THE POSITIONS, STRUCTURES, AND POLARIZATIONS OF 404 COMPACT RADIO SOURCES

R. A. PERLEY

National Radio Astronomy Observatory,^{a)} P.O. Box 0, Socorro, New Mexico 87801 Received 16 February 1982

ABSTRACT

Accurate positions of 404 compact radio sources used as calibrators by the VLA are presented. In addition, the structure and polarization of each source at both 4885 and 1465 MHz are given. Eighty-five percent of the sources have spectral indices flatter than 0.5; all of these are dominated by an unresolved core. Half of these flat-spectrum sources contain nearby, associated diffuse structure at a level exceeding $\sim 0.4\%$ of the core brightness at 20 cm.

I. INTRODUCTION

The need for calibration sources is well established in radio astronomy. The recent completion of the VLA (Thompson *et al.* 1981) has made necessary an expanded list of unresolved sources which are evenly distributed about the sky, and whose positions are accurately known. Prior to the summer of 1980, repeated observations using the partially completed VLA resulted in a list of ~400 objects, most of which were suitable for calibration purposes on at least one VLA observing band. However, the observations of these sources were compiled over an interval of about three years, with various resolutions and under varying atmospheric conditions, with the inevitable result that the accuracies in the positions and structures were very inhomogeneous.

With the completion of the VLA in October 1980, a new and much more powerful mode of observing has become available. This mode, generally termed the "snapshot" mode, utilizes the complete (u, v) coverage given by the VLA at any instant, and the sampling theorem of Fourier transforms, to allow up to ~ 500 sources to be mapped in 24 hr. The sampling theorem (Bracewell 1958), applied to radio astronomy, states that a source whose full width is θ radians need only be sampled at intervals of θ^{-1} wavelengths in the aperture plane [i.e., the (u, v) plane] for its complete structure to be reconstructed. In Fig. 1 is shown the instantaneous coverage of the VLA for $\delta = 35^{\circ}$ at H.A. = 0. The average sampling interval is about 1.5 km ("A" array), so we may expect that sources smaller than $\sim 30''$ in extent at 20 cm, and $\sim 10''$ at 6 cm, may be fully mapped in this mode with the VLA. Numerous tests have shown the correctness of this approach. This mode of observing is ideal for compact sources, since their angular sizes rarely exceed 10".

As about 500 observations are the most that can be made in one day, two days of observing, one at 6 cm and one at 20 cm, were required to uniformly survey all sources previously considered for VLA calibration. The

0004-6256/82/060859-22\$00.90

"A" configuration.

© 1982 Am. Astron. Soc. 859

sources were selected mainly by spectral characteristics from the high-frequency Parkes and NRAO surveys. No attempt at completeness was made, so that some sources of high spectral flux density have been omitted. Continuing observations have expanded the list, and the final list of VLA calibrators, comprising ~700 sources, contains nearly all flat-spectrum sources with $S_6 \gtrsim 0.75$ Jy and $\delta > -40^\circ$.

II. OBSERVATIONS AND DATA REDUCTION

The data were taken in two 24-hr sessions. The first, at 6 cm, was on 18–19 November 1980, with 23 operational antennas. The latter, at 20 cm, was on 18–19 February 1981, with 26 operational antennas. Each

FIG. 1. The instantaneous u-v coverage of the VLA at $\delta = 35^{\circ}$ and

 $H.A. = 0^{h}$. The *u* axis is vertical, the *v* axis horizontal. The length of

each axis is equal to the length of the SW or SE arms; i.e., 21 km for the

^{a)}The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation.

⁸⁵⁹ Astron. J. 87(6), June 1982

source was scheduled to be observed once near meridian transit for 3 min, but, owing to the usual occasional problems, a few ($\sim 6-10$) were missed at one frequency or the other. Where possible, data for these missed sources were taken from later observations. Entries in Table II made from these data are enclosed in parentheses.

Amplitude calibration was based on 3C 286, whose fluxes at 4885 and 1465 MHz were assumed to be 7.41 and 14.41 Jy, respectively, in accord with the scale of Baars *et al.* (1977). 3C 286 is slightly resolved to the VLA at both observing frequencies. To avoid flux calibration errors due to this problem, only short baselines were used to determine the fluxes of a number of unresolved secondary calibrators. These were used to calculate the gain of all antennas. The errors in the listed fluxes are believed to be less than 3% for all sources.

The phase calibration was made using 15 astrometric calibrators whose positions are believed accurate to 0".02. This list of sources and their positions are given in Table I. Phase stability was excellent on both days—in particular, the rms phase fluctuation for the astrometric

TABLE I. Astrometric calibrators used in the phase calibration.

Source	α	δ
0121+735	02 h12 m49s925	73°35′40″10
0316+161 CTA 21	03 16 09.138	16 17 40.45
0711+356	07 11 05.607	35 39 52.51
0727-115	07 27 58.100	- 11 34 52.62
0831+557 DA 251	08 31 04.379	55 44 41.32
1226+023 3C 273	12 26 33.248	02 19 43.29
1245-197	12 45 45.218	- 19 42 57.51
1311 + 678	13 11 45.036	67 51 42.31
1547 + 507	15 47 52.272	50 47 09.23
1611+343 DA 406	16 11 47.916	34 20 19.82
1741-038	17 41 20.619	- 03 48 48.88
1928 + 738	19 28 49.348	73 51 44.90
2021+614	20 21 13.297	61 27 18.12
2134+004	21 34 05.205	00 28 25.08
2200+420 BL Lac	22 00 39.363	42 02 08.57

calibrators in the 6-cm data is $\sim 10^{\circ}$. This fortunate circumstance allowed highly accurate positions to be determined for all sources. Independent checks of our accuracies can be determined from the 21 sources in common with the Wade and Johnston (1977) list which

FIG. 2. (a) Histograms of the differences in right ascension and declination for those sources common to our list and that of Wade and Johnston (1977) which are not VLA astrometric calibrators. (b) Histograms of the differences in right ascension and declination for sources common to our list and that of Elsmore and Ryle (1976) whose quoted errors are less than 0.1.

861 R. A. PERLEY: COMPACT RADIO SOURCES

were not used as primary phase calibrators, and from the positions listed by Elsmore and Ryle (1976). In Fig. 2(a) is shown the histogram of the discrepancies between our positions and those listed by Wade and Johnston. The dispersion is less than 0.05 in each coordinate, which is the estimated error of the positions given by Wade and Johnston (the two largest errors in declination are from southern sources). In Fig. 2(b) are the histograms of the discrepancies between our positions and those of Elsmore and Ryle for the sources in common whose quoted errors in Elsmore and Ryle are less than 0.1 arcsec. Here, the dispersion is ~ 0.07 arcsec, but there is a 0.007-s-of-time difference in the right ascension scales (in the sense that the VLA positions lag). Our positions were determined by the simple method of mapping the sources with a 0".05 grid, and reading off the position of the peak. The accuracy is limited by the errors in the baselines, which are believed to be significant at the 0".05 level. The competing effects of position and baseline errors are separable provided wide hourangle coverage is obtained—this is not the case in these observations. Given the dispersion in the histograms shown in Fig. 2, our error estimate of 0.05 is probably generous. South of $\delta = -25^\circ$, the errors in declination increase, becoming $\sim 0^{"}_{..}15$ by $\delta = -40^{\circ}_{..}$

The polarization calibration was accomplished via seven observations of the northern source 0454+844, observations being separated by two hours. This arrangement allows good separation between the (constant) antenna polarization effects, and the source polarization, which is time varying owing to the varying parallactic angle. The antenna polarization calibration thus obtained was accurate to ~0.20% at 6 cm, and 0.25% at 20 cm. The position angle of polarized flux was based on 3C 286, assumed to be 33° at both 6 and 20 cm.

There are three contributions to errors in polarization: (a) thermal noise; (b) errors in antenna polarization; and (c) ionospheric Faraday rotation. The first two are randomized among the baselines and will be reduced in importance by averaging among the correlators. The last contribution is not important at 6 cm, but can be of extreme importance at 20 cm. There is no evidence that strong Faraday rotation effects occurred on 18/19 February as the position angle of the linearly polarized flux of 3C 286 for three widely separated scans agreed to 1°.

All sources at each band were self-calibrated and mapped. These maps were cleaned by the standard algorithm (Hogbom 1974). The clean window was 26" (full width) at 20 cm, and 6"4 at 6 cm. Two different selfcalibrated algorithms were employed: for most sources, the method described by Perley *et al.* (1980) was used. For those not dominated by a central, unresolved core, the algorithm of Schwab (1980) was used.

Many sources at 20 cm display in their visibility functions the presence of large-scale structures which do not appear in the maps. Although in some cases this may be due to single components outside the clean window, in most cases this is the result of confusion from chance sources lying in the field, but outside the area where they can be reliably mapped by the current data. Lower-resolution observations will be required to resolve the confusion.

III. RESULTS

The results are given in Table II. Listed are:

Column 1. Source name, IAU designation.

2. Source name, other catalogs (3C, 4C).

3. Right ascension, epoch 1950.0.

4. Declination, epoch 1950.0.

5. Flux at 4885 MHz (Jy).

6. Flux at 1464 MHz (Jy).

7. Spectral index α_6^{20} , defined by $S_{\nu} \propto \nu^{-\alpha}$.

8. Polarized flux at 4885 MHz (mJy).

9. Position angle of polarized flux at 4885 MHz in degrees.

10. Degree of polarized flux at 4885 MHz, in percent.

11. Polarized flux at 1465 MHz (mJy).

12. Position angle of polarized flux at 1465 MHz.

13. Degree of polarized flux at 1465 MHz.

14. Peak brightness of secondary structure, or upper limit, as percentage of peak, at 6 cm.

15. Peak brightness of secondary structure, or upper limit, as percentage of peak, at 20 cm.

16. Optical identification.

17. Visual magnitude of optical i.d.

18. Redshift.

19. Note to structure (see Table III) for sources marked by an asterisk. A cross (+) indicates that the identification is from Hewitt and Burbidge (1980).

Important comments concerning Table II follow.

Column 2. It is often difficult to decide whether a given 4C source is to be identified with a compact source. A conservative approach has been used.

5 and 6. This is the flux of the core in all cases where this can be determined. Sources where this could not be done have an asterisk in column 14 or 15. The error in the flux is estimated to be less than $\sim [(0.03S)^2 + (0.002)^2]^{1/2}$ Jy, with S in Jy.

8, 9, 11, and 12. The listed flux applies to the core only, unless the core cannot be distinguished, in which case the listing applies to the whole source. The error in polarized flux is estimated to be $[4 + (0.40S)^2]^{1/2}$ mJy, where S is the total flux in Jy. The error in position angle is strongly dependent upon the polarized flux, and is roughly given by $65[4 + (0.4S)^2]^{1/2}/m$ deg.

14 and 15. Listed secondaries are generally found within the clean-search window defined earlier. Occasionally, larger windows were searched to find more distant structure. The absence of a listed secondary does not guarantee the source has none—it may lie outside the search window. This is particularly true at 6 cm where the search window was 6".4 wide. Entries marked by an asterisk indicate the source is slightly resolved, but not enough for a reliable map.

16-18. These are taken from Hewitt and Burbidge

18.0 1.178 *+ * ŧ (18)(19 Ŧ G 12.5 0.017 * q 17.33 0.720 + 0.047 * 1.601 2.107 1.365 18.39 18.0 G 16.3 17.41 18.2 18.2 2.5 BL 17.0 2.9 (<0.3) <0.4 9 19.5 18.5 0.2 < 0.2 < 0.5 G 20.2 BL 15.5 0.3 < 0.3 < 0.3 G 21.1 2.0 G 19.7 15) (16)(17) 19 5 9 с σ σ σ o <0.3 <0.3 EF σ o σ 6.6* 6.0* G 0.4* 4.3 <0.3 <0.4 6.0 <0.4 <0.7 0.3 (<0.4) <0.5 <0.2 ----<0.2 <0.4 <0.5 <0.7 1.5 3.0 7.4 0.1 <0.5 <0.5 2.8 (<0.2) <0.5 0.8 3.2 <0.4* <0.4 1.7 <0.3 <4 2.1 14 0.7 <0.4 <0.3 <0.3 1.4 0.1 75 2025 ٥.4 0.3 0.1 ł 0.2 14.4 3.2 0.2 1.7 1.6 3.9 0.7 4.1 0.1 1.3 X20 -20 -12 22 ¢ 22 20 -23 -25 -59 86 -59 5 - 75 70 -27 13 -44 -31 -18 54 57 59 -86 17 ء 20 8 13 \$ ø 5 6 3 Ξ 5 73 2 10 7 62 15 ŝ 11 đ Ś (1.0) (3.5) (6.4) 0.6 2.8 1.5 0.2 0.3 0.1 0.2 1.8 3.2 0.2 5.8 ∾ے 1.4 3.8 0.2 0.1 9.4 0.5 4.0 1.3 3.2 2.9 ×6 (1.03) (1)(-33) (-.25)(16) (85) -40 67 27 -47 72 69 60 23 7 1 15 -56 -29 65 47 60 -22 37 -.20)(47)(15) 84 (8) (9) 55 đ 173 e° 80 -.12 36 .43 79 1 27 20 ∾ -45 N ŝ N m 99 m 5 43 ŝ 14 -.13 -.21 -.49 α 20 (7) ،04 -.87 -.40 .17 .43 . 73 . 33 -.32 -1.26 -.31 -.45 -.25 -.07 . 75 .92 .65 1.31 (1.02) 0.83 2.70 0.34 2.85 8.15 0.40 2.30 0.45 s 20 1.53 1.82 0.63 0.75 0.97 0.72 1.83 0.43 0.38 0.68 1.00 3.60 0.45 4.3 2.51 (9) (1.24) (0.46) (0.96) 1.70 1.25 0.97 1.09 1.22 0.60 1.12 0.59 1.37 3.25 4.55 0.84 1.27 0.70 1.35 1.2.1 0.49 0.55 3.4 1.16 °° 40 17.30 73 10 51.46 -42 18 40.70 -09 45 24.25 -00 09 18.80 38 50 32.80 17 07 37.50 -26 18 49.25 34 39 57.70 -40 50 21.20 01 19 01.06 22 28 44.10 02 06 24.75 -00 01 41.77 -02 02 59.25 30 04 57.05 16 20.70 -01 42 54:95 -11 52 04.50 -21 07 55.00 -21 57 15.20 -42 09 50.6 05 51 26.6 23 03 34.9 (7) ώ -06 56 03 40.293 00 23 18.914 00 48 09.983 07 59.383 00 16 54.198 00 19 51.650 00 22 15.417 00 26 34.834 00 55 05.634 00 56 31.762 04 27.575 12 43.920 13 43.217 16 32.404 00 38 24.233 01 06 04.523 01 07 53.796 08 47.254 09 23.611 11 08.570 14 25.954 08 21.30 00 19 58.02 00 39 25.70 3 Ş 8 8 8 5 10 6 10 5 6 10 5 0019-000 4C+00.02 4C-02.04 4c-00.06 3C, 4C 4C01.02 4C56.02 2 0038-020 0056-001 0106+013 0107+562 0016+731 0003-066 171+7000 0008-421 0019+058 0022-423 0023-263 0026+346 0039+230 0048-097 0055+300 0104-408 0109+224 0112-017 0113-118 0114-211 0116-219 0108+388 0111+021 Source (1)

2 R. A. PERLEY: COMPACT RADIO SOURCES

TABLE II. Positions, fluxes, and polarizations for the 404 compact sources.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

862

0.059

16

c

<0.3* <0.3

..

