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Summary. When accretion rates exceed a critical value accretion
disk around a black hole must become thick, vitiating an assump-
tion necessary in the construction of most models. Even for
subcritical rates, the inner regions of standard accretion disks are
believed to be unstable and are expected to puff up. By replacing
the usual assumption of local energy balance with a global
conservation requirement, and by taking the local radiated flux to
be critical, we construct families of consistent thick accretion
disks. These have cusps at their inner edges, which can lie between
the marginally bound and marginally stable orbits, and depend
upon the angular momentum distribution specified but are not
directly dependent on assumptions about the viscosity law. They
can be matched onto relatively thin disks at a “transition radius”.
The accretion rates can become very large, and the total lumino-
sities can exceed the nominal Eddington luminosity by substantial
factors due to geometrical effects. Such luminosities produce huge
radiative energy densities in the cusp region, so that the formation
of well collimated beams is a distinct possibility. The calculations
use a pseudo-Newtonian potential which reproduces many of the
salient features of the Schwarzschild solution.
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1. Introduction

If one attempts to build a model of an accretion disk where the
accretion rate becomes very large, it is clear that the disk must
become thick, at least in the region close to the compact object.
According to standard models, the maximum value of the ratio of
the thickness of the disk to its radius is equal to the ratio of the
accretion rate to a critical rate (Shakura and Sunyaev, 1973). Since
these standard “a models” assume that the disk is relatively thin
everywhere, they cannot treat this situation consistently. Even
when the accretion is subcritical, it has been recognized that the
inner portions of standard disk models around black holes are
subject to various instabilities (e.g., Lightman and Eardley, 1974;
Shakura and Sunyaev, 1976). These instabilities probably cause
such disks to puff up and become geometrically thick, thus
vitiating the assumptions of thinness and hydrostatic equilibrium
which provide the foundations of these models. By making
various assumptions, different authors have constructed models in
which winds are driven off the disk’s surface, or in which two
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streams of material are ejected along the axes of the disk (e.g.,
Shakura and Sunyaev, 1973 ; Shapiro et al., 1976; Callahan, 1977,
Piran, 1977 ; Lynden-Bell, 1978 ; Meier, 1978) thus attempting to
allow for the instabilities and the strong radiation pressure
encountered in the central region of the disk. However Shakura
and Sunyaev (1976) have shown that the faster growing in-
stabilities are thermal, and are predominantly due to the assump-
tion that Q _, the rate at which energy is radiated per unit surface
area, is equal to Q , the rate at which it is generated by friction
within the disk. When the disk is both geometrically and optically
thick, this equality cannot in general be true, for the energy
produced at some point inside the bloated disk will not just diffuse
vertically, but may emerge from essentially any part of the surface.
We are thus led to consider how this assumption can be replaced
by a more physical one, and if possible to construct models of
thick inner regions of accretion disks that have a consistent time-
averaged stationary behaviour.

The approach we have chosen was inspired by the recent
general relativistic treatment of the structure of perfect fluid disks
around a black hole given by Abramowicz et al. (1978) and
Koztowski et al. (1978); see also Fishbone and Moncrief (1976).
These authors have shown that a cusp exists at the inner edge of
such disks (or really rings) and that fat disks can be constructed
whose inner edges extend down to the marginally bound circular
orbit, ,,, (r,,=2r,=4GM/c* for a Schwarzschild black hole).
Thus, we investigate disks whose inner edge lies somewhere
between r,,, and the last stable circular orbit, r,,, (r,,,=3r, for the
Schwarzschild case); the portion of the disk inside r,,, is supported
by a non-Keplerian angular momentum distribution, and there-
fore does not immediately plummet into the black hole. However,
unlike Abramowicz et al. (1978) we will allow for the generation of
energy by viscous stresses and for its radiation. We will also match
our thick disks onto thin disks at suitably large radii, thus giving
the solutions more physical significance.

However our treatment will not be a correct general re-
lativistic one, for we shall employ a pseudo-Newtonian potential,
yp=—GM/(R—r,), that correctly reproduces the positions of both
r.s and r,,, and yields efficiency factors in close agreement with
the Schwarzschild solution. One great advantage of our approach
is that it is not explicitly dependent upon the assumed form of the
viscosity law, which is subject to considerable uncertainty; thus
we only have to bring in the “a model” (Novikov and Thorne,
1973; Shakura and Sunyaev, 1973) to provide a consistency check
on our results (Sect. 4c). There are however many assumptions
and approximations in our model that make the quantitative
conclusions inexact. We assume that: the equation of state is
barytropic, so that the specific angular momentum is constant on
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cylinders; red-shift effects can be neglected; reabsorption of
radiation and evaporation of the disk can be ignored (cf. Shakura
and Sunyaev, 1973; Cunningham, 1975, 1976; Rees, 1978 and
references therein). Because each of these approximations is crude
our treatment is an idealized one. We hope to loosen some of these
restrictions in subsequent work, and to perform a fully relativistic
treatment. However, the removal of the barytropic assumptions
would require solving a much more complicated set of differential
equations.

