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On the gravitational interaction of two planetesimals
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The dependence of the evolution of the orbits of two gravitationally interacting planetesimals (particles)
moving about a massive central body (the sun) as a function of the initial data is investigated using numerical
integration of the equations of motion of the plane three-body problem on a computer. Cases when the masses
of the planetesimals are equal to each other and cases when the mass of one planetesimal is considerably
greater than the other are considered. Special attention is paid to an investigation of cases when the

heliocentric orbits of the planetesimals cross in the course of evolution. It is shown that with strong changes
in the orbital elements the mean motions of the planetesimals can become commensurable, and these

commensurabilities are retained for a rather long time. The results obtained are applied to an investigation of
the supply zones of separate planetary embryos. Equations characterizing the motion of particles about

triangular libration points are obtained through an analytical investigation of the plane, restricted, circular,

three-body problem.
PACS numbers: 95.10.Ce, 96.10. + i

INTRODUCTION

The problem of the formation of the planets from the
circumsolar gas—dust cloud poses the task of investigat-
ing the evolution of a ring of gravitationally interacting
planetesimals moving about a massive central body (the
sun). If the mass of the cloud is small compared with the
mass of the central body, then the interaction of two bodies
in the field of a third massive body can be treated as an
elementary process in a protoplanetary cloud consisting
of a large number of bodies. The mutual gravitational in-
fluence of two planetesimals, particles, is investigated in
the present report. To complete the picture the investiga-
tion is carried out over a rather long time interval, al-
though in reality a "pure" interaction betweén two bodies
cannot occur in a protoplanetary cloud and the influence of
other bodies must also be taken into account. Cases of re-
latively strong changes in the orbital elements in the course
of evolution, of the emergence of particles into resonance
orbitals, and the motion of particles about triangular libra-
tion points are discussed. Equations are derived which al-
low one to estimate the limits of variations in the semi-
major axes of the orbits from the initial data without inter-
grating the equations of motion, The evolution of the orbits
of two gravitationally interacting planetesimals, particles,
was investigated by numerical integration of the equations
of motion of the plane three-body problem, and in certain
cases analytically or by approximate methods.

We used the results of the present work to construct
an algorithm for modeling the evolution of a ring of gravi-
tating bodies. A description of this algorithm and the re-
sults of an investigation of the evolution of rings of bodies
corresponding to the supply zones of the actual planets
will be given in a later publication. We analyzed the evolu-
tion of rings of bodies not corresponding to the supply
zones of the actual planets by the method of spheres of ac-
tion in Ref, 1.

The results of the present work are presented in more
detail in Refs. 2-5,
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1. THREE TYPES OF EVOLUTION OF THE ORBITS OF
TWO GRAVITATIONALLY INTERACTING
PLANETESIMALS OR PARTICLES

Let us discuss the results of the investigation of the
mutual gravitational influence of two particles moving in
the same direction about a central body (the sun), the mass
of which considerably exceeds the masses of these par-
ticles. The evolution of the orbits was investigated by nu-
merical integration of the equations of motion of the plane
three-body problem on a computer. We considered not only
the restricted three-body problem but also cases when the
masses of the planetesimals or particles were equal to
each other (m; = m,). The mass of the larger planetesimal
was varied from 10-? M@ to 1073 M@. As these investiga-
tions show, for the same values of m; (m;>m,) and initial
values of the orbital elements the character of the varia-
tions in the orbital elements of particles of equal masses
(m; = m,) is about the same as that of the corresponding
orbital elements of a particle of mass m, when m, « m,, but
the limits of the variations of the semimajor axes and ec-
centricities of the orbits when m; = m, are essentially
smaller than when m, <<m;., The masses of the
bodies are given in masses of the central
body (the sun), the semimajor axes of the
orbits in astronomical units, and the angles
in radians. The initial value af of the semimajor axis of
the orbit of the first (m;=> m,) particle was taken as equal
to 1 AU. By virtue of similarity laws, the dependence of
ai/af, e;» and 7; (aj, e, and m; are the semimajor axis, ec-
centricity, and longitude of the pericenter of the orbit of
the i-th particle, respectively) on the number Nyey of rev-
olutions of the first particle about the central body is not
changed if the initial values of the semimajor axes of the
orbits are simultaneously increased by k, times. In the
process the time of one revolution increases by only k,vk,
times.? In the variants examined Nrev examined Nyey
reached 25,000.2® In the variants presented in Fig. 1a,