33

...

11-74

2

. 43

2.46

1.48

05.83

31 55

16 47.249

5

4C31.04

0116+319

TABLE II. (continued)

0.637 *+ 2.025 *+ 0.831 *+ 0.367 #+ 1.740 *+ (18)(19) 1.070 + 0.860 + 1.466 + 1.213 + 2.345 + <0.5* <0.8* q 17.71 2.065 + 0.610 18.5 18.6 18.5 q 19.5 16.7 18.0 16.2 16.9 (16) (17) 17.5 18.0 16.0 19.5 21.9 20.0 19.5 21.1 Q 16.5 18 16 19 18 18 19 19 υ σ σ c 2 σ σ 0.4+ 0> ----ð c 0 σ σ σ c σ c <0.8* <0.7* Q o c c ð σ 1.4 <0.3 6.0 1.4 <0.8 <2.0 40.4 <0.4 0.7 <0.3 <0.8 <2.5 < 0.7 <0.3 <2.0 5.4 0.0 <0.3 <0.8 <0.4 <0.2 <0.5 <0.4 <0.6 <0.2 10 2.2 <2 2.4 < 0.5 < 0.3 0.6 <1.0 <0.3 <0.2 <0.6 < 1.2 < 0.4 < 0.2 <0.3 <0.2 2.8 4.0 1.4 1.0 0.1 3.3 1.6 0.5 ۲.2 5.1 0.2 0.2 0.8 1.5 2.5 4.0 1.7 1.0 1.5 4.2 ~.ł 0.5 0.7 × 20 -69 49 38 - 30 - 35 -70 -85 50 64 57 12 - 47 -58 -20 - 7 48 æ 15 -82 11 33 - it6 7 -31 1 ء0 20 68 ٢ 6 19 N 42 ٢ 28 17 42 26 Ξ ω ŝ 2 ŝ 13 28 1 N 18 49 2 28 13 1.4 (.79(236)(-73) (4.2) 1.4 4.1 2.0 0.2 2.4 2.8 2.2 2.6 (-.50)(25)(-60) (2.3) (.02) (6)(-66) (0.6) 3.2 0.2 مح 6.5 -0.3 0.2 1.2 4.9 2.4 2.7 1.4 0.4 1 10) -.07 12 -10 -.18 9 -14 -70 -.69 56 42 -10 - 14 6 37 53 ∾ 31 70 -64 36 84 70 -65 23 82 43 36 -60 -.26 30 وہ ^ع 51 19 24 33 6 ŝ ~ 17 65 20 36 4 32 12 m 55 ¢ -.04 =---.16 -.14 - .44 .01 -.42 .09 - 02 .08 .03 .06 -.46 Ξ. -.03 -.47 00.--.13 20 0.60 1.62 0.80 0.60 0.60 0.37 1.10 0.80 1.06 1.83 0.74 0.68 0.86 s 20 (5.60) 14.6 0.92 0.87 1.11 2.35 0.43 1.21 1.25 2.35 0.37 1.93 4.0 (1.07) (1.09) 2.22 0.87 1.36 0.46 1.61 0.85 0.54 1.29 0.82 0.78 0.78 1.12 0.96 3.62 0.66 0.74 2.36 1.46 1.32 2.27 2.21 2.28 22.85 32 54 20.52 74 28 05.65 06 45 50.40 67 07 39.70 40.60 35 11.35 03.93 -27 17 07.35 11 34 09.30 04 06 44.00 24 46 52.10 -00 21 31.25 47 36 12.80 -24 46 08.65 -09 43 51.65 18 42 28.60 21 52 20.7 -33 25 10.65 14 59 50.95 31 58 10.35 -17 15 39.43 40.10 01 07 13.35 05 41 00.8 ŝ (4) 11 20 73 35 60 24 13 28 16 35 17.110 18 09.531 19 03.083 33 55.105 38 56.860 02 07.403 02 34.515 49.937 52.630 19 54.284 34 49.832 47 05.584 50 56.987 53 04.350 02 09.656 21 49.960 19 21.393 22 55.177 16 32.457 24 41.175 29 02.527 34 55.593 01 05.997 46 45.53 49 31.74 3 ಶ 12 35 5 5 5 6 5 6 5 5 01 10 5 10 10 02 02 01 02 02 02 02 05 02 20 02 02 4c-00.10 3C, 4C 4C13.14 4C15.05 4C67.05 4C06.11 4C28.07 (2) 3C48 0202+149 0221+067 0134+329 0224+671 0122-003 0229+131 0118-272 0119+115 0133+476 0135-247 0146+056 0149+218 0150-334 0153+744 0201+113 0202+319 0202-172 0212+735 0234+285 0235+164 119+041 0119+247 0138-097 0147+187 0216+011 Source (1)

863 R. A. PERLEY: COMPACT RADIO SOURCES

+# 8/6.0 (18)(19) Q 17.5 1.258 #+ 0.852 #+ 16.63 2.223 + 17.17 1.417 *+ 18.7 1.215 *+ 18.0 1.536 *+ Q 18.5 1.455 + 2.048 *+ 17.76 0.915 + 0.048 # 2.109 + 14.0 0.029 0.4 6 12.7 0.018 18.5 18.4 19.5 20.02 15.5 19.0 ; G? 15.6 17.5 (16)(17) 22.0 19 18 16 9 υ σ σ <0.2 <1.0 q ð 1.3 0.8 Q 0.3 <0.5* <0.2 EF ð ð ð σ EF σ <0.4 EF σ o o o c σ 2.6 1.0 <0.5 0.6 1.1 <0.4 <0.6 <0.3 1.6 <0.6 2.8 <0.5 1.0 4.2 < 0.2 4.6 <0.3 0.6 <0.4 25 0.4 170 9.8 0.14 <0.2 <0.3 <0.3 <0.3 <0.5 <0.2 1.0 0.8 <0.3 <0.5 <0.3 0.4 0.7 < 0.3 <0.4 <0.5 <0.2 <0.5 32 0.3 2.7 0.9 0.4 0.2 1.5 2.3 1.2 28 4.4 1.3 0.8 1.2 2.7 5.7 0.6 3.3 4.4 0.9 1.7 5.3 1.4 1.4 0.2 X 20 (12) 97-58 12 5 47 62 -15 20 -39 20 5 20 28 47 72 -83 -82 20 25 37 31 27 30 -17 -65 20 11 20 N ŝ 20 ٢ 22 20 -Ξ 58 5 17 9 38 154 89 32 σ 16 20 Ξ 16 N 1.3 3.2 4.2 0.3 1.8 0.9 0.6 0.1 0.1 10 0.1 7.6 2.5 4.2 2.1 3.5 4.6 3.0 1.7 1.3 2.4 0.3 0.2 1.0 0.3 -70 --43 -37 33 45 79 80 76 -39 -87 67 -25 43 57 -57 75 -35 -17 67 10 50 6 64 15 135 111 360 24 ူဖစ္ပါ 5 22 58 7 m Ξ 37 N 20 m 13 13 2 84 47 36 6 -.10 -1.11 -1.02 -.51 .48 -.34 .06 - .44 -.14 -.30 -.21 -.05 . 16 .81 . 39 .15 -.64 -.09 -.14 2² 27 -.53 .04 -1.00 . 13 .37 0.60 5.90 0.74 0.33 1.14 0.75 0.79 7.80 0.42 1.75 0.45 1.34 3.15 2.18 0.88 15.2 4.70 1.75 0.73 0.95 0.92 0.38 0.76 1.11 1.15 1.27 0.81 0.68 1.80 0.88 0.45 0.65 3.72 1.13 1.13 1.06 0.74 -23 22 06.27 3.25 0.65 1.10 43 02 56.95 1.40 16 17 40.40 2.95 0.53 50 41.90 0.71 1.92 2.62 2.82 -21 29 07.85 0.94 41 19 51.89 58.0 50 49 20.29 10.2 04 03 29.65 -02 47 32.85 -08 28 08.95 10 48 16.15 03 55 13.05 07 50 16.65 -40 18 23.85 32 08 36.67 25 51 46.50 12 10 31.60 -01 56 16.92 -31 55 41.90 22 57 27.60 -18 58 29.65 -36 13 11.75 12 09 49.25 27 28.81 32.70 ÷ (7) 57 18 ē 5 37 13.717 37 52.789 02 38 37.356 37 14.407 02 39 47.093 48 18.490 03 05 49.053 03 16 09.135 03 16 29.560 32 12.103 03 32 25.238 03 17 00.043 19 08.206 03 33 22.400 03 36 58.954 03 55 45.256 03 38 23.281 00 03.589 00 23.609 02.598 06 35.476 04 09 44.666 23.354 43.540 32.673 3 8 02 14 20 5 80 80 02 02 03 03 04 5 10 5 0 ñ 10 3C, 4C 4C16.09 4C32.14 4C50.11 2 3C78 3C108 3C84 0305+039 0316+162 0237+040 0237-233 0238-084 0248+430 0316+413 0333+321 0355+508 0237-027 0239+108 0319+121 0409+229 Source 0317+188 0332+078 0332-403 0336-019 0338-214 0400+258 0400-319 0402-362 0406+121 0420-014 0414-189 0421+019 E

864 R. A. PERLEY: COMPACT RADIO SOURCES

TABLE II. (continued)

864

TABLE II. (continued)

Source	30,40	8	с. С	^ک ر	s 02	کی مو	× ′′ = ′′	مح	Ē	×	م 02	e B	8 20	0	e >	z
(1)	(2)	(3)	(1)	(5)	(9)	[1]	(<u>8)</u> (9)	(01)	Ē	(12)	(13)	(11)	(12)	(16)	(11)	(18)(19)
0422+004		04 22 12.520	00 29 16.65	1.31	0.98	24	110 -14	8.4	f†3	-58	4.3	<0.3	< 1.5	BL.	16	+ *
0422-380		04 22 56.168	-38 03 09.10	0.94	0.43	65	18 13	1.9	6	83	2.1	< 0.3	<1.5	æ	16.5 (1.78 +
0426-380		04 26 54.710	-38 02 52.05	0.62	0.58	06	38 -70	6.1	39	30	6.7	1.4	7.0	ø	19	*
0428+205		04 28 06.861	20 31 09.13	2.35	3.85	.41	2 60	0.1	٢	C	0.2	< 0.4*	<0.2	с 0	50	0.219
0429+415	3C119	04 29 07.899	41 32 08.55	3.70	8.60	.70	25 -75	0.7	15	0	0.2	<0.4*	<0.2	σ	50	1.408 +
0430+052	3C120	04 30 31.600	05 14 59.50	3.50	3.37	03	170 -14	4.9	Ξ	8 -	3.2	<0.5	3.6	o	15.0 (0.032 *
0434-188		04 34 48.967	-18 50 48.15	0.97	0.74	22	8 39	0.8	٢	-41	0.9	<0.2	< 0.7	σ	20	
0435+487	4C48.13	04 35 14.085	48 42 52.10	0.54	1.37	11.	3 32	0.6	~	7	0.1	<0.6*	<0.3			
0438-436		04 38 43.184	-43 38 53.10	3.05	4.70	.36	37 19	1.2	18	-43	0.4	1.6	1.8	o	18.8	2.852 #+
0440-003		04 40 05.293	-00 23 20.60	1.18	1.90	.40	26 23	2.2	46	~	2.4	2.0	5.2	a	19.22	.850 *+
0444+634		04 44 42.36	63 26 55.5	(01,0)	0.44	(80.)	(3)(-66)	(0.8)	80	ŝ	1.8		4.0>	σ		
0446+112		04 46 21.217	11 16 17.80	0.53	0.50	.05	5 43	0.9	8	-50	1.6	2.2	15	с	50	*
0451-282		04 51 15.133	-28 12 29.30	1.83	2.35	.22	83 82	4.5	56	39	2.4	<0.5	1.7	σ	19	*
0454+066		04 54 26.407	06 40 30.05	0.37	0.43	. 12	22 -67	5.9	23	-67	5.3	0.8	<1.0	co	19.2	*
0454+844		04 54 57.155	84 27 53.00	1.12	0.73	36	41 -34	3.7	19	-42	2.6	<0.2	<0.3	σ	16.5	
0454-234		04 54 57.29	-23 29 28.7	(2.17)	2.43	(60.)	(75) (-64	(3.5)	67	89	2.8		<0.5	ø	18.0	
0457+024		04 57 15.543	02 25 05.60	1.21	1.81	.33	1 -85	0.1	2	47	0.1	<0.4	< 0.2	σ	18	2.384 +
0500+019		05 00 45.176	01 58 53.82	1.94	2.40	.18	4 46	0.2	ŝ	75	0.1	< 0.3	<0.3	EF		*
0511-220		05 11 41.815	-22 02 41.20	0.99	0.63	37	19 -31	1.9	6	61	1.4	1.0	2.6	ð	19.5	*
0514-161		05 14 01.076	-16 06 22.60	0.83	0.58	30	23 1	2.8	58	6	10.0	۱.۱	12	o	18	1.278 *+
0518+165	3C138	05 18 16.532	16 35 26.90	4.20	9.40	.67	444 -12	10.6	703	-4	7.5	<2.0*	<0.4*	σ	18.84 (0.760 *+
0519+011		05 19 42.346	01 10 41.40	0.44	0.67	.35	18 -83	4.1	N	-10	0.3	1.0	<1.0			*
0528-250		05 28 05.205	-25 05 44.55	49.0	1.32	.28	9 - 16	1.0	9	-72	0.5	0.7	<0.5	σ	17.7	2.765 *+
0528+134		05 28 06.760	13 29 42.20	4.30	1.65	80	95 - 35	2.2	15	7-	0.9	40.2	1.2	σ	20.3	*
0529+075		05 29 56.494	07 30 38.10	1.84	2.25	.17	8 -53	0.4	25	-41	1.1	0.5	1.8	σ	19	*
															i	!

