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Summary. We consider the physical processes which occur when a
shear Alfvén wave propagates in a structure with a large gradient of
the Alfvén velocity. Although these waves do not possess local
resonances (unlike magneto acoustic modes) they nevertheless
suffer intense phase mixing during which the oscillations of
neighbouring field lines become rapidly out of phase. We study this
effect and show that the resulting large growth of gradients
dramatically enhances the viscous and ohmic dissipation. The cases
of propagating and standing waves are considered, and a detailed
calculation is given of the rate of dissipation achieved in a finite
length structure like a loop, in the presence of a random excitation
at its ends. We prove that, after a long enough time, phase mixing
can actually ensure the dissipation of all the wave mechanical
energy that a loop can pick up from the excitation, in agreement
with a previous claim by Ionson.

MHD instabilities developed in the phase-mixed flow play a
decisive role in hastening the ultimate dissipation by promoting
momentum exchange between neighbouring layers which vibrate
out of phase. The stability to Kelvin-Helmholtz perturbations is
investigated in some detail, and it is shown that propagating waves
are stable. However, standing waves are hihgly unstable in the
vicinity of velocity antinodes, and so they decay in a few periods.
Similarly, the stability to tearing perturbations is examined, and it
is shown that standing waves suffer tearing near velocity nodes,
while propagating waves appear to be stable.

The general conclusion of the study is that phase mixing is the
process most able to ensure the dissipation of shear Alfvén waves in
loops and in open regions of strong reflectivity, and that loops, in
particular, must be in a permanent state of Kelvin-Helmholtz and
tearing turbulence.

Key words : coronal heating — Alfvén waves - MHD waves - MHD
instabilities — solar corona

1. Introduction

The problem of coronal heating has been reconsidered in recent
years from a new point of view after it was realized that this heating
is probably related to the magnetic field structure of the corona
(Vaiana et al., 1973) and that the measured acoustic flux is too
small (Athay and White, 1978; Mein et al., 1981). A number of
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recent reviews have stressed the renewed interest in electric heating
by electric currents or magnetic waves (Kuperus et al., 1981;
Heyvaerts and Schatzman, 1980; Chiuderi, 1981 ; Priest, 1982a, b).
Up to now, the possibility of pure Joule heating of the corona has
not been studied in depth. Simple Joule dissipation in the presence
of anomalous resistivity seems to pose more problems than it solves
(Rosner et al., 1978; Heyvaerts, 1982) and the theory of heating
turbulence remains to be developed further (Galeev et al., 1981).

Concerning the dissipation of electro-mechanical energy, the
difficulty of damping Alfvén waves by simple friction processes was
first recognized by Osterbrok (1961). Subsequent studies have been
concerned with both the accessibility of Alfvén waves to the corona
(Hollweg, 1979, 1981a, b; Leroy, 1980, 1981) and also the effect of
horizontal stratification. The latter effect is often very pronounced
and gives rise to special phenomena, such as surface magneto-
hydrodynamic waves (Wentzel, 1979; Roberts, 1981), or oscil-
lations having a continuum of frequencies for a given wave vector
(Kadomtsev, 1976) which in turn produces so called “dissipation-
less” damping (Sedlacek, 1971; Ionson, 1978; Rae and Roberts,
1972; Hasegawa and Chen, 1974). The phenomena associated with
the gradient of the Alfvén velocity have recently received much
attention, especially those associated with that particular polari-
zation which has a component of the displacement in the direction
of theinhomogeneity. Standard shear Alfvén waves, however, have
a displacement perpendicular to the direction of inhomogeneity
and have received little attention, probably because the simplicity
of their propagation properties was not expected to lead to rapid
damping.

The aim of this paper is to show that, on the contrary, the
frequency (or wavelength) detuning between neighbouring oscil-
lating magnetic surfaces leads, both in the case of propagating or
standing shear Alfvén waves, to several interesting phenomena,
which are all produced by the phase mixing that these oscillations
exhibit as they propagate (or evolve in time). Phase mixing
naturally generates small scale motions in the flow and may in some
cases enhance the dissipation by a rather large factor. This takes
different aspects according to whether we consider vibrations
produced in open or closed magnetic field lines. Also we shall
demonstrate that phase mixing in the oscillatory flow may drive
fast MHD instabilities. These, in turn, may create small scale
structure, thereby increasing the effective dissipation coefficients
and making the above mentioned damping mechanism even more
efficient.

Inhomogeneous structures in the corona have various geome-
tries, but, for the sake of simplicity, we shall consider here a planar
inhomogeneity. We denote by & the direction of this inhomogeneity
and by Z the direction of the unperturbed magnetic field, assumed
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Fig. 1. The geometry of the basic magnetic field B(x)z excited by
footpoint motions (double sense arrows) in the yp-direction, that
generate shear Alfvén waves. The variation of the Alfvén speed
with x has a similar profile

to be in planes perpendicular to x (see Fig. 1). In the Sun, the feet of
these magnetic field lines are anchored in a dense medium, the
photosphere, which is subject to motions induced possibly by an
even more dense region, the convection zone. It is usual to consider
that these foot-point motions are unaffected by processes going on
in the chromosphere and corona. They appear as boundary
conditions for motions of the fluid in the upper layers and represent
the driver of such motions.

The study is presented in several parts. Part II presents the basic
equations and Part III considers the laminar motion and its
dissipation in response to imposed boundary conditions at the base
of open field lines. The damping length associated with friction
induced by phase mixing is estimated analytically.

In Part IV, the same problem is considered merely in the context
of closed loop structures, which develop standing waves, rather
than propagating ones (e. g., Hollweg, 1979, 1981). A damping time
for the dissipation due to phase mixing of an initially coherent
perturbation is calculated. The resulting rate of energy dissipation
in a structure permanently excited by random foot-point motions is
calculated in some detail with mathematical completeness. The
result, anticipated by Ionson (1982), that this structure reacts as a
high quality resonator excited by white noise is completely
supported by this detailed calculation. It shows moreover that one
given structure can in fact absorb frequencies not only in the
immediate vicinity of one “resonance frequency”, but also over a
finite bandwidth, because of the finite range of Alfvén velocities
that the structure can support. It is moreover shown that this
resonant excitation and damping process is just due to the effect of
phase mixing of shear Alfvén waves, particularly effective in this
case because they are standing.

In the next sections, we discuss stability of the phase-mixed
flows to the tearing and, more important, to the Kelvin-Helmholtz
instabilities. An estimate of whether these might enhance the
dissipation is made by means of a local approximation (both in
space and time). Section V describes the structures which have been
analysed for stability. The Kelvin-Helmbholtz instability of prop-
agating phase-mixed Alfvén waves is considered in Sect. VI. In the
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limit of fast growing modes, they are demonstrated to be stable.
More difficult is the question of instability in standing waves which
is considered in Sect. VII. We show how the problem may be
reduced to a rather general type of Rayleigh stability equation
which in this case is of Hill type, with periodic coefficients. Many
previous results on this instability in bounded media are gener-
alized for our problem. These are sometimes trivial, but the proof
that there actually exists unstable modes is not. The growth time is
found to be of the order of the transit time through the fine scale
dimension produced by phase mixing. This is supported by an
analytical result which gives explicitly the growth-rate versus wave
numbers for a simplified model. Section VIII considers the
possibility that due to phase mixing, the magnetic structure
produced by the wave might filament by the tearing mode in a time
less than one period. The quasi-periodicity of the structure
enhances slightly the growth rate as compared to the case of a plane
sheet pinch. Section IX discusses how effective these instabilities
are in producing wave damping; it is concluded that they actually
play an important role.

Our overall conclusion is that there are good reasons to think
that phase-mixed shear Alfvén waves are an excellent candidate for
heating inhomogeneous structures that should be explored in much
more detail in future, including hitherto ignored effects such as
vertical stratification, anomalous - processes and non-linear
developments.

II. Equations relevant to the problem

In the case of shear Alfvén waves in a planar inhomogeneity, the
equations of motion are linear, even though the perturbation itself
may be of finite amplitude. This is a well-known result which leads
to much simplification. The basic magnetic structure on which
shear Alfvén waves will be considered to develop is given by

By=By(x)z; 0=0(x); p=po(x); €))

and the perturbations are assumed independent of y, with a
polarization in the y direction. Hence, in the perturbed state, we
write:

B=By(x)Z+b(x,z,t)y
v=0(x,2z,1)).