b, ¢, d, Nyey equals 2500 and 5000,

The results obtained show®? that the character of the

© 1982 American Institute of Physics 352

© American Institute of Physics ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1981SvA....25..352I

evolution of the orbital elements of two gravitationally in-
teracting particle-planetesimals can be divided arbitrarily
into three types:

First type of evolution., Periodic (more pre-
cisely, almost periodic) variations in the semimajor axes
and eccentricities of the orbits, The heliocentric orbits
of the particles cross in the course of evolution, The
limits ofthe variations ofthe semimajor axes (Aa = max{Aa,,
Dagt, Naj = maxaej—minaj,i=1,2) are relatively small
and in the majority of cases are a little larger than the
absolute value of the difference between the initial values
of the semimajor axes of the orbits, Azy= |aj—a!|, inthe
case when the masses of the particles are equal to each
other and a little greater than 2Aa, inthe case when the mass
of one particle is considerably greater thanthe mass of the of
other particle. Withanincrease inthe masses of the particles
(with m; : m, = const) or with a decrease in Aa, the ratio
Aa/bag increases. For small initial eccentricities this
ratio also grows with an increase in |Agg|— 7/3,if Ap €
[—m 71, where Ap, is the angle (in radians) at the initial
time between the directions toward the particles from the
apex at the central body, r= 3.14... .

In the case of initially circular orbits the limits Ae
(Ae = max {le;, Le,}, Aej = maxe;—mine;j) of variation of
the eccentricities are determined mainly by short-period
(usually on the order of the synodic period of revolution)

oscillations. With an increase in the initial eccentricities
the values of Ae grow by hundreds of times in comparison
with case of initially circular orbits owing to the appear-
ance of long-period oscillations in the eccentricities, The
values of Ae for two values of ef = el = e, are presented in
Table I for the case of m, = 107% m, = 1077, and af= 1.01.

The true anomaly of the i-th particle at the initial time
is designated as vf in Table I. In the variant correspond-
ing to the second row of Table I the period of the long-
period oscillations of the eccentricities equal 3000 revolu-
tions of the first particle. In the case of m; = mythe graphs
of the time dependence of e, and e, are close to each other
for ef = el = 0(see Fig. 1a). Forefl=el=¢e *0, e
mainly decreased (in small steps) when e, grew (and vice
versa) (see Fig. 1b).

For ef = eJ = 0, during the entire evolution m—m, ~

7 = 3.14... (radians), i.e., the apocenter of one orbit andthe
pericenter of the other orbit lay along the same ray with
the apex at the central body. In the case of nonzero initial
eccentricities the longitude of the pericenter m, of the sec-
ond particle (as well as m; when m, = m,) grew (i.e.,, moved
about the central body inthe same direction as the particles
themselves) in small steps (see Fig. 1b). The time after
which a new step appeared was equal to the half-period of the
oscillations of gy, while 7, (and 7; when m; =m,) increasedby
27 radover the period of the long-period oscillations of e,,
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FIG. 1. Dependence of orbital elements of two gravitationally
interacting planetesimals, particles, on the number of revolutions
N of the first planetsimal about the central body: a) my=m,=
1o-¥, a} =1, a3 =1.005,¢e] =e) =0, A¢y = 4; b) m; = m, =10"°
al=1,a3=1.01, el =el=0.05,0 =0, =2,0=1, ¥ =0; c)
my=m, =10"°, of=1, a9=1.05, ¢} = ed= 0,A@y=4; dym; =
107°, my =107, ad=1, a5 =1.01, el =el=0.15,m =1, 20 = 4,