865 R. A. PERLEY: COMPACT RADIO SOURCES

TABLE II. (continued)

Z	(18)(19)	*	*	0.894 *+	3.110 *+	0.545 *+	*	2.365 +	*	1.926 +	0.324 +	*		*		2.165 +	3.402 +		*			*	*		1.620 +	*
E)	111	17.7		15.5	20	17.8	20	18	18	20	18	19.1	17.5	21	19	18.5	18.49					19.5	16.0	17	11	
-		0 1		σ	ø	o i	σ	c	σ	œ	a	c	σ	υ	ð	σ	σ	Ē				с	σ	œ	c	BL
8 20	[[]	• < 0.6	2.0	1.0	<0.8	< 0.5*	4.4	<0.5	2.0	<0.7	<0.2	<0.5	ł	*≀	<1.0	<0.5	< 0.3	< 0.4	2.1	0.4*	<0.7	3.2	5.8	<0.2	<0.2	9.8
89	(11)	<2.5	< 0.4		0.3	≮2*	0.6	<0.6	0.4	<0.4		0.9	< 0.3	ł	<0.4		<0.3	< 0.3	!	<1.2	< 0.3	2.9	1.1		<0.3	< 0.8
20	[1]	0.1	0.6	1.5	1.5	0.1	2.3	0.4	0.8	0.7	3.0	1.6	ļ	9.6	0.6	1.8	0.8	0.2	2.6	0.2	0.1	0.1	3.5	0.2	1.6	4.3
X 20	1217	15	3	-26	-13	75	37	-48	-3	30	-18	-58	ł	12	35	-9	-5	-18	- 38	61	32	-	-28	-17	- 15	-52
2 ²	Ę	\$	4	68	12	25	24	1	25	5	50	17	:	1720	-	14	7	-	18	2	ŝ	-	25	5	29	19
<u>و</u>		0.3	5.4	(0.1)(2.4	0.3	1.8	(0.8)	1.0	1.6	(1.8)	1.5	۲.		. 4	(1.1)	0.5	0.1	(1.3)	2.2	0.1	0.4	1.8	(1.0)	0.8	2.8
×°	5	33	62	(55	38	Ξ	-85	-41)	-88	28	10)	-80	9-	1	.32	25)	-16	10	(3)	.33	10	-51	-65	15)	91.	e
E	8	2	22	(017)	29	5H -	23 .	(36)(-	- 28	12	(12)	16 -	-		~	(12)	4	-	(12)	10	ę	-	12	(2)	°	16
ی 20 20	Ξ	.83	74.	(01.)	34	.85	17	(81)	.06	00.	(92.)	05	32	.65	97	(29)	.14	34	(26)	. 72	34	1.04	.03	(.28)	. 39	21
s 20	(9)	6.80	0.72	4.45	0.79	22.0	1.05	1.67	2.93	0.73	1.64	1.04	(0.68)	18	0.17	0.80	0.86	0.55	.70	1.07	1.70	0.80	0.71	2.20	1.78	0.44
°°	(2)	2.50	0.41	(11.00)	1.19	7.90	1.26	(4.45)	2.73	0.73	(0.66)	1.10	1.00	(8)	0.55	(1.13)	0.73	0.83	(0.96)	0.45	2.57	0.23	0.68	(1.57)	1.11	0.57
Ŷ	(4)	19 25 24.75	53 10 54.25	-44 06 46.8	-28 41 27.95	49 49 42.78	-05 43 15.10	39 48 21.9	-08 34 20.30	-22 19 46.20	-15 42 03.1	60 47 14.82	82 03 56.50	-05 51 11.8	68 01 27.24	-34 56 32.8	44 54 30.85	60 05 14.20	-30 40 55.1	69 14 46.20	-16 34 05.85	69 24 52.36	47 37 07.90	43 54 26.0	35 39 52.56	71 26 15.25
8	(3)	05 31 47.357	05 37 13.520	05 37 21.00	05 37 56.931	05 38 43.507	05 39 10.993	05 52 01.34	06 05 36.027	06 06 53.379	06 07 26.00	06 09 50.866	06 15 32.752	06 24 43.19	06 36 47.622	06 42 37.42	06 42 53.014	06 46 04.107	06 46 19.2	06 46 29.261	06 48 10.296	06 53 20.520	07 07 02.590	07 10 03.36	07 11 05.603	07 16 13.032
30,40	(2)					3C147								30161						3C169		40.69.09				
Source	(1)	0531+194	0537+531	0537-441	0537-286	0538+498	0539-057	0552+398	0605-085	0606-223	0607-157	109+6090	0615+820	0624-058	0636+680	0642-349	0642+449	009+9†90	0646-306	0646+692	0648-165	16946390	0707+476	0710+439	0711+356	1111+9110

 $\ensuremath{\textcircled{O}}$ American Astronomical Society $\ \bullet \$ Provided by the NASA Astrophysics Data System

867 R. A. PERLEY: COMPACT RADIO SOURCES

TABLE II. (continued)

Source	3C, 4C	ಶ	ю	ຮັ	s	ني کړو	Ę`	×ʻ	۵`	E	×	٩	ص `	ຄິ	2	e '	z
(1)	(2)	(3)	(1)	(5)	(9)	N2 [2]	8	°6]	(10)	25	(12)	(13)	14	(15)	116	111	(18)(19)
0723-008		07 23 17.837	-00 48 55.40	2.00	2.42	. 16	77	06	2.2	39	34	1.6	< 0.2	< 0.2	σ	18	0.128
0727-115		07 27 58.100	-11 34 52.62	2.58	2.04	-, 19	50	-36	0.8	52	۰ ۲	2.5	٤.0 >	<0.3			
0733-174		07 33 31.417	-17 29 06.23	1.97	3.09	.37	-	38	0.1	9	-	0.2	<0.2	ć0.2			
0735+178		07 35 14.126	17 49 09.30	2.20	2.20	00.	21	80	1.0	1	-52	0.3	0.4	1.0	BL	14,85	‡
0736+017		07 36 42.513	01 44 00.20	1.78	2.70	.35	132	58	7.4	256	-57	9.5	<0.2	< 0.3	σ	16.47	0.191 #+
0738+313		07 38 00.178	31 19 02.07	1.62	2,00	. 17	57	27	3.5	Ξ	43	0.6	< 0.4	<0.2	œ	17.0	0.630 +
0738+272		07 38 20.906	27 13 48.45	0.52	1.00	.54	-	60	~	~	33	0.2	<0.4	<0.4			
0741-063	4C-06.18	07 41 54.700	-06 22 20.00	3.00	8.50	.86	m	53	0.1	6	58	0.1	<0.5#	<0.24	•		
0742+318	4C31.30	07 42 30.738	31 50 16.25	0.65	0.62	ti0	-	-85	ñ.	m	58	0.5	<0.4	1.2	σ	16	0.462 *+
0742+103		07 42 48.465	10 18 32.54	3.85	3.65	06	5	63	0.1	æ	13	0.2	<0.4	<0.2	EF		
0143-006		07 43 21.050	-00 36 55.75	1.34	0.86	37	12	60	0.9	ñ	-23	0.3	<0.2	<0.5	c	17.5	
0745+241		07 45 35.726	24 07 55.50	1.08	0.57	53	28	27	2.6	••	1	0.5	<0.5	4.0	œ	18.5	*
0748+126		07 48 05.060	12 38 45.35	1.53	1.70	60.	27	111	1.8	23	-58	1.4	<0.5	0.6	σ	17.8	0.889 *+
0748+333		07 48 41.052	33 21 03.55	0.55	0.73	ħ2.	19	20	3.5	15	50	2.1	4.02	<0.4	σ	18.5	1.932 +
0759+183		07 59 55.293	18 18 15.35	0.65	0.59	08	80	65	1.2	ø	-67	1.4	4.02	1.0	σ	18.5	*
0804+499		08 04 58.396	49 59 23.10	1.56	. 93	43	26	9t)	1.7	14	57	1.5	<0.2	¢0.7	ð	17.5	
0808+019		08 08 51.127	01 55 51.20	0.37	011.	.06	ñ	-1	0.8	N	°-	0.5	<0.6	1.8	Bل	17.5	+ +
0812+367		08 12 10.712	36 44 27.45	0.81	.70	12	18	65	2.2	37	- 70	5.3	2.9	11.5	σ	18	1.025 *+
0814+425		08 14 51:672	42 32 07.73	1.83	1.46	19	6	-33	0.5	37	-23	2.5	<0.3	1.2	σ	18	*
0820+560		08 20 53.206	56 02 27.45	0.94	1.18	. 19	38	۲	4.0	909	-13	5.1	0.8	3.3	σ	18	1.409 *+
0823+033		08 23 13.537	03 19 15.33	1.05	1.08	.02	23 .	-75	2.2	27	-50	2.5	<0.4	<0.2	ð	18	
0823-223		08 23 50.074	-22 20 34.80	1.78	1.22	31	64	-2	3.6	19	117	1.6	<0.3	<1.2	c	17.5	*
0826-373		08 26 12.009	-37 21 05.98	3.65	3.42	05	5	5 2	0.3	Ŷ	-5	0.2	4.02	<0.2			
0827+243		08 27 54.400	24 21 07.65	0.59	0.62	ħ0.	29	37	4.9	31	54	5.0	< 0.3	4.1	c	17.5	0.939 *+
0828+493		08 28 47.970	49 23 33.00	1.12	1.27	.10	20	-30	1.8	35	-23	2.8	<0.2	<0.2	σ	18.5	

					TAB	BLE II. (c	ontinu	ed)									
Source	3C, 4C	8	\$ \$	s 6	s ²⁰	23°° 6	<u>و</u> هم	×°õ	٩ ٥	20 50 50	X 20 (12)	20 20 (13)	B 8 (14)	8 20 (15)	01	<u>د</u> ک	Z (18)(19)
0831+557	4C55.16	08 31 04.379	55 44 41.37	5.60	8.65	.36	-	2	0.1	20	•	0.2	<0.4*	0.4	υ	19	0.242 *
0833+585		08 33 23.757	58 35 30.30	1.23	0.57	64	- 02	2	1.6	18	-50	3.2	4.0>	1.5	ð	18	*
0834-201		08 34 24.603	-20 06 30.35	1.43	2.84	.57	. 11	-27	1.2	15	N	0.5	<0.2	< 0.4	σ		
0834+250		08 34 42.316	25 04 54.30	0.55	0.57	.03	Ξ	45	2.0	10	-40	1.8	<0.5	<1.5	σ	18.0	1.122 #+
0836+710	4C71.07	08 36 21.560	71 04 22.45	2.67	3.90	.31	203 -	-78	7.6	266	-84	6.8	1.0	2.8	σ	16.5	*
0839+187		08 39 14.086	18 46 27.25	1.02	1.40	.26	- 58	-67	2.7	46	15	3.3	<0.2	<0.2	ø	16.5	0.259
0850+581	4C58.17	08 50 50.153	58 08 55.70	0.96	0.70	26	w	62.	0.3	15	47	2.1	<0.5	7.0	σ	18	1.322 *+
0851+202		08 51 57.253	20 17 58.44	2.33	1.70	26	106	87	4.5	157	-31	9.2	< 0.2	<0.3	BL	14	0.306 +
0859+681		08 59 23.031	68 09 16.20	0.49	0.65	.23	12 .	.78	2.4	22	59	3.4	<0.4	<0.3	ð	19.5	
0859+470	4647.29	08 59 39.980	47 02 56.80	1.7	2.0	. 13	36	68	2.1	24	30	1.2	5.2	12.8	ð	18.7	1.462 *+
0859-140		08 59 54.950	-14 03 38.85	2.07	3.00	.32	14	11	2.0	95	-72	3.2	<0.3	0.6	σ	16.59	1.327 *+
0906+015	401.24	09 06 35.19	01 33 48.0	(1.52)	0.80	(53)	(77) (-37)	2.8)	55	-54	6.9		3.6	σ	17.5	1.018 *+
0917+624		09 17 40.314	62 28 38.60	1.32	1.21	07	1 †6	55	3.5	11	42	3.4	<0.3	<٥.4	σ	19.5	
0917+449		09 17 41.919	44 54 39.60	1.00	0.67	33	4	-27	4.0	15	-54	2.2	<0.6	2.4	ð	19	*
0919-260		09 19 16.706	-26 05 54.55	2.44	1.13	64	61	53	2.5	7	12	1.0	< 0.2	<0.5	σ	19	2.300 +
0922+005		09 22 33.760	00 32 12.20	0.75	0.81	.06	25	83	3.3	31	27	3.8	<0.3	<0.5	ð	18.07	1.72 +
0923+392	4C39.25	09 23 55.316	39 15 23.51	7.60	1.90	-1.15	66	7-	0.9	N	:	0.1	0.8	15	ø	17.86	+# 669.0
0925-203		09 25 33.545	-20 21 44.95	0.94	0.72	- : 22	21	61	2.2	æ	-43	1.1	<0.4	6.8	ð	16.4	0.348 *+
0941-080		09 41 08.646	-08 05 44.03	1.17	2.72	.70	-	37	0.1	5	-13	0.2	< 0.2	< 0.3	υ	19	
0945+408	4C40.24	09 45 50.075	40 53 43.35	1.04	1.46	.28	69	12	6.6	115	25	7.9	1.2	4.0	σ	17.5	1.252 *+
0953+254		09 53 59.742	25 29 33.55	1.46	0.92	38	15	6	1.0	19	35	2.1	< 0.2	< 0.6	ø	17.46	0.712 #+
0954+556	4C55.17	09 54 14.355	55 37 16.35	1.90	2.71	.29	- 119	-16	3.4	57	-1	2.1	2.4	7.4	o	17.7	+* 606.0
0954+658		09 54 57.853	65 48 15.55	0.64	0.23	85	28	-19	4.4	12	17-	5.2	< ٥.4	4.2	ø	18.5	*
0955+476		09 55 08.530	47 39 28.25	0.7tł	0.66	10	21	58	2.8	22	-59	3.3	< 0.3	1.2	œ	18.0	1.880 *+
0955+326	3C232	09 55 25.406	32 38 23.00	1.15	1.5	.22	4	63	0.3	80	73	0.5 .	< 0.5*	<0.5*	σ	15.78	0.533 +

