DOUBLE GALAXIES. I. OBSERVATIONAL DATA ON A WELL-DEFINED SAMPLE

STEVEN D. PETERSON

National Radio Astronomy Observatory,* Charlottesville, Virginia Received 1978 October 9; accepted 1978 December 11

ABSTRACT

A sample including 279 binary galaxies over a wide range of separations is selected from the Uppsala general catalog using well-defined criteria. The true angular separation distribution of the binary galaxies is reconstructed from the observed distribution and a statistical analysis of the selection criteria. Observational data are compiled on the galaxies using optical as well as radio information. The associated 21 cm neutral-hydrogen studies result in the detection of 149 member galaxies (94 without observed optical redshifts). In addition to accurate radial velocities, H I studies provide global measurements on individual galaxies, including total indicative mass and mass-to-light ratios, to be compared with values obtained from a statistical study of the orbital parameters.

Subject headings: galaxies: clusters of — galaxies: redshifts — galaxies: 21 cm radiation — radio sources: galaxies

I. INTRODUCTION

A determination of mass and the mass-to-light ratio in external galaxies is of basic astronomical interest, and yet it presents the observer with intrinsic and rather severe observational constraints. Mass estimates are based primarily on the analysis of (1) the velocity field in individual galaxies, (2) the orbital parameters in binary systems, or (3) the virial motion in groups and clusters of galaxies (for a review, see Faber and Gallagher 1979). While these mass determinations are independent and subject to differing sets of assumptions, each must rely on observational data in the form of angular separation and radial velocity measurements.

Mass estimates based on internal rotation curve studies are restricted to those nearby spiral systems which exhibit rather large angular diameters. The method is sensitive only to that fraction of the mass interior to the last measured point in the velocity field and thus provides a lower limit to the total mass (Burbidge and Burbidge 1975, and included references). An application of the virial theorem to determine the average galaxian mass in groups and clusters assumes both that the galaxies are physically associated and that the physical associations are stable. If either assumption is incorrect-that is, if the apparent associations are merely chance sky projections (Turner and Sargent 1974), or if the groups and clusters are physical associations expanding with total positive energy (Ambartsumian 1958, 1961; Karachentsev 1966)—then the mass will be overestimated (Neyman, Page, and Scott 1961; Peebles 1971).

An analysis of the orbital parameters in binary galaxies, although beset with projection effects and a possible selection bias, has the potential to yield a

* Operated by Associated Universities, Inc., under contract with the National Science Foundation.

reasonably direct measure of the average total mass in galaxies *including* contributions from all material within the orbital dimensions (Turner 1976*a*, *b*, and included references). The method is necessarily statistical in its approach and therefore requires a statistical sample of binary galaxies.

In this paper galaxy pairs are selected in terms of well-defined criteria and the attempt is made to assemble a sample of isolated physical pairs which contains a fair representation of widely separated doubles (§ II). The probability that the selection criteria will both exclude physical pairs and include spurious systems is statistically determined as a function of angular separation: the *true* angular separation distribution of the binary galaxies is then derived (§ III).

Observational data are compiled on member galaxies in the binary systems using both optical and radio information. The data include angular separations, radial velocities, and corrected magnitudes, as well as additional parameters based on 21 cm line studies (§ IV). The program of 21 cm neutral-hydrogen observations is discussed, with special emphasis on calibration and processing of the spectral line data. The reduced H I profiles are presented (§ V). Derived global properties of the member galaxies, including hydrogen mass content, luminosity, total indicative mass, and ratios of these parameters, are compiled (§ VI). A summary follows (§ VII).

The second part of the investigation (Paper II) will include the statistical analysis of observational data on the binary galaxies and a comparison with the results of earlier studies.

II. SELECTION CRITERIA

Previous investigators (Page 1952, 1961, 1966, 1975; Holmberg 1954; Karachentsev 1974; Turner 1976*a*, *b*) have established criteria for selecting binary galaxies

60 ĽS

40

30

Pai 50

which uniformly exclude widely separated pairs, stressing the importance of ensuring that prospective doubles be physically associated. In particular, the existing catalogs incorporate an angular separation cutoff (usually from 2' to 10') as a means of reducing the number of spurious entries. However, the existence of clustering on all scales of less than 5° ensures that a high percentage of the prospective pairs, including those at rather large separations, will indeed be physically associated, through common membership in either a binary system, a group, or a cluster. The major concern in developing a catalog of isolated physical pairs is thus one of separating the binary galaxies from those physically associated companions in multiple systems.

