A STATISTICAL SURVEY OF LOCAL PLANETARY NEBULAE

C. T. Daub
San Diego State University
Received 1981 September 25; accepted 1982 March 24

Abstract

An empirically determined relation between the ionized masses of planetary nebulae and a particular function of observational quantities is used to derive distances to 299 primarily nearby planetary nebulae. These distances are used to investigate the scale height of the galactic distribution of planetaries (125 pc), the rate of formation of planetaries ($5 \pm 2 \times 10^{-3} \mathrm{PN} \mathrm{kpc}^{-3} \mathrm{yr}^{-1}$), and certain aspects of the evolution of the nebulae.

Subject heading: nebulae: planetary

I. INTRODUCTION

An essential requirement for an investigation of the statistics of planetary nebulae (PN) is a reliable distance scale. The classical method of deriving distances to large numbers of PN has been based on the assumption that each has approximately the same ionized mass (Shklovsky 1956a, b; O'Dell 1962; Seaton 1966; Cahn and Kaler 1971; Cudworth 1974; and others). This follows from the more general suppositions that PN have comparable total masses and that most of them are optically thin to Lyman continuous radiation from the central star. More recently Acker (1978) has computed distances to PN by utilizing a variety of methods: she assumed uniform masses for optically thin PN and uniform nebular luminosities for optically thick PN; additionally, her tabulation includes distances determined independently of astrophysical assumptions for certain individual PN. Although Acker's (1978) distances should be the most statistically reliable at this time; there are reasons for believing that her distances to optically thick nebulae have been inaccurately determined and that more trustworthy distances can be derived for them.

As Acker (1978) points out, Cudworth (1974) has concluded that the luminosity of a PN is not constant during the optically thick stage. Not only is the constant luminosity assumption central to Acker's (1978) distance computations for optically thick PN, but some of the criteria she uses for distinguishing the optically thick nebulae in the first place are based upon this assumption.

Recent work by Pottasch et al. (1978), Pottasch (1980), and Maciel and Pottasch (1980) has demonstrated that a large fraction of known PN are likely optically thick and, furthermore, a strong correlation exists between the nebular ionized mass and the nebular radius or density. This latter discovery leads to an alternative way of
identifying and determining distances to the optically thick PN, which was first exploited by Maciel and Pottasch (1980).
In § II, after the derivation and discussion of pertinent physical relations, the ionized nebular mass is empirically related to a quantity derivable from observation. This relation is used in § III to derive distances to all PN with measured free-free radio fluxes and angular diameters; this then enables the local galactic distribution of PN to be examined. In § IV the frequency distribution of nebular radii is derived and discussed; conclusions about the formation rate of PN then follow. Some discussion regarding the luminosity evolution of PN comprises § V, and the paper concludes in § VI with a brief summary.

II. ANALYSIS

The radio free-free emission coefficient at frequency ν can be written (Oster 1961; Milne and Aller 1975)

$$
\begin{align*}
j_{\nu}=3.75 & \times 10^{-40} t^{-1 / 2} N_{e} \\
\times\{ & {\left[N\left(\mathrm{H}^{+}\right)+N\left(\mathrm{He}^{+}\right)\right] } \\
& \times \ln \left(\frac{4.95 \times 10^{13} t^{3 / 2}}{\nu}\right)+4 N\left(\mathrm{He}^{++}\right) \\
& \left.\times \ln \left(\frac{2.47 \times 10^{13} t^{3 / 2}}{\nu}\right)\right\} \operatorname{ergs~cm}^{-3} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}, \tag{1}
\end{align*}
$$

where N_{e} is the electron density $\left(\mathrm{cm}^{-3}\right) ; N\left(\mathrm{H}^{+}\right)$, $N\left(\mathrm{He}^{+}\right)$, and $N\left(\mathrm{He}^{++}\right)$are the densities $\left(\mathrm{cm}^{-3}\right)$ of singly ionized H and singly and doubly ionized He , respectively, and t is the kinetic temperature in units of $10^{4} \mathrm{~K}$. Taking $N\left(\mathrm{He}^{+}\right) / N\left(\mathrm{H}^{+}\right)=N\left(\mathrm{He}^{++}\right) / N\left(\mathrm{H}^{+}\right)$
$=0.06$ [and thus $\mathrm{Ne}=1.18 N\left(\mathrm{H}^{+}\right)$] as being representative ionic abundances for PN and setting $\nu=5 \times 10^{9} \mathrm{~Hz}$, a frequency at which many radio flux data are available and at which PN are expected to be optically thin, the emission coefficient becomes

$$
\begin{equation*}
j_{5 \mathrm{GHz}}=3.75 \times 10^{-39} N_{e}^{2} f(t) \text { ergs cm }{ }^{-3} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1} \tag{2}
\end{equation*}
$$

where $f(t)=t^{-1 / 2}\left(1+0.110 \ln t^{3 / 2}\right)$, a slowly varying function of temperature. After integrating the emission coefficient over the nebular volume, the flux at distance $D(\mathrm{~cm})$ from the nebula can be written as

$$
\begin{align*}
F_{5 \mathrm{GHz}} & =\frac{\int j_{5 \mathrm{GHz}} d V}{4 \pi D^{2}} \\
& =\frac{3.75 \times 10^{-39}}{4 \pi D^{2}} f(t) \int N_{e}^{2} d V \mathrm{ergs} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1} \tag{3}
\end{align*}
$$

where t is taken to be constant throughout the nebula.
The nebular ionized H mass is given by

$$
\begin{equation*}
M=1.67 \times 10^{-24} \int N\left(\mathrm{H}^{+}\right) d V=1.42 \times 10^{-24} \int N_{e} d V g \tag{4}
\end{equation*}
$$

It is convenient to define the "filling factor," ε, for the nebula as the ratio of the electron density averaged over the volume to the electron density averaged over the mass, i.e.,

$$
\begin{equation*}
\varepsilon=\frac{3\left(\int N_{e} d V\right)^{2}}{4 \pi R^{3} \int N_{e}^{2} d V} \tag{5}
\end{equation*}
$$

where R is the radius of the ionized portion. Equations (3), (4), and (5) can be combined to give

$$
\begin{equation*}
\frac{M^{2} f(t)}{\varepsilon}=3.52 \times 10^{-9} F_{5 \mathrm{GHz}} D^{5} \theta^{3} g^{2} \tag{6}
\end{equation*}
$$