@

It is a simple matter to show that when there is no dissipation
the induction equation, Ohm’s law, and the (non-linear) equation
of motion lead to the well known propagation equation, for
v(x,z,1), say:

o &
St () 55 =0, ®
where
_ B
G= s @

Inclusion of resistivity and viscosity, assumed small (as long as
phase mixing is not too large at least) leads instead to the following
set of linearized MHD equations:

dv _ By(x) 0b v v

a0 56T aR) ©
ob o 0*b 0*b

E=Bo(x) E"‘Vm (W_’-?)’ (6)
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Fig. 2a—d. The profile of the plasma displacement £(x)p in a
propagating wave of fixed frequency at several heights zy <z
<z,<z3. The profiles also apply to a standing wave of fixed
wavelength at several times 7, <#; <1, <13. z, (01 #y) is assumed to
be such that all displacements are in phase a. In b and d, the
displacements for x < —a or x> +a are assumed to be in phase,
while they are out of phase in ¢. Phase mixing increases as height
increases (or time elapses) and strong x gradients develop in the
region with an Alfvén velocity gradient

where v, is the kinematic viscosity coefficient and v,, is the magnetic
diffusivity, both assumed uniform. These equations become ex-
tremely simple in the cases when either v, or v, is zero or v, and v,,
are so small that their squares and products can be neglected. Then
b may be eliminated to give:

v v * *\ o

el 622+(v ) (ax2 az2> o @
If dissipation were ignored completely, all the magnetic

surfaces with x=const would oscillate independently of their

neighbours. For open field lines excited at their base at a fixed
frequency w, the wavelength, 4 (x) is given by:

v4(x)
%)

2n
()= —~=2n
|| k ( )
If on the other hand the wavelength (4,) is fixed by boundary
conditions (which may correspond to the situation of closed field
lines or of reflected waves in an open field) each magnetic surface
has its own oscillation frequency (w(x)) given by

o (x)=kjv4(x) (Case 2). )

In both cases, after having propagated a number of wave-
lengths (Case 1) or after having evolved for a number of periods
(Case 2), the oscillations of neighbouring sheets with different
values of x become more and more out of phase. The profile of fluid
displacement & (x) at progressively larger heights (Case 1) or times
(Case 2) therefore looks qualitatively as shown in Fig. 2. This leads

(Case 1). (®

us to expect that, as we proceed to high enough altitudes, z, (Case 1)
or large enough times (Case 2), the dominant effect in dissipative
process will be the x-inhomogeneity. This can be proved exactly,
provided:

so that the wavelength along the field is much larger than the width
(2a) of the inhomogeneity. In that case one can neglect second
derivatives in z in Egs. (5) and (6), which is correct up to first order
in (k) included.

Equation (7) then reduces to our basic equation:

v 0% 0% ov

— 2 _ -
?—UA(X) azz+(v,,,+v,,) axz ar (11)

1. Damping by phase mixing in propagating waves (laminar)

In order to estimate the possible damping produced by phase
mixing, we consider a propagating wave, for which the frequency is

given and
v(x,2,0) =0(x,2) exp i(wt —k (x)z).

(12)

The x-dependence of the amplitude 7 (x, z) is given by boundary
conditions, while its z-dependence is determined by the rate of
damping. Substituting in Eq. (7) the form (12) yields the following
equation for ¥ (x, z):

(@0* —kf ()0} (x) =03 (x) [822 2lk|(x) :|

0
2.4 2 3 2
+i0 (Vo + V) [a—v—zz dk v=2iz ey a—U—z2 (ﬁ> v{|, 13)

0x? dx? dx 0x dx

where k| (x) is defined by (8) so that the left hand side vanishes.
Equation (13) can be further simplified in the weak damping
approximation (if v, and v, vanished, ¥ would be constant
with z)

1i<1

k oz a4

and in the strong phase mixing limit, expressed by

z fzcl>1'

— 15
5 (15)

Remembering that 9 is the (complex) amplitude of the wave, and
hence a rather regular function of x, it then can be seen that Eq. (13)
reduces to:

@=—1ﬂz2(dk"> Om+vp)d
d U

0z 2 w (16)

which can be readily integrated in z to give:

2
B(x,2)=0(x,0) exp —% (e ()2 (“’Z)“") (d L"i: I (x)> .(17)

The length (d Log k /dx) ™! =a(x) is of the order of the size of
the inhomogeneity, and a total Reynolds number may be defined
as:

wa*(x)

RTot(x)=(v T )

(18)
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Then, the solution (17) may be conveniently rewritten:

N N 1/kz\?
b(6,2)=0(x,0) exp —¢ ( RQ@,) (19)
which exhibits a characteristic damping length in the laminar
situation of:

(6 IzTot)1 13 A Il 1
A= =2 (6 Ry,
lam k” (X) o ( T t)

This shows that damping could occur after several wavelengths,
4. To appreciate numerically the effect, note that

— -1_ T s 2 -1
Vm—(lioo') - 106K m"s -,

(20)

@n

whereas the ion viscosity in a plasma (in the absence of magnetic
field) is given by

o (LY " 02108 m2 s
"0 \10° K 101° ¢cm 3 ) )

This transport coefficient is strongly reduced by the magnetic
field by a factor (og;i/l;)?, where

Oai\ [ 1 n _T_ 32 -3
(52)- (o) (o) (i) 25

and gg; and /y; are the thermal ion gyroradius and mean free path,
respectively. Usually this ratio is much smaller than 1, and we
should then take for v, in the corona the value:

T \2 1 n
~ 3.610° m? s~ L.
Yo <1o6 K) Bl (1010 cm-3> 610" m"s

With the figures taken for normalization, viscous dissipation
dominates ohmic dissipation but this would not be the case in
somewhat larger magnetic fields, and we should also keep in mind
the possibility that the molecular coefficients of transport may not
be representative of the state of the corona.

Denoting by P the wave period, the viscous, laminar damping
length by phase mixing is obtained as:

Vy classica 13 P 23
Alam visc =9.7 104 <_;> B(Si/x?uss <_—>

22

(23)

4

Vo real 100 s

1010 cm—3 5/6 106K 1/6 a 2/3
( n ) <T> (100km> km, —(25)

whereas the Joule laminar damping length is given by:

1/3 10 —3\1/2
Vm Spitzer 10" cm
Alam Joule = ( BGaus

m real n

T 1/2 a 2/3 P 2/3
'(106 K) (100 km> (100 s> 6.93 10° km. (26)

The relevant value is the shortest, which is often the viscous one.
These damping lengths are in practice quite long, because a may be
larger than 100 km in the corona and B can be somewhat more than
1 Gauss. We note however that this is due to the rather high value of
the classical Reynolds numbers:

wd® s s 10% K\'2 /100 s
T =1T410° B, (T =

‘ 10° cm 3 a V
n 100 km

Rvisc =

@7
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wa* T \*? (100 s a \
Ry =——=6. N =
toute ==, ~=6.28 10 (106> ( P )<100 km>

It is then to be suspected that anything which lowers this
number may have a drastic effect on wave dissipation. According
to (20) dissipation could then take place on a length of the order of
the parallel wavelength:

P n Tz B
Ap=2.810° k
1=2810 <1OO s) <10‘° cm‘3> (1 Gauss) m

Note however that phase mixing needs several wavelengths to
develop. The waves most likely to dissipate by this mechanism are
the short period waves propagating in fields with a modest value.
For example, considering waves of 10 s periods instead of 100 s in
an environment somewhat denser than 10'° cm™3 (10!, say)
reduces Ajm vise to something of the order of 2000 km. The same
value results for wave periods of 100 s if diffusion were enhanced by
a factor 10° due to turbulence. However, this damping length can
be much larger for longer period in stronger fields. A major
enhancement in the efficiency of the process is found when the
waves are for some reason trapped and phase-mix in time without
propagating away. Such standing waves are encountered in loops
and also wherever reflection from the transition region occurs
(Hollweg, 1981; Leroy, 1981) even if the fields are open. The
following section details the calculation and circumstances under
which such damping occurs.

We finish this examination of damping by phase mixing in open
structures by considering the problem when the motion of the
(single) foot-point of an open field line is given as a stationary
random process. The dissipation rate is given by

1 ov\?

