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ABSTRACT 

This discussion of time series data produced by random physical processes emphasizes astrophysi- 
cal data analysis. Several random process models phrased in the time domain are defined and 
discussed. The moving average (MA) model represents the data as a sequence of pulses occurring 
randomly in time, with random amplitudes. The autoregressive (AR) model represents the correla- 
tions in the process in terms of a linear function of its past values and is closely related to the 
differential equation describing the dynamics of the system. A given stationary process always has 
both a MA and an AR representation, and one can easily be transformed into the other using the 
discrete Fourier transform. The moving average form is usually more suitable for interpretation, as 
the pulses and pulse amplitudes often have direct physical significance. But the AR parameters are 
easier to determine from the time series data. Hence, the procedure is to determine the best AR 
model from the sampled data and then transform it to a MA for interpretation and comparison with 
theory. The technique for determining the AR parameters is based on interpreting the AR model as a 
filter which, when applied to the data, yields the sequence of pulse amplitudes. The parameters are 
adjusted to maximize the randomness of the pulse amplitudes— that is, to make them as statistically 
independent as possible. (It is not enough to make the amphtudes uncorrelated, or white.) This 
maximization is implemented by specifying that the joint cumulative probability function of the 
pulse amphtudes be as close as possible to the product of the individual cumulative distribution 
functions. A procedure for carrying this out is presented as a FORTRAN algorithm which has 
proven to be relatively stable numerically. Results of test cases are given to study the effects of 
adding noise and of different distributions for the pulse amphtudes. A preliminary analysis of the 
optical light curve of the quasar 3C 273 is given. 

Subject headings: functions: numerical methods — quasars 
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I. introduction: astronomical time series based on the assumption that the latter are indepen- 
dently distributed. Many time series analysts feel that 

This mostly self-contained introduction to time do- 
main models of intrinsically random physical processes 
is directed toward astronomers and scientists in related 
fields, particularly those involved in the analysis and 
interpretation of data. The goals are to develop an 
intuitive understanding for this view of random 
processes and to give specific numerical techniques for 
the analysis of time series data. Many of the concepts 
presented here have been developed in other literatures, 
especially those of geophysics, economics, and speech 
analysis. Appropriate references will be given; although 
the terminology and basic philosophy will be somewhat 
different, the reader is urged to consult these refer- 
ences. Of particular value are the following reviews, 
which parallel the present work in their viewpoint and 
emphasis on applications to data analysis: Wold (1964) 
(especially the two chapters by E. A. Robinson), 
Robinson (1962, 19676), Box and Jenkins (1970), 
Kanasewich (1975), Claerbout (1976), and Granger and 
Newbold (1977). Reviews of stochastic processes in 
astronomy are given by Deeming (1970), Rothschild 
(1977), and Press (1978). A pioneering paper in the 
application of time domain models of random processes 
in astronomy is Fahlman and Ulrych’s (1975) analysis 
of the optical light curve of 3C 273 (see also Ulrych 
and Clayton 1976; Ulrych and Bishop 1975). There are 
several books devoted to explicit computer codes for 
some of the operations discussed here (Simpson 1966; 
Robinson 1967a; Enochson and Otnes 1968). Texts are 
available on the following related topics: time series 
analysis (Hannan 1970; Anderson 1971), stochastic 
processes (Doob 1953; Parzen 1962; Bailey 1964; 
Papouhs 1965), prediction and optimization theory 
(Wiener 1949; Whittle 1963; Luenberger 1969), and 
probability theory (Feller 1957; Parzen 1960). There 
are also several interesting collections of related papers 
(Wax 1954; Rosenblatt 1963; Parzen 1967; Krishnaiah 
1969). The 1974 December issue of the IEEE Transac- 
tions on Automatic Control was devoted to systems 
identification and time series analysis (see the papers 
by Hannan 1975, Akaike 1975, and Parzen 1974; see 
also Kailath 1974). For an extensive bibliography 
(roughly 10,000 entries) on time series and stochastic 
processes complete through 1959, as well as an interest- 
ing “graphic introduction to stochastic processes,” see 
Wold (1965). 

Much of the material in §§ II, III, and IV is bor- 
rowed from the literature cited above and is reviewed 
here because few astronomers have been exposed to 
this material. The emphasis in these sections on mixed 
delay acausal representations is unusual, although not 
new. What is original in this work is the procedure for 
determining pulse shapes and amplitude sequences 

all information has been removed from data if one has 
found a filter which reduces the data to white (i.e., 
uncorrelated) noise. It does not seem to have been 
realized that there is still information remaining, that 
this is the phase information discarded when the com- 
plex absolute value of the Fourier transform is taken 
(to yield the power spectrum), and that this informa- 
tion can be extracted if one finds a filter which reduces 
the data to independently distributed noise. Also new is 
the use of cumulative distribution functions and the 
way in which they are estimated, although Parzen (1979) 
has recently emphasized a related distribution called 
the quantile function. Two other techniques for phase- 
sensitive deconvolution were presented at the Second 
Applied Time Series Analysis Symposium (Tulsa, 
Oklahoma, 1980 March 3-5) by Mendel (1980) of the 
University of Southern California and by Donoho 
(1981) of Harvard University. At the same meeting the 
author of this paper summarized the material con- 
tained here and outlined some of the ways in which 
astronomical data are different from those in geo- 
physics, econometrics, speech analysis, and other areas 
(Scargle 1981). I have recently become aware of a 
paper by Benveniste, Goursat, and Rüget (1980), which 
also deals explicitly with this problem. It appears that 
their methods presuppose knowledge of the form of the 
distribution function of the input process R. The phil- 
osophy of the present work is that the determination of 
the unknown innovation is an interesting part of the 
overall problem. 

Data from astronomy as well as from other physical 
and biological sciences often consist of a sequence of 
numbers, {XUX2,X3,..., XN], obtained by measure- 
ment of quantity Y at a set of times, {tx, t2, t3,..., tN). 
Such a sequence is a time series, and the data are time 
series data. The sample time series in Figure \a il- 
lustrates a feature common in astronomical observa- 
tions, brought about by practical considerations such 
as observing schedules, weather, equipment malfunc- 
tion, etc.: the time points tt are not evenly spaced. (It is 
then said that the sampling is uneven.) Several ways of 
graphically indicating to what degree the sampling is 
uneven are demonstrated in Figures 16, 1c, and \d. 
Sometimes it is assumed that X is actually constant, 
and the repeated measurements are made to reduce the 
uncertainty due to observational errors. Such data are 
not really time series data because the serial or sequen- 
tial nature of the observations is irrelevant (i.e., the 
time ordering contains no useful information). This 
paper deals only with the situation where X may un- 
dergo real variations with time, and the sequential 
nature of the observations is crucial to the elucidation 
of the variations. The goal of the analysis—once the 
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existence of such variations has been established—is 
the extraction of information about the physical pro- 
cess which gives rise to the variations. 

This goal is usually approached by identifying a 
pattern in the observed variations and then trying to 
uncover the cause or explanation of the pattern, often 
in terms of a physical model. For example, the pattern 
may consist of a definite functional dependence of X 
on î, such as a linear variation or a harmonic oscilla- 
tion partially hidden behind noise. One then attempts 
to fit a function (or model), the form of which is 
usually suggested by prior knowledge, physical under- 
standing, or guesswork, to the model. This fitting is 
usually carried out by minimizing with respect to the 
model parameters a measure of the difference between 
the model and the observations. This measure is usu- 
ally defined as the sum of some positive-definite func- 
tion of the point-by-point difference between the model 
and the data. The most common such measure is the 
sum-of-squares of the Y-differences, and the result is 
the ubiquitous least-squares procedure. 

But what if there is no consistent pattern to the data? 
It may be, for example, that the data come from a 
physical system that is random. In some cases the 
process is intrinsically random because of quantum 
mechanical effects—for example, a radioactive decay 
process. In others, one should perhaps say the process 
is effectively random, because detailed knowledge of 
the initial conditions and of the governing physical 
laws might yield predictability (nonrandomness) for the 
system, but such knowledge may be virtually impossi- 
ble or simply not practical. This situation is increas- 
ingly important in astrophysics, and examples could be 
cited from many areas, especially X-ray and radio 
astronomy. Is there any physical information to be 
extracted from such random data? The answer is yes, 
and the basic subject of this paper is the modeling of 
random processes to obtain concise and useful descrip- 
tions of the underlying physical processes. The discus- 
sion of the fundamental concept of random process in § 
II is oriented toward astrophysical data analysis and 
description in the time domain. Just as with determinis- 
tic processes, there is an infinite variety of possible 
forms or models which can be used to describe random 
processes. Familiar examples are shot noise models 
(Terrell and Olsen 1970; Terrell 1972), random walks 
(Wax 1954), diffusion models (Wax 1954), Markov 
chains (Doob 1953), discrete branching processes, birth 
and death processes, competition and predation, queue- 
ing processes (Bailey 1964), and other specialized tech- 
niques (e.g., Chandrasekhar and Münch 1951). In § II 
are descriptions of several types of models which are 
less familiar to astronomers, though ironically the mod- 
els originated long ago in an astrophysical context 
(Yule 1927), namely the analysis of sunspot data. These 
models are emphasized here because of their direct 
physical interpretations (e.g., in terms of randomly 

5 

occurring pulses [§ III]) and because of their very 
general applicability (§ IV). A common feature of these 
models is their simple and explicit separation of the 
nonrandom from the random parts of the process', this 
feature is responsible for their usefulness, because such 
a separation usually has a clear physical basis—i.e., the 
random and nonrandom parts correspond to funda- 
mentally different aspects of the process. Such a sep- 
aration is assured only for stationary processes (defined 
in § IIa). We shall almost always assume that we are 
dealing with physical processes that satisfy the 
stationarity condition. For practical reasons we shall 
always assume that the time sampling is discrete (see § 
IIa) rather than continuous. All processes will be as- 
sumed ergodic, such that time averages (determined 
from one realization) are the same as statistical aver- 
ages (determined from an ensemble of realizations). In 
addition, non-Gaussian processes will play an im- 
portant role, because Guassian processes cannot be 
unambiguously modeled in the way mentioned (see § 
IV). Model construction procedures are outlined in § 
IV; computational details appear in § V; and examples 
of the computations are presented in § VI. The Ap- 
pendix contains a description of the algorithm, together 
with FORTRAN code, for the deconvolution of time 
series using cumulative distribution functions. 

H. MODELING RANDOM PROCESSES IN THE TIME 
DOMAIN 

This section begins with a brief account of the theory 
of random processes. Rather than a rigorous mathe- 
matical treatment, it is an informal heuristic discussion 
emphasizing a particular context—namely the interpre- 
tation of time series data produced by a physical pro- 
cess which is at least partly random. This situation is 
common in astrophysics as well as nearly all other 
quantitative sciences. Interpretation often means the 
construction of a model of the physical process. This 
section will discuss several ways of mathematically 
modeling a random process in the time domain. 
Frequency domain techniques, such as power spectrum 
analysis, are most useful when harmonic variations are 
present but are less suited to random variations. Two 
goals of this paper are to demonstrate the richness and 
usefulness of time domain analysis, and to indicate the 
type of problem for which it is superior to frequency 
domain analysis. The text by Box and Jenkins (1970) 
provides a good overview of this subject. The paper by 
Shinners (1974) is an interesting and practical discus- 
sion of the application of modeling techniques to hu- 
man behavior. 

a) Time Series and Random Processes 

Consider a physical variable X that can be measured 
as a function of time t. In practice the values of t are 
not continuous but discrete because data-recording 
equipment is capable of sampling the observed quan- 
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tity only at a finite number of times, separated by some 
minimum time interval. There is thus a finite series of 
values of t, {i,}, /= 1,2,3,..., A. The corresponding 
values of t, {7,},/= 1,2,3,..., A. Often the values of t 
can be chosen to be evenly spaced, so that ti=iAt) 

where A Ms the constant interval between the times of 
observation. In any case the set of numbers {A",} is 
called a time series. Figure 2 shows an example of a 
discrete, evenly spaced time series. Despite the name, 
time series are not limited to functions of time, which 
here stands for any independent variable of interest. 
Other examples are: position in space (three- 
dimensional), position on the sky (two-dimensional), 
and wavelength (one-dimensional). Because the term 
time series is used in all cases, it should be kept in mind 
that t may stand for a variable other than time, possi- 
bly of multiple dimensionahty. Sometimes the term 
sequential analysis is used in place of time series analysis 
to emphasize the key property that the numbers X, are 
sequentially related to each other. The dependent vari- 
able X may also be of multiple dimensionahty. 

A process is a rule or procedure that generates time 
series. That is, it is a prescription for determining the 
values of X for a given set of values of t and may or 
may not include a random element. Each such time 
series is called a realization of the process, and it is 
important to distinguish the process from a specific 
realization. The process can be identified with the set 
of all possible realizations of it. Figure 3 shows two 
more realizations of the same process which generated 
the time series in Figure 2. 

The most interesting processes are those for which 
the rule generating the time series specifies probability 
distributions of the X^ rather than specific values that 
are the same at every realization. In this case we have a 
random process, which can be thought of as a set of 
random variables, {A',}. For precise definitions and 
discussions of random variables the reader is referred 

Vol. 45 

Fig. 2.—This artificial time series consists of a sequence of 
decaying exponential pulses occurring randomly in time in the 
sense that the amphtude of the pulse starting at any given time is 
a random variable. The sequence of pulse amplitudes was ob- 
tained by raising a sequence of random variables uniformly 
distributed on (0,1) to the ninth power. The horizontal axis 
represents time, which is discrete and evenly spaced, although 
straight lines have been drawn through the data points to give the 
curve more of the appearance of a continuous function. The 
apparent trend of diminishing amplitude with increasing time is 
spurious—the process generating these data is completely sta- 
tionary. 

to any text on probability or stochastic processes (e.g., 
Feller 1957; Parzen 1960, 1962). It is merely stated that 
a random variable, Xi9 can be specified by giving its 
probability distributions, PXi, defined such that 

Px.(x)dx = Pr{x<Xi <x + dx) (1) 

in the usual limiting sense.1 In many cases two random 

^rf#} stands for the probability of event •. In these defini- 
tions and elsewhere we shall use capital letters for the process (Ar) 
or random variable {X¡) and lower case for specific values of the 
random variable (e.g., x). 

Fig. 3.—These two time series are different realizations of the same random process which generated the time series depicted in Fig. 2. 
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variables are related to each other; e.g., knowledge of a process with independent increments. (Martingales 
the value of one may provide information about the and processes with independent or uncorrelated incre- 
other. There are two important definitions concerning 
the degree of such relatedness: two random variables, X 
and Y, are said to be 

Independent (of each other) if their joint proba- 
bility distribution function equals the product 
of their individual probability distribution 
functions: 

Pxr(x,y) = Px(x)PY{y), 

for all x andy, 

and 

Uncorrelated if the expected value of their 
product equals the product of their expected 
values: 

<xy> = <x><y>. 

The joint probability distribution PXY is defined by 

PXy(x> y) dxdy = Pr{x <X <x + dx 

and y <Y <y + dy). (2) 

Angle brackets are used for the expected value oi the 
quantity enclosed: 

<?>=( Px(x)q(x)dx. (3) 

The more familiar definition of uncorrelation is for the 
case where the processes are assumed (or made) to be 
zero-mean, so that <2^7) also vanishes. Note that 
independence is the stronger of the two properties; it is 
easy to show that independence implies uncorrelation, 
but not vice versa. This is a key fact, and later we shall 
deal with variables that are uncorrelated with each 
other but are not independently distributed. There is a 
third property, intermediate between independence and 
uncorrelation: 

X has the martingale difference property (MDP) 
with respect to Y if the conditional expectation 
value of X (given the value of Y ) is the same 
as the unconditional expectation value of X\ 
<Ar|y>=<x>. 

The name martingale difference property (Segall 1976) 
is based on the fact that this kind of process is to 
a martingale as an independently distributed process is 

ments are usually defined in continuous time and will 
be of no concern here.) It can be shown that if X and Y 
are independent, they each have the MDP with respect 
to the other; in turn, if X has the MDP with respect to 
Y, then X and Y are uncorrelated. 

Let us now be more precise with the definition of a 
process, which was already defined as a set of random 
variables. Take the set to be finite, with N members. 
The process is completely specified by giving any one 
of the following functions: 

1) The complete joint probability distribution function, 

Pxx,x2,...,xN(xu-"-> xn) dxidx2-" dxN 

= Pr{xi <Xl <Xi +dxl and x2 <X2 <x2 +dx2 

and...and xN <XN <xN+dxN)\ (4) 

2) The joint cumulative distribution function, 

Fxx,x2y...yxN(x\> xn) = Pr{X\ and X2<x2 

and...and < (5) 

3) The joint characteristic function, 

*t*Xx, X2,.XN( U\i W2> - •*> WJv) 

= <exp/(Wi^i+1/2^2 + ...+w^Ar
Ar)>. (6) 

Equations (5) and (6) are straightforward generaliza- 
tions of the individual cumulative distribution function 

Fx(x) = Pr{X<x) (7) 

and the characteristic function 

<l>x(u) = <exp( iuX ) ) (8) 

of a single random variable X. One can define what is 
called the moment-generating function by dropping the i 
in the definition of the characteristic function, but it 
does not always exist and is therefore of less theoretical 
importance. Nevertheless, it is of some practical use 
because of the concise way the nature of a variable can 
be expressed in terms of its moments. 

We shall now distinguish several degrees of ran- 
domness. It is convenient to define these categories in 
terms of predictability. A process is said to be determin- 
istic if, based on past observations, the future of the 
process can be predicted exactly (i.e., with zero error). 
An example of such a process is one with no prob- 
abilistic element at all, such as the sinusoid Xt = 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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sm(toí, +<i>); in this case all realizations are the same. 
However, there are purely deterministic processes for 
which each realization is different. The above sinusoid 
would be an example if the phase <j> were a random 
variable, fixed during each realization but chosen ran- 
domly each time—each realization would be exactly 
predictable once the phase had been determined by 
observation. An example of a deterministic process 
from astronomy would be a perfectly regular variable 
star. 

A random process, on the other hand, is not perfectly 
predictable. Even if the rule generating the time series 
is known completely, it has a stochastic nature. Differ- 
ent realizations are therefore different and share only 
statistical properties (see Figs. 2 and 3). Discussions of 
the concept of prediction of time series can be found in 
texts by Whittle (1963), Robinson (19646), Hannan 
(1970), and Granger and Newbold (1977). For the 
present purposes the important point is that while past 
observations may provide useful predictive informa- 
tion, for a random process there is nevertheless always 
some uncertainty or error in the predictions, even in 
the limit that the available data extend infinitely into 
the past. A case of particular importance is that in 
which past data provide no information about present 
or future values. (This must be made precise, because 
observations of the past provide some statistical infor- 
mation no matter how random the process: Because 
the process is stationary, the mean value derived from 
past data is the best prediction for Xn). In such cases 
there is no deterministic element, so the process can be 
called purely random. As with individual random varia- 
bles there are three degrees of lack of determinism 
which it is crucial to distinguish. 

The first is independence. A process is independently 
distributed (id) if all of the random variables are inde- 
pendent of each other. Then the past provides no 
information about the present. There are four equiva- 
lent conditions which are necessary and sufficient for 
Xx,X2,...,XN to be independent, i.e., that the process 
X be independently distributed (Parzen 1962): 

1) In terms of probability distributions: for all real 
numbers xu x2,- -,xM, 

PXlyX2,...,XM(Xl’ Xm) 

= Pxl(
xi) Px2(

x2) - Pxm(xm)- (9) 

2) In terms of cumulative distribution functions: for all 
real numbers xl9 x2,..., xM, 

Pxi,X2,...,XM(X\’ X2>"-’ XAf) 

^Pxfx^Pxf^-^X^Xm)- (10) 

Vol. 45 

3) In terms of characteristic functions: for all real 
numbers ux,u2,...,uM 

<t>Xl,X2,...,XM(Ul’ U2->"-’> um) 

= <I>x1(
ui)<I>x2(

u2) (11) 

4) In terms of expectations: for all functions 

^Z2,-»SM(gl(xl)g2{x2)...gM(xM)y 

={g^xx)y{g2{x2)y ...{gM{xM)y, (i2) 

provided all of the expectations indicated in this equa- 
tion exist. These relationships must hold for Af=2, 
3,...,N. If, in addition, the X¡ all have the same indi- 
vidual distributions, then X is said to be identically and 
independently distributed (iid). Independence is the 
strongest form of lack of relation and absence of pre- 
dictability. The term purely random will be reserved for 
independently distributed processes. 

A second and weaker description of a process is that 
it is uncorrelated. For a process with zero mean value, 
this means that the autocorrelation function vanishes 
for all except zero lag, that is, 

P{Xn,Xm)^iXnXmy=o2^m (13) 

(ôn>m is the Kronecker delta, which vanishes ú n^m, 
and is unity for « = w; a2=<Ar

n
2)). Since (XnXmy is 

zero if Xn and Xm are independent of each other and 
can be nonzero otherwise, the autocorrelation function 
contains some information about dependence. Its 
vanishing implies a degree of lack of mutual depen- 
dence, but, as we shall see, not total absence. 

The third description of a process involves the 
martingale difference property (see § IIa). One says 
that a process X has the MDP if each Xn has the MDP 
with respect to the previous Xi9i<n. (Alternatively, the 
MDP could be with respect to all Xi9 i^n.) This 
property is as fundamental to nonlinear estimation 
theory (Segall 1976) as are the concepts of uncorrela- 
tion and white noise to linear estimation. However, it 
does not seem to have been used very much in applied 
time series analysis. Although the results given below in 
§ Via are not very encouraging for the specific prob- 
lem considered there, further development of this very 
easily applied technique is to be encouraged. 

A process which is neither purely deterministic nor 
purely random could be called partially random. How- 
ever, we will reserve this term for the case where the 
process has no deterministic component (in the sense 
made precise in § IVa below), but is also not uncor- 
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related; that is, loosely speaking, where it is a random 
process with some correlation present. 

We will deal almost exclusively with stationary 
processes. Most discussions of stationary random 
processes assume that the mean value of all processes is 
zero because if it is not, the constant mean can be 
subtracted. If 

(14) 

the new process X' has zero mean. However, this will 
not be done because there are cases where the positive 
definite nature of a signal is crucial (e.g., the examples 
in Figs. 2 and 3). This matter will be discussed further 
in § VI/. 

Figure 4 shows examples of four types of processes: 
deterministic, random, uncorrelated, and independently 
distributed. Note particularly the process depicted in 
Figure 4c, which is uncorrelated but not independently 
distributed. (This process will be examined in detail in 
§ IV6.) Another example of an uncorrelated but depen- 
dent process can be constructed as follows: Let be 
any zero-mean random variable. Define X2 =s2Xl9 

where s2 is randomly + 1 or — 1 with equal probability 
(p=l/2). In general let Xn=snXu where the sn are 
defined similarly to s2, but are independent of each 
other and of s2. It is easy to show that (XnXmy =0 for 
m^=n, because P2(Xn,Xm) is an even function of at 
least one of its arguments. But the Xn are most defi- 
nitely not independent, as | | = | Yj | for all «>1. On 
the other hand, it is straightforward to show that if a 
process is independently distributed, then it is uncorre- 
lated. Most data arise from a process which has a 
random aspect to it but is neither uncorrelated nor 
independently distributed; such is called a partially 
random process. In general a process can contain both 
deterministic and random components. Indeed, it can 
be shown that any stationary process2 contains only 
these two components, and the separation between 
them can be written in a surprisingly simple and ex- 
plicit form. This separation, called the Wold decomposi- 
tion, will be discussed in detail in § IV. 

It may seem strange, especially to the reader un- 
familiar with the econometric approach to time series 
analysis (Wold 1964), that so much emphasis is put on 
prediction. But the relationship between prediction and 
statistical description is clear: a good prediction of the 
values of a process depends on good knowledge of its 
statistical properties. It will be seen that the concept of 
prediction must be extended to include the use of 
future data (i.e., estimation of Xn based on Xn+l, 
Xn+2, ...) as well as past data. That is, one pretends 

2A stationary process is one whose statistical properties do not 
depend on time. A strictly stationary process means that all of the 
joint probability distributions are invariant to a translation of 
time. There are other kinds of stationarity that are less restrictive, 
but we will not need to distinguish between them. 

that Xn is unknown and tries to estimate or predict its 
value based on knowledge of the neighboring values 

^/i±2> • • • • This approach leads to the concept of 
a two-sided (acausal) prediction-error filter, which 
forms the basis of the technique to be described in § TV 
for the extraction of information from time series data. 

The ability to know when two random processes, say 
X and Y, are really the same is important. This does 
not mean that specific realizations of the processes are 
equal point-by-point (i.e., Xn = Yn for all n) because 
even different realizations of the same random process 
are not equal point by point. What is meant is that the 
probabihstic rules and sampling for X and Y are the 
same. Specifically, the joint probability functions listed 
in equations (4)-(6) must be identical. 

b) White Noise', Independently Distributed Noise 

Of special importance is the class of random 
processes R which satisfy all three of the following 
conditions: (1) (Rn ) =0 (zero mean value), (2) <R2) 
= a2<oo (finite variance), and (3) <R/JRm)=0 for 
m^=n (uncorrelated). Such a process is called white 
noise. Nothing is said in this definition about the prob- 
ability distribution of R. There are many different 
kinds of white noise, according to the probability distri- 
bution. Gaussian, or normally distributed noise is very 
common, because of the fact expressed in the Central 
Limit Theorem.3 It is also not necessarily true that the 

be independently distributed, i.e., that Rn be statisti- 
cally independent of Rm for n=£m. White noise may be 
independently distributed noise or just uncorrelated noise. 
Both are “white” because the power spectrum of an 
uncorrelated process (and therefore of any indepen- 
dently distributioned process) is constant with fre- 
quency. Figure 5 and Figure 4c and Ad are examples of 
white noise with various distributions. Note further that 
only the second moment of R has been specified. The 
third and higher moments (RnRmR¡y, etc., are not 
determined, although they are not completely arbitrary 
either, as they must conform to conditions (l)-(3) 
above. 

c) The Moving Average {MA) Model 

A model of a random process is an explicit mathe- 
matical description which is usually an attempt to 
describe a physical process in simple terms. It often 
involves a relatively small number of parameters, the 
values of which are to be determined by some proce- 
dure using the observed time series data (i.e., one or 
more realizations of the process). An extremely useful 
model is the moving averageA (MA). A MA is a process 

3 The sum of independent random variables with any distribu- 
tions tends to be normally distributed as the number of variables 
increases (Claerbout 1976, pp. 83-87). 