868 R. A. PERLEY: COMPACT RADIO SOURCES

Source	3C,4C	8	ŵ	s	s	ю в	×	٩	E	×	٩	æ	æ	9	E	Z
(1)	(2)	(3)	(11)	(<u>5</u>)	20 [6]	20 20	6 6 (8) (9)	(10)	11)	20 (12)	20 (13)	(14) 6	20 151 (161(, 1 1	18)(19)
0959-443		09 59 58.764	-44 23 29.75	0.43	0.32	25	1 22	0.2	N	55	0.6	< 0.7	60	0	0	.021 *
1004-018		10 04 31.710	-01 52 30.85	0.52	0.52	.00	19 29	3.7	14	16	2.7	1.3	4.2	ð	. 17 1	.212 #+
1015+359		10-15 16.228	35 57 41.30	0.87	0.79	08	31 72	3.6	17	89	5.2	< 0.3	< 0.5	e T	-	.266 +
1015-314		10 15 53.388	-31 29 11.33	1.45	3.83	.81	2 10	0.1	£	16	0.1	< 0.5*	< 0.2*	EF		
1020-103		10 20 04.236	-10 22 33.55	0.40	0.65	.40	titi -60	11.0	70	60	10.7	3.6	9.6	9 7	.5 0	.197 *+
1021-006		10 21 56.200	-00 37 41.55	0.77	1.04	.25	15 -13	1.9	£	-29	0.3	<0.3	1.6	81 0	1.22 2	.547 * +
1030+415		10 30 07.803	41 31 34.45	0.58	0.63	.07	9 52	1.6	15	78	2.4	0.6	2.0	۵ 13	1.2 1	.120 #+
1031+567		10 31 55.964	56 44 18.15	1.33	1.94	.31	2 -88	0.2	5	-19	0.3	< 0.3	< 0.2	۵ ۲		+
1032-199		10 32 37.366	-19 56 02.15	116.0	0.94	0	39 - 88	4.1	49	68	5.3	1.1	4.8	۵ ۱	2	.198 *+
1034-293		10 34 55.833	-29 18 26.95	1.44	0.98	32	36 -28	2.5	35	-54	3.6	< 0.2	<0.5	BL 18	-	+
1036-154		10 36 39.478	-15 25 28.10	0.38	0.54	.29	22 l45	5.7	38	43	7.0	< 0.5	< 0.5	0 1	.5	
1039+811		10 39 27.788	81 10 23.70	0.83	0.82	01	3 -20	0.4	e	-30	ŋ. ŋ	0.4	1.4	91	.5	*
1044+719		10 44 49.750	71 59 26.86	1.06	0.65	41	20 -12	1.9	~	-17	0.3	0.5 .	< 0.7	EF		*
1049+215	4C21.28	10 49 07.192	21 35 48.45	0.90	0.97	90.	20 -15	2.2	41	-23	4.2	0.5	2.2	91 31	.5 1	.300 *+
1055-242		10 55 29.936	-24 17 44.60	0.55	1.03	.52	4 82	0.7	N	† -	0.2	<0.5*	< 0.3	EF		*
1055+018	4C01.28	10 55 55.316	01 50 03.45	3.23	3.05	05	62 - 79	2.1	162	20	5.3 .	4.02	0.5	۵ 18	0	.890 *+
1104+167	4016.30	11 04 36.640	16 44 16.40	0.39	0.30	22	3 80	0.8	5	90	1.7	<0.5	4.5	۵ 1	.7 0	.634 *+
1104-445		11 04 50.417	-44 32 51.90	2.75	2.20	19	42 -85	1.5	38	-68	1.7	<0.3	0.9	۵ ۱۶	.2 1	.598 *+
1108+201		11 08 41.034	20 11 54.20	0.58	1.25	.64	1 52	0.2	2	-10	0.2	<0.3	<0.2	G 15	_	
1116+128	4C12.39	11 16 20.777	12 51 06.65	1.25	1.87	.33	32 -60	2.6	18	-84	1.1	3.4	10.9	0 15	. 25 2	.118 *+
1117-248		11 17 40.923	-24 51 41.40	0.70	1.68	.73	17 -35	2.4	31	-32	1.8	*~~~	<0.3*	۵ 1	.07 0	+ 994
1117+146	4C14.41	11 17 50.992	14 37 21.08	1.08	2.52	.70	2 40	0.2	9	-10	0.2	. 6*	<0.3	0 20	_	
1123+264		11 23 14.874	26 26 49.95	0.96	0.95	01	23 22	2.4	15	-	1.6	<0.3	<0.3	0	.5 2	.341 +
1127-145		11 27 35.673	-14 32 54.40	4.52	6.08	.25	222 -30	4.9	300	75	4.9	<0.2	<0.2	a 16	. 9	. 187 +
1128-047		11 28 57.502	-04 43 46.05	06.0	0.67	25	5 60	0.5	2	-	0.3	<0.5	3.6	6 20		*
																Ĩ

869 R. A. PERLEY: COMPACT RADIO SOURCES

1

TABLE II. (continued)

‡ * * * * 12.86 0.158 *+ 17.5 0.753 *+ 18.0 0.267 *+ * (18)(19 0.957 + 1.950 0.6 9 17.6 1.982 2.9 14.6 Q 16.1 0.334 0.2 < 0.4* < 2.0 q 17.5 0.258 0.729 0.871 16.64 15.6 B ID W 20 15) (16)(17) 18.5 20.5 18.5 18.5 20.5 18.5 19.0 20.5 <0.4 <0.4 Q 16.2 <0.3 <0.3 G 17.5 <0.2 <0.3 BU 16.5 <0.4 1.0 BL 16 19 0.6 < 0.2 < 0.3 Q 18 0.3 < 0.5 < 0.4 9 <0.2 <0.3 Q σ 0.9 Q σ σ 2.0 <0.4 <0.4 Q σ σ σ 0.9 Q ò ø σ σ 4.8 5.4 16.5 0.9 1.2 0.8 2.7 < 0.3 < 0.5 1.7 < 0.2 < 0.4 <0.3 <0.6 1.3 21 <0.4# 1.4 < 0.4 0.3 3.2 3.6 <0.5 P B B (13) (14) < 0.4 < 0.3 < 0.3 0.8 1.4 1.0 2.1 4.5 0.2 <u>ک</u> 1.6 2.1 2.3 1.4 5.5 2.5 3.1 1.5 4.7 1.2 ł -1.3 ^m20²⁰ 2111 (12) -62 52 18 -14 -42 - 14 10 -27 33 -18 -62 -20 -16 73 6 -47 75 -87 -17 -29 67 1 12 17 29 128 9 N 14 22 12 34 394 = 2 ∾ 47 ł ŝ 26 15 16 20 38 1 13 3.0 0.4 2.4 0.5 0.2 2.8 2.9 2.2 2.4 6.6 1.0 2.5 2.1 1.6 3.1 ... 4.1 3.1 5.1 1.8 1.8 4.3 2.1 0.1 3.5 (10) ■ × 6 × 6 (8) (9) 0 38 -89 13 8 18 80 -37 24 -57 27 -56 20 24 85 47 20 16 19 -35 33 24 37 - 78 7 44 -60 18 -63 21 -76 730 -25 43 -52 -27 19 -33 13 24 N 33 73 38 ŝ N 43 29 N 29 -.14 -.19 .10 .15 -.22 -.52 -.03 -. 0 .14 .49 .07 ۱0. .04 -. 19 .31 .17 .12 .15 . 33 .03 -.07 .26 -.29 .62 .15 2³2 1.03 2.50 1.40 0.48 1.07 0.54 0.59 1.01 0.73 2.82 0.58 4.80 1.88 (1.2) 1.47 0.85 1.80 0.52 1.33 1.08 1.28 0.81 (1.3) 32.1 1.01 5⁵2 1.50 1.18 0.49 1.35 4.70 1.18 0.65 0.94 2.43 0.64 1.05 0.74 1.94 0.47 2.68 0.93 1.56 0.99 0.82 1.97 0.44 1.02 1.15 0.84 30.5 3 54 13 22.80 40 15 14.15 55 30.60 34 34.60 07 13.30 81 15 10.25 49 47 50.00 30 36.45 56 41.16 02 19 43.29 23.55 -22 33 51.55 -24 30 52.90 -07 08 00.75 -34 48 47.15 25 06 59.81 31 25.65 -17 15 05.25 35 04 54.95 46 34.90 47 27.05 07 46 45.35 57.51 82 -10 07 00.65 20. **[**†] ÷ 14 42 57 29 -37 24 0 -03 -01 48 28 80 -19 : 44 04.582 16 38.570 42 50.233 43 36.373 44 30.870 11 47 44.000 11 48 10.130 11 51 49.443 12 13 11.674 45 18.300 11 55 51.645 11 56 57.791 12 13 24.826 19 01.120 21 47.660 22 19.100 26 33.248 36 52.310 07.287 45.218 44 21.024 11.50 23.502 11 50 48.005 28.793 717.70 (3) 8 37 43 45 52 Ξ Ξ Ξ 1 Ξ Ξ 12 12 12 12 12 12 12 2 12 22 40-00.47 30,46 4C49.22 4C29.45 1213+350 4c35.28 (2) 3C273 1150+497 1148-001 1156+295 1226+023 1144+542 1144-379 1145-071 1151-348 1155+251 1213-172 1216+487 1219+285 1143-245 1144+402 1147+245 1150+812 1221+809 1222+037 1142-225 1236+077 1237-101 1243-072 1252+119 Source 245-197 3

870

TABLE II. (continued)

Source (1)	3C, 4C (2)	α (3)	۹ ۱۹)	s وو	s 20 (6)	ری 28 هر	■ × 6 6 (8) (9)	ر ارو ارو ارو ارو	■ X 20 2((11) (1;	6	20 B 13) (14)	8 (15)	01	* 117	z (18)(19)
1253-055	3C279	12 53 35.838	-05 31 08.04	9.50	6.8	28	140 37	1.5	240 -2	7 3	.5 1.8	8.0	a	17.75	0.538 *+
1255-316		12 55 15.182	-31 39 05.03	0.98	(1.15)	.13	50 -75	5.1	1		<0.4		ð	18.5	
1302-102		13 02 95.854	-10 17 16.45	0.78	0.57	26	6 13	0.8	ю •	0	.5 <0.4	1.7	σ	14.92	0.286 *+
1311+678	4C67.22	13 11 45.036	67 51 42.26	0.93	2.37	. 78	2 27	0.2	6 -2	。 。	.3 <0.3	*<0.2	۲. ۲.		
1313-333		13 13 20.054	-33 23 09.65	1.47	(1.55)	1 0.	27 4	1.8	1		<0.4		E		
1315+347		13 15 17.790	34 41 02.50	0.35	0.40	н.	5 -83	1.4	91 0	ہ ۳	.2 4.8	11.8	σ	19	1.050 *+
1320-446		13 20 07.395	-44 36 53.40	1.08	3.0	.85	9 72	0.8	11 -21	0	.4 <0.4	* <0.2			
1323+799		13 23 30.986	79 58 27.60	0.65	0.54	15	7 -63	1.1	1 -5(0	.2 <0.3	<0.6	*		
1323+321		13 23 57.916	32 09 43.00	2.35	4.70	.58	5 -4	0.2	13 -6	0	.3 <0.3	* <0.2	c	19	
1328+254	3C287	13 28 15.927	25 24 37.38	3.30	6.90	.61	151 -24	4.6	50 41	•	.7 <0.3	* < 0.2	σ	17.67	1.055 +
1328+307	3C286	13 28 49.657	30 45 58.59	7.41	14.41	.55	835 33	11.3	1410 33	6	4.0 8.	1.3	σ	17.25	0.849 *+
1334-127		13 34 59.809	-12 42 09.80	4.20	1.90	66	201 -15	4.8	43 5	2	.3 0.4	3.6	σ	18.5	*
1339+696		13 39 29.919	69 38 30.30	0.19	0.32	.43	tt -8	2.0	2	0	.6 <0.8	< 0.7			
1345+125	4C12.50	13 45 06.170	12 32 20.30	2.90	5.25	.49	7 63	0.2	14	0	.3 <0.3	< 0.2	c	17	0.122
1347+539	4CP53.28	13 47 42.570	53 56 08.35	0.85	1.10	.21	16 15	1.9	15 2	-	.4 < 0.5	2.0	σ	17.3	*
1351-018		13 51 32.033	-01 51 20.05	0.88	0.82	06	4 68	0.5	5 -20	0	.6 <0.2	<0.7			
1354-152		13 54 28.600	-15 12 51.85	2.42	1.33	50	40 -50	1.7	19 -76	5	4.0.4	1.6	σ	18.5	*
1354+195	4C19.44	13 54 42.086	19 33 43.95	1.28	1.55	. 16	51 67	4.0	53 -86		4.0.4	7.0	σ	16.02	0.720 *+
1357+769		13 57 42.129	76 57 53.30	0.52	0.31	43	7 -26	1.3	3 -2(.0 <0.5	<0.6	σ	19	
1358+624		13 58 58.360	62 25 06.70	1.79	4.30	.73	II 60	0.3	13 -15	0	.3 <0.2	< 0.2	U	19.9	
1402-012		14 02 11.293	-01 16 01.80	0.60	(0.68)	.10	10 -80	1.7	:		<0.4	-	ð	18.38	2.518 +
1402+660	4C66.14	14 02 48.393	66 05 57.45	0.62	1.93	46.	1 38	0.2	3 50	•	.2 <4*	<0.3	÷.		
1404+286		14 04 45.613	28 41 29.22	2.98	0.83	-1.06	6 86	0.2	3	•	.4 <0.2	<0.3	ဗ	14.0	0.077
1413+135		14 13 33.910	13 34 17.40	1.23	1.13	07	3 45	0.2	3 -1	0	.3 <0.2	<0.4	œ	20	
1413+349		14 13 56.270	34 58 29.35	1.02	1.86	.50	2 -61	0.2	6 8	0	.3 <0.3	<0.4	EF		