-1, =2,
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In synodic coordinates (rotating about the central body
with an angular velocity equal to the angular velocity of the
first particle) the orbit of the second particle does not en-
compass the central body, and in the case of initially circu-
lar heliocentric orbits it has a cresent form (the synodic
orbit encompasses one triangular libration point) or a
horseshoe from (the orbit encompasses both triangular
libration points). Rabe®~% made a numerical investigation
of such orbits within the framework of the plane, restricted,
circular, three-body problem for the earth— moon

(uz0.0L p= ) and sun—Jupiter (u= 0.001) systems,

my

myt+m,
while Weissman and Wetherill? made one for the sun—earth
system. All these authors sought the periodic solutions in
the form of time series, using the recurrent equations ob-
tained by Rabe® to determine the coefficients of these
series, We were interested not in periodic solutions per
se, but the evolution of the orbits of planetesimals over not
very long time intervals with different initial data, The
range of values of y which we investigated was far wider.?
Besides the restricted problem we also considered the
case of m; = m,.

The equations presented below were obtained for the
restricted, circular, three-body problem, but as the re-
sults of numerical investigations show, the conclusions
then obtained are basically valid also for the case of m;=
m,. Letussetal=1, a=1+a, my+ my=1, my=y, and
@ €(— 7, 7, where ¢ is the angle between the directions to-
ward the particles from the apex at the central body and
m, is the mass of the central body. We will assume that
in the course of evolution the orbits of the particles are
nearly circular, while the values of ¢ are not very small.
Then, investigating the equations of motion of the particle
of infinitely small mass analytically in polar coordinates
rotating together with the first particle, one can show? that
the maximum value of a(¢) = a,—1 is reached at |o|~n/3
and equals

8
N
where M(p)=(1—cos¢)+[2(1—cosq)]~**— —2- (0<g<n). We

note that M(¢)=0, M (13) =0, M(n)=1. In the course of

evolution the values of a and ¢ satisfy the relation

8
a’(q>)=a-’—3—uM(|<p|)-

As the results of numerical experiments show, for
values of o, less than some value a*(l) the synodic orbits
have a crescent shape, while for o, greater than some value
@ (?) the evolution of the orbit belongs to a second type
which will be discussed below. For o, ¢ < aiz) the
synodic orbits have a horseshoe shape. The theoretical

TABLE I
€9 =edy==e, Agy OI 7%, 1%, Vo, \0 Ae
0 Age=4 2.40-
0.05 n0=1, n0,=4, V=1, v0,=2 0.1
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(£] i 2; 0.25
values are a.” ~ 1.6¥p, o!” ~0.3m;”. In the case of m, =

m,, or for different values of ¢, (! and a{?) can differ
somewhat from the values given above. The region of «,
corresponding to crescent-shaped orbits is about [50-25]!
times smaller than the entire region of @, corresponding
to the evolution of orbits of the first type. As u— 0 the
fraction of crescent-shaped orbits approaches zero (the
fraction of horseshoe-shaped orbits approaches 100%),
while for > 1073 it is close to unity. In the case of
9-7¥69 .
p> i3 ~ 0.04, as is known, a triangular libration point

is unstable in the Lyapunov sense. When a,< a®) one can
find the minimum value of |p|in the course of evolution

3a.t

from the conditions ~ M (@min) and 0<(pm“,<g—, while
i

when a, < a*(z) one can determine ¢, . from the conditions

3.2
Clk( 2)

~M (Qmaz) and %<q}m<n. When a*( Do <

we have lamnl=la(n)l~ Va.’—%u.

Therefore, in Variants W.lth the same Values Of
(az"—a o)’
1

. and Apy = ¢,°— ¢, the synodic orbits are seen
(a,°)*m,

at the same angle from the central body (i.e., the values of
Pmin and @max are the same). In this case when gpax<
the period of the crescent-shaped orbits is proportionalto
my 0

If a,< aii) then graphs of the time dependence of the
semimajor axes a of the heliocentric orbits are "W n- or
"N "-shaped. When ax® <o, <a? the graphs of ¢ are
"M"-shaped (see Fig. 1la) if a(n) differs appreciably from
o, and "II'-shaped if a(n) ~ o~ 0. As pu— 0 the graph of a
approaches a "II" shape. The period of the "II"-shaped
orbits is close to the synodic period.