where $\theta=2 R / D$ is the nebular angular diameter.
The quantity $\left[M^{2} f(t) / \varepsilon\right]$ can be reliably evaluated for only those PN with accurately and independently determined distances. For this purpose Acker's (1978) compilation of distances to individual PN based on methods not requiring astrophysical assumptions (e.g., distances based on spectroscopic parallaxes of companion stars, a comparison of angular expansions with expansion velocities, kinematics, and interstellar extinction) and Khromov's (1979) list of expansion distances
are used. To ensure accuracy, only PN with a spectroscopic parallax of a companion star or with at least two independent distance determinations all of which are within 20% of the mean of those distances are included. As it happened these stringent criteria eliminated all PN with expansion distances. Table 1 lists these mean distances for the 14 PN which meet the criteria and also tabulates

$$
\log \left[\frac{M}{M_{\odot}}\left(\frac{f(t)}{\varepsilon}\right)^{1 / 2}\right]
$$

as computed from equation (6); the requisite angular diameter and flux data are listed in Table 2 and are discussed in § III. Figure 1 illustrates the relation between

$$
\frac{M}{M_{\odot}}\left[\frac{f(t)}{\varepsilon}\right]^{1 / 2} \quad \text { and } \quad \theta^{2} / S
$$

a function of observable quantities which is related to the nebular radius (see eqs. [9] and [12]); here $S=$ $10^{23} F_{5 \mathrm{GHz}}$, the flux at 5 GHz in janskys, and θ is the angular diameter, now and hereafter expressed in arcsec. It is apparent that the ionized mass increases by a large factor as the nebula expands and as, presumably, the degree of nebular optical thickness diminishes. The two mean lines in Figure 1 are drawn by eye estimate in order to more formally define the relation exhibited by the plotted points. These adopted mean lines differ little

TABLE 1
Masses of Selected Planetary Nebulae

PN	$D(\mathrm{pc})$	$\log \left[\frac{M}{M_{\odot}}\left(\frac{f(t)}{\varepsilon}\right)^{1 / 2}\right]$
NGC 40	$1000^{\text {a,b }}$	-1.07
NGC 246	$430^{\text {c }}$	-0.92
NGC 1514	$660^{\text {c }}$	-0.87
NGC 2452	$3000{ }^{\text {a, }{ }^{\text {d }}}$	-0.70
NGC 2867	$1350{ }^{\text {a,b }}$	-1.63
NGC 3132	$840^{\text {c }}$	-1.01
NGC 6567	$1000{ }^{\text {a, }{ }^{\text {d }}}$	-2.09
NGC 6572	$680^{\text {a,b }}$	- 1.87
NGC 6772	$1450{ }^{\text {a,b }}$	-0.64
NGC 6804	$1350^{\text {a,b }}$	-0.69
NGC 6894	$1350{ }^{\text {a,d }}$	-1.11
NGC 7026	$1780^{\text {a, d }}$	-0.79
IC 1747....	$2250{ }^{\text {a,d }}$	-1.17
M1-59.....	$1430^{\text {a,d }}$	-2.27

