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Summary. We discuss two aspects related to the radial de-
pendence of spatial density of interplanetary dust, which was
found to be n(r)~r~1-3 from the Pioneer 10/11 and Helios 1/2
space probes. Obviously, in steady-state a permanent source of
dust is necessary to replenish the losses due to Poynting-
Robertson effect and mutual collisions.

First, we ask which spatial distribution the dust source should
have to lead to the observed relative spatial distribution. Sources
limited to a shell at several AU heliocentric distance are found to
be inadequate, while extended (0.1 AU=Za4=<10AU to 20 AU)
sources with the semimajor axes distributed ~a~*° or ~a~ 1!
reproduce the observed density gradient.

Second, we ask whether collisions in interplanetary space
would destroy enough of the larger meteoroid particles to create a
sufficient supply of dust-sized debris. This is found to be the case.
In addition, the extended dust source resulting from these col-
lisions approximately has the spatial distribution required to fit
the observed radial dependence of dust density. We therefore
consider radio and photographic meteoroids as the mass reservoir
from which the interplanetary dust cloud is maintained.

Key words: interplanetary dust: spatial distribution — dynamics
origin

1. Introduction

In order to maintain an equilibrium distribution of interplanetary
dust in the presence of mass losses due to the Poynting-Robertson
effect and mutual destructive collisions between the particles a
continuous source of dust supply is needed. The required input
was estimated to be 1-310*kgs™! over the whole mass range
(Whipple, 1967; Dohnanyi, 1972). Generally, comets are con-
sidered as the initial source although a quantitative foundation for
this hypothesis still is missing. Short period comets only are able
to supply 70-250kgs™! (Delsemme, 1976 ; Roser, 1976).

During the last decade zodiacal light experiments on the
Pioneer 10/11 and Helios 1/2 space probes have determined the
radial distribution of interplanetary dust from 0.1 to 3 AU. The
first task of our paper is to derive from these observations the
relative spatial distribution of the required dust source. The result
will be checked against the hypothesis that collisions between
interplanetary particles provide an adequate input.

We consider as dust solid particles with radii less than 100 pum.
Larger particles we call meteoroids, as usual. This somewhat
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arbitrary separation of the smooth size distribution of interpla-
netary particles is made for the ease of presentation and, more
importantly, because the zodiacal light observations almost ex-
clusively refer to the size range of interplanetary dust. In fact,
about 95% of the zodiacal light is due to particles with radii less
than 100 pum (Roser and Staude, 1978), which shows that me-
teoroids virtually are not covered by zodiacal light observations.
A further distinction comes from the dynamics of the particles.
Collisions are dominating the lifetimes of meteoroids while dust
particles mainly are subject to the Poynting-Robertson effect.

The second task of our paper is to check whether collisions
between interplanetary particles could provide a dust input large
enough to maintain the observed spatial density in steady-state.
We visualize this input as being due to the disruption of larger
particles, the debris of which largely would be in the size range of
dust. This input has to be large enough to cancel the dust losses
due to Poynting-Robertson effect as well as the losses of sub-
micron particles which are driven out of the solar system as f-
meteoroids by radiation pressure.

We do not try to explain how the larger particles are being
supplied and what actually constitutes the primary source of solid
interplanetary material.

We add several remarks concerning the first task of our paper.

As reference to which our model calculations of relative spatial
distribution have to be compared we adopt the relation n(r)
~r~ 13 measured by Helios (Leinert et al, 1981) inside 1 AU.
Based on the geometry of the Helios measurements one expects
that the same power law should be valid out to at least 1.5 AU.
From Pioneer observations Hanner et al. (1976) proposed a
slightly different spatial distribution outside 1AU, n(r)~r~1!3
with an enhancement in the asteroid belt and a cut-off at 3.3 AU.
Figure 1 shows that both curves have the same average trend.
Also both represent the observed zodiacal light brightnesses quite
well. We then prefer to use the extension of the power law from the
inner solar system since we will see later that the assumption of an
enhancement in the asteroid belt is not really justified. According
to Schuerman (1980) the Pioneer data support a steeper decrease
of spatial density with heliocentric distance but his argument
appears to concern only the region outside 2 AU. Therefore we
take as best description of the spatial distribution simply the
above power law n(r)~r~!-3, with a stronger decrease setting in
somewhere between 2 and 3.3 AU. Doing so we neglect the results
of the meteoroid penetration detectors on Pioneer 10 and 11,
which were interpreted by constant spatial density of interpla-
netary dust out to 18 AU (Humes, 1980). We suggest to postpone
a discussion of this discrepancy until new measurements from the
forthcoming space probes to Jupiter become available. Inside
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1 AU zodiacal light measurements and particle detection experi-
ments are compatible (Griin et al., 1977).

We are aware of three previous attempts to explain the radial
distribution of interplanetary dust, none of which is in quanti-
tative agreement with the above observations. Briggs (1962)
considered the effect of Ponyting-Robertson drag on an extended
source of dust, distributed like the photographic meteors selected
by Hawkins and Southworth (1961). He finds a slope of r~*°
inside 1 AU which steepens to about ~ 3 near 4 AU. Southworth
(1967), assuming instead particles in initially highly eccentric
orbits, arrived at a similar result. Trulsen and Wikan (1980)
suggested that inelastic collisions between dust particles might
reduce their average inclination, when, under the action of the
Poynting-Robertson-effect, they are drifting towards the Sun. This
also would lead to a steepening of the dust distribution in the
ecliptic plane.

Under the action of the Poynting-Robertson effect alone the
spatial distribution of interplanetary dust will tend towards n(r)
~1/r inside the source region. This is the limiting case. Smaller
slopes cannot be obtained without an additional loss mechanism.
We want to explain a steeper slope. Such a distribution will be
obtained in an extended source region, because the addition of
new material to the inward drifting outer particles steepens the
spatial distribution all over the source region. This is our basic
idea for explaining the relative spatial dust distribution. How
large the deviation from the limiting 1/r-law will be depends on
how strongly the dust input increases towards the Sun. Our
approach therefore is similar to Briggs’ (1962), but we also include
a discussion of the effect of collisions.