871 R. A. PERLEY: COMPACT RADIO SOURCES

0.361 *+ ŧ 1.191 #+ (18)(19) 2.331 #+ q 16.2 0.314 #+ * 0.876 + 1.522 2.060 1.090 0.9 9 15.5 1.833 Q 17.78 3.53 <0.3 2.2 Q 16.52 Q 19.5 q 19.0 B 10 "V 20 (15) (16)(17) <0.7 16.2 G 17.9 <0.3 <0.5 Q 18.5 15.5 <0.5 <0.4 Q 19.8 q 19.5 G 20.0 18.5 20.5 18.5 Q 18.5 9.4* 12.3* 0 17 15 Q 21 <0.4 <0.3 BL 15 q 18 5 σ BL σ <1.5* <0.4* q <0.5 2.0 EF</pre> Ц В σ <0.3 <0.6 1.0 1.6 0.6 1.4 0.6 5.1 0.9 < 0.4 3.3 <0.2 <0.2 <0.3 <0.5 <0.6 <0.2 4.3 <0.3 <0.2 <0.3 <0.2 2.0 *: -**40.6 24** <0.5 <2 2.9 1.0 <0.3 0.6 < 3* 3.4 2.0 0.3 0.5 0.3 4.7 20 [13] 0.9 3.3 0.6 1.3 2.1 3.2 5.7 0.7 3.3 2.8 0.1 4.1 6.0 2.5 0.3 4.6 0.2 0.4 4.5 X 20 (12) -10 26 0 5 -25 -49 12 0 -77 -69 -28 -33 -12 -54 24 72 -66 34 117 37 -44 63 -33 47 20ء 18 17 25 2 5 32 35 10 2 17 22 N 16 41 27 66 48 ħ 135 53 ¢ 68 2.6 0.4 0.2 2.3 3.4 4.6 1.5 4.2 2.0 2.2 1.8 3.5 4.3 3.3 0.6 5.8 1.3 7.4 2.6 0.1 ٦. 0.1 2.8 0.5 8.8 10 ×° ŝ 46 50 ŝ -88 -24 15 -48 50 - 30 12 50 87 80 55 ٩ 1 -35 75 79 86 68 18 -23 17 -88 -81 81 -33 24 2 18 23 36 12 -13 50 16 56 43 178 36 -60 33 140 ء 8ء .12 .41 -.08 -.20 .28 .80 -.17 -.03 -.05 -.24 -.85 . 34 .60 -.72 -.52 Ε.-.30 -.28 .42 -.29 .68 . 29 .05 --21 .61 2²2 ø 0.35 0.98 1.12 0.36 2.50 0.67 0.35 0.76 0.35 1.47 1.05 2.03 1.60 2.32 2.26 2.09 2.72 2.27 0.53 1.05 1.03 1.06 1.50 1.63 0.61 20 [9] 0.97 0.60 0.80 1.43 2.85 0.68 1.41 0.68 0.78 0.87 0.31 0.82 0.83 0.40 0.73 0.96 3.30 2.40 2.29 1.20 0.75 1.52 0.78 1.60 1.22 54 19 29.70 24.00 43.75 29.45 34.90 01.65 20 55.55 54 36 58.00 56 44.60 -17 48 24.30 03.15 63 49 35.85 62 24 47.00 10 11 12.10 17 33 39.65 76 13 13.90 -37 35 22.25 48 03 04.00 10 41 17.71 37 42 23.30 -16 40 59.25 -05 31 48.95 -08 54 47.55 -24 11 22.55 21.80 6 23 34 25 14 23 49 -27 19 -13 40 14 57 01 41 4Q 2 27 43.703 30 10.650 15 04 16.419 15 08 14.976 15 10 08.903 14 45.275 24 12.875 14 15 13.429 14 18 06.188 27 44.055 25.407 35 37.240 41 43.560 14 48 58.264 51 18.284 14 59 07.240 04 12.958 14 37 32.021 42 50.483 15 19 37.282 20.173 44 15.451 02 00.159 28.286 30.231 (3) 8 34 Ξ 32 38 1 14 1 ħ 14 14 14 14 14 15 5 5 5 15 5 15 4C-05.64 3C, 4C 4046.29 4C14.60 (2) 415+463 1508-055 418+546 427+109 1427+543 430-178 1444+175 502+106 1504-166 1538+149 1434+235 1435+638 1437+624 1441+252 1448+762 1451-375 1504+377 1510-089 1511+238 1514-241 1519-273 524-136 532+016 1442+101 1459+481 Source 3

TABLE II. (continued)

TABLE II. (continued)

1(19	*	13 +		*	*	+ 02		*		10+	86 +	*	*	*	75 +	14 *-	8 8	* 01	42 ÷	*	23 *		*	95 +	*
z (18		0.4				1.7				1.4	2.0				2.4	1.8	6.0	0.7	0.7		0.0			0.5	
<mark>ء</mark> کر ا	19	18		18	18	19.3		18.5	19.	17.5	19				18.7	18	20.6		17	22.5	14.0	19.0	18.5	15.96	20.5
ai (91)	σ	σ		σ	σ	σ	E E	σ	σ	a	σ			EF	σ	σ	σ	σ	σ	υ	o	σ	σ	ø	σ
8 (15)	<0.8	< 0.4	< 0.3	< 0.3	2.5	< 0.2	< 0.3	<0.6	<0.2	<0.2	5.8	2.8	2.6	< 0.5	4.0>	40.4	4.0>	17	2.0	<0.6*		<0.3	1.8	6.3	9.3
8 6 (14)	40.4	<0.2	< 0.3	<0.5	1.0	<0.3	<0.2	40.4	<0.3	<0.2	1.4	1.0	<0.3	1.4	<٥.6	40.4		<0.8	0.6	<1.5*	<0.5	<0.8*	<0.4	1.0	1.1
P 20	0.2	2.6	0.3	0.1	0.8	3.3	0.2	2.8	0.2	2.0	1.7	1.0	7.1	0.2	0.2	1.3	0.1	2.8	1.4	0.2	0.6	0.2	1.4	3.3	4.2
X 20 (12)	-12	-42	-65	60	-83	-86	67	-82	9-	83	112-	-29	76	110	777-	1	-29	-80	-30	-33	11	20	-73	84	88
20 [1]	5	25	2	ŝ	80	31	5	31	10	54	17	17	144	£	2	24	9	13	13	6	ŝ	ŝ	9	232	53
р (10)	0.1	1.3	1.6	1.1	2.9	2.7	0.1	1.8	0.2	1.7	3.0	1.4	4.9	0.2	4.7	1.4	(1.1)	2.3	2.3	0.1	0.1	0.1	0.9	4.3	2.4
×9(6)	27	-24	-112	69	-85	-65	-23	33	31	27	51	83	4	7	10	20	(02)	58	-72	-55	-12	12	7-	30	-36
وي (8	-	59	Ξ	19	20	25	N	30	m	38	25	22	121	~	18	31	(11)	12	36	-	-	-	1	330	0 1
ه و 20 (7)	.58	70	.01	. 18	. 25	.02	.23	33	.85	14.	.18	١٠.	16	.34	.66	15	(96.)	08	46	1.10	27	.62	56	09	25
s 20 (6)	1.68	0.98	0.70	2.09	0.95	0.95	2.67	1.11	4.70	2.67	1.03	1.75	2.02	1.75	0.84	1.85	4.80	747.0	0.90	4.42	0.47	2.10	0.42	6.95	1.25
دی (5)	0.84	2.27	0.69	1.68	0.70	0.93	2.03	1.65	1.68	2.25	0.83	1.54	2.45	1.16	0.38	2.21	(1.53)	0.52	1.56	1.20	0.65	1.00	0.82	7.75	1.68
§ (4)	00 35 41.80	02 46 06.05	50 47 09.23	05 36 11.25	13 05 41.25	00 06 43.54	33 35 09.60	10 36 59.75	26 49 18.60	34 20 19.82	06 20 14.25	-25 20 51.50	-29 44 41.15	41 41 23.50	68 03 38.85	38 14 10.05	62 51 41.63	47 23 28.55	57 26 15.70	62 40 34.30	82 38 18.50	12 25 46.32	39 52 30.08	39 54 10.82	69 02 13.20
8 (E)	15 43 36.252	15 46 58.293	15 47 52.276	15 48 06.933	15 51 12.032	15 55 17.694	16 00 11.910	16 06 23.397	16 07 09.289	16 11 47.916	16 16 36.537	16 22 44.110	16 22 57.246	16 24 18.252	16 29 50.817	16 33 30.628	16 34 01.078	16 36 19.150	16 37 17.432	16 37 55.305	16 37 56.970	16 38 27.923	16 38 48.172	16 41 17.608	16 42 18.076
3C, 4C (2)				4005.64				4010.45						4641.32	4C68.18	4C38.41	3C343	4647.44		3C343.1		4C12.60		3C345	4C69.21
Source	1543+005	1546+027	1547+507	1548+056	1551+130	1555+001	1600+335	1606+106	1607+268	1611+343	1616+063	1622-253	1622-297	1624+416	1629+680	1633+382	1634+628	1636+473	1637+574	1637+626	1637+826	1638+124	1638+398	1641+399	1642+690

873 R. A. PERLEY: COMPACT RADIO SOURCES

TABLE II. (continued)

	01 00	i		(1	٥											
source	30,40	5	0	ິ	s 20	а 20	E 'C	~~c	۔ م	ຼີຄ	2	ູ	ھ ۲	ຄິ	9	e ^{>}	Z
(1)	(2)	(3)	(4)	(5)	(9)	E	(<u>8</u>)	<u>ה</u> ה	٥ ٢		12)	[13]	(II)	122	(16)	,11	(61)(81)
1648+015		16 48 31.579	01 34 25.65	0.72	(0.72)	0.00	28 -	15 3	6.	l.			60.3				
1654+866		16 54 31.382	86 37 07.21	0.29	0.85	.89	-	52 0		-	12	0.1 <	:0.6	<0.3			
1656+053		16 56 05.620	05 19 47.05	1.55	1.42	07	. 11	т т	9.	ŝ	81	0.4	1.4	5.6	σ	16.48	0.879 *+
1656+347		16 56 12.270	34 47 59.80	0.70	0.44	39	10 -1		4.	v	11	1.4	1.3	7.4	σ	19	1.936 *+
1656+571	4C57.28	16 56 26.429	57 10 25.80	0.38	0.41	.06	14 -	-1 3	.7	25	34	6.1	4.3	43	σ	17.4	1.293 *+
1657-261		16 57 47.720	-26 06 29.25	0.72	0.57	19	13 6	5	8.	Ξ	52	1.9	(0.5 4	<0.5			
1705+456		17 05 50.41	45 40 02.0	(0.70)	0.81	(.12)	-)(61)	18)(2	2	38	34 1	4.7 ·		< 0.5	ø	17.6	0.646 +
1714+219		17 14 03.743	21 55 28.55	0.51	0.63	.18	12 5	3 2	4.	16	62	2.5 <	0.5 4	< 5	co	19.0	
1716+686		17 16 27.838	68 39 48.30	0.57	0.35	40	8- 6	1	9.	-	50	3.1	0.7	2.0	σ	18.5	*
1717+178		17 17 00.322	17 48 08.50	0.59	0.49	15	33 1	8	9	- 02	80 1	4.1 <	0.4	<0.5	σ	18.5	
1725+123		17 25 47.656	12 18 03.40	0.47	0.25	52	11 -8	نہ وب	E.	6	5 61	3.6 <	0.9	2.0	σ	50	*
1725+044		17 25 56.336	04 29 27.90	0.92	0.65	29	6	5	0	13	20	2.0 <	0.3	1.3	σ	18.2	0.293 #+
1726+455		17 26 01.199	45 33 04.55	0.52	0.61	.13	25 -1	2 4.	80	28	78 L	1.6 <	0.7	<0.6	σ	61	
1730-130		17 30 13.534	-13 02 45.78	5.10	4.45	Ε	148 5	1 2.	6	50	116	3.4 <	0.3	3.2	σ	18.5	*
1732+389		17 32 40.487	38 59 46.90	1.20	0.85	29	34 4	1 2.	80	35 -	28 h	4.1 <	0.3 4	<0.3	Ö	19.0	
1739+522		17 39 29.005	52 13 10.45	0.90	0.86	04	11 6	7 1.	N	7 2	85 1	1.3 <	0.3	1.4	o	18.5	1.375 *+
1741-312		17 41 09.340	-31 15 20.70	0.52	0.24	64	10 -5		6	i 	1	0.4 <	0.6	5.7			*
1741-038		17 41 20.615	-03 48 48.88	2.70	1.49	49	33 5	3 1.	N	13	10	> 6.0	0.3 4	<0.3	σ	18.5	
1743+173		17 43 22.236	17 21 09.15	1.12	1.10	01	48 6	8 4.	3		28 3	3.7 <	4.0	0.7	σ	6	*
1748-253		17 48 45.789	-25 23 17.43	0.53	1.27	.73	12 -5	0 2.	E.	-	6	.1 <	0.4 <	(1.0			
1749+701		17 49 03.400	70 06 39.60	0.96	1.07	.09	4 7	1 0.	4		25 Q	7	1.3 <	<0.4*	BL 1	2	*
1749+096		17 49 10.386	09 39 42.80	1.85	1.28	31	112 8	0 6.	-	- -	36 0	> 6.0	0.7 <	6.02	٦	7	+
1751+288		17 51 45.404	28 48 36.60	0.72	0.83	.12	31	04.	æ	і б	38 1		0.4 <	\$0.6	ð	0	
1751+441		17 51 53.715	44 10 17.80	0.86	0.53	40	15	0 1.	7	; -	:	0.2 <	0.6	13.2			*
1800+440		18 00 03.191	44 04 18.30	0.65	0.45	31	20 -4	2 3.	-	5	18 5	.6	3.7	25.2	ð	7.5	0.660 *+

874 R. A. PERLEY: COMPACT RADIO SOURCES

875

TABLE II. (continued)

 $\ensuremath{\textcircled{O}}$ American Astronomical Society $\ \bullet \$ Provided by the NASA Astrophysics Data System

BL 18.67 0.557 *+ Q 18 1.936 + 20 1.686 *+ 3 16.9 1.943 *+ 161(17) (18)(19) 2 17.2 1.180 *+ * 2 17.5 1.878 + q 17.3 3.270 + 15.98 0.501 + 2 18 1.013 + 2 18.5 2.427 + 2 18.5 2.055 + Ζ q 19 q 19 q 18.5 q 18.5 Q 18.5 ۳ ۵ Q 18 <u>H-</u> ч TABLE II. (continued)