4 Unfortunately this term is also sometimes used for the proce- 
dure of smoothing data with a running mean, formally similar to 
the summation involved in the MA. 
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(al) DETERMINISTIC 

PURELY N ON-DETERMINISTIC, 
(bl) WITH CORRELATIONS (b2) 

Fig. 4.—Time series produced by four different types of processes (/e/if) and the corresponding autocorrelations {right). The dashed 
line is the theoretical autocorrelation, and the solid line is the estimate from the realization shown. The processes are: {a) a sine wave, {b) 
a moving average, (c) a moving average with the uncorrelated pulse shape shown in Fig. 17, and {d) independently distributed noise with 
a highly nonnormal distribution. (The autocorrelation of the sine wave in part {a) is damped because a finite realization was used to 
compute it) 

10 
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Fïg. 6.—The moving average (MA) process depicted in terms of noise passed through a filter. The noise process shown is positive only, 
and the filter is roughly exponential in shape. 

in the form '2,kCkRn-k, where R is a white noise 
process and the Ck are constants. This summation is 
called a convolution (§ IIIc) and will be abbreviated 
C*R. The array of constants C—{Ck} is called a filter 
or linear system. The reason for this terminology is that 
the above expression describes the output of an electri- 
cal filter into which is put a random sequence R of 
impulses (noise). That is, Ck regarded as a function 
of discrete time k describes the shape of a pulse 
that would result from an impulsive or delta-function 
input; Ck is the impulse response of the filter. This 
is easily seen by letting R* be set equal to a delta 
function at n = nf (i.e., Rn=§n nr\ which then yields 
Xn = Cn_n>—that is the pulse (CJ with its origin, / = 0, 
shifted to time n'. It is easily seen that if there are 
several or many nonzero values of Rn, each one pro- 
duces a pulse at time n, of amplitude Rn. The net result 
is a sequence of overlapping pulses. The interpretation 
of the MA as filtered noise is illustrated in Figure 6. 
The time series in Figures 2 and 3 are also MAs. The 
closely related shot noise process will be discussed be- 
low, in § Hä. 

In most discussions of the MA the restriction is 
made that Cn=0 for n< 0. This condition is called 
causality, and such a filter is said to be causal because a 
nonzero value at a negative time would correspond to a 
response of the filter at a time prior to the input. (The 
point « = 0 will be called the origin of time for the 
pulse.) In some contexts this acausality would be un- 
physical, and it is convenient to restrict filters to re- 
spond only at and after the input; i.e., the filter can 
possess a memory but not premonition. However, for a 
number of reasons it is frequently useful or even neces- 
sary to relax this restriction. One reason is that it is 
often convenient to identify the origin of time for a 
pulse with a point near the peak rather than with the 
time of the cause of the pulse. For time series in which 
the independent variable is not time, the concept of 
causality is obviously of limited value. There is no 
Arrow of Space, or Arrow of Wavelength, as there is an 
Arrow of Time. Other reasons for dispensing with 
causahty will be mentioned as they arise below. For the 
present, it should be simply noted that a filter is a set of 

numbers {C„} where n may take on negative as well as 
positive values. In practical computations, of course, n 
takes on a finite number of values, say —q, -q+\, 
— <7+2,..., —2, — 1, 0, p—\,p. The case ¿7 = 0 
is the conventional one-sided or causal pulse and corre- 
sponds to a MA process of order/?, abbreviated MA(/?). 
The general case will be called a two-sided MA of 
order p, q, or MA(/?, q). 

An interpretation of the MA of interest in the eco- 
nomic apphcations (Wold 1964) is that the pulses repre- 
sent the reaction or response of some system to news or 
information which arrives in discrete impulses. The 
effect of the news persists for some time (memory) but 
eventually dies out. This suggests a condition that the 
Cn get smaller as n gets large. In addition, it is conveni- 
ent to allow the mean value of the input process R to 
be nonzero. For example, in some cases the pulse 
amphtudes must be positive because of their physical 
significance, as when the pulses are outbursts of radia- 
tion. If the mean value of the input is positive and the 
pulse shape has a positive “area” or total strength, 
the mean of the output is also positive, since ) = 
<R*C>=<R>(2*Q). 

The above statements are summarized in the follow- 
ing definition: 

A moving average (MA) is a process X which 
can be written in the form: 

00 
*»=2 C,**-, {X=C*R\ (15) 

— oo 

where R is an uncorrelated white noise process, 
possibly with nonzero mean: 

<(Rw-R)(Rm-R)>=a2ô„,m (R = <R„» (16) 

and the C, are constants satisfying < 
oo(called stability of the filter C). If the C, are 
zero for all negative (positive) values of i this is 
a causal (purely acausal) moving average. If 
neither is true, it is called a two-sided, or 
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acausal MA. A MA is said to be of order 
(/?, q) if the range of i for which Cz is nonzero 
is from —q top. 

The stability condition assures that the pulse dies out at 
infinity, and is written in the form given because EQ2 

is the total energy output of an electrical filter if the 
input R represents the amphtude of the electric field at 
the input of the filter. The range of i may be finite or 
infinite. A finite MA is obviously stable. 

It is important to note that R is random and C, if 
considered as a time series itself, is deterministic. That 
is, the process X has its random and its predictable 
aspects explicitly separated in the MA representation. 
Since R represents the new information arriving at the 
input of the system, it is called the innovation. We will 
be particularly interested in the class of MAs in which 
R is independently distributed but it should be remem- 
bered that the definition requires only that R be uncor- 
related. Sometimes the terms “MA process” and “MA 
model” are used nearly interchangeably, but this is a 
loose usage. A MA process exactly satisfies the defini- 
tion given above. A MA model is a representation or 
model which can be used to attempt a description of 
any process, whether or not it is actually a MA. For 
example, one can use a low-order MA model to ap- 
proximate a process which is a higher-order (or infinite) 
MA or not a MA at all. The pulse shape {CJ is also 
assumed to be constant (independent of time, n). This 
will be seen below (in § IYa) to be less restrictive than 
it seems at first. A final point concerns normalization. 
If the switch C^aC, R—>a “ XR is made, then X obvi- 
ously remains unchanged. Hence, in comparing differ- 
ent moving averages, it is convenient to remove this 
ambiguity by specifying in some sense the “size” of 
either R or C. Several possible choices are: 

i) C0 = 1, ii) ai=<Rn
2> = l, 

ni) 2Q2 = 1, iv) 2Q = 1, 

To summarize: the moving average represents the 
deterministic part of a process with a constant filter, C, 
and the random part with an uncorrelated noise pro- 
cess, R. The process is the convolution of C with R, 
and can be viewed as a random sequence of pulses. 

d) The Autoregressive (AR) Model 

The MA model expresses the correlations in a pro- 
cess X in terms of memory, in the sense that the filter C 
remembers, for a while at least, the previous inputs Rz. 
There is another way of expressing such memory; that 
is, the process remembers its own behavior at previous 
times, or Xn remembers, or can be partially represented 
in terms of Xn_liXn_2, If it is assumed that this 
representation involves a linear relationship, the mem- 
ory can be represented by an expression of the form 
B\Xn- \ +^2^n-2 +^3^r/i-3 + — This suggests writing 

Xn=Rn + 2 BkXn_k, (17) 
k~l 

where Rn is a random noise process just as before, and 
the Bk

9s are constant coefficients. The first term on the 
right-hand side of this equation represents the im- 
mediate response of the system to the random input, 
while the others are the memory. The conventional 
notation is to write Ak = —Bk, so that equation (17) 
becomes (with A0 = 1) 

Kn= %AkXn-k (18) 
k = 0 

or R=A*X. If this sum is finite, say from o to p, the 
process is called a (one-sided) AR process of order p, 
or AR(/?). Note the symmetry of this relation with that 
for the MA (eq. [15]), namely X=C*R. The AR is the 
inverse of the MA in the sense that the filters C and A 
are convolutional inverses of each other. By analogy 
with the acausal or two-sided MA, the sum in the last 
equation may be extended to negative k\ this gives the 
two-sided AR 

v) 2 IQI= 1 vi) max Cz = 1, 
i ' 

vii) max IC,-1 = 1. 
i 

For causal filters the conventional choice is (i). How- 
ever, for acausal filters this choice would render the 
size of C dependent on the location of the time origin, 
which is to some extent arbitrary. (We will see another 
reason why this is a poor choice in § TVe.) The other 
six choices make the size of C invariant to a shift of the 
origin of time. The best choice of normalization seems 
to depend on the particular context. 

*„=2 AkXn-k- (19) 
k= — oo 

The concept of a process’s memory of its own future 
may seem unusual, but we are dealing with post-real- 
time data analysis or with cases in which the indepen- 
dent variable is not time, so that causahty is not 
relevant. Also, this extension is necessary for con- 
sistency with the two-sided MA in equation (15). The 
name autoregressive arises because the expression just 
above equation (17) is in the form of a regression of Xn 

on itself evaluated at different times, so that equation 
(17) is a self- or autoregression. 
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*Xn 
= Rn + £B|<Xn_k 

k 

Fig. 7.—A circuit representing the autoregressive (AR) process. The signal is added to a delayed version of itself. 

A schematic electric circuit representation of the AR 
process is shown in Figure 7. This circuit assumes a 
causal model, because there is no physical circuit that 
can generate future values. The discussion of normali- 
zation given above for MA models applies as well to 
AR models. Conventionally T0 is set equal to 1; this 
will be done for some examples (such as the one to 
follow), but not generally. 

An autoregressive (AR) process is one which 
can be written 

A0Xn=Rn 
/VO 

(20) 

ox R=A*X, where R is an uncorrelated white 
noise process (as in the definition of the MA) 
and the At are constants satisfying 2/ Aj < 
(»(stability of A). The autoregressive filter A 
is purely causal, purely acausal, or two-sided 
depending on whether At is nonzero for only 
i >0, for only i < 0, or for both i > 0 and i < 0. 
An AR is of order (p, q) if the range of i is 
from —q to p. 

An example of a second-order AR process is shown 
in Figure 8. Note that it has a sinusoidal appearance 
(and would probably be called quasi-periodic) even 
though it has no harmonic component nor any de- 
terministic component. Figure 9 gives further examples 
of AR processes with quasi-harmonic appearance. 

Actual physical random processes can often be well 
represented by an AR model with a small number of 
parameters T,-. Equation (20) is a difference equation 
which is the discrete version of the differential equation 
which describes the dynamics of the system (i.e., the 
equation of motion). Thus, the AR parameters can be 
interpreted as the coefficients of the linear differential 
equation of the system. The moving average pulse is 
the impulse response of this differential equation. 

In fact, AR models can generally be rewritten in the 
form of moving averages. As an example, consider the 
simplest nontrivial AR process, namely the one- 
parameter process defined by: 

X=Rn+aXn (21) 

This corresponds to the AR filter (1, —a). Recursive 
substitution of the left-hand side of equation (21) into 
the right-hand side gives an explicit solution in the 
form of an infinite MA: 

fc-0 
n — k • (22) 

Thus, an input impulse at time /i*, of amplitude Rn+, 
gives rise to the output pulse... 0,0,1, a, a2, a3,... (mul- 
tiplied by Rn*). For |a|< 1 this is an exponentially 
decaying pulse: 

-i 

0, n<n* 
exp[(« —/i*)lna], n>n*. 

(23) 

Note that we have converted this one-parameter AR 
process into an infinite but stable MA (C„->0 quickly 
enough that the sum2JL0 Q2 converges). If |a| > 1 the 
pulse given above is not stable, and further Crt-»oo 
exponentially as >oo. To avoid this difficulty, let 
n—>n +1 and rewrite equation (21) as 

Xn=a-'X, n+1 — a lR„ (24) 

Recursive substitution with this equation leads to 

 (25) 

The effect of a single impulse at time n* is thus a 
growing exponential pulse of amplitude —a~lRn* and 
growth constant a, terminating at time n*—l (see Fig. 
10). Thus, equation (21) has a stable solution for any a, 
unless |a| = 1; in one case the pulse extends forward in 
time (i.e., is purely causal) and in the other it extends 
backward (is purely acausal). 
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AR PROCESS 

GAUSSIAN NOISE 

subject special restrictions must be placed on the mod- 
els for this to be true, and some otherwise well-behaved 
AR models, for example, are not convertible into (sta- 
ble) MA’s. But with the generalization to two-sided 
representations, convertibility holds without restriction. 
The fundamental reason for this is evident from the 
example in equations (21)-(25): |a|> 1 led to a causal 
MA representation that diverged, and the restriction 
|a| < 1 is usually imposed. But if two-sided representa- 
tions are allowed, this restriction is unnecessary be- 
cause there is a convergent acausal representation. The 
MA corresponding to an arbitrary AR process is usu- 
ally two-sided. Unfortunately the direct approach of 
recursive substitution of the AR representation into 
itself is extremely awkward in the general case, because 
at each step there are choices to be made concerning 
the form of the substitution which have a complex 
dependence on the specific values of the AR parame- 
ters. However, the demonstration of how AR and MA 
models can be converted into each other, including the 
computation of the coefficients, is rendered simple by 
the introduction of Z-transforms, as will be shown in § 
HI/. 

To summarize, the MA representation emphasizes 
the memory of earlier values of the driving (input) 
process, while the AR emphasizes the memory of earlier 
values of the (output) process itself. Since the input 
determines the output, these representations are di- 
rectly related and can be determined, one from the 
other. 

SPECTRUM OF AR PROCESS 

h 

Fig. 8.—A realization of the second-order AR process Xn = 
Rn+Q.$Xn_l—0J5Xn_2 (top)- The middle curve is the reali- 
zation of the Gaussian noise which drove the AR process. Since X 
is purely nondeterministic, the spectrum (bottom) is continuous, 
but it has a narrow peak corresponding to the quasi-sinusoidal 
appearance of the process. 

e) The Relationship Between the AR and MA 
Models 

In the example given in the previous section a simple 
AR model was converted into a MA. This is a general 
feature: any AR model can be converted into a MA 
model and vice versa. In the standard treatments of this 

/) A utoregressive-Moving A ver age ( A RM A ) 
Models 

An obvious generalization is to allow the current 
value of the output, Xn, to depend explicitly on (i.e., to 
remember) values of both the output X and the input R 
at other times: 

= 2 BkXn_k + 2 CkRn_k, (26) 
*=^0 k 

or A*X=C*R, where A has the same relationship to 
the Bk as before. This is called a mixed autoregressive- 
moving average model, or an ARMA model. If the 
processes involved are finite and causal [e.g., AR(/?) 
and MA(^r)], the mixed process is denoted ARMA 
(p, q). (Generalization of this notation to the two-sided 
case is cumbersome and not necessary here.) Physically 
one can think of an ARMA process as representing a 
system, described by the AR parameters A, which is 
driven by an input which is itself a moving average 
process, rather than white noise. But as was indicated 
in the previous section, the distinction between system 
response as described by MA and AR models is merely 
a matter of interpretation. Hence, there is no rigid 
distinction between what portion of a process is AR 
and what part is MA. In fact, the AR part of an 
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TIME SERIES CORRELATION SPECTRUM 

INPUT PROCESS: GAUSSIAN WHITE NOISE 

(g) 

Fig. 9.—A series of AR processes of the form Xn =Rn +alXn_ Y +a2Xn_2> where R is independent Gaussian noise (g), and the values 
of ax and a2 are shown at the right. The processes were chosen to exhibit various spectral peaks, but none has a deterministic harmonic 
component. The middle column shows the sample (top) and theoretical (bottom) autocorrelations for each process. 
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Fig. 10.—The exponential MA pulses inversely related to the first-order Ar process (1,—a). Solid line: the causal pulse (1, a, a2, a3,...) 
with 1> |a|=0.606. Dashed line: the acausal pulse (...,—a-3, —a-2, a-1,0), with 1 <|a| = 1.648. 

ARMA can be converted to a MA, yielding a pure 
MA. Similarly, an ARMA can also be converted to a 
pure AR. Furthermore, one could convert only part of 
the ARMA to MA (or AR), so that there is a great 
range of possible ARMA combinations to represent a 
given process. 

It may be asked “What is the use of mixed represen- 
tations at all, since they can all be converted to pure 
AR or MA?” The answer lies in a concept called 
parsimony of representation. The point is that some 
processes may be representable as an infinite-order AR 
or MA, but as a finite ARMA. The latter would then 
be a more compact or parsimonious representation. 
Parsimony can be of great importance in computing, 
where one is often searching for models involving the 
smallest number of parameters. But it should be stressed 
that parsimony is not necessarily of significance in the 
interpretation of the results of modeling. A good exam- 
ple is that given at the end of § lid, which has the most 
parsimonious representation as AR(1), but might well 
be most simply interpreted as MA(oo). 

There are several discussions of the form of the 
autocorrelation functions and power spectra of low- 
order AR, MA, and ARMA processes which should be 
consulted by the reader interested in such functions 
(Box and Jenkins 1970; Stralkowski, Wu, and DeVor 
1970, 1974). 

g) AR Integrated MA {ARIMA) Models and 
Nonstationary Processes 

The discussion so far has assumed that the process 
under discussion is stationary. This is an important 
restriction, for nonstationary processes do not have 
representations of the kind discussed up to this point. 
But a very special kind of nonstationarity can be incor- 
porated in a simple modification of the AR, MA, or 

ARMA models. The general form is 

A *(ydX) = C*R, (27) 

where V represents the difference operator: 

VXn=Xn-Xn_u (28) 

and stands for the ¿/th difference operator, equiva- 
lent to operating with V d times. If we let W = VdX (so 
that W is an ARMA process) X can be obtained by 
integrating W d times. That is, X=SdW, where S is the 
summation operator: 

5(A'n) = V-'^„= ¿ (29) 
/-= — 00 

Thus, X is said to be an autoregressive-integrated- 
moving average, or ARIMA, process. 

Consider the simple case d=\. While X is not sta- 
tionary, its first difference is (Box and Jenkins 1970). 
The nonstationarity which this gives to X has the 
character of a floating mean value—the mean of the 
process is not constant with time but drifts. Similarly, a 
second-order (¿/=2) ARIMA process is such that both 
the mean value and average slope wander as time goes 
on. 

Finally, it is interesting to add a further generality in 
the form of a constant term in the equation: 

A*(ydX) = C*R+D0. (30) 

It can be seen that the meaning of the constant tennZ)0 

is to allow the process X to have a deterministic trend 
in the form of a polynomial of order d. 

The ARMA and ARIMA representations can be 
quite useful in some specific applications. The current 
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discussion will center on the less complex AR and MA 
models for simplicity and because they seem to be 
sufficiently general for most astrophysical apphcations. 
The reader should consult Box and Jenkins (1970) for 
more details on ARMA and ARIMA models. 

h) The Shot Noise Model 

As already mentioned, the MA is closely related to 
the shot noise model, which is usually defined in con- 
tinuous time as follows: 

(31) 

Vol. 45 

probability distribution of the input R given by equa- 
tion (33) (or in the limit AA/-»0 by eq. [34]), with 
k-+R, is the discrete version of the shot noise model. 

Some useful relations for the moving average, easily 
derived from the defining equations, are: 

<*>=<j?>(2q)> (35> 

and 

ai = <(^-<^»2>=<T|(|Q2). (36) 

SCARGLE 

where C(t) is a given function of time (a continuous 
pulse shape) and the ^ are random points in time which 
are distributed according to the Poisson distribution. 
This process can be viewed as the output of a continu- 
ous linear system, with impulse response C(t), resulting 
from an input consisting of a Poisson sequence of 
constant amplitude impulses 

*(0=2S('-',)- (32) 
i 

The Poisson distribution results from randomly and 
independently placing the time points f,. The probabil- 
ity of having k impulses in an interval A/ is 

pk^t)= 
é?-XA,(AA/)* 

~k\ 
(33) 

where X is a constant giving the mean rate of occur- 
rence of the impulses, which here all have the same 
amplitude. If A/ is identified with the time interval in 
discrete time (see § IIa) then equation (33) gives the 
probability distribution of pulse amplitudes, where k is 
to be identified with the amplitude. (The amplitudes 
are quantized in unit steps.) If time is sliced finely 
enough so that XA/<1, then we have 

Pk 

1 —XAt, k=0 (no pulse) 

X A/, k=\ (one unit amplitude pulse) ►; 
0, k=2 (multiple pulses) 

(34) 

that is, most of the time a pulse does not occur, but 
occasionally a single pulse occurs, always with the 
same amplitude. It can be seen that the noise processes 
Un, with large values of n, shown in Figure 5 and 
defined at the beginning of § VI, have approximately 
these properties (except that they are zero-mean 
processes and the amplitudes of the pulses are not 
always the same). Thus, an MA with pulse shape given 
by the discrete version of C(t) and with the quantized 

These are somewhat different in form from the rela- 
tions for the usual definition of the shot noise process. 
For example, if =0 in a moving average, pulses of 
uniform amplitude are occurring at every time, and X 
is constant (a£=0); this is not true for a Poisson 
distributed shot noise process where the variance of the 
amplitudes of the pulses is often taken to be zero. A 
related difference is that the concept mean pulse rate 
loses significance for an MA because it is automatically 
1 per unit Ai. That is, pulses occur at every point of 
(discrete) time. The incidence of zero amplitude pulses 
is expressed in the distribution function of the innova- 
tion (as in eq. [34]) and is absorbed into the mean pulse 
amplitude. 

For a good discussion of the shot noise model see 
Papoulis (1965). Terrell (Terrell and Olsen 1970, 1972; 
Terrell 1972) has applied this model, with exponential 
pulse shapes, to several astrophysical problems. 

III. THE STRUCTURE OF PULSES 

The separation of a process into a random part and a 
purely deterministic part, as exhibited in the moving 
average, is often of direct physical significance. The 
pulse may represent the unfolding of some process for 
which there is a physical theory. Knowledge of the 
pulse shape5 may provide interesting numbers such as 
pulse width, rise and decay times, etc. The innovation, 
or random noise process R, represents the pulse ampli- 
tudes and contains information about pulse rates and 
the distribution of pulse amplitudes. To develop a 
feeling for the structure of pulses, this section discusses 
the representation of physical pulse shapes as filters, 
the algebra of filters, and a concept called the phase 
character (or sometimes delay character) of filters. These 

5 The terms pulse shape, pulse, (moving average) filter, wavelet, 
impulse response, moving average representation, and moving aver- 
age parameters are all used in the literature to convey approxi- 
mately the same meaning, and are interchangeable in many 
contexts. Here the term impulse will be reserved for a pulse, 
usually taken as the input to a filter, which is a delta function in 
time. 
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subjects are discussed extensively in various mathe- 
matical works (Robinson 1964a, 1967a, b: Treitel and 
Robinson 1966; Box and Jenkins 1970; Anderson 1971), 
which should be consulted for more details. The discus- 
sion here will be oriented toward the analysis and 
interpretation of astrophysical time series data and will 
emphasize two-sided filters, which have been neglected 
in much of the standard literature. 

a) The Discrete Representation of Pulse Shapes 

Suppose that a physical pulse is described by a 
continuous function of time, C(t). An example would 
be the light curve produced by a nova or supernova. 
Let the values of C be specified (or sampled) at evenly 
spaced points in time, say t„=nAt, for some set of 
values of n; it is presumed that the points are close 
enough that the interesting structure in the pulse is 
resolved. Then the set of numbers or filter elements, 
(C/I} = {C(//J)}, is a discrete representation of the pulse 
shape C(t). 

i) One-sided Pulses 

In many situations there is a moment before which C 
is identically zero. The classical example is the pulse 
which comes out of an electrical filter in response to an 
impulse at time t0\ in accordance with causahty this 
output must be exactly zero at all previous times t<t0. 
By identifying the origin of discrete time, « = 0, with 
this moment, the filter elements need only be given 
explicitly for nonnegative indices, /z = 0,1,2, Such a 
filter is said to be causal or one-sided. The sum 
can sometimes be associated with a physical quantity, 
such as the total energy in an electrical pulse; if so 

00 
2 Ç? < °° 

/i«0 
(37) 

must hold for any physical filter. This condition is 
called stability or convergence. In some cases, other 
stability conditions such as 2“_0|Q| < oo are relevant 
(Robinson 1962). A filter which is both stable and 
causal is said to be physically realizable. We shall now 
see that some perfectly useful physical pulses are not 
causal. 

ii) Two-sided Pulses 

Consider the following scenario: a small signal grows 
with time, slowly at first, then more rapidly; reaching a 
peak, the signal begins to decay and eventually disap- 
pears. For example, take the specific form 

C(/) = C0 >-bt 
t<0 (exponential growth) 

/ > 0 (exponential decay) (38) 

or in discrete time: 

C„=c0 
{ 

n= ..., —3, —2, — 1,0 
n = 0,1,2,3,.... 

(39) 

In this case it is not convenient to take the origin of 
time at the beginning of the pulse, which strictly speak- 
ing lies at n= — oo. [Of course, it would always be 
possible to take the origin at some early time before 
which C(t) is effectively zero, say to within the mea- 
surement accuracy. In the same sense almost all pulses 
can be taken to be of finite length.] A more important 
reason for considering noncausal filters is that, among 
causal filters, only the members of a very special class 
(called minimum delay, a term to be defined below) 
have stable, causal convolutional inverses. Since our 
methods for determining pulse shapes from time series 
data depend on first determining the inverse pulse 
shape, restriction to causal filters would imply the 
unnecessarily limiting restriction to minimum delay 
filters. 

In many cases when a filter is written explicitly as an 
array of filter elements, such as (...,C_2, C_!,C0, 
Q, C2,...), the location of the origin of time is obvious 
(C0 in this example). But in some cases it is not obvious 
from the indexing or from the context, and a boldface 
symbol will be used to locate the origin [e.g., (1, — a) 
denotes C0 = 1, Q = — a]. Figure 11 illustrates the basic 
difference between one- and two-sided pulses. 

b) Z-Transfor ms 

We now introduce a powerful tool for the analysis of 
pulses, the Z-transform. It is a tremendous time saver 
in the manipulation of filters as well as in the proofs of 
certain relationships between filters. Consider a pulse 
or filter C={C„}, n= 
p—l,p, containing/? +#+ 1 elements. The Z-transform 
of C is defined as the following function of the dummy 

Fig. 11.—Schematic representation of the difference between 
(a) causal pulses and (b) acausal pulses. 
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complex variable z: 

C(;)= 2 C*". (40) 
*■= -q 

This is simply a polynomial or power series in positive 
and negative powers of z. In the case p or q=co, we 
assume that the series converges on the complex plane 
within some annulus including the unit circle. 

The coefficients determine the filter (and vice versa); 
that is, C(z) determines the Cn and vice versa. The 
transform will sometimes be denoted with the operator 
Z thus: C(z) = Z(C). The inverse transform will be 
denoted Z~\ and can be thought of as the operation 
of identifying the coefficients in a series expansion of 
C(z). The Z-transform has the following alternative 
interpretations: 

1. A representation of the time behavior of pulses in 
which z represents the unit delay operator (and z-1 

represents the unit advance operator). 
2. A discrete analog of the Laplace transform: if f(t) 

is replaced by Znf(tn) 8(t — tn), where tn=nkt, then 
the Laplace transform of / becomes the Z-transform 
(z = e-J, where s is the Laplace transform variable). 