2. Formulation of the problem

2.1. The continuity equation

We assume the zodiacal cloud to be in steady-state and cylindri-
cally symmetric. The system is described by the orbital parameters
a (semimajor-axis), e (eccentricity), and i (inclination), and by the
particle radius s. Longitude of ascending node and of perihelion
are assumed to be randomly distributed. The size distribution is
taken as independent of the spatial density; this simplification is
not in contradiction with the observations. For a statistical
formulation of the problem, we use the following notations:

N; Total number of particles (constant in time)

N! Total number of particles injected per unit of time (constant
in time)

N;-fla,ei)-g(s)dadedids Number of particles having orbital
parameters in the range (a,a-+da), (e,e+de), (i,i+di) and
radii in the range (s, s+ ds).

The distribution function f* (g, e, i)-g(s) of the injected particles is

similarly defined. The functions f, f*and g, g° are normalized to 1.

In (a, e, i)-space the vector denoting the secular changes of
orbital parameters is

_ (da de di) M
“E\ara @)

In steady-state, for each particle radius s the net flux of particles
per unit volume in (a, e, i)-space is counterbalanced by the rate of

injection minus destruction by collisions

AN TaN Sl e g1 =N e g+ [t )

. d 0 0 .
where div= (8—a’ % —87) by definition.

L | A AT N " 1

20.0 1 I

10.04 —

] [

] Helios (r*3) [

50+ // -

J i

= J i

< 204 -
s
~

c ] X

05 i Pioneer [

0.2 4 -

T 1T 1T 11 7T] T T T

01 03 05 10 20 40
r(AU)
Fig. 1. Observed radial distribution of interplanetary dust.
Outside 1 AU the interpretation is not unique. An extension of the
power law (——-) is the simplest acceptable choice

Lorentz force and Coulomb drag are neglected, which seems
permissible, since most of the zodiacal light is due to compara-
tively large particles with radii 10-100 pm (Roser and Staude,
1978).

Collisions destroy particles; at the same time they also
produce a debris of smaller particles. The collision term in Eq. (2)
is only covering the losses due to collisions, i.e. it gives the rate at
which particles of a given radius are being destroyed per unit
volume in (g, e,i)-space. Dust production by collisions is not
included in our collision term, but incorporated into the source
function f* together with all other contributing processes. The
treatment of collisions is described in Sect. 2.3. The collision term
then may be written as

ON(a,e,i,s)

o L" =— Ny fla,e,i) g(s) (3)

1(a,e,5)’

where 7, is the size-dependent lifetime against collisions. The
relative brightness distribution of the zodiacal light as observed by
Helios (Leinert et al., 1981) shows no appreciable change between
1.0 and 0.3 AU. This supports a factorization

fla,e.)= fi(a,e)- f,(i) (4)

of the steady-state distribution. This condition then automatically
holds for the input distribution, because the radiation forces alone
do not change the inclination of a particle orbit and other forces
are not considered. Equation (2) now becomes

g _
g(s)

On the left hand side of the equation we adopt the well known
expressions for the secular changes of a,e,i due to Poynting-

1
Nrfi(a,e)—— )

div[uN,f,(a,e)]=N'fi(a,e) t(ae5)
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Robertson effect (Robertson, 1937; Wyatt and Whipple, 1950):

ﬁ——a 24 3¢ de Soe ©
dt a(l—ed¥?  dr - 2a%(1—e?)?’
where

3.551078.Q

— pr 2
= Sem)-olgom ?) (AUYJyr.
Q,, is the efficiency factor for radiation pressure. For our purpose
to explain features of the spatial density distribution, it is in order
to work with the simple expression for perfectly absorbing
particles, 0, =1.0.

Evaluation of Eq. (5) using the derivatives given in (6) gives the
equation describing our problem:

N af\(ae) a2+ 3e?) 6f1(a,e). Sae
T "8a al—e)? " de  2a%(1—ed)?
6e2—1 g
- TZa"Z((f_—ez)l,zﬁ(a,e)—N'f;(a,e)%
1
+N,f(a,e)——— ()

tla.es)

2.2. Particle size distribution

The particle size distribution g®(s) is a sensitive parameter in our
calculations. Obviously, the probability of an individual particle
to collide, and hence its lifetime, linearly depends on g(s). The
number of collisions per second and with it the rates of mass loss
and creation of collisional products depend on g*(s). We adopted
for g(s) the “maximum model” of Giese and Griin (1976) in the
numerical form given by Fechtig et al. (1981), because it appears
to us well founded experimentally and reproduces zodiacal light
intensities for a reasonable dust albedo of ~0.2 (Hanner, 1980).
This distribution is shown in Fig.2 together with two other
proposed size distributions. The distribution of LeSergeant and
Lamy (1980), like the “maximum model” is based on microcrater
counts on lunar rocks. Future discussions will have to show,
which of the two size distributions is more reliable. Cook’s (1978)
result mainly is based on observations of faint optical meteors. It
appears too high to us, requiring a very low albedo of 0.006 at
1 AU to fit it to the zodiacal light observations. It will be used only
to demonstrate the influence of size distribution. Generally we will
assume the same spatial distribution n~r~!-3 for all particle sizes,
ie. the same size distribution at all heliocentric distances. This
simple picture may have to be modified, since Southworth and
Sekanina (1973) obtained a quite different spatial distribution for
radio meteoroids, with a large excess in the range 1-4 AU. The
implications of this modification will be discussed at those places
where they are relevant.

2.3. Collisional model

The effect of collisions on particles in the size range 1-100 pm is
twofold. By destroying such particles they constitute a loss
mechanism to the interplanetary dust cloud; by fragmentating
larger bodies they create a source of interplanetary dust. An
expression for the losses is needed for the continuity equation. The
source will be compared with the required input.

For our calculations we use the simple model of Dohnanyi
(1978) with a few additional simplifications. Since Dohnanyi
(1972) as well as LeSergeant d’Hendecourt and Lamy (1981)

347

log Differential Spatial Density at 1AU(m*)

-15

1 1 1 U
8 -7 -6 -5 4 3 2

log Particle Radius (m)

Fig. 2. Particle size distributions of interplanetary dust at 1 AU.
MM: “maximum model” by Giese and Griin (1976). LL: Le
Sergeant d’Hendecourt and Lamy (1980). C: Cook (1978)

showed that in interplanetary space catastrophic collisions, i.e.
collisions which disrupt the colliding particles, are dominant, we
neglect erosive collisions. We also take all particles as spherical
and of same specific density g.

