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How magnetic fields can arise spontaneously in stars and nebular clouds, without the initial presence of primordial or 
seed fields, is a topic which has been somewhat bypassed in the solar and astrophysical literature. It is known that at least 
one efficient spontaneous process exists, the one proposed by L. Biermann in 1950. In this paper I attempt to furnish par- 
ticularly to nonspecialists a clear, physical explanation of this interesting mechanism. Certain other mechanisms will also 
be mentioned. 
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I. Background 

The genesis of magnetic fields in the sun and in some 
kinds of stars has occupied many astrophysical theorists. 
The point of view is often taken that relatively weak 
"seed" fields existed in the primordial nebulae. In pro- 
tostars, these fields could have been amplified and modi- 
fied by hydromagnetic action, particularly by turbu- 
lence, wherein mechanical energy can be converted to 
magnetic energy, essentially through the force J χ Β 
which acts on the body of the plasma. If the plasma ve- 
locity is locally antiparallel to J χ Β, then the plasma is 
decelerated, and the absorbed mechanical energy can 
augment the magnetic energy, thus the field strength. 
However if at the beginning J and Β were zero, dynamos 
of this kind would not work. 

It is pleasing to know that at least one totally spon- 
taneous dynamo exists, not requiring seed fields. This is 
the Biermann mechanism, which depends on differential 
rotation in stars (Biermann 1950). A brief description in 
English of Biermann's work is given in Biermann and 
Schlüter (1951). In a discursive paper by Layzer, Rosner, 
and Doyle (1979) on solar dynamo theories, it is stated 
that: "Biermann's mechanism is the only known process 
that spontaneously generates large-scale magnetic fields 
under conditions of astronomical interest." A careful pic- 
ture of this intriguing and rather subtle mechanism is 
aimed at here. The discussion is directed toward observa- 
tional stellar and solar astronomers interested in a qual- 
itative understanding, and not toward the theorists in 

0One in a series of review articles currently appearing in these 
Publications. 

this field. Certain other spontaneous mechanisms, much 
less efficient ones, will also be briefly examined. Any ele- 
mentary process such as Biermann's may, as Layzer et al. 
(1979) point out, be considered as a source of seed fields, 
which may then be modified hydromagnetically. 

In this paper I will use MKS units, but with the mag- 
netic fields also given in gauss. 

II. Mechanical and Electrostatic Equilibrium in a Star 

It is often overlooked that hydrostatic equilibrium in a 
star involves strong electrostatic fields. In Figure 1 is 
pictured the outer portion, let us say the outer third, of a 
nonrotating star. For simplicity I suppose total ioniza- 
tion, ΛΓ = iVe = N, where Ni and Ne are the number 
densities of ions and electrons. The ions and electrons 
constitute coexisting particle gases, coupled statically by 
electrical forces. Hydrostatic equilibrium of the two 
gases, separately, is governed by the equations 

- VP + Ν mi g Ν eE — 0 (1) 

— VP -\-Nmeg-\-NeE — 0 , (2) 

where VP is the pressure gradient, of either ions or 
electrons. The electron and ion pressures are assumed to 
be essentially equal, Pe = Fv The total pressure is 2P. 
The pressures exert "mass-independent" forces, while 
the gravity forces rr^g and meg are "mass-proportional", 
where g = GW/R2 is the local gravitational 
acceleration. 

The gravitational force on the electrons is negligible 
compared to the pressure-gradient force. For the ions, 
these two forces are comparable. A small charge separa- 
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tion comes about, producing an electron skin, in a man- 
ner of speaking, on the star's surface. This sets up an 
electric field Ε which holds the electron gas to the star. 
Aproximately, eE equals half the gravitational force 
on an ion, as can be seen from equations (1,2) wherein 
me/mi <<1. 

