lines at the bottom of Figure 
10 correspond to high accretion rates, and therefore they 
correspond to the nearly horizontal marginal stability 
lines at the top of Figures 6 and 7. The three inclined 
lines in Figure 10 correspond to low accretion rates and 
to the inclined marginal stability lines in Figure 6 and 7. 
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Fig. 6.—The variation of dimensionless accretion rate with dimensionless heat flux from hydrogen-depleted cores is shown for marginally 
stable models of accreting and hydrogen-burning degenerate dwarfs with a logarithm of surface gravity equal to 8.5. Hydrogen content of 
accreted matter is AT = 0.7, and metal content Z is shown for each line separately. The dashed line corresponds to a model with opacity due to 
Thomson electron scattering only, and with the pressure of degenerate electrons neglected. The unstable models are to the left of each line. 

Fig. 7.—The same as Fig. 6, but for different chemical compositions of accreting matter, and different surface gravities 
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log á 
Fig. 8.—The variation of a shell flash period with dimensionless 

accretion rate for degenerate dwarfs with a logarithm of surface gravity 
equal to 8.5, accreting matter with a composition X = 0.7, Z = 0.03. 
The curves are labeled with the values of dimensionless heat flux from 
hydrogen-depleted cores. Marginally unstable models are indicated 
with open circles at the ends of the curves. 

Notice that the flash period is usually more than an 
order of magnitude longer than the corresponding period 
of small-amplitude oscillations. At small accretion rates 
(and therefore small Fb) the duration of flash cycles is 
rather similar to the corresponding nuclear time scales. 
However, this is not the case at the highest accretion 
rates, for which the flash cycles are almost an order of 
magnitude longer than the corresponding nuclear time 
scales, as indicated by the nearly horizontal lines at the 
bottom of Figure 10. Therefore, one should be careful 
with estimates of the duration of flash cycles which are 
not based on nonlinear development of shell instability. 

IV. HELIUM ACCRETION ONTO DEGENERATE DWARFS 

Models accreting helium differed from those accreting 
hydrogen, as the carbon-nitrogen cycle was replaced with 
the triple-alpha reaction, 

£ = £3* = 3.5 x l011Y3p2Ta~
3 exp (-43.2/T8), 

T8 = T/108 , Y = 1 - X - Z , 

E* = 5.8 x 1017 ergs g_ 1 , 

¿c = rtv = 2-7 x 1O_70 gem-2 s-1 , Ke E*Y 

Fc= 1.50 x lO11# ergs cm-2 s-1 . (25) 

All the formulae for equation of state and opacity 
remained the same as those given with equations (24). 

All the models had zero hydrogen content and 
Z = 0.03, and therefore Y = 0.97. The lines of marginal 
stability are shown in Figure 7 in the (à, /b)-plane. 
They are very similar to the corresponding lines for 
hydrogen-rich models. The helium shell flashes were 
computed for many models with a gravitational 
acceleration ranging from 108 to 109 5 cm s-2, which 
corresponds to degenerate dwarfs ranging from 0.595 to 
1.373 M0. Models with smaller masses (and gravities) 
would not justify the assumption that the helium-rich 
zone had a thickness much smaller than the stellar 
radius. All qualitative properties of helium shell flashes 
are similar to those of hydrogen shell flashes, but the 
flash cycle periods are much longer, approximately a 
factor of 10. The variation of the flash period with 
gravity is shown in Figure 11 for helium models. This 
may be compared with Figure 9 showing the same 
relations for hydrogen-rich models. 

V. HELIUM ACCRETION ONTO NEUTRON STARS 

These models had identical nuclear burning rate, 
equation of state, and opacity as the models presented 
in the previous chapter, but gravitational acceleration 

log g 

Fig. 9.—The variation of a shell flash period with a logarithm of 
surface gravity for degenerate dwarfs accreting matter with a 
composition : X = 0.1, Z = 0.03. The lines are labeled with values of 
dimensionless accretion rate and heat flux from hydrogen-depleted 
cores. 
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log Fb/Fc 