A catastrophic collision is assumed to occur if two particles
touch and if the mass of the projectile (radius s') is not too small
with respect to the target (radius s), i.e.

1
51327—:53, (8)

where I" was found experimentally to vary with v2. For an impact
velocity of v=10kms™!, which is typical in interplanetary space
at 1 AU, simulation experiments predict I'~510* (Griin, 1981).
The size distribution of the fragments was found in laboratory
experiments to be

Js)=Cls)-sy >* ©)

(Dohnanyi, 1978 ; Fujiwara et al., 1977), where C(s) is determined
by the conservation of mass requirement

s 4n 4n
6[ 3 osids, = 3 0s®. (10)
As is the size of the biggest fragment which we took to have 1/50 of
the mass of the target particle. Since we do not intend to study the
size distribution of collisional products this simplification with
respect to Fujiwara et al.’s (1977) formula seems acceptable.

The collision frequency of an interplanetary particle at
heliocentric distance r is

=n(r)-{v6, ., (11)

(r,9)
where the averaging extends over all orbits of projectile particles
which pass through the position of the target particle, i.e. with o’
‘(1-€)=r=d(1+¢€). The relative velocity of the colliding par-
ticles, v(r, a, e, a'¢’), also is a function of the orbital parameters a, e,
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of the target particle, but in the average the expression simplifies
to

1 0
=n(n<u(r)y | n(s+s)*g(s)ds . (12)
T (r,5) s/FL/3
<uv(r)) is assumed to vary like Keplerian orbital velocities,
o(r)> =vlrg)-(r/ro) =%, (13)

where r,=1 AU is used as reference distance from the Sun. The
integral in (12) gives the average cross-section o, of the target
particle for a catastrophic collision to occur with the passing
projectile particles. Because of the velocity dependence of I its
value increases towards the Sun, where the higher orbital veloci-
ties allow smaller projectiles to destroy a given target. We
calculated for the size distribution of Giese and Griin (1976) the
dependence of ¢, on I', which because I' ~v? directly translates
into the dependence on heliocentric distance. In the target size
range 10-60 pm, which is most important for zodiacal light, the
dependence turned out to be a power law with exponent
0.23-0.28. For ease of the following calculations we approximated
this by

0. (N)=0,(ry) (r/ro) %2. (14)

The loss of particles by collisions at a given heliocentric distance is

Lir.s)= — n(r)g(S), (15)
7(r,5)

the gain

Gir, s, =n(r)ss > | 9IS (16)

s/A ‘EC(T, S)

particles per unit volume per second per unit size interval. In these
formulae each particle enters twice, once as target, once as
projectile, but is only counted once. Conservation of mass requires

?%Qﬁ[G(i‘, s)— L(r,s)]ds=0, 17
)

which we used to check our calculations.

2.4. The collision term in the continuity equations

To obtain the collisional probability for a particle having orbital
parameters, a, e we have to average (12) over the range of distances
covered by this particle,

1 a(l+e)

[ w L dr

- = . 18
Tc(a9 e, S) r=a(l—e) Tc(r! S) ( )

W(r)dr gives the probability for the particle to be in the spatial
interval (r,r +dr).

An interplanetary particle most probably will collide with one
of the more numerous particles smaller than its own size. As far as
we are considering the lifetimes of dust it therefore is safe to use in
(12) the spatial distribution
n(r)=n(ro)(r/re) "3 (19)
valid for the particles producing the zodiacal light, even if
meteoroids should have a different spatial distribution. By the
same reasoning, (19) still would be a reasonable approximation, at
least for the smaller ones among the meteoroids. Inserting the

dependence with heliocentric distance for n,v, 0, we obtain from
(18)

a(1+e)
Tc(a’—e!s) - n(rO) U(rO)G(rO) r= a(j; —e) W(r)(r/,.o) © dr ’ (20)
where
n(ro) U(TO) a(ro) =

T(r0-S)

is the collision probability (s™!) of a particle at ry=1 AU. The

integral in (20) is the time average of 1/r? over one particle orbit,

which may be evaluated using Kepler’s second law to give
1 _ 1 (1 AU)?

t(aes) t(1AU,s) a*(1—e?)!?’

@y

This has to be compared with the lifetime against Poynting-
Robertson effect which was given as

2

e (22)

Tpr(T, 8) =
by Wyatt and Whipple (1950) for a particle in circular orbit. We
will see below that not the collision lifetime itself but the ratio of
collision lifetime to Poynting-Robertson lifetime is important for
the relative spatial distribution of interplanetary dust. Because of
(14), both lifetimes have the same dependence on heliocentric
distance, and it is sufficient to calculate tpg/7, at 1 AU.

3. Solution of the continuity equation

3.1. Equilibrium distribution and spatial density

Equation (7) with expression (21) is a partial linear differential
equation of first order which can be treated by standard ma-
thematical methods, once the source function f(a, e) is specified.

For solving Eq. (7), it is necessary to find two independent
integrals of the associated system of characteristics

a(1—e??da  2a*(1—e?)'?de

k]

o2+ 3€?) Sae
2a%(1—e?)M?de
Soce
_ df,
a(6e? —1) re g'(s)

N
2a*(1—e?)? 7 1 (ry,5)a(1—e?)V/? f1~N:'f1(a,e) g(s)

(23)

The first integral turns out to be the relation obtained by Wyatt
and Whipple (1950)

e4/ 5

————— =const,
a*(1—e?)

(24)
which determines the orbital evolution of particles released at
some starting point (ay, e,).

To obtain the second integral we first solve the homogeneous

part of the second Eq. in (23), which results in
fi(a,e)=const(1 —e?)~ Y2 exp(—%+2r2/50t,) . (25)

Then a particular solution f)(a, e, f}) is constructed by the method
of the variation of the constant. It turns out that for adequate
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boundary conditions [e.g. fi(a,e)—>0 for a—o0, f(a,e)=0 if
fia,e)=0] the possible additional terms disappear and we just
are left with our particular solution.

2N

—82)1/231/5

Nrfi(a,e)g(s)= Sl

€max

| fl@dgae (12

2
7% lg de.