In the circular, restricted, three-body problem if the
sidereal orbit of the second particle (of infinitely small
mass) is almost circular while the distance between the
first and second particles is not small then the synodic
trajectory of the second particle is close to the zero-veloc-
ity line. Ifthe minimum distance between the zero-veloc-
ity line and the first particle is small then the relative
velocity of the particle of infinitely small mass increases
as it approaches the first particle (since the force of
gravitational interaction between the particles increases),
the motion no longer takes place near the zero-velocity
line, and the synodic trajectory of the second particle en-
compasses the central body (the second type of evolution,
which will be discussed below).

With initially eccentric sidereal orbits in the station-
ary coordinate system the distances ofthe particles from
the central body vary from ¢(1—e) to a(1+e) during one
revolution about the central body. In this case, therefore,
the synodic orbits have a more complicated form than with
initially circular sidereal orbits.2?

In the case of initially circular heliocentric orbits
the minimum distance between the particles exceeds the
radius of the Hill sphere by several times. It decreases
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with an increase in the initial eccentricities, but it still
remains rather large. Therefore, bodies moving along
such orbits cannot collide.

The second type of evolution is charac-
terized by relatively strong aperiodic variations in the
orbital elements. In this case the minimum distance be-
tween the particles may be small, The evolution of orbits
of the second type for certain initial data was analyzed
earlier in Ref. 10 within the framework of the restricted
three-body problem. A number of authors (Dole,!!, Giuli, !
Kiladze,'®*!* and Kozlov!® and fneev) have investigated the
relative motion of particles over small time intervals
within the framework of the restricted three-body problem,
These investigations were conducted mainly to study the
formation of the axial rotations of the planets, and the

10-3
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Variants in which m; = m, are marked by a bar (10} below
the main designation, Cases of m, = 0.01m; and of ey = 0
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When m;~ 10-3 the particle of smaller mass can move
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authors were interested in the relative motion of the par-
ticles in the case when the distance between particles was
small, Variations in the elements of the sidereal orbits
were not considered in these reports.,

In the analysis of the evolution of initially circular
heliocentric orbits through numerical integration of the
equations of motion on a computer over sufficiently long
time intervals the limits of variation of the semimajor axes
and eccentricities were mainly equal to Aa® (20-30)om{-*
and Ae #(10-15)m{* (for m, from 10~° to 10-5, respec-
tively. This is seen from Fig. 2, in which the quantities
Aa and Ae are given for variants with different values of
Aay my, my, and e, (ef = e) = ep. The variants of Fig. 2
are marked by the following arbitrary designations as a
function of the values of m; and eg:

045
9

counters of the particles took place in the course of evolu-
tion.? For actual bodies such approaches correspond
mainly to collisions of the bodies and can be collisionless
only for bodies very distance from the sun.

Strong changes in the orbital elements take place at
relatively small distances (on the order of the radius of
the Hill sphere) between the particles. At small values of
m; (m; =10” 7 the mutual gravitational influence of the
particles at large distances is slight, while the time inter-
vals between relatively close encounters are rather long.
Therefore, in these cases graphs of the time dependence
of the orbital elements have a stepwise character, i.e.,
the orbital elements are almost constant for a certaintime
and then very abruptly.

In the case of sufficiently large initial eccentricities
{e{ = e in the variants under consideration (the method of

FIG. 2. Some results of numerical integration of the equations of mo-
tion of the plane three-body problem (the sun and two planetesimals).
Dependence of the limits of variation of the semimajor axes and ec-
centricities of the orbits of the planetesimals or particlesonthe masses
and initial orbits of the planetesimals.
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TABLE II

i a%; ™ vy ©; m;
1 1.0 4 1

0.05 108
2 1.005 4 2

spheres of action®® was used along with numerical inte-

gration of the equations of motion in obtaining the results
of the present section) the limits of variation of the semi-
major axes and eccentricities of the orbits were deter-
mined mainly by the values of the initial eccentricities
rather than by the masses of the particles, as in the case
of initially circular orbits, if m; : my= const and m; =105
(see § 1.6 of Ref. 5). In the case of ("= 1, a,) = 1.01,