Fig. 10.—The variation of a period of small-amplitude oscillations 
Posc, a period of a full-amplitude flash cycle PnaSh, and a nuclear time 
scale inuc = E*X/e (cf. eqs. [20]), with dimensionless heat flux from 
hydrogen-depleted cores is shown for marginally unstable models. 
The logarithm of surface gravity is 8.5, and the accreted matter has 
a composition: X = 0.7, Z = 0.03. The accretion rate corresponding 
to various values of heat flux from the core, Fb/Fc, may be found 
from Fig. 6 or 7. 

was much larger. It ranged from 1014 to 1015 cm s~2, 
which was appropriate for a neutron star surface. The 
lines of marginal stability in the (à, ^,)-plane are shown 
in Figure 12. They are similar to those shown in Figures 
6 and 7, but they are strongly displaced down and to the 
left. Again, qualitative properties of shell flashes are 
very much like those in the two previous sections, but 
all the characteristic time scales are much shorter now. 
The periods of small-amplitude oscillations are shown 
for marginally unstable models in Figure 12. Notice that 
these periods are now measured in seconds, not in years 
as in the previous sections. Of course, the periods of 
nonlinear flash cycles are somewhat longer. 

It should be pointed out that our definition of a 
critical accretion rate (cf. eq. [13]) is not very relevant 
for neutron stars. It was reasonable for degenerate 
dwarfs, because in that case most of energy released in 
accretion was nuclear, not gravitational. The opposite 
is true for neutron stars, for which the gravitational 
energy of accreted matter is about two orders of 
magnitude larger than that due to helium burning. There- 
fore, log à æ —2 in Figure 12 corresponds to a critical 
(Eddington) luminosity due to release of gravitational 
energy, presumably in a shock above the stellar surface, 
beyond our one-zone model. It follows that our 
dimensionless accretion rate û ^ 0.01 roughly corre- 
sponds to the critical rate for neutron stars. When this 

is taken into account, we find that the difference 
between Figure 12 and Figures 6 and 7 is reduced 
substantially. 

Unfortunately, the range of applicability of the one- 
zone model to the accreting neutron stars is rather 
limited. The results presented in Figure .12 are based on 
computations which ignored electron thermal con- 
ductivity. This becomes important when electron 
degeneracy becomes appreciable, and this corresponds 
to an accretion rate below 10“4 of the critical rate. In 
this regime the results change dramatically as soon as 
electron conductivity is taken into account. There are 
large areas in the (à, /b)-plane in which no steady-state 
models can be found, while in other areas multiple 
solutions exist. The main problem is due to the decrease 
of effective opacity (or increase of effective conductivity) 
at the bottom of the accreted zone. In fact, the opacity 
may change non-monotonically with depth, making our 
one-zone approximation improper. I shall not discuss 
these complications in more detail, as it would be 
beyond the scope of this simple presentation. 
Fortunately, electron conductivity was not important for 
one-zone models of accreting white dwarfs within the 
range of parameters presented in this paper. 

Fig. 11—The variation of a shell flash period with a logarithm of 
surface gravity for degenerate dwarfs accreting helium-rich matter 
with a composition: X = 0.0, Z = 0.03. The lines are labeled with 
values of dimensionless accretion rate and heat flux from helium- 
depleted cores. 
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Fig. 12.—The variation of dimensionless accretion rate with 
dimensionless heat flux from helium-depleted cores is shown for 
marginally unstable models of neutron stars accreting helium-rich 
matter with a composition: X = 0.0, Z = 0.03. The curves are labeled 
with values of a logarithm of surface gravity: 14.0, 14.5, and 15.0. 
A period of small-amplitude oscillations is shown along two curves. 
Full-scale flash cycles have longer periods. Electron conductivity was 
not taken into account, and this limits the validity of this diagram to 
dimensionless accretion rates exceeding 10 ~4. 

VI. DISCUSSION 

The one-zone model presented in this paper allows 
a simple analysis of nuclear burning on accreting 
degenerate dwarfs and neutron stars. Some gross 
properties of such objects may be calculated with little 
effort and very small computer requirements. This makes 
it useful for pilot studies, for a qualitative analysis, and 
for teaching purposes. Because of its simplicity many 
details of real shell flashes cannot be obtained, and of 
course the accuracy of results is limited. However, many 
properties of shell flashes are reproduced surprisingly 
well. 