S5at (g, ) (26)

-exp| —
Here the integral is along that curve in a,e-space, which is
determined by the Poynting-Robertson drift (24). Equation (26)
can be interpreted as follows. The steady-state value of the
distribution function f] at a point (g, e) is computed by adding up
all contributions from the input distribution which eventually
may pass through position (a,e). The  factor

, short P(a,é—a,e), is the probability of a

1
ep| Sat (ro, s) og

particle to survive the drift from point (a, &) to point (a, e) without
suffering a collision. In a sense, Eq.(26) needs iteration because to
calculate t, or that part of f* which is produced by collisions, we
already need knowledge of the steady-state distribution. However,
as long as we do not try a fully self-consistent solution, but
consider t, and f* as parameters for which reasonable choices
have to be made, this problem does not occur. Using (22), the
probability of survival can be written as
8 Tpr(os s)l e

=exp|— - ———log—|.

5 1(ro,5) e @7)

P(a,é—a,e)
As expected the probability of survival essentially depends on the
ratio of the two timescales, 7pg/7,. For illustration Fig.3 shows
survival probabilities of a particle starting at a=4 AU with e=0.5
for different values of the ratio tyy/7. Finally, replacing the
integration variable € in (26) by a via (6) one arrives at

Ni Gmax ; . (1_52)9/4
Nefila o) g0)= g 1 i@ oga = m
2( ~2)2
-exp ——l W da, (28)

which has been used for numerical integration applying (24) for
the calculation of & as a function of a.

Once the steady-state distribution is known, the spatial density
is given by Haug (1958) as
n(r.f)g()=———[[]

2n rcosﬂ we
f(a’ e, l)'g(S)dadedi

TR\ r a 172
r? (—) [2— ———(1—¢€?| [sin?i—tan?Bcos?i]'/?
r a r
(29)
where r and f denote the radial distance from the Sun and the
heliocentric ecliptic latitude of the volume element under ques-
tion. With the help of (4) we can write n(r, f)=n,(r). n,(f), with

_Np 1 oie fi(a,e)deda
S T
¢ a
/2 £, di G0
z(ﬁ)_ j E

g [sin?i—sin?g]'/2"

5

Survival grobobility

40 30 20 10 00

Fig. 3. Survival probabilities of a particle, starting at a=4 AU
with an eccentricity of e=0.5, for different values of the ratio
Tpr/T.. The respective values of this ratio are indicated on each
curve. Example: If 7pp/7,=0.1 the particles has a 50% chance to
reach 0.1 AU, while for 7p,/7,= 10 the chance to reach 3 AU only
is 3%

In Sect. 4 we will compute n,(r) for different input functions f, Ha,e)
and compare with the observed spatial distribution of interpla-
netary dust.

3.2. An analytical result

Under certain conditions the relations between the spatial density
n(r), the steady-state distribution f/(a, e) can be found analytically.
Let us assume

fila,e)~a*-hie),

with x < —1 to have a finite total input. Using (24) we can replace
d by a in (26). Then it is easy to see that

fila,e)~a*" 2 he).

(31)

(32)

The reverse is also true, as follows directly from the differential
equation (7) since 7,~a? in our collisional model. We would like
to stress that these relations hold both in the case with and
without collisions. Moreover, if collisions are highly dominant,
Tpr/T.> 1, then a<1/7, and we obtain the above relationship in
greater generality,

fila,e)~1a,e) flae).

Since a steady-state distribution of the form (32) leads to a spatial
distribution

n(r)~r

(33)

(34)

(Bandermann, 1967), we have the simple result that an input
distribution proportional to a power law in semimajor axis (31)
leads to a spatial distribution which is given by the same power
law as function of r. This analytical result strictly is valid only if
the input region is unlimited, but it may serve as a guideline for
estimating the results for finite input distributions.

4. Numerical results

4.1. Calculation

From Egs. (28) and (30), the spatial density at distance r can be
obtained for a given input distribution by triple integration over
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Fig. 4. Integration limits for calculating the spatial density at

r=2AU with an input limited to particles with semimajor axes

as<5AU

a,e, and a. Figure4 helps to visualize the integration limits
involved. The area in the a-e-plane, for which values of the steady-
state-distribution f(a,e) have to be calculated is determined
mainly by the requirement that the aphelion of the particles be
larger and the perihelion smaller than the chosen distance r.
Additional constraints are given by the evaporation of the
particles, assumed to occur instantaneously for perihelia less than
0.02 AU, and by the upper limit of semimajor axis adopted for the
respective input distribution. For each of the remaining points the
steady-state value of f,(a,e) is obtained, according to Eq.(28), by
integration back along the path which leads the inward drifting
particles to the specific point. Two typical paths are included in
Fig. 4. The integration was done according to the trapezoidal rule.
The integrand in (30) is not bound at the limits of the integration
over a, but this part can be evaluated analytically. After checking
the influence of step size we did the numerical integrations mostly
with 15 steps in a, 40 steps in e and steps of 0.05 AU along the drift
curves which typically leads to an accuracy of better than 1%. The
integration steps were refined where necessary for particular input
functions.

4.2. Models neglecting collisional losses
a) Tests and choice of eccentricity distribution

The tests included checks of the program by repetition of
calculations with known analytical results and calculations con-
cerning the influence of particle orbit eccentricity.

bkl

Ty

T

SOURCE

=
o

Spatial density (arbitrary units)

01 2 * -
T L — -

01 05 10

Fig. 5. Spatial distribution resulting from an external source of
particles in @ circular orbits, source in the region 4-5 AU ; O same
source region, but eccentricity distribution hi(e)~e-exp(—2e?);
A highly eccentric orbits, €=0.9, source in the region 9-20 AU

a b
10
1
hle) < d
0.5
00 05 10
e

Fig. 6. Various distributions of eccentricity. a “circular” orbits,
€¢=0.005; b and ¢ Rayleigh distributions with maxima at e=0.5
and e=0.9,e=0.53 and 0.62; d highly eccentric orbits, ¢=0.9; not
shown: equally distributed eccentricities, €=0.5. Note that the
distributions are normalized to a maximum value of 1.0

The example in Fig. 5 shows that an external source of
particles in circular orbits indeed leads to a spatial distribution
n(r)~1/r. Contrary to naive expectation the density in the source
region is particularly low.