el =¢e0=0.15 n =1, m’ = 4), for example, the maximum
value emax of the orbital eccentricities of the particles
was somewhat greater than 0.3, both for m; = m, = 107°
and for m; = m, = 10~7. In this case the time of evolution
increased with a decrease in the masses of the particles.
In the variants under consideration®* emax ~2e, for 107 %<
my = m,=10-° and 0.05<e=e) = 0.15. For the same
values of m;=10~° and e{ = eJ = e> 0 and other conditions
being equal, the values of emax were larger in the case of
m¢>> m, than in the case of m; = m,. For example, for e;=
0.05 they reached 0.2, while for e, = 0.15 they could ex-
ceed 0.5.

In the case of particles of equal masses the graphs of
the time dependence of e; are very similar to the graphs
of e,, while for small values of m; = m, the graphs of ¢,
and e, practically coincide (see Fig. 1c). Only in the
variant with the initial data given in Table II is the graph
of e; "symmetrical" to the graph of e, relative to the
straight line e, =0.05 (see Fig. 4.7 of Ref. 3). In the vari-
ants under consideration®? initially circular orbits and
often eccentric orbits also of particles of equal masses be-
came such, in the course of evolution, that the pericenter
of one orbit and the apocenter of the other lay along the
same ray with the apex at the central body. In this case
the longitude of the pericenter r increased almost mono-
tonically in some variants, i.e., it moved in the same di-
rection as the particles themselves (see Fig. 1c). In the
case of m; > m, and e # 0 the variation in 7; was small,
while 7, did not vary monotonically. Graphs of the timede-
pendence of the semimajor axes of the orbits of two gravi-
tationally interacting particles are "symmetrical" by virtue
2 m,

f = —n0
, 1f6a1—a1 ai,

0
of the energy integral 8a,~—6a, ( 4 )
my

a;’
da, = a;—ay, and m; and m, are small.

In a number of variants the semimajor axes of the
orbits oscillate periodically with a small amplitude for a
rather long time. For m;=10"° such "steady" sections
corresponded mainly to cases of commensurabilities be-
tween the mean motions of the particles and were observed
rather often.? With time (for my = 107" usually after sev-
eral hundred revolutions of one of the particles about the
central body) the resonance relations were disrupted and
the particles went out of resonance. In the majority of
these resonances (Ty:Ty =2:1, 12:5, 13:5, 4:5, 7:5; Tj
is the period of revolution of the i-th particle about the
central body) the semimajor axes and eccentricities of the
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orbits varied periodically with a small amplitude, while
the variations of 7j were small, In these cases the motions
about the resonances are oscillations about periodic solu-
tions which consist of closed curves in synodic coordinates
and have been investigated by many authors (see Chaps. 8
and 9 of Ref. 8, for example). In the 6:5 and 5:4 reso-
nances in the variant presented in Fig. 1d, the semi-
major axis of the orbit of the particle of smaller mass
varied slightly, the eccentricity increased almost mono-
tonically, while the longitude of the pericenter decreased.
In these cases the curve about which the small oscillations
took place was not closed in synodic coordinates. For

my = 107° and e{ = ] = 0 the mean motions of the particles
were commensurable for more than 200 revolutions of the
first particle (m;>m,) in 6 out of the 10 variants ex-
amined.? Therefore, bodies (such as comets) whose orbits
cross the orbit of some giant planet can be in resonance
with this planet for a considerable part of the time if the
perturbations from other planets are relatively small. We
recall that the body Chiron is in 5:3 resonance with Saturn.