[^0]| PK Number | PN | θ (arc sec) | S(Jy) | R (pc) | D(pc) | PK Number | PN | \bigcirc (arc sec) | S(Jy) | R (pc) | D(pc) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $120+9^{\circ} 1$ | NGC 40 | 38 | . $459{ }^{2}$ | . 099 | 1070 | $341+13^{\circ} 1$ | NGC 6026 | 54 | . $062{ }^{4}$ | . 194 | 1480 |
| $118-74^{\circ} 1$ | NGC 246 | 240 | . 247^{4} | . 268 | 460 | $64+48^{\circ} 1$ | NGC 6058 | 25 | . $030{ }^{2}$ | . 165 | 2720 |
| $130-10^{\circ} 1$ | NGC 650-1 | 90 | . 110^{2} | . 223 | 974 | $342+10^{\circ} 1$ | NGC 6072 | 60 | . 152^{1} | . 169 | 1160 |
| $220-53^{\circ} 1$ | NGC 1360 | 500 | . $503{ }^{1}$ | . 311 | 257 | $341+5^{\circ} 1$ | NGC 6153 | 25 | . 477^{1} | . 058 | 960 |
| $144+6^{\circ} 1$ | NGC 1501 | 58 | . $223{ }^{2}$ | . 155 | 1100 | $336-0^{\circ} 1$ | NGC 6164-5 | 370 | 2.54 | . 200 | 223 |
| $165-15^{\circ} 1$ | NGC 1514 | 120 | . 300^{2} | . 195 | 671 | $43+37^{\circ} 1$ | NGC 6210 | 20 | . 311^{1} | . 058 | 1190 |
| $206-40^{\circ} 1$ | NGC 1535 | 20 | . 172^{4} | . 082 | 1700 | $349+1^{\circ} 1$ | NGC 6302 | 120 | $3.488{ }^{1}$ | . 116 | 399 |
| $196-10^{\circ} 1$ | NGC 2022 | 22 | . 0911^{4} | . 126 | 2360 | $9+14^{\circ} 1$ | NGC 6309 | 20 | . $151{ }^{1}$ | . 089 | 1830 |
| $215+3^{\circ} 1$ | NGC 2346 | 60 | . $086{ }^{1}$ | . 190 | 1300 | $338-8{ }^{\circ} 1$ | NGC 6326 | 14 | . 073^{1} | . 090 | 2640 |
| $189+19^{\circ} 1$ | NGC 2371-2 | 54 | . $090{ }^{2}$ | . 180 | 1380 | $349-1^{\circ} 1$ | NGC 6337 | 50 | . $103{ }^{1}$ | . 170 | 1400 |
| $197+17^{\circ} 1$ | NGC 2392 | 47 | . $251{ }^{4}$ | . 139 | 1220 | $2+5^{\circ} 1$ | NGC 6369 | 30 | 2.002^{1} | . 031 | 422 |
| $231+4^{\circ} 2$ | NGC 2438 | 70 | . $094{ }^{1}$ | . 198 | 1170 | $11+5^{\circ} 1$ | NGC 6439 | 6 | . $050{ }^{1}$ | . 041 | 2800 |
| $234+2^{\circ} 1$ | NGC 2440 | 54 | . $422{ }^{4}$ | . 132 | 1010 | $8+3^{\circ} 1$ | NGC 6445 | 40 | . $368{ }^{1}$ | . 120 | 1230 |
| $243-1^{\circ} 1$ | NGC 2452 | 22 | . 055^{1} | . 139 | 2610 | $10+0^{\circ} 1$ | NGC 6537 | 10 | . $671{ }^{1}$ | . 016 | 652 |
| $239+13^{\circ} 1$ | NGC 2610 | 40 | . 035^{1} | . 193 | 1990 | $96+29^{\circ} 1$ | NGC 6543 | 22 | . $898{ }^{2}$ | . 034 | 640 |
| $265+4^{\circ} 1$ | NGC 2792 | 12 | . 122^{1} | . 055 | 1880 | $358-7{ }^{\circ} 1$ | NGC 6563 | 55 | . $077{ }^{1}$ | . 187 | 1410 |
| $261+8^{\circ} 1$ | NGC 2818 | 40 | .033 ${ }^{1}$ | . 196 | 2020 | $-4^{\circ} 5$ | NGC 6565 | 10 | . 040^{1} | . 086 | 3540 |
| $278-5^{\circ} 1$ | NGC 2867 | 12 | $.252^{1}$ | . 035 | 1220 | $11-0^{\circ} 2$ | NGC 6567 | 11 | . $176{ }^{1}$ | . 040 | 1480 |
| $277-3^{\circ} 1$ | NGC 2899 | 120 | . $086{ }^{1}$ | . 251 | 860 | $34+11^{\circ} 1$ | NGC 6572 | 15 | 1.307^{1} | . 017 | 474 |
| $272+12^{\circ} 1$ | NGC 3132 | 64 | . 2351 | . 159 | 1030 | $10-1^{\circ} 1$ | NGC 6578 | 8.5 | . 170^{1} | . 030 | 1440 |
| $296-20^{\circ} 1$ | NGC 3195 | 40 | . 035^{1} | . 193 | 1990 | $5-6^{\circ} 1$ | NGC 6620 | 5 | . 013^{1} | . 073 | 6050 |
| $286-4^{\circ} 1$ | NGC 3211 | 14 | . $080{ }^{4}$ | . 085 | 2500 | $9-5^{\circ} 1$ | NGC 6629 | 16 | . $292{ }^{1}$ | . 046 | 1180 |
| $261+32^{\circ}{ }^{1}$ | NGC 3242 | 42 | . $896{ }^{1}$ | . 074 | 730 | $63+13^{\circ} 1$ | NGC 6720 | 86 | . 365^{2} | . 164 | 790 |
| $148+57^{\circ} 1$ | NGC 3587 | 200 | . 144^{2} | . 277 | 572 | $33-2^{\circ} 1$ | NGC 6741 | 9 | . $220{ }^{1}$ | . 027 | 1250 |
| $292+1^{\circ} 1$ | NGC 3699 | 68 | .067 ${ }^{1}$ | . 210 | 1270 | $29-5{ }^{\circ} 1$ | NGC 6751 | 20 | . $063{ }^{1}$ | . 130 | 2690 |
| $294+4^{\circ} 1$ | NGC 3918 | 12 | . $859{ }^{1}$ | . 017 | 583 | $33-6{ }^{\circ} 1$ | NGC 6772 | 70 | . 084^{1} | . 203 | 1200 |
| $298-4^{\circ} 1$ | NGC 4071 | 75 | . $026{ }^{1}$ | . 264 | 1450 | $34-6^{\circ} 1$ | NGC 6778 | 19 | . 055^{1} | . 131 | 2850 |
| $294+43^{\circ} 1$ | NGC. 4361 | 82 | . 207^{1} | . 180 | 908 | $41-2^{\circ} 1$ | NGC 6781 | 110 | . $390{ }^{1}$ | . 179 | 671 |
| $307-3^{\circ} 1$ | NGC 5189 | 170 | . $413{ }^{4}$ | . 210 | 511 | $37-6^{\circ} 1$ | NGC 6790 | 8.7 | $.256{ }^{1}$ | . 024 | 1130 |
| $312+10^{\circ} 1$ | NGC 5307 | 12.5 | .095 ${ }^{1}$ | . 067 | 2200 | $46-4{ }^{\circ} 1$ | NGC 6803 | 5.5 | . 114^{1} | . 022 | 1680 |
| $309-4{ }^{\circ} 2$ | NGC 5315 | 5 | . 480^{4} | . 008 | 694 | $45-4^{\circ} 1$ | NGC 6804 | 63 | . $132{ }^{1}$ | . 178 | 1160 |
| $331+16^{\circ} 1$ | NGC 5873 | 3 | . $048{ }^{1}$ | . 018 | 2490 | $42-6^{\circ} 1$ | NGC 6807 | 2 | . 022^{1} | . 018 | 3670 |
| $327+10^{\circ} 1$ | NGC 5882 | 7 | . $334{ }^{4}$ | . 016 | 920 | $25-17^{\circ} 1$ | NGC 6818 | 22 | . $281{ }^{1}$ | . 069 | 1290 |
| $322-5^{\circ} 1$ | NGC 5979 | 8 | . 117^{1} | . 034 | 1780 | $83+12^{\circ} 1$ | NGC 6826 | 27 | $.405^{2}$ | . 070 | 1080 |

PK Number	PN	θ (arc sec)	S(Jy)	R (pc)	D(pc)
$123+34^{\circ} 1$	IC 3568	18	. 075^{2}	. 119	2730
$304-4^{\circ} 1$	IC 4191	14	$.170^{4}$. 054	1590
$319+15^{\circ} 1$	IC 4406	30	$.110^{1}$. 137	1880
$25+40^{\circ} 1$	IC 4593	13	$.104^{1}$. 066	2100
$0+12^{\circ} 1$	IC 4634	10	. 1291	. 042	1750
$345+0^{\circ} 1$	IC 4637	21	$.401^{1}$. 052	1030
$334-9^{\circ} 1$	IC 4642	17	. $060{ }^{4}$. 123	2990
$346-8^{\circ} 1$	IC 4663	14	. 045^{1}	. 120	3530
$3-2^{\circ} 3$	IC 4673	17	. $036{ }^{1}$. 136	3310
348-13 ${ }^{\circ} 1$	IC 4699	7	. $020{ }^{1}$. 085	4990
$10-6{ }^{\circ} 1$	IC 4732	3	.056 ${ }^{1}$. 017	2270
$2-13^{\circ} 1$	IC 4776	8	. 0671	. 048	2480
$58-10^{\circ} 1$	IC 4997	1.5	$.127{ }^{1}$. 004	1210
$89-5^{\circ} 1$	IC 5117	2	$.191^{2}$. 005	1000
$100-5^{\circ} 1$	IC 5217	7	$.130^{2}$. 028	1620
$215-30^{\circ} 1$	A7	850	$.305^{4}$. 426	207
196-12 ${ }^{\circ} 1$	Al 1	30	$.010^{4}$. 221	3040
$198-6^{\circ} 1$	A12	37	. $036{ }^{4}$. 186	2080
$204-8^{\circ} 1$	Al3	150	. $026{ }^{4}$. 348	957
$197-3^{\circ} 1$	A14	40	$.010^{4}$. 248	2560
$233-16^{\circ} 1$	A15	34	. 0222^{4}	. 199	2410
$214+7^{\circ} 1$	A20	64	. $014{ }^{4}$. 280	1810
$249-5^{\circ} 1$	A23	54	. $010{ }^{4}$. 280	2140
$217+14^{\circ} 1$	A24	360	. $055{ }^{4}$. 425	487
$238+34^{\circ} 1$	A33	270	. 0222^{4}	. 455	695
$303+40^{\circ} 1$	A35	900	. $255{ }^{4}$. 451	207
$318+41^{\circ} 1$	A36	480	. 2115^{4}	. 363	312
$359+15^{\circ} 1$	A40	32	. 0074	. 244	3140
$25-11^{\circ} 1$	A60	80	. 0111^{4}	. 321	1660
$17-21^{\circ} 1$	A65	135	$.011^{1}$. 396	1210
$19-23^{\circ} 1$	A66	270	.0564	. 378	577
$289-0^{\circ} 1$	AG Car	37	. $285{ }^{1}$. 123	1370
$3-4^{\circ} 7$	Ap 1-12	12	. $013{ }^{4}$. 146	5000
$35-0^{\circ} 1$	Ap 2-1	38	. 2205	. 131	1420