To estimate the radial charge separation, I show in the 
lower part of Figure 1 a radial column of pressure scale 
height h, containing ions and electrons. (In an isothermal 
approximation, assuming only a small change of g with r, 
Ρ 00 exp( —r/h), where h = &:Τ/(7η^).) The ion and elec- 
tron densities are supposed constant within the column 
of height h, but the electron gas extends outward to /i + 
Δ h. Thus there is a negative charge density — Ne in the 
skin of thickness Δ h, while the column of height h has a 

by a radial electrostatic field in hydrostatic equilibrium. 

net positive charge density of magnitude (A /i/h) Ne. The 
Ε field in the column is essentially that created by a 
(negative) surface charge density Δ h Ν e, thus Ε ~ 
( 1 /€0) {àh)Ne. From equations (1) and (2), approximately, 
eE = mi g/2. Since g = GW/R2, if we set h ~ R (the 
star's radius), we find for the fractional charge 
separation 

M 6 en rn¿ gg 
he2· 

The charge separation is utterly negligible, even 
though the Ε fields are substantial. The presence of elec- 
trical fields for maintaining charge neutrality is critical 
for the Biermann mechanism. 

III. Differential Rotation and the 
Biermann Magnetic-Field Generator 

A differentially rotating star is one in which the angu- 
lar rotation velocity co varies with z, the spin-axis coordi- 
nate. In the sun, well-known surface observations in- 
dicate that ω decreases with the absolute latitude; co is 
greatest at the equator. The situation is pictured in Fig- 
ure 2. The gravitational force g is partially opposed by a 
centrifugal force co2 R, where R is the vector distance 
from the spin axis. Now if co varies with z, Biermann 
found that a purely static electric field cannot prevent 
the occurrence of pressure gradients which cause a dif- 
ferential motion of the electron gas, relative to the ions. 
Currents—and thus a magnetic field—then arise. 

To see how this works, it is easiest to deal not with a 
spherical star, but with a "cylindrical" star. That this is 
meaningful is suggested in Figure 2, in which the radial 
gravitational force in a spherical star is seen, at least 
near the equator, to be directed largely inward in the — 
R direction. We now imagine a cylindrical star, having a 
constant axial mass concentration extending indefinitely 
along the 2; axis. We suppose the star to have a differen- 
tial rotation ω(ζ), with for example the values 0)(^) and 
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Fig. 3—Force relationships in two cross-sectional slabs (cut parallel to the spin axis) in a differentially rotating "cylindricar' star, in which ω in- 
creases with Outer boundary of the star is to the right. 

ωζ2) as in Figure 3. Motions in the Φ direction about the 
ζ axis will be disposed of by invoking centrifugal forces. 
We thus define an effective gravity by: 

g' = g - ω2 R . 

Consistent with this, all velocities henceforth will be only 
the vector components in the meridional plane. 

In Figure 3 is shown a meridional, cross-sectional 
view. The effective gravities differ between the slabs 
at heights z1 and z2. In equations (1) and (2) we replace g 
by g/(z). Then stability would seem to call for an electro- 
static field varying with with surface charges varying 
with (see Fig. 3). 

However, even apart from the electrical forces, the 
density-pressure situation in Figure 3 is unstable, if the 
temperature is independent of z. In a scale-height ap- 
proximation applied at each level 2; (which assumes that 
Τ is independent of r or R), the scale height is h — 
kT/irn^'). If conditions were vertically isothermal, Γ(ζ1) 
= T{z2)i then we would have h{z2) < /1(^), since g'^) 
< g^). The pressure distributions P(r), which are drawn 
in Figure 4 as exponentials, would vary with 2;. Vertical 
mass diffusion would occur, in a circulating pattern as 
indicated in Figure 4. To obtain mechanical equilibrium, 
we must require that Τ varies with ;s; in the case of Fig- 
ure 4, we must have T{z2) > T(z1). With a correct T{z), 
the pressures all across the contact plane between the 
horizontal slabs at and z2 could be equalized. Then, 
however, the surfaces of constant pressure, which are 
concentric cylinders, would no longer be parallel to the 
surfaces of constant temperature. Mechanical stability 
thus requires a violation of the conditions assumed in 
von ZeipeFs theorem, in which the constant-Τ and con- 
stant-? surfaces coincide. The violation is of course due 
to the fact that here V X g' = V X (co2R) Φ 0, i.e.,the 
centrifugal forces are not derivable from a potential. 
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FIG. 4—Pressure distributions in the meridional cross section of a "cy- 
lindrical" star as in Figure 3, at two levels. If constant temperature 
were assumed, or merely that Τ were not to vary with the pressure 
curves would not be the same (solid curves) at z1 and z2; diffusion, i.e., 
circulation, would ensue as per the arrows labeled "diff.". Stability 
against such circulation would require that T{z2) exceed 7(^), such 
that the scale heights and pressure distributions would match up. 