We proceed by specifying the parameters needed for 
a model: gravitational acceleration at the stellar surface, 
accretion rate, composition of accreted matter, and the 
heat flux flowing from the stellar core into the 
accreted layer. Once these parameters are specified, a 
model with a steady-state nuclear burning may be 
calculated, provided the accretion rate and the heat flux 
from the core do not exceed some critical value, 
à + fb< 1 (cf. eq. [17]). The stability of a steady-state 
model against small amplitude perturbations may be 
analyzed. Finally, in the case of unstable models, 
numerical integration of the evolution into nonlinear 
regime can be easily done, as only two ordinary first 
order differential equations (15) are involved. I found 
that the general properties of the models were very 
similar for most chemical compositions of accreted 

matter, for degenerate dwarfs and for neutron stars 
alike. The only exception was accretion of hydrogen- 
rich matter with no metals onto white dwarfs. In that 
case the only nuclear reactions were those of the proton- 
proton cycle, and all models were found to be stable. 
I shall discuss now the common properties of all other 
models. 

A linear series of stellar models with a steady-state 
nuclear burning may be calculated by varying the 
accretion rate and keeping all other model parameters 
constant (g,fb, X, Z). For each value of accretion rate 
we may compute many characteristics of the one-zone 
model, in particular a column density. In general there 
are three branches of the linear series separated by two 
turning points at which the column density reaches a 
local minimum or maximum (cf. Fig. 1). The middle 
branch, located between the two turning points, is 
thermally unstable. Along this branch, column density 
decreases with increasing accretion rate. The other two 
branches are stable, with column density increasing with 
accretion rate. It follows that the models are stable when 
the accretion rate is high, close to the critical value 
(cf. eq. [13]), or very low, so that the rate at which heat 
is relased in nuclear reactions is lower than the heat flow 
from the core. This picture changes gradually while the 
heat flux from the core is increased. The unstable 
branch of the linear series becomes shorter and 
disappears completely when the heat flux from the core 
exceeds some critical value. In that case the models are 
stable for any value of accretion rate (cf. Figs. 6, 7, 
and 12). In their recent paper Papaloizou, Pringle, and 
MacDonald (1982) also point out that the increase of 
column density with increasing accretion rate is required 
for stability. 

While we move along a linear series, the transition 
from stability to instability is always similar. Far from 
the marginal stability point the two eigenvalues are 
negative and differ considerably from each other. They 
are roughly equal to the inverse of the thermal and 
nuclear time scales, respectively. Any small perturbation 
decays exponentially. When we come closer to the point 
of marginal stability, the two eigenvalues first become 
equal to each other and later become complex, with the 
real part negative. A small perturbation oscillates with 
decreasing amplitude, and the models are still stable. 
Eventually the real part of the eigenvalues passes through 
zero and becomes positive. Small perturbations oscillate 
with increasing amplitude, and the models become un- 
stable. Finally, the two eigenvalues become real and 
positive. Small perturbations grow exponentially. Far 
away from the point of marginal stability the two 
eigenvalues differ considerably from each other. They 
are roughly equal to the inverse of the thermal and 
nuclear time scales, respectively. This type of transition 
from stability to instability is similar to that found by 
Schwarzschild and Härm (1965) in their evolutionary 
computations leading to helium shell flashes on the red- 
giant asymptotic branch. In the case of one-zone model 
the point of marginal stability is close to the point where 
the “thermal eigenvalue” passes through zero (cf. Figs. 2 
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and 3), i.e., where the linear series has a turning point. 
Therefore, even a very simplified stability analysis based 
on the linear series approach (cf. Paczynski 1980 and 
references therein) is reasonably accurate, as the 
transition from stability to instability is very close to the 
turning point. 

The two marginal stability lines shown in Figure 6 
for Z = 0.03 make it clear that they are not significantly 
different in the cases when either more or less complicated 
formulae are used for the equation of state and opacity. 
Therefore, it is useful to present simplified formulae 
for the “thermal” and “nuclear” eigenvalues which may 
be obtained if pressure is just a sum of the pressures 
due to radiation and perfect, fully ionized gas, with no 
allowance made for electron degeneracy, while the 
opacity is due to Thomson electron scattering only. In 
this case equations (21) may be written as 

-1 ß(v — 1 — 4a) — 4 
^ ~ Tlh 16 - I2ß - l.5ß2 ’ 

(26) 
-i ft(v + 7)(1 + a) 

" " jS(v - 1 - 4a) - 4 ’ 

where 

v = 3 In r/ô ln T , a =/,/á , 1 - ß = PJP = à + fb. 