3. Similarly, a version of the discrete Fourier trans- 
form (DFT) with z = ei0}. 

4. A generating function for the filter C. 
The Z-transform maps from the time domain to a 
transform domain. The operations of shifting in time 
are denoted with the unit delay operator, D, and the unit 
advance operator A : 

A(Xn)=Xn+x-, A\Xn)=Xn+J. j 
( ^ 

In the transform domain Dj corresponds to multiplica- 
tion by zj and AJ corresponds to division by zj. The 
definitions, theorems, and proofs involved in the use of 
the Z-transform closely parallel those for integral trans- 
formations (such as the Laplace and Fourier trans- 
forms) of continuous functions. The Z-transform will 
be demonstrated in applications in the rest of this 
paper. Further details can be found in various sources 
(e.g., Jury 1964; Gold and Rader 1969; Oppenheim and 
Schafer 1975; Rabiner and Gold 1975). 

y = C*R 

X=D*(C*R) 
= (D*C)XR 

Fig. 12.—The convolution C*D interpreted as filters C and 
D connected in series. 

c) Convolution 

Consider the effect of putting a signal R into a filter 
C and connecting the output, Y, into a second filter D. 
That is, C and D are placed in series (see Fig. 12). By 
definition: 

Vn='2,CkRn_k, (42) 
k 

SO 

*„ = 2 DkYn-k = 2^*2 
k k l 

= 2^2Cm-*JR„-m = 25OTÄ„_m, (43) 
km m 

where 

Bm^DkCm_k, (44) 
k 

which is easily shown to be the same as 

Bm=^CkDm_k. (45) 
k 

Thus, the action of two filters in succession (series) can 
be completely represented by a single filter, called the 
convolution of the two, written as 

B = C*D. (46) 

It is readily verified that the Z-transform of the convolu- 
tion of two filters is the product of their Z-transforms: 

B(z) = C(z) D(z). (47) 

This is the most important reason for the utility of the 
Z-transform. Furthermore, convolution is commutative 
and associative: 

A*B = B*A, (48) 

A*(B*C) = (A*B)*C. (49) 

It should be noted that the output of the MA is 
formally the convolution between the input noise 
process and the pulse shape, although the physical 
interpretation is somewhat different in this case (con- 
volution of a process with a filter instead of two filters 
with each other). 

d) Factorization 

As will be demonstrated shortly, any finite filter with 
more than two nonzero elements can be broken down 
into the convolution of a number of shorter filters. In 
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particular, a filter of length n+ 1 can be written as the 
convolution of n filters of length 2. Such filters have 
two and only two successive elements nonzero and are 
called couplets or dipoles: (Cn,Cn+x). Since many of the 
important properties of pulses are invariant to a shift in 
time, it is convenient to take n=0, and denote the 
dipole as (Cq^Cx). This is acceptable if all pulses are 
shifted so that their first nonzero element is at n=0 
(i.e., causality), but to allow factorization of two-sided 
filters acausal dipoles of the fom^C.!, Q) must also 
be introduced. Figure 13 depicts causal and acausal 
dipoles and shows how convolutions generate longer 
filters. 

Now consider the filter {Cn}, w = where q 
and p are nonnegative integers. (This is not the most 
general case, as the index set might contain only posi- 
tive terms (e.g.,..., 0,0, C2, C3,0,0,...), but such cases 
can be handled with the same methods.) The function 

nomial of degree p + q, with nonnegative powers of z 
only. Hence by the fundamental theorem of algebra it 
can be written 

(51) 

where the zl
0 are the complex zeros of P(z). With a 

little algebra it can be shown from this expression that 

C(z) = 
p + q 

c-q n (-KT 
i~p+ 1 

(52) 

With the definition 

P(z)=zqC(z) (50) 

(where C[z] is the Z-transform of {Cn}) is a poly- 

/=1,2,...,/? 

i=p+ l,/? + 2, 
(53) 

CAUSAL DIPOLE ACAUSAL DIPOLE 

(l,a + b,ab) 

! + (a + b) z + abz2 

(b,l+ab ,a) 
bz"1 * (l+ab) +az 

(ab,a+b, I) 

abz'^Ca+blz'Ul 

Fig. 13.—Graphical representation of causal and acausal dipoles (top) and their convolutions in various combinations. Shown with the 
filter convolution equations are the corresponding Z-transform relations. 
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the inverse Z-transform of this equation gives 

C=Ä'[(1, + a2)* ... *(1, ap)\ 

*[(öp+i,l)* ••• *{ap+q,\)]. 

(54) 

where K is the first factor in square brackets in equa- 
tion (52). The first p dipole factors are causal and the 
last q are acausal. Since the ordering of the has not 
yet been specified, there are many possible distinct 
factorizations of this form, depending on which z¿ are 
assigned to the causal factors and which to the acausal 
factors. As will be shown in the next two sections, 
among the many choices possible for the origin of time 
in the original filter and for the assignment of the z£, 
there is a single choice which has the property that 
each causal (acausal) dipole has a convergent causal 
(acausal) inverse. (The inverse is defined below in 
§ III/.) It is obtained simply by making l^l< 1 for all 
k, which can be achieved unless |z£| = l for some k. 
This can be considered as the unique factorization of 
the original filter C, although it really represents ^merely 
the simplest of many possible factorizations. If the 
original filter is causal, then q=0 and the above analy- 
sis shows that there is only one factorization into causal 
dipoles; this is the “unique” factorization which is 
usually discussed. 

e) Delay (or Phase) Character 

In electrical engineering the frequency response of a 
filter describes the degree to which an AC signal 
at a given frequency will be attenuated on passing 
through the filter. Another effect of a filter is to cause 
frequency-dependent phase shifts of signals. For the 
present applications, rather than view these effects in 
the frequency domain, it is more convenient to use the 
time domain. 

Consider first a causal dipole (Q, Q) as in § \l\d. 
This filter is defined to be minimum delay (or minimum 
phase) if IC^ < |C0|; it is maximum delay (or maximum 
phase) if ICJ > |C0|. These names are derived from the 
way in which energy is delayed at the output of the 
filter, as will be detailed below. Since delay properties 
are not affected by an overall shift in time, an acausal 
dipole (C_1,Q) is minimum delay if ICo^IC.jI and 
maximum delay with the opposite inequality. The case 
|Co| = |C±i| is somewhat singular in that the inverse 
does not converge (see below); hence this case must be 
handled separately. 

Now consider a filter C=(CI} of arbitrary length, 
say Tj+l. Again because of time-shift invariance only 
the causal case need be considered. That is, if the filter 
is not causal, its causal equivalent should be used. The 
causal equivalent of a filter is simply the filter shifted 
so as to bring its first nonzero element (which may not 

exist if the filter is infinite) to /=0. From the previous 
section we know that there is a unique factorization 
into n causal dipoles. Each dipole is either minimum 
delay or maximum delay. If all the dipole factors are 
the former, the entire pulse is said to be a minimum 
delay pulse; if the factors are all maximum delay, so is 
the entire pulse. If there are some of each, we have a 
mixed delay pulse. Thus, the delay character of the 
pulse is specified by the delay character of the dipole 
factors of its causal equivalent. The physical meaning 
of these concepts is as follows. Introduce the quantity 

Pi= i: Cl, (55) 
— oo 

this is the integrated energy—the energy which has 
come out of the filter up to and including time i—due 
to a delta function input at time 0 (for electromagnetic 
signals energy = [amplitude]2). This function rises from 
zero for i < 0 (since by assumption C, = 0 for i < 0), 
monotonically, to its final maximum at z = /z+l, and 
thereafter remains constant at a value PO0=Pn+l = 
'ZfL-ooC?) which corresponds to the total energy out- 
put of the filter. Corresponding to filter C there is a 
family of filters (all of length n+\) which is generated 
by reversing all possible subsets of the dipole factors of 
C. (The reverse of [C^Cj] is [CjiQf'], where the 
superscript * represents complex conjugation of the 
possibly complex filter elements. Correspondingly, 
the reverse of any filter is obtained by reflection about 
the origin of time and by complex conjugation of all of 
the filter elements. The time reverse of any array X= 
{Xn} will be denoted X={Xtn)) Since there are n 
such factors, this family has 2" members, including the 
original filter itself, although they are not all necessarily 
distinct. It will be evident from the discussion in § III g 
that the power spectra and autocorrelations of the 
members of the family are identical. Hence a causal 
filter of arbitrary delay properties can be converted 
into a minimum delay causal filter (by making all 
dipole factors minimum delay and shifting the total 
filter with the delay operator to make it causal) without 
altering its autocorrelation function. The family of 
filters mentioned above may be defined as the set of 
pulses of length n+\ with the same autocorrelation 
and spectrum as C. Further, the total energy P^ of all 
these filters is the same, so the partial energy curves of 
these filters all begin and end at the same points (see 
Fig. 14). Between these points the curves are quite 
different and even cross each other. But it can be 
shown that there is one curve which everywhere lies 
above all the others—and it corresponds to the single 
minimum-delay member of the family of pulses. That 
is, the energy output of the minimum delay filter is 
delayed as little as possible, among all possible filters 
with the same spectrum, in that at each moment of 
time the integrated energy is maximum. Similarly the 
unique maximum delay pulse has a partial energy out- 
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Fig. 14.—The concepts of minimum and maximum delay, {a) A short autocorrelation function, (b) The set of eight pulses which share 
this autocorrelation, (c) a plot of the eight corresponding partial energy curves: the uppermost curve corresponds to the minimum delay 
pulse {dashed line, topmost part of [6]) and the lowest curve corresponds to the maximum delay pulse {solid line, topmost part of [6]). 

put which lies below all the other curves and corre- 
sponds to delaying the energy as much as possible. 

Minimum delay pulses begin suddenly and decline 
slowly. In fact the minimum delay pulse rises as sharply 
and declines as gradually as possible, consistent with 
the given autocorrelation. The maximum delay pulse is 
the time reverse of the minimum delay and has the 
reverse of these properties. Further discussions of the 
physical and mathematical meaning of minimum delay 
are in the geophysical literature (Robinson 1962, 
1963,1964a, 1966,19676; Smylie, Clarke, and Ulrych 
1973; Berkhout 1973; Schoenberger 1974). 

/) Inverse Filters 

The filter which assumes the role of unity for con- 
volution is the delta function, 

ô={ôn,o}=(...,0,0,1,0,0,...), (56) 

since convolution with it leaves any filter unchanged. 

Then given any filter C we can ask whether there is an 
inverse, C-1, such that C*C_1=ô. The answer is 
obtained by applying the Z-transform to this equation: 

so 
C(z)C-1(z) = 1, (57) 

(58) 

where Z“1 denotes the inverse Z-transform. Hence 
finding the inverse of C is reduced to finding the 
coefficients in the series expansion of the reciprocal of 
the Z-transform of C. Such expansions always involve 
choices as to whether to use positive or negative powers 
of z. The choice is made on the basis that the resulting 
inverse filter should converge, as will now be explained. 
Consider the dipole factorization given in § \lld. It is 
easily seen that the inverse of the filter is the convolu- 
tion of the inverses of its dipole factors, so the problem 
is reduced to finding the inverse of a dipole. Consider 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8l

A
pJ

S.
 

t/5 

LO 24 

first causal dipoles which, except for a constant factor, 
can be written (1, — a). The Z-transform is (1—az). 
Which expansion of (l—az)~l converges6 depends on 
the magnitude of a: 

(l-azy1 

J l + az + (az)2 + (az)3 + ..., if|a|<l; 

j-[(az)_1 + (az)~2 + (úK)-3+ ...], if|a| > 1. 

(59) 

Thus, the Z-transform of the inverse of a minimum 
(maximum) delay causal dipole must be expanded in 
positive (negative) powers of z if the result is to con- 
verge. If C=(l, - a) 

(1, a, a2, a3,...), M<1; 

(..., -a-3, -a-2,-a-1,0,0,0,...), |a|>l. 

(60) 

(See Fig. 10 and the associated discussion in § He.) 
Similarly, a maximum (minimum) delay acausal dipole 

6 Convergence at z = 1 is implied, because we are really inter- 
ested in the convergence of the coefficients of z" in the expansion 
of the Z-transform. This allows use of the DFT, because |z| = 
|exp( —/'<o)| = 1 on the unit circle. 

Vol. 45 

gives a convergent expansion in negative (positive) 
powers of z. It is easy to prove (e.g., with Z-transforms) 
that a minimum delay causal dipole has the special 
simplifying property that its inverse is also minimum 
delay and causal. The same holds for the convolution 
of arbitrarily many such dipoles. Similarly, the inverse 
of a maximum delay acausal pulse is maximum delay 
and acausal (see Table 1). Because of this, it is conveni- 
ent to arrange the factorization so that all factors are in 
one of these forms. This can always be accomphshed as 
follows: suppose P of the zeros of C(z) satisfy \zi

0\>l 
and the remaining Q zeros satisfy | z¿ | < 1 (assume all 
|z¿|^ 1). Then shift the time origin of C so that in the 
notation of § Hidp = P and q = Q. Then assign the P 
zeros which he outside the unit circle in the complex 
plane to the p causal dipoles in the factorization (eq. 
[52])—these will be minimum delay. The Q zeros inside 
the unit circle are assigned to the q acausal dipoles, 
which are then maximum delay. This factorization rep- 
resents the filter as the convolution of two factors: 

(61) 

{p factors, minimum delay, causal), and 

G=(ap+i,l)*(ap+2,l)*... *(^+,,1) (62) 

{q factors, maximum delay, acausal), so that C= 
K(F*G) and C-1 =(Ar~1)(ir_1 *G_1), where is as 
defined above. Note that F ~1 and G ~1 have the same 
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TABLE 1 
Properties of Dipoles and their Inverses 

Case C(z) 
Zero 

of C(z) Comments = ^-1 A = C A(z) 
Zero 

of A(z) Comments 

(l,-a),|a|<l l-az a-1 

Outside 
unit 
circle 

Causal; 
minimum 
delay 

+ (1, a, a2,...) (1—az) 1 oo 
Outside 
unit 
circle 

Causal; 
minimum 
delay" 

II (l,-a),|a|>l l-az a"1 

Inside 
unit 
circle 

Causal; 
maximum 
delay 

-(...,a 2, a *,0) (l-az) 1 oo 
Outside 
unit 
circle 

Acausal; 
maximum 
delay" 

III 

IV 

(—a,l), |a|> 1 1 —az 1 a Acausal; —(0, a ^a 2,...) z/(z—a) 0 Causal; 
Outside minimum Inside minimum 
unit delay unit delay" 
circle circle 

(-a,l), |a|<l l-az 1 a 
Inside 
unit 
circle 

Acausal; 
maximum 
delay 

+ (...,a2,a,1) z/(z—a) 0 
Inside 
unit 
circle 

Acausal; 
maximum 
delay" 

"The delay properties of these pulses are, strictly speaking, not defined under the definition given in the text because they are not 
factorable into a finite number of dipoles. The characterization given here applies to finite (truncated) versions of the pulses. Cases II 
and III might be classified oppositely according to the zeros of the infinite Z-transforms, but this would be misleading; e.g., the zero 
of ^4(z) in case III can be removed by left-shifting A by one unit. 
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delay and causality properties as do F and G, respec- 
tively. It can be shown that the Laurent series thus 
generated for C-1(z) converges within an annulus in 
the complex plane which includes the unit circle, and it 
is the coefficients of the various powers of z in this 
series which give the elements of C-1. 

In many of the standard treatments of this subject 
only causal filters are allowed. It then results that a 
filter has a convergent inverse if and only if the zeros of 
its Z-transform all he outside the unit circle; otherwise 
the forward expansion diverges and the acausal back- 
ward expansion is not permitted. In other words, only 
minimum delay (causal) pulses have (causal) inverses, 
and then the inverse is also minimum delay. This 
problem was apparently first discussed by Wold 
(19386). Two-sided filters always have a convergent 
inverse (unless a zero lies exactly on the unit circle). 

In practice, a very convenient way to evaluate in- 
verses is to replace the Z-transforms in equation (58) 
with the discrete Fourier transform (DFT). A code for 
this procedure is contained in the Appendix. Specifi- 
cally, given a set of filter elements {C,}, one evaluates 
the DFT of C, takes the reciprocal term by term, and 
then obtains the inverse DFT. This procedure automati- 
cally provides the correct convergent expansion of a two- 
sided filter—without explicit evaluation of the zeros of 
the Z-transform of the pulse! For example, consider 
the pulse C=(l, — a). The DFT procedure yields the 
inverse (1,a,a2,a3,...). If |a|< 1 this is obviously the 
correct inverse, interpreted as a causal pulse. Many 
terms may be necessary to get a good representation of 
the pulse shape, especially if |a| is close to 1. If |a| > 1, 
the above inverse, interpreted as a causal pulse, is 
divergent (or unstable). The trick is to note that for any 
finite number of terms, (1,a,a2,...,a”), there will be 
one largest term, an. The inverse should then be renor- 
malized to make this element unity: (a“n,..., 
a“2,a-1,l), and then interpreted as an expansion 
backward in time, (a-,,,...,a_2,a_1,l). This is the 
correct (acausal) inverse if |a| > 1. The same procedure 
works in the general case, in which the inverse pulse 
extends both forward and backward in time.7 In gen- 
eral some zeros must be appended to the original pulse 
before applying the DFT inverse because the inverse is 
almost always longer than the filter itself. For two-sided 
pulses this is also needed to ensure that the backward 
and forward tails of the inverse pulse do not overlap, 
due to the wraparound feature of the DFT. (Envision 
the arrays pasted on the surface of a cylinder, with the 
right-hand and left-hand ends abutting. Any set of 

7In this case the time origm does not appear at a fixed place in 
the inverse and must be identified by some other means. This 
inability to pinpoint the origin of time in the calculated inverse is 
the price paid for not having to determine the zeros of C(z). 
Specifically, if we knew how many zeros lie inside and outside of 
the unit circle, we could then locate the origin. Frequently, but 
not always, the origin is located at the peak of the inverse pulse. 

25 

entries on the right end can be transferred to the left 
end without affecting the DFT. This is illustrated in 
Fig. 15.) Examples of inverses calculated in this way 
are shown in Figure 16. 

While the inverse as defined here is unique, there are 
other inverses which can be defined. Noting, for exam- 
ple, that the exact inverse of most filters will be in- 
finitely long, one can ask: What finite filter, of fixed 
length, is closest to being an inverse to C in the sense 
that the sum of the residuals from the delta function 

2 Kc.c-1)-s,.]2, 
-q 

is minimum? The solution to this problem is the trun- 
cated approximate (least squares) inverse of C, and is 
discussed extensively by Robinson (1964a, 1967a; see 
also Treitel and Robinson 1966). One could just as well 
ask for the truncated inverse which minimizes the abso- 
lute value residuals (see Claerbout and Muir 1973 for 
an interesting discussion of some of the properties of 
this inverse). Inverses may also be evaluated by various 
techniques which involve determination of the zeros of 
the Z-transform of the filter (see, e.g., Steiglitz 1974), 

Fig. 15.—The wraparound feature of pulse shapes. All the 
pulses shown are equivalent in the sense that their inverses (and 
DFTs) are identical, except that they are similarly rotated with 
respect to each other. 
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Fig. 16.—A sample zoo of pulse shapes (left) and the corresponding inverses (right) as determined with the discrete Fourier transform. 
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but this approach is computationally quite laborious 
compared to the DFT method. 

g) Correlation Functions and Power Spectra 

The autocorrelation function of a process X is de- 
fined as 

Px(n,m) = <(Xn -X)(Xm-X)'), (63) 

where X=(Xn}. Section II a outlined its significance. 
The power spectrum is the Fourier transform of the 
autocorrelation and also is equal to the squared magni- 
tude of the Fourier transform of the time series itself. 
We shall give, without proof, expressions which are 
readily derived from the definitions. 

For a moving average X=R*C, where R is assumed 
stationary and with spectrum SR(co)= 1, we have 

px(n,m) = px(n-m)=oZpc(n-m)-X2, (64) 

where aj is the variance of the innovation and 
pc is the autocorrelation of the pulse, defined by 

Pc(n-m)='ECkCk+n_m. (65) 
k 

Vol. 45 

It is readily verified from these formulas (or directly 
from the definitions) that both the spectrum and auto- 
correlation of X are unchanged by time reversal of C, a 
result alluded to in § Hie. 

IV. MODEL CONSTRUCTION 

The tools are now at hand to construct stochastic 
models from time series data. In outline the procedure 
is: (1) obtain data from one or more realizations of the 
process of interest; (2) decide on the form of the model 
to be fit to these data; (3) use the data to generate 
estimates of the model parameters; and (4) if necessary, 
transform the resulting model to a form more easily 
interpreted physically. (The last step recognizes that the 
form most suited to computations may not be the most 
suitable for comparison with physical models. Typi- 
cally a low-order AR model is easiest to compute, and 
the corresponding MA has the simplest physical inter- 
pretation. See § V/.) The stage will be set by presenting 
an existence theorem which justifies the concern in §§ 
II and III for the MA and AR models, by asserting 
that any stationary process can be represented with 
these models. Then explicit methods for the estimation 
of the parameters in these models will be developed. 
We assume that all processes of interest are stationary. 

SCARGLE 

It can be seen that the autocorrelation is the convolu- 
tion of the pulse with its reverse. For zero-mean 
processes (e.g., with <R„)=0) the autocorrelation of 
the MA is proportional to the autocorrelation of the 
pulse shape. Similarly, for this case the spectrum of the 
process is equal to the spectrum of the pulse shape: 

5a.(«) = |C(<o)|2, (66) 

where C(w) is the Fourier transform of the pulse: 

C(<o)=2Q^, (67) 
k 

and the normalization of R is such that 5^(40)= 1. In 
terms of Z-transforms we have 

Sx(o)) = C*(z~l)C(z)9 where z = e,w. (68) 

For an AR process, R=A*X, it is easy to show that 

Sx(o>) 
1 

(69) 

where A(co) is the Fourier transform of the AR filter: 

A(u)= ^Akeika. (70) 
k 

Finally, for an ARMA process, A*X=R*C, 

Sx(u) = IQ»I2 

MO)|2' 
(71) 

a) An Existence Theorem: The Wold 
Decomposition 

Moving average models were introduced in § II as a 
rather arbitrary way of representing memory or corre- 
lations. The question arises as to what processes can be 
represented in this seemingly very special form. The 
surprising answer, first demonstrated in 1938 by the 
econometrician Herman Wold (1938a), is that any 
stationary process can be so represented. The simple 
explicit form, known as the Wold Decomposition, is 
given in the following theorem. 

The Wold Decomposition Theorem: Given any 
stationary process, X, there exist: 

1. a purely deterministic process D, 
2. an uncorrelated zero-mean noise process 

R, and 
3. a moving average filter C, 

such that 2^=7?* C + Z>. 

This is a decomposition of X into a deterministic part 
(Z>) and a random part (R*C). The random part may 
contain correlations and can in turn be deconvolved 
into a moving average, in which the correlations are 
represented by the deterministic filter C and the purely 
random part is contained in the white noise process R. 
If the MA is restricted to be causal, this decomposi- 
tion/deconvolution is unique (except for a constant 
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factor which can be exchanged between R and C). It is 
not unique without the causahty condition, because 
there are other noncausal MA representations. This 
nonuniqueness is the subject of the following subsec- 
tion. If, in addition, X has an absolutely continuous 
(Titchmarsh 1939, p. 364) spectral distribution function 
(i.e., X is itself not deterministic), then C is minimum 
delay, and therefore has a convergent, causal, mini- 
mum delay inverse A. This fact assures the existence of 
a unique autoregressive representation of the detrended 
process X—D, in the form A*(X—D) = R, where A = 
C~K Thus the Wold theorem establishes that any sta- 
tionary process, with its deterministic part (including 
the mean value) removed, can be represented as an 
MA, AR, or a mixed ARMA process (see § II/). The 
estimation of D (or the related problem of detrending 
the data) is a nontrivial problem which will not be 
discussed here, except to remark that the spectrum of D 
is generally discrete (lines), whereas that of R + C is 
continuous. 

For a thorough discussion and proof of this theorem 
see Hannan (1970, p. 137) or Robinson (19646, p. 126). 
The following informal proof conveys the spirit of these 
rigorous works. Consider a given stationary process X, 
which for simplicity will be taken to have zero mean. 
The forward predictor of order p is defined as 

Y^)= Í BkXn_k, (72) 
k-i 

for any set of numbers Bk, k=\,2,...,p. This linear 
expression is designed to forecast the value of Xn, 
based on the previous values Xn_l,Xn_2,".,Xn_p. The 
quality of the prediction of course depends on the 
values of the Bk. Those values which give the best 
predictions form the optimum predictor of order p. More 
specifically, the optimum least-squares predictor of 
order p is defined as that which minimizes the mean 
square prediction error, 

E(B)='Z[Xn-XP}\ (73) 
n 

with respect to the parameters in B. The optimum 
predictor is the limit as >oo. A very important pro- 
cess is that defined by 

Rn=Xn-X^\ (74) 

the error made by the optimum predictor at time n. 
This random process is to be identified with the white 
noise process R in the definitions of AR, MA, and 
ARMA processes (§ II) and is called the innovation of 
the process X (Kailath 1968; Parzen 1969). The error at 
time n is due to the new pulse starting at that time, 
because the effects of pulses starting at previous times 
are completely incorporated into the optimum predic- 
tion. That (R„)=0 follows immediately from the 

vanishing of (Xn) and the definition of R. It can be 
shown (Wold 1938a) that 

<Xn_kRn)=0, for all k>0. (75) 

Intuitively this is so because Rn is the error made at 
time « by a predictor optimized on all prior data (i.e., 
X„_1,Xn_2,-..), so there can be no correlation of R 
with these data. Otherwise the correlations could be 
used to improve the already optimum predictor. It 
follows that (RnRm) =0 for all m^n; for, taking 
m>n without loss of generality, 

<RmRn>=<Rm(Xn-Xn)y 

= RmXn-^BkRmXn_k = 0 (76) 
k 

because all of the terms are of the form in equation 
(75). This makes the Rn a kind of orthogonal set, and 
the process X can be expanded in the series 

00 
*,= 2 (77) 

k=l 

where D is a residual process, orthogonal to R. By the 
usual technique of multiplying this equation by Rm and 
taking expectation values, the expansion coefficients 
can be found: 

Ck =(XnRn_ky. (78) 

(This formula is an alternate way of computing the MA 
parameters and has some advantages over the direct 
inversion C=A~\) The final step, that D is determinis- 
tic, is a consequence of the vanishing of the prediction 
error for Z>. The details of this proof can be found in 
the above references. Caines and Sethi (1979) give an 
interesting discussion of causahty and the Wold theo- 
rem. 

b) A Less Restrictive Existence Theorem 

The moving average filter of the Wold representation 
is (1) convergent (or stable): 2* Ck < oo; (2) causal: 
Q =0 for £<0; (3) minimum delay (see § Hie); and 
(4) constant (Q independent of time). Extending 
Robinson’s (1962) terminology, we cah any filter with 
these properties a minimum delay wavelet. It is indeed a 
curious feature of the Wold theorem that an arbitrary 
stationary process can be represented in such a special 
form. What about an MA process with a pulse that does 
not have these properties! The Wold decomposition ex- 
actly represents such a process with an MA model which 
does have these properties. For example, it represents a 
mixed-delay MA in terms of minimum delay wavelets. 
It would seem that such representations are misrepre- 
sentative. Some processes seem to have better represen- 
tations than the one provided by the Wold theorem. 
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But how can this be? The answer lies in the fact that, 
while too restrictive with the pulse C, the Wold de- 
composition is too liberal with regard to the innova- 
tion. It would be preferable, at least for physical 
processes consisting of independent pulses, to restrict 
the innovation to be independently distributed (not just 
uncorrelated) and to allow the pulse to be mixed-delay 
and acausal, rather than assuming causahty. (Inciden- 
tally, there is presumably a similar extension in which 
constancy of the pulse is dispensed with, for one can 
construct a stationary MA with nonconstant pulses. 
Stability cannot be dispensed with because it corre- 
sponds to finiteness of observable quantities.) 