						2											
Source	3C, 4C	8	9	s 66	s 20	a 20	ے فور ع	×°õ	а 61	= 50 20	X 20 12)	20 20	B 6 (11)	B 20 (15)	(19L)	E / / / /	Z (181/191
2008-159	151	20 08 25.914	-15 55 38.25	1.23	0.47	- 80	6	12	0.5	8	-40	1.7	<1.0	10	a	17.2	1.180 #+
2008-068		20 08 33.699	-06 53 01.75	1.33	2.61	.56	-	ţ.	0.1	ø	8-	0.3	<1.0	2.0			*
2010+723	4C72.28	20 10 16.207	72 20 20.75	0.87	1.00	.12	- 14	.31	5.4	31	13	3.1	1.2	4.1	ø	19	*
2021+614		20 21 13.296	61 27 18.12	2.31	2.15	06	-	-26	0.1	9	-9	0.3	<0.3	<0.3	ð	19	
2029+121		20 29 32.679	12 09 28.70	0.66	0.77	. 13	4	-	0.6	2	-9	0.9	4.0>	1.8	σ	18.5	*
2037+511	3C418	20 37 07.454	51 08 35.71	3.70	5.1	.27	13 -	-65	0.4	139	49	2.7	1.7	9.2	a	20	1.686 *+
2037-253		20 37 10.759	-25 18 26.35	0.63	0.68	.06	23	45	3.7	12	-85	1.8	<0.4	<2.0	σ	18.5	*
2044-168		20 44 30.816	-16 50 09.70	0.60	0.50	. 15	10	56	1.7	#	0	0.8	6.0	32	σ	16.9	1.943 *+
2047+098		20 47 20.779	09 52 02.00	0.62	0.31	58	-	٢	0.2	-	ł	0.3	<0.4	<0.6	EF		
2058-297		20 58 00.914	-29 45 15.00	0.88	0.57	36	14	80	1.6	6	-80	1.6	1.2	3.6	c	18	*
2059+034		20 59 08.009	03 29 41.45	0.50	0.51	.01	20	14	4.0	ť	-55	0.8	<0.5	<0.6	σ	18	1.013 +
2106-413		21 06 19.391	-41 22 33.35	2.40	1.63	32	98	33	4.1	75	-61	4.6	1.4	<1.0			*
2121+053		21 21 14.800	05 22 27.45	4.45	3.62	17	112	52	2.5	90	60	2.5	< 0.2	<0.2	σ	17.5	1.878 +
2126-158		21 26 26.775	-15 51 50.40	1.07	0.60	48	4	25	0.4	N	25	0.3	< 0.3	< 0.7	σ	17.3	3.270 +
2128+048		21 28 02.613	04 49 04.30	2.07	4.12	.57	7	33	0.2	6	-3	0.2	<0.2	< 0.3	ΕF		
2128-123		21 28 52.672	-12 20 20.57	3.07	1.33	69	- 61	-47	0.6	22	-24	1.7	<0.3	<0.3	σ	15.98	0.501 +
2131-021	4C-02.81	21 31 35.126	-02 06 39.95	2.67	2.12	19	- 11	-12	2.8	56	-50	2.6	0.4	2.4	BL	18.67	0.557 *+
2134+004		21 34 05.205	00 28 25.08	10.0	3.58	85	78	55	0.8	80	-5	0.2	<0.3	<0.2	ø	18	1.936 +
2135-209		21 35 01.323	-20 56 03.70	1.45	3.62	.76	5	-16	0.3	8	-25	0.2	< 0.6*	<0.7*			*
2136+141		21 36 37.407	14 10 00.63	1.40	1.18	14	5	51	0.4	Ξ	- 14	0.9	40.4	<0.3	σ	18.5	2.427 +
2143-156		21 43 38.872	-15 39 37.30	0.59	0.75	.20	14	-57	2.4	14	10	1.9	< 0.4	< 0.8	σ	18.5	2.055 +
2144+092		21 44 42.473	09 15 51.15	1.32	0.82	40	13	75	1.0	11	-20	0.5	1.2	8.4	σ	18.5	*
2145+067	4C06.69	21 45 36.076	06 43 40.90	2.53	2.95	.13	25	43	1.0	111	-24	0.5	4.0>	0.6	σ	16.47	+* 066.0
2149-307		21 49 00.592	-30 42 00.15	1.10	1.05	04	53	61	4.8	22	-78	2.1	1.3	7.0			*
2149+056		21 49 07.696	05 38 06.85	10.94	0.79	14	~	23	0.2	~	-30	0.3	<0.3	< 0.3	Ξ		

TABLE II. (continued)

0 ID m Z 10 (18)(17) (18)(19	4 G 21 *	6 BL 17.5 *+	3 BL 14.5 +	5 Q 15.47 0.297 +	6 Q 19.5 *	4 q 19.5 *	2 Q 16.38 0.901 *+	7* Q 18 *	6 Q 18.5 0.323 +	7 G 19.6 *	6 Q 17.33 1.037 *+	ł Q 19 0.795 +		4 Q 19	4 q 19 5 q 17.3 0.63 *+	4 Q 19 5 Q 17.3 0.63 *+ 8 Q 18.6 2.268 +	4 Q 19 5 Q 17.3 0.63 *+ 8 Q 18.6 2.268 + 4 Q 17.0 0.237 +	4 Q 19 5 Q 17.3 0.63 *+ 8 Q 18.6 2.268 + 4 Q 17.0 0.237 + 4 Q 16.1 0.859 *+	4 Q 19 5 Q 17.3 0.63 *+ 8 Q 18.6 2.268 + 4 Q 17.0 0.237 + 4 Q 16.1 0.859 *+ Q 19.25 0.673 *+	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 17.1 0.859 *+ 4 0 16.1 0.859 *+ 4 19.25 0.673 *+ 7 19.25 0.673 *+	4 Q 19 5 Q 17.3 0.63 *+ 8 Q 18.6 2.268 + 4 Q 17.0 0.237 + 4 Q 16.1 0.859 *+ Q 19.25 0.673 *+ 7 BL 16.5 + 6 19 **	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 17.1 0.859 *+ 4 0 16.1 0.859 *+ 7 19.25 0.673 *+ 7 8L 16.5 + 6 19 5 - + 0 0 16.5 + + 0 19 0.633 *+	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 17.10 0.237 + 4 0 16.1 0.859 *+ 7 16.1 0.857 *+ + 7 8L 16.5 0.673 *+ 6 19.25 0.673 *+ + 6 19 0.633 *+ 6 19 0.633 *+	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 15.1 0.859 *+ 4 0 16.1 0.859 *+ 4 19.25 0.673 *+ 7 BL 16.5 + + 6 19 0.673 *+ + 6 19 0.673 *+ + 6 19 1.4.9 *+ + 6 19 1.4.9 *+ + 7 19 0.633 *+ + 6 19 0.633 *+ + 7 19 0.119 *+ + 8 0.18.1 1.498 *+ +	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 15.1 0.859 *+ 4 0 16.1 0.859 *+ 7 8L 16.5 + + 7 8L 16.5 + + 6 19 0.673 *+ + 6 19 0.633 *+ + 8 0.119 *+ * * 6 18 0.119 *+ * 6 18.1 1.498 *+ * 6 18.5 * * *	4 19 5 8 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 17.1 0.237 + 4 0 16.1 0.237 + 4 19.25 0.673 *+ 7 8L 16.5 + 6 19 5 5 6 19 0.633 *+ 6 19 0.119 * 6 18.1 1.498 *+ 6 18.1 1.498 *+ 6 18.1 1.498 *+ 6 18.1 1.498 *+ 7 0.794 * *	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 17.0 0.237 + 4 0 15.1 0.859 *+ 4 0 16.1 0.859 *+ 6 19.25 0.673 *+ 6 19 1.6.5 + 6 19 0.633 *+ 6 19 0.633 *+ 7 19 0.633 *+ 6 19 1.498 *+ 7 18.1 1.498 *+ 7 18.1 1.498 *+ 6 18.5 * * 7 0 17 0.044 *+ 7 0 17 0.044 *+	4 0 19 5 0 17.3 0.63 *+ 8 0 18.6 2.268 + 4 0 18.6 2.2568 + 4 0 17.0 0.237 + 4 0 16.1 0.859 *+ 6 19.25 0.673 *+ 7 8L 16.5 + 6 19 0.673 *+ 6 19 0.633 *+ 7 19 1.1498 *+ 6 18.1 1.498 *+ 7 0 17 0.048 + 7 0 17 0.048 + 6 20 20 4 + 6 15.97 0.677 +
B 20 (15)	2 <0.4	9 7.6	3 <0.3	5 <0.5	2 2.6	9 6.4	4 6.2	2 < 0.7#	7 <0.6	3 0.7	3 3.6	2 <0.4		3 <0.4	3 <0.4 4 0.5	3 <0.4 + 0.5 - <0.8	3 < 0.4 4 0.5 - < 0.8 0* < 0.4	3 < 0.4 4 0.5 - < 0.8 0* < 0.4 4 5.4	3 < 0.4 - < 0.5 - < 0.8 0 < 0.4 1 5.4 - 5.4	3 < 0.4 + 0.5 - < 0.8)* < 0.4 + 5.4 + 5.4 8 70 5 < 0.7	3 < 0.4 + 0.5 - < 0.8)* < 0.4)* < 0.4 b 70 5 < 0.7 6 < 0.7 6 < 0.7	5 < 0.1 5 < 0.3 5 < 0.4 5 <	5 4 0.7 5 4 0.7 5 4 0.7 5 4 0.7 5 4 0.4 5 4 0.7 5 5	3 <0.4	5 5.6 6.6 7 0.3 4 0.5 4 1 0.5 4 1 0.5 5 1 0.5 4 1 0.5 5 1 0.5 4 1 0.5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x x
20 B 20 6 13) (14	.6 1.3	.6 0.9	.8 <0.	.5 <0.	.2 1.:	.3 0.9	.6 0.1	.2 <0.2	4 <0.	.2 <0.3	.2 1.3	.2 <0.2	2 < 0 3	····	.0 < 0.1	.0 < 0.4	.0 <0.4 .7 .0 <1.6			.0 <0.4 .0 <0.4 .0 <1.6 .0 <0.1 .3 13.6								
20 P	32 1	86 2	30 3	36 0	7 0	37 2	71 2	89 1	6	48 2	56 4	60 1.	- -		21 2	21 3.	21 3. 37 1. 85 1	90 91 1. 3	85 1. 3. 90	20 30 1 1 3 3 4 1 3 5 3 4 1 5 5 3 3 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21 32 29 99 99 14 14 15 13	221 3. 21 3. 20 90 9. 14 4. 1. 90 2	221 3. 20 3. 1. 1. 3. 20 3. 3. 1. 1. 26 2. 4. 4. 1. 1. 26 2. 2. 4. 4. 1. 1. 26 2. 3. 3. 1. 1.	1 2 2 3 3 3 3 3 4 4 5 5 4 4 5 5 5 5 5 5 6 3 7 5 6 5 7 5 6 5 7 5 7 5 6 5 7 5 7 5 6 5 7 5 8 5 8 5 8 5 8 <td>1 2 3 3 3 3 3 3 3 3 3 3 4 5 4 5 4 5 4 5 4 5</td> <td>2 3<td>8 2 4 2 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>3 3</td></td>	1 2 3 3 3 3 3 3 3 3 3 3 4 5 4 5 4 5 4 5 4 5	2 3 <td>8 2 4 2 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>3 3</td>	8 2 4 2 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3
20 x 111)	13 -	26 -	232 -	æ	10	54	18	15	N	12 -1	560 -!	18	7		73 -2	73 -2 27 3	73 -2 27 3 20 -1	73 - 27 27 3 20 - 1 370 5	73 -2 20 -1 370 51	73 -27 3 20 -6 370 99 13 99	73 -27 -27 -27 -27 -27 -27 -27 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21	73 -27 3 20 -6 370 5 13 -13 13 -10 10 2	22 22 22 22 22 22 22 22 22 22 22 22 22	22 23 -2 22 22 -2 370 2 -1 13 -5 1 15 -1 -1	73 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -	73 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	2 2 2 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 5 5 5	22 - 22 - 22 - 22 - 22 - 22 - 22 - 22
р (10)	0.9	9.3	0.8	2.5	3.0	4.3	1.4	1.9	tł . O	0.5	3.9	1.5	2.4		1.9	1.9 (1.2)	1.9 (1.2) 1.8	1.9)(1.2) 1.8 3.9 8	1.9 (1.2) 1.8 3.9 1.9	1.9 (1.2) 1.8 3.9 1.9 1.6	1.9 (1.2) 1.8 3.9 1.9 1.6 0.9	1.9 (1.2) 1.8 3.9 1.9 1.6 0.9 2.4	1.9 (1.2) 1.8 3.9 1.6 1.9 2.4 4.3	1.9 (1.2) 1.8 3.9 1.6 1.6 0.9 2.4 4.3 3.3	1.9 (1.2) 1.8 3.9 3.9 2.4 4.3 3.3 3.3	1.9 (1.2) (1.2) 3.9 3.9 1.6 1.6 0.9 2.4 4.3 3.3 3.3 (1.4)	1.9 (1.2) 1.8 1.9 2.4 2.4 4.3 3.3 3.3 3.3 3.3 0.1	1.9 1.8 1.8 1.8 1.9 2.4 4.3 3.3 3.3 1.4 (1.4) 0.1 0.1
m 6	9 14 9	124 31	61 31	33 10	115 18	53 25	50 85	21 85	2 -30	5 85	159 34	32 -42	23 57		54 -2	54 -2 (19)(-68	54 -2 (19)(-68 20 -74	54 -2 (19)(-68) 20 -74 400 6	54 -2 (19)(-68) 20 -74 400 6 8 - 72	54 -2 (19)(-68) 20 -74 400 6 8 -72 8 -72 6 33	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 4 38	54 -2 (19)(-68. 20 -74 400 6 8 -72 6 33 4 38 21 63	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 4 33 4 38 21 63 21 63 21 63	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 6 33 4 38 21 63 29 76 29 76 35 58	54 -2 (19)(-68) 20 -74 8 -72 6 33 6 33 6 33 4 38 4 38 21 63 29 76 29 76 29 76 29 76	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 6 33 4 38 4 38 4 38 21 63 29 76 29 76 29 76 29 76 11 -1 11 -1	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 6 33 4 38 29 76 29 76 35 58 35 58 35 58 11 -1 1 -45	54 -2 (19)(-68) 20 -74 400 6 8 -72 6 33 6 33 4 38 29 76 29 76 35 58 35 58 11 -1 11 -1 1 -45 15 -36
α ⁶ 20 [7]	.13	24	21	.08	.31	14	-1.38	.06	.05	57	. 34	25	48		16	16	16 (.01) (.47	16 (.01) (.47 04	16 (.01) (.47 04 06	16 (.01) (.47 04 05	16 (.01) ((.01) (.47 04 <i>t</i> 05 05	16 (.01) (.47 04 <i>1</i> 05 05 25	16 (.01) (.47 04 05 25 50 .32	16 (.01) (.47 04 05 25 25 25 .32 .32	16 (.01) (.47 04 4 05 05 25 25 .32 .32 .32 .32	16 (.01) (.47 04 1 05 05 25 25 50 .32 .32 .32 .00 (.05) (16 (.01) (.47 04 05 25 25 25 25 25 (.05) (.00	16 (.01) (04 1 06 05 25 25 25 25 25 (.05) ((.05) (.17 .17 .00
s 20 (6)	0.80	1.0	6.05	1.48	5.5	1.04	0.70	1.22	0.53	0.54	6.2	1.53	0.53		2.40	2.40	2.40 1.60 1.94	2.40 1.60 1.94 9.7	2.40 1.60 1.94 9.7 0.40	2.40 1.60 1.94 9.7 0.40 0.35	2.40 1.60 9.7 0.40 0.35 0.32	2.40 1.60 9.7 0.40 0.35 0.32 0.48	2.40 1.60 9.7 0.35 0.35 0.32 0.48	2.40 1.60 9.7 0.40 0.35 0.35 0.35 0.48 1.00	2.40 1.60 9.7 0.40 0.35 0.35 0.48 0.48 1.00 1.05	2.40 1.60 9.7 0.40 0.35 0.32 0.32 0.48 1.00 1.05	2.40 1.60 9.7 0.40 0.35 0.32 0.48 1.00 1.00 1.00	2.40 1.60 9.7 0.40 0.35 0.35 0.35 0.40 1.00 1.00 1.00 1.00 1.00
s (5)	0.68	1.33	7.80	1.34	3.8	1.23	3.70	1.13	0.50	1.07	4.10	2.07	0.94		2.90	2.90 (1.58)	2.90 (1.58) 1.10	2.90 (1.58) 1.10 10.2	2.90 (1.58) 1.10 10.2 0.43	2.90 (1.58) 1.10 10.2 0.43 0.37	2.90 (1.58) 1.10 10.2 0.43 0.37 0.43	2.90 (1.58) 1.10 10.2 0.43 0.43 0.43	2.90 (1.58) 1.10 10.2 0.43 0.43 0.43 0.43	2.90 (1.58) 1.10 10.2 0.43 0.43 0.43 0.43 0.43	2.90 (1.58) 1.10 10.2 0.43 0.43 0.43 0.43 0.43 0.43 0.68	2.90 (1.58) 10.2 0.43 0.43 0.43 0.43 0.68 0.68 0.68 (0.94)	2.90 (1.58) 10.2 0.43 0.43 0.43 0.43 0.68 0.68 0.68 0.68 0.68 0.78 0.78	2.90 (1.58) 1.10 10.2 0.43 0.43 0.43 0.43 0.43 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
۶ ک	17 20 29.80	-15 15 30.15	42 02 08.57	31 31 05.85	-18 50 17.05	-25 ltl 22.50	-03 50 40.65	-08 48 17.58	-39 58 16.75	69 31 02.65	11 28 22.77	28 13 23.20	09 38 09.90		-12 22 40.25	-12 22 40.25 -32 51 42.2	-12 22 40.25 -32 51 42.2 14 03 57.40	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 27 16 19.05	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 04 57 23.45 27 16 19.05 10 43 45.50	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 27 16 19.05 10 43 45.50 -16 13 30.85	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 27 16 19.05 10 43 15.50 -16 13 30.85 -24 00 15.6	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 27 16 19.05 10 43 45.50 -16 13 30.85 -24 00 15.6 26 25 18.90	-12 22 40.25 -32 51 42.2 14 03 57.40 15 52 54.31 13 25 48.95 07 27 08.95 10 39 13.05 04 57 23.45 27 16 19.05 10 43 45.50 -16 13 30.85 -24 00 15.6 26 25 18.90 09 14 05.45
α (3)	21 50 02.229	21 55 23.238	22 00 39.359	22 01 01.440	22 03 25.730	22 10 14.131	22 16 16.380	22 27 02.337	22 27 44.980	22 29 11.651	22 30 07.802	22 34 01.727	22 39 19.846		22 43 39.796	22 43 39.796 22 45 51.53	22 43 39.796 22 45 51.53 22 47 56.707	22 43 39.796 - 22 45 51.53 22 47 56.707 22 47 29.521	22 43 39.796 . 22 45 51.53 22 47 56.707 22 51 29.521 22 51 51.876	22 43 39.796 22 45 51.53 22 47 56.707 22 51 29.521 22 51 51.876 22 54 45.980	22 43 39.796 22 45 51.53 22 47 56.707 22 51 29.521 22 51 51.876 22 54 45.980 23 07 57.543	22 43 39.796 22 45 51.53 22 47 56.707 22 51 59.521 22 51 45.980 23 07 57.543 23 18 12.129	22 43 39.796 - 22 45 51.53 22 47 56.707 22 51 51.876 22 54 45.980 23 07 57.543 23 18 12.129 23 19 31.990	22 43 39.796 22 45 51.53 22 47 56.707 22 51 29.521 22 51 51.876 22 54 45.980 23 07 57.543 23 18 12.129 23 19 31.990 23 28 08.787	22 43 39.796 22 45 51.53 22 47 56.707 22 51 59.521 22 51 51.876 22 54 45.980 23 07 57.543 23 19 31.990 23 19 31.990 23 28 08.787 23 29 02.397	22 43 39.796 22 45 51.53 22 47 56.707 22 51 51.876 22 51 51.876 22 54 45.980 23 07 57.543 23 18 12.129 23 18 12.129 23 18 12.129 23 29 02.337 23 29 02.337 23 31 17.98	22 43 39.796 22 45 51.53 22 47 56.707 22 51 51.876 22 54 45.980 23 07 57.543 23 19 31.990 23 19 31.990 23 29 02.397 23 31 17.98 23 37 58.279	22 43 39.796 22 45 51.53 22 47 56.707 22 51 29.521 22 51 51.876 22 54 45.980 23 07 57.543 23 18 12.129 23 18 12.129 23 19 31.990 23 28 08.787 23 29 02.397 23 31 58.279 23 44 03.773
3C,4C (2)				4C31.63			4C-03.79				4C11.69						4C14.82	4C14.82 3C454.3	4c14.82 3c454.3 4c13.85	4C14.82 3C454.3 4C13.85	4C14.82 3C454.3 4C13.85	4C14.82 3C454.3 4C13.85	4C14.82 3C454.3 4C13.85 4C13.85	4C14.82 3C454.3 4C13.85 4C13.50	4C14.82 3C454.3 4C13.85 4C27.50	4C14.82 3C454.3 4C13.85 4C27.50	4C14.82 3C454.3 4C13.85 4C27.50	4C14.82 3C454.3 4C13.85 4C27.50 4C27.50
Source (1)	2150+173	2155-152	5200+420	201+315	203-188	210-257	216-038	227-088	227-399	229+695	230+114	234+282	239+096	2112-103	631-643	245-328 245-328	245-169 245-328 247+140	245-15328 245-328 247+140 251+158	245-153 245-328 247+140 251+158 251+134	245-328 245-328 247+140 251+158 251+134 254+074	243-163 245-328 247+140 251+158 251+134 254+074 307+106	245-145 2477140 2517158 2517134 2514714 3077106 3077106	245-145 247+140 2647+140 251+158 251+174 254+074 307+106 318+049 318+049	245-145 245-328 247+140 251+158 251+158 251+158 307+106 318+049 319+272 319+272	245-155 245-328 247+140 251+158 251+158 251+158 307+106 307+106 319+272 319+272 328+107 329-162	245-328 247+140 2547+140 251+158 251+158 307+106 318+049 318+049 318+049 318+049 3328+107 328+107 329-162	245-155 247+140 2547+140 251+158 251+158 251+168 307+106 319+272 319+272 319+272 319+272 331+240 331+240	245-155 245-328 247+140 251+158 251+158 307+106 307+106 319+272 319+272 319+272 319+272 331+264 331-240 337+264