The isolation of a galaxy pair is usually defined in terms of its apparent (angular) proximity to other galaxies. Unfortunately, the insensitivity of this criterion to the association of physical binaries with faint background galaxies is responsible for creating spurious multiple systems and eliminating isolated pairs, especially at the wide separations.

In this investigation the isolation criteria are modified to include a magnitude range based on the magnitudes observed in the prospective pair: only those galaxies within the magnitude range are then involved in the isolation based on angular proximity. Other galaxies which are "faint" in comparison to the prospective members of the double are considered as background objects; if these galaxies are not in the background field, then at the very worst they are dwarf companions of the binary and cannot grossly affect the dynamics.

For the purpose of defining the isolation criteria, let g_1 and g_2 (with apparent magnitudes m_1 and m_2) be members of a prospective double with angular separation θ_{12} ; and let g_n (with apparent magnitudes m_n) (n = 3, 4, 5, ...) be neighboring galaxies with angular separations $\theta_{12,n}$ determined from the center of the pair. Then the criteria for isolation can be stated as follows: if

$$m_n > m_o(m_1, m_2)$$
 or $\theta_{12,n} \ge x \theta_{12}$
for each $g_n (n = 3, 4, 5, ...)$, (1)

then the two galaxies form an isolated galaxy pair. The $m_0(m_1, m_2)$ and x are parameters which characterize the range of the isolation in magnitude and angular separation, respectively, given by

x = 2.5

$$m_o(m_1, m_2) = 5 \log \left[\det \left(\frac{m_f}{5} \right) + 2.06 \times 10^2 \right],$$
 (2)

where m_f is the fainter of the two magnitudes. The adopted form of $m_0(m_1, m_2)$ is based on the use of apparent magnitudes as distance indicators, with the magnitude range reflecting a fixed distance scale and corresponding to the radial isolation component (see Appendix A for a derivation). As an example, if the faint component m_i of a prospective double were 13.5, then the pair would have to be isolated with respect to all galaxies having $m_n \leq 14.25$; if, however, $m_f =$ 14.5, the isolation criteria would extend to $m_o = 15.0$.

in the selected catalog of galaxy pairs. \mathcal{D}_{OB}^{I} represents the entire sample of 279 double galaxies, while \mathcal{D}_{OB}^{II} is restricted to the 160 doubles in the Galactic latitude range $|b| \ge 40^{\circ}$.

The isolation criteria were applied to the entries in the Uppsala general catalog (Nilson 1973, hereafter UGC), with membership in prospective pairs restricted to those 3271 galaxies with declination $\delta \ge 0^{\circ}$ and apparent magnitude $12.0 \le m_z \le 14.5$. From this analysis, 279 isolated doubles (\mathcal{D}_{OB}^{I}) were selected with an angular separation distribution displayed in Figure 1.

An identical analysis was performed using the Catalogue of Galaxies and Clusters of Galaxies (Zwicky et al. 1960-1968), with no significant change in the composition of the binary sample.

The parameters x and $m_0(m_1, m_2)$ were selected to strike a balance between reasonable isolation of the binaries and the selection of the systems in reasonable numbers. An additional criterion restricting the observed radial velocity difference ($\Delta v < 750 \text{ km s}^{-1}$) eliminates 27 of the 123 pairs for which both velocities are known. The ultimate success of these combined criteria in selecting isolated physical pairs is to be determined by arguments involving a statistical analysis of the sample based on the distribution of observed parameters.

III. DERIVED ANGULAR SEPARATION DISTRIBUTION

The selection of physical pairs on the basis of somewhat arbitrary isolation criteria cannot be expected to produce a pure or complete sample of binary galaxies: the list not only will include a number of spurious pairs but also will exclude a certain portion of the physical doubles. Although it is not possible to state precisely which pairs must be removed and which should be added, a knowledge of the selection criteria permits a statistical determination of the relative numbers involved in each of the two groups as a function of angular separation.

The relative number of physical pairs which have not satisfied the isolation criteria, and thus are not included in the catalog, is based on the probability that a physical double will have both a sky position and component magnitudes such that background or foreground galaxies will fall within the prescribed

 $D_{\alpha\alpha}^{\Pi}(\theta)$

528

angular separation and magnitude ranges, and the pair will be rejected.