Apart from being independent of assumptions about the
viscosity, our approach has other advantages. One is simplicity,
both conceptually and in the computations, allowing different
angular momentum distributions to be investigated. Another is
that the salient effects of general relativity are included via our
pseudo-Newtonian potential. We are able to construct thick disks
whose inner radii lie within ,,; and the match onto more standard
thin disks. The accretion rates can exceed the nominal critical
rates, and because of the bloated shape of our disks, the total
luminosities can exceed the nominal Eddington luminosity. We
feel that these basic conclusions are likely to stand even if the
details are inaccurate because of the nature of our idealized model,
and we feel that this new approach does yield new insight.

In Sect. 2 we present the basic equations we use in studying
stationary accretion disks of arbitrary thickness. The assumptions
made and the specialized equations needed by our approach in
obtaining the shape and luminosity of thick disks are given in
Sect. 3. Specific cases are calculated and our results summarized in
Sect. 4. In Sect. 5 we draw conclusions and point out modifi-
cations that should be included in more refined calculations.

2. Equations for Stationary Accretion Disks

We now summarize the important relations needed for our
analysis. Naturally, most of these are standard and appear in
earlier papers (Lynden-Bell, 1969; Pringle and Rees, 1973;
Shakura and Sunyaev, 1973 ; Novikov and Thorne, 1973) but we
derive them again here for two reasons. Firstly, we use a
somewhat different approach in obtaining the equations, and also
a slightly different notation. Secondly, we shall be using non-
Newtonian potentials and non-Keplerian angular momentum
distributions, and thus we must use a rather more general
formulation of the equations.

We use cylindrical coordinates (r, z, ¢) centered on the black
hole. Azimuthal symmetry is assumed and the spherical radius
R=(r>+2z%)'2, The generalized potential y must satisfy the
following conditions: p(R)<0; p(R)—0 as R— oo ; dyp(R)/dR>0.

The typical assumption of a thin disk has z<r so that r~R.

The circular velocity, angular velocity, and angular momentum

per unit mass (which we henceforth refer to simply as angular
momentum) are given, assuming Keplerian orbits, by

dyp\'? 1 dy 1/2 Ldy 1/2

The total mechanical energy per unit mass is given in general by
e=v2+vp, 2

as long as the radial and vertical velocities are much less than the

azimuthal velocity ; e <0 implies that a mass element is bound.
Let n be the viscosity at some point in the disk, whose half

thickness is given by z,. The heat released due to friction can be

expressed as (in ergcm™3s™1)

ao\?
e= (r;) n. @3)

The torque applied by frictional forces at a given radius can be
written as

—dQ
=23
g=2mr ( - )
Typical definitions of surface density and accretion rate are
taken:

= jP odz, M= | 2mrovdz. )

—z0

fo ndz. Q)

-z0

-zo

The total couple gives us the angular momentum flux,

J=Ml+g. (6)
The radial energy flux can be expressed as

E,=M-e+gQ, v ()
whilst the vertical energy flux is usually taken to be

oF,

= =2mr-2F, ®

where F is the energy flux from the surface.
In this notation the conservation of mass, angular momentum,
and energy can be written as

0 oM

- @mrE)+ = =0, )
0 aJ

d 0E, OE,

5{(27‘0‘26)4" ar + —gr—' =0. (11)

We now employ the mass and angular momentum conservation
laws directly, since they remain valid for thick disks as long as Q is
taken as a function of r, only ie., if meridional circulation and
radial velocities can be ignored. Substituting Egs. (5) and (6) into
Eqgs. (9) and (10) immediately yields

ol dg

M_—+2=0,

or or (12)

which is also true for thick disks (Loska, private communication).
At this point we use the assumption of stationarity and take
M =const. Eq. (12) can then be integrated to give

g=go+(~=M)(1-1), 13)

and we have accretion if M <0. We now evaluate g, and I, at the
inner edge of the disk, r,, and make the following reasonable
assumptions about the boundary conditions near a black hole:
the torque at rg, g(ry) =g, =0, the angular momentum at r, [, is
given by the Keplerian value, and since the disk is thin at r (it has
a cusp there), Eq. (1) is adequate. For convenience we define

S= j ndz,

—zp

(14)

and then use Eq. (4) to write

g [—de\!
S_2nr3< dr ) ’
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which, using Eq. (13) with g, =0 can be expressed as

S=(—M)(_d—dg)—1(2nr3)’l(l—lo).

» (15)

The total energy generated within a given column of the disk is

2 do\ = do\?
Q.= [ edz= (r;) f r,dz=(r5) S,

—2z9 —zo

(16)

where we have made use of Egs. (3) and (14). We can eliminate the
viscosity from our expression for the energy generation by
inserting Eq. (15) into Eq. (16) to obtain a key relationship
. _ aQ
0. =(~Ham) (- )=o) (17)
If we make the usual assumption, valid for Newtonian disks,
that w=—GM/r, and further assume a thin disk so that
Q_=2F=Q,, we immediately recover from Eq. (17), using Eq.
(1), the well known expression for the flux,
. 1/2
F=(—M)—3-g 1— '_0) )
8n r

r

However, we are interested in the more general situation where
neither Eq. (1), nor Q_=0Q,, is acceptable.