If we allow now for possible accelerations of the elec- 
tron and ion gases and replace g with the effective gravi- 
ty g', we write equations (1) and (2) as: 

— V P/N + mi g' + β Ε = mi (d v^dt) (3) 

— V P/N + meg' — eE = me{d \e/dt) . (4) 

Here, having divided by the number density N, we con- 
sider now the individual-particle forces and accelera- 
tions, rather than (as in eqs. (1) and (2)) the forces per 
unit volume. 

Collision terms, which account for ohmic resistance 
between the electron and ion gases, are not included in 
equations (3) and (4); a resistance term will be added 
later. 

The condition for static mechanical equilibrium is that 
the center-of-mass velocity ν of the plasma be zero, in 
which case: 
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{mi + me){dv/dt) = m^dv^dt) + mjdvj dt) = 0 (5) 

With this condition, which is in fact attainable only with 
a proper temperature variation Γ(ζ), we find from equa- 
tions (3) and (4) an expression for the accelera- 
tion of ions and electrons, namely: 

d 
dï(v' 

+ 

eE 

(6) 

(7) 

The left-hand side here, if we multiply if by Ne, is a 
possible electric current build-up. If we take the curl of 
both sides of equation (6), we see that since V X g' ^ 0, 
the curl of either the relative velocity field (vi — ve), or 
of E, must not vanish. If we suppose that V Χ Ε = 0, 
then the relative velocity field (vi — ve) cannot remain 
zero, thus currents flow. But if currents build up, they 
generate increasing magnetic fields B(f), producing then 
"rotationaF' electric fields since VxE=— 0B/9i. 
Actually neither the current-derivative term nor the E- 
field term in equation (6) vanishes; they are proportional 
to each other. 

The engine for these currents is basically an uncom- 
pensated pressure gradient which, mainly, accelerates 
the electrons. The driving term appearing in equation 
(6), the term containing g' on the right, should more 
physically be written in the following form, which is eas- 
ily derived from equations (3), (4), and (5): 

/ J__J \ /mi + me\ 
\ me miJ \ 2 / \ me mi / 

ν—V Ρ — — —VP . Ν me Ν 

It is important to see that the centrifugal forces, them- 
selves, are not the direct agents behind the currents. The 
forces TT^g' and m^g', being mass-proportional, cause 
identical and collinear accelerations of the electrons and 
ions. It is the fact that V X (VP/ΛΟ ^ 0 that currents 
arise. While the curl of VP is zero, that of (VP/iV) is 
not: 

vx {-k™) =-^<vr)x(vP) . 

This is not zero because the constant-Τ and constant-P 
(also constant-N) surfaces are not parallel. 

Before going on to estimates of the magnetic field and 
to a discussion of a magnetic steady state, I must com- 
ment on simplifications which I have made compared to 
the original treatment by Biermann. The reader may no- 
tice that I have omitted a J χ Β term, a magneto- 
resistance term, and a "motional'' electric-field term ev 
χ B. For understanding a spontaneous buildup of mag- 
netic fields from zero, those terms are inconsequential; 

they are initially zero since B(0) = 0. The first two of 
these terms are effectively quadratic in B, since the Β 
field is proportional to / through V Χ Η = J. The field 
strengths which we will estimate with these terms ne- 
glected are basically the same as in Biermann's results. 