山
范

PK N	Number	PN	$\theta(\operatorname{arcsec})$	S(Jy)	$\mathrm{R}(\mathrm{pc})$	$D(p \mathrm{c})$	PK N	Number	PN	$\theta(\operatorname{arc} \mathbf{s e c})$	S(Jy)	$\mathrm{R}(\mathrm{pc})$	$D(p \mathrm{c})$
55	$+2^{\circ} 1$	He 2-432	5	. $070{ }^{5}$. 027	2200	16	$-4^{\circ} 1$	M 1-54	17	. $038{ }^{4}$. 135	3280
68	$+1^{\circ} 2$	He 2-453	24	$.015^{5}$. 186	3200	22	$-2^{\circ} 1$	M 1-57	9.5	. $065{ }^{4}$. 060	2620
119	$-6^{\circ} 1$	Hu 1-1	5	$.013^{2}$. 073	6040	22	$-3^{\circ} 1$	M 1-58	7	. $060{ }^{4}$. 044	2580
86	$-8^{\circ} 1$	Hu 1-2	5	$.145^{2}$. 017	1420	23	$-2^{\circ} 1$	M 1-59	5	$.140^{1}$. 018	1450
51	$+9^{\circ} 1$	Hu 2-1	3	$.168{ }^{2}$. 009	1180	50	$+3^{\circ} 1$	M 1-67	90	. 2371	. 182	836
190	$-17^{\circ} 1$	J 320	11	. $031{ }^{1}$. 112	4200	68	$-0^{\circ} 1$	M 1-75	20	. $026{ }^{2}$. 155	3210
194	$+2^{\circ} 1$	J 900	10	$.121^{1}$. 044	1820	107	$-2^{\circ} 1$	M 1-80	8	. $013{ }^{2}$. 124	6380
252	$+4^{\circ} 1$	K 1-1	50	. $011{ }^{5}$. 266	2190	10	$+18^{\circ} 2$	M 2-9	30	. $035{ }^{1}$. 172	2370
346	$+12^{\circ} 1$	K 1-3	100	. 0094	. 366	1510	11	$+6^{\circ} 1$	M 2-15	6	. $019{ }^{4}$. 073	5000
223	$-2^{\circ} 1$	K 1-8	80	. $066{ }^{4}$. 225	1160	356	$-5^{\circ} 2$	M 2-24	11	. 0088^{4}	. 155	5810
236	$+3^{\circ} 1$	K 1-12	38	. $010{ }^{4}$. 243	2640	3	$-6^{\circ} 1$	M 2-36	9	. 0255^{4}	. 100	4600
204	$+4^{\circ} 1$	K 2-2	410	. $054{ }^{4}$. 450	452	8	$-4^{\circ} 1$	M 2-39	3.5	. 0088^{4}	. 064	7540
275	$+72^{\circ} 1$	K 2-4	774	. $202{ }^{4}$. 445	237	27	$+0^{\circ} 1$	M 2-45	7	$.130^{4}$. 028	1630
39	$+2^{\circ} 1$	K 3-17	19	$.450^{5}$. 043	940	39	$-2^{\circ} 1$	M 2-47	7.5	. $078{ }^{4}$. 041	2240
48	$+2^{\circ} 1$	K 3-24	6	. $026{ }^{2}$. 060	4140	242	$-11^{\circ} 1$	M 3-1	14	. $024{ }^{1}$. 137	4040
165	$-6^{\circ} 1$	K 3-67	15	$.040^{5}$. 127	3490	221	$+5^{\circ} 1$	M 3-3	15	$.130^{5}$. 069	1890
		K 3-77	7.5	$.100^{5}$. 035	1930	241	$+2^{\circ} 1$	M 3-4	14	. $016{ }^{4}$. 149	4380
130	$-11^{\circ} 1$	M 1-1	6	$.047{ }^{2}$. 042	2900	245	$+1^{\circ} 1$	M 3-5	7	. 0244^{4}	. 076	4480
147	$-2^{\circ} 1$	M 1-4	4	$.100^{5}$. 017	1700	254	$+5^{\circ} 1$	M 3-6	11	$.105^{4}$. 054	2020
194	$-2^{\circ} 1$	M 1-5	7.5	$.090^{5}$. 037	2060	357	$+3^{\circ} 1$	M 3-7	6.5	. 0288^{4}	. 063	4020
189	$+7^{\circ} 1$	M 1-7	9	$.013^{4}$. 130	5950	358	$+4^{\circ} 1$	M 3-8	5.5	. 0274	. 053	3980
210	$+1^{\circ} 1$	M 1-8	22	. 0233^{4}	. 165	3100	359	$+5^{\circ} 2$	M 3-9	17	. $031{ }^{4}$. 141	3410
232	$-1^{\circ} 1$	M 1-13	10	. $023{ }^{1}$. 120	4930	358	$+3^{\circ} 1$	M 3-10	3.5	. $020{ }^{4}$. 037	4350
226	$+5^{\circ} 1$	M 1-16	3	. $028{ }^{4}$. 025	3450	5	$+6^{\circ} 1$	M 3-11	8	. $025{ }^{5}$. 087	4490
228	$+5^{\circ} 1$	M 1-17	3	. 025^{1}	. 027	3690	5	$+5^{\circ} 1$	M 3-12	6.5	. 040^{5}	. 051	3250
231	$+4^{\circ} 1$	M 1-18	33	$.017^{5}$. 206	2580	355	$-6^{\circ} 1$	M 3-21	5	$.030^{1}$. 044	3660
4	$+4^{\circ} 1$	M 1-25	5	. $064{ }^{1}$. 028	2320	0	$-3^{\circ} 1$	M 3-22	7.5	. $020{ }^{5}$. 092	5070
358	$-0^{\circ} 2$	M 1-26	4.5	. 320^{1}	. 009	866	4	$-11^{\circ} 1$	M 3-29	8.5	$.025^{5}$. 087	4490
35 6	$+3^{\circ} 2$	M 1-28	26	. $020{ }^{4}$. 182	2890	17	$-4^{\circ} 1$	M 3-30	17	. 017^{4}	. 159	3850
8	$-1^{\circ} 1$	M 1-40	6	. $250{ }^{4}$. 015	1060	358	$+5^{\circ} 1$	M 3-39	20	. $296{ }^{4}$. 059	1220
2	$-4^{\circ} 2$	M 1-42	9	$.030^{4}$. 090	4120	357	$+3^{\circ} 2$	M 3-41	4.5	. 075^{4}	. 023	2070
16	$-1^{\circ} 1$	M 1-46	11	. 0951	. 057	2150	241	$-7^{\circ} 1$	M 4-1	5.5	. 0374	. 044	3290
14	$-4^{\circ} 1$	M 1-50	6	. $050{ }^{4}$. 041	2800	52	$-2^{\circ} 2$	Me 1-1	10	. 0354	. 093	3840
15	$-4^{\circ} 1$	M 1-53	6.5	. $055{ }^{4}$. 042	2680	342	$+27^{\circ} 1$	Me 2-1	7	.038 ${ }^{1}$. 058	3400