Particles in eccentric orbits initially have a higher drift rate
than particles in circular orbits of the same semimajor axis. As the
eccentricity decreases, the difference in drift velocity disappears,
leading to a steeper spatial distribution n(r) than obtained for
circular orbits. However, it was not possible to reproduce the
observed spatial distribution by a shell source of particles with
eccentric orbits at larger heliocentric distance. The resulting
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Fig. 7. Influence of eccentricity distribution of the source particles
on the resulting spatial distribution. Curves have been normalized
at 0.1 AU. Average eccentricities are 0.005 (O), 0.5 (0), 0.53 (@),
0.62 (a), 0.9 (V)

spatial distribution n(r) is curved, e.g. the slope is too small in the
inner and too large in the outer region (Fig. 5).

The effect of eccentricity on extended sources is given in Fig. 7
for the case where the input is limited to particles with semimajor
axis < 5.0 AU and the input distribution is proportional to a~ %>,
Distributions with average eccentricities between 0.005 and 0.9
were considered (Fig.6). The influence of eccentricity is not
particularly strong as long as 2<0.6. The average eccentricity of
the 98 known short period comets with P<30a is 0.57 (Rahe,
1981), for radio meteors (Southworth and Sekanina, 1973) it was
found to be 0.5. We therefore consider an average eccentricity of
0.5-0.6 as a reasonable estimate for the particles put into the
zodiacal cloud and limit ourselves in the following sections to only
use the Rayleigh distribution with maximum at e=0.5, hi(e)~e
-exp (—2e?).

The influence of eccentricity was also tested for other spatial
input distributions. It gets more pronounced for steeper spatial
input distributions and weaker for more extended source regions.
For most of the following calculations the latter effect is
dominating.

b) Influence of the source distribution of semimajor axes

As a starting case we considered a source distribution where the
semimajor axes are evenly distributed between 0.05 AU and 4 AU.
The slope of the resulting spatial distribution was close to the
observed power law between 0.4 AU and 1 AU, but too flat closer
to the Sun and too steep outside 1 AU. In order to obtain a spatial
distribution n(r)~r~!-3 in the inner solar system, the input in this
region has to be increased. Similarly, the strong decrease of spatial
density towards 4 AU only can be avoided by extending the
source region beyond that limit.

For circular orbits, in steady-state, the Poynting-Robertson-
effect leads to spatial densities at different distances r, and r,, the
ratio of which is simply given by n(r,)/n(r,) =(r,/r,)x (number of
particles injected outside r,/number of particles injected outside
r,). For eccentric orbits we expect the same qualitative behaviour.
Therefore, the more extended the source region, the steeper a
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Fig. 8. Spatial distribution resulting for a source concentrated
towards the Sun with a distribution a™*-e-exp(—2e?)

distribution of semimajor axes is required. For a distribution f*(a)
~a®, an upper limit of a=4 AU gives an, although very rough,
approximation to the desired spatial distribution; for f(a)
~a~ %% an upper limit of 5-10 AU (compare Fig.7) is preferable,
for f*(a)~a~* limits of 10-20 AU are acceptable, while a limit of
only 5AU in this case leads to too steep a spatial distribution
(Fig. 8). As mentioned in the preceding section, fi(a)~a~ ! if the
source region extends to infinity.

From the purely parametric models discussed so far the ones
with f(@)~a™'® or a™*! and a source region extending out to
20 AU give the best representation of the data. In case of the latter
model a mass input of 170kgs™' outside 1 AU is needed to
reproduce the size distribution of Giese and Griin (1976), while the
total input outside 0.1 AU is 390kgs™*.

We do not want to put much weight on the selection of a
“best” model because the choice may not be unique. However, two
general features appeared in all models which reasonably approxi-
mated the observations: a large fraction, about half of the input
occurred inside the earth’s orbit (a=0.1—1 AU), and still about
one fourth of the particles delivered had semimajor axes larger
than 4 AU (Table 1). Thus the observations require both a strong
source of particles near the Sun, to ascertain a steeper increase of
spatial density than 1/r, and a source extended well beyond the
asteroid belt, to keep the decrease of spatial density as moderate
as observed.

c) A tentative physical model

We now examine whether the input of debris from mutual
collisions between interplanetary particles could lead to the
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Table 1. Distribution of mass input for various models f; (a, e)=a"* hi(e)

Model 0.1AU=<a<10AU

a=z4 AU Remark on resulting

spatial distribution

a®, a=< 4AU 0.3 0 Curved
a™ %% a<10AU 0.3 1 0.5 Flat
a" %% a< SAU 0.5 1 02 Curved
a % a< SAU 14 1 0.1 Steep
a 1% a<10AU 1.0 1 0.4 Acceptable
a1 a<20AU 1.0 1 0.5 Acceptable
a '3 a4 1.0 1 0.7 Analytic solution
Interpretation 1 1 0.5
| L el gl A n i 1014
i Tlyears)
] Source: i 108 Tlsec)
b Collisions of - ]
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with interplanetary 10
10 dust -
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Fig. 10. Collisional lifetimes 7, for the size distribution given by
01 Input Cook (1980) with ¢=0.18 g cm ™3 and the “maximum model” of
"] fromnir) ™ Giese and Griin (1976) with ¢=3gcm™ 3. For comparison the
Poynting-Robertson lifetimes for the appropriate densities are
included. Equality between gain and loss occurs at the sizes
indicated in the figure
I T L T LA I T T T LI . . .
0.1 05 1 5 increase towards the Sun. Therefore we did the calculations for
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Fig. 9. Spatial distribution for particles created by collisions
between radio meteors and a dust distribution n(r)~r~1-3 @
Using the spatial distribution of radio meteors averaged over
heliocentric ecliptic latitudes and the standard eccentricity distri-
bution. O Using Southworth and Sekanina’s (1973) formulae for 4,
e-distribution of radio meteors. The shaded curves show the radial
distribution of the corresponding dust input

observed relative spatial distribution. We will see in Sect. 4.4 that
these collisions mainly are producing dust and destroying me-
teoroids. We therefore assume that we will get a reasonable
estimate of the relative spatial input distribution, if we assume the
targets to be distributed like meteoroids and the projectiles with
the power law (19) found for interplanetary dust. The distribution
of meteoroids was taken from Southworth and Sekanina (1973).
We were not able to reproduce from their distribution f,(a, e) the
spatial density given by these authors but obtained a stronger

both resulting spatial input distributions. One results in a steeper,
the other in a flatter spatial density distribution of interplanetary
dust than observed. In any case there remain uncertainties in the
distribution of radio meteoroids because it is based on extrapo-
lation to unobservable orbits. Within these uncertainties Fig.9
may be considered an acceptable result. We conclude from this
that radio meteoroids are a possible source of interplanetary dust,
provided it may be shown that the dust input resulting from the
disruption of meteors is sufficient to maintain the interplanetary
dust cloud.