877 R. A. PERLEY: COMPACT RADIO SOURCES

877

 $\ensuremath{\textcircled{}^{\text{\tiny O}}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

TABLE III.	(continued)
------------	-------------

0003-066	Single secondary, $r = 1.7$, p.a. = 30°.	0446 006	225°.
0023 - 263	Symmetric double, flux ratio at 6 cm, 3:2. Separa-	0646 - 306	Triple source. Extent $= 7''$ along p.a. 45''. Single secondary at $r = 2''^2$, $r = 2 = 240^\circ$
0038-020	tion = 0.55, p.a. = 112. Distance confusing source $r = 470^{"}$ p.a. = 65°	0033 ± 094 0707 ± 476	Single secondary at $r = 2.3$, p.a. = 240. Triple source Extent = $8^{\prime\prime}5$ p.a. = 90°
0038 - 020 0048 - 097	Single extended secondary, $r = 6''_1$, p.a. = 05.	0716 + 714	Well resolved iet, extent $= 7.5$, p.a. $= -60^{\circ}$. Dif-
0055 + 300	One-sided continuous jet. See Fomalont et al. (1980).		fuse halo envelops core and jet.
0104 - 408	Confused at 20 cm. Structure uncertain at 6 cm.	0735 + 178	Single source at $r = 1.8$ in p.a. = 170°.
0106 + 013	Single secondary, $r = 4$.4, p.a. = 185°.	0736 + 017	Insufficient data at 20 cm for proper map.
0111 + 021	Jet in p.a. 120°, extending to $\sim 8''$.	0742 + 318	Single secondary at $r = 5^{"}$, p.a. = 310°.
0112 - 017 0113 - 118	Single, extended secondary, $r = 7.1$, p.a. = 150. Single secondary, $r = 0^{\circ}6$, p.a. = 18°	0/43 + 241 0748 + 126	Classical triple. Extent = 15, p.a. = 05. Possible single secondary at $r = 1^{10}$, p.a. = 145°
0113 - 110 0114 - 211	Single secondary, $r = 0.6$, p.a. $= -16$. Single secondary, $r = 0.6$, p.a. $= 90^{\circ}$.	0740 ± 120 0759 ± 183	Single secondary at $r = 5^{\circ}$ 6, p.a. = 95°.
0118-272	At least three components within 1" at 6 cm.	0808 + 019	Single secondary at $r = 1.6$, p.a. = 200°.
	Heavily confused at 20 cm.	0812 + 367	Complex source. Three compact components plus
0119 + 115	Single secondary $r = 0^{"}85$, p.a. = 20°.		jet. See Perley, Fomalont, and Johnston (1982).
0119 + 247	Confused at 20 cm.	0814 + 425	Two secondary components, strongly bent in p.a.
0119 ± 041	1 wo secondaries, $r = 5.7$, p.a. = 15; $r = 3.6$,	0820 - 560	r = 7.8, p.a. $= -40$; sep. $= 2.8$, p.a. $= 45$. Single secondary at $r = 3^{2}0$, p.a. $= 310^{\circ}$
0134 ± 329	Slightly extended along $p_{ia} \sim 45^{\circ}$	0823 - 223	Confused at 20 cm. -5.0 , p.a. -510 .
0135 - 247	Complex secondary, $r = 15^{"}5$, p.a. $= -88^{\circ}$.	0827 + 243	Single secondary at $r = 7.9$, p.a. = 200°.
0138-097	Possible secondary at $r = 15^{"}$, p.a. = 100°.	0831 + 557	Single secondary at $r = 6.5$, p.a. = 175°.
0147 + 187	Confused at 20 cm.	0833 + 585	Curved jet, extent $= 11^{"6}$, p.a. swings from 90° to
0202 - 172	Single secondary at $r = 13^{"}3$, p.a. = 55°.		155°.
0216 + 011	Single secondary at $r = 2.7$, p.a. $= -35^{\circ}$.	0834 + 250	Confused at 20 cm.
0221+067	Single secondary at $r = 15.3$, p.a. $= -19$. Con-	0830 + 710 0850 + 581	Single secondary at $r = 1.3$, p.a. = 200. Triple source Extent = $16^{\prime\prime}$ p.a. = 145°
0224 ± 671	Single secondary at $r = 6^{\prime\prime}5$ n a = 180°	0859 ± 470	Single secondary at $r = 1^{\circ}5$ n $a = -25^{\circ}$
0237 - 027	Confused at 20 cm. $(100, 100)$	0859 - 140	Triple source, components extended. Extent $= 12''$.
0237 + 040	Single secondary at $r = 2.7$, p.a. $= -35^{\circ}$.	0906 + 015	Single secondary at $r = 12^{".5}$, p.a. = 95°.
0239 + 108	Jet-like extension, length $= 1''$, p.a. $= 40^{\circ}$.	0917+449	Diffuse extension at 20 cm, 2"5 long in p.a. $\sim 270^{\circ}$.
0248 + 430	Single secondary, $r = 17''$, p.a. = 105°.		Possible second component to S.
0305 + 039	Jet-like extension in p.a. 55°, length $= 1^{"}2$. Ex-	0923 + 392	Complex. Three secondary components: (a) $r = 1.9$,
	tended emission at 20 cm extends to 10". Polarized		p.a. = $/8^{\circ}$; (b) $r = 0.5$, p.a. = $/0^{\circ}$; (c) $r = 1.3$,
0316 ± 413	Single secondary at $r = 4^{\prime\prime}3$, p.a. = 145° Bridge con-		p.a. = 240. Last component not found at 0 cm. First component highly polarized at 20 cm
0510 115	nects to core.	0925 - 203	Possible triple source of extent $\sim 45''$ along N-S
0319+121	Single secondary at $r = 12^{"}5$, p.a. $= -18^{\circ}$.		axis.
0333 + 321	Single secondary at $r = 7.6$, p.a. = 150°.	0945 + 408	Single secondary at $r = 3.7$, p.a. = 35°. Possible
0336-019	Single secondary at $r = 5^{"}2$, p.a. $= -15^{\circ}$.	0052 . 054	component at $r = 0.5$, p.a. = 30°.
0338 - 214	Slightly extended E-W. Single coorders at $r = 10^{\circ}$ p $c = 10^{\circ}$ Extended	0953 + 254 0054 + 556	Triple strongly bent Secondary components at (a)
0333 + 308	emission close to core.	0754-550	r = 3.2, p.a. = 300°: (b) $r = 2.7$, p.a. = 50°.
0400-319	Single secondary at $r = 2.5$, p.a. $= 230^{\circ}$.	0954+658	Single secondary at $r = 3^{"}8$, p.a. = 205°.
0402-362	Single secondary at $r = 11^{"5}$, p.a. $= 170^{\circ}$.	0955 + 476	Core embedded in diffuse region $20'' \times 10''$ in
0409 + 229	Strongly bent triple. Very asymmetric.	0050 440	p.a. ~ 120°.
0414 - 189	Possible single secondary at $r = 10^{\circ}6$, p.a. = 50°.	0959 - 443	Large triple. Extent = 40° in p.a. = -35° . Single accordence at $r = 0^{\circ}$ p.a. = 210°
0421 + 019 0422 + 004	Single secondary at $r = 1.8$, p.a. = 210.	1004 - 018 1020 - 103	Single secondary at $r = 1.0$, p.a. = 310. Single secondary at $r = 1.0$
0426 - 380	Single secondary at $r = 2.77$, p.a. $= -24^{\circ}$.	1020 - 105 1021 - 006	Single secondary at $r = 2.5$, p.a. = 190°.
0430 + 052	Single secondary at $r = 3.6$, p.a. = 265°. Bridge con-	1030 + 415	Extended emission at 20 cm, $5'' \times 4''$, centered at 2''
	nects to core.		SE of core.
0438-436	Single secondary at $r = 2^{\prime\prime}2$, p.a. = 15°.	1032 - 199	Single secondary at $r = 2.77$, p.a. = 145°.
0440 - 003	Triple source oriented E-W. Total extent 2"5.	1039 + 811	Single secondary at $r = 2^{\circ}5$, p.a. = 220°.
0440 + 112	Secondary at $r = 2.5$, p.a. $= 2/0^{\circ}$. Strong secondary	1044 + 719 1040 + 215	Possible secondary at $r = 1^{\circ}$, p.a. $= 2/0^{\circ}$. Extended emission at 20 cm along $r = 10^{\circ}$ and
0451-282	Single secondary at $r = 3^{\prime\prime}7$ p a = -10°	10777215	$p_a \sim 90^\circ$ Extent $\sim 4''$
0454 + 066	Single secondary at $r = 0.7$, p.a. $= -10$. Single secondary at $r = 0.75$, p.a. $= 230^{\circ}$.	1055 ± 018	Single secondary at $r = 4^{"}$, p.a. = 180°.
0500 + 019	Insufficient data at 20 cm for mapping.	1055 - 242	Slightly extended at 6 cm along p.a. 45°.
0511 - 220	Single secondary at $r = 0.77$, p.a. = 120°. 20-cm map	1104-445	Possible secondary at $r = 19^{"}$, p.a. = 35°.
	poor.	1104 + 167	Large triple, extent $\sim 35''$, p.a. $\sim 0^{\circ}$.
0514 - 161	Single secondary at $r = 7.9$, p.a. = 55°. Bridge con-	1116 + 128	Single secondary at $r = 2.5$, p.a. = 315°.
0518 ± 165	Single secondary at $r = 0'' 4$, $p_{0} = -240^{\circ}$	1126 - 047 1147 + 245	Single secondary at $r = 45$, p.a. = 290. Single secondary at $r = 175$, p.a. = 180°
0519 ± 011	Single secondary at $r = 0.4$, p.a. = 240. Single secondary at $r = 0^{\prime\prime}4$ p.a. = 180° 20 cm	1147 + 243 1148 - 001	Single secondary at $r = 4"7$, p.a. = 210°.
	confused.	1150 + 497	Complex source, jet plus halo. Extent $= 17''$,
0528 + 134	Diffuse emission 2" in extent centered 1" north of	·	$p.a. = 15^{\circ}.$
	core.	1150 + 812	Single secondary at $r = 5''$, p.a. = 260°.
0528 - 250	Single secondary at $r = 0.77$, p.a. = 260°.	1151 - 348	20-cm data confused.
$0529 \pm 0/5$ 0531 ± 104	Single secondary at $r = 5.2$, p.a. = 220°. Emission extended along p.a. = 45° for 0"5	1100+295	Single secondary at $r = 1.9$, p.a. = 340°. Bridge connects to core Halo surrounds core at 20 cm
0537 ± 531	Single secondary at $r = 5^{\prime\prime}7$ n a = 40°	1213 ± 350	Triple source. Extent = $14''$ n a $\sim 25^\circ$
0537-286	Confused at 20 cm. $(117 - 5.7)$ p.u. -40	1213-172	Single secondary at $r = 1.0$, p.a. = 135°. Extended
0537-441	Single secondary at $r = 7^{"}2$, p.a. = 305°.		emission joins core and secondary.
0538 + 498	Extended 0"5 along p.a. $= 45^{\circ}$.	1221 + 809	Single secondary at $r = 2^{"}1$, p.a. = 205°.
0539 - 057	Single secondary at $r = 3.09$, p.a. = 50°.	1226 + 023	Single secondary at $r = 21^{"}$, p.a. = 222°.
0605-085	Single secondary at $r = 4.6$, p.a. $= 96^{\circ}$.	1236 ± 077	Jet extends to $r = 2.5$ in p.a. $= 245^{\circ}$.
0009 + 007	Single secondary at $r = 0.4$, p.a. $= 2/0^{\circ}$. Extensive extended structures to $r = 10^{\circ}$ along $r = 0^{\circ}$	1237 - 101 1243, 072	Single secondary at $r = 1/7$, p.a. = 30 ⁷ . Single secondary at $r = 370$, p.a. = 260 ⁹
5027 -050	Entensive entended structures to r = 10 along p.a.	12-13 -072	Single secondary at $r = 5.0$, p.a. $= 200$.