PK Number		PN	θ (arc sec)	S(Jy)	$\mathrm{R}(\mathrm{pc}$)	D (pc)
283	$+2^{\circ} 1$	My 60	7.5	. $060{ }^{1}$. 048	2620
307	$-4^{\circ} 1$	My Cn 18	6	. 106^{4}	. 026	1780
322	$-2^{\circ} 1$	Mz 1	30	. $061{ }^{1}$. 154	2120
329	$-2^{\circ} 2$	Mz 2	28	. 075^{1}	. 144	2120
331	$-1^{\circ} 1$	Mz 3	35	. 649^{1}	. 072	854
263	$-5^{\circ} 1$	PB 2	3	. 040^{1}	. 020	2780
269	$-3^{\circ} 1$	PB 3	7	. 070^{4}	. 040	2360
275	$-4^{\circ} 1$	PB 4	10	. $071{ }^{1}$. 061	2510
278	$+5^{\circ} 1$	PB 6	11	$.030^{1}$. 114	4290
292	$+4^{\circ} 1$	PB 8	5	. $026{ }^{4}$. 048	3990
336	$-6^{\circ} 1$	PC 14	7	. 030^{4}	. 066	3920
288	$-2^{\circ} 1$	Pe 1-3	8	. $024{ }^{4}$. 089	4600
336	$+1^{\circ} 1$	Pe 1-6	10	. 040^{4}	. 086	3540
25	$-2^{\circ} 1$	Pe 1-15	5	$.030^{5}$. 044	3660
28	$-4^{\circ}{ }^{1}$	Pe 1-20	7.5	. $050{ }^{5}$. 053	2930
28	$-3^{\circ} 1$	Pe 1-21	10	$.030^{5}$. 102	4210
322	$-0^{\circ} 1$	Pe 2-8	1.5	. 100^{4}	. 005	1400
36	$-1^{\circ} 1$	Sh 2-71	155	$.083{ }^{1}$. 280	744
195	$-0^{\circ} 1$	Sh 2-266	80	. $159{ }^{1}$. 188	971
329	$+2^{\circ}{ }^{1}$	Sp 1	76	. 0754	. 214	1160
342	$-14^{\circ} 1$	Sp 3	35	. $061{ }^{4}$. 164	1930
345	$-8^{\circ} 1$	Tc 1	10	. 801^{1}	. 014	586
306	$-0^{\circ} 1$	Th 2-A	24	. $060{ }^{4}$. 141	2430
197	$-2^{\circ} 1$	vv 1-4	130	. $354{ }^{1}$. 195	619
196	$-1^{\circ} 1$	vv 1-5	310	. 642^{1}	. 245	326
235	$+1^{\circ} 1$	vv 1-7	270	. $057{ }^{1}$. 376	575
205	$+14^{\circ} 1$	YM 29	615	. $327{ }^{4}$. 369	247

Fig. 1.-The relation between what is essentially the nebular ionized mass and the observed quantity θ^{2} / S; dots: The individual nebulae listed in Table 1; lines: The adopted mean relations expressed by eqs. (7) and (10).
from relations obtained by a least-squares analysis, and they have some advantage in simplicity over a more sophisticated approach. A similar plot of all PN with individually determined distances shows very large scatter but yields comparable results if median values of

$$
\log \left[\frac{M}{M_{\odot}}\left(\frac{f(t)}{\varepsilon}\right)^{1 / 2}\right]
$$

within various intervals of θ^{2} / S are computed. The equations of the two mean lines, the resultant nebular distance derived from equation (6), and the nebular radius are given by, for $\log \left(\theta^{2} / S\right)<3.65$:

$$
\begin{gather*}
\log \left\{\frac{M}{M_{\odot}}\left[\frac{f(t)}{\varepsilon}\right]^{1 / 2}\right\}=\log \frac{\theta^{2}}{S}-4.50 \tag{7}\\
D=324\left(\frac{\theta}{S^{3}}\right)^{1 / 5} \mathrm{pc} \tag{8}\\
R=7.85 \times 10^{-4}\left(\frac{\theta^{2}}{S}\right)^{3 / 5} \mathrm{pc} \tag{9}
\end{gather*}
$$

and for $\log \left(\theta^{2} / S\right)>3.65$:

$$
\begin{align*}
& \log \left\{\frac{M}{M_{\odot}}\left[\frac{f(t)}{\varepsilon}\right]^{1 / 2}\right\}=-0.85 \tag{10}\\
& D=\frac{9300}{\left(\theta^{3} S\right)^{1 / 5}} \mathrm{pc} \tag{11}\\
& R=2.26 \times 10^{-2}\left(\frac{\theta^{2}}{S}\right)^{1 / 5} \mathrm{pc} \tag{12}
\end{align*}
$$

Equations (7) and (9) lead, incidentally, to a relation between ionized mass and radius which is virtually indistinguishable from the mean relation between these parameters found by Pottasch (1980) if his values of t and ε are selected.

From equation (9) or equation (12) one notes that $R=0.12 \mathrm{pc}$ when $\log \theta^{2} / S=3.65$; this then would be the typical radius of a PN when it first becomes optically thin. The uncertainty in this determination of the transition radius is probably about 0.02 pc .