W=_ —].
S ve (%) ( ax>

Ifv(x, 0, ) is given, and has a Fourier transform v, (x, ®), for a

situation in which no wave reflection occurs higher in the corona,
the velocity field at altitude z and time ¢ will be given by

@8

(29)

v(x, 2, 1) ={ dwe*'vy (x, ») exp (—ik) (x)z)
1 v (d Log k| \?
rexp —¢ (k) (x)2)? p (_Tﬂ>

and the main term of this x-gradient comes from the variations of
the phase & (x)z. Then

o it » dk
o ={ dwe' v, (x, w) ( iz —L
dLog k) >2

. 1 v
- exp (—ik|z) exp 5 (kyz)® P ( o

This expression gives the Fourier transform of the response (dv/dx)
in terms of the excitation v(x, 0, ¢) in the form:

0
(é)w =2, ()0 ().

In the case when v(x, 0, ) does not admit a Fourier transfrom
but is a stationary random process, the average power dissipated
can be expressed in terms of its power spectrum (2, (w)) (Cham-
peney, 1973) as:

(30)

€Y

(32

1 + o0 + o
Wy=32%0) [ Pa@)=5 | 102 @200 (3

Note that the power speetrum 2, integrated over w gives the time
average of v3. Using Egs. (31) and (32), Eq. (33) can be converted
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to:
Wy=ae [ 00700) {(ku(x) o 2 (LEoth)

- exp [ (ky ()2 — (d k;g k ”) ]} do. (34)
x

As expected, the response function in curly brackets reaches a

maximum near an altitude of the order of the damping length for

the relevant frequency. We could then speak of an altitude of

dissipation for waves of frequency w by phase mixing.

IV. Damping by phase mixing in standing waves (laminar)

Some structures do not allow propagation up to infinity, such as
coronal loops or open field lines with an important enough
stratification that reflection is produced (Leroy, 1981). Then phase
mixing occurs in time rather than in space, which makes it much
more efficient as far as coronal heating is concerned. This case has
been discussed in a penetrating paper by Ionson (1982), who gave a
description of what is going on in a loop by an averaging procedure
which implies some analogy with the behaviour of a high quality
resonator excited by white noise. It was not clear in this paper,
however, what exactly is the nature of the resonant damping
considered. Also the relation to phase mixing was not stressed, and
amore detailed consideration, avoiding averaging procedures, may
be felt desirable. Moreover, it may have become clear from the
preceding section that we should not regard an inhomogeneous
structure as a single oscillator, but rather as a collection of
oscillators weakly coupled by friction.

In this section we return to this question with some more detail,
and a bit more mathematical sophistication, in such a way that the
variation of the local heating function with the transverse coor-
dinate may be obtained.

We consider again the configuration described in Fig. 1, with
basic state given by Eq. (1), but we now suppose that this structure
is bounded from above and below by boundaries at altitude z=0
and z=1, with a velocity field (still in the y-direction) prescribed at
these planes, namely:

U(X, 09 l)=171 (x: t)j’
v(x,1,0)=v,(x, 1) y.

The equation to be solved is again the basic Eq. (11). Itis a
trivial matter to show that boundary motions can be accounted for
in the form of a driving term by performing a very simple change of
variable, namely:

U(X, Z, t)=l)1 (x’ t)+(Z/l) [Uz (X, t) —U (x’ t)] +é(x7 2, t)

(35)

(36)

Then (11) with boundary conditions (35) reduces to the problem:

¢ PE P (Po z0v, ziw
P Ol =l el ral W R B o i 7Y

=fx.z,1) (37)
é(x’()!t):O; 6(x,l,t)=0.

As ¢ vanishes at both boundaries, we may further reduce the
problem to a one dimensional-collection of oscillators, coupled by
friction. First rescale z by defining:
l v
z= +i
T

2

Il/\
I\

) v

and express { by the trigonometric expansion:

E(x,z,0)=%ao(x, )+ a,(x,1) cos n{+b,(x,1) sin nl. (39
1

The transformation of the right hand side of (37) involves a

piecewise linear function, namely /2, whose Fourier coefficients

a, vanish, while b,=(—1)"*!/n. Using this and (39) in (37), we

find that all the a,’s are zero except for a, , which obeys the equation

azao _ 62 0a0 62171 +62£
ar a2 o \a ")
The b,’s obey independent equations as well:

b, 4704 (x) & 0b, _(= n**t (%v, v,
AT val%) On 17 (90 TP gy
PR Vo2 a - T \e2 o) @

In the limit of small viscosity (and small resistivity as well), the
damping term can play a significant role only when phase mixing
occurs to enhance the gradients. No propagating term able to play
that role appears in (40), which is actually a diffusion equation with
source for (0ay/dt). Neglecting diffusion, its solution can be
conveniently written as:

(40)

Qo (x’ t) = '—(Ul (x, t) +0; (X, t)): (42)

which is seen not to develop very large gradients (assuming that v,
and v, are not so pathological as to have extremely small-scales by
themselves). This term g, will therefore contribute a negligible part
to the total damping and so we ignore it and concentrate on the
Eq. (41). We introduce the resonant frequency for harmonic n

20=n 2 0,09 @)
and put

1 n+1 82 L 62
fe =000 7)z <a—t1’2—?”j> (44)

We also provisionally drop the indices n, and denote b, by y below,
so that now we have to solve, instead of (37), a series of equations
that are similar to those of a one-dimensional array of coupled
randomly excited oscillators:

2y * 0
%2—+QZ( N y—v 2z ==f050). @5)
One could consider tackling (45) by taking a time Fourier
transform and solving the resulting singular differential equation in
x for y,(x), namely:

—vwyg +(Q2 (%) —0?) yo =fo (x)- (46)
This equation has a singularity near the point x,, where Q(x,)=.
This feature reminds us of the similar problem found in the study of
vibrations with the other polarization (Rae and Roberts, 1981,
1982) in inhomogeneous structures. Although a solution by proper
matching is perhaps accessible, it is actually much easier to find the
Green’s function of (45) in the small damping limit by two time
scaling. Let us first solve (45) without forcing terms as we did for
the altitude dependent problem before. In the absence of damping
the relevant solution of (45) would be

y=A(x,t) cos ((x)1)+ B(x,1) sin ((x)?). (47)

We now substitute (47) in (45), and calculate the x-derivative in the
limit of large times, when important phase mixing has occurred, so
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that Q(x)¢> 1, and most x-variations are due to the variations of
this phase. Damping being small, the successive time derivatives of
A and B are treated as being of increasing order in v. This gives
equations for 4 and B:

0Log A4 __ dQy? P
ot 2 dx
(48)
oLogB_ v (dQ th
ot dx

and the solution is found to be

y(x, )= {AO (x) cos 2(x)t+ By(x) sin Q(x) t} exp < t3 (Zg)

(49)

We recognize in the exponential a damping time for waves of
frequency w = Q(x) (which are the only ones excitable near point x)
of:

(6 RTol) P

w (6 RTot) ! /3

Tiam = (50)
These phase mixing damping times, for figures quoted in the
preceding paragraph, would be of the order of 20 P, which is short
enough to be of interest.

Now, Eq. (49) tells us something else also, which is very
important. It shows that 4 (x, #) on field line x is determined only by
those initial conditions A (x’,0) which actually refer to the same
field line, namely 4 (x,0); the coupling to the neighbouring field
lines might have produced a certain delocalization in x of the
response, butin the present weak damping approximation, only the
closely neighbouring field lines interact dissipatively, as manifested
by the presence of the term (d€2/dx)? in the damping factor in (49).