A key point is that a given stationary process can be 
represented by any member of a large family of MA 
models. The members of the family share a common 
autocorrelation and power spectrum but have different 
delay/causality properties; the corresponding innova- 
tions have different degrees of randomness ranging 
from uncorrelated to independently distributed. The 
Wold theorem singles out the unique minimum delay 
wavelet representation because only causal filters are 
permitted. The existence theorem for the more general 
representations is as follows (Scargle 1977): 

The Extended Decomposition Theorem: Given 
any stationary process X, there exist: 

1. a purely deterministic process Z>, 
2. a family of uncorrelated, zero-mean noise 

processes, {R(,)}, and 
3. a family of two-sided moving average 

füters, {C(/)}, 

such that X=D + C(/) * R(/). The filter family is 
the set of all filters which have the same 
autocorrelation function as X\ one of them is 
minimum delay, and one maximum delay, and 
the rest are mixed delay. 

The proof is simple. Since X is stationary, the Wold 
theorem applies and assures the existence of a unique, 
causal, moving-average representation, 

X-D = CW*RW, (79) 

where Cw is a minimum delay wavelet. It was shown 
above (§ Hid; see also Robinson 19646; Smylie, Clarke, 
and Ulrych 1973) that there is a family of filters which 
share a given autocorrelation and which can be ob- 
tained from each other by all possible combinations of 
time-reversal of the dipole factors. We define the family 
{C(l)} as the set of all filters which have the same 
autocorrelation as Cw. If Cw is finite, of length N+1, 
then there are 2N (not necessarily distinct) members of 
this set. One is minimum delay (Cw itself), one is 

maximum delay (the reverse of Cw), and the rest are 
mixed delay. For each C(i) define ^4(,) =[C(,)]-1 and 
RW =Ai0*(X-D). Then 

C(,) * R(i) = C(i) * *(X-D) = X-D, (80) 

establishing the desired representation. A direct calcu- 
lation of the autocorrelation of R(,) shows that it is the 
same as that of Rw, namely o28nm, and this completes 
the proof. The uniqueness of this family is also readily 
demonstrated. Note that the representations in this 
theorem are not just similar, they are exactly equivalent. 
They differ only in the way in which the random and 
deterministic parts are assigned to the innovation and 
to the pulse. 

It is possible that a theorem stating that one and 
only one of the R(/) is always independently distributed 
can be proved. I do not know whether this theorem is 
true. There are theorems dealing with the existence of 
nonlinear representations with independently distri- 
buted innovations (Rosenblatt 1971) or innovations 
with the martingale difference property (Seagall 1976). 
Therefore, it seems likely that further restrictions be- 
yond stationarity must be imposed on a process to 
ensure the existence of a linear MA with an indepen- 
dently distributed innovation. Our point of view will be 
to assume the independence of the noise driving the 
observed process. Then one of the family of representa- 
tions will certainly be independently distributed; this 
one will be regarded as the correct one, as it most 
completely and faithfully separates the random and 
nonrandom parts of the process. It is easily seen that 
the innovations of the other representations can be 
written as linear combinations of the id one at different 
lags (cf. eq. [86] below) and are therefore dependently 
distributed. Although exactly equivalent to the correct 
one, they will be considered incorrect representations 
because their innovations are not purely random. 

A concrete example will help clarify these matters. 
Consider the exponential pulse 

Í0, fc<0 
\e-bk, k>0 (6>0), 

(81) 

which has been invoked in astronomical shot noise 
models (e.g., Terrell and Olsen 1970). This minimum 
delay wavelet is the inverse of the simplest possible 
nontrivial AR filter, that is, the one-parameter model 
used as an example in § III/, with a — e~b. Let R be an 
id noise process, and consider the moving average 
X=R*C. The inverse of C is the dipole (1, — a). Hence 
the family of MA filters for this process has only two 
members, namely 

Cw = (t,a,a2,a3,...), (82) 
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C” = a3,a2,a,V). (83) 

The corresponding inverses are (1, — a) and (—a,l). 
The MA representations are X=CW*R (precisely the 
form used to define X) and X=CW*R\ where 

R' = (-a9l)*X=(-a,l)*(l,-ay1*R = P*R9 

(84) 

with 

P=(-a9l)*(l9-ay\ (85) 

The pulse P is fundamental in the algebra of dipoles: 
convolution with P of a filter that has the dipole factor 
(1, —a) reverses that factor. With the aid of Z- 
transforms the following explicit forms can be derived: 

R'n=V-a2) 2 akRn_k-aRn+l9 (86) 

and 

(l—a2)ak
9 k>0 

-a, k=-l (87) 
0, k<-\. 

It might be surmised from inspection of equation (86) 
that R'n and R'n+i are correlated because they have 
many terms in R in common. However, a straightfor- 
ward calculation yields 

(R'nR'my=o2Snm = {RnRmy, (88) 

and 

(P*P)n=Ôn0, i.e., (...,0,0,1>0,0,...). (89) 

Figure 4 shows an example of processes related in this 
way: that in Figure 4dl is independently distributed, 
and Figure 4 cl is the same process (same realization) 
filtered with P. The pulse P is graphed in Figure 17. It 
is perhaps surprising to find a pulse other than the 
delta function itself which has a delta function autocor- 
relation. There are many such pulses. They are some- 
times called all-pass filters. The filter DNÄ*A~X

9 for 
arbitrary A of order N or less, has this property (D is 
the unit delay operator defined in eq. [41]). (Radar 
design is one application where unautocorrelated pulses 
are sought Boehmer 1967.) Note that our process, 
constructed as randomly occurring, decaying exponen- 
tial pulses, can also be represented as randomly occur- 
ring, growing exponentials! These representations are 
mathematically equivalent, as Cw * R = CW * R'. But 

Fig. 17.—The pulse P={Pn}9 described in the text, which 
has a delta-function autocorrelation. This was the pulse in the 
moving average shown in Fig. 4(c). 

CW*R is a better representation because it is the same 
one used to construct the process in the first place. It is 
better in the sense that its innovation is independently 
distributed and not merely uncorrelated, as is the in- 
novation R'. 

c) Deconvolution via Independently Distributed 
Innovations 

The previous subsection assures that a MA represen- 
tation exists. While it is not automatic that this linear 
superposition of constant pulse shapes is physically 
significant, it frequently is. That is, random processes 
which occur in nature often consist of the summation 
of independent pulses. Since the moving average model 
represents a process as the convolution of a pulse shape 
C with an innovation R, the process of deducing the 
model (C, R) from time series data is called deconvolu- 
tion. (Sometimes this term is used if C is known, but 
here it will always be assumed that C is to be de- 
termined.) The goal is to disentangle the overlapping 
pulses from each other, revealing the underlying pulse 
shape and information about the amplitudes of the 
pulses. 

Most of the standard deconvolution techniques 
(§ YVd) are based on least-squares modeling or the 
autocorrelation function and are therefore insensitive 
to the information needed to determine the phase char- 
acter of the pulses. Such techniques cannot distinguish 
among the representations in the extended decomposi- 
tion theorem. Further, if the driving process R is nor- 
mally distributed (Gaussian) noise, it can be shown 
(Parzen 1962, p. 90) that the process X=R*C is also 
normal and therefore completely characterized by its 
mean value and its autocorrelation function. In this 
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case no technique can recover the phase information. 
The puises in an MA driven by Gaussian noise overlap 
so much that the phase information is irretrievably lost. 
However, many physical processes are not normally 
distributed, and for these the problem arises as to 
how to determine the pulse shape with the correct 
phase property. This is the 

Fundamental problem: Given data sampled 
from the moving average process X=R*C, 
where R is independently distributed noise 
and C is a (not necessarily minimum delay) 
pulse, find estimates of the pulse shape C and 
amplitude sequence R. 

The standard techniques determine the minimum delay 
pulse which has the same autocorrelation as C. But if R 
is not Gaussian, the correct pulse shape can be re- 
covered. The key fact is that the innovation correspond- 
ing to the correct pulse is independently distributed, while 
the other members of the family of innovations in the 
extended decomposition are not independent. This fact 
follows if the actual pulses are independent of each 
other—an assumption which has to be justified on 
physical grounds for each case under study. In astron- 
omy this justification often derives from the notion that 
the pulses arise in different physical regions that do not 
communicate effectively with each other. 

The procedure to be described here is a direct search 
for an independently distributed innovation. We seek 
the model (AR, MA, or ARMA) which, of all models 
consistent witli the sampled data, has the least depen- 
dence in the distribution of the innovation. Begin by 
writing, in terms of the data X, the innovation as a 
function of the model parameters (eqs. [15], [19], [26], 
and [27]): 

A*X 

c-l*x 

' A*C~1*X 

A*C~l*(VJX) 

(AR model), 

(MA model), 

(ARMA model), 

(ARIMA model). 

(90) 

Because of its simplicity and practicality the AR model 
is the prototype in this discussion, but the others can be 
treated in much the same way. The explicit form of R 
in this case is 

the model parameters. There is no one correct way of 
defining a suitable dependence measure. Correspond- 
ing to each of the definitions of independence given in 
§ lia there is the following quantity which could be 
used as a measure of the dependence of the process R : 

1. 
using probability distributions; 

2- F^r^F^ri)... 
using cumulative probability functions; 

<£1(1/2)...using characteristic func- 
tions; and 

4. <gi(Ri)82(R2)-gM(RM)>-<gi(Rl)} 
<¿>2(^2» • • • (8m(Rm')'} using expectations. 

In these expressions a simplified notation is used to 
give the order of the statistical functions. If R were 
independently distributed these four expressions would 
all vanish for all values of the appropriate independent 
variables (the r or the u) or for all functions gi9 and for 
all values of the integer M. There is a variety of ways 
one might choose to estimate the statistical functions in 
these expressions or to assess the departure of the 
chosen expression from zero. Of these many ways of 
proceeding, different ones will undoubtedly be suitable 
for different kinds of problems. Extensive experimen- 
tation has led to one procedure which has worked well 
in a variety of test cases. This procedure is offered as a 
fairly general purpose one, but the reader may wish to 
consider other approaches to dependence minimization 
for his data analysis problems. 

How are the individual and joint probability func- 
tions in the above expressions to be evaluated? First, 
equation (91) (or, more generally, eq. [90]) generates R 
from the sampled data A", as a function of the model 
parameters. The resulting values of R are then used to 
estimate the function of interest, in the form of an 
average. Assume that R is ergodic, so that the desired 
ensemble averages can be computed as time averages. 
For example, to estimate Q2 (^i, r2), where Q stands for 
P, F, or <£, evaluate the average 

l N-q-l 
<^2(^>^-m))B= Ar_^ + g+^ 02('-n,'-»+l)- 

(92) 

S AkXn-k> n=/>+l,/> + 2,...,Ar-$, 
k--q 

(91) 

where is of order (p,q): A = (A_q,..A_l9 

A09 Al9...9 Ap). Then construct a measure of the depen- 
dence of the process R, and minimize it with respect to 

The way in which the estimators (such as P2) are 
calculated is different for each of the four forms (l)-(4) 
above and will be described below. Because time aver- 
ages are used, no distinction can be made between the 
various second-order functions, such as Q2(rl9r2)9 

02(/2>/3)>--*>02(/*>,*+i)* Such a distinction is unnec- 
essary, however, because the assumption that R is 
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stationary means that all of these are equal anyway. 
The next step would be to consider third-order func- 
tions, such as Q3(ru r2, r3), which are awkward to deal 
with numerically. Fortunately (Papouhs 1965), the ad- 
ded information by going from second to third order is 
contained in simpler expressions, such as Q2(rn> rn+2)^ 
or in general r/i+m)- The corresponding time- 
average is 

33 

of equal steps (of amplitude \/N*) at each of the Rn. 
Similarly, the second-order joint cumulative probability 
function for lag m is estimated with 

I N*~m 
F^X'y)=jÑ^m) H^-RnWy-Rn+n,)- 

(96) 

TIME SERIES ANALYSIS 

1 
N—(p + q + m) 

N — q — m 
2 Û2(rn’rn + m)- (93) 

n«*p+ 1 

Hence, expressions higher than the second order never 
need be considered. 

The final dependence measure is the sum of expres- 
sions such as equation (93), from m=\ to some maxi- 
mum value, m* (see, e.g., eq. [98] below). What should 
this range of values be? Unless m*<z:N, the small 
number of terms in sums such as equation (93) will 
make the estimates ill determined. Numerical experi- 
ments of the kind described in § V, mostly with cumu- 
lative probability functions, have yielded the following: 
For simple models of order one or two, the single lag 
m= 1 may be sufficient in the sense that no further 
information is added by including larger lags. But for 
higher order models m* must be larger than 1 if all of 
the information about the process is to be extracted 
from the data. The best choice for m* appears to be 
roughly equal to the number of free parameters, i.e., 
m*æp + q. A rationale for this empirical result is lack- 
ing, although it is not unreasonable. 

The approaches using probability distribution func- 
tions (PDF), cumulative probability functions, and 
characteristic functions were tested on problems with 
known pulse shapes and innovations. The dependence 
measure based on cumulative probability functions 
proved by far the best (see § Via), and the details of 
this approach will now be given. A straightforward 
estimate of the cumulative probability function of Rn is 
(see the definition in eq. [7]): 

1 ** 
F\(x)=~ñí 2 H(x-Rn), (94) 

V-l 

where N* =N—(p + q) and the Rn have been reindexed 
as described in § Vc. The quantity H(x) is the unit step 
function: 

"m-í?; «2. <55> 

The sum in equation (94) is just the number of Rn 

which are <*, and therefore \/N* times the sum is an 
estimate of Pr{Rn < *}. Fj is a step function, consisting 

In this expression the sum is just the number of pairs 
(Æ/I> Rn + m) such that 

Rn<x and Rn+m<y (97) 

(see the definition of FN given in eq. [5]). The depen- 
dence measure is taken to be 

Df(A)= 2 
m= 1 

m* 

= 2 / i\F2(x,y) 
m= \ J J 

-F¿x)F¿y)\2dxdy. (98) 

The evaluation and minimization of this expression are 
described in § V. 

So far we have ignored the possible contamination of 
the observations by noise. As will be discussed at the 
beginning of § VI, there is a bias in the estimated 
model parameters in such cases. Although the effect 
appears to be small in the numerical experiments con- 
sidered there, one should be aware of this potentially 
significant bias in cases of low signal-to-noise ratio. 

An analog of equation (98) with probability distribu- 
tions replacing probability functions is 

m* 

^)= 2 f f\P?(<x,y)-Px(<x)P¿y)\2dxdy. 
m— 1 J J 

(99) 

However, numerical tests have shown this dependence 
measure to be inferior to DF. The reasons are readily 
understood. The estimates of Px and P2 involve the 
construction of intervals or bins in both Rn and 
(Rn, Rn+m) space, and then counting the number of 
points in the bins. This procedure has several difficul- 
ties. First, the results are rather sensitive to the sizes 
and positions of the bins, and there is no obvious way 
to choose these optimally. Indeed, it appears that the 
optimum bins depend on the distribution of R, which 
of course is not known a priori, A second difficulty lies 
in the quantized nature of bin occupation: A suffi- 
ciently small change in A only moves the R points 
around within the bins, and leaves the number of 
points in the bins (and therefore the estimates of Px and 
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P2) unchanged. Hence the derivative of the penalty 
function, DPi is highly discontinuous. This effect foils 
minimization methods which use gradients, and it also 
appears to produce a forest of local minima which 
makes the global minimum very elusive. The author 
achieved some success in alleviating these problems by 
weighting the points according to their distance from 
the bin center (a Gaussian dependence proved superior 
to exponential or linear), to remove the quantum effect. 
Even so, there were still numerous local minima in 
typical problems. The expression in equation (98), be- 
cause it uses cumulative functions, requires no binning 
and is a smoothly varying function of A, For low-order 
models it possesses a single minimum to which the 
minimizer converges rapidly, independently of the 
starting value. This result holds even with m* = 1. When 
the order of the model is larger, local minima invaria- 
bly appear unless is increased (see § V). 

Another problem with DP concerns the treatment of 
the points that spill outside the chosen R interval. 
Again some success was achieved with empirical rem- 
edies, namely the application of a penalty for such 
spills (to be added to DP) or defining the edges of the 
bins, in an R-dependent way, to include the maximum 
and minimum R-values. But these stop-gap remedies 
were only partially successful at producing a well- 
behaved dependence function. It is also awkward to 
have so many adjustable parameters (number, size and 
location of bins, weighting functions, spill penalties, 
etc.) to be chosen arbitrarily or optimized using trial 
cases. In comparison, the function DF, given in equa- 
tion (98) and evaluated as described in § Yd, is very 
well behaved and free of undetermined parameters or 
functions. 

The characteristic function is intrinsically a continu- 
ous function of the so the method based on these 
functions also avoids some of the problems discussed 
above. The first and second orders are 

^i(«) = <exp(/«ÄB)>, (100) 

and 

<#>2,(Ml.«2) = <eXp[/(M,JR„+M2iî„+)n)]>. (101) 

The corresponding condition for independence is 

(102) 

for m= 1,2, Since this function must vanish for all 
ux and «2» there are various expressions which could be 
adopted as the dependence measure, the most obvious 
being the integral 

£>+=ff IG”(M1’M2)|2¿«1¿«2- (103) ^ •'-00 

This measure, even with weighting functions thrown 
into the integrand, did not give very promising results 
and was numerically awkward. A much simpler proce- 
dure comes out of the Taylor series expansion of the 
function G™ in equation (102). Write 

00 
<h(u)= 2 

*■0 
¿*<fti(«) 

duk (104) 

and 

<Í>2,(«1.«2)= 2 
k,j=0 

3fc+^(»1,M2) 
M1 “m2 *“0 

UkUj
2 

Jdjl 

(105) 

The quantities in square brackets are ikiik and ik+jiikj> 
respectively, where the ¡1 are the moments 

Hk=<Rkn>, (106) 

and 

liZj = <Rk
nRUm>- (107) 

Since all powers of u, and u2 must vanish in equation 
(102), 

(108) 

for all k,j, and m. Accordingly, the expression 

Dmom =22 l(^*,7(109) 
m k,j 

can be taken to represent the degree of dependence of 
the process R (w[k, j] is a weighting function). For 
simple models the single value m—\, and just a few 
terms k, y = 1,2, seem to suffice. The term k=y=l 
corresponds to the autocorrelation function, and the 
terms k=\, j=2, and k = 2, j=\ are related to the 
“time skewness function” of Frenkiel and Klebanoff 
(1967) applied to a related problem by Weisskopf et al 
(1978). The numerical tests showed that moments and 
characteristic functions have some merit for this prob- 
lem, but again local minima were bothersome, and no 
choice of weights for the u or the /i could be found that 
yielded consistently satisfactory results. 

The author has not experimented with expectations 
of arbitrary functions (method [4] in the list above), 
mostly because the infinite arbitrariness in choosing the 
function sets is so imposing. 

Finally, while it would not necessarily yield indepen- 
dently distributed innovations, a procedure based on 
maximizing the martingale difference property (§ lia), 
was considered. In fact, the implementation is straight- 
forward and easy. Select a set of R bins, denoted <31,., 
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and then evaluate the conditional expectation value per se, but representation of the statistical properties of 
the process. The hope is that the optimization will 

<*„|.R„+me3l,.> = ^- ^Rn, (110) 
^ n such that 

where 91 is the number of n such that and 
E stands for “is an element of.” The measure of the 
martingale characteristic would then be 

^MDP = 2l<^|Än+mea,.>-<Ä„>|2, (in) 
i 

where 

= (112) 
n=l 

is just the (unconditional) expectation value of R. As 
will be seen in § Via, this procedure does not appear to 
be very effective. 

d) Predictive Deconvolution of Time Series 

Predictive deconvolution (Peacock and Treitel 1969) 
or predictive decomposition (Robinson 19676) refer to 
the use of linear prediction (Makhoul 1975), usually 
based on past data only, to yield information which 
allows representation of a process in terms of elemen- 
tary building blocks (such as white noise processes, MA 
or AR filters, and deterministic processes). Since least- 
squares methods are almost always used, and these 
cannot recover phase information, only a brief sketch 
will be given. This discussion is intended to clarify the 
relation of predictive techniques to the material pre- 
sented above, and also to motivate a technique (§ IVe) 
which is a simple extension of linear least-squares pre- 
diction and which can recover pulse phase information. 
More details than are given here can be found in an 
extensive literature (Kolmogorov 1941; Mann and Wald 
1943; Wiener 1949; Bode and Shannon 1950; Durbin 
1959, 1960; Walker 1962; Robinson 19646; Gersch 
1970; Akaike 1971, 1974; Chow 1972a; Kashyap 1974; 
Shinners 1974; Äström and Söderström 1974; Gertler 
and Bányász 1974; Gersch and Foutch 1974; Graupe, 
Krause, and Moore 1975; Tong 1975, 1976, to name a 
few), and especially the reviews by Robinson (1967a) 
and Box and Jenkins (1970). The reader interested in 
the new techniques only should skip to § V at this 
point. 

The basic principle of predictive decomposition is 
that a model which gives good predictions of the be- 
havior of a process undoubtedly is a good representa- 
tion of the process. Thus one takes a model with a 
simple structure and adjusts it (by adjusting the values 
of the model parameters) until some measure of the 
error the model makes when tested against the availa- 
ble time series data is minimized. This procedure is 
called optimizing the model. The goal is not prediction 

extract all of the information about the process that is 
contained in the data at hand. 

The basics of the predictive approach are as follows. 
The term linear prediction used above simply means 
that the predictor is taken in the form8 

Xn=BlX„_l+B2Xn_2 + ...+BkXn_k (113) 

(see the autoregressive memory discussed in § II and 
in the proof of the Wold decomposition theorem in § 
I Va). That is, this expression is to be used to predict9 

the value of Xn, based on knowledge of the previous 
values Xn_l,Xn_2,--- only. The numbers 2?, are related 
to the AR parameters and are to be determined by 
minimizing the prediction errors, in a sense to be 
defined. The error in prediction at time n is 

k k 
E„ =Xn =*„ + 2 = 2 ¿iXn-i, 

i—l i—O 

(114) 

where we have taken A, = and A0 = 1. In other 
words, the expression 

E=A*X (115) 

is the sequence of prediction errors as a function of 
time, and for this reason A is sometimes called a 
prediction-error filter. Suppose we take the sum of the 
squares of the prediction errors, that is 

E{A)=^E^, (116) 
n 

as the measure of the errors which is to be minimized. 
In practice the length of the prediction filter is taken to 
be much less than the length of data (&<V), so that a 
large number (N—k) of trial predictions can be 
evaluated. The minimization equations are 

3 F 
^=0 (/=1,2,3,...), (H?) 

8 The caret O is placed over quantities which are estimated or 
predicted, based on data and (usually) a set of parameters such as 
the 2?,-. It is to be distinguished from the angle brackets, used to 
denote the expected value, which is a statistical average, depend- 
ing on the whole process (theoretical expectation) or on a reali- 
zation of it (sample expectation). 

9 It should be emphasized that the word “predict” is not meant 
in the literal sense, as it would be, for example, if we were 
interested in real-time analysis of a manufacturing process we 
wished to control. Rather, we consider Xn to be the guess or 
estimate we would make for the value of Xn if we didn’t know it, 
based on knowledge of values of X at other times. Convention- 
ally, the restriction to the use of past data is imposed, but in 
general use can be made of past and future. (A two-sided predic- 
tion-error filter is sometimes called an interpolation operator.) 
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or 

5 (118) 
k=o J 

the expectation value of which is 

S Akp(k-i) = 0, /= 1,2,3,..., (119) 
k = 0 

where p is the autocorrelation function. These are the 
standard Yule-Walker equations (Ulrych and Bishop 
1975). The procedure is to use the data to compute an 
estimate of p, then solve equation (119) for the coeffi- 
cients Al9A2, The resulting A is minimum delay. 
Ulrych and Bishop give specifics and FORTRAN pro- 
grams for carrying out this solution. 

From the solution for A and the data, it is straight- 
forward to calculate an estimate of the innovation from 
the relation in equation (115). Indeed, the sequence of 
prediction errors En corresponding to the optimum A is 
an estimate of the innovation R. That is, R is both the 
sequence of optimum prediction errors and the se- 
quence of pulse amplitudes. This equivalence can be 
understood by noting that, with the correct A, there is 
no prediction error at time n due to pulses starting 
before n; the error is totally due to the new pulse, of 
amplitude Rn; hence En=Rn. This estimate, of course, 
is of the innovation corresponding to the specific reali- 
zation of the processes which has been sampled, but 
therein is also contained information about averaged 
quantities, such as the pulse rate (which for a continu- 
ous distribution of amplitudes is expressible in the 
distribution function of pulse amplitudes). The Yule- 
Walker equations can be generalized to the case of 
two-sided filters, but this exercise is useless because it 
provides no added information. 

A recursive procedure for determining A is due to 
Burg (1968, 1975) and is discussed by Ulrych and 
Bishop (1975), Fahlman and Ulrych (1975), Kanase- 
wich (1975, pp. 260-283), Ulrych and Clayton (1976), 
and others. The sum of the squares of the forward and 
backward prediction errors of a one-sided prediction- 
error filter, namely 

is minimized with respect to A. The first term inside the 
brackets corresponds to the error made by the filter in 
predicting Xn based on the p preceding values 
Xn-\,Xn_2,...,Xn_p. Since least-squares modeling can- 
not distinguish one sense of the direction of time from 

the other, Burg (1968) introduced the idea that one 
should include the backwards predictions, which are 
represented by the second term in equation (120). This 
term is the sum of the squares of the postdiction errors, 
made by the same filter (reversed) based on the subse- 
quent values Yn+1,Xn+2,...,Xn+p. The terms in the 
backward and forward contributions to Ep, when ex- 
panded out, are identical except for end effects. Thus 
Burg’s idea is most important for short segments of 
data for which end effects are most important. This 
procedure explicitly assumes that the process X is in- 
trinsically symmetric, in that forward and backward 
predictions need not be distinguished, and of course 
this is not generally true. 