At this point we summarize the forms certain important
quantities take on for the specific potential we use,

- GM
=, 18
Y=&-r) (18)
In the regions of the disk where it is thin, and thus r~R:
GM\!2[ r GM\!'2[ r
=) =) )
r r—r, r r—r,
(19)
I=(GMn)\? [——'—] ;
r—r,
8 _y oy et
dar 2\ 1’ r—r)* |’
(20)
a_, %)1/2 r=3pr] .
ar *\ r r—r)?]’
(——GM) {(r—ng)r}
e= A = N7 b
2r (r—rg)2
21
de_ () ie=3) “
dar \2r2)| (r=1)*

In each of the above equations the correction due to the inclusion
of the r, term is enclosed in brackets. Inspection of Eq. (21) shows
that e, the binding energy, vanishes at r=2r,, and thus we identify
T'mp=2r,, as for Schwarzschild geometry. Likewise, from Eq. (20),
we see that dl/dr =0 and de/dr =0 when r = 3r,, and as an orbit can
only be stable when dl/dr=0 and de/dr=0, we conclude that
Tms=3r,, and no Keplerian disk can exist inside this radius. The
efficiency of energy conversion is given by 5’ =e/c?, and we note
that at r=r,, Eq. (21) yields the result #'=0.0625, whilst the
correct result for the Schwarzschild metric is 0.057. At smaller
radii the relative agreement is even closer, so we expect that our
estimation of luminosities for given mass fluxes will not be more
than 10% too high because of the overestimation of #’, although
the uncertainty is increased by other factors to be discussed later.

25

3. An Approach to Thick Disks

a) Basic Assumptions and Specialized Equations

The first important approximation, or idealization we make is to
assume a barytropic equation of state, P=P(g). It then follows
(von Zeipel’s theorem) that Q= €(r), and this simplification is very
helpful. However this approximation must eventually fail in the
inner regions where the flow is almost spherical. In this barytropic
situation we can define the enthalpy by dH=dP/g, and in the
equatorial plane of the disk (z=0), we denote the density, enthalpy
and gravitational potential as

o), HLr), w@=y). (22)

We take the boundary conditions on the surface of the disk to be
the vanishing of the enthalpy and density, so that on the surface,
defined by +z,, we have

(=0, Hr)=0,

Our next key assumption is that the equations of hydrostatic
equilibrium hold. This certainly fails to be true to some extent in
the very innermost region, close to the cusp, where both radial and
vertical velocities will not actually be negligible. However, within
our formulation the problems are not as severe as when an
attempt is made to construct a consistent thin disk (e.g
Bisnovatyi-Kogan and Blinnikov, 1977), and we hope to lossen
this restriction in a future paper. The equilibrium equations can be
written as

Yo =1p(r* +2%)'2. 23)

éVP=VH=V(—tp+§§22rdr). (24)

ro

Using the notation defined in Egs. (22) and (23), the vertical
component of Eq. (24) integrates to

H () =yor)—y(r).

Differentiating Eq. (25) with respect to r and comparing with the
radial component of Eq. (24) yields the relation

25)

_dH, dy _ dy,

2
re ar Tar i

(26)

As we have already required that Q=0Q(r) we have the
following basic equations that determine the angular quantities in
terms of the potential at the surface, or vice versa:

1/2 1/2 1/2
Q=r‘1/2(%) , l=r3/2(%9) : v=r”2(%) .

With this interpretation, all the Egs. (3-17) are just as valid for
thick disks as for thin ones. When we make the further basic (and
nearly universal) assumption that the self-gravity of the disk is
negligible, we may choose Eq. (18) as the potential, with M being
taken as the mass of the black hole. [For investigations into
accretion disks where self-gravity may be dominant see Paczyhski
(1978a, 1978b) and Koztowski et al. (1979).

In order to progress further we must decide upon the best way
of finding the flux radiated from the surface of the disk. It is
important to recall that the typical “a disk” models should puff up
in the inner regions, where radiation pressure dominates, electron
scattering provides the bulk of the opacity, and where the disk is
optically thick. Thus it is natural to assume that the disk is
radiating critically, just as a stellar atmosphere under the same
conditions would (Paczynski, 1978a). We thus take the power
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Fig. 1. The Keplerian specific angular momentum curve for the
pseudo-Newtonian potential, I,(r), and two arbitrary angular
momentum distributions that satisfy stability requirements. The
marginally bound r,, and marginally stable r,,; orbits are in-
dicated, as are the inner radius r, and transition radii r, ,, 7, , for
the thick portions of the accretion disks

emitted per unit surface area as

F (28)

c
rad = E Gest >
where K is the opacity per gram and g, is the effective accelera-
tion of gravity, including the centrifugal force. It is obvious that
. is normal to the surface of the disk and that we have

g, =J.¢ COSO,

al.00
0z
face of the disk makes with the radial direction, ie.,

where g,= and 0 is the instantaneous angle that the sur-

cosf

-1/2
[1 + (ddzro) ] . Thus we may use Eq.(29) in Eq.(28) to obtain

6w(r zo)

£l )]

(30)