Hence, at this approximation, the response is still local in x.
This very important property gives us now in a straight forward
way Green’s function for the problem (45). Actually, this Green’s
function, for positive times, is one of the possible solutions to the
initial value problem without forcing term. It is easy to know which
one to choose for, in the limit of times much smaller than the
damping time, 7,,,,, we should recover the undamped percussional
response, namely:

sin Q(x)t

Go=""505 (51)
Hence the Green function we need is

sin Q(x)t v, (A2
G(1)= a0 exp _{E T <E> 52)

and the solution of (45) is, in the same approximation,
sm Q) (t—1) v (dQ\? P
Q(x) “sl\ax) ¢ '
(53)

This can be rearranged to give the Fourier transform (y(x, w)) of
the response, y, in terms of that of the excitation f. Inserting:

yx, )= f dr'f(x,

fx, )= +jw dwe™f (x, ) (54)

in (53) we obtain:

+ X o) . H Q 2
Y= | dodf(x,w) | e7 sin (@(x)1) ex —% <dQ> ©dr,
-0 [

Q(x) dx
(55)
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and so:
y(x, 0)=1(x, 0) &> (x, w), (56)

where the admittance, (£,), can be found by comparing (54), (55),
and (56). We actually need the admittance which relates dy/0x to f.
This is obtained by differentiating (55) with respect to x. In the
strong phase mixing approximation (2(x)t> 1) we get in terms of
the original notations:

P (5, 0)=, 50) (5, )

oA, (x,w)= }) e ot (M) 7 cos (2,(x)7)
0 dx

v (d2,\ 5
exp I:_E (E) T ]dr.

The rate of energy dissipation is still given by (29), in which we
insert the expansion (39) and retain only the b,’s coefficients.
Taking into account the orthogonality of the base functions, we
obtain a simple result for the rate averaged in z, namely:

0= e [ (2] <5 e (3.

As explained in Sect. III, when f,, instead of being Fourier-
transformable is a stationary random process, the time averaged
dissipation rate may be obtained in terms of the power spectrum of
b, as shown in Egs. (33) and (32) (Champeney, 1973); then

(57)

(58)

NS

Zl LS Vo (x) I .2, (x, cu)l2 (59)

where @Q(w,x) is the power spectrum of the process (¥ (x,?)
—1,(x, 1)). We may for simplicity assume v; and v, to have identical

statistical properties, and to be independent, in which case:
Q(w, x)=20*P (0, x), (60)

where now 2, is the spectral power of the process v, (x, t). The
admittance (<,), as given by Eq. (57), has obviously resonances
around the frequencies + Q(x). Only the resonance with positive
frequency is of interest. Putting:

2
- <‘;—f> and (3¢)'3c=0,

and retaining only this resonance, </, can be transformed to:

1 [dLogQ, Q,(x)
o (M) Fooro ol P o

(62)
A rescaling of frequencies can be used to evaluate (59) by
putting
E=(0—0,(x))/(3e)'".

Ignoring the variation of all functions except the impedance with
frequency around Q,, we obtain finally

(61)

g%n(-x’a))=

W= 3 a0 {] delf oave e
n=1 0 0

(63)

The numerical constant in curly bracket can be expressed, if
needed, in terms of Airy functions. Actually

=z

rj? daee—iéﬂe—03/3| ’d })de —63/3+i%60 (64)
0

Hz (zéf)‘
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where the function of complex argument Hi(z) is defined in
Abramowicz and Stegun (1965) and can be expressed in terms of
Airy functions and their integrals. Finally, we can quote the result
as:

F =25 (W R P@.
2 ©9)

< od .
u=§ dé’d—f Hi(i¢)

The important result of this calculation, which was stressed by
Tonson (1982) is that the rate of heating, in this limit, appears to be
independent of the dissipation coefficients. This is a property of a
high quality resonator. In the present case, damping proceeds by
friction on the neighbouring layers, and phase mixing can always
proceed to a sufficiently advanced stage that the gradients match
any dissipative efficiency no matter how small it is. What depends
on the dissipation coefficients is the time it takes to reach the
sufficiently phase mixed state [7),,, in Eq. (50)]. But, if the structure
has been excited for ever (by random stationary noise), then it finds
itself, so to speak, always in a phase-mixed state.

We may then conclude that phase mixing of shear Alfvén waves
in a bounded region which supports standing waves produces a
state in which the rate of dissipation balances exactly the rate at
which they are excited, no matter how small the dissipative
coefficients may be. This could be compared with turbulent flows
which develop finer and finer scales until dissipation at the proper
rate becomes possible (although our problem does not exhibit the
nonlinearities of a turbulent situation!). Finally, note that the total
heating rate of the structure (i.e. in a slab of length L, in the y
direction) is

U +o +o©
W=_1L, Y | dxe ()@ (x) 2, (12, (x), %), (66)
1 -

which can tap at a finite size bandwidth in the oscillation spectrum.
However, each particular layer picks up only a small part of power
spectrum available, unlike open flux tubes, but the heat deposition
is more concentrated in closed structures than in open ones.

V. Instantaneous and local configurations of interest for stability

As realized in the preceding paragraph, some of the physics in
phase mixing dissipation depends on the actual value of the
transport coefficients. These may in turn be irrelevant if some type
of instability disrupts the sheared structure, in which case they
should be replaced by effective transport coefficients. It is therefore
very important to look at the stability of the flows produced,
especially for those instabilities which might grow on a time-scale
shorter than one wave period. This represents a difficult problem of
stability in an inhomogeneous, time dependent structure. To keep
it at a reasonable level of simplicity, we assume again that the phase
mixing is complete enough that the length d characteristic of the
phase variations in the cross field x-direction has become much
smaller than the inhomogeneity scale a. We then perform a local
stability analysis considering for simplicity B,(x) and g, (x) as
uniform, and we consider several types of perturbation.

The phase mixing scale (d) achieved depends on the distance
from the photospheric plane, z=0, in open structures excited from
below by, say, a velocity field of given frequency w. This is the
situation achieved if the waves are propagating or if they are
reflected very far away and form a semi-infinite system of standing
waves of given uniform frequency. In the case of propagating

waves with dissipative effects neglected, the motion achieved may
be written in the form:

B=B,(x) {£—A(x) cos [wt—k| (x)z] }},
=0 4,(x) {A (%) cos [wt —k (x)z] j’},

where k| is defined in Eq. (8). In the case of a system of standing
waves with a given frequency w, we can write on the other hand:

B=B,(x) {—4(x) sin wt sin k| (x)zp}
v=04,(x) {4 (x) cos wt cos ky (x)z}}.

(propagating)} 67)

(standing) } (68)

For large enough z, the major inhomogeneities in these oscillations
are those associated with the fast variation of the phase with x. We
can make a local analysis by taking 4 (x), o (x), Bo(x) constant
while the phase variations are expanded around those at a certain
location, (x,z)=/(0, zy), say. We then write:

Z=Zo+c
k“ (X)Z-_‘—k” (O)Z+xk'“ (O)Z

This can be simplified even more in the long-wavelength limit if we
examine scales with k¢ > (. Then we can write approximately:

ky (x)z=k (0)zo + (K} (0) zp) x = Py + g, (70)
where g is the shear wave vector in the x-direction and is defined as:
q=kj(0)z. (71)

By a suitable choice of initial time, the local approximation to (67)
and (68) will then be, in the propagating case

(69)

B=B,(z—A cos (wt —gx) y)

(72)
v=04(4 cos (wt—gqx) P),
and in the standing case
B=B,(2 —A sin wt(sin , cos gx+cos P, sin gx) ) 73)

v=0v,44 cos wt(cos P, cos gx —sin P, sin gx) y.

Note that both are, as expected, perfectly valid solutions of the
MHD equations in a uniform medium. They represent Alfvénic
perturbations with a large (k. /k)).

If we are interested in physical instability processes which occur
in structures with a finite dimension in the direction of z, we can
consider, for example, fundamental oscillations, for which the
exact expression is given by

B=B,(x) {£—A(x) sin [w(x)?] sin [k;z] §}

(standing) (74)
v=v,4(x) A (x) cos [w(x)?] cos [kz]y,
where w(x) and k| (assumed fixed) are related by:
o (x)=k v (x). (75)

A local expansion of the frequency may be made around the
reference point (x, z) = (0, z,) and reference time #,. After neglecting
again the z variations and putting r=1,+7, we find:

B=B,{z—4 sin (kzo) sin (w7 +¢x) y}

(76)
v=044 cos (kyzo) cos (wT+gx) y,
where now
=+, )
dXO
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The stability of the structures described by (72), (73) or (76) may
be considered at various reference positions (zo) and various
reference times (Z,) either including or neglecting the full time-
dependence. In this preliminary report we shall look only for
instabilities that develop rapidly, i. e. in less than one period, and we
shall fix then the reference time. In that limit the problem of MHD
stability of the propagating wave reduces to that of considering the
stationary flow described by

B=By(Z—A4 cos gx ¥)
(73)
v=0v,4 cos gx y,

where ¢ is given in this case by (71).