The limits of the «-sum are chosen such that no 
datum outside the sample range, «=1,2,..., A, is ever 
called for; that is to say, the estimate is noncommittal 
about the unsampled data. (In some formulations of 
such problems the unsampled data is set to zero.) 
Therefore the resulting parameter values are “maxi- 
mum entropy” estimates (Burg 1968; Lacoss 1971; 
Ulrych 1972; Abies 1974). Hence A can be used to 
compute an estimate of the power spectrum (eq. [69]) 
of X (Burg 1967; Akaike 1969«, &, 19706; Parzen 1968, 
1969) which is called a maximum entropy method 
(MEM) spectrum. The nature of the predictions and 
the ranges of the summations are depicted in Figure 18. 
Details of the method are given by Ulrych and Bishop 
(1975) and more completely by Andersen (1974). The 
first of these references describes a convenient recur- 
sive solution to this least-squares problem. This is the 
Levinson (1947) recursion, also discussed by Durbin 
(1960) and Burg (1975). The resulting A is minimum 
delay, as with the Yule-Walker solution. Ulrych and 
Bishop discuss various practical matters, give a FOR- 
TRAN program for the determination of the AR coef- 
ficients as well as the spectrum, and outline the use of 
the final-prediction-error (FPE) criterion for the de- 
termination of the length of the (one-sided) AR filter. 

This procedure is very efficient at determining the 
AR coefficients from time series data generated by 
simple processes where there is little noise present. It 
should probably be used if it is known a priori that the 
pulse is minimum delay. In astronomy this is seldom 
the case. 

e) Predictive Deconvolution with the Absolute 
Value Norm 

The choice of the sum-of-squares of the errors, in 
equations (116) and (120), is not the only possibility. 
Least-squares modeling is used because it gives maxi- 
mum likelihood parameter estimates (Box and Jenkins 
1970) . It is also convenient because of the simplicity 
with which the minimization can be expressed in terms 
of the autocorrelation function (eq. [119]). But some 
other measure of the errors could be substituted for the 
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Fig. 18.—A prediction filter can be depicted as a string of numbers Ak which is to be overlaid on the time series to obtain the cross 
product Xn ='Zk+oAkXn-k’ which is the predicted value of Xn. 
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mean square error. The AR parameters could be de- 
termined by minimizing the more general form E(A) = 
H is II, where ||E|| denotes an arbitrary error norm.10 

For example, consider the La norm: 

¿a(£) = (2|£/V/a- (121) 
' /I ' 

The mean square error corresponds to a = 2. The use- 
fulness of the choice a=l (Claerbout and Muir 1973; 
Scargle 1977) will now be demonstrated. Consider the 
MA process X=R*C, where R is an independently 
distributed process and C is the two-point pulse (1, c); 
if |c|<l C is minimum delay, and if |c|>l C is 
maximum delay. Introduce a two-point forward predic- 
tion-error filter A = (l, a): 

En=Xn+aXn_u (122) 

i.e., the form of the prediction is simply 

^n=-aXn^. (123) 

The best value of a minimizes La(E), which is equiva- 
lent to minimizing 

[¿«(£)r= 2(124) 
n 

= 2 l(*„ +cJR„_1)+a(Ä„-, +c/?„_2)f, 
n 

(125) 

Fig. 19.—Graphs of terms which arise in absolute value mini- 
mization {dashed lines) showing how their sum {solid line) is a 
polygonal figure with vertices directly over the zeros of the 
individual terms. The minimum must occur at one of these 
vertices. More generally, the solution to a set of overdetermined 
linear equations in the “least absolute value” sense always solves 
one or more of the equations exactly. 

It happens that Ef=Eb if and only if a = 2. That is, 
least squares prediction is identical in the forward and 
backward directions and would yield the same result if 
the time series were reversed. The quantities Ef and Eb 

can be easily minimized if 1. For a = 1 consider the 
graph of \a + c\ + \ac\ in Figure 19. Each of the two 
terms is a simple absolute value curve with a slope 
discontinuity at the point where its argument is zero. 
Hence the sum is piecewise linear, with vertices at these 
zeros. The minimum must fall at one of the vertices,11 

and simple comparison of the two values shows that for 
a=l, 

= 2 +(« + <>/?,,_,+ac*,>_2|a. (126) 
n 

This last expression is difficult to deal with because of 
the pulse overlap manifested in its three terms. But 
progress can be made if the pulse overlap is neglected, 
because its effects should average out. The prediction- 
error due to a single, isolated pulse at time n is 

Ef = \Rn\*(\ + \a + c\« + \ac\«). (127) 

But also consider the reversed or backward prediction- 
error filter ^4 = (a,l), which leads to the error 

¿?6 = |¿?,I|‘'(M“ + |l+ac|“ + |c|"). (128) 

10 Random processes can be considered as elements of a normed 
linear space [for L2 this is a Hilbert space with the inner product 
{X, Y) = (XY'}]. A norm satisfies the three following conditions: 
{a) 11^11=0 if and only if ^=0; {b) Ha^H^lalHAfU; and (c) 
H X+T H < 11^11 + 11711. These are pleasant but not necessary 
properties for a measure of the errors or residuals in model fitting. 
For example, the skew “norm” of Claerbout and Muir (1973) 
does not satisfy {b) or (c), but it is still a useful penalty function 
for residuals. 

— c if|c|<l 
0 if |c|> 1 ’ 

For 1 

“/,n i=_c(l + |c|^.) 

(129) 

(130) 

with /?=(a — 1) \ and a similar analysis of the back- 
ward case gives 

ab , min 
-cM-'o+icr*)-1, 

0, if |c|<l 
if |c|> 1 

(«¥=!); 

)(«=!)• 

(131) 

11 If |c| = 1, the line between the vertices is horizontal and the 
minimum occurs everywhere along this line. This degenerate case 
is not important, because such a pulse has no stable AR represen- 
tation anyway. It should be remembered, however, that absolute 
value minima are not always unique. 
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The values at minimum are related as follows: 

^/(«/,mm)=1 + k|2 = l + if |c|<l; 

(132) 

and 

^i(ai,mm) = k|_1+|c|<£:/(a/jmin)=l + |c|, 

if|c|>l. (133) 

1977, and § Via) show that the Lx norm does work for 
more complicated cases, as long as the driving process 
R is at least moderately nonnormal. But a difficulty 
arises when two-sided filters are introduced, as they 
must be for this problem. 

In the above example, permitting either forward or 
backward prediction was crucial to the phase de- 
termination. In more complicated cases, for example 
when the pulse is mixed delay, the obvious generaliza- 
tion is to allow A to be two sided. For example, if 
/! = (a, 1, 6), the predictor is 

Hence the minimum for either forward or backward 
prediction is at 

r -c, if |c|<i 

1 —c_1, if |c|>l 
(a=l), (134) 

Z^-aX^-bX^, (137) 

and the prediction-error sequence is 

En =Xn -Xn =aXn+1 +X„ +bX„_l, i.e., E=A *X. 

which gives for the optimum A, for a= 1, (138) 

A = 
(1,-c), if |c|<l 

(-C-1,!), if |c|>l. 
(135) 

These solutions, for all values of a, are to be compared 
to the exact inverse of the pulse from which the process 
was formed, 

A = C~l = 
(l,-c,c2,-c\...), if |c|<l; 

(...,-c~3,c-2,-c-1,l), if |c|>l. 

(136) 

The two-term Ll solution in equation (135) agrees with 
the first two terms of this exact result. For |a|«:l the 
filter (1, a/min) = [1, — a + o(a2)] is approximately cor- 
rect for any a>l, and similarly for |a|»l the filter 
(a6>min,l) = [-a"1+o(a_2))l] is a good approxima- 
tion. The inequalities in equations (132) and (133) hold 
for l<a<2, but the opposite sense inequalities hold 
for a>2 (with equality for a = 2, as already noted). 
Thus any La norm with 1 < a < 2 makes the correct 
decision between minimum delay and maximum delay, 
but a>2 is unsatisfactory. The best choice is a = 1, for 
at least in this example the resulting parameter values 
are then most accurate. 

This demonstration of the phase-determining ability 
of the absolute value norm is for the simple case 
of a first order AR process. More general cases are dif- 
ficult to treat analytically, but there are many good 
numerical techniques for absolute value minimization 
(Barrodale and Roberts 1973, 1974; Osborne and Wat- 
son 1971; Barrodale, Roberts, and Hunt 1970; Barro- 
dale and Young 1966; Robers and Ben-Israel 1969; 
Barrodale 1970; Ekblom and Henriksson 1969; Rice 
and White 1964; Maria and Fahmy 1974; and 
Claerbout and Muir 1973). Numerical tests (Scargle 

It is here that the liberal interpretation of the word 
“prediction” noted above first comes into play. The 
general forms are 

A — (a_q,...,A_i,AQ,Al,..., Ap) (139) 

and 

£„=2 AkXn_k. (140) 
k= ~q 

The corresponding mean error in the La norm is 

S* 1^1“. (141) 
-» ** n -h 1 

where as usual the sum is such that the filter A never 
extends outside the sampled data (see Fig. 18). The 
optimization problem is to find the minimum of this 
expression with respect to the parameters A_q,...,Ap. 
It seems natural to not regard yl0 as a free parameter, 
but to fix it at the value 1 because of the special nature 
of the prediction point. The condition A0 = 1 can be 
thought of as a normalization condition imposed on A 
to avoid the trivial minimum at At =0, all /. However, 
this normalization choice is inappropriate for two-sided 
deconvolution problems. Consider the MA process X= 
R*C, where C is some particular two-sided pulse. The 
mean L2 prediction error is 

^) = lvzrr 

N-q 
2 N-p-q n^+1[kî 

P 
2 MR*c)n-k 

(142) 
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and therefore 

ÜE(A) _ 2 
dA¡ N—p — q 

ZAk(R*C)n_k 
k 

(143) 

for 1^0. Now insert the desired solution A = C 

dE(A) 

~dir A-C~' 
1^^^Rn(R*C)n_i, (144) 

—L—'Zr^r.c^, 
iy P H n k 

(145) 

the expectation value of which is 

A-C-'l iy P <1 n k 

(146) 

= 2a¿C_/, (147) 

since the Rn
9s are mutually uncorrelated. This expres- 

sion is not zero unless C_, vanishes, so that in general 
the A which is the correct inverse pulse, namely C~l, 
does not solve the optimization problem with the con- 
straint A0 = 1. On the other hand, if only one-sided 
pulses are allowed C_¿ =0 for all />0, and the desired 
A does make the above derivatives zero; this A does 
solve the optimization problem. The choice AQ = \ is 
correct for causal pulses but not for two-sided ones. 

What can be done to ensure that the solution of the 
minimization problem is the correct inverse pulse? If A0 

is an arbitrary function of the other An’s, rather than 
held constant, the above analysis yields, instead of 
equation (147), the set of equations 

dA 
C-,+Co-^=0, (148) 

for jV=0, which integrates to 

2^C_,.= 1, (149) 
i 

as a necessary condition that optimization of A yield 
the inverse of C. (Note that for causal filters this 
reduces to A0C0 = 1, and the conventional constraints 
A0=C0 = l are correct.) Unfortunately, equation (149) 
cannot be considered as a simple constraint on A 
because it involves the unknowns Q. An obvious possi- 
ble remedy is to compute iteratively, starting with a 
guess for C, imposing the constraint in equation (149) 

dE(A) 
dA, 

on the minimization to produce a new A and a new 
C=A~l. The convergence and uniqueness properties of 
this iteration have been studied in numerous simple 
cases. For low-order processes with little noise it con- 
verges very rapidly to a unique minimum which is very 
much better than the solution with ^40 = 1- ^ut f°r more 
difficult problems there tend to be oscillations. In some 
cases these can be damped out very effectively by 
adopting a suitable averaging scheme for the update of 
A. But a way has not been found to predict ahead of 
time which of several such averaging procedures will 
succeed on a given set of data, nor a single procedure 
that is successful on all data. (Curiously, although the 
above derivation is for L2> the same results can be 
demonstrated for Lx using the methods of Rice 1964.) 

An interesting feature of the above iteration is that, 
since none of the An

9s are constrained to equal one, the 
identification of the prediction point becomes vague. 
Indeed the very concept of a specific point singled out 
as the prediction point loses much of its significance. 
But let us call the element of A largest in absolute value 
the prediction point, just because it is often true with 
the constraint A0 = l that |^/|<1 for all /^O. It is 
found that as the iteration proceeds, this point is not 
fixed but moves around within the filter and eventually 
converges to a fixed point. This is favorable as it 
eliminates what would otherwise be an arbitrary 
parameter (the location of the prediction point, or 
MPT in the terminology in the appendix). The length 
of A, however, is still arbitrary. For least-squares prob- 
lems Akaike (1970a) has shown how the length can be 
determined in an objective, automatic way, based on 
the FPE criterion. This technique introduces the quan- 
tity 

ppp   (.A/+ÁÍ) 2 
FPEm-(jv-m)Sm’ 

(150) 

where is the sum-of-squares of the residuals (i.e., of 
the innovation), N is the number of data points, and M 
is the number of free parameters in the model (includ- 
ing one for the mean value if this has been subtracted 
from the data before analysis). Starting from small 
values, M is increased until the FPE (for final predic- 
tion error) stops decreasing and begins to increase. One 
can interpret the factor (N+M)/(N—M) as the sta- 
tistical penalty that should be paid for using more free 
parameters. Without such a penalty, the residuals would 
always decrease as the number of parameters increases, 
so that the FPE going through a minimum is the signal 
that diminishing returns has set in. Other techniques 
have been proposed (see especially Gray, Kelley, and 
Mclntire 1977), but none seems easily generalized to 
the Lx case. However, empirically it has proven satis- 
factory to simply replace in equation (150) with 
the sum of the absolute value residuals. No theoretical 
justification for this procedure has been found, and it 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8l

A
pJ

S.
 

t/5 

No. 1, 1981 

should be regarded as an empirical result with quite 
meagre support in numerical experiments. Short of 
using this, the magnitude of the residuals and the 
values of the model parameters must be inspected as 
the complexity of the model increases. It has been said 
that so much judgment is necessary in such matters 
that the procedure should not be attempted for the first 
time (Granger and Newbold 1977). This seems extreme, 
but some limit must be placed on the order of the 
model to avoid the pitfalls of fitting too many parame- 
ters. 

This section concludes with the one analytical result 
uncovered for the Lx problem which is as close as 
possible to showing that absolute-value optimization of 
a two-sided AR filter yields the correct deconvolution 
of a MA process driven by independently distributed 
noise. First the following lemma is established: 

Lemma: If X and Y are zero-mean, indepen- 
dently distributed processes, then 

<|X+T|)>max«|^|),<|T|», (151) 

with equality if A" or T is the null process. 

First note that if X and Y are independent 

<1^+ y|> = j jdxdyP2(x,y)\x+y\ 

= f jdxdyPx(x)PY(y)\x+y\, (152) 

= fdx - f (x+y)Px(x)Pr(y)dy J L — OO 

+ ( (x+y)Px(x)Py(y)dy ,(153) J-x 

= f dx -if (x+y)Px(x)Pr(y)dy 

+ f (x+y)px(x)Pr(y)<fy 
*'-00 

+ f° dx - f (x+y)Px(x)PY(y)dy 

+ 2 r(x+y)Px(x)PY(y) 
J —X 

(154) 

The first and last of the four terms in this equation can 
be written as the integral of a nonnegative quantity, as 

TIME SERIES ANALYSIS 

follows 

41 

ß = 2 f dx f ¡x+ylPx(x)Pr(y)dy 
J0 *'-00 

+ f°dxf lx+y¡Px(x)Pr(y)dy 
J — J — y 

>0. (155) 

In fact this quantity vanishes only in degenerate cases, 
the most important ones being Px or PY=0. The 
second and third terms in equation (154) simplify: 

<|^+y|>= f00¿x[^(x)+<r>iJ
A.(^)] 

•'o 

+ f° dx[-xPx(x)-(V>Px(x)] + Q, 

(156) 

= <|Ar|>+<y>r sign(x)Px(x)dx + Q, 
^ — 00 

(157) 

= <l*|>+ß (since <r>=0), (158) 

and so except in the degenerate cases in which Q = 0 

<|jr+y|>><m>. (159) 

Since X and Y are interchangeable in the above analy- 
sis, the result stated in the lemma follows. 

Turning to the main issue, consider the process X= 
R*C; we wish to show that (]A*X\y is minimum if 
A = C~l (subject to the condition in eq. [149]). Write 

so that 

or 

where 

A = C~1 +8A, 

A*X=(C~1 +8A)*C*R9 

= R + (8A*C)*R, 

(A*X)„=R„ + '2akRn_k, 
k 

ak 2 SAmCk_m, 

and equation (149) gives 

an=0. 

(160) 

(161) 

(162) 

(163) 

(164) 

(165) 
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Hence 

<|04.*)„|> = ( *„+2 akRn-k 
k^O 

(166) 

But since R is independently distributed, the sum in 
this equation is distributed independently of Rn, and 
the lemma applies, to give 

<M.*|>><|*|>, (167) 

with equality if ¿z* =0 for all £, a condition equivalent 
to 8Ak =0 for all k. Hence A = C~l gives a minimum 
(not necessarily unique), and we have established the 

Theorem: If X=R*C, with R independently 
distributed noise, then ^4 = C "1 is a solution of 
the optimization problem mmA(\A*X\y sub- 
ject to '2kAkC__k = 1. 

It must be cautioned that this minimization problem is 
not specified in the usual way, because the constraint 
explicitly involves the solution, and the theorem is to be 
understood in the sense indicated in its proof. The 
practical value of this result is in the iterative method 
which it leads to, as described earlier. 

V. COMPUTATIONAL METHODS 

b) Identification 

Choosing the best form (which is traditionally called 
identification) of the model is not always straightfor- 
ward, and there is a large and complex literature on 
this problem (see, e.g., Box and Jenkins 1970; Parzen 
1974; or Granger and Newbold 1977). We will not 
attempt to summarize the ideas in this literature, but 
the following general comments are appropriate. Many 
astronomical time series can be well represented as 
low-order AR processes, and this discussion therefore 
emphasizes AR models. Remember that a given pro- 
cess can be represented in a variety of ways (§ He), so 
identification should not be viewed as finding the True 
Model, but as finding a simple, physically suggestive 
model which adequately represents the observations. 
Also keep in mind that this step is not irrevocable, once 
taken. Rather, the results of subsequent steps often 
suggest some revision in the form of the model. 

c) Computing the Innovation R(A) 

The relation used depends on the form of the model 
(eq. [90]). For an ARIMA model, the data are dif- 
ferenced d times and then an ARMA model is fit. The 
most direct way of computing R is to carry out the 
operation in equation (90) with the discrete Fourier 
transform: 

R = ^ 
W(X)W(A) 

Wcj 
(168) 

The goal of this section is to provide enough compu- 
tational details so that the reader can apply the tech- 
niques described above to his own data. In outline all 
of the methods to be discussed proceed in the same 
way, as follows: 

a) Obtain the data. 
b) Decide on the form of the model (AR, MA, 

ARMA, ARIMA,...). 
c) Provide a way of computing the innovation R as 

a function of the model parameters. 
d) Choose the property of R to be minimized, and 

provide a scheme for evaluating the corresponding 
norm I>(R)- 

e) Minimize D(R) with respect to the model param- 
eters. 

/) Compute the physically interesting quaûtities 
from the optimum model found in the previous step. 
The following subsections explain these steps in turn. 

a) Sampling 

Assume that the sampling is in even intervals of the 
independent variable (time, position, wavelength,... ) so 
we have a set of measured numbers Xn, n= 1,2,..., A. 
This is not a fundamental limitation, however, as the 
techniques described here can be readily generalized to 
data with gaps or uneven sampling or both (§ Vg). 

Note that C enters this calculation effectively as its 
inverse, so that even here the MA part of the model is 
converted into an autoregressive representation. The 
only points that are not straightforward in implement- 
ing this expression with the DFT are: complex arith- 
metic must be used in the multiplications and divisions, 
and the arrays A and C must be zero-extended to the 
same length as the data before applying the transfor- 
mation. It would seem that the result would be of the 
same length (i.e., N points), but to avoid spurious end 
effects the array R must be truncated somewhat, de- 
pending on the length of A and C. These end effects 
arise whether the innovation is calculated with the 
DFT or directly evaluated with a summation (see, eq. 
[91] for the pure AR case). In either case the innovation 
is defined at slightly fewer than A points. This is the 
reason for the limits N1D and N2D in the FORTRAN 
code provided in the appendix. For the pure AR case, 
R is defined at /? + <? (=the length of the AR filter — 1) 
fewer than A points. But the values are not NlD=/?+1 
and N2D=A—¿7, as would be expected from equation 
(91), simply because negative values of indices are not 
permitted in FORTRAN. In the code in the appendix 
R is computed as outlined above, using the DFT. 
Alternatively, the sum in equation (91) may be directly 
evaluated; for small values of p and q this procedure is 
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faster than the use of the DFT. However, the evalua- 
tion of R is a minor part of the computation of D. For 
convenience the are reindexed as «=1,2,..., 
A*}, where «=1 corresponds to n=p+\ in equation 
(91), and N*=N-{p + q). It is important that A be 
prohibited from running over the ends of the data (see 
Fig. 18), to avoid the numerically harmful end effects 
(i.e., to preserve the “maximum entropy” condition, § 
IW). 

d) The Computation of DF(R) 

The choices for the property of R to be minimized 
include dependence (§ IVc), the martingale difference 
property § IVc), the mean-square prediction error (§ 
TVd), and the mean absolute prediction error (§ IVc). 
Another example is a measure of simplicity called the 
varimax norm (Kaiser 1958; Wiggins 1977; Ooe and 
Ulrych 1979). In turn there are several ways to imple- 
ment each of these. For example, we saw above that 
dependence could be measured in terms of differ- 
ential cumulative probability distributions, moments, 
characteristic functions, or expectations of arbitrary 
functions. Since the scheme involving cumulative distri- 
bution functions proved much the most satisfactory, 
details of the other approaches have been omitted. The 
remarks about them in § IV should enable the inter- 
ested reader to construct algorithms implementing the 
other approaches. Test results with all of the methods 
save those using moments (messy) and expectations of 
arbitrary functions (not tested), will be given in § VI 
for comparison. 

The function to be minimized is defined in 'equation 
(98). Because of the step-function nature of the esti- 
mates of Fl (eq. [94]) and F™ (eq. [96]), this integral can 
be evaluated exactly with a finite double sum, as we 
shall now see. It is convenient to introduce an ordered 
version of the Rn\ i.e., define an index transformation 
i=f(n) such that if =R'Kn)=Rn9 then the R' form 
an ordered set: 

•• <R^*_i <R'n*. (169) 

As long as Rn+m is associated with its correct neighbor 
in the unordered set, namely Rn, then the integrand in 
equation (98) is unchanged by this ordering. The in- 
tegral may be written as 

N*-l N*-l 
D]?(A)= 2 2 ^(RURj) 

/=1 7-1 

-FtRWiR'.^AR'iAR'j, (170) 

where AR'=R'+1—R-. This sum is over a two- 
dimensional (unevenly spaced) grid of rectangles with 
area ARJAR', and with edges at the values R', /= 
1,2,..., V* (see Fig. 39 in the Appendix). From defini- 

tions (94) and (96) it can be seen that Ff'iRU R'j)> 
FfR'i), and FfRj) are all constant over each of these 
rectangles and therefore so is the summand, F™ — FyF^ 
Hence, the sum in equation (170) is an exact evaluation 
of equation (98). Of course, the expressions for Fx and 
F™ are inexact estimates of the corresponding quanti- 
ties. However, they exactly represent all the informa- 
tion contained in the given realization of R; this is not 
true of the estimates of Px and P2, since there is always 
some loss of information in a binned histogram. This is 
probably the main reason for the superiority of the cdf 
approach. The advantage of R', the ordered version of 
R, is that the summand can be computed recursively, 
for example, with 

FriR^R^^FriR'-uR'j) 

+ (171> 

(H is the step function defined in eq. [95].) This rela- 
tion follows from the fact that no more than one new 
step in F™ begins at a given value of R' , corresponding 
to a given row in the matrix (R- , R'). Further discus- 
sion of this recursion is in the appendix. 

e) Minimization of DF(A) 

The minimum of DF9 with respect to the filter ele- 
ments A, can be found with any of several standard 
numerical techniques; the simplex method is described 
here because it is the one the author happened to use, 
not because it has been proven to be more suited to this 
problem. The following warning should be issued with 
the simplex method (Neider and Mead 1965; Powell 
1964): After the convergence criteria have been satis- 
fied, a restart should be made to check the possibility 
that the simplex has become degenerate or is otherwise 
unable to progress toward the true minimum. A restart 
is a reinitiation of the iteration with a new simplex at 
the point to which the procedure appears to have 
converged (see the Appendix). Another caution is that 
DF may have more than one local minimum. With 
numerical techniques it is never possible to be certain 
that the global minimum has been achieved. But the 
expression for DF in equation (98) is far superior in this 
regard to all of the other methods tried and to other 
ways of estimating the cumulative probability func- 
tions. For data generated by a simple process and fit by 
simple models (e.g., AR[1,1]), DF has never been found 
to have more than one minimum, and the simplex 
rapidly converges to the (global) minimum from essen- 
tially any starting value. The convergence is also very 
sure in that a restart is never needed. (Nevertheless it is 
wise to try a restart in all cases, even if it is expected 
that it will not be necessary.) As the order of the fitted 
model is increased three symptoms eventually appear: 
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(1) local minima abound; (2) restarts are frequently 
necessary (i.e., false convergence becomes common); 
and, not surprisingly, (3) convergence is generally 
slower. 

Experiments have shown that the first two of these 
problems are eliminated if m* is increased sufficiently, 
typically to a value slightly less than p + <7. Because the 
time to evaluate DF is roughly proportional to m*, 
the computation time increases as m* is increased, but 
the reward in sureness of convergence, elimination of 
spurious local minima, and accuracy of the solution is 
certainly worth the price. For a given data set, the 
procedure found to be best is as follows: 

The format of Tables 4-7 follows this scheme. 
Determining the correct order of the model is im- 

portant. If the order is taken too small, there will be 
residual serial correlation in the estimated innovation, 
indicating that not all of the information about the 
process has been extracted. In spectral analysis the 
symptom of too small an order is that the spectrum is 
heavily smoothed—the frequency resolution has been 
degraded by using too few parameters. In deconvolu- 
tion the pulse shape is similarly oversmoothed. In 
principle, taking the order too large is not as harmful 
because the extra parameters will be very small (pro- 
vided there are enough data). In practice, however, 
even a few too many parameters cause numerical diffi- 
culties and add greatly to the cost of the computations. 
If the number of parameters becomes of order N 
(heaven forbid!), the estimates all become unstable 
because there are too few terms in the corresponding 
sums. In general, too many parameters show up as 
large spurious spikes in the power spectrum or as wild 
oscillations or other erratic behavior in the pulses. 
There are many approaches to the order problem in the 
classical least-squares arena (e.g., Chow 1972a, b, c; 
Anderson 1963; Jenkins and Watts 1969; Akaike 
1970a; Gailbraith 1971; Lindberger 1972; Parzen 1974; 
Jones 1974; Graupe, Krause, and Moore 1975; and 
Tong 1975). Also an innovative approach has been 
developed by Gray, Kelly, and Mclntire (1977). It is 
not surprising that the same difficulties confront mod- 
eling with independently distributed innovations, as the 
models are identical. The steps A-D above, based on 
experience with both test cases and real data, are 
offered as guidelines only. It is hoped that an objective 
technique such as the FPE (see § IVe) can be devel- 
oped. Toward this goal, the quantity FPEM in equation 
(150), with Slf replaced by DF, is routinely tabulated 
(see § VI). In some cases this quantity can be helpful in 

(B) Increase the order of the model. A good 
way is to compare the results for p->p + 1 and 
for q-^>q+ 1, using as starting values the solu- 
tion from step A with zero for the new 
parameter. Of these two models, adopt the one 
which gives the lower value of DF. (Remember 
that restarts and multiple initial solutions are 
never out of place. The appearance of false 
minima turned up by restarts or multiple 
minima turned up by various initial solutions 
are symptoms that m* is too small and should 
be increased.) 