Given a binary system with magnitudes m_1 and m_2 , and separation θ_{12} ,

$$1 - \exp\left\{-2\pi\rho_{\le m_0}[1 - \cos\left(2.5\,\theta_{12}\right)]\right\}$$
(3)

describes the probability that at least one random galaxy will fall within the ranges determined by the isolation criteria (eq. [1]), where $\rho_{\leq m_0}$ is the average angular density of galaxies with magnitudes no greater than m_0 .

Let P_{m_f} be the probability that an acceptable member of a pair will have an apparent magnitude m_f , and let $P_{\leq m_f}$ be the probability that its companion will have a magnitude no greater than m_f ; then $2P_{m_f}P_{\leq m_f}$ represents the probability that m_f will be the fainter of the two magnitudes in the pair. From these definitions,

$$P_{\rm RJ}(\theta) = 1 - 2 \sum_{m_f} P_{m_f} P_{\le m_f} \times \left[\exp\{-2\pi\rho_{\le m_f} [1 - \cos(2.5\theta)] \} \right]$$
(4)

is the probability, in general, that a *physical pair* with separation θ will be *rejected* under the isolation criteria.

In order to reduce the possible effects of Galactic obscuration, the theoretical analysis is based on the statistics of the 2022 galaxies in the UGC with $12.0 \le m_z \le 14.5$, restricted to the sky region defined by $\delta \ge 0^\circ$ and $|b| \ge 40^\circ$. The probability $P_{\rm R,J}(\theta)$ that a physical pair with separation θ will be rejected under the isolation criteria is presented in Figure 2.

 $P_{\rm RJ}(\theta)$ is also derived from a numerical simulation (Fig. 2). The numerical analysis is based on the random placement of 10,000 points throughout the restricted sky region, each point representing the possible position of a galaxy pair with component magnitudes reflecting the distribution of magnitudes in the observed binary galaxy sample. The numerical simulation incorporates both the apparent clustering and the observed magnitude distribution in the UGC, and therefore represents a more reasonable approximation of the true probability.

Random or spurious pairs are those entries among the list of binary systems in which the two component galaxies are physically unrelated. The relative number of spurious pairs included in the binary galaxy sample can be *approximated* through a comparison of the degree to which pairing is observed (disregarding the isolation criteria) with the extent to which it is expected at random.

Given a random distribution of galaxies with an average angular density β , the number of galaxies expected at separation θ from a selected galaxy is

$$2\pi\hat{\rho}\sin\left(\theta\right)d\theta$$
 (5)

and is equivalent to the average number of random pairs which involve the membership of that galaxy. Let N_T be the total number of galaxies to be considered in a given sky region, and let $N_{\rm RD}(\theta)$ be the total number of random pairs expected at separation θ ; then

$$N_{\rm RD}(\theta)d\theta = \frac{1}{2}N_T[2\pi\hat{\rho}\sin(\theta)d\theta]$$
$$= \pi N_T^2 \sin(\theta)d\theta/\Omega_T, \qquad (6)$$

where Ω_T is the total solid angle of the sky region and $\hat{\rho} = N_T / \Omega_T$. The factor of $\frac{1}{2}$ is included so that each pair is counted only once.

The probability that two galaxies with a separation θ will form a spurious pair is then defined as

$$P_{\rm RD}(\theta) = N_{\rm RD}(\theta) d\theta / N_{\rm OB}(\theta) d\theta , \qquad (7)$$

with $N_{OB}(\theta)d\theta$ the number of pairs (disregarding the isolation criteria) actually observed within the given region.

If the probability for selecting a spurious pair is to be applied to the list of binary galaxies satisfying the isolation criteria (eq. [1]), then $P_{\rm RD}(\theta)$ should be redefined as the ratio of the number of *isolated* pairs expected at random to the total number of *isolated* pairs observed. However, the actual occurrence of isolated systems is so reduced by the presence of clustering in the observed distribution that this latter ratio is meaningless, having values which often exceed unity. In this study, $P_{\rm RD}(\theta)$ (eq. [7]) is therefore adopted as the probability distribution which best represents the possible inclusion of spurious systems.

FIG. 2.—Probability $P_{\text{RJ}}(\theta)$ that a physical pair with apparent angular separation θ will be rejected under the isolation criteria and thus be excluded from the binary galaxy catalog. The theoretical analysis assumes both a random distribution of sky positions and apparent magnitudes in calculating P_{m_f} , and is based on two possible definitions for $P_{\leq m_f}$. The numerical simulation reflects the observed clustering and the actual magnitude distribution in the UGC.