Secondly, for the Biermann mechanism to work it is 
not necessary to assume strict mechanical equilibrium, 
i.e., zero plasma velocity. Roxburgh (1966) has discussed 
cases with meridional mass circulation. In general nei- 
ther ν nor dv/dt need be zero. In place of our equation 
(5) we may write: 

- 2 VP 
Ν + mg' 

Dv 
Dt 

= +
vxvv ) 

(5a) 

where here m = mi + me. This is the equation of mo- 
tion for the plasma center of mass allowing for mass flow 
and acceleration, neglecting a J χ Β term which as 
noted is zero before any field buildup. (Viscosity is 
omitted too, but it seems that that plays no essential 
role.) Here Dv/Dt means the acceleration as seen in the 
moving frame of the plasma, which properly equals the 
applied force over the mass. Also Dv/Dt equals identi- 
cally the sum of the two terms dv/dt, the acceleration 
seen at any point by the stationary observer, and a veloc- 
ity-gradient term which expresses the fact that nearby 
plasma elements with differing velocities "drift into" a 
given region. It is interesting to consider a steady meri- 
dional circulation, wherein dv/dt = 0. For that case let 
us take a line integral along a stream line of the 
circulation: 

φ (—2VP/N + mg') - ds = πι φ (ν· Vv) · ds . 
stream stream 

The right-hand integral vanishes, because ν · V ν = 
(1/2) V (ν2) — ν χ (V Χ ν); the first term of this gives 
zero since V (v2) is a gradient, the second one gives zero 
since ds is parallel to ν and is thus everywhere normal to 
ν Χ (V χ v). Now the left side can be changed by 
Stokes' theorem to an area integral in the meridional 
plane, enclosed by the streamline: 

-2 Χ [V X (VP 

+ mX^VXg') 

Clearly since V X g' ^ 0 with differential rotation, the 
second integral doesn't vanish, thus the first one cannot 
vanish either. But then the constant-P and constant-Τ 
(also constant-N) surfaces must not be parallel, so that V 
X (VP/AO ^ 0, just as in the case of no circulation. At 
least in an average or integral sense (for the purpose of 
integrals of quantities over large areas of the meridional 
plane), the velocity-gradient term on the right in equa- 
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tion (5a) can be assumed zero, or neglected. That term 
expresses alternating speed changes along the steady- 
state stream lines, plus a centripetal acceleration di- 
rected, crudely speaking, toward the center of the meri- 
dional quadrant. The Biermann process is not interfered 
with, since its functioning requires only that V X 
( VP/N) be nonzero. 

In the general case of time-varying circulation, it is 
thought that again V X (VP/N) would not usually 
vanish. 

Let us return to the matter of estimating the Biermann 
field strength. We take the curl of equation (6), making 
also a minor simplification in view of me/mi < < 1: 

meV X [diVi-vJ/dt] - eV xE 

+ K/2) V X g' . (8) 

We now think of currents J = Ne (vi — ve) which are 
started from zero. These currents build up a magnetic 
field, and thus an electric reaction field which opposes 
the currents, in accord with V Χ Ε = —dB/dt Since 
the current and the Β field are essentially proportional 
to each other through V Χ Η = J, the current being 
the source of Β = μ0Η, the left-hand side of equation (8) 
and the V Χ Ε term are proportional to each other; but 
the latter is far larger. Roughly, | V X H| = |J| ^ H/R, 
and I VxE| ^ E/R ~ dR/dt, where fí is a stellar radius. 
It follows that: 

Κ V X di^- ye)/dt\~ ( ) le V X E| 

~10-34elVxE| . 