Frad X

b) Angular Momentum Distributions and the Form of the Disk

The time has now come to specify how we construct our disk
models, and the interplay of angular momentum distributions
becomes crucial. In Fig. 1 we the pseudo-Keplerian [ (r) curve
given by Eq. (19) as well as two other arbitrary angular momen-
tum distributions that characterize possible disks, and which must
have the following properties: (1) lry)=I(ro)=1y; (2) dijdr =20,
for r=r,; (3) r)=1x(r) at two values of r>r,. The first condition
is merely our boundary condition ; the second is needed to ensure
a stable disk (cf. Abramowicz et al.,, 1978). We impose the third so
that the disk may again be thin at the second intersection, the
transition radius r,, in the sense that z,(r,) <r,. At that point we
can allow the disk to have once again a Keplerian distribution of

9) .

angular momentum, for such a distribution will be stable for
r>r,... If we have chosen I(r) in such a way that z,(r,) <r, then the
region r>r, can be adequately described by standard thin disk
models because in that region y,(r)=y(R)=y(r). However, for
ro =r<r, the ratio z,/r may not be negligible, and y,(r) Z y(r), so
the additional freedom allowed by a thick disk is necessary.

We can find the thickness of this thin disk at the transition
radius if we assume that it is radiating critically there. It may not
satisfy this assumption at larger radii and it will be necessary to
check a posteriori that the physical preconditions for this assump-
tion are valid (see Sect.4c). If the disk is thin and radiating
critically, then Eq. (30) can be replaced by

€2Y)

The energy generated within the disk is @, which is given by Eq.
(17). Since the disk is thin at this large radius we may take
0, =0_, and for a thin disk under these conditions we have

- (o,

When the derivatives and angular momentum are evaluated at r,
we obtain a value of z, that depends only on M, which in turn is
totally determined by l(r), as we shall see in the next subsection
[Eq. (46)].

The basic constraint upon a consistent disk is the requirement
that the thickness of the fat portion, given by Eq. (37) below,
matches that of the thin portion, determined from Eq. (32, when
both are evaluated at .. However we stress that the calculations in
the next subsection are independent of this matching via Egs. (31)
and (32), so if a different method is proposed to obtain the
thickness of the thin disk, the procedure we are about to describe
could also be employed to satisfy it.

(32)

c¢) The Shape of the Thick Portion

It is not very difficult to obtain the differential equation that yields
the shape of the disk as a function of the radius and the angular
momentum distribution. If we define a total potential
¢=y— [ Q?rdr, the surface of the disk is a generalized equipoten-
tial on which ¢ is constant. Thus we must have

r) dr+ (%) dz
0z
on the surface, or

dz (., Oy !
o=l

Substituting in Eqgs. (18) and (23) this is transformed to

_o_ (0¥
d¢_0_(a—r—92 (33)

(34)

dz r

e e B =

By a simple manipulation this takes the form

dR? 92

F =— R(R r )2

whose solution is

= [(ro r )(1 -

-1 2
" j erdr) +rg] R (36)
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where we have used the boundary condition R(r,)=r,. Thus the
surface of the disk is given by
To—T,

Zp=

+r | =2}, 37)

— r g9
1- 2" [ pyr-2dr

where we have employed the relation I=Qr?.

d) The Luminosity and Accretion Rate

As we have presumed the disk to be radiating critically it is a
simple matter to calculate the total energy radiated by the thick
portion of the disk. When the disk is not nearly flat we must use
the fact that an element of surface area will be given by the
expression do = (rdy)(sec0dr), so that

2 re
Lrad=2 j IFradda’

0 ro

(38)

where both surfaces of the disk have been included. When we
insert Eq. (30) into Eq. (38) and evaluate sec in the expression for
do we obtain

drc dz, \?
Lrad=—;;—cj%[1+ (_z_o) ]rdr'

0z dr (39)

But now that we have the solution for z(r), this can be expressed
as

47cGM ™t
K

“R(R-r)* 2P rR '
M GMz dr “0)

L= )
rod Z(R—r,)?

ro

Let us now find the total amount of energy that is generated
within the thick portion of the disk by intergrating the columnal
energy generation over the appropriate region. We shall derive a
general expression for the energy generated between any two radii
and then specialize to our particular case.

Loory,r)= :j‘j Q. 2nrdr. (41)
Using Eq. (17) this becomes
Luatrurd == (- 0=ty

== | (~1)d0

>

—(=M) E P04 —1,(Q, - 2,)

where we first change variables and then use the definition of L
Integrating by parts we have

(271 r2
+ [ Q%rdr—1y(Q, - 2,)|.

22 ri

Lgen(rl,r2)=(—1\'l)[%r2§22

We now use the definition of v and Eq. (27) to change this to
Lgen(rl’ "z)=(_M[)[%U% —%v% +(Wo), — (Wo)1 — 1o(2; —2,)].

If the disk is thin enough at both relevant radii, then w, =1y, and
with a little more manipulation we have

L. (ry rz)=(—M)[(ez—e1)+Q1(l1 —1lp)—Q,(,— 1)1,

where the definition of the binding energy, Eq. (2), has been
employed.

“2)

27

The special case we are interested in is r, =r, and r,=r,, but
we first obtain the well known general relation that the total
energy produced within the disk is

Lgen,total =(_M)(— eO) H

which comes from Eq. (42) because e,=0 and Q-1 =0.
Returning to the total energy produced in the thick region of the
disk:

Lgen(ro’ rt) = ( - M) [(ex - eo) - Qt(lt - lo)] .