Similarly the problems for standing waves with a fixed
frequency or fixed wavelength reduce to that of considering
stability of the stationary structure:

B=B0(ZA—A Sin(Po sin qax }?)
(79)
v=0v,A4 COS Py COS gx ¥,

where @o=wt, (or kjz) in the case of Eq. (73) [or Eq. (76)
respectively] and the phases @, (or wt) have been transformed
away. The standing wave problem finally gives rise to two extreme
cases corresponding to the structure near nodes or antinodes of the
magnetic field. Near nodes of the magnetic field:

B =B0 f
(80)
v=v44 cos gx ¥,
whereas near nodes of the velocity:
B=By(Z—A sin gx y)
’ (81)

v=0.

The stationary configurations (78), (80), and (81) will be explored
below for their stability, against tearing modes and Kelvin-
Helmbholtz modes. Both of these instabilities produce interactions
between sheets of different x values and are thus candidates for
increasing the effective viscosity. In this first paper, we have put
more emphasis on the study of the Kelvin-Helmholtz problem,
which is simpler, and, as we shall see, more likely to enhance the
dissipation.

The possibility of microinstabilities arises because the develop-
ment of large gradients in phase-mixed Alfvénic oscillations
implies a build-up of strong electric current densities. However,
micro-instabilities require extremely high current densities. Taking
as a representative value the ion thermal velocity threshold, we get
a critical current

* 60 (LV)" " Am~?
J =nevTi=1 (1_06-> <W> . (82)
The current density in the wave, at altitude z, say, is
AB, AB,
~—— g~kyzg —.
Jo o q=~kzo 2o (33)
Thus, numerically:
Jo Zo 4 a -1 T \*
A <ﬁ> 3107 B (100 km> 10°K
-1
n
<io—cm—> ®4)
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which means that it needs 3000 wavelengths to reach a sufficiently
phase mixed situation in open structures and 3000 periods in a
closed one, i.e. three days if P=100 s.

VI. Kelvin-Helmholtz stability of a propagating wave

Kelvin-Helmholtz instability develops in some shear flows; it is
described at length in many textbooks (Chandrasekhar, 1981, for
example) and we benefited greatly from the excellent presentation
given in the book by Drazin and Reid (1981) and also from the
work done in the thesis of Roberts (1971).

Kelvin-Helmbholtz instability destroys the regularity of a shear
flow pattern. It needs inflexion points in the velocity profile to
develop, but not all flows with an inflexion point are unstable. As
limiting cases, an unmagnetized flow with a discontinuity in the
velocity profile is always unstable, and the growth rate is £ k4o,
where k is the wave-number parallel to the flow direction and 4v is
the velocity jump. The same is true if a uniform magnetic field BZ
perpendicular to the flow is added and is therefore not perturbed by
the unstable motions. By contrast, a flow profile linear in x is not
unstable. A magnetic field (uniform) has a stabilizing effect when
the perturbation distorts it. This is the case if the field has a
component B, along the direction of the flow. In that case, even the
flow with a discontinuity may be stabilized if the Alfvén velocity
B,/(1o0)'"* is larger than Av. In the case of the flow (78) we consider
such a case that v in the Alfvén wave is of the order of 4v, (the
Alfvén velocity based on B,). The possibility that these waves are
then actually stable to Kelvin-Helmholtz perturbations is justified
later in this section. On the other hand the configuration (80),
appropriate to the neighbourhood of a magnetic field node in a
standing wave is most likely to be unstable since v is normal to B.
We demonstrate in Sect. VII that this is actually the case.

The general perturbation equations, in perfect MHD, for this
problem can be written conveniently by introducing the vorticity
field 2=rot v. The equations of motion then become

div B=0

\

div v=0
%—f:rot (wxB)=(B-V)v—(v-V)B 4 (85

Q%+(0- MQR—(Q - V)o=(B-V)J—( - V)B.

We consider incompressible motions, and seek two dimensional
rolls, periodic in y, with any perturbation of the form

P(x,y,z,0)=p(x,1)e™. (86)

Note that these perturbations are taken to be independent of z. We
also introduce the components of velocity and field perturbations

vy = (uex+ve,)v,
. 87
B; = (e, + fBe,) By

After linearizing as usual we arrive at a system of equations for
o, B, u,v.

This finally gives for the case of a propagating wave represented
by Eq. (78) the following set of equations for the perturbations:

% 4 kB0,

. (88a)
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ou .

a—x—+ ikv=0, (88b)
Joo .

—+ikAvy, cos gx (a+u)=0, (88c)

ot

J . ov .
<é7_t+lkAv 4o COS qx) <§ —'zku>

=q*Av,, cos gx (a+u) —ikAv 4 cos gx (g—ika) (88d)

By elimination of § and v, this set can be reduced to two equations
only. These are then Fourier analyzed in time, as:

u(x, )=n(xye”; (89)

and we introduce for convenience the dimensionless variables:

a(x, ) =a(x)e "

x'=gx; [f=y/(kAv,,); K=§. (90)

We then obtain the system for the x-components of the perturbed
velocity (i) and magnetic field (&)

fa=cos x'(&+1)
1)
(f—cos x') (W'—K

Differentiation is with respect to x. Finally (91) reduces to a single
equation for the combination:

) =cos x'(&+#) —cos x' (&' —K*&).

W=+ 92)
namely
(2 cos x' —f) (W' —K*W)=2 sin x'W'". 93)

This can be rewritten in a form similar to a Sturm-Liouville
equation, namely:

A

(2 cos x’ —K2 (2 cos x' —f)w. 94)

Since the problem is not posed in a finite domain, we cannot use
known results for this case. As we show in the next paragraph this
equation, which has periodic even coefficients, admits a theorem
according to which the solutions are very nearly periodic if they are
bounded at all. The boundedness of the solution is of course the
condition which we have to impose. Multiply (94) by Ww*, the
complex conjugate of W, and integrate over a convenient interval /
such that w and cos x’ are very nearly periodic on it. Integrating by
parts, we use the fact that the integrated term is small due to quasi-
periodicity. Then, for any ¢, we can find an interval 7(¢) such that:

+K2|w|2> dx'|<Ze.

[} (2cosx—f)<

I(g)

In particular, the imaginary part of the integral should be as small
as one wishes also. Then:

s 4

I(e)

<e. ©3)

+K2|w|2> dx’

From Eq. (95), we deduce that Im f vanishes, and that the
configuration considered is always stable. This is because of the
stabilizing role of the magnetic field mentioned at the beginning of
this section.

VILI. Kelvin-Helmholtz instability at velocity antinodes of a standing
wave

We now turn to consider the stability of standing waves. As far as
the Kelvin-Helmholtz instability is concerned, the most likely
places for it to occur, are where the velocity is largest, i.e. near
antinodes of the velocity field. These turn out to be nodes of the
magnetic field as well, which is also quite favourable for instability.
We then consider the flow represented by Eq. (80), and perturbit as
described in Egs. (85)—(88). This gives in the present case the
system:
oot

3

’5;+lkﬂ=0
ou .
§+lkv—0 (96)

ou .
6—[+zkAvA0 cos gx a=0

0 v
<E+ikAv 4 COS qx) <$—iku>=q2Av 4o COS gX u.‘
The magnetic field appears to suffer no disturbance while the
elimination of v gives the equation for the perturbation of the x-
component (u) of the velocity. Using variables defined in Egs. (89)
and (90) we obtain:

(f—cos x') (d = 97)

—K? A) cos x'i=0.
This is a particular case of the so-called Rayleigh stability equation.
Actually, had we taken the velocity field in Eq. (80) to have a profile
a(x’) instead of cos x’, we would have obtained the equation for #
as:

(o) (- )+

which is exactly the Rayleigh stability equation. Here f'and # are
complex, x"is real, and the equation should be solved subject to the
condition that # remains finite when x’ tends to infinity (both + co
and —o0). Equation (97) is of Hill type, with periodic and even
coefficients of period 2 7. Solutions of such equations are governed
by the Floquet theorem, which states that there exists a number 4
such that one particular solution is of the form:

F.(x)=e"*P(x), (99)

where P(x) is a periodic function of period 2m. Similarly, by
changing x to —x, the function