The third type of evolution of two gravita-
tionally interacting particles moving about a massive cen-
tral body is characterized by relatively weak perturbations
of the semimajor axes of their orbits. In this case the
orbits of the particles do not cross in the course of evolu-
tion. In the case of nonresonance orbits the limits of the
variations of the semimajor axes and eccentricities of the
orbits in the variants under consideration' increased with
an increase in the initial eccentricities and with a de-
crease in the absolute difference between the initial values
of the semimajor axes of the orbits of the particles. The
longitudes of the pericenters of nonresonance orbits varied
almost monotonically in the course of evolution if the orbi-
tal eccentricities were not small. The evolution of reso-
nance orbits differs strongly from the evolution of nonre-
sonance orbits., In the majority of the resonances examined
the limits of variation of the semimajor axes and eccentri-
cities of the orbits were greater than for neighboring non-
resonance orbits.!%16

2., INFLUENCE OF INITIAL DATA ON THE TYPE OF
EVOLUTION

In the case of initially circular orbits when the initial
angle A ¢, between the directions toward the particles is
not small the first type of evolution takes place when
Agy=|a;'—a,°| <03 a,'m®, the second when 0.3 a,m{? SAg,<
0.9a,m{?, and the third when Aa,;20.9¢,°m}® (see Fig. 2).
When m;~ 10-3, 0.9m{?*%¢ "~5Rg,, where Rga is the radius
of the sphere of action of the body of mass m;. The ratio
a{m{**/Ry, increases with a decrease in m;. The larger
my, the more strongly the boundary values of /a, depend
on Agy and on the time interval under consideration. In a
number of cases almost periodic motions of the first and
third types can change with time into motions of the second
type. With fixed masses of the bodies and ef = e = 0 the
region of values of Aa; corresponding to the first type of
evolution is largest for [A ¢, |~7/3 and decrease as [Agy|—
7 and especially as [Ag,|— 0. Evolution of the first type
cannot occur when Ag,= 0. With an increase in the initial
eccentricities the region of values of /4 ¢, corresponding to
the first type of evolution decreases while the region cor-
responding to the second type of evolution increases. For
example, in the case of m; = 1079 with e{ = e = 0.05 @ =
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1.01) the evolution of the orbits was of the first type while
when ef = e = 0.15 it is of the second type; when e{=eJ =
0 (@ = 1.1) it is of the third type and when e{ = e = 0.15
(az0 =1.1) it is of the second type. Dole evidently showed
for the first time that initially circular orbits are unstable
if the distance between them does not exceed rm{*2® (Ref.
17, p. 497).

3. INTERACTION OF PLANETESIMALS IN A
PROTOPLANETARY CLOUD

From the results obtained above it follows that the
maximum eccentricities emax which are acquired by ini-
tially circular orbits of small bodies (if their mutual gravi-
tational influence is not taken into account) due to the gravi-
tational influence of a separate massive planetary embryo
of mass m moving along a circular orbit are approximate-
1y equal to 15m%, i.e., emax is 0.08-0.09 for the earth
and Venus and 0.03-0.04 for Mercury and Mars, Assum-
ing that the width of the supply zone of an isolated planet-
ary embryo moving along a circular orbit of radiusr, does
not exceed +2r@emax ~+30rgm®4 1) we find® that in the
supply zone of planets of the terrestrial group the number
of planets formed should be greater than the actual num-
ber of planets (four). The number of planets formed de-
creases if the orbital eccentricities of the planetary em-
bryos are taken as nonzero and the mutual gravitational in-
fluence of the planetesimals and certain other factors are
taken into account.

CONCLUSION

An investigation of the mutual gravitational influence
of two planetesimals or particles whose orbits cross inthe
course of evolution allowed us to isolate and study in de-
tail the elementary process lying at the foundation of the
complex overall process of evolutionof a ring of gravitat-
ing bodies. :

On the basis of an analysis of a numerical solution of
the equations of motion of the plane three-body problem on
a computer we obtained equations permitting one to deter-
mine the character and in some cases also the limits of
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variation of the orbital elements of two gravitationally in-
teracting planetesimals from the initial data, Estimates
of the sizes of the supply zones of the planets are given.

It was shown that with strong changes in the orbital
elements in the course of evolution the mean motions of
the planetesimals can become commensurable, and these
commensurabilities are retained for a rather long time,.

Through an analytical investigation of the plane, re-
stricted, circular, three-body problem we obtained equa-
tions characterizing the motion of the particles about the
triangular libration points.

The author sincerely thanks T. M. Eneev for the state-
ment of the problem and interest in the work.
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