III. DISTANCES AND GALACTIC DISTRIBUTION

a) Distances

Table 2 lists 299 PN for which the required data are available. The angular diameters in the third column have been obtained primarily from Perek and Kohoutek (1967). If a nebula does not appear circularly symmetric, the largest dimension is adopted for the angular diameter; this is done in hopes of minimizing the effect of projection on the adopted angular dimension. Radio fluxes, listed in the fourth column, are taken from the compilations of Cahn and Rubin (1974), Cahn (1976), Milne and Aller (1975), and Milne (1979); one radio flux measurement is obtained from Khromov (1979). If an available flux measurement is at a frequency other than 5 GHz , an adjustment of that flux to $\nu=5 \mathrm{GHz}$ was made using equation (1). The fifth column tabulates the nebular radii computed from equation (9) or equation (12); the sixth column tabulates the distances computed from equation (8) or equation (11).

The distances derived for the 122 optically thin nebulae $\left(\log \theta^{2} / S>3.65\right)$ are, of course, approximately the same as those determined by other investigators using the Shklovsky method. It is possible that some of the most expanded PN become optically thick for a second time as their central stars contract to near white dwarf dimensions, thereby resulting once again in a smaller ionized nebular mass (Seaton 1966); however, it is expected that a very small fraction of these PN should be affected by this, and the effect is ignored here.

The 177 optically thick PN $\left(\log \theta^{2} / S<3.65\right)$ have computed distances which are smaller than the Shklovsky method distances. From Figure 1 it is apparent that the most compact PN are likely to have ionized masses smaller by about a factor of 100 in comparison to a typical optically thin PN; hence, their derived distances will be a factor of 10 or so smaller than the distance computed on the basis of assuming a "normal" ionized mass.

It should be noted that the distances derived here often differ significantly from those of Maciel and Pottasch (1980), who also computed distances to some of the same PN allowing for a diminished ionized mass due to optical thickness. They used an empirically determined linear relation of the form $M=a R+b$ to
relate mass and radius. This relationship leads to similar distances to those derived here except for the very small PN and the very large PN. The use of the linear relation leads to overestimates of the distances to large PN because it allows the mass to increase indefinitely with radius without an optically thin cut-off. For small PN the linear relation with $b<0$ does not enable a physically real distance to be derived or it leads to an overestimate of the distance relative to the distance scale found here.

b) Galactic Distribution

The investigation of the distribution of PN perpendicular to the galactic plane is made complicated by incompleteness effects; an attempt is made here to correct for incompleteness in an empirical manner.

Cahn and Wyatt (1976) find, for the nearby faint PN they investigated, a north-south asymmetry in equatorial coordinates. They concluded that a deeper and more thorough search of northern declination skies had led to a relative deficiency in the known number of such PN with negative declinations. This list of 299 PN , broken down into size and distance subsets, has also been examined for possible incompleteness due to surveying and/or observational biases. A definite directional asymmetry is found only for more distant PN which, however, seems fully explainable by the galactic radial density gradient. No correction is therefore made for directionally dependent incompleteness. Some care is taken in what follows to allow for the effects of distance dependent incompletion.
If it is assumed that the number density of local PN is uniform in the galactic plane and as a function of
distance z from the galactic plane is given by the exponential law,

$$
\begin{equation*}
\rho=\rho_{0} e^{-k z}, \tag{13}
\end{equation*}
$$

then it is easy to derive the density projected onto the galactic plane

$$
\begin{equation*}
\rho_{1}=\frac{2 \rho_{0}}{k} \tag{14}
\end{equation*}
$$

the number N of PN closer than distance D from an observer at $z=0$

$$
\begin{equation*}
N=2 \pi \rho_{0}\left[\frac{D^{2}}{k}-\frac{2}{k^{3}}+e^{-k D}\left(\frac{2 D}{k^{2}}+\frac{2}{k^{3}}\right)\right], \tag{15}
\end{equation*}
$$

and the fraction f_{z} of all PN which are within distance z of the galactic plane

$$
\begin{equation*}
f_{z}=1-e^{-k z} \tag{16}
\end{equation*}
$$

A perusal of the compilation of nebular distances and radii given in Table 2 indicated that the discovery of most PN might be essentially complete to a distance somewhat beyond 1 kpc ; large PN, however, are less evidently complete to that distance. To investigate this more formally, the 266 PN with $R<0.24 \mathrm{pc}$ were selected, and equation (15) was used to compute ρ_{0} for regions at successive distance intervals of 100 pc . As an example, the number of these PN with $800 \mathrm{pc}<D<900$ pc is seven. Writing equation (15) once for $D=800 \mathrm{pc}$ and again for $D=900 \mathrm{pc}$, then subtracting these equations and taking $k=8 \mathrm{kpc}^{-1}$, yields $\rho_{0}=52.5 \mathrm{kpc}^{-3}$. Figure 2 plots the other computed values of ρ_{0} and

FIG. 2. - The computed galactic plane density of PN whose radii are smaller than 0.24 pc plotted vs. distance. The observed number of PN within each 100 pc distance interval is indicated. The actual galactic plane density of these PN is apparently about $55 \mathrm{kpc}^{-3}$; the diminishing densities derived for distances beyond about 1.5 kpc are attributed to incompleteness.

Fig. 3.-The fraction of PN which are within distance z of the galactic plane. Dots: The observed distribution for PN with radii smaller than 0.24 pc and distances less than or equal to 1.25 kpc ; line: An exponential distribution corresponding to a scale height of 125 pc .
indicates the counts of PN within 100 pc intervals of distance from 400 pc to 2500 pc . Very similar results were obtained for other values of k between $5 \mathrm{kpc}^{-1}$ and $15 \mathrm{kpc}^{-1}$. On the basis of Figure 2 it is apparent that this sample of PN is essentially complete out to a distance of about 1.25 kpc and, as will be of interest later, ρ_{0} for PN with $R<0.24 \mathrm{pc}$ is approximately 55 kpc^{-3}.

Selecting the 67 PN of this sample whose distances are less than or equal to 1.25 kpc , the fraction of these which are within distance z of the galactic plane may be computed as a function of z; in doing this, half of each PN is considered to be within its computed z distance and half beyond that distance. Figure 3 shows the relation found by this procedure. The solid curve in Figure 3 is the expected f_{z} versus z relation computed from equation (16) with $k=8 \mathrm{kpc}^{-1}$. The very close agreement between the theoretical curve and the plotted points indicates that the assumed exponential law quite closely represents the distribution of PN and that the scale height is given adequately by $k^{-1}=125 \mathrm{pc}$. This differs little from previous derivations of this quantity (e.g., Cahn and Kaler 1971), and it is similar to the scale height of main sequence stars of approximately $2 M_{\odot}$ (Allen 1973).