(27) 

When the accretion rate is very high, à & 1, then the 
temperature and luminosity are high, ß and v are small, 
and <Tth and crn are both negative. When the accretion 
rate is very low, à < fb, then a is large and again the 
two eigenvalues are negative, implying thermal stability 
of the one-zone model. However, if the heat flux from 
the core is small, fb< 1, then there is a range of 
accretion rates for which the two eigenvalues are positive 
and the models are unstable. A similarly simplified 
analysis can be done for the eigenvalues following from 
the quadratic equation (19), and it can be shown that 
the transition from stability to instability proceeds 
through complex eigenvalues, just as it is seen in 
Figures 2 and 3 for the case of more complicated 
equation of state and opacity. 

The nonlinear development of instability may be 
studied by means of numerical integrations of the two 
ordinary differential equations (15). The final behavior 
is the same for models which have oscillatory or 
exponential increase of small perturbations. The models 
evolve to large amplitude relaxation oscillations (cf. 
Fig. 4). Nuclear burning proceeds in short bursts 
separated by relatively long periods of no burning at all. 
During the flash the surface radiation flux is close to 
the critical (Eddington) value. When almost all nuclear 
fuel is used up, the burning is extinguished and the 
model cools off. The radiative heat flux from the 
surface drops to the minimum level equal to the heat 
flux from the core. Gradually, the surface mass density 
of our zone increases due to accretion, and so does the 
optical thickness of the accreted layer. As the radiative 
flux stays constant at its minimum level, the tempera- 

ture at the base of accreted zone increases, and at 
some point the nuclear fuel is ignited. The instability 
develops very rapidly. Initially, the rate of heat release 
in nuclear burning increases so much that it exceeds 
the critical (Eddington) value by a large factor (cf. 
Fig. 5, the point with Fn max/Fc = 77.3). This energy is 
used mainly to heat up the accreted matter. The pressure 
remains constant as long as the amount of burned fuel is 
small (P = gl,). The increase of temperature is 
accompanied by the decrease of density and the increase 
of geometrical thickness of the zone. The opacity declines 
and reaches the level of Thomson electron scattering. 
The radiation flux from the surface comes close to the 
Eddington limit (cf. Fig. 5, the point with FmaJFc = 
0.97). A phase of stable nuclear burning follows. The 
mass of accreted zone gradually decreases, and the model 
evolves parallel to the first branch of a linear series 
(cf. Fig. 5). When column density is reduced below the 
value corresponding to the turning point of the linear 
series, then nuclear burning rapidly switches off. The 
unburned matter left in the accreted zone cools off and 
settles down close to the third branch of the linear 
series. We are at the beginning of the next cycle. 

This picture changes somewhat when the heat flux 
from the core is very small or vanishes. In that case 
the matter in the accreted zone gradually heats up by 
compression while its mass increases, but the radiation 
leaking from the surface makes this process non- 
adiabatic. Therefore, in the case of negligible heat flux 
from the core as well as in the case when that heat 
flux is relatively large, the temperature at the base of 
accreted zone is higher if it is more difficult for 
radiation to diffuse out, i.e., if the opacity is large. 
Except for the details of heating between the flashes, 
there is not much difference between the two cases. 

Throughout these computations a radiative heat 
diffusion was assumed. There is only one phase of every 
flash cycle during which almost entire accreted layer 
becomes convective. This is close to the peak of the 
flash, when the rate of heat release in nuclear burning 
exceeds the Eddington luminosity. However, almost all 
that heat is used to increase the entropy of accreted 
and burning matter, and only a very small fraction 
diffuses out and is radiated away from the surface. 
Therefore, the one-zone model describes reasonably the 
heating of matter, but provides somewhat incorrect 
account of the time variation of the surface luminosity 
during this very brief phase. As soon as the heat wave 
reaches the surface and the luminosity becomes close to 
the Eddington limit, the convection vanishes (cf. 
Paczynski and Zytkow 1978). Therefore, the one-zone 
model does not properly describe the rapid rise of surface 
luminosity, but provides a good description of a much 
longer phase of high luminosity and its gradual decline. 