F_(x)=e **P(—x)

P =0 98)

(100)

is also a solution. It can be shown that, if A is not an integer, F.. and
F_ are linearly independent. Then if A — called the Floquet
exponent —is real, any solution is bounded, while if Ais complex, no
solution can be bounded. Physically meaningful solutions (i.e.
obeying our boundary conditions) should then be associated with a
real Floquet exponent. This exponent plays, for this periodic basic
state, much the same role as a wavelength in the x direction.
Finding the “dispersion relation” for Eq. (44) means exhibiting the
proper relation between the “wave-numbers” k and A (real!) and
the complex frequency f. This is not a straight-forward task.
Nevertheless stability and, to some extent, the growth rate can be
examined without a detailed knowledge of this relation by using a
series of known theorems which we extend to the present situation.
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First, consider Fjortoft’s theorem, valid for perturbations in
bounded media, which states that a necessary condition for
instability is that the velocity profile a (x) has an inflexion point. Let
u* be the complex conjugate of u. Let us consider (97) in the case of
an unstable mode, with complex f. Then we can divide by (cos x’
—f), which, because Im f=0, never vanishes, multiply by »* and
integrate on a certain finite interval I=[a, b]. We get (dropping ~
from now on):

[wu' —K? [ u*u+ {%}L’mu:o' (101)
I I
After integrating the first term by parts we arrive at:
[ P 2 ¢ COs X' (cos x'—[f*) 2
j;uu +uru'ff—K {Iul +}f fcos ¥ —/F |u>=0.
(102)

The integral term usually vanishes when the boundary conditions
are imposed. This is not so here, but we can make it as small as we
wish by a proper choice of bounds a and 4. Actually we know from

Floquet’s theorem that:
u=0;6"*P(x) + o, **P(—x).

If A is a rational number, (A€Q), u has a period, and we can take a
and b distant by that period so that u*u’ (b) =u*u'(a). If 1¢Q, it is
always possible to find a number in Q very near it, r say. Let us take
a and b such that a,e™P(x) +o,e” P (—x) has a period (b —a).
Then, after putting a=r+#, with #-very small, we see that the
difference in values of u* and ' between a and b can be made as
small as we wish by a proper choice of r, and hence of a and b. Then,
for any ¢ we can find an interval I(¢) such that:

cos x'(cos x' —Re f)
[cos x' —f]?

—os [ WP+ - | WP se
I(e) I(¢)
/ 103)
|uf? cos x (
—e<Im T dx' < +e&.
sImf Ii) lcos x"—f*

The profile cos x’ actually allows the integral in the second
equation of (103) to vanish. Hence this necessary condition for
instability is satisfied.

Let us now derive a theorem which puts bounds on the
wavelengths of unstable modes. We combine the two inequalities of
(103) by substracting (Re f/Im f) times the second from the first to
get

(cos x' —Re f)>—Re f?
—e'< | [WP+Kuf - : uP<+e.
A A
(104)
But we have the inequality:
(cos x'—Re f)* —Re f? <
<1
(cos x'—Re f)*+Im f2 = (105)
and so
(cos x' —Re f)* —Re f?
2 2 < 2 _ 2
K j‘ul =¢ +.‘. (COS x’—Ref)2+Imf2 |u| j|u|
e+ =) (106)
or, for small enough ¢’
(2
PP Aol (107)

f T =
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This result (that for unstable modes K> < 1) is a generalization of a
well known theorem (Drazin and Reid, 1981). It shows that
unstable modes have |K|<1.

Finally we extend a theorem which gives useful bounds on the
growth rate. Following the usual procedure (Drazin and Reid,
1981) we consider the Rayleigh equation (97) and the equation

dz
<W——K2> (cos x'—f)u* +cos x'u™ =0, (108)
where u™ =——u,—. The latter equation can be rewritten as
cos x' —f
(cos x' —f)? —-—Kz(cos X' —fYut=0. (109)

Let us multiply by #*” and integrate (by parts) over a finite interval.
By the same type of argument as above it is always possible to
choose this interval in such a way that boundary values are either
exactly equal or almost equal. To simplify the reasoning consider
the case when they are strictly equal. Then

+

gl

Now separate real and imaginary parts of this relation and consider
first the imaginary part which becomes

jlz|:K2(cos x' —f)ju* P+ (cos x' —f)?

=u*"(cos x' —f)u'"5=0 (110)

(111)

2
+K2|u+[2>=0

This is possible only for |Re f |<1 (Rayleigh’s theorem). The real
part gives

Imf}(cos x—Re f) <d;:

b du* [?

) <(cos x—Ref)z-Imf2> <7x_ +K2|u+l2)= (112)
Also it is true that:

b du+ 2

[ (1 —cos? x') <W +K2|u+]2>20. (113)

In Eq. (113) the part of the integral involving cos®> x can be
obtained from Eq. (112) in terms of similar expressions involving
cos x and (Re f)*—(Im f)?, and finally Eq. (110) gives the
expression of that involving cos x. Equation (113) can then be
reduced to:

(Re f)*+(Im f)* <1

which is the well known Howard semi-circle theorem, rederived
and specialized to our particular geometry.

We know at present that if unstable modes exist they must have
K<1 [Eq. (107)] and their growth rate, as well as their real
frequency, is smaller than 1 in the present units [Eq. (90)]. It is now
easy to find marginally stable modes to Eq. (97). These are obtained
putting f=0, and we can find bounded solutions for K*<1,
namely:

ug=b,e" +b_e ¥, (114)
where
=)/1-K? (115)
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is recognized as being the Floquet exponent for this particular case,
while b, and b_ play the role of P(+x). This does not by itself
prove that the state is unstable. To show this we have to show that
truly unstable modes exist in the vicinity of the marginal one. The
classical demonstration (Drazin and Reid, 1981) cannot be adap-
ted in this case, so we shall derive a special proof of this result,
which takes advantage of the periodicity of the coefficients of the
equation. We recall that modes are labelled by K and by 4, and that
the condition for A to be real defines a dispersion relation between
(f, K, %). We know that the set of numbers /=0, K, 1=]/1—-K?>
satisfies this relation. We shall then take, at constant K, a
neighbouring value of 4 and see what the corresponding value of
is : or, conversely, we can vary fand seek which of those variations
are related to changes in A by a real value. This requires that we
have some means to calculate the Floquet exponent. One such
technique is as follows. Consider a particular solution y (x") of (97)
which can be expanded as:

y(x)=aF . (x)+BF-(x)
=aP(x")e* +BP(—x") e *¥, (116)

where F. (x’) and F_(x) are defined by Egs. (99) and (100). Its
derivative is:

¥ ()= (AP (x") + P (x) e**

—BAP(—=x)+P'(=x"))e™ ™ 117)
and we calculate:
y(0)=(x+p) P(0)
y'(0)=(x—p) (iAP(0)+ P’ (0)) (118)

y(@2m)=ae?™*P(0)+ Be 2" P(0)
Y (2n)=(ae’™ — e~ (iAP(0)+ P’ (0)),

where 2zn-periodicity of P(x) has been used. Now consider that
particular solution which has y (0)=1 and y’ (0)=0; let uscallit y, .
For that solution a=f=1/2, and we have:

y1(2m)=cos 2mi. (119)

Equation (119) may therefore be regarded as an implicit form of the
dispersion relation, because, being the solution of Eq. (97), y; (27)
implicitely depends on K and f.