4.3. The effect collisional losses on the spatial distribution

Using our collisional model (Sect.2.3) collisional lifetimes were
calculated for values of the parameter I' between 10° and 10°.
Simulation experiments as summarized by Griin (1981) favour a
value of I near 510*. Collisional lifetimes for this value are shown
in Fig. 10, for the size distribution given by Giese and Griin (1976)
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as well as for that of Cook (1978). We note that Cook’s size
distribution, which appears too high to us, gives essentially the
same result as obtained by Dohnanyi (1978), who therefore also
may tend to overestimate the influence of collisions. As argued in
Sect. 2.2, we prefer the size distribution of Giese and Griin. In
Fig. 11 we summarize the values of the ratio 7,,/7, obtained for
their “maximum model”. The results are in good agreement with
the values of Zook and Berg (1975) who calculated the probability
of catastrophic collisions when a particle drifts from 1 to 0.1 AU.
Transformation to values of t,,/7, was accomplished using (27).
There is a discrepancy to Dohnanyi’s (1978) values which are one
to two orders of magnitude higher. This is the result of the much
higher number density he uses.

In order to select a range of values of 1,y /7, appropriate for the
zodiacal cloud we note that the maximum contribution to the
zodiacal light per logarithmic size interval occurs near 30 pum
radius, 60% of the light being contributed by particles with
10um <s <60 um. As probable range for I' we select 10*— 5104,
the former value being preferred in a recent study of Le Sergeant
d’Hendecourt and Lamy (1981). Inspection of Fig. 11 shows that
Tpr/T,=0.1-0.3 are reasonable values for the particles producing
the zodiacal light. The smaller of these values corresponds to a
survival probability of 50% for a particle drifting from 4 AU to
0.1 AU (Fig.2). The effect of collisions on the lifetime of in-
terplanetary dust particles therefore is neither dominating nor
negligible but intermediate.

The effect of collisions on the spatial distribution was studied
by numerical calculations with different values of the parameter
Tpr/T. An input distribution fi(a,e)~a~'! up to distances of
10 AU from the Sun was chosen, which gives a reasonable fit to
the r~1-3 law for low collisional losses (tpg/t,=0.1). The left part
of Fig.12 already shows the tendency of n(r) to approach the
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Fig. 11. The ratio of lifetimes tpp/7, at 1 AU as a function of
particle radius s for different values of the parameter I. For
comparison values given by Zook and Berg (1975), A, I'=10% and
Dohnanyi (1978), ®, I'=4105 are included.

power law of the input distribution for semimajor axes if collisions
become dominant (tpg/7,> 1).

In order to further demonstrate this effect of collisions, the
right part of the figure shows the result of calculations for the —
unrealistic — case in which there are no source particles with
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for a <0.3AU
81
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N Fig. 12. Left: influence of collisions on
N the resulting spatial distribution of
interplanetary dust for an input
function fi(a,e)~a~!'!-e-exp(—2e?),
a=<10 AU. Right: same, but no input
for a<0.3 AU. The broken line shows
the expected limiting result for
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Table 2. Dust production rates P (kg s~ ') required to maintain the
observed density distribution of interplanetary dust. The values
refer to an input distribution ~a~!-! inside 10 AU (Fig. 12), except
the last model which was chosen ~a~!-2” to fit the observed spatial
distribution

- P(O1AU<a<1AU)  P(a=1AU) P (total)
0 260 210 470
0.1 310 250 560
03 440 350 790
1 980 780 1.8 10
3 28103 2210 5010°
10 9210* 73103 1.7 10*
1 1400 750 2210°

a<0.3 AU. Whereas without collisions the missing input is hardly
detectable, the input distribution is clearly approximated for
Tpr/T.> 3. The production rates which are required to maintain a
steady-state distribution of interplanetary dust with densities at
1 AU as given by Giese and Griin (1976), were evaluated for the
left part of Fig. 12. Results are shown in Table 2. As expected, the
required production rate strongly increases when collisional losses
become important. In absence of collisions for this model an input
of 470kgs~* outside 0.1 AU is required. This is 20 % more than
for the model of Fig.8, because there the source region is more
extended with the result that at 1 AU average eccentricities and
drift velocities are somewhat smaller. But equality of the times
scales, Tpp/7,=1, already leads to a four times higher required
production rate. Also a comparison with the last model of Table 2,
which also was chosen to fit the observed spatial distribution,
shows that if collisions are important a larger fraction of the dust
production has to occur inside 1 AU.

4.4. Dust production by collisions

Above we mentioned that collisions between radio meteoroids
and dust particles would provide an input leading to an accept-
able relative spatial distribution of interplanetary dust. However,
we still have to show that radio meteoroids, which we considered
a possible source of dust supply, are able to account quantitatively
for the required mass input. The basis of our analytical calculation
was application of the collisional model to the known size
distribution of interplanetary particles at 1 AU. This yields size-
dependent rates of loss and gain according to Egs.(15) and (16)
which are shown in Fig. 13. The resulting dust production rate
(1410732 kg/m3s for Giese and Griin’s (1976) maximum model,

1.11073%kg/m3s of Cook’s (1978) size distribution easily can be
integrated over the planetary system under our assumption of a
distance-independent size distribution for a given spatial distri-
bution. The filling factor resulting from the concentration of dust
to the ecliptic plane is found to be 0.23, based on the dust
distribution

n(r, z)/n(r,0)=exp(—2.1-|z/r]), (35)

which gives a good representation of the Helios zodiacal light
observations (Leinert, 1980).

The results are summarized in Table 3. Figure 13 shows that
collisions mainly lead to the production of dust (s <100 um) at the
expense of the larger meteoroids (m=10""°g).

5. Discussion

5.1. Relative spatial distribution

Our present knowledge of solid interplanetary particles implies
that inevitably mutual collisions provide a sizeable continuous
input to the interplanetary dust cloud over a large part of the
planetary system. Models relying on an isolated source of dust
particles therefore are considered artificial. In addition, they also
poorly represent the observations.