The "inertiaΓ, term on the left in equation (8) is then a 
small uncompensated difference between the driving 
term, the second term on the right, and the inductive V 
χ Ε term. The latter represents a collective "electro- 
magnetic inertia" of the whole electron gas, due to Far- 
aday induction, while the left-hand side of equation (8) 
pertains to the inertia of only one electron. Thus effec- 
tively we have: 

V Χ Ε = -{dB/dt) = —(ynjle) V X g' 

= -iynJZé) V Χ (ω2Β) . 

In order to describe a steady state for the magnetic 
fields, we may appeal to electrical resistance. Electron- 
ion collisions can be accounted for by adding a relaxa- 
tion term to the right-hand side of equation (8), i.e., 

- κ/τ) V Χ Κ - ve), 

where τ is the electron-ion intercollision time. With the 
single-electron inertial term on the left in equation (8) 
neglected in favor of the inductive dR/dt term, as dis- 
cussed above, we then have: 

- KA) V X (Vj-vJ - e (9B/3i) 

(9) 

= - (»V2) ν χ g' . 

This equation relates the current ] = Ν e {νί — ve) to 
the field Β at any point in the meridional plane; it is a 
three-dimensional, partial vector differential equation in- 
cluding the time dependence plus two dimensions in the 
meridional plane. (See Fig. 5. It can be assumed that the 
Β field is always normal to the plane while J lies in the 
plane.) The J and Β fields build up and diffuse spatially. 
However, to simplify things we can ignore the spatial 
diffusion and presume the currents and fields to build up 
with time-invariant spatial distributions, such that the 
time dependence factors out. Then for example, B{x,z,t) 
— F{x,z) R{t). In this case, we may speak of a simple cir- 
cuit or one-turn current loop around the meridional 
quadrant. The circuit current is roughly I = J A ~ 
J {kR2/2) ~ Ν e {ttR2/!) (vi — üe), where A = 7tR2/2 is 
an appropriate mean area for the current, which flows 
parallel to meridian planes but is distributed around the 
star (see Fig. 5). The field R is proportional to this circuit 
current I: The one-turn current loop has a mean radius 
of about R/4, which gives a field R ~ 2μ0 I/R in the 
center of the meridional quadrant. 

Since the current and magnetic field vary spatially 
from zero to maximum over a mean distance R/2, we re- 
place the curl operators in equation (9) with 2/R, re- 
membering that only the rotational parts of (vi — ve) 
and g7 are involved. Then equation (9) becomes: 

This is tantamount to a lumped-parameter circuit 
equation of the type: 

¿PI + L{dl/dt) = V , (10') 

where is the resistance, L is the inductance, and V is 
an applied constant voltage, proportional to g'roV which 
can be presumed to be "turned on" at f = 0. The cur- 
rent and magnetic field in this IR circuit build up merely 
as (1 — e~t/T), where Τ = L/âiï is the time constant. In 
the final state, dl/dt + 0, and the ultimate field is deter- 
mined by 

J-JLr - 
max _ 2μ0 

max \ / 2ñë rot ' 

or 

Here Ν e? τ/τηβ is the plasma conductivity. As for the 
driving voltage and g'rot, we note that if ω varies simply 
in the ζ direction we can approximate: 
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IV X g'\ = IV Χ {ω2Κ)\ 

= 2ωΚ (άω/dz) ~ 2ω2 (Δω/ω) , 

where Vco/co is the fractional change in ω over = 0 to 
ζ = R. Thus 2 R ω2 {Δω/ω), and generally, 

. 

For the sun, a representative conductivity is σ ^ 106 

mhos/ meter, and we have r ~ 109 meters and co ^ 3 X 
10~6 sec-1. Recalling that μ0 = 1.2 χ 10~6 henry/ 
meter, we deduce that 

ß m ax ^ (Δω/ω) weher/m2 

(12) 
= 5000 (Δω/ω) gauss . 