Let us now consider growing modes, i.e. bounded solutions of
Eq. (97) with fnot real, but small. It is straightforward to convert
Eq. (97) into the more convenient form:

cos x' —f*
W pu+f ————— u=0.
1% f |COS x/_le

(120)
The third term in this equation is to be regarded as a perturbation.
Unfortunately it exhibits a rather singular behaviour when
Im f—0. Let us write:

f=h+if. (121)
Then (120) can be written explicitely:
v 2 cos x' —f; . fa
= — + 12
Wt f{(cos X —f)P+f3 l(cos x'—f1)2+ﬁ} w (122

where the functions in the curly bracket approach £ (1/cos x") and
d(cos x') respectively as f; and f,—0. It is then easier to deal with
these terms by converting (122) into an integral equation. The

general solution of
W+ pPu=s(x") (123)
is

u=b e £b_e” (124)

+ [ exp (ip(x' —x"))dx" | dx" exp (—ip(x" —x")) s(x")
0 (0]
and so (122) can be converted to:
u(x)=b,e" +b_e " —f | exp (ip(x'—x"))dx"
0

cos x" —fi +ifa
(cos X" —f)*+ /32
(125)

. ." dx/// exp ( . l,u (xl/ _xm))u(x///)
0

This relation, which is essentially exact, may be used to calculate 4
from the dispersion relation Eq. (109). Actually, the function y,
which appears in this relation must have u(0)=1and »'(0)=0. Itis
a trivial matter to show that this corresponds to b, =b_=1/2in
(124). Then we obtain the integral relation:

y1(2n)=cos 2np—f Zjn exp (in(2n —x"))dx’
o
x, " . !’ 7 A (COS x” _ﬁ-) + i.fé
‘ g ax" exp (—ip(x'—x") y;1 (x )m-

(126)

When fis small, we can iterate to first order in f using Eq. (125)
(with b, =1/2) to obtain the approximate dispersion relation Eq.
(119) in the form:

2z
cos 2mA=cos 2y — fe* '™ ,f d'e™
)

, (cos x"—f1)+ifs
127)

The factor of fin the second term is, in the limit £; , /5 —0, a perfectly
well defined complex number, Z,, which can be calculated as:

- [ dx" exp (—ip(x’' —x")) cos ux
0

1 X 2 — A .
Zo=3, ? Far SMEEXD) B () sin 2um,

12

where 2 denotes the principal part of the integral. In the present
case, parity considerations show that it vanishes. Therefore,

zo=% sgn (f3) sin 2un (129)

and for small £, the dispersion relation Eq. (119), approximated by
Eq. (127), gives after separating real and imaginary parts:
fi=0

(cos 2mA —cos 2mu)u  pu(u—4)
Vel= 7 sin 27 = ’
u T

(130)

This shows that growing modes exist. They have 4 < u, and the real
part of the frequency vanishes near A=y, presumably as (4 —pu)2.

To complete this study, we should calculate the actual growth
rate of the instability and its maximum value in particular. This
requires some numerical work and is left for a future paper.
Actually, we can guess from the Howard semi-circle theorem that
Im f should be a number &; smaller than one, but probably not
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Fig. 3. A square wave velocity profile

much smaller. Hence, in dimensional form, we can write:

Im y=¢ Akvy,. (131)

In order to support this argument, and to complement this study
further, we here present a calculation of the growth rate of the
instability in the much easier case when the velocity profile, instead
of being a cosine, is taken as a succession of positive and negative
squares of period 2= as shown in Fig. 3. This simple model has the
extreme advantage of lending itself to analytical calculation. The
result, as will now be shown, is that the limit put by Howard semi-
circle theorem is actually reached in that case : roots of the
dispersion relation actually lie on that circle.

The procedure adopted is as follows. We want to solve the
dispersion relation (119) for real A and K and complex f. Therefore
we need to solve the (periodic) Rayleigh equation (198) for y, with
the profile a(x) shown in Fig. 3 with the initial conditions
appropriate to the function y, [i.e. x=f=1/2 in Eq. (116)]:

y1(0)=1
y1(0)=0.

As the velocity profile a(x) is discontinuous, jump conditions must
be derived, which are just the ones used in the study of stability of
vortex sheet (see Drazin and Reid, 1981, for example, for details).
These are:

(132)

(f—a(x)) Z—z+u d_a

continuous
dx

) (133)

f—ax)

"In each part of the square profile, the solution of Eq. (98) is
trivial and can be written:

continuous.

u=A;e® + Be ¥, (134)

where A; and B; are constants which differ on each interval and
communicate through the jump conditions (133). Therefore, we
can solve piecewise (98) on the three successive intervals [0, 7/2],
[7/2,3m/2], [37/2,2n], starting with 4, =B, =1/2 to satisfy the
conditions (132). We find the values (A4,,B,) appropriate to
[7/2,37/2], and (43, B3), which refer to [3x/2, 27]. Once A3 and B;
are known y; (27) can be calculated, and the dispersion relation
(119) can be written down explicitly. A little algebra gives:

A6 +1
AT

which readily shows that no solution is to be found with real fat all.
This biquadratic equation can be solved for f, and gives the result:

cos 2nA=ch?Kn +sh*Kn (135)
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f=tiexp <i—i§)

136
2 sh? Kn—(1 —cos 274) (136)

Y= .
A €08 5z Kn+(1—cos 2nd)

Fora given value of K, Im fis between 1 (the value appropriatetoa
vortex sheet) and th (K7). As s seen from (136), the roots are on the
Howard circle (which in this case is given by |[f|=1). Another
noteworthy feature is that all A’s differing by an integer give modes
with the same growth rate, but not the same spatial structure. This
correponds to the well-known band structure found in solid state
physics, except that here the bands are not separated by gaps in f
values, but join smoothly. There is a difference between this case
and that of the cosine profile, which results from the fact that the
square profile is unstable near n/2 and 37/2, where it locally reduces
to a step function while the cosine profile is locally stable.
Therefore, the square profile is most unstable for large K’s, whereas
the cosine profile is unstable only for K< 1.

VIIL Tearing mode instability at velocity nodes of a standing wave

One possible way to enhance the dissipation would be if neigh-
bouring magnetic surfaces were to reconnect in a time shorter, or of
the order of, the wave period. In situations when phase mixing is
highly developed the time scale w™* (or P) is much larger than the
Alfvén crossing time through the smallest dimension in x. It is
therefore conceivable that tearing could proceed on a time scale
faster than P.

The study of this equation should take full account of the
periodic structure of the magnetic configuration subject to the
instability. This may vary the tearing growth rate by quite
important factors (Cross and Van Hoven, 1971; Bobrova and
Syrovatsky, 1979). Also, the flow field of the basic state should be
considered in its full generality. Among the three particular
geometries that we decided to consider [Egs. (78), (80), and (81)]
the one studied in Sect. VII which was found to be Kelvin-
Helmholtz unstable [Eq. (81)] contains no current and so is not
subject to tearing instability.

The magnetic configuration in a propagating wave has been
schematized by Eq. (78). We have seen in Sect. VI that it is stable to
perfect MHD perturbations. This would imply that no marginally
stable state exists at all, and hence, that unstable tearing mode
cannot be found. This is because the magnetic configuration
exterior to the resonant layer of a tearing mode instability, is
quasistatic since the instability is a slow process, and hence should
correspond to an ideally marginally stable perturbation. This
argument should certainly be examined in more detail, but it does
at least indicate that the appearance of tearing in propagating
waves is unlikely.

The configuration (81) describes schematically the vicinity of
velocity nodes (and field antinodes) in the pattern of a standing
Alfvén wave. A detailed investigation of the instability in such a
state has already been published by Bobrova and Syrovatsky
(1979). Their work actually concerns plane force free fields. But, as
the value of k - B is the main quantity which matters in this problem
itisapplicable here asit stands. The procedure is quite similar to the
one described in the study of the Kelvin-Helmholtz instability of
the square periodic profile (Sect. VII). It turns out that the equation
for the so-called exterior solution, i.e. between resonant surfaces,
turns out to be solvable in simple terms. On the other hand, the
logarithmic derivative jump can just be taken from the well-known
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paper by Fiirth et al. (1963), because it results from a local analysis.
These jump conditions allow us to communicate between suc-
cessive perfect MHD layers through the resonant surfaces. As this
problem is also periodic, the dispersion relation can again be
written in the form (119); simply the Fiirth et al. (1963) jump
relations have to be used when crossing a resonant layer.