For example, occasionally the Asteroid Belt has been dis-
cussed as direct source of interplanetary dust (Gillett, 1966). The
particle orbits then would be of low eccentricity. From Fig. 5 we
see that in this case the resulting spatial distribution would be too
flat, n(r)~ 1/r. Also the figure shows that a depletion rather than
an enhancement of dust in the Asteroid Belt has to be expected
under the action of the Poynting-Robertson-effect. A steeper
spatial distribution could be obtained with an isolated source if
the particles initially were in eccentric orbits, but then the
distribution would be too steep at large, too flat at small
heliocentric distances (Fig. 5). This means that short period com-
ets (P<30a), of which 68% are concentrated to semimajor axes
between 3 AU and 4 AU, by themselves also are no adequate
direct source for interplanetary dust.

Trulsen and Wikan (1980) suggested an external isolated
source, but with inelastic collisions decreasing the average in-
clination of the dust particles during their drift towards the Sun.
This procedure is able to explain to observed radial distribution of
interplanetary dust in the ecliptic. It is not clear, however, whether
the gradual change of momentum by collisions also would work if
the particles are destroyed by collisions, as typically is the case in
interplanetary space. The predictions of Trulsen and Wikan are
also not compatible with the zodiacal light observations. First,
their mechanism requires the inclinations to be Rayleigh-

Table 3. Mass input (kg s~ ') into the interplanetary dust cloud (s <100 pm) from destructive collisions

(I'=510%
Size Spatial distribution
distribution
n~r~13  n(radio meteoroids) Projectiles:n~r~1-3
from Southworth and Sekanina targets: n (radio meteoroids)
Giese and Griin 200 4,400 1,200
(“maximum model”)
Cook 13,000 270,000 73,000
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distributed. This results in a decrease of dust density outside the
ecliptic proportional to exp(—yz2/r?), leading to a decrease of
zodiacal light intensity which is slower than observed near the
ecliptic (Leinert et al., 1976) and stronger than observed in the
helioecliptic meridian at ecliptic latitudes 15°-30°. Second, the
predicted strengthening of the brightness concentration to the
ecliptic at small heliocentric distances (y~ 1/r°3) is not observed
(Leinert et al, 1981), and the interpretation of the two-
dimensional zodiacal light distribution rather requires a decreas-
ing relative scale height of the dust distribution for larger
heliocentric distances.

We therefore come back to the existence of an extended source
region as a natural explanation for the radial distribution of
interplanetary dust. According to our models which neglect
collisional losses, e.g. Fig. 8, the mass input required to balance
the loss due to the Poynting-Robertson-effect is about 400 kgs ™!
if we assume an average eccentricity of the particle orbits of

~0.5. About half of this material is needed in the region
0.1-1 AU, and about a quarter of it has to be outside 4 AU. We
now discuss the influence of eccentricity and collisions on this
basic result. Sputtering was found to be unimportant. A moderate
eccentricity of ex0.5 is valid for radio meteors and similar values
of e=0.6-0.7 were found for dust particles in the mass range
107 12g-107° g (Griin, 1981). Nevertheless we want to note that
larger eccentricities would lead to an increase in the required mass
input outside 1 AU. At 0.1 AU virtually no effect remains because
there the average eccentricity gets rather small, while the particles
are drifting so close to the Sun.

The effect of collisions mainly is to increase the required mass
input, e.g. in case of the model shown in Fig. 12 from 470kgs™! to
560kgs™! for tpp/7,=0.1 and to 1800kgs™! for tpe/7,=1.0. The
relation between source distribution and resulting steady-state
spatial distribution also is affected, but not substantially. Indeed,
if collisions completely determine the lifetime of interplanetary
dust particles, an input distribution f%(a) simply translates into a
spatial distribution n(r) ~ f¥(r), the same relation as obtained in the
absence of collisions for a very extended source region and for a
power law fia@)=a~* with x>1. Of course, if destructive col-
lisions are very frequent, little can be said on the source outside
the heliocentric distance of the observer. The farthest observations
reported so far are the particle detections of Humes (1980) out to
18 AU. Assuming a power law distribution a™ ! for the input
source out to 20 AU, under strong collisions 63 % of the mass
input would have to occur inside 1 AU, 10% outside 4 AU. This is
not very different from the results neglecting collisional losses.

In addition, destructive collisions are expected to change the
size spectrum. Assuming the size spectrum of the input material to
be the same everywhere, the larger destruction rate for larger
particles would reduce their number closer to the Sun. The order
of the effect may be judged from Fig. 12, where between 1 AU and
0.1 AU the reduction factor is 20 % for tp,/7,=0.1, a factor of 1.9
for tpe/t,=1.0, when compared to the case without collisions.
Based on Fig. 11 this would affect significantly only particles
larger than 50-100 um in radius, and therefore is difficult to verify
by zodiacal light or particle detection experiments, because these
large particles are rare and their optical properties are at most
weakly size dependent. Strictly speaking, the relative spatial
distribution (30) then no longer is independent of size which has to
be taken into account for a fully self-consistent treatment. As the
effect is not dramatic, and since our emphasis is on the spatial
rather than the size distribution we continue our discussion
without referring to these size effects.
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Fig. 13. Loss (L) and gain (G) of particles at 1 AU in the ecliptic
according to our collisional model. The calculations were perfor-
med with I'=510* for the size distributions of Giese and Griin

(MM, 1976) and Cook (1978)

The discussion so far emphasizes that our explanation for the
relative spatial distribution is acceptable, i.e. we do need an
extended source region with large part of the input inside 1 AU
and still a considerable contribution outside 4 AU. We have
shown in Fig.9 that mutual collisions of interplanetary particles
could give the correct relative spatial distribution. We still have to
show that this source also would be able to account quantitatively
for the required dust input.