FIG. 3.—Probability $P_{RD}(\theta)$ that a random or spurious pair with angular separation θ will be included in the binary galaxy catalog. The probability is statistically determined from a comparison of the degree to which pairing is observed with the extent to which it is expected at random (disregarding the isolation criteria) as a function of angular separation.

Both the expected number of random pairs $N_{\rm RD}(\theta)$ and the number of pairs observed $N_{\rm OB}(\theta)$ have been determined from an analysis of those galaxies with $12.0 \le m_z \le 14.5$, restricted to the sky region defined by $\delta \ge 0^\circ$ and $|b| \ge 40^\circ$; the resulting probability $P_{\rm RD}(\theta)$ is plotted in Figure 3. An examination of $\mathcal{D}_{\rm OB}^{\rm I}$, the primary sample of

An examination of \mathscr{D}_{OB}^{I} , the primary sample of isolated double galaxies, indicates that 59 (21%) of the 279 pairs could be expected at random, given the probability distribution $P_{RD}(\theta)$. The reliability of this estimate is difficult to judge, although there is evidence to suggest that it is rather good. Of the 123 galaxy pairs in \mathscr{D}_{OB}^{I} with redshift information available, 27 systems have radial velocity differences $\Delta v >$ 750 km s⁻¹, indicating that these pairs are probably spurious entries. On the basis of probability $P_{RD}(\theta)$, 26 out of the 123 galaxy pairs could be expected at random. The agreement suggests that, in general, the relative number of spurious pairs can be reasonably predicted and that, in particular, a spurious pair can be eliminated on the basis of radial velocity measurements.

Given the observed distribution $\mathscr{D}_{OB}^{II}(\theta)$ in the region $\delta \geq 0^{\circ}$ and $|b| \geq 40^{\circ}$,

$$\mathscr{D}_{\mathrm{TR}}(\theta) = \mathscr{D}_{\mathrm{OB}}^{\mathrm{II}}(\theta) [1 - P_{\mathrm{RD}}(\theta)] / [1 - P_{\mathrm{RJ}}(\theta)] \quad (8)$$

represents the *true distribution* of angular separations for the physical doubles.

After grouping the observed pairs (\mathcal{D}_{OB}^{II}) into overlapping 4' bins on the basis of angular separation, $\mathcal{D}_{TR}(\theta)$ is plotted as a logarithmic function of the average separation θ within each bin (Fig. 4). A weighted least-squares linear regression on the 23 data points yields

$$\log \left[\mathscr{D}_{\text{TR}}(\theta)\right] = (1.83 \pm 0.09) \\ - (0.50 \pm 0.08) \log \left(\theta\right)$$
(9)

and hence

$$\mathscr{D}_{\mathrm{TR}}(\theta) \propto \theta^{-(0.50 \pm 0.08)} \,. \tag{10}$$

A χ^2 estimate for the goodness of fit supports the power-law model. After dividing the data into morphological classes (spiral pairs, elliptical pairs, and mixed systems), a further analysis yields linear regressions which are consistent, given the errors, with a solution (eq. [10]) based on the complete sample.

IV. OBSERVATIONAL DATA

a) Table 1

Observational data on galaxies which form the 279 pairs in \mathcal{D}_{OB}^{I} are compiled in Table 1; the tabulated entries are explained and referenced by column number.

FIG. 4.—True distribution of angular separations θ for physically paired galaxies. $\mathscr{D}_{TR}(\theta)$ is based on the observed distribution, $\mathscr{D}_{OB}^{II}(\theta)$, and accounts for the effects of the selection criteria, incorporating both the probability $P_{RJ}(\theta)$ of rejecting a physical double and the probability $P_{RD}(\theta)$ of accepting a spurious system. Standard errors in log (θ) reflect the grouping of the data, while standard errors in log [$\mathscr{D}_{TR}(\theta)$] represent the statistical fluctuations expected in the observed distribution. The latter predominate over the former and are thus used as the basis for weighting the data in the regression.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