IV. DISTRIBUTION OF RADII AND FORMATION RATE

A histogram of the frequency of occurrence of PN radii is shown in Figure $4 a$. Figure $4 b$ is a similar histogram for the 54 PN within 1000 pc . It should be less affected by incompleteness. An attempt is also made to correct the observed number of PN within various radii intervals for the effects of incompleteness. For this purpose, nebulae within each 0.02 pc radius interval, or larger interval if necessary to give a minimum of about 30 PN, were considered separately. Equation (15), with

Fig. 4.-(a) For all 299 PN, the number within each 0.02 pc radius interval. (b) For the 54 PN closer than 1000 pc , the number within each 0.04 pc radius interval. (c) The galactic plane density of PN as a function of nebular radius after correcting for incompleteness. (d) The distribution of nebular radii expected from a simple theory of uniformly expanding PN.
$k=8 \mathrm{kpc}^{-1}$, was used to compute ρ_{0} versus D out to each successive PN arranged in order of distance. In doing this, each PN was again considered to be "smeared out" such that half of it was closer than its computed distance and half of it farther away. For example, for the closest PN in the radius interval $0 \mathrm{pc}<R<0.02 \mathrm{pc}$, $D=0.178 \mathrm{kpc}$ and $N=1.5$ yielding $\rho_{0}=34.1 \mathrm{kpc}^{-3}$ from equation (15). Figure 5 plots the computed values

Fig. 5.-The galactic plane density of PN with radii smaller than 0.02 pc which is implied by the number of such PN which are closer than distance D. The densities are computed from eq. (15) with $k=8 \mathrm{kpc}^{-1}$. The graph indicates that knowledge of the presence of these small PN is essentially complete out to somewhat beyond 1 kpc and that a reasonable estimate of ρ_{0} for these PN is $16.5 \mathrm{kpc}^{-3}$.
of ρ_{0} versus D for $N=0.5$ to 35.5 (the 36 PN in this size range out to slightly beyond 2 kpc) in unit steps of N. An examination of the distribution of the plotted points suggests $\rho_{0} \approx 16.5$ for PN in the smallest radius interval; normalizing to a 1 pc radius interval gives $\tilde{\rho}_{0} \approx 825$ $\mathrm{kpc}^{-3} \mathrm{pc}^{-1}$. This procedure is repeated to determine approximate values of $\tilde{\rho}_{0}$ for nebulae in other radius intervals. Figure $4 c$ displays the resultant histogram which should, then, approximately represent the true radius distribution of PN .

It is curious that the greatest frequency of occurrence is for the very small and the very large PN ; there is also a definite minimum in the number of PN near $R=$ 0.12 pc .

An attempt was made to reproduce the observed size distribution by constructing a simple model for an expanding PN. Figure $4 d$ illustrates the expected size distribution, normalized to $\tilde{\rho}_{0}=150 \mathrm{PN} \mathrm{kpc}{ }^{-3} \mathrm{pc}^{-1}$ as found for optically thin nebulae with $R<0.24 \mathrm{pc}$, of the ionized Strömgren zones of uniform density PN with nonvariable central stars. It is also assumed that the nebulae have constant total mass, have outer surfaces which expand at constant velocity, and become optically thin at a radius of 0.12 pc . The large number of PN at small radii is a consequence of an initially small ionization front velocity. With declining density, the velocity of the front increases so fewer PN are predicted to have the larger radii. Just before the transition to optical thinness, the ionization front velocity is twice the expansion velocity of the medium; hence the discontinuity at a radius of 0.12 pc , where the expected number of PN per unit radius interval doubles. The similarity of the theoretical distribution to the observed distribution for PN with $R<0.24 \mathrm{pc}$ is evident. Furthermore, this simple model is consistent with the observation that among the higher surface brightness PN, expansion velocity increases with radius (Bohuski and Smith 1974). It does
seem, however, that the simple theoretical model predicts too few of the smallest PN and far too few PN with $R>0.24 \mathrm{pc}$. Factors which might improve the agreement are continuous or episodic mass loss from the central stars of the smallest, hence youngest, PN, thereby increasing the time during which the ionized radius is small, and diminished expansion velocities for the largest PN due to friction with the interstellar medium, hence leading to a relatively larger number of these PN. Other factors undoubtedly of importance in modeling the size distribution are nebular radial density gradients and a changing luminosity of stellar ionizing photons during the optically thick stage (see § V). In any case, the appearance of the size distribution histogram and its approximate similarity to the predictions of the simple model for an expanding PN give confidence in the essential correctness of the distance scale used here.

The rate of formation of PN in the galactic plane is given by

$$
\begin{align*}
& r\left(\mathrm{kpc}^{-3} \mathrm{yr}^{-1}\right) \\
& \quad=1.02 \times 10^{-6} \tilde{\rho}_{0}\left(\mathrm{kpc}^{-3} \mathrm{pc}^{-1}\right) v\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \tag{17}
\end{align*}
$$

where v is the velocity of the ionization front for optically thick nebulae, and for optically thin nebulae it is the velocity of the outer boundary of nebular material. From Figure $4 c, \tilde{\rho}_{0} \approx 155 \mathrm{kpc}^{-3} \mathrm{pc}^{-1}$ for optically thin nebulae smaller than 0.24 pc in radius. The area under the histogram in Figure $4 c$ gives a total density in the galactic plane for all PN with $R<0.24 \mathrm{pc}$ of $53 \mathrm{kpc}^{-3}$, or $\tilde{\rho}_{0}=220 \mathrm{kpc}^{-3} \mathrm{pc}^{-1}$. Especially uncertain is the parameter v. Cahn and Wyatt (1976) present arguments for taking $v=20 \mathrm{~km} \mathrm{~s}^{-1}$, whereas Smith (1976) suggests $v=30 \mathrm{~km} \mathrm{~s}^{-1}$ as a low estimate. Therefore, a rather uncertain formation rate in the range $5 \pm 2 \times 10^{-3} \mathrm{PN}$
$\mathrm{kpc}^{-3} \mathrm{yr}^{-1}$ seems to be indicated. This rate is virtually identical to that found by Cahn and Wyatt (1976) and is comparable to the rate of formation of white dwarfs given by Weidemann (1977) of $2 \pm 2 \times 10^{-3}$ WD $\mathrm{kpc}^{-3} \mathrm{yr}^{-1}$.