5.2. Mass balance

The mass loss of the interplanetary dust cloud outside 0.1 AU was
found to be 400-800 kg s~ ! for models with no or only a moderate
importance of collisions, 7pe/7,=0.1-0.3. However, we have to
keep in mind that our procedure overemphasizes the effect of
collisions. Mukai and Yamamoto (1982) calculated the contri-
bution of solar wind to the Poynting-Robertson-effect. Dust
particles are in prograde orbits (James and Smeethe, 1970), but
due to an error in sign one has to use Mukai and Yamamoto’s
calculations for retrograde orbits. This leads to a decrease of tpy
and consequently Tpe/t, by a factor of 1.5, which we did not
consider so far, and to an increase in the Poynting-Robertson loss
rate by the same amount. The amount.of collisions essentially
would remain constant, giving a total dust loss rate of 600—
1000kgs™*. Below we will come back to the point that colliding
particles are not completely lost, but their material partly re-
appears at smaller sizes. However, our present discussion of
balance remains untouched by this point. The required amount of
dust could easily be provided by collisions, if the size distribution
of Cook (1978) were used. But we stated earlier that his spatial
densities appear too high to us. On the other hand, the dust
production on the basis of Giese and Griin’s size distribution is
only 200kgs™! for a spatial distribution n~r~ 13,
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However, we do not consider this a serious problem. This size
distribution in its absolute value is determined hardly better than
by a factor of two. A revision of spatial density by a factor of two
upward as advocated by Hanner (1980) from a comparison with
zodiacal light brightnesses would increase dust production by a
factor of four. Also it has to be noted that the result is sensitive to
the spatial distribution of dust and meteoroids outside 1 AU.
Should both populations follow the distribution of Southworth
and Sekanina (1973), which, however, we consider unlikely, the
input would rise to over 4000 kg s 1. If only the meteoroids showed
the enhanced density in the asteroid belt typical of Southworth
and Sekanina’s results, then still a dust production of about
1000kgs ™! is expected. While details of the meteoroid distri-
bution are quite uncertain, Cook (1978) makes a strong case that
at least the qualitative features of Southworth and Sekanina’s
result are correct. It is therefore not unreasonable to assume that
the main part of the required dust supply is taken from the
background of meteoroids by collisions, mostly with dust par-
ticles. Only a small fraction appears and needs to be injected
directly by comets.

5.3. Mass loss from interplanetary space

The Poynting-Robertson-effect introduces a true mass loss. The
collisional losses appearing in Table 2, however, partly are coun-
terbalanced by the smaller dust particles created during collisions.
Only this fraction of the mass involved in a collision is truly lost,
which is converted to particles of such a small size that they are
blown out of the planetary system by radiation pressure. We take
the limiting size for stability against radiation pressure to be 1 pm.
On the basis of our calculations, for the size distribution of Giese
and Griin, then 50% of the calculated loss by collisions for dust
particles (s<100um) actually is lost from interplanetary space.
This leads to a true mass loss of about 800kgs™! outside 0.1 AU.

Our value is similar to the findings of Le Sergeant
d’Hendecourt and Lamy (1981) who calculated the size and
number of collisional fragments for a size distribution derived in
an earlier paper (Le Sergeant d’Hendecourt and Lamy, 1980),
which is not very different from Giese and Griin’s. Their outward
flux of B-meteoroids of 40107 22g cm™~2s~ ! with (35) translates
into a loss of 470kgs ™! inside 1 AU, which is of the same size as
our result.

Earlier investigations (Dohnanyi, 1972; Whipple, 1967) esti-
mated the mass loss for the cloud of interplanetary particles to be
much higher, 10-30103kgs™!. Whipple also finds that the losses
due to Poynting-Robertson-effect alone would be of the order of
103kgs™!. He calculates the total mass loss from the total mass of
the cloud of interplanetary particles, estimated to be 2.510%%g,
and an average lifetime of about 10° yr, assuming that 30 % of the
mass involved in a collision is immediately converted to
B-meteoroids. Because his mass of the interplanetary cloud is 20
times higher than in our model with n(r)~r~ '3, and because he
adds an additional factor of three (to obtain the short lifetime
required to understand the existence of streams in photographic
meteors), the reason for his high resulting losses can be qualitati-
vely understood. Dohnanyi also starts from the total mass of
interplanetary particles given by Whipple, for which his collisional
model results in a mass loss of about 2510%kgs™!. While the
details of these calculations are not easy to follow, such a number
may be expected on the basis of the higher spatial density of
particles he uses. From Fig. 11 we conclude that his collisional
lifetimes correspond to Tpe/7,~10 in the range of radii 10 pm-

60 um, which dominates the zodiacal light. Table 2 shows that for
such short lifetimes a high production rate of the order of
2010° kgs™?! is required, because a high loss occurs. Nevertheless
it is worthwhile to clarify the discrepancy to our predicted true
mass loss of 800kgs ™! on the basis of a critical discussion of size
and spatial distribution of interplanetary particles.

Present short period comets would not be able to supply even
this moderate amount. The estimate of 70-250kgs ™! (Delsemme,
1976; Roser, 1976) may have been optimistic, since detailed
studies (Sekanina and Schuster, 1978) resulted in an average
product of albedo and dust production of only 200 g s~ ! for comet
Encke. This presents a difficulty only of one requires the dust
particles to be injected directly by comets. If on the other hand dust
is mainly being produced from a reservoir of long-lived larger
particles by collisions there is no need to balance the mass losses
on a short timescale.

54. Average inclination

It may be noted, that the orbital inclination (f=17°) also places
radio meteors at a position intermediate between short period
comets (=13° for P<30a) and interplanetary dust (i=30°). As
earlier (Leinert et al, 1976) we take this as an additional in-
dication that radio meteors could represent the immediate source
of interplanetary dust.

6. Conclusion

From our attempt to explain the observed spatial distribution of
interplanetary dust the following picture emerges:

a) There is a primary source of solid particles (comets?) which,
apart from delivering some dust directly, mainly

b) fills the reservoir of (radio) meteoroids.

c) From this reservoir a continuous input of =200kgs™! to
the interplanetary dust cloud is created by catastrophic collisions,
mostly with dust particles, which reduces the size of the reservoir
particles.

d) The spatial distribution of the input over the resulting
extended source region, by action of the Poynting-Robertson-
effect, leads to the observed spatial distribution of dust within the
limits of uncertainty in the spatial distribution of meteoroids.

e) Collisions of the dust particles constitute a loss mechanism
in addition to the Poynting-Robertson-effect, but have little
influence on the resulting spatial distribution. For plausible
average values of collision liefetimes, Tpp/7,=0.1-0.3, the required
mass input of 600-1000kgs™! probably is available from the
TEeServoir.
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