At this point we must make one more critical assumption ; that
the material flowing into the disk at r, and flowing out of it at r,
carries negligible internal energy in comparison with its mechani-
cal energy. If this is true we can replace the local condition
Q. =0 _ with the global one

Lgen = Lrad >

which is physically justifiable. A given distribution /(r) will imply a
radius r,, which, along with r,, enables us to integrate Eq. (40) to
find L, We then know L, and everything on the right hand

side of Eq. (44) except the accretion rate, which we solve for:

- M = Lrad [(et - eO) - Qt(lt - lO)] -1 . (46)

43)

(44)

45)

4. Calculations and Results

a) Procedure for Constructing Models

We now draw together the threads of the previous section and
show how we weave complete thick disk models. From now on we
present most of the results in terms of non-dimensional units,
since everything scales directly with the mass of the black hole. We
take GM =1, and r, as our unit of length. As a first step we choose
a potential and write Eq. (18) as

y=-1/(R-1).

The second key step is to choose a value of rye(2,3]. Since
angular momentum can be expressed in units of (GMr,)'/> we
have

I =r¥?/r—1), (48)

with I, =r3/2/(r,— 1) as the point from which we start the assumed
angular momentum distribution /(r), chosen as step three in our
procedure.

The first computational step is to find the two secondary
intersections of I(r) and I (r). If they do not exist then that
distribution of I(r) is inadequate and a new one is chosen. This
fourth step is followed by the calculation of the shape and
luminosity of the disk between r, and r,. The solution for z, is
written

7

ro—1

+1| —r? 49)

zy(r)= "
1—(ro—1) [ B(ryr3dr

Defining L ;,=4ncGM/K as the Eddington, or critical, lumi-
nosity (using a Newtonian potential and spherical symmetry) we
may write
Lrad = LeddI(rO’ rt) ’ (50)

where I(r,,r,) is the non-dimensional form of the integral appear-
ing in Eq. (40). Although the effective gravity at any point on the
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Table 1. Parameters of thick disks for f=1.0

To Ao r Z_(rQ [_z_(r_)] L -M n* n Liia
Tt T Imax

2.05 0.015407 3847.6 0.135 4.406 1.19(39) 1.19 (20) 0.0112 0.0113 2.07(37)
2.10 0.027969 1078.3 0.202 2.490 9.20 (38) 5.12(19) 0.0200 0.0207 3.01(37)
2.20 0.047920 319.8 0.252 1.425 6.07 (38) 2.07(19) 0.0326 0.0347 39537
2.30 0.063301 162.6 0.281 1.021 .. 4.54(38) 125(19) 0.0404 0.0444 4.50 (37)
240 0.075585 ©102.6 0.289 0.796 348(38) = 8.62(18) 0.0449 0.0510 4.74 (37)
2.50 0.085599 727 0.2717 0.648 26938 . 6.35(18) 0.0472 0.0556 4.77 (37)
2.60 0.093951 554 0.273 0.542 2.16 (38) - 5.01(18). 0.0480 0.0586 - 4.79 (37)
270 .. 0.100989 ‘ 443 0.265 0.462 . 1.75(38) 4.10(18) . 0.0476 0.0606 4.76 (37)
2.80 ' ~ 0.106970 36.6 0.252 0.399 -1.44 (38) 343(18) 0.0465 0.0617 4.68 (37)
290 - 0.112134 311 0.243 0.348 1.19(38) 2.94(18) - 0.0448 0.0623 4.60 (37)
3.00 0.116419 26.9 0.238 0.306 9.92(37) 2.58 (18) 0.0428 -0.0625 4.55(37)

surface of the disk will be less than the purely spherical attraction
to the central mass at that distance, and thus the critical flux from
the disk’s surface would be less than that from a spherical surface
at the same radius, we will find that our disks may have surface
areas far in excess of such equivalent spheres. Thus there is no
reason to require that K(ry,r,)<1, and it need not surprise us if the
total emitted energy exceeds the Eddington luminosity.
[Geometrical effects needed in computing the ratio of gravi-
tational to radiative pressure forces were also considered by
Bisnovatyi-Kogan and Blinnikov (1977), but in the framework of
test particles near a thin disk.]

We can now proceed to the sixth step, which is the calculation
of M by equating the total energy generated with the total
radiated luminosity. We first define a critical accretion rate in the
Newtonian fashion,

—a,=Zog

Gag Leaa=8mcro/K (51)
and then define the reduced accretion rate as:
t=(~M)[(~M,). (52)

We rewrite Eq. (44) for the eﬁergy generated
2 r,—2 I
L f To— ! — 1 -
walryr)= (-0 TG, ) a-1)
E(—M)GMK(VO, t)/rg’ (53)
so that Eq. (46) is replaced by
m=Kry,1)/(2r,K(ry,7). (54)

Our final step, the seventh, is to compute z,(r,) for the thin disk
using Eq. (32) and see if it matches the value for the thick disk
given by Eq. (49). If they agree to within 1% we consider that a
consistent match has been found, although it must be confirmed
that the errors caused by the finite value of z(r,)/r, are small. On
the other hand, if they do not agree, we must modify the angular
momentum distribution (step three) and repeat stages three
through seven until a suitable match is found.