It is also of interest to estimate the number of PN in the Galaxy. The derivation of this quantity is clearly dependent upon the nebular radius interval being considered and assumed galactic parameters. The radius range 0 pc to 0.24 pc is selected to avoid dealing with the smallness of the statistical sample of large PN. The surface density of PN with $R<0.24 \mathrm{pc}$ is found from equation (14) to be $\rho_{1}=13 \mathrm{kpc}^{-2}$. If the local mass density projected onto the galactic plane is $0.019 \mathrm{~g} \mathrm{~cm}^{-2}$ (Allen 1973) and the number of PN per unit mass is constant in the Galaxy, then there are about 14000 PN per $10^{-11} M_{\odot}$.

v. LUMINOSITY EVOLUTION

The value of the luminosity of PN at 5 GHz is given by $4 \pi D^{2} F_{5} \mathrm{GHz}$ which is, using equations (8) and (9) or equations (11) and (12) and recalling that $S=$ $10^{23} F_{5 \mathrm{GHz}}$,

$$
\begin{array}{r}
L_{5 \mathrm{GHz}}=1.37 \times 10^{21} R^{1 / 3}(\mathrm{pc}) \operatorname{ergs~s}^{-1} \mathrm{~Hz}^{-1} \\
\text { for } R<0.12 \mathrm{pc} \tag{18}
\end{array}
$$

or

$$
\begin{align*}
& L_{5 \mathrm{GHz}}=\frac{1.19 \times 10^{18}}{R^{3}(\mathrm{pc})} \mathrm{ergs} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1} \\
& \text { for } R>0.12 \mathrm{pc} \tag{19}
\end{align*}
$$

Figure 6 illustrates this luminosity-radius dependence. It is evident that there is a significant increase in luminos-

Fig. 6.-The nebular luminosity at 5 GHz vs. nebular radius which follows from the adopted relation between $M[f(t) / \varepsilon]^{1 / 2}$ and θ^{2} / S expressed by eqs. (7) and (10) and shown in Fig. 1.
ity during the optically thick stage; equation (18) predicts a 1.2 mag difference between the smallest ($R \approx$ 0.005 pc) and the largest ($R \approx 0.12 \mathrm{pc}$) of the optically thick PN. The peak 5 GHz luminosity at $R=$ 0.12 pc predicted by equations (18) or (19) is 7×10^{20} ergs $\mathrm{s}^{-1} \mathrm{~Hz}^{-1}$.

If there is one ionization of H for each Lyman continuum photon emitted by the central star, then the number of Lyman continuum photons Q emitted is (Osterbrock 1974)

$$
\begin{equation*}
Q=2.60 \times 10^{-13} g(t) \int N e^{2} d V \mathrm{~s}^{-1} \tag{20}
\end{equation*}
$$

where $g(t)$ is a slowly varying function of temperature and $g(1)=1$. Using equation (2),

$$
\begin{equation*}
L_{5 \mathrm{GHz}}=3.75 \times 10^{-39} f(t) \int N e^{2} d V \operatorname{ergs~s}^{-1} \mathrm{~Hz}^{-1} \tag{21}
\end{equation*}
$$

Combining equations (20) and (21) and taking $g(t) / f(t)$ $=1$ gives the proportional relation:

$$
\begin{equation*}
Q=6.9 \times 10^{25} L_{5 \mathrm{GHz}} \tag{22}
\end{equation*}
$$

Thus a nebular 5 GHz luminosity of 7×10^{20} ergs $\mathrm{s}^{-1} \mathrm{~Hz}^{-1}$ corresponds to 5×10^{46} stellar Lyman continuum photons s^{-1}. The increasing nebular 5 GHz luminosity during the optically thick stage, which is a consequence of the empirical relation shown in Figure 1, implies a steadily increasing emission of stellar Lyman continuum photons. This, of course, does not necessarily require that the stellar luminosity be increasing; in fact, the results here are qualitatively and approximately quantitatively consistent with early central star evolution at constant luminosity but increasing effective temperature as described by Pottasch et al. (1978).

VI. SUMMARY

Distances and radii of 299 PN have been computed after making allowances for the incomplete ionization of the nebular mass for that majority of PN which are optically thick in the Lyman continuum. For many of these radiation bounded PN, the derived distances and radii are significantly smaller than previously published values. Despite this, the distribution of PN perpendicular to the galactic plane (scale height $\sim 125 \mathrm{pc}$) does not differ significantly from that found by others. The size distribution for PN is derived by correcting the "raw" size distribution for incompleteness within each nebular radius interval. This "true" radius distribution differs markedly from any previously derived radius distribution for PN but it seems interpretable, at least to first order, on the basis of a simple model of nebular expan-
sion. The radius distribution also leads to an estimate for the galactic plane formation rate of PN of $5 \pm 2 \times$ $10^{-3} \mathrm{kpc}^{-3} \mathrm{yr}^{-1}$, which is comparable to estimates of the formation rate of white dwarfs. Finally, a significant increase in the 5 GHz luminosity during the optically
thick stage is demonstrated to also be a consequence of the adopted distance scale.

I thank William Kovach for valuable discussions and, especially, Julius Cahn for much valued help and advice.

REFERENCES

Acker, A. 1978, Astr. Ap. Suppl., 33, 367.
Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone Press).
Bohuski, T. J., and Smith, M. G. 1974, Ap. J., 193, 197.
Cahn, J. H. 1976, A.J., 81, 407.
Cahn, J. H., and Kaler, J. B. 1971, Ap. J. Suppl., 22, 319.
Cahn, J. H., and Rubin, R. H. 1974, A.J., 79, 128.
Cahn, J. H., and Wyatt, S. P. 1976, Ap. J., 210, 508.
Cudworth, K. M. 1974, A.J., 79, 1384.
Khromov, G. S. 1979, Astrofizika, 15, 179.
Maciel, W. J., and Pottasch, S. R. 1980, Astr. Ap., 88, 1.
Milne, D. K. 1979, Astr. Ap. Suppl., 36, 227.
Milne, D. K., and Aller, L. H. 1975, Astr. Ap., 38, 183.
${ }^{\text {O}}{ }^{\prime}$ Dell, C. R. 1962, Ap. J., 135, 371 .

Oster, L. 1961, Rev. Mod. Phys., 33, 525.
Osterbrock, D. E. 1974, Astrophysics of Gaseous Nebulae (San Francisco: Freeman), p. 17.
Perek, L., and Kohoutek, L. 1967 Catalogue of Galactic Planetary Nebulae (Prague: Academia).
Pottasch, S. R. 1980, Astr. Ap., 89, 336.
Pottasch, S. R., Wesselius, P. R., Wu, C.-C., Fieton, H., and Van Duinen, R. J. 1978, Astr. A P., $62,95$.
Seaton, M. J. 1966, M.N.R.A.S., 132, 113.
Shklovsky, I. S. 1956a, Astr. Zh., 33, 222.
$1956 b$, Astr. Žh., 33, 315.
$\overline{\text { Smith, }} \mathbf{H} .$, Jr. 1976, Astr. Ap., 53, 333.
Weidemann, V. 1977, Astr. Ap., 61, L27.
C. T. Daub: Astronomy Department, San Diego State University, San Diego, CA 92182

[^0]: ${ }^{\text {a }}$ Nebular extinction and a mean absorption law in the galactic disk.
 ${ }^{\mathrm{b}}$ Nebular radial velocity and a model of galactic rotation.
 ${ }^{\text {c }}$ Spectroscopic parallax of a companion star.
 ${ }^{\mathrm{d}}$ Nebular extinction compared with extinction of angularly nearby stars.