It should be pointed out that the one-zone model is 
plane-parallel, and because of this the maximum surface 
luminosity may become very close to the Eddington 
limit (i.e., critical luminosity). In case of a more proper 
spherically symmetric model the maximum surface 
luminosity would be that given by the core mass- 
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luminosity relation for red giants with degenerate cores 
(Paczynski and Zytkow 1978; Paczynski 1970). The two 
relations are gives as 

T _471CG _65’000 r M 

T-Eddington Ai ~ ' ~ Lq , 
Kei 1 + X Mq 

-^Red giant 59,250 L0(M/M0 - 0.522), 

for X = 0.7, Z = 0.03 . 

(28a) 

(28b) 

Our critical accretion rate (cf. eq. [13]) corresponds to 
the Eddington luminosity. In more realistic spherically 
symmetric models the maximum accretion rate for which 
the steady-state solutions exist would correspond to the 
red giant luminosity, and would be lower than that 
given with equation (13) by the ratio of equations (28a) 
and (28b). 

The duration of a full-amplitude flash cycle may be 
readily obtained by integrating the equations (15). 
Usually, a full amplitude and a constant time interval 
between the flashes are reached within two or three 
flash cycles. These time intervals obtained with the one- 
zone model may be compared with those which 
followed from the full-scale evolutionary computations 
by Paczynski and Zytkow (1978). Those were done for 
a degenerate dwarf of 0.8 M0 accreting matter with a 
composition X = 0.7, Z = 0.03. The minimum surface 
radius of those models was 0.0112 Re (i.e., 7.8 x 108 cm), 
somewhat larger than that of a zero-temperature 
degenerate dwarf of the same mass. A logarithm of 
gravitational acceleration at the surface was 8.24. The 
heat flux from the core was very small, 0.03 L0. The 
calculated logarithms of interflash periods (in years) were 
7.08, 5.09, 3.68, 2.90, and 2.14 for the accretion rates of 
1.46 x 10"X1, 1.46 x 10"9, 1.46 x 10"8, 4.37 x 10“8, 
and 1.067 x 10"7 M0 yr“1, respectively. One-zone 
models with log g = 8.24,/* = 0.0, X = 0.7, Z = 0.03, and 
all the physics described with equations (24) were 
calculated for comparison. The critical accretion rate for 
those models was ¿c = 3.65 g cm“2 s"1; i.e., the rate 
for the whole star was Mc = 2.80 x 1019 g s"1 = 
4.44 x 10" 7 Mq yr"1. The logarithms of dimensionless 
accretion rates corresponding to those used by Paczynski 
and Zytkow (1978) were -4.48, -2.48, —1.48, -1.01, 
and —0.62. The logarithms of interflash periods 
calculated with the one-zone models for these accretion 
rates were (in years): 7.03, 4.59, 3.40, 2.85, and 2.42, 
respectively. The agreement with the results of full-scale 
evolutionary computations is reasonably good, the 
differences never exceeding a factor of 3 for the periods, 
or 0.5 for the logarithms. There is a relatively large 
discrepancy for the highest accretion rate, 1.067 x 10"7 

M© yr"1, which corresponds to log à= —0.62. This 
highest rate corresponds to the marginally unstable 
model of Paczynski and Zytkow (1978). The marginally 
unstable one-zone model is found for log à = —0.246, 
with a logarithm of the corresponding flash period equal 
to 2.14 (in years). This is the shortest period for the 
models with the parameters specified above, and it is 
equal to the shortest period found with the full-scale 

evolutionary computations. It looks as if the periods of 
shell flashes calculated with the one-zone model are 
reasonable. 

The shortest hydrogen shell flash cycle period possible 
for degenerate dwarfs accreting hydrogen rich matter is 
about 1 month (cf. Fig. 9). The shortest period for 
helium shell flashes on degenerate dwarfs is about 1 year 
(cf. Fig. 11). These results may be of interest for the 
studies of cataclysmic binaries. In all cases a high 
surface gravity and a high accretion rate are required 
to obtain short interflash periods. 