b) Specific Results

For simplicity we chose to look at the most basic forms of angular
momentum distributions that were likely to fit the various

)=l +Axr—r,),

necessary conditions. We examined the sm:nply two parameter
family,

(55)

with 4,20 so that dl/dr=0 and the disk is not unstable. The
requirement that S be non-negative implies that we must have
dQ/dr 20 [cf. Eq. (15)] which imposes a complex constraint on the

-combination of 4, and B, but certainly requires =1, for other-

wise (with A,+0) dQ/dr—+oo0 as r—r,. When these simple
relationships are chosen, the integral,
[ Pryr=3dr (56)
ro

which appears in the expression for zy(r) can be performed
analytically. Thus, in this case, the only integral we must evaluate
numerically is I(ry,r,) of Eq. (40).

If A, is chosen too large there is no hope of a solution, as
I(r) > I(r) everywhere. As we reduce A, two intersections with the
Keplerian curve are found, but the integral (56) grows too quickly
and z,(r)— oo for some r <r,. If 4, is taken too small, r, becomes
very large and we get z,(r)=0 at some r <r,. We could actually
find values of 4, = Af,’ that yield z,(r,) =0, but these accretion rings
(like the solutions of Koztowski et al., 1979) would not match onto
exterior “thin” disks, and the value of 4, must be taken somewhat
larger than Af,? if we are to obtain an equality between Egs. (49)
and (32).

Let us consider linear angular momentum distributions first,
where $=1.0. Eleven values of r,, ranging from 2.05 to 3.00 were
considered, and for each the value of A4,(r,) that yielded an
acceptable solution was obtained, using the iterative procedure we
have just described. Our basic results are summarized in Table 1,
where we have listed for each r, the corresponding 4,(ry), 7,
2(r,)/r,, and the maximum value of the ratio z,(r)/r in the first five
columns. We also give the values of L and —M (in cgs units) per
solar mass of M, where K was taken as 0.34 cm? g~ !, appropriate
to solar envelope material. From these we calculate an efficiency
factor n* using the relation

L=n*(—M)c?

and compare it with the theoretical value, #/, found from Eq. (21).
Because the total generated energy is given by Eq. (43), the
luminosity radiated in the outer, thin, portion of the disk is

Liyin=0'—n*)(— M)CZ

67

(58)
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Fig. 2. Curves of L/L.,, and M/M,, vs. r, for two families of
angular momentum distributions, =1.0 and f=1.1

10 C
T sk
C ]
OO
50
( ]
[ (b) !
o [ rt
= i fo/1g=2.3
O ! 1 1 Il l 1 1 1 1 1 11 1 1 L 1
0 50, 100 150
1000 ~ (c)
< F t /g = 2.05 .
/
Tt
O I Il ! I 1 L 1 I | [ 11 1 1 1 I ] 1 1
0 1000 2000 3000 4000
r/rg

Fig. 3. a The shape of the thick portion of a disk (one quadrant
only) constructed with [r)=I,+A(r—r,) and r,=3.07, b The
same as a for r=23r, ¢ The same as a for r,=2.057,

and is tabulated in the last column of Table 1. We note that the
fraction of the total luminosity contributed by the thick portion
drops from 0.983 for r, =2.05 to 0.686 for r, = 3.00. We also present
the ratios L/L,,, and m graphically in Fig. 2. The shapes of our
thick disks are shown for three values of r, in Fig. 3; note the
different scales in the sections of this figure.

29
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Fig. 4. The region near the cusp for the case r,=2.05r, and
B=1.0, expanded from Fig.3c. Also shown is the luminosity
emitted between r, and 7, as well as the total luminosity of this
thick disk model '

One result is that 7 increases dramatically as r, decreases
below 3, but this is to be expected as n* is bounded above by 7/
which vanishes atr, =2. A far more interesting result is that we find
L>L,, for r,<2.8 (when $=1.0); most of this excess is real and
can be understood in terms of the geometrical effects mentioned in
the previous subsection, other reasons for it are discussed below.
We also note that as r, decreases, r, increases, so that the thick
portions of the disk become very large indeed. Not only do these
thick disks become longer, but they also become fatter as the
maximum value of z/r increases rapidly as r, approaches r,,;.

It is of interest to check from which portions of the disk the
bulk of the energy emerges. As r,—r,,, a larger fraction of the total
luminosity is emitted from a relatively small fraction of the surface
close to the cusp where the disk resembles a tunnel or funnel down
towards the black hole. The shape of the innermost portion of our
most extreme case, r,=2.05 and $=1.0 is given in an expanded
scale in Fig. 4. Also shown in Fig. 4 is the fraction of the
luminosity L(r), emitted between r, and r. Even though r,=3848,
and L(r,)/L 4,=8.07, we see that 25% of the energy is emitted for
r<10, 50% for r<14, 75% for r <40, and 90 % for r <290.