Thus if Δω/ω is of the order of 0.2, as surface observa- 
tions of the sun's differential rotation would suggest, the 
ultimate Biermann fields approach a kilo gauss in 
strength. 

The build-up time in the RL circuit is Τ = L/.^P. 
From equation (10), and with σ = Ν #7 ! m e, we have 

Τ ~ {π/2) μ0 σ R2 . (13) 

For solar parameters as above, this Τ would be ^ 5 χ 
1010 years, or ten times the sun's assumed age. Of course 
our grossly simplified model neglects the details of the 
diffusion problem and other aspects, and the correct 
mean conductivity may be somewhat smaller than 106 

mhos/meter. However, it is clear from detailed treat- 
ments that the build-up time cannot be less than about 
the sun's age. I should add that the diffusion time for 
currents and fields in a plasma is given by Td = μ0 σ d2, 
for a distance d. This is similar to Τ above, but is perhaps 
shorter if the appropriate dis ~ R/2 rather than R. The 
lumped-parameter circuit approximation probably over- 
estimates the buildup time, since in fact the fields "be- 
gin" in a restricted area (with a smaller R, as it were), 
then diffuse throughout the star. 

More explicit treatments by Biermann (1950) and Rox- 
burgh (1966) lead again to ultimate fields of the order of 
a kilogauss, for the sun. Roxburgh finds an equilibration 
time of the order of the sun's age. He also notes that in 
massive early stars (but not in middle-late stars), the 
equilibrium state might be controlled not by ohmic dis- 
spitation—as I have assumed—but by the magneto- 
resistance. The latter leads to a term which is effectively 
quadratic in H (or B), and I have neglected all such ef- 
fects here. 

IV. Other Spontaneous Magnetic Batteries 
or Generators 

One relatively trivial source of a spontaneous magnet- 
ic field is simple stellar rotation, combined with the elec- 
tron-skin effect described in section II above. The rotat- 

ing charge skin produces a central, dipolar magnetic 
field of the order of H = (ω/fí) {àh/h) Nte, where Nt — 
M/mi is the total number of atoms in the star. For the 
sun with ω ^ 10-6 sec-1 and Ah/h ~ 10-36 as found in 
section II, we get Β = μ0 H ~ 10"19 web/m2 = 10-15 

gauss. For a neutron star (assuming it has an electron 
skin), with ω ^ 100 sec-1 we find Β ~ 10~2 gauss. A 
rather insignificant magnetic-field source, even for seed 
fields. 

What makes the Biermann process work is the differ- 
ence in accelerations imparted to the electrons, as com- 
pared to the ions, by unbalanced forces (in this case dif- 
ferential pressures) which are not simply proportional to 
the particle masses. Differential accelerations and cur- 
rents thus result. Are there other kinds of such forces? 
The answer is yes, but the others seem much less 
effective. 

Viscosity is an example, as has been discussed by 
Browne (1968), specifically what is called molecular or 
particle viscosity. A velocity gradient dv/dy at right an- 
gles to the gas velocity v, as in a differentially rotating 
star or in a Keplerian rotating gas disk, produces a shear- 
ing force η dvx/dy, where η is the viscosity (force per 
unit area per unit velocity gradient). If, further, there is 
a second derivative cPvx/dy2, a net viscous force is 
exerted which accelerates local slabs of material relative 
to adjacent slabs. In a plasma, in a two-fluid picture we 
can suppose that the electron gas has its own viscosity, 
the ion gas its own. The separate viscosities are propor- 
tional to m1/2 where m is the particle mass involved. But 
the accelerations are proportional to m-1, thus the elec- 
tron-gas acceleration exceeds that of the ions by 
(rr^/mj172 ^ 40. Currents and therefore magnetic fields 
thus arise. The steady state is determined by resistivity, 
i.e., by electron-ion collisions, and/or magneto-resist- 
ance. But because of the smallness of the particle vis- 
cosity (see for example Kemp 1980), the ensuing fields 
and currents are miniscule. Nevertheless Browne (1968) 
has proposed that predicted fields of the order of 10-4 

gauss in stars, caused by this mechanism, are adequate 
candidates for seed fields which may then be amplified 
hydromagnetically to the kilogauss level. 