(A) Fit a very low-order model, such as 
AR(1,1), with m* = 1. Unique and sure con- 
vergence has always obtained at this step, but 
caution suggests that one: (a) experiment with 
a variety of starting values, such zs A = (0,1,0), 
(1,1,1), or the (a_!,l, ax) which gives the Lx 

minimum (i.e., minimum of 2JÆJ); (b) try a 
variety of sizes for the initial simplex; and (c) 
always try restarts, with moderately large Sim- 
plexes. Hopefully these steps will not be neces- 
sary, and the results will be the same for all 
starting solutions and simplexes. However, 
since ill-conditioning tends to grow with the 
model complexity, confidence in the good 
behavior of the procedure at this stage is 
essential. If there are convergence or unique- 
ness problems at this early stage, there are 
several possibilities: (i) The process is not 
stationary, the V should be applied one or 
more times before modeling is attempted; (ii) 
an even simpler model should be used to start 
with, such as AR(0,1) or AR(1,0); (iii) a 
totally different form should be tried, such as 
MA or ARMA; or (iv) the value of m* should 
be increased (see step D below). 

(C) Step B should be repeated until there 
is indication that the correct order has been 
reached, for example, until (a) the parameters 
from the lower order solution do not change, 
and the new parameter is relatively small, or 
{b) the residuals stop decreasing with increas- 
ing order—more properly, the residuals should 
decrease only as much as would be expected 
from the mere fact that another parameter is 
varied. 

(D) Increase the value of m* and repeat steps 
A-C. If the results do not change significantly 
with m* it can be presumed that the value 
used is large enough. 
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deciding when the order is correct, but it is far from 
infallible. When using the suggestion given above (step 
B) for increasing the order of the model, the FPE will 
be systematically underestimated, because the smaller 
of two values of Z>, corresponding to the two choices 
for the location of the new parameter, is selected. This 
could cause the quasi-FPE criterion to overestimate the 
order of the model, as occurs in the examples in § VI. 

A note about multiple minima: For a given total 
order (e.g.,/? + # for the model AR[p, q]) there will be 
distinct minima for each of the possible choices of p 
and q. (For example, if p + q = ?>, the four possibilities 
are AR(0,3), AR(1,2), AR(2,1), and AR(3,0).) With 
the current algorithm the prediction point cannot move 
during the minimization, so that all of these choices are 
separate problems. It would be helpful if a scheme to 
allow automatic migration of the prediction point could 
be developed, as with the Lx minimization with a 
pseudo-constraint (§ IVe). Then all of these problems 
(with a given total order, p + q) could be solved to- 
gether with a single minimization. In lieu of such a 
procedure one must simply compare the minima for the 
various choices. Some judgment can be used here; for 
example, if a model of the form AR(1,2) yields the 
grand minimum for p + q = 3, it is unlikely that AR(4,0), 
or even AR(3,1), will give the grand minimum for 
p + q=A. 

All of these matters will be illustrated in the exam- 
ples in § VI. 

/) Computation of Subsidiary Quantities 

The point of this section is that the model parame- 
ters estimated in steps (1) to (5) are not necessarily the 
most interesting numbers in the physical interpretation 
of the data. For example, as already mentioned, the 
AR parameters are often the most easily and directly 
calculated, but the MA pulse shape is the quantity for 
which there is a physical theory. (For example, if 
quasar light fluctuations are due to supernovas, the 
pulse shape should resemble the supernova light curve.) 
Hence one of the transformations that is useful is 
A—>C. The direct way to carry this out is to compute 

<n2> 

using the discrete Fourier transform, as discussed at 
length in § III/ and explicitly shown in the Appendix. 
But there is another way of evaluating the MA parame- 
ters, namely with the relation 

C=X*R=Ä*X*X (with <Y) =<R> =0), (173) 

where the tilde over a variable indicates the time re- 
verse of that variable. Indeed, this is the form used in 

the constructive proof of the (Wold) existence theorem 
for the MA pulse (see eq. [78]). It can be thought of as 
the “superposed epoch” method (e.g., Gosling et al 
1972) because the convolution in equation (173), rewrit- 
ten as 

^n = '2Xn+kRk, (174) 
k 

represents the operation of shifting each pulse to bring 
its origin to a common point in time and then averag- 
ing with a weight proportional to the pulse amplitude. 
All of the other, overlapping pulses are added in, too; 
their contribution averages to zero because they are 
uncorrelated with each other, but the pulse which has 
been shifted to the common origin always adds in 
phase. The cancellation of the random overlapping 
pulses requires that the mean of X be zero, which 
explains the need for {X) and <R> to be zero in 
equation (173). This relation can be proved by noting 
that if X=R*C, then 

X*R = C*(R*R). (175) 

But the expectation value of R*R is a delta function, 
so that the expected value of the right-hand side of 
equation (175) is just C. Of course the estimate of R*R 
for any realization is not exactly a delta function, but 
will contain zero-mean noise for nonzero lags. (One can 
use the symmetry of to aid in distinguishing this 
noise from the tails of the pulse.) The estimate in 
equation (173) has several advantages over the simpler 
form in equation (172): A~l is a smoothed estimate, 
especially if it has a small number of parameters, and 
to some extent it conceals the uncertainties in the pulse 
shape. Because equation (173) invokes the data di- 
rectly, the resulting pulse is less smoothed than A~l 

and thus provides a better feeling for the variance of 
the values of the elements Cn. Another shortcoming of 
the direct inversion is that it is nonlinear in A and thus 
is a biased estimate. For example, if X were white 
noise, the expected value of T is a delta function (at 
least for some ways of determining it; see § VId). But 
A~ï contains quadratic and other even powers of the 
Ak which do not have zero expectation value, hence 
(A*1} is not a delta function as it should be. In 
practice this bias is not important for most problems. 

Another interesting quantity is the estimate of the 
innovation, 

Â=Â*X, (176) 

which is computed every time Z)(Ä[yl ]) is. Of course A 
is a sample estimate and refers to the pulse amplitudes 
in the particular realization of the data at hand. It is 
the best (optimum) estimate of the amplitudes with 
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which the pulses, C, occurred to produce the observed 
realization. Note that since È=Â*X, if C=Â~l it 
follows that X=A*C exactly. That is, the model has 
sufficiently many degrees of freedom to reproduce the 
sampled data exactly. There is thus never any question 
of how well the data is fit. The questions are: How 
random (independent) is the estimated pulse amplitude 
sequence? How physically reasonable is the estimated 
pulse shape? The amplitudes may be less interesting 
than their distribution, so it is often useful to construct 
a histogram which is an estimate of the amplitude 
distribution. 

One can also readily compute the autocorrelation 
function and power spectrum of X, directly from A (see 
eqs. [65] and [69]). 

g) Gaps and Uneven Sampling 

Any technique based on prediction-error filters can 
be readily adapted to data which do not have the 
simple sampling assumed in § Va, for there are ways of 
generalizing the concept of the output of such filters 
with the input data unevenly sampled. 

Consider first even sampling with one or more gaps. 
The case of one gap is easily generalized to an arbitrary 
number. We describe one gap in terms of two index 
sets for the independent variable: 

{Xn-,ntESx,n^S2}. (177) 

For example, a gap of length m could be represented 
with S*! =(1,2,..., V,) and S1=

z(Nl+m+\, Nx+m + 
2,..., jV2). There are two subcases as given in the fol- 
lowing two paragraphs. 

i) No Coherence across the Gap 

There are situations where the length of the gap is 
unknown (so that the second segment cannot be phased 
relative to the first), the gap is not an integer number of 
the sampling intervals, or where it is believed (or as- 
sumed) that the process is not coherent across the gap. 
For example, in a pure MA process there is no 
coherence across a gap wider than the total extent of 
the pulse. Even if the pulse is infinite, the coherence 
will diminish rapidly as the gap exceeds, say, twice the 
FWHM of the pulse. The case of no coherence is the 
easiest to handle. One simply redefines the function D 
as a sum over the index sets taken separately. That is, if 
D^A) is the norm evaluated on the data for index set /, 
treated as if these were the only data available, then 
define 

(178) 
/ 

where the sum is over all the relevant index sets. The 
minimization of this total D is exactly as before. 

Vol. 45 

ii) Coherence across the Gap 

It is rare that information is coherent across any- 
thing but a small gap, the most notable exception being 
signals consisting of phase coherent sinusoids or other 
deterministic functions. If it is desired to retain such 
information, the technique just outlined cannot be used, 
as the filters are never applied to data on both sides of 
the gap simultaneously. The basis of a method for such 
cases has been suggested independently by several 
workers: Use (one-sided) prediction error filters to fill 
the gap(s), and then optimize a new filter on this 
interpolated data. There are various choices as to how 
to merge the predictions (one from the right and one 
from the left) at the center of the gap. An example of 
this technique is given by Ulrych and Clayton (1976). 

iii) Arbitrary Sampling 

Consider the case where there are not just a few gaps 
in otherwise even sampling, but where the time points, 
(/„}, are arbitrary (see §§ I and II). Discrete AR 
representations are applicable only to the special case 
where the sampling times are evenly spaced, because 
the optimization requires sliding the filter along the 
data (see Fig. 18). But the simple generalization to 
continuous filters allows arbitrary sampling. The pre- 
diction error, given in the discrete case by equation 
(114), is 

Rn =Xn + f X(s)A(/n-s) ds, (179) 

and the integral is replaced by a sum, yielding 

Rn=Xn+^lX{tk)A(<tn-tk)Mk. (180) 
k^n 

Since A(t) is continuous, it does not matter that the 
intervals tn — tk are not all the same. To parameterize 
the function A, so that the optimization can be carried 
out with respect to a set of discrete parameters rather 
than a continuous function, introduce the expansion 

A(t)=^Ak<l>k(t), (181) 
k 

where the <i>*(0 are a set of continuous functions which 
must be specified. The problem has been reduced to 
the same form as before—the innovation defined (by 
eqs. [180] and [181]) in terms of a discrete set of 
parameters, {Ak}. The optimization can be carried out 
as before, and the pulse shape and amplitude sequence, 
autocorrelation function, or power spectrum can be 
evaluated much as before. The author has carried out 
limited experiments with the choice A/n = l/2(in+1— 
tn_x) and the expansion (eq. [181]) given as either a 
Fourier series or a power series. While encouraging, the 
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results will not be described here as there was moderate 
dependence on the choice of the functions <t>k(t)> the 
number of terms kept in equation (181), the length of 
the operative time interval (i.e., the number of values 
over which the k-sum in eq. [180] is evaluated), etc. 
Good methods of selecting these must be developed. 

VI. NUMERICAL EXPERIMENTS 

The best way to evaluate a deconvolution procedure 
is to try it out on artificially generated data of known 
characteristics. All of the test problems described here 
are low-order autoregressive processes, with specific 
choices for A. The time series were actually generated 
by filtering an innovation R with the inverse C=A~1 

(thus representing the process as a high-order moving 
average). The innovations are of the form R=Un; U is 
a sequence of independent uniformly distributed ran- 
dom numbers. In the earlier examples (Fig. 5) the 
interval for U was taken to be (—1/2,1/2), but to 
simulate positive-only amplitudes we now take it to be 
(0,1). Un means simply that U is raised to the nth 
power, term by term. As seen in Figure 5, a large value 
of n gives a few large amphtudes and approximates the 
shot noise process. The other limit, small n, corre- 
sponds to much pulse overlap (i.e., many large amph- 
tudes instead of a few) and takes on the appearance of 
a normal process. The higher the value of n, the less 
pulse overlap there is and the easier deconvolution 
should be. In the extreme case of normally distributed 
R the overlap is so great (to the point that X=R*C is 
also normally distributed) that no method can recover 
phase information, and the deconvolution problem as 
meant here (i.e., with correct phase) is intrinsically 
unsolvable. Any technique should give progressively 
worse results as n is decreased and should be com- 
pletely unable to recognize phase properties as R ap- 
proaches normalcy. These expectations are borne out 
by the experiments about to be described. White noise 
with several variances is added to some of the test data 
sets, so that the time series is of the form 

X^U^A-' + o^N, (182) 

where N is Gaussian noise of unit variance. 
As mentioned earher, this noise may produce a bias. 

To see this, simply convolve equation (182) with the 
correct filter A ; the extra term proportional to A *N 
contains correlations which contaminate the innova- 
tion. Therefore, the A which optimally removes correla- 
tions and dependencies from the innovation A*X will 
not necessarily be the correct one. As will now be seen, 
the bias is small in the simple examples which follow. 
Nevertheless, this bias can in principle be removed if 
one has an estimate of the amount of observational 
noise present. Work is in progress on a procedure to 
eliminate it. 

47 

a) Experiment 1: Comparison of Dependence 
Measures 

The dependence measures introduced in § IVc 
were tested on the process defined in equation (182), 
with ^4 = ( — 0.2,1,—0.3). The corresponding inverse 
pulse C=A~X is a two-sided exponential which rises 
somewhat more rapidly than it decays. Table 2 presents 
results for a sequence of innovations ranging from 
« = 40 (highly nonnormal, pulses essentially isolated, 
easy for almost any technique) to « = 1 (nearly normal, 
much pulse overlap, difficult for any technique). No 
noise was added. Note that Lx optimization (with A0 = 
1) is exact12 for large n but degenerates quickly as the 
pulse overlap increases. The iterative Lx procedure 
(§ IVe) degenerates much more slowly as n decreases 
and would have made an impressive entry in Table 2. 
However, difficulties with convergence on more dif- 
ficult problems make this technique, as implemented, 
unacceptable as a general-purpose method. Surpris- 
ingly the martingale difference property method fails 
badly, even for the easy t/40 problem. This failure is 
unfortunate in view of the simplicity of the technique. 
Further development of the MDP approach may be 
fruitful. 

The results shown for probability distribution func- 
tions (PDF) were calculated with five equally spaced 
and equal bins in R space (25 in space), 
chosen to float with the changing values of the mini- 
mum of R(A) and maximum of R(A\ as this was 
empirically found to be better than having fixed bins. 
For some problems it is preferable to choose the R bins 
so that roughly equal numbers of points fall in them. 
Gaussian weight functions for the bins were used to 
combat the quantization problem outlined in § IVc. 
The results are substantially dependent on the number 
and placement of the bins, and at best the test answers 
are less accurate than those obtained with cumulative 
probability functions (CPF). In addition, the conver- 
gence properties of DP, although better than those of 
the other dependence measures (based on characteristic 
functions, moments, and the MDP), are much worse 
than those of DF. 

Table 3 displays the results of similar tests dealing 
with the effects of additive noise on the computations. 
With R fixed at Í/9, various levels of noise were added 
according to formula (182). In both comparisons the 
cumulative probability function method is superior to 
each of the others. The problem with R=UA and only 
100 data points is very difficult, and compared to any 
other method tested the current one does amazingly 
well. Tables 2 and 3 do not represent enough trials to 

12This is a general property of Lx, and is related to the fact 
that the Lx optimum solution of an overdetermined set of linear 
algebraic equations always solves a subset of the equations ex- 
actly, as was realized by Laplace (see Qaerbout and Muir 1973). 
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TABLE 2 
Test Results 

Innovations with Various Distributions: R*=Un 

Pulse Shape : Two-sided exponential (—0.2,1, — 0.3) “1 

Length of Data: N—100 (Averages of four such realizations) 

n CPF Method" PDF Method" MDP Method" Lj-optimization 

40... 
9.. . 
4.. . 
1.. . 

-0.200,1,-0.300 
-0.202,1,-0.309 
-0.191,1,-0.305 
-0.201,1,-0.348 

-0.195,1,-0.2% 
-0.207,1, —0.294 
-0.169,1,-0.250 
-0.582,1,-0.017 

-0.194,1,-0.419 
-0.219,1, —0.251 
-0.041,1,-0.453 
-0.257,1,-0.148 

— 0.200,1, —0.300 
— 0.230,1, —0.306 
-0318,1,-0.328 
— 0309,1, —0.503 

"Maximum lag, m* = 1. 

TABLE 3 
Test Results 

Various amounts of additive Gaussian noise: aN = noise variance (pulse peak= 1) 
Pulse shape : Two-sided exponential (—0.2,1, — 0.3) “1 

Length of data: N= 100 (Averages of four such realizations) 
Innovation: R=U9 

°N CPF Method" PDF Method" L J -Optimization 

0.00... 
0.01 ... 
0.05... 
0.10... 

-0.202,1,-0.309 
-0.202,1,-0.300 
-0.184,1,-0.261 
-0.169,1,-0.200 

-0.207,1,-0.294 
-0.230,1,-0.282 
-0.130,1,-0.258 
+ 0.003,1,-0.133 

-0.230,1,-0.306 
-0.239,1,-0.317 
-0.232,1,-0.339 
-0.183,1,-0.351 

"Maximum lag, m* = 1. 

be definitive, but they indicate trends confirmed by 
other computations which are not presented here. 

b) Experiment 2: Detailed Study of an AR(1,1) 
Process 

This experiment is an intensive study of a process 
similar to that in experiment 1. The aim is to study in 
detail a relatively difficult problem, namely deconvolu- 
tion of the AR(1,1) process 

X=U3*A-x+0S)5N, (183) 

where yf = (—0.2,1, —0.3) is the same as in experiment 
1. This choice combines a moderately high noise level 
(see Table 3) and a low value of n (see Table 2), and 
presents a rather difficult problem. The solid line in 
Figure 20 is a realization of this process with N= 100. 

Table 4 is a summary of the results of minimizing DF 

with five different values of m*. In all cases the starting 
solution was (0,1,0), and convergence to the AR(1,1) 
solution shown in the table was rapid. In no case did 
restarts lead to significant changes in either of the 
parameters. The procedure was then to optimize both 
AR(1,2) and AR(2,1) filters, using as starting values 
the AR(1,1) solution with a zero appended. What is 
shown in the next line of the table is the third-order 
(M=3) solution which had the smaller value of the 

Fig. 20.—Realization of the AR(1,1) process given by equa- 
tion (183), with Í/3 innovation and added Gaussian noise. The 
dashed line is the estimate of the innovation or pulse amplitude 
sequence. 
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A D(A) M 
(1) (2) (3) 

m* = \ 

0,1,0  2.1078 
-0.164,1,-0.304  0.1555 2 

-0.207,-0.112,1,-0.312  0.1117 3 
-0.076, -0.137, -0.105,1, -0.302  0.0810 4 

m* = 2 

0,1,0  1.2218 
-0.166,1,-0.308  0.1444 2 

+ 0.033,-0.183,1,-0.276  0.1437 3 
+ 0.003, -0.177,1, -0.283, -0.010... 0.1328 4 

m* = 3 

0,1,0  0.9270 
-0.148,1,-0.331  0.1557 2 

+ 0.048,-0.188,1,-0.281  0.1502 3 
+ 0.013, -0.177,1, -0.282, -0.004 ... 0.1495 4 

-0.010, +0.020, -0.145,1, -0.292, +0.008 ... 0.1339 5 

m*=4 

0,1,0   0.8238 
-0.205,1,-0.316  0.1945 2 

+ 0.070,-0.245,1,-0.283  0.1868 3 
+ 0.014, -0.197,1, -0.302, -0.004... 0.1967 4 

-0.010, +0.013, -0.153,1, -0.295, +0.024... 0.1842 5 

m* — 5 

0,1,0  0.7934 
-0.235,1,-0.318  0.2126 2 

+ 0.071,-0.264,1,-0.275  0.2069 3 
+ 0.066, +0.076, -0.266,1, -0.256  0.2184 4 
-0.002, +0.050, -0.222,1, -0.261,-0.005 ... 0.2228 5 

minimum DF of these two cases. This process is then 
repeated. At each step, the filter may grow to the left or 
to the right, according to which produces the smaller 
DF. Let us examine the convergence in this process, 
starting with m* — 1. The quantity tabulated in the 
second column is 

(184) 

by analogy with equation (150), thus including the 
penalty for the number of parameters in the model. It 
is hoped that this quantity might have the property that 
makes the FPE useful: As a function of M (the number 
of free parameters), a minimum of D indicates that the 
correct order M has been reached. But for m* = 1 this 
quantity keeps on decreasing with Af, giving no indica- 
tion of reaching a minimum. Also the values of the new 
parameters are not small, so there is no indication of 
convergence at all. This situation is greatly improved 

for m* = 2, as the new parameters (+0.033 and —0.010) 
are relatively small. In addition, while D does not reach 
a minimum, it decreases quite slowly with M. One 
might guess that the correct order is AR(1,1) (i.e., 
M=2) from the entries in table 4 for m* = 2. The 
improvement continues for m* = 3. Starting at m*=4 
there is a minimum in £>, at M=3 (the correct order is 
M=2), and the value of the extra parameter A_2 

(which should be 0) is small, 0.07 in both cases. Start- 
ing with /w* = 4, and especially at m* = 5, the values of 
the parameters change significantly from the values 
they had for lower m*. It appears from this experiment 
that if m* is too low (1 or perhaps 2 in this example) or 
too large (5 or perhaps 4) the results are not as good as 
they are for an intermediate value. This result is as 
expected: If m* is small, some of the information to be 
gained by reducing the dependence in R at larger lags 
is lost. If m* is too large, the information will be 
diluted as the minimization will try to reduce depen- 
dencies at large lags where there are none to reduce. 
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Fig. 21.—Comparison of the estimated (solid line) and exact 
(dashed line) innovations for the process shown in Fig. 20. 

This suggests taking m* = 3± 1 in the present experi- 
ment. Figures 20-22 show results for the Af=3, m*=3 
solution (which is very similar to M=4, m* = 3 and to 
M=2 or 3, m* = 2). The dashed line in Figure 20 is the 
estimated innovation. Figure 21 compares this with the 
exact innovation from which the realization of X was 
constructed. This estimate and the corresponding pulse 
(compared with the exact one in Fig. 22) are very 
accurate. Figures 23 and 24 present similar compari- 
sons for the somewhat different solution corresponding 
to M=3, m* = 5 (which is similar to M=3, m*=4), 
which might have been selected from Table 4 if the 
quasi-FPE criterion were taken seriously. This solution 
yields slightly poorer reproductions of the innovation 
and the pulse shape (although the latter is difficult to 
see in comparing Figs. 22 and 24). 

c) Experiment 3: An AR(2,1 ) Process 

The goal of this test is to see what happens if the 
process is more complicated. In particular, we will see 
to what extent the quasi-FPE criterion (a minimum in 
the function Z)[M] given in eq. [184]) is useful in 
determining the order of a higher-order process. The 
process chosen is again given by the basic form in 
equation ( 182), with A = ( — 0.3,1, — 0.2, — 0.3), n = 9, 

Fig. 22 Fl°- 23 
Fig. 22.—Comparison of the estimated (solid line) and exact (dashed line) pulse shapes for the process shown in Fig. 20. The solution 

shown is yl =(0.048, -0.188,1, -0.281) (obtained with m* = 3). 
Fig. 23.—Comparison of the exact (dashed line) and estimated (solid line) innovation for the process shown in Fig. 20, but 

corresponding to a different solution, namely ^4 =(0.071, —0.264,1, —0.275) obtained with m* = 5. This result illustrates that the value of 
m* can be too large. 
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Fig. 24.—Comparison of the exact pulse {dashed line) with 
the pulse derived from the solution mentioned in the caption to 
Fig. 23. 

TIME 
Fig. 25.—Realization of the AR(2,1) process described in the 

text (t/9, no noise). The dashed line is the estimated innovation 
corresponding to the solution >4 =(—0.27,1, —0.202, —0.323) ob- 
tained for both m* — 2 and m*=3. 

and oN = 0. This should be an easy problem because 
the innovation (U9) is so highly nonnormal and be- 
cause there is no noise. This was done purposely, to 
minimize the confusion due to noise and excessive 
pulse overlap, thus isolating the order-determining 
problem. The realization studied here is plotted in 
Figure 25. Table 5 summarizes the minimization, in 
the same format as in Table 4. Because the AR filter 
generating the process is longer, a larger range of 
values of m* has been included. As before, the starting 
solution was the simple AR(1,1) with ^4= (0,1,0). The 
results for m* = l are very poor, as might be expected, 
as A ties together values separated by up to three lags, 
so a lag of one appears to be inadequate. As expected, 
the results are much improved for m*=2 and 3. For 
m* = 3 and 4, the result is essentially perfect, in that the 
quantity D goes through a minimum at the correct 
order, the parameter values are almost the same for the 
two values of /n*, and the values of the higher-order 
parameters (M=4,5,...) are very small. For m* = 10 
the minimum in D occurs at M=4, too large by 1, but 
again the extra parameter is very small, so that this 
solution is essentially identical (e.g., in terms of the 
corresponding pulse shape) to the solutions for lower 
values of m* which are of the correct order. Figure 26 
shows the innovation and Figure 27 the pulse shape 
estimates from the M=3 solution for m* = 2 or m* = 3 
(the values for A are essentially identical, and, for 
example, the pulse shapes would be indistinguishable in 
Fig. 27). In each case the estimate is compared with the 
exact quantity. Both the pulse shape and the innova- 
tion are reproduced very accurately. Note that there is 
a large amplitude pulse which occurred very near the 
beginning of the realization. The pulse actually oc- 
curred prior to the first point of the estimated innova- 
tion, but it is shown in Figure 26 to stress the point that 
pulses very near the end and beginning of the realiza- 
tion are not represented accurately because of end 
effects. Nevertheless the part of any such pulse that 
extends into the realization is included in the deter- 
mination of the model parameters. 