This gives, with our notation, the following value for the
growth rate:

(tg Im y)
___I:(cos 2mA—cos 27 |/1—K?) |/ K(1 —K?) F(1/4)]4/5S2/5,

7 sin (27 |/1—K2) T (3/4)

(137)
where
TR= 100G (138)
is the resistive time scale and
=1 -1
_trlg )_#00"] (139)

_TA (q_l) B Avy,

is the usual parameter calculated here for a characteristic length
g~ ! and the maximum shear field amplitude. Bobrova and
Syrovatsky also found that the maximum growth rate occurs for
K=~S5Y" and is of the order of S*". For smaller K’s the “‘constant
"’ approximation is no longer valid. For our purpose we note that
the configuration (81) is tearing unstable, with a growth time of the
order of:

(Im y) '~y

(140)

IX. Conditions for instabilities to develop fast enough,
and their effect

We have now approximately delineated the conditions under which
a shear Alfvén motion turns unstable. Now, it is necessary that this
occur on a time scale shorter than one period. In the case of the
Kelvin-Helmholtz instability, we can see from Eq. (131) that this
would happen if:

élqAUA0>CO=k”UA, (141)

where g changes in time or space according to Egs. (71) or (77). In
the case of a propagating wave of fixed frequency, we can then
restate the inequality (141) as a condition stating that the distance
from the excitation surface should be larger than a critical distance,
Agwu, which from (141) and (71) is found to be:
1 (d Log v A)‘l a

AKH =

EA\ dx J)uo Gd (14
Note that we assume here that the level z=0is actually an antinode
of Alfvénic perturbations so that the phase evolves in such a way
that (86) applies. Axy can be rather short for 4 large enough.
Remember that A is not restricted to small values only. Note,
however, that Agy cannot be less than one wavelength, if we assume
that photospheric motions do not create by themselves the very fine
scales involved, but rather that these result from phase mixing. This
shows that the laminar picture loses meaning rather quickly, and
momentum transfer could become much more efficient, so reduc-
ing drastically the damping length A,,., estimated in Eq. (20), or the
damping time 7,,,, given in Eq. (50).

Itis difficult to give reliable estimates of Axy, which depends on
essentially two unknown parameters: the inhomogeneity thickness
a, and the dimensionless amplitude 4. For the sake of estimating a
value let us consider the chromosphere, where velocities Av 4, may
be of the order of 10 km s™!, judging from spectroscopic
microturbulence, and a field of say, 50 Gauss. Then we find v,
=350km s~ ! and 4! =35, so that for a=~100 km we would have
Agg~3500 km.

In the case of standing waves existing in structures with a
definite length, the condition (141) translate into a condition on the
phase mixing time, which must become larger than a certain
minimum value tgy

a _AKH
Gdvy, vy

TKH=

With the figures just quoted, txy may be of the order of 10 5. We
then reach the interesting conclusion that coronal loops might just
find themselves in a state of permanent “Kelvin-Helmholtz
turbulence”, at least where the gradient of Alfvén velocity is large
enough.

The effect of a fully-developed Kelvin-Helmholtz instability
will be difficult to analyse in detail. We expected rolls to formin the
vicinity of inflexion points in the flow (Fig. 4a). These rolls will have
a size (Ig) of the order of ¢~ %, and the velocity will be of the order of
Av,,. Many rolls will interact because of the closeness of neigh-
bouring unstable layers, and we may expect turbulent eddies of this
size to be set up. We may judge their effect qualitatively by putting
an effective viscosity in Eqgs. (18) and (25) with a value:

VefleEUE~Aqu_1. (144)

When condition (141) is met, the corresponding effective Reynolds
number [Eq. (18)] becomes:
1

Reff~'flqzaz~£1A2

(kfa?) (145)
which involves the ratio of the inhomogeneity thickness to the
wavelength squared. The effective Reynolds number may then not
be so large, and from Eq. (25) we expect the wave to be damped in a
wavelength or so, or if we consider a structure of given size, in a few
periods.

Let us now consider the effect of tearing instability in causing
reconnection between neighbouring sheets (Fig. 4b). According to
the estimate (140) of the growth-rate, the condition for sufficiently
rapid development is:

¥y <P, (146)

where 14, Tz are defined in (137), (139), and P is the period of the
wave. The scale length ¢! should be again estimated from Egs.
(71) or (77). In the case of a standing wave of given frequency, the
condition translates again into a lower bound, Ay say, on the
altitude z which we estimate using (71) and (146) as:

2 1 ooa® 10 _
ATM=<2_2;> A4/10( P_> S(a) 23,

where S(a) is the expression (139) with ¢~
inhomogeneity scale a. Numerically we obtain:

Ary=2.5 104A—2/5 nspitzer 310 P o (B )3/5
™ — - Heeal 100 s Gauss

n -3/10 T \920 a o
10'° ¢m 3 10° K 100 km ’

(147)

1

replaced by the

(148)
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Fig. 4a. A schematic view for the possible geometry of fluid
displacement (circular arrows), and interface perturbation (dotted
lines) in a Kelvin-Helmholtz instability taking place in a phase-
mixed Alfvén wave. The velocity profile in the unperturbed wave is
shown
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Fig. 4b. A schematic view for the possible geometry of the
magnetic field in a tearing instability taking place on the phase-
mixed Alfvén wave. The field in the unperturbed wave is shown by
heavy arrows on plane z=0

It is interesting to note that this length is not extremely large and
reduces to even smaller values in the chromosphere (T=10*K, n
=102cm 3, Ary~800km). Even in the corona, it may decrease to
small values by the effect of some state of anomalous resistivity.
The corresponding time scale, by which a shear Alfvén wave in a
finite structure suffers this instability is correspondingly very short:
(149)

V4

M=

X. Conclusions

We here call attention to the importance of phase mixing effects in
the dissipation of shear Alfvén waves which are propagating in
structures with a transverse gradient of the Alfvén velocity. Unlike
magneto-acoustic modes, shear Alfvén waves do not obey a
singular propagation equation. They simply propagate inde-
pendently on each magnetic surface. But precisely because of this
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independence, the vibrations become more and more out of phase
as the propagation proceeds, and friction grows. We have shown
that this process is particularly efficient in structures where
multiple reflections set up standing waves, for example (but not
only) in loops. The idea that a loop picks up the energy in a narrow
frequency band, out of the rather broad spectrum of excitation
provided by the foot point motions is not new. Nevertheless, we
have presented in this paper the first full MHD study of this pro-
cess, including the aspects brought about by the dissipation and
the subtle effect that phase mixing has in promoting the efficient
dissipation which we find at the end. As a side product of this study,
it has become clear that what is actually important is the standing
character of the waves rather than the closed or open configuration
in which they propagate. Standing waves can also be found in open
structures, and so may represent an efficient heating mechanism for
coronal holes. Nevertheless, even propagating waves may suffer
damping by phase mixing during their propagation. Though less
effective, the damping of reasonably high frequency waves in a
magnetic environment with low average Alfvén velocity could be
completed in a few thousand kilometers especially if the dissipation
coefficients are weakly turbulent rather than classical. Whether this
might meet the requirements put by coronal hole heating remains
to be debated.

A consistent discussion of dissipation processes cannot by-pass
the problem of stability. In a highly phase mixed shear flow, the
most likely instabilities are those associated with field and velocity
gradients, especially the Kelvin-Helmholtz and the tearing modes.
Current driven micro-instabilities seem very unlikely, though it
may prove useful to consider more exhaustively all the possibilities.
The stability study presented here has been somewhat simplified by
treating the problem in a local approximation both in space and
time. We nevertheless believe that this is a useful first step. The
propagating wave appears to be strictly stable to both kinds of
perturbation. For the Kelvin-Helmholtz instability this was ex-
pected, and the tearing stability is just a consequence of the non-
existence of marginally stable ideal perturbations. By contrast,
standing waves are unstable to both modes but at different
locations in the wave pattern. Though the posed stability problem
may be oversimplified in some respects, we have tried to tackle it
with a reasonable degree of precision, by proving theorems of
enough generality that the conclusion can be regarded as only
weakly dependent on the model. For example, we have discussed
the stability of two different velocity profiles (cosine and square).
Some of the results presented in their relevant sections appear to be
new to the field of fluid dynamics, where flow instability in periodic
media has been only occasionally considered, and instabilities in
unbounded media have been considered for vanishing perturba-
tions at infinity (Drazin and Reid, 1981). The treatment has
required special methods similar to those developed for electron
wave mechanics in solids. This is also true of our discussion of
tearing instability, a case where an analytical result is available.

On the whole, the stability study shows that phase mixed
standing shear Alfvén waves, which should exist in coronal loop
structures, are highly subject to instability. We also draw the rather
interesting conclusion that any normal loop pervaded by Alfvénic
noise has its inhomogeneous parts in a state of permanent tearing
and Kelvin-Helmholtz turbulence. No doubt this should be an
essential element of the tradsport properties of these loops as well
as representing a source of their heating.
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