We next considered a different family of disks by constructing
models with f=1.1 in Eq. (55). Such disks have di/dr=0at r,, and
this may have some physical justification (Koztowski et al., 1978).
Our results for these models are summarized in Table 2, where the
same quantities given for the linear angular momentum case in
Table 1 are tabulated for these steeper disks. The f=1.1 case
differs uniformly from the f=1.0 case in the following ways: m, L,
and r, are all reduced, but z(r,)/r, is increased, thus implying less
accuracy in these models. These values of i1 and L/L,,, are also
given in Fig. 2. Here the thin portion of the disk contributes a
relatively greater part of the emission, and the fraction of the
luminosity radiated from the thick part drops from 0.953 to 0.446
as r, goes from 2.05 to 3.00. All of these trends continue in the few
cases we have calculated for higher values of .

However, we found it impossible to construct disks for values
of B2 1.5, since the values of r, become quite small while z(r,) was
greater than r,. The nominally large values of M led to the
contradictory situation where the thickness evaluated on the
“thin” side of the transition radius was always greater than that
evaluated on the “thick” side.

¢) Tests and Caveats

The first obvious check is to examine the validity of our assump-
tion that z/r <1 at r. For the f=1.0 case this ratio ranged between
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Table 2. Parameters of thick disks for f=1.1

To Ay Ty 2 [@] L -M n* n Linin
r, T Jax

2.05 0.012287 1344.8 0.354 3.315 1.09 (39) 1.12 (20) 0.0101 0.0113 5.36 (37)
2.10 0.022334 453.5 0.409 1.980 8.02 (38) 4.66 (19) 0.0192 0.0206 6.34(37)
2.20 0.038649 156.5 0429 1171 5.16 (38) 1.88(19) 0.0306 0.0347 6.95(37)
2.30 ~ 0.051643 86.1 0431 0.843 3.70 (38) 1.11 (19) 0.0372 0.0444 7.18 37)
240 0.062313 55.7 0.409 0.654 2.73 (38) 7.51(18) 0.0405 0.0510 7.11 (37)
2.50 0.071312 40.3 0.387 0.527 2.09(38) 5.60(18) 0.0416 0.0556 7.04 (37)
2.60 0.078977 310 0.357 0.435 1.61 (38) 4.36 (18) 0.0411 0.0586 6.84(37)
2.70 0.085781 24.7 0.341 0.366 127 (38) 3.57(18) 0.0395 0.0606 6.75(37)
2.80 0.096250 20.3 0.311 0.311 9.91(37) 2.96 (18) 0.0372 0.0617 6.53 (37)
290 0.097000 17.0 0.290 0.290 7.81(37) 2.54(18) 0.0342 0.0623 6.44 (37)
3.00 0.105000 122 0.332 0.332 6.30 (37) 2.51(18) 0.0279 0.0625 7.82(37)

0.13 and 0.29; however, we can see that these values are suf-
ficiently small that the approximation y,(r,)=1(r,) remains ac-
curate to better than 4% and the error this implies for M is even
smaller. The larger values of z/r allowed when f=1.1 mean that
the difference between (r,) and y(r,) can be as big as 9%, so that
larger values of f would yield very substantial errors.

The physical assumption that the disk is radiating critically
[Eq. (28)] can also be partially verified a posteriori. In order for
this to be true we must certainly have electron scattering as the
dominant source of opacity and it is also essential that radiation
pressure dominates, at least near the surface of the disk. However
our models have made no detailed assumptions or predictions
about the equation of state or viscosity mechanism, so that the
only way to check this point is by indirect comparison with some
other models. Here we consider the “a disk” models investigated
by Shakura and Sunyaev (1973), where the boundary between
“zone a” (radiation dominating pressure, electron scattering do-
minating opacity) and “zone b” (gas pressure dominating, still
electron scattering) is given approximately by

rp =891 (am)?/* 116121

(59

where o <1 is the canonical measure of viscosity, m=M/M g, and
we have renormalized Shakura and Sunyaev’s expression using
our definition of rir [Eq. (52)]. Then r,<r,, is a necessary condition
for the consistency of our disks and this can be translated into a
bound on the product am. We find that this becomes only slightly
restrictive for small r, and B, for when f=1.0 and r,=2.05 we
must demand am>0.023, which is, however, satisfied for most
values of a. At larger r, values this condition is almost certainly
met, for at ry=210 it is am>2.810"° and at ry=3.0 it is
am>4.210712, Increasing B decreases r,, so even for the “worst”
case that we have looked at f=1.1, r,=2.05, this condition is
am>5.610"". Of course m>1 is expected for all black holes, so
the above bounds are even less strict when applied to « alone.
Another basic assumption, that the self-gravity of our disks is
negligible, is connected with our choice of Eq. (18) or Eq. (47) as
the potential. Because ri1 does get very large it is not obvious that
this is true for all our models, and it is difficult to estimate the total
mass of the disk within our framework. It is likewise difficult to
check that the flux of internal energy is negligible compared to
mechanical energy, and thus that our global condition Eq. (45) is
valid, without making further assumptions about the equation of
state and viscosity. Preliminary estimates indicate that neither of
these assumptions is bad for r, 2.2, but the very high accretion

rates and fluxes predicted when r,=r,,, will certainly be reduced
by the latter condition breaking down.