Table 6 and Figures 28, 29, and 30 (for Af=4) 
present the deconvolution of the same realization just 
discussed, but with added Gaussian noise of variance 
0.05. These results show that the accuracy of the 
parameters determined above for this third order pro- 
cess is not due to the absence of noise. The innovation 
shows increased variance, including the appearance of 
small negative amphtudes which are not present in the 
actual innovation. It appears that the effect of additive 
noise is to add noise to the estimated innovation, but it 
is uncertain whether the distribution of the noise in the 
innovation is also Gaussian. Figure 30 shows that the 
basic shape, including the secondary peak, of the pulse 
is retained, but the tail of the pulse is altered somewhat. 
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TABLE 5 
Deconvolution of (-0.3,1, —0.2, -0.3)_1*C/9 

A 

m*= 1 

D(A) Ai 

0,1,0  4.232 
-0.256,1,-0.336  0.1331 2 
-0.274,1,-0.107,-0.577  0.0906 3 
-0.288,1, +0.017, -0.874, +0.106  0.0747 4 

-0.368, -0.207,1, +0.119, -0.761, +0.256  0.0327 5 
-0.347, -0.220,1, -0.017, -0.563, +0.362, -0.164  0.0319 6 

m* — 2 

0,1,(T.  4.026 
-0.132,1,-0.462   0.5114 2 
-0.269,1,-0.202,-0.323  0.1002 3 
-0.262,1, -0.194, -0.316, -0.060   0.0967 4 
-0.260,1, -0.120, -0.409, -0.128, +0.174  0.0924 5 
-0.256,1, -0.138, -0.274, -0.197, -0.101, +0.318 ... 0.0698 6 

m* — 3 

0,1,0  3.547 
-0.170,1,-0.441   0.3683 2 
-0.268,1,-0.202,-0.323  0.0884 3 
-0.273,1, -0.201, -0.321, -0.0001   0.0921 4 
-0.256,1, -0.233, -0.324, +0.043, -0.024  0.0938 5 

-0.307, -0.226,1, -0.180, -0.261, +0.204, -0.359  0.0686 6 

m*=4 

0,1,0  3.168 
-0.129,1,-0.482  0.3565 2 
-0.272,1,-0.201,-0.322  0.0749 3 
-0.276,1, -0.199, -0.318, -0.002   0.0780 4 
-0.279,1, -0.210, -0.318, +0.019, -0.003  0.0799 5 
-0.237,1, -0.242, -0.376, +0.127, 
+ 0.067,-0.192   0.0698 6 

m* = 10 

0,1,0  1.8225 
-0.126,1,-0.497  0.2519 2 
-0.274,1,-0.201,-0.323  0.0919 3 
-0.271,1, -0.202, -0.322, -0.003   0.0869 4 
-0.274,1, -0.219, -0.316, +0.016, -0.008  0.0924 5 
-0.282,1, -0.224, -0.321, -0.040, 
+ 0.002,-0.029   0.0866 6 

d) Experiment 4: Gaussian Noise 

One can consider independently distributed noise as 
the convolution of an independently distributed in- 
novation with a delta function. When applied to noise, 
the deconvolution procedure should produce a delta 
function pulse. This experiment was designed to test 
the procedure on independent Gaussian noise. The 
sohd line in Figure 31 is the analyzed noise, the 
minimization was done for the single value m* = 2. 
The quasi-FPE did not clearly indicate convergence, 
but this hardly matters because all of the solutions were 

close to delta functions. The dashed line in Figure 
31 is the estimated innovation (plotted with a different 
scale) and, as desired, is very nearly the same as the 
data itself. The pulse shape shown in Figure 32 is the 
inverse of the best third-order solution yl=( —0.061, 
+ 0.072,1, +0.134) and is not far from the desired delta 
function (IQI is <0.1 for all n^0). 

e) Experiment 5: A Sine Wave 

The technique we have been discussing was designed 
for random processes, and it could easily break down 
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Fig. 26.—Comparison of the estimated {solid line) and exact 
{dashed line) innovations for the process shown in Fig. 25. The 
solution is the one given in the caption for that figure. 

in the presence of a deterministic part to the data. This 
experiment tests this possibility, using a sine wave as an 
example of a deterministic process. If a sine wave is 
considered as a MA pulse (which would be unstable, as 
the coefficients do not converge), the corresponding 
AR filter has a zero on the unit circle. (Compare to the 
case ^4 = [1,1], with C = T-1 = [1, —1,1, —1,1, —1, 
1,...].) When applied to a pure sine wave the simplex 
minimizer had convergence difficulties, and DF dropped 
by a factor of 1030 during the minimization. The pulse 
shapes that it was leaning toward, however, were more 
or less sinusoidal. Since the pure sine wave is a singular 
case, a small amount of noise was added, so that the 
data were given by 

Xn =sin(0.5/2) +0.0025A, (185) 

where as before N is unit variance Gaussian noise. This 
addition removed the convergence problems, and the 

Fig. 27.—Comparison of the estimated {solid line) and exact 
{dashed line) pulse shapes for the process shown in Fig. 25 
(solution as in previous figure). 

solution ^4 = (—0.419, —0.070,1, —0.813) was obtained 
with m* = 3. Figure 33 shows the data as a solid line. In 
this case the interpretation of the innovation (dashed 
line in Fig. 33) is not straightforward. A sine wave is a 
single pulse, not a random sequence of pulses. But this 
model appears to represent a sine wave as a random 
sequence of the pulses shown in Figure 34 (i.e., the 
inverse of the above solution for A), basically a damped 
sine wave. Remember that because of the way the 
innovation is calculated, the data are exactly repro- 
duced (except near the ends) by the expression R*A~l, 
so the innovation in Figure 33, convolved with the 
pulse (not all of which is shown in Fig. 34), reproduces 
the data. 

/) Experiment 6: 3C 273 

Data on the optical variation of the Quasar 3C 273 
(Kunkel 1967) have been analyzed by a number of 

TABLEÓ 
Deconvolution of (-0.3,1, -0.2, -0.3) "1 *í/9+0.05A 

m*-3 D(A) M 

0,1,0  0.8238 
+ 0.085,1,-0.695   0.3124 2 
-0.362,1,+0.031,-0.424  0.0872 3 
-0.310,1, -0.075, -0.333, -0.088... 0.0855 4 

-0.441, +0.059,1, -0.231, -0.201, -0.015 ... 0.0761 5 
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Fig. 28.—The same realization shown in Fig. 25, but with added noise of variance 0.05. The dashed line is the innovation derived from 
the solution ^4 = (-0.310,1, —0.075, —0.333, —0.088) (obtained for m* = 3). 

Fig. 29.—Comparison of the estimated {solid line) and exact {dashed line) innovations for the process shown in the previous figure. 

Fig. 30 

0 100 
TIME 

Fig. 31 
FIG. 30.—Comparison of the estimated {solid line) and exact {dashed line) pulse shapes for the process shown in Fig. 28, with the 

solution quoted in the caption for that figure. 
Fig. 31.—Independently distributed Gaussian noise {N= 100), analyzed in the same way as the data shown in the previous figures. The 

estimated innovation {dashed line) is essentially identical to the data (plotted on a different scale). 
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Fig. 32.—The pulse shape derived for the data shown in the previous figure, corresponding to the A given in the text. The ideal 
solution would be a delta function. The horizontal scale of this figure is ~3 times that in Fig. 31. 

Fig. 33.—A sine wave with small added noise, analyzed in the same way as the moving averages in the previous figures. The estimated 
innovation {dashed line) appears to be random. 

Fig. 34 
TIME 

Fig. 35 

Fig. 34.—The pulse shape obtained in the analysis of the data shown in Fig. 33. Only the first part of this gradually damped sine wave 
is shown (scale is as in Fig. 32). 

Fig. 35.—The historical light curve of 3C 273 {top), derived directly from the magnitudes given by Kunkel (1967). The intensity is on a 
linear scale in arbitrary units, and the time covered is 28,800 days. The estimated innovation shown is for A =(—0.081,0.265, —0.740, 
1, —0.419) obtained for m* — 3. 
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workers looking for periodicities and for pulses (the 
closest in philosophy to the present work are Fahlman 
and Ulrych 1975, 1976). A future paper will give the 
details of the analysis of these data using the CPF- 
method, but preliminary results will be given here to 
demonstrate the application of the technique to real 
data. In particular the issue of determining the amount 
of a possible constant component to the light curve is 
raised. The point is that there are two contributions to 
the mean value of the data: (1) a background constant, 
due for example to light from a source other than the 
one which is pulsed, and (2) the mean value of the 
(positive only) pulsed component. If the pulses are 
sparse enough, there will be a part of the time series 
where the contribution from pulses can be neglected, 
and then the minimum value of the curve, min„(A„), 
would be a good estimate of the background constant. 
But in general there can be enough pulse overlap at all 
times that this procedure will overestimate the con- 
stant. Indeed the deconvolution is nontrivial only when 
there is much pulse overlap. In such cases it is known 
only that the constant lies between 0 and minn(Ar

/t). 
We will see below that this problem in some circum- 
stances can be solved with the current technique. 

Figure 35 depicts the light curve in linear intensity 
units, while Table 7 tabulates the results of the minimi- 
zations. This is a relatively long time series (A=292 in 
the original data; the first four points were discarded so 
that A=288 because the FFT algorithm requires that 
the largest prime factor of N be <23). Since the 
number of operations scales as N2, the reductions are 
moderately time consuming. For example, the run with 
iST=288, m* = 3, and M=2,3,4,5,6 took 1,140 CPU 

Vol. 45 

seconds on the NASA-Ames CDC 7600. It will be 
noted that D does not go through a minimum, although 
for m* = 3 it is virtually stationary for M=4 and 5. 
Also, the parameters A _3 and especially A +2 are small. 
This suggests that the M=4 solution is to be adopted, 
but further computations with larger m* will be neces- 
sary before this can be made definite. The pulse shape 
is shown in Figure 36 and is compared with the mini- 
mum delay pulse determined by Fahlman and Ulrych 
(1975) with Af=3 (as determined by a legitimate FPE 
criterion). The innovation for this solution is shown in 
the lower part of Figure 35 and is compared to the 
innovation from the minimum delay solution in Figure 
37. Both innovations have substantial numbers of nega- 
tive amphtudes. 

The author has carried out numerical experiments 
similar to those discussed by Fahlman and Ulrych 
(1976), confirming their contention that such behavior 
can have two causes: (1) nonconstancy of the pulse 
shape, or (2) use of a minimum delay solution, if the 
actual pulse is not minimum delay. The point in (1) is 
that the pulse shape may actually be changing, say in a 
random but stationary way, rather than being constant. 
The MA representation is still exactly correct, as long 
as A" is stationary, but it uses a single pulse shape. This 
shape is a kind of time average of the actual pulse 
shape. (It is not simply representable as a time average, 
however; the deconvolution procedure yields some kind 
of nonlinear average of A, then C is the corresponding 
inverse.) When a pulse with a shape close to this 
average is convolved with the optimum A, a delta 
function results, as desired. But if the shape is some- 
what different from the average, this convolution pro- 

SCARGLE 

TABLE? 
Deconvolution of the Light Curve of 3C 273 (A=288) 

A D(A) M 

m* = l 

0,1,0  1.832 
-0.535,1,-0.519  0.001 677 2 

+ 0.181,-0.696,1,-0.450   0.000 6955 3 

m* — 2 

0,1,0  1.321 
-0.516,1,-0.500   0.000 2493 2 
-0.503,1,-0.540,+0.028  0.000 2122 3 
-0.495,1, -0.569, +0.078, -0.028 ... 0.000 2108 4 

m* = 3 

0,1,0  0.809 5 
-0.523,1,-0.528   0.000 6587 2 

+0.146,-0.655,1,-0.462   0.000 3273 3 
-0.081, +0.265, -0.740,1, -0.419   0.000 2883 4 
-0.082, +0.264, -0.741,1, -0.421, +0.002  0.000 2879 5 
-0.029, +0.212, -0.713,1, -0.469, +0.081, -0.063 ... 0.000 2683 6 
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Fig. 36.—Comparison of the pulse shape for 3C 273 derived 
from the solution given in the caption to Fig. 35 {solid line), 
which is mixed delay, with the minimum delay pulse {dashed line) 
as derived by Fahl man and Ulrych (1975). The mixed delay pulse 
is nearly symmetric. 

TIME 

Fig. 37.—Comparison of the innovations derived from the 
minimum delay {top) and mixed delay {bottom) solutions as in 
Fig. 36. Note that the negative spikes are typically associated with 
nearby positive spikes; however, the pattern of this association 
seems to be different in the two innovations. 

duces something other than a delta function. Simula- 
tions consisting of two or three distinct pulse shapes 
occurring randomly and independently show that the 
resulting amplitude usually consists of a first-negative- 
then-positive (or vice versa) spike, like the discrete 
version of the derivative of a delta function. Such 
spikes can be seen in the innovations in Figure 37. The 
form of the spike appears to be sensitive to the delay 
character of >4, as the simultaneous spikes in the two 
innovations are sometimes quite different. 

Effect (2) is quite similar, because the optimum 
minimum delay A is not the correct inverse of a mixed- 
delay pulse, and its convolution with the actual 
mixed-delay pulse will also produce other than a delta 
function. From the fact that the mixed-delay result 
shown here contains roughly the same amount of nega- 
tive amplitude as the minimum delay result (Fig. 37), it 
appears that in 3C 273 the pulse shapes are indeed 
varying, and the negative amplitudes found by Fahl- 
man and Ulrych (1976) are not due to the minimum 
delay assumption. (It is possible, but unlikely, that 
there is an additional source of negative amphtudes.) 

There is one facet of the distribution function ap- 
proach (either cumulative or differential) which is very 
useful, namely that it is completely insensitive to an 
additive constant in the data. The only factor that 
enters into the expressions for DF or DP is the shape of 
the joint and individual distribution functions. Adding 
a constant merely shifts the position of the functions on 
the R axis and does not change their shapes. Hence D 
is invariant to a shift in 2Í, a property not shared by 
other deconvolution techniques. This invariance is im- 
portant because it means that it is possible to estimate 
the size of the background component... if something is 
known about the distribution of the amphtudes. First, 
note that a constant in the data shows up as a constant 
in the estimated innovation, if one has the correct 
inverse pulse. For, letting K be the constant unit pro- 
cess: 

Kn = \, (*=1,2,3,...,A), (186) 

we can write 

X=R*C+aK, (187) 

where a is some unknown constant. The estimated 
innovation is 

A=A*X=R*(C*A)+aA*K 

= R.(C*¿) + (a2X)*> (188) 

and if A = C~\ 

QED. (189) 
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The second term on the right is a constant, but it is not 
yet obvious how to determine its value (and hence the 
value of a), because we know only <7? >, and not >. 
If it was known, or one wished to assume, that > =0, 
then 

k 

But the case <R>7¿=0 is of particular importance in 
astronomy. For example, suppose that the actual am- 
plitudes are positive only (as with light pulses), with a 
distribution which is either finite at R = 0 or goes 
smoothly to zero (so that some pulses have amplitudes 
close to zero, but none are negative). Then 

a(s^*)=n^n(^n) (191) 

could be used to estimate a. However, observational 
errors produce a variance in A which would make this 
estimate biased toward too small a value of a. This bias 
could be eliminated if the center of symmetry of the 
(presumably Gaussian) distribution of these observa- 
tionally induced errors in R could be recognized. But 
an even larger problem with the estimate in equation 
(191) for the innovation of 3C 273 is the incidence of 
the large negative amplitude spikes. One must turn to 
more qualitative aspects of the distribution of An. 
Specifically, the innovations in Figure 37 appear to 
have a definite background level (possibly better seen 
in the mixed-delay solution case), indicated in the 
figure with horizontal lines. This level corresponds to 
the peak in the distribution of A (which is Fig. 38), and 
is probably best estimated with the median of A (to 
avoid the bias in the mean value which the real pulses 
might produce). In the case of 3C 273 the mean and 
median are not very different, as the entire distribution 
is nearly symmetric (there is possibly a slightly signifi- 
cant bias on the positive side of the distribution shown 
in Fig. 38). In summary, the mean level for 3C 273 
cannot yet be determined unambiguously because of 
the effect of the negative amplitudes in the innovation, 
but the levels shown in Figure 37 are reasonable guesses 
for this background of nonpulsed light. 

In some other deconvolution methods the mean value 
offris removed, and this is an example of a shift which 
may alter the deduced pulse shape. In particular, the 
optimum prediction-error filter method is usually ap- 
plied to data that has had the mean subtracted out, 
because the form of equation (114) implies that, since 
the mean prediction error should vanish, either <A"> or 
2/^4/ must vanish. If the sum of the ^4, vanishes, A(z) 
has a zero on the unit circle, and A itself is not 
invertible because A ~1 does not converge. Indeed, it is 
found in numerical trials that if the mean of X is left in, 

Fig. 38.—Histogram showing the distribution of the pulse 
amplitudes shown in Fig. 37 {bottom). A Gaussian curve fitting 
the central few bins is drawn for comparison. The overall distri- 
bution is definitely not purely Gaussian. It may have a Gaussian 
component, possibly connected with the observational scatter in 
the data. There may be a small asymmetry favoring the positive 
amplitudes, but the negative amplitudes (which are probably due 
to pulse shape variation) are nearly as numerous—this prevents 
the zero level of the amphtudes from being determined unam- 
biguously. The results for the innovation derived from the mini- 
mum delay solution (top curve in Fig. 37) are very similar. 

the resulting values of At sum to zero and A cannot be 
inverted. But if <X) is 0, yl is well behaved. This is 
probably the basis on which Fahlman and Ulrych 
(1976) state that their analysis “...only makes use of 
the variance in the light curve. Hence the pulse 
shape... is unaffected by the presence of a background.” 
However, one is not justified in subtracting out the 
mean just because the analysis breaks down otherwise. 

g) Discussion 

The minimization of DF appears to be a powerful 
deconvolution technique for moving average, autore- 
gressive, or shot noise processes where the pulses are 
statistically independent of each other. An estimate of 
the pulse shape which is not constrained to have the 
minimum delay shape can be obtained, as well as an 
estimate of the amplitudes which the pulses had in the 
realization at hand. With the latter, the distribution of 
the pulse amphtudes can be studied. If a feature in the 
distribution corresponding to the zero level of the am- 
phtudes can be recognized, the background level of 
nonpulsed signal can be determined. 

It is well known that the fitting of sums of exponen- 
tials with unknown decay constants, as well as amph- 
tudes, to data (e.g., radioactive decay data) is a very 
iU-conditioned problem. Since the exponential is in a 
sense the elementary pulse shape (see eqs. [21] through 
[23]) the deconvolution of MA processes is not unre- 
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lated to this problem. One of the difficulties is that the 
data can be nearly equally well represented by some- 
what different models (different in form and in the 
values of the model parameters). The search for the 
best dependence measure (see § IVc and § VI ö) was 
basically a quest for a procedure which minimizes the 
indeterminacy in the model fitting. In this respect, the 
one adopted (DF) is generally superior to the others 
considered. It makes full use of the data at hand and 
has a well-defined and unique minimum in situations 
where the other measures have many shallow minima. 
The following points should be considered by anyone 
using this technique: 

1) As with conventional time-domain modeling, the 
identification of the form of the model (even within the 
context of ARIMA models) is an important problem 
which does not have a precise general solution. 

2) Since any stationary process has MA, AR, and 
ARMA representations, the successful modeling of time 
series data with a specific model does not guarantee 
that the structure of the physical process has been 
correctly interpreted. 

3) Since the data are always exactly reproduced by 
the model, the meaning of successful modeling is not 
based on the smallness of the residuals between the 
sampled and modeled values of X, but rather on the 
degree to which the resulting amplitudes are indepen- 
dently distributed (e.g., as measured by the smallness of 
Df\ 

4) As with conventional modeling, including spec- 
tral analysis, trends in the data can affect the results in 
very significant ways. There is no totally objective and 
automatic procedure for removing trends. There is no 
dependable way that an apparent trend can be dis- 
tinguished from a statistical fluctuation in the under- 
lying random process. Detrending should be done 

59 

cautiously, and one should be suspicious of apparent 
trends. 

5) The algorithm provided in the appendix is quite 
time consuming, especially for long arrays of data. 
Only minor efforts to speed up the computations have 
been made. Improvements in the algorithm can un- 
doubtedly be made. Hopefully there is some approxi- 
mation that can be used for large N. Some time can be 
saved for low-order AR models by computing the con- 
volution ^4*^ by direct summation instead of FFT. 
The FFT version is given in the Appendix because it 
can be readily generalized to ARMA models, and 
because this convolution is not a major part of the 
computation. 

Since this work was completed, John Deeter of the 
University of Washington found a way of evaluating 
DF in a recursive way that requires a number of opera- 
tions proportional to TVTogV, as opposed to the V2 

required by the version of FUNK given in the Appen- 
dix. (This is the same advantage that the FFT has over 
the direct DFT.) His algorithm suffers some loss of 
precision relative to the brute-force double sum, and on 
short-word machines double precision may be neces- 
sary. This algorithm is currently being tested, and will 
be described in a future publication. 

I am grateful to numerous colleagues for he pful 
discussions, including Dick Miller, Paul Swan, John 
Szabo, Tad Ulrych, and John Deeter. John Szabo de- 
veloped a time series analysis system for the NASA 
Ames time sharing system, which was used for most of 
the computations presented here. John Deeter provided 
me with his code for an A log N version of the basic 
algorithm to evaluate DF. I am grateful to Ed Groth 
and Dick Miller for numerous corrections and clarifi- 
cations of an early version of the manuscript. 

TIME SERIES ANALYSIS 

APPENDIX 

THE ALGORITHM 

The FORTRAN code given below (Table Al) is a nearly self-contained program which will enable the reader to 
use the deconvolution technique (based on cumulative probability functions). The only missing element is the FFT 
routine, which is a standard one, available in most program libraries. 

The MAIN program reads the value of m*, the data, the length of the AR filter (LAC), the position within the 
filter of the prediction point (MPT), the initial guessed solution (AOLD), and the number of times the order of 
the model is to be increased (NUMIT). The Fourier transform of the data is put in the arrays XR and XI, for that is 
the form in which the data will be referenced henceforth. The subroutine F2DC carries out the minimization, starting 
with a given solution, and returns the resulting minimum value of DF (RES). This is done first with the input guessed 
solution, and then the order is increased in steps of one as indicated. The two minimum values RES1 (corresponding 
to ^4[new] = {^[old],0}) and RES2 (corresponding to A [new] = (0, ^4[old]}) are compared, and the smaller is selected. 
This procedure is terminated arbitrarily by the value of NUMIT. The correct order must be determined by 
inspection of the behavior of DF (minimum) with increasing order, and inspection of the way in which the values of 
the parameters change, as discussed in the text. 

Subroutine F2DC carries out the minimization, trying restarts until the solution settles down. A criterion has been 
shown in terms of the minimum Z)F, but one could also use criteria in terms of the changes in the parameters. The 
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TABLE Al 
The FORTRAN Code 

LO 

C** MAIN PROGRAM 
C** 

COMMON/F2DVEC/XR(1000),XI(1000),RR(1000),RI(1000) 
COMMON/F2DSCA/FACN>FACR,FAC1 
COMMON/F2DINT/LDAT)NUMR,NR,MPT>LACÏN1D>N2D,MAXLAG 
COMMON/INOV/R(1000) 
DIMENSION AOLD(20),A1 (20),A2(20) 
DIMENSION DATA(1000) 

C** 
C** INITIALIZE ARRAYS 
C** 

DO 1 1 = 1,1000 
XR(l) = 0.0 
Xl(l) = 0.0 
RR(l) = 0.0 

1 Rl(l) = 0.0 
C** 
C** READ DATA 
C** 

READ(8,50)MAXLAG 
READ(8,50)LDAT 
READ(8,51 XDATA(I),I = 1 ,LDAT) 

50 FORMAT(3l3) 
51 FORMAT(6E12.5) 
C** 
C** CALCULATE THE FFT OF THE DATA 
C** 

DO 2 l = 1,LDAT 
2 XR(I) = DAT A(l) 

CALL FFT(XR,XI,LDAT,LDAT,LDAT, — 1 ) 
C** 
C** READ THE PARAMETERS OF THE INITIAL MODEL 
C** 

READ(8>50)LAC,MPT,NUMIT 
READ(8,51 )(AOLD(l),l = 1, LAC) 

C** 
C** CARRY OUT THE FIRST MINIMIZATION 
C** 

CALL F2DC(AOLD,RES) 
IF(NUMIT.EQ.0)STOP 

C** 
C** DO MINIMIZATIONS WITH INCREASING MODEL ORDER 
C** 

DO 20 IT = 1,NUMIT 
C** 
C** A1 IS THE OLD MODEL EXTENDED TO THE RIGHT (A,0) 
C** A2 IS THE OLD MODEL EXTENDED TO THE LEFT (0.A) 
C** 

DO 10 1 = 1,LAC 
A2(l +1 ) = AOLD(I) 

10 A1 (l) = AOLD(I) 
A1 (LAC +1 ) = 0.0 
A2(1) = 0.0 
LAC = LAC +1 
CALL F2DC(A1,RES1 ) 
MPT = MPT+ 1 
CALL F2DC(A2, RES2) 

C** 
C** SELECT THE BETTER OF A1 AND A2 

60 
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IF(RES1.LT.RES2)GO TO 12 
DO 11 1 = 1,LAC 

11 AOLD(l) = A2(l) 
GO TO 20 

12 DO 13 l = 1,LAC 
13 AOLD(l) = A1(l) 

MPT = MPT — 1 
20 CONTINUE 

STOP 
END 

SUBROUTINE F2DC(A,RES) 
COMMON / F2DVEC/XR(1000),XI(1000),RR(1000),RI(1000) 
COMMON/F2DSCA/FACN,FACR,FAC1 
COMMON/F2DINT/LDAT.NUMR.NR.MPT.LAC.NI D,N2D,MAXLAG 
DIMENSION A(20) 

C** 
C** CARRY OUT THE BASIC MINIMIZATION 
C** 

CALL F2D(A,RES) 
RESOLD = RES 

C** 
C** NOW DO RESTART MINIMIZATIONS (UP TO 3) UNTIL 
C** THE SOLUTION DOES NOT CHANGE SIGNIFICANTLY 
C** 

DO 1 1 = 1,3 
CALL F2D(A,RES) 
DIFRES = (RESOLD-RES) / RESOLD 
RESOLD = RES 
IF(DIFRES.LT.1.0E-4)GO TO 3 

1 CONTINUE 
PRINT 2 

2 FORMATO 5H DID NOT SETTLE) 
C** 
C** CALCULATE THE PULSE SHAPE 
C** 
3 DO 4 l = 1,LDAT 

RR(l) = 0.0 
4 Rl(l) = 0.0 

DO 5 1 = 1,LAC 
5 RR(I) = A(l) 