I have made an estimate of the fields expected in a 
Keplerian gas disk of diameter 105 km around a col- 
lapsed object such as a neutron star, as generated by the 
differential particle viscosity, and the field strengths 
seem not to exceed 10~10 gauss even in the center. (Such 
fields protrude normally from the disk.) 

Might there still be other efficient spontaneous mag- 
netic-field generators, besides Biermann's process? I 
wonder whether some combination of thermal and pres- 
sure gradients (which basically power the Biermann 
mechanism) with turbulent motion might produce a bat- 
tery-like process. Or also, in the macroscopic motions of 
convective cells there may be transient pres- 
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sure/temperature gradients which could act as batteries. 
It is not clear however how large-scale, organized fields 
could result in such cases. 

Mention should be made of certain other processes. 
Cattani and Sacchi (1966) proposed the Poynting-Rob- 
ertson effect as a "battery" mechanism, which accelera- 
tes or decelerates electrons relative to ions as they orbit 
about a strong radiation source (e.g., a star or perhaps a 
galactic nucleus). Owing to differential radiation pres- 
sures coupled with abberation, the electrons are prefer- 
entially braked, and a net circulating current around the 
radiation source develops, thus a magnetic field. (Harwit 
(1973) gives an excellent description.) Separately Leahy 
and Valenkin (1981) have proposed that neutrinos, asym- 
metrically emitted by black holes, may produce proton 
currents and therefore magnetic fields. 

V. Remarks 

There are indeed spontaneous sources of magnetic 
fields; by far the most efficient one known is Biermann's. 
That process leads to a distinctive magnetic-field geome- 
try in a differentially-rotating star, namely a double to- 
roidal field, the fields being oppositely circulating in the 
upper and lower hemispheres. This is sketched in Figure 
5. The characteristic pattern of sunspot-pair magnetic 
polarities has long been interpreted in terms of toroidal 
fields buried deep in the sun, the spot pairs being pro- 
duced by convective tearing out of the field lines. Direct 
sensing of the toroidal fields is difficult, but there may be 
evidence from disk-sector magnetic polarities measured 
by Duvall et al. (1979); see also Kemp (1981). Certainly 
we do not have the simple case of an essentially constant 
double-toroidal pattern of the Biermann type, because 
the spot-pair polarity reversals which accompany the 22- 
year solar cycle could not be explained. The sense of the 
differential rotation determines the Biermann-field di- 
rections, and in general the rotation pattern (as seen of 
course only on the surface) does not change or show re- 
versals; always, ω is largest at the equator. 

It is not clear whether the Biermann mechanism really 
plays a role in sustaining the sun's magnetic fields at the 
present stage. Mestel and Roxburgh (1962) argued that 
the Biermann process is thwarted right from the begin- 
ning if a star has an initial, even quite small, poloidal 
field. In any event, double-toroidal fields must play a 
role. The reversal of sunspot-pair polarities through the 
22-year cycle has been seen as a torsional oscillation, in 
which the toroidal fields are alternately unwound and 
rewound. An interesting question is whether there is a 
small DC "bias" in the 22-year magnetic cycle, which 
would underlie a controversial even-odd difference as 

FlG. 5—The Biermann currents and double-toroidal magnetic fields in 
a differentially rotating star, schematically. 

between alternate 11-year half cycles. One wonders 
whether the underlying bias, if it is real, has the senses of 
magnetic-field directions expected from the Biermann 
process. A readable discussion of aspects of this matter is 
to be found in the review by Layzer et al. (1979). 

I am grateful for a tutorial given me by Leon Mestel, 
some years back, on the basics of the Biermann mecha- 
nism; and I am further grateful to him for his careful 
reading of this paper and for suggestions. 
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