The dependence of interflash period on various param- 
eters may be qualitatively understood as follows. It turns 
out that pressure required for the ignition of nuclear 
fuel is roughly constant for a broad range of models. 
For example, it is about 1017 5 g cm"2 s"1 for 
degenerate dwarfs accreting hydrogen-rich matter. As a 
consequence of hydrostatic equilibrium the surface mass 
density may be calculated as the ratio of pressure to 
gravitational acceleration, £ = P/g. It follows that less 
mass has to be accreted to produce a nuclear flash in 
a model with a higher gravity. Therefore, the interflash 
period should decrease with increasing gravity and with 
increasing accretion rate, just as it is seen in Figures 8 
and 9. If the heat flux from the core is increased with 
all other parameters kept constant, then a smaller 
optical depth, i.e., less matter, is required to raise the 
temperature at the bottom of accreted layer to the point 
of nuclear ignition. Therefore, the interflash period 
should decrease with increasing heat flux from the core, 
just as shown in Figure 8. 

It is interesting that almost all unstable models 
developed large-amplitude flashes, even if they were only 
marginally unstable with respect to small perturbations. 
I studied a few cases of a transition from models 
undergoing large-amplitude flashes to models that were 
stable by gradually changing the accretion rate. In all 
cases the transition was very abrupt: it took place within 
one flash cycle, and at the same value of accretion rate 
at which models with a steady-state nuclear burning 
became marginally stable against small perturbations. 
There was no gradual decline of the flash amplitude, 
just within one flash cycle it would decrease from a 
large value to zero. 

There was only one region in the parameter space 
in which the full-scale flashes looked like slightly 
distorted sinusoidal oscillations with a modest 
amplitude. That was the region where the heat flux from 
the core was close to its maximum value for which 
models were still unstable, and where the length of the 
unstable branch of a linear series was very small. For 
example, a model with the parameters log g = 8.5, 
l°g ft = —0.77, log à = —0.65, X = 0.7, Z = 0.03 is in 
such a region (cf. Fig. 6 or 7). These models were 
difficult to study with numerical integrations of the 
differential equations (15) because their full-scale flashes 
were only slightly nonlinear. 

There are some aspects of shell flashes that are 
treated badly with the one-zone model. Here are some 
examples of those. The peak luminosity of flashes on 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
83

A
pJ

. 
. .

26
4 

. .
28

2P
 

No. 1, 1983 ONE-ZONE MODEL FOR SHELL FLASHES 295 

degenerate dwarfs comes very close to the Eddington 
limit, while it should approach a lower value following 
from the core mass-luminosity relation (Paczynski 
1970). That is a consequence of adopting a plane-parallel 
geometry. In a detailed evolutionary model like that of 
Paczynski and Zytkow (1978) a lot of heat is carried by 
matter that has been processed by the nuclear burning 
shell and that merges with the stellar core. After some 
time this matter cools off, and the heat diffuses out and 
contributes to the surface luminosity. In the one-zone 
model the heat carried by matter into the core is lost 
from the energy balance. As a result the total amount 
of energy radiated from the surface during one full flash 
cycle is smaller than the total amount of heat released 
in nuclear burning during that cycle. The extent of con- 
vective mixing cannot be obtained with the one-zone 
model as it has no spatial resolution. At low accretion 
rates, electron thermal conductivity becomes important 
and makes a one-zone model unacceptable because the 
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total opacity does not increase monotonically with the 
optical depth in the bulk of accreted matter. This effect 
becomes important in neutron stars accreting at less than 
10"4 of the critical rate (in units used in this paper). 
Fortunately, electron conductivity was not important for 
our models of accreting white dwarfs, even at the lowest 
accretion rates studied, as those were still too high for 
electron degeneracy to become strong. It is obvious that 
even though the one-zone model may be very convenient 
and useful for many purposes, it is not the right one 
for detailed studies of nuclear shell flashes. Its main 
advantage is its simplicity, which makes it attractive for 
teaching and for pilot studies. 
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Note added in proof.—I have recently become aware of a paper “Thermal Relaxation Oscillations in a Two-Zone 
Model” by J. R. Buchler and J. Perdang (Ap. J., 231, 524 [1979]) which addresses the same subject as this paper. 
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