CALL FFT(RR,RI,LDAT,LDAT,LDAT, — 1) 
DO 6 l = 1,LDAT 
TEM = RR(I)**2 + Rl(l)**2 
RR(I) = RR(I)/TEM 

6 Rl(l)= — RI(I)/TEM 
CALL FFT(RR,RI,LDAT,LDAT,LDAT, + 1) 

C** 
C** NORMALIZE AND SHIFT THE PULSE SO THAT THE 
C** PEAK IS NEAR THE CENTER OF THE ARRAY 
C** 

IMAX = 0 
CMAX = 0.0 
DO 7 1 = 1 ,LDAT 
TEST = ABS(RR(I)) 
IF(TEST.GT.CMAX)IMAX = I 

7 IF(TEST.GT.CM AX)CM AX = TEST 
CMAX = RR(IMAX) 
DO 8 1 = 1 ,LDAT 
INDEX = I — 1 + IMAX — LDAT/2 
IF(INDEX.LT.1)INDEX = LDAT + INDEX 
IF(INDEX.GT.LDAT)INDEX = INDEX - LDAT 
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8 Rl(l) = RR(INDEX)/CMAX 
C** 
C^* PLOT THE PULSE SHAPE 
C** 

CALL PLOT(RI.LDAT) 
FPE = RES*FLOAT(LDAT + LAC)/FLOAT(MAXLAG*(LDAT — LAC)) 
RETURN 
END 

SUBROUTINE F2D(A,RES) 
COMMON/F2DVEC/XR(1000),XI(1000),RR(1000),RI(1000) 
COMMON/F2DSCA/FACN,FACR,FAC1 
COMMON/F2DINT/LDAT>NUMR>NRlMPT,LAC,N1DlN2D,MAXLAG 
DIMENSION P(21 >20)JY(21)fX(21)IA(20) 
DATA SCALFJPR/1.0,5/ 

C** 
C** PRINT INPUT MODEL AND SET UP PARAMETER VALUES 

PRINT 50,(A(I),I = 1 ,LAC) 
NACT = LAC — 1 
NPOINT = NACT +1 
N1 D = LAC +1 
N2D = LDAT 
NUMR = N2D — N1D +1 
NR =NUMR —1 
FACR = 1.0/FLOAT(NUMR*NUMR) 
FAC1 =1.0/FLOAT(NR) 
FACN = 1.0/FLOAT(LDAT) 
PSUM = 0.0 
J = 0 

C** 
C** SET UP THE INITIAL SIMPLEX 
C** 

DO 1 I = 1 ,LAC 
IF(I.EQ.MPT)GO TO 1 
J = J + 1 
TEMP = A(I) 
PSUM = PSUM + ABS(TEMP) 
P(1,J) = TEMP 

1 CONTINUE 
FNUM = FLOAT(NACT) 
TES = ABS(PSUM) 
IF(TES.LE.1.0E - 3)PSUM = 0.15 
QSC= — SCALF*PSUM/FNUM 
TEMP = SQRT(FNUM +1.0) -1.0 
DEN = FNUM*SQRT(2.) 
PN = (TEMP + FNUM)*QSC/DEN 
ON = TEMP*QSC/DEN 
DO 3 I = 2,NPOINT 
DO 2 J = 1 ,NACT 

2 P(l, J) = P(1, J) + ON 
3 P(l,l — 1 ) = P(l,l — 1 ) + PN — QN 
C** 
C** CALCULATE THE FUNCTIONAL VALUES FOR THE INITIAL SIMPLEX 
C** 

DO 5 1 = 1 .NPOINT 
DO 4 J = 1,NACT 

4 X(J) = P(I,J) 
5 Y(I) = FUNK(X) 
C** 
C** NOW DO THE MINIMIZATION 
C** 

ITER = 0 
IPRINT = IPR 
CALL AMOEBACP.Y.NPOINT.ITER.IPRINT) 
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C** STORE AND PRINT THE RESULTS 
C** 

J = 0 
DO 10 l = 1,NACT 
IF(I.EQ.MPT)J = J +1 
J = J + 1 

10 A( J) = P(l PR I NT, I) 
A(MPT) = 1.0 
RES=Y(IPRINT) 
PRINT 50,(A(I),I = 1 ,LAC) 

50 FORMAT(5G14.6) 
RETURN 
END 

SUBROUTINE AMOEBA(P,Y,NPOIN,ITER,IPRIN) 
C** 
C** MINIMIZATION USING A SIMPLEX METHOD 
C** ITER IS A COUNTER FOR ITERATIONS 
C** EVERY IPRIN ITERATIONS THE SMALLEST FUNCTIONAL VALUE 
C** AND THE PERCENTAGE SPREAD OF THE VALUES (ERR) ARE 
C** PRINTED 
C** ON RETURN, THE VALUE OF IPRIN IS THE INDEX CORRESPONDING 
C** TO THE MINIMUM FUNCTIONAL VALUE 
C** 

DIMENSION P(21,20),Y(21)JPR(20),PRR(20)>PBAR(20),PINV(20) 
EQUIVALENCE(PINV,PRR),(YPRR,YPINV) 
DATA ALPHA,BETA,GAMMA/1.0,0.5,2.0/ 
DATA TOL.NSTOP/1.0E —03,150/ 
NVAR = NPOIN — 1 

519 CONTINUE 
I ILO = 1 

IHI = 1 
INHI = 1 
DO 10 1 = 1,NPOIN 
YI = Y(I) 
IF(YI.GE.Y(ILO)) GO TO 10 
ILO = l 

10 CONTINUE 
DO 11 1 = 1,NPOIN 
YI = Y(I) 
IF(YI.LE.Y(IHI))GO TO 11 
IHI = I 

II CONTINUE 
1F(IHI.EQ.1)INHI =2 
DO 12 J = 1,NPOIN 
IF(I.EQ.IHI)GO TO 12 
YI = Y(I) 
IF(YI.LE.Y(INHI))GO TO 12 
INHI = I 

12 CONTINUE 
IF(MOD(ITER,IPRIN).NE.O) GO TO 209 
ERR = 100.*(Y(IHI) - Y(ILO))/Y(ILO) 

121 PRINT 205,Y(ILO),ERR 
205 FORMAT(1 P,G13.4.F6.3) 
206 DIF = Y(IHI) - Y(ILO) 

RAT = DIF/Y(INHI) 
IF(RAT.LE.TOL)GO TO 80 
IF(ITER.GE.NSTOP)GO TO 84 
IF(IGO.NE.O) GO TO 80 

209 ITER = ITER+ 1 
DO 21 1 = 1,NVAR 

21 PBAR(I) = 0. 
DO 23 1 = 1,NPOIN 
IF(I.EQ.IHI) GO TO 23 
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DO 22 J = 1,NVAR 
22 PB AR(J) = PB AR( J) + P(l, J) 
23 CONTINUE 

DO 24 l = 1,NVAR 
24 PBAR(I) = PB AR(I) / NVAR 

DO 25 J = 1,NVAR 
25 PR(J) = (1. + ALPHA)* PBAR( J) - ALPHA*P(IHI,J) 

YPR = FUNK(PR) 
258 IF(YPR.LE.Y(ILO» GO TO 30 

IF(YPR.GE.Y(IHI)) GO TO 40 
IF(YPR.GE.Y(INHI» GO TO 38 

26 DO 27 J = 1,NVAR 
27 P(IHU) = PR(J) 

Y(IHI) = YPR 
GO TO 1 

30 DO 31 J = 1,NVAR 
31 PRR(J) = GAMMA*PR(J) + (1. — GAMMA)*PBAR(J) 

YPRR = FUNK(PRR) 
YTEST = Y(ILO) 
IF(YPRR.GE.YTEST) GO TO 26 

319 DO 32 J = 1,NVAR 
32 P(IHI, J) = PRR(J) 

Y(IHI) = YPRR 
GO TO 1 

38 DO 39 J = 1,NVAR 
39 P(IHI,J) = PR(J) 

Y(IHI) = YPR 
40 DO 41 J —1.NVAR 
41 PINV(J) = BETA*P(IHI,J) + (1. - BET A)*PBAR(J) 

YPINV = FUNK(PINV) 
IF(YPINV.GE.Y(IHI» GO TO 50 
DO 42 J = 1,NVAR 

42 P(IHI,J) = PrNV(J) 
Y(IHI) = YPINV 
GO TO 1 

50 DO 55 l = 1,NPOIN 
IF(I.EQ.ILO) GO TO 55 
DO 53 3 = 1,NVAR 
PR(J) = 0.5*(P(I,J) + P(ILO,J)) 

53 P(I,J) = PR(J) 
Y(l) = FUNK(PR) 

55 CONTINUE 
60 GO TO 1 
80 IPRIN = ILO 

RETURN 
84 PRINT 841 
841 FORMATC DID NOT CONVERGE’) 

IPRIN = ILO 
RETURN 
END 

FUNCTION FUNK(PAR) 
C** 
C** VERSION USING CUMULATIVE DISTRIBUTION FUNCTIONS (JUNE 1979) 
C** 

DIMENSION PAR(20),IIND(1000) 
DIMENSION ROW(1000),IRANK(1000),NP1 (1000) 
COMMON/F2DVEC/XR(1000),XI(1000),RR(1000),RI(1000) 
COMMON / F2DSCA / FACN, FACR, FAC1 
COMMON/F2DINT/LDAT,NUMR)NR,MPT,LAC>N1D,N2D,MAXLAG 
COMMON/INOV/R(1000) 

C** 
C** INITIALIZE ARRAYS 
C** 

DO 2 1 = 1 ,LDAT 
R(l) = 0.0 
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IS
 

RR(l) = 0.0 
2 Rl(l) = 0.0 
C** 
C** PUT FOURIER TRANSFORM OF A INTO (RR,RI) 
C** 

JJ = 0 
DO 20 I = 1 ,LAC 
IF(I.EQ.MPT)GO TO 20 
JJ = JJ + 1 
RR(I) = PAR(J J) 

20 CONTINUE 
RR(MPT) = 1,0 
CALL FFTCRR.RI.LDAT.LDAT.LDAT, —1) 

C** 
C** DERIVE INNOVATION ( = A*X) WITH FOURIER TRANSFORMS 
C** 

DO 3 1 = 1, LDAT 
OR = XR(I)*RR(I) - XI(I)*RI(I) 
Ql = XR(I)*RI(I) + XI(I)*RR(I) 
RR(I) = QR 

3 RI(I) = QI 
CALL FFTCRR.RI.LDAT.LDAT.LDAT.I) 
DO 4 I = 1 ,LDAT 

4 RR(I) = RR(I)*FACN 
C** 
C** SHIFT, ORDER, AND DIFFERENCE INNOVATION 
C** 

DO 5 l = N1D,N2D 
INDX = 1 — MPT + 1 
IF(INDX.LE.0)GO TO 49 
R(INDX) = RR(I) 

49 CONTINUE 
INDX = I —N1D + 1 
RR(INDX) = RR(I) 

5 CONTINUE 
DO 51 l = 1,NUMR 

51 IIND(I) = I 
CALL ORDER(RR,IIND,IRANK,NUMR) 
DO 52 l = 1,NUMR 
INDY = IIND(I) 
RI(I) = RR(INDY) 
IRANK(INDY) = I 

52 CONTINUE 
C** 
C** THE RELATIONS BETWEEN THE INDICES FOR THE ORIGINAL (OLD) 
C** AND ORDERED (NEW) INNOVATION ARRAYS ARE AS FOLLOWS 
C** OLD = IIND(NEW) 
C** NEW = IRANK(OLD) 
C** NOW CALCULATE DR 
C** 

DO 54 J = 1,NUMR 
RR(J) = RI(J +1 ) — RI(J) 

54 CONTINUE 
C** 
C** NOW INTEGRATE THE FOLLOWING EXPRESSION 
C** DR(I)DR(I + LAG)(F2(R(I),R(I + LAG)) - F1 (R(I))F1 (R(l + LAG)))**2 
C** “ROW” IS ROW OF THE MATRIX REPRESENTING 
C** THE CUMULATIVE DISTRIBUTION FUNCTION OF (R(I),R(I + LAG)) 
C** 
C** THE RESULTS ARE SUMMED FOR SEVERAL LAGS 
C** 

FUNK = 0.0 
DO 80 LAG = 1, MAX LAG 
FAC1 = 1.0/FLOAT(NUMR - LAG) 

C** 
C^* INITIALIZE ARRAYS 
C** 

DO 58 1 = 1,LDAT 
ROW(I) = 0.0 
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58 NP1(I) = NUMR 
C** 
C** FIND THE INDEX IN ORDERED INNOVATION 
C** CORRESPONDING TO THE GIVEN LAG 
C** 

DO 59 J = 1,NUMR 
INDY = IIND(J) +LAG 
IF(INDY.GT.NUMR)GO TO 59 
NPI (J) — IRANK(INDY) 

59 CONTINUE 
C** 
C** CARRY OUT SUMMATION IN EQUATION (170) 
C** 

FSUM = 0.0 
DO 64 J = 1 ,NR 
DR = RR(J) 
IJUMP = NP1(J) 
FAC2 = FLOAT(J)*FACR 
DO 60 l = 1,NR 
IF(I.GE.IJUMP)GO TO 61 
FSUM = FSUM + DR*RR(l)*(ROW(l) - 
FAC2*FLOAT(l))**2 

60 CONTINUE 
GO TO 64 

61 CONTINUE 
DO 62 K = l,NR 
ROW(K) = ROW(K) + FACI 
FSUM = FSUM + DR*RR(K)*(ROW(K) - 
FAC2* FLO AT (K))* *2 

62 CONTINUE 
64 CONTINUE 

FUNK = FUNK + FSUM 
80 CONTINUE 

RETURN 
END 

SUBROUTINE ORDERCDJI.JJ.N) 
DIMENSION ll(N)fJJ(N),D(N) 
K = 1 

10 KK = K + K 
IF(K.GE.N) RETURN 
CALL SORTCD.II.JJ.K.KK.N) 
K = KK 
IF(K.GE.N) GO TO 15 
KK=K+K 
CALL SORTCD.JJ.II.K.KK.N) 
K = KK 
GO TO 10 

15 DO 16 1 = 1,N 
16 ll(l) = JJ(l) 

RETURN 
END 

SUBROUTINE SORTCD.II.JJ.K.KK.N) 
DIMENSION ll(K,1),JJ(KK,1) 
M = N/KK 
IF(M.LE.O) GO TO 25 
DO 20 J = 1,M 
l = J + J 

20 CALL MERGE(D,II(1,1—1 >^,11(1.0.K,JJ(1,J)) 
25 LEFT = N —KK*M 
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IF(LEFT.LE.O) RETURN 
M1 =M + 1 

IF(LEFT.LE.K) GO TO 30 
LEFT = LEFT-K 
MM2 = M1 +M1 
CALL MERGE(D,II(1 IMM2)>LEFT,JJ(1 ,M1» 
RETURN 

30 CALL MOVE(ll(1 ,MM1 ),JJ(1 ,M1 )>LEFT) 
RETURN 
END 

SUBROUTINE MOVECX.Y.N) 
INTEGER X.Y 
DIMENSION X(1),Y(1) 
NA = I ABS(N) 
IF(NA.LE.O.OR.NA.GT.10000) RETURN 
IF(N) 10,30,20 

10 DO 15 1 = 1,NA 
15 Y(l)= — X(l) 

RETURN 
20 DO 25 I = 1 ,NA 
25 Y(I) = X(I) 
30 RETURN 

END 

SUBROUTINE MERGE(D,X,N,Y,M,Z) 
INTEGER X,Y,Z 
DIMENSION X(N),Y(M),Z(1),D(1) 
NM=N+M 
J = 1 
1 = 1 
JGO = 1 
IF(M.EQ.O) JGO = 3 
IF(N.EQ.O) JGO = 2 
DO 30 K = 1 ,NM 
JX = X(J) 
IY = Y(l) 
GO TO (10,25,20),JGO 

10 IF(D(JX).GT.D(IY)) GO TO 15 
Z(K) = JX 
IF(J.EQ.N) GO TO 17 
J = J + 1 
GO TO 30 

15 Z(K) = IY 
IF(I.EQ.M) GO TO 19 
1 = 1 + 1 
GO TO 30 

17 JGO = 2 
GO TO 30 

19 JGO = 3 
GO TO 30 

20 Z(K) = JX 
J = J + 1 
GO TO 30 

25 Z(K) = IY 
1 = 1 + 1 

30 CONTINUE 
RETURN 
END 
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program is written so that if three restarts are not sufficient, “DID NOT SETTLE” is written and the program 
continues. The rest of the program, from statement 3 on, is merely to evaluate the pulse shape C inverse to the 
converged A (in practice this should be printed or plotted, so that it can be seen how the pulse shape is changing as 
the procedure continues to higher orders). Also calculated is the quasi-FPE quantity given in equation (184). This 
number should also be printed. 

Subroutine F2D sets up some constants that are needed in FUNK, computes the initial simplex using formulas 
given by Jacoby, Kowalik, and Pizzo (1972), calls the minimization routine, AMOEBA, and prints out the resulting 
AR filter. The program AMOEBA directly implements the simplex procedure as given in the references cited in the 
text. The criterion for convergence is in terms of the relative magnitudes of the maximum and minimum functional 
values on the simplex; this could be experimented with, as there are other equally valid convergence criteria. 

Function FUNK is the guts of the program, as it provides the values, as a function of the AR parameters, of the 
measure of independence DF which is to be minimized by AMOEBA. The evaluation of the innovation has been 
discussed in the text (§ Vc). The ordering of the innovation is important for an efficient evaluation of DF and is 
carried out with sorting (SORT), moving (MOVE), and merging (MERGE) routines, all controlled by the main 
ordering program ORDER. These routines are based on material in the volume by Knuth (1973) and are such that 
the number of operations increases as Vlog N. The only part of the procedure which produces an N2 dependence is 
the summation over the two-dimensional grid. 

The structure of the recursion for the summand in equation (170) (see eq. [171]) can be understood by reference to 
Figure 39. This figure shows the two-dimensional grid of the reordered values R'n, with R¡ =minn(Rn) and 

= maxn(R/J). A given R' is paired with the R' which was its mth removed neighbor in the original (unordered) 
set {/?„}: 

f ) 
[ R'j~Rn+m ] 

(Al) 

MO 

r2 R3 
/ § r4 r5 

n9 "10 
^n+m 

Fig. 39.—The two-dimensional grid used in the computation of the estimate of the joint cumulative distribution function. This example 
is for m* 1 and N* = 10. Each of the N*-m (=9) pairs {Rn, Rn+m) is indicated with a dot at the intersection of the grid lines for these 
values (but labeled in terms of the ordered version of the innovation, R*). In this example, the original sequence was (R'9, R'2j R's, 
R\, Rj, R'l0y R's, R'3, R'6, R'4). The numbers are the counts of the dots above and to the left of the box in which the number appears. The 
counts in each row are always 0 or 1 more than the counts in the row above: 0 for boxes to the left of the dot in the row, and 1 for boxes to 
the right (see eq. [171]). To get the function F2, the counts must be normalized by the final count, N* — m=9. 
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This pairing is indicated by the dots at the grid points in the figure. In the example shown, R{ is paired with R'7, R'2 

with R'5, and so forth. Each R; is of course paired with no more than one Rj. For m = 1, the equivalent to RN* has 
no mate, because is not defined. Similarly for the Rj equivalent to Hence there is one row and one column 
without a dot. (Similar results hold for larger values of m.) 

Now F2n(R'p, R'q) is — times the number of pairs (dots) above and to the left of the point (R'p, R'q) (see 
eqs. [96] and [97]). A running count of this number is kept for successive rows in the grid. Since there is only one (or 
no) new point per row, this row count increases by unity for all squares to the right of the new point in the row. This 
relation is expressed in the recursion formula (171). The figure shows an example with N*= 10. The number in each 
box is the number of dots above and to the left of the box. The entries in the last row and column of the grid are 
never utilized but are shown to indicate how the normalization works: F2t(x, y ) for x > R'N+ and y > R'N* is equal to 
the total number of dots ( = A* — 1) divided by A* — 1. The individual cumulative distribution is trivial in the system 
of the ordered R-s: 

(A2) 

INDEX 
Absolute value (Z^), 13, 19, 25, 36-39, 41-43, 45, 47-48 
Acausal, 9, 12-14, 19, 21-22, 24-25 
Advance operator, 20 
All pass filter, 31 
Autocorrelation (function), 8, 16, 17, 22-23, 28, 30, 31, 46 
Autoregressive (AR) (model, process, representation), 2, 13-18, 

28-30, 32, 42-45, 47-59 
integrated moving average (ARIMA), 17-18, 32, 42 
moving average (ARMA), 15, 17, 29, 32 

Bins, 33-34, 43, 47 
Causal, 12, 13-15, 19, 21-22, 24-25, 28, 29-30, 35, 40 
Central limit theorem, 9 
Characteristic function (see also joint characteristic function), 7, 

8, 32-33, 34, 43, 47 
Computation (numerical experiments), 47-69 
Constant component, 56, 57-58 
Convolution, 13, 20, 23, 24, 31, 56 
Cumulative distribution function (see also joint cumulative distri- 

bution function), 7, 8, 32, 33, 43, 47-48, 64-66, 68-69 
Decomposition, see Wold decomposition 
Deconvolution, 28, 31, 35, 47 

tables, 48, 49, 52, 56 
Deterministic, 7-8, 9, 13, 28-29, 30, 35, 53 
Delay character (also phase character), 3, 18-19, 22-23, 29-30, 

31- 32, 39, 47, 56-57 
operator, 20 

Dependence (dependently distributed, dependence measure), 8-9, 
32- 35, 43, 47-48, 64-66 

Difference operator (V), 17 
Dipole (couplet), 21, 22, 31 
Discrete Fourier transform (DFT), see Fourier transform 
Ergodic, 5, 32 
Estimates, statistical, 29, 33, 35 
Expected value, 7, 8, 29, 32, 43 
Factorization (into dipoles), 20-22, 23-24 
Filter (see also pulse shape), 9-10, 12-13, 18-28 

continuous, 46 
Final prediction error (FPE), 36, 40, 44-45, 49, 52, 56 
Fourier transform, 2, 20, 24, 25-28, 45, 56, 59, 60-61, 65 
Frequency domain, 16, 20, 22 
Gaps, see Sampling 
Gaussian noise, see Noise, Gaussian 

process (normal process), 5, 31-32, 47-48, 52, 53 
Identically and independently distributed (iid), 8 
Identification (see also order), 3, 28, 40-41, 42, 59 
Impulse, 12, 14, 18 
Independent (independently distributed), 7 (random variables), 8 

(processes), 9-10, 30, 31-32, 41-42, 59 
Independently distributed innovations, 13, 30, 31-35, 52 

noise, see Noise, independently distributed 
Innovation, 13, 18, 29-32, 42-43, 45-46, 50-55, 57-58, 68-69 
Inverse (convolutional), 19, 23-28, 29, 30, 40, 41-42, 45, 58 
Joint characteristic function, 7, 8, 9, 32 

cumulative distribution function, 7, 9, 32, 33, 43, 64-66, 68-69 
probability distribution function, 7, 9, 32, 33 

Lag (m* = maximum lag), 33, 34, 43, 44, 48-56, 60-69 
Least-squares, 5, 25, 31, 35, 36 
Linear system, see Filter 
Local minimum, 34, 43-44, 59 
Martingale difference property (MDP), 7, 30, 34-35, 47-48 
Maximum delay (or phase), 22-23, 24-25, 30 

entropy method, 36, 43 
Mean value, 8, 12, 17, 58 
Memory, 12, 13, 28, 35 
Minimization (optimization, deconvolution), 32, 33, 35-36, 38-45, 

46, 48-49, 51-53, 56, 59, 62-64 
Minimum delay (or phase), 19, 22-23, 24-25, 29-30, 36, 38, 

56-57 
Mixed delay, 22, 29-30, 39, 57 
Models, 2, 5, 9, 13, 28-42 
Moment, 9, 34, 43 

generating function, 7 
Moving average (MA) (model, process, representation), 2, 9-13, 

14-15, 17-18, 28-32, 38,42 
Negative amplitude, 51, 56-58 
Noise, 9, 47-48, 52, 53-54 

Gaussian, 9, 11, 16, 31-32, 47, 48, 52, 54-55 
independently distributed, 9, 16, 30, 32, 52 
uncorrelated, see Noise, white 
uniformly distributed ((/), 6, 11, 18, 47-53 
white, 9, 11, 14, 15, 35, 47 

Nonstationary, 6, 17 
Norm, 36, 38-41 
Normalization, pulse, 13, 14, 39-40, 61-62 
One-sided (pulses, filters, representations; see also causal), 19, 35, 

37, 40, 46 
Optimization, see Minimization 
Order (of a process), 12-14, 40-41, 44-45, 50-51, 59 
Ordering (according to magnitude), 43, 65, 66-67, 68 
Origin of time, 12, 19, 22, 25 
Parsimony, 17 
Partial energy curve, 22-23 
Periodic signals (quasi-periodic signals), 14-16 
Phase character, see delay character 
Physically realizable, 19 
Poisson process, 18 
Prediction (predictive deconvolution, predictive decomposition), 

3, 8, 9, 29, 35-39, 46 
error (see also Innovation), prediction error filter, 29, 35-39, 
43, 46, 58 

Probability distribution (see also Joint probability distribution), 6, 
8, 32, 33, 43, 47-48 

Process, 3, 6, 7 
Pulse shapes (see also Filter, Impulse), 12-13, 18-28, 31, 45, 

50-51, 53-58, 61-62 
exponential, 6, 14, 17, 19, 26, 30-31, 47, 58 
rate, 18, 36 
amplitude (see also Innovation), 12, 18, 31, 36, 58 
amplitude distribution, 58 

Purely random, 8 
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Quasar, 3C 273, 53, 56-58 
Random process (stochastic process), 3, 5-9 
Realizable, see Physically realizable 
Realization (realization of a specific process), 6, 8, 10, 11, 15-16, 

48, 51, 54, 55 
Restart, 43, 44, 59, 61 
Reverse, time, 22, 23, 30-31, 36 
Sampling, 3-6, 18, 19, 42, 46 
Sequential analysis, 6 
Shot noise (model, process), 5, 12, 18, 47 
Simplex, 43-44, 62-64, 68 
Sinusoidal signal, 52-53, 55 
Skewness, time skewness function, see Time skewness 
Skew-norm, 38 
Spectrum, 16, 17, 22, 28, 29, 30, 36, 46, 59 
Stability, filter (convergence), 12-13, 14, 19, 24, 29, 53 
Stationary, 2, 6, 9, 17, 28, 30, 33 
Stochastic process, see Random process 
Summation operator (S), 17 

Time domain, 3, 5, 20, 22 
series (see also Realization), 3, 5-6, 55 
skewness, 34, 36, 38-39 

Trend (detrending), 6, 17, 29, 59 
Two-sided filters (see also Acausal), 9, 13, 14, 15, 19, 21, 25, 30, 

39-40, 47 
Uncorrelated (see also Noise, white), 7, 8, 9-10, 28, 30, 31 
Uneven sampling, see Sampling 
Uniformly distributed noise, see Noise, uniformly distributed 
Unstable, see Stability 
Varimax norm, 43 
Wavelet, 18, 29 
White noise, see Noise, white 
Wold decomposition (Wold theorem and extension), 9, 28-29, 30 
Wraparound, 25 
Yule-Walker equations, 35-36 
Zero (of Z-transform), 21, 24-25 
Z-transform, 15, 19-20, 21-25, 28, 31 
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