It should also be mentioned that while we have deliberately
built our models so that the thickness is continuous at the
transition radius, the flux F_,, need not be, since the slope dz/dr is
discontinuous across this boundary. If we went to the additional

. di(r) dl(r)
trouble of requiring that o), " dr 5
could be alleviated, but we would have to make the postulated
angular momentum variation substantially more complex. We feel
that little additional light would be thrown on the subject by
adding this refinement.

Yet another source of inaccuracy is our neglect of the red-shift
of the emitted radiation, for our pseudo-Newtonian potential
introduces a gravitational shift that mimics that of the
Schwarzschild metric. The basic effect would be to reduce the
observed flux from the innermost portions of the disk, both by
decreasing the frequency of the photons emitted and by lengthen-
ing the observed interval between them. This gravitational red-
shift will be coupled with a rotational one which will also be
strong in the inner portions of the disk and may either increase or
decrease the observed flux, depending upon the observer’s orien-
tation. One further effect that has been neglected, but is certainly
not negligible for the central part of the disk, is the capture of
radiation by the black hole, for a fair amount of the radiation
emitted from the inward facing portion will be swallowed. Only a
fully relativistic treatment can solve the question of what the disk
will look like to an external observer (cf. Sikora, 1980).

then this minor problem

5. Discussion and Conclusions

By making some simple physical assumptions we have been able
to construct models of the bloated inner portions of accretion
disks around black holes. These results are essentially inde-
pendent of assumed viscosity laws and they satisfy several self-
consistency tests. The procedure we have employed could be
generalized to the Schwarzschild metric without much difficulty
and it is possible that other extensions could be made.

Very large amounts of mass can be swallowed, and a no-
minally stable disk can be formed as we do not require Q. =0 _.
“Supercritical luminosities” are possible because we assume that
the disk is radiating at the local equivalent of the Eddington flux,
and even though the effective gravity is smaller, the bloated shape
provides a very large surface area that allows the disk to dissipate
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much more energy than is possible under conditions of spherical
symmetry. The reality of these “supercritical luminosities” will
have to be verified in the future with fully general relativistic
models.

We have only calculated the shapes and luminosities for two
simple families of angular momentum distributions. However,
within the power law form [Eq.(55)] we have come close to
exhausting the valid possibilities, because f<1 yields positive
angular velocity gradients implying that angular momentum
cannot be transferred outwards, while for § = 1.5 no matching thin
solution can be found. Thus, working within this framework, we
have a fairly narrow relationship between L or M and r,,. Because
the case f=1.0 is at an analytical limit and also yields the
maximum values for L and M, we can be fairly confident that we
have found approximate absolute maxima of these quantities.
Previous calculations have assumed that the lowest allowed value
for r, is 7,,. and in this case we do find L50.66 L., in agreement
with earlier workers (e.g. Bisnovatyi-Kogan and Blinnikov, 1977).

The disk shapes we have discovered range from quite bloated
ones that thin substantially before r, (for small ), to disks that
increase monotonically in thickness until 7, is reached, but which
can still be considered to be relatively thin there (for large r,). We
did not find disks which matched onto external portions which
became physically thin, i.e., z/r, was always greater than unity atr,.

The calculations presented here are just an early stage in our
understanding of the effects that cusps on the inner edges of
accretion disks can produce. Only if other angular momentum
distributions are considered will we be confident that f=1.0 really
does yield maximum values. In general, we expect the cusp to
open up somewhat and the accretion will resemble material
flowing through the inner Lagrangian point in a binary system.
Including this effect will allow estimates to be made of the infall
velocities and the amount of internal energy gobbled up by the
hole. The simple approximation of Koztowski et al. (1978) could
be applied to our models to determine these quantities approxi-
mately. Related to this feature is the expectation that hydrostatic
equilibrium in the inner region will be violated to some extent,
and that this would tend to reduce our M and L values.

As mentioned previously, red-shift effects and the trapping of
radiation by the hole must be considered in a more accurate
treatment. We should also note that the inward facing parts of the
disk will be subjected to strong radiative bombardment from the
opposite portion of the surface. This will evaporate part of the
disk and cause it to puff up even more. The cavities produced on
either side of the black hole will contain huge radiation energy
densities and could provide collimated beams for quasars and
radio galaxies, a prospect that has been suggested many times
previously in one form or another (Lynden-Bell, 1978 ; Rees, 1978
and references therein). The extreme thickness of the disk outside
the hole, and the sharp drop down towards the cusp, where the
bulk of the energy is radiated, suggest a crude analogy with an
ordinary star into which two tunnels have been bored, allowing us
to see directly the high radiation densities in its core. This

Note added in proof. A theory of non-barotropic thick disks in
general relativity has been recently published by M. Jaroszynski,
M. Abramowicz and B. Paczynski, 1980, Acta Astron. 30, 1.
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approach to the structure of the inner region may be very fruitful
in the investigation of the details of such collimation. By combin-
ing a fully general relativistic approach to the tracing of photon
trajectories (Sikora, 1980) with an iterative attack on the reflection
of radiation in the disk, the appearance of such a disk to a distant
observer could be found. Finally, more general equations of state
and geometries ought to be investigated by a suitable generaliza-
tion of our method.

All of the above problems deserve further attention and
development, and we plan to report on such elaborations in the
future. :
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