879 **R. A. PERLEY: COMPACT RADIO SOURCES**

TABLE III (continued)

1245-197	Slightly extended along E-W axis at 6 cm.
1252 + 119	Two secondary components: (a) $r = 0$ "4, p.a. = 270°;
	(b) $r = 1.3$, p.a. = 290°. Further extended emission
	probably.
1253 - 055	Continuous jet from core to $r = 4^{".7}$ along p.a. 202°.
	Diffuse secondary 5" in diameter centered 11" from
1202 102	core in p.a. = 325° .
1302 - 102	I hree weak secondaries, or possible confusion.
1313+347	Single secondary at $r = 1.7$, p.a. = 105, connected
1228 1 207	to core by curved bridge. Single secondary at $r = 2^{75}$ may 245° Dessible
1320+307	Single secondary at $r = 2.5$, p.a. = 245. Possible secondary $0''7$ E of core
1334 - 127	Curved jet extending to 6"5 east of core
1347 ± 539	Iet-like extension 5" long in p.a. 315°
1354 - 152	Single secondary at $r = 2^{"8}$ n $a = 90^{\circ}$
1354 + 195	Single secondary $r = 16''$, p.a. = 345°.
1415 + 463	Two secondaries: (a) $r = 11.6$, p.a. = 263°, (b)
	r = 13"1, p.a. = 253°. The proximity of the secon-
	daries suggests a double source.
1427 + 543	Core slightly resolved at both bands.
1430-178	Single secondary at $r = 1^{\prime\prime}2$, p.a. = 90°.
1434 + 235	Single secondary at $r = 1^{"}6$, p.a. = 200°.
1435 + 638	Classical triple. Extent $\approx 30''$, p.a. $\approx 50^{\circ}$.
1437 + 624	Core slightly resolved at 6 cm.
1441 + 252	Confused at 20 cm.
1448 + 762	Confused at 20 cm.
1451 - 375	Large triple with curving, one-sided jet. Extent
1450 + 401	≈ 30 in p.a. 60°.
1439+401	complex structure. Two main components: (a) $r = 1^{175}$ p. $r = 20^{\circ}$; (b) $r = 4^{176}$ p. $r = 140^{\circ}$
1502 - 106	r = 1.5, p.a. = 50; (b) $r = 4.6$, p.a. = 140. Single secondary at $r = 7''_{0}$, p.a. = 160°
1502 ± 100 1504 ± 377	Single secondary at $r = 11^{\circ}$, p.a. = 100. Single secondary at $r = 11^{\circ}$, p.a. = 83°
1504 ± 577 1508 ± 055	Very complex structures Extent $-9''$ Basically
1500 055	double with curving "iets"
1510-089	One-sided jet, length $= 8^{"}$, p.a. $= 160^{\circ}$
1514-241	Single secondary at $r = 0.2$, p.a. = 120°.
1524-136	Slightly extended along p.a. 45° at 6 cm.
1532+016	Single secondary at $r = 1$ "4, p.a. = 45°.
1543 + 005	Confused at 20 cm.
1548 + 056	Core surrounded by small halo at both bands.
1551 + 130	Single secondary at $r = 0.75$, p.a. = 255°.
1606 + 106	Confused at 20 cm.
1010 + 003	Single secondary at $r = 1.7$, p.a. = 225°. Bridge con-
1622 252	nects to core.
1022-255	Single secondary at $r = 2.0$, p.a. = 303. Diffuse
1622 - 297	Classical triple Extent $-14''$ n $a - 22^{\circ}$
1622 - 277 1624 + 416	Single secondary at $r = 0.77$ p.a. $= 22$.
1633 + 382	Possible short extension ($\sim 0^{2}$) extending SE
1634 + 628	Core slightly extended at 20 cm
1636 + 473	Complex secondary centered near $r = 20''$ in
	p.a. $\sim 30^{\circ}$. Secondary has double structure.
1637 + 574	Diffuse structures extending $\sim 6''$ to NW and W.
	Small-scale ($<0''_{2}$) structures in p.a. 220°.
1637 + 626	Core slightly resolved at 6 cm along p.a. 110°.
1637 + 826	Insufficient data at 20 cm for map.
1638 + 398	Single secondary at $r = 2^{".5}$, p.a. = 140°.
1641 + 399	Single secondary at $r = 2^{".9}$, p.a. = 330°.
1042 + 690	Single secondary at $r = 2^{"8}$, p.a. = 176°.
1000+34/	I riple source. Bright component at $r = 2.7$,
1656 + 571	p.a. = 140°. 10tal extent $\sim 10^{\circ}$.
1020+3/1	contered on core
1656 - 052	Single secondary at $r = 2^{n/2} = c = 110^{n}$
1716 ± 686	Single secondary at $r = 2.2$, p.a. = 110. Single secondary at $r = 0.08$ p.a. = 210°
1725 ± 123	Extended emission centered $\sim 1^{\prime\prime}$ SF of core
1725 + 044	Single secondary at $r = 5^{\prime\prime}1$ at n $a = 105^{\circ}$
1730-130	Single secondary at $r = 11^{"0}$, $n.a = 273^{\circ}$
1739 + 522	Single secondary at $r = 3^{"}5$, p.a. = 260°.
1741-312	Extensive low brightness structure over 30" scale.
1743+173	Extended secondary at $r = 3.2$, p.a. = 35°.
1749 + 701	0"4 halo surrounds core.
1751 + 441	Single secondary at $r = 11^{"}$, p.a. = 77°.
1800 + 440	Single secondary at $r = 3^{"}1$, p.a. = 240°.
1807 + 698	Single secondary at $r = 3^{"}0$, p.a. = 240°. Bridge con-
1007 . 070	nects to core. More extensive emission present.
1807 + 279	I riple source. Extent $= 10''$ along p.a. 45°.
1823+368	1 wo secondaries: (a) $r = 2.0$, p.a. = 99°, (b) $r = 1.0$,

 $p.a. = 174^{\circ}.$ Close spaced double. Extent = 1"0 in p.a. = 130°. Classical triple. Extent = 37" in p.a. 140°. Single secondary at r = 11"7, p.a. = 210°. 1827 - 3601830 + 2851849 + 670Elongated secondary extending from core to r = 0"71901+319 along p.a. $= 310^{\circ}$. 1923+210 Single secondary at r = 1"1, p.a. = 255°. 1933-400 Diffuse secondary extending from core to $r = 3^{"}5$ in $p.a. \approx 140^{\circ}$. 1937-101 Single secondary at r = 1.6 in p.a. $= 0^{\circ}$. 1954+513 Classical triple: extent = 16'' in p.a. $= 350^{\circ}$. 1954 - 3882000 - 330Confused at 20 cm. Single secondary at r = 0.6, p.a. = 270°. Single secondary at r = 0.3, p.a. $= 20^{\circ}$. Single secondary at $r = 11^{"}$, p.a. $= 90^{\circ}$. 2004-447 2007 + 7762008 - 1592008 - 068Large classical triple. Extent = 120'', p.a. = -22° . Single secondary at r = 52", p.a. = 202°Single secondary at r = 2"3, p.a. = 103°2010 + 723Single secondary at r = 6.3, p.a. = 330°. Single extension 2.4, long in p.a. 335°. 2029 + 1212037 + 5112037 - 25320-cm map confused. Single secondary at r = 12'', p.a. = 145°. Single secondary at $r = 1''_1$, p.a. = 34°. 2044 - 1682058-297 Single secondary at r = 0.6, p.a. = 260°. Single secondary at r = 3.0, p.a. = 135°. Slightly resolved along p.a. ~45° at 6 cm. 2106-413 2131-021 2135-209 Single secondary at r = 1"6, p.a. = 160°. 2144 + 0922145 + 0672149 - 307Single secondary at $r = 2^{".5}$, p.a. = 305°. Single secondary at r = 3.0, p.a. = 155°. Single secondary at r = 3.0, p.a. = 155°. Single secondary at r = 0.55, p.a. = 10°. 2150 + 1732155 - 1522203 - 188Triple source, extent = 5.5, p.a. $= 0^{\circ}$. Single secondary at r = 0.8, p.a. $= 340^{\circ}$. Single secondary at r = 0.5, p.a. = 340. Single secondary at r = 2.3, p.a. = 10°. Jet-like extension extending 8.0 in p.a. 140°. Slightly extended at 20 cm along p.a. 135°. Small ($\leq 3^{"}$) halo to E of core at 20 cm. 2210-257 2216-038 2227 - 0882229 + 6952229 + 695 2230 + 114 2243 - 123 2251 + 134 2251 + 158 2307 + 106 2318 + 049 2210 + 272Single secondary at r = 1?6 in p.a. = 140°. Single secondary at r = 3"9, p.a. = 40°. Classical triple. Extent = 8″ in p.a. 40°. Single secondary at r = 5"4 in p.a. = 318°. Heavily confused at both bands. Single secondary at r = 8".5, p.a. = 315°. Triple source, bent by ~45°. Extent = 14". 2319 + 272Single secondary at r = 0.8, p.a. $= 270^{\circ}$. Single secondary at r = 1.9, p.a. $= 230^{\circ}$. 2328 + 1072329 - 1622345 - 167Single secondary at r = 1.8, p.a. = 355°.

(1980), or Veron and Veron (1981), with the former superseding the latter. Those from the former are noted by a cross (+) in column 19.

Those sources with detected structure are listed in Table III, with brief information concerning the structure. In almost all cases, only a single secondary component was found, so the brief information is generally complete. If the secondary structure appears elongated with no dominant brightness maxima, it is referred to as a "jet." Structures dominated by a brightness peak are labeled as a "secondary."

IV. DISCUSSION

These observations, part of an ongoing effort to establish a complete network of calibration sources for the VLA, have clearly shown the following:

(1) Diffuse secondary structure is a common phenomenon among core-dominated objects. Fifty percent of

880 R. A. PERLEY: COMPACT RADIO SOURCES

the flat-spectrum objects in the current list contain secondary structures.

(2) The secondary structures, when seen, are nearly always asymmetrically disposed with respect to the core. For most of these objects, insufficient dynamic range does not allow measurement of the flux ratio between secondary structures. However, a median lower limit of 4:1 on this flux ratio can be placed from these objects. This is much greater than the value for steepspectrum, non-core-dominated double radio sources, and it can then be inferred that these secondary structures so often seen near compact radio sources cannot *directly* be identified with the normal lobes of radio sources.

The final list of VLA calibrators includes some 700 objects. The observations of all remaining objects will be completed by mid-1982. Further analysis of all results will be reported later.

REFERENCES

85, 649.

- Bears, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., and Witzel, A. (1977). Astron. Astrophys. **61**, 99.
- Bracewell, R. N. (1958). Proc. IRE 46, 97.
- Elsmore, B., and Ryle, M. (1976). Mon. Not. R. Astron. Soc. 174, 411 (1982).
- Fomalont, E. B., Bridle, A. H., Willis, A. G., and Perley, R. A. (1980). Astrophys. J. 237, 418.
- Hewitt, A., and Burbidge, G. (1980). Astrophys. J. Suppl. 43, 57.
- Hogborn, J. A. (1974). Astron. Astrophys. Suppl. 15, 417 (1980).
- Perley, R. A., Fomalont, E. B., and Johnston, K. J. (1980). Astron. J.
- Perley, R. A., Fomalont, E. B., and Johnston, K. J. (1982). Submitted to Astrophys. J. Lett.
- Schwab, F. R. (1980). Proc. Soc. Photo-Opt. Instrum. Eng. 231, 18.
- Thompson, A. R., Clark, B. G., Wade, C. M., and Napier, P. J. (1980). Astrophys. J. Suppl. 44, 151.
- Veron, M. P., and Veron, P. (1974). Astron. Astrophys. Suppl. 18, 309. (Latest compilation, 1981).
- Wade, C. M., and Johnston, K. J. (1977). Astron. J. 82, 791.