TABLE 1	rvational Data (Q _{ob} ⁱ)	
	OBSERVA	

SEP (min)	(11)	24.09	9.11	15.34	6.33	01-10	60.73	8.39	5.61	2.30	1.76	0.57	19.26	11.23	21.72	5.31	2.85	66*6
DFILE VIDTH V/S)	(16)	367	364 354	280				217		<u> </u>			365	360 302		409		
HI PR(AREA V	(12)	11.02	8-92 12-05	4.69				4.27					7.55	8.25 9.09		14.40		
, NOTE S	(14)	9, 2 10, 2	8, 2 8, 1	8,1		10,1 8,1		4,2,1					3,2,1	6, 2 10,2		8,2		
-DCIT' M.E. /S)	(13)	10	15 15	15				25					20	10 20		10		
DIAL VEI RADIO (KM,	(12)	4548	4566 4583	5136				5206					5869	505.0 491 0		2370		
ED RA	(11)	æ	60		В В Е	B Z			ш	8 8	භභ	60 60				νa		
BSERVE M.E. /S)	(10)	50	100		50 2 6	50 220			120	150 65	100 150	50				38 40		
00 007L (KM)	(6)	3110	4568		5289 4243	5255 4477			5010	4341 5374	4401 4845	5156 4888				2362 2306		
ZWKY Mag	(8)	13.4 12.5	12.5 13.9	13.8 14.2	14.2 13.2	13.7 13.3	14.0 13.6	13.4 14.3	14.1 12.5	13.9 14.0	14 .3 14.3	14.2 13.6	13.8 13.3	14.5 14.2	14.2 14.0	12.4 12.9	14.3 13.6	14.2 14.0
POS ANG (DEG)	(2)	120 16	8 100	50 140	1	45 88	160	80	120 40		135		105 20	43	85	155	20	32
5 DIA 111)	(9)	1.20 1.00	1.60 1.10	0.70 1.10	1.50 0.90	1.60 1.10	0.80 1.10	1.30 0.90	0.80 2.50	1.10 0.80	0.80	0.25 1.70	1.90 1.40	0.60 1.50	0.45 0.70	1.90 9.00	1.00	1.00 0.80
BLUG	•	1.80 1.80	2.20	1.60 1.50	1.60 3.00	3 . 00 3 . 50	1.20 1.60	1.70 0.90	1.50 3.00	1.30 1.50	1.10	0.25 2.00	2.50	2.20 1.50	0.65 1.20	3.30 10.00	1.30 2.10	1.20 2.60
HUB TYP	(5)	1S 55	53 55	\$5 \$7	51 51	53 D	აა	5 1 S	S1	E S1	s1 E	п SI	57 50	57 57	S1	56 51	51 S1	S3 S3
GLACT LAT (DEG)	(4)	-34•1 -34•2	-36.C -36.1	-15.3 -15.1	-59.5 -59.5	-38.8 -38.8	-26.0 -26.5	-35.2	-32.6 -32.5	-30.3 -30.2	-30.5 -30.4	-30.3	-23.4	-19.6	-47.4 -47.5	-58.7 -58.7	-28.9 -28.9	-30.2 -30.2
DEC		27 25 50 27 27 8	25 38 50 25 33 16	46 57 50 47 9 26	2 33 48 2 35 20	23 41 0 23 43 0	36 31 53 36 3 15	27 21 3 27 25 6	30 0 35 30 4 58	32 13 1 32 15 16	32 1 33 32 3 15	32 8 13 32 8 46	39 7 56 39 22 40	42 50 37 43 1 23	14 43 44 14 31 20	3 8 53 3 9 17	33 12 45 33 10 8	31 54 24 31 52 31
R A (1950,	(3)	4 41.3 6 29.7	7 19.3 7 51.3	16 55.5 17 54.4	26 16.2 26 40.8	33.26.0 34 13.7	39 22.5 43 48.3	45 20.9 45 54.0	54 49.6 55 5.8	4 32.3 4 30.0	4 39.7 4 41.9	4 38.7 4 39.4	4 43.6 5 47.7	7 18.8 7 36.3	16 6.3 17 20.0	17 10.5 17 31.7	21 48 . 8 21 54.2	21 56.5 22 42.7
		00	00	00	00	00	00	00	00									
ME NGC *IC	(2)	1 16	23 26		125 128	160 169		252 260	311 315	380 379	384 385	382 383	393		471	410 474	515 517	
NGC	(1)	57 80	89 94	183 196	286 292	356 365	444 480	491 491	592 597	682 683	686 687	688 689	707 707	725 728	838 861	858 864	956 960	959 987

- Personal P
\sim
S
•
•
0
÷.
~
•
JS.
JS
oJS
ApJS
ApJS
9ApJS
19ApJS
79ApJS
979ApJS
1979ApJS

1-Continued
TABLE

. =	-	12	9	9	6	5	•		1	10	č	5	1	2	*	8	Ę	÷
SEF	11	25.6	8	57.5	19.3	8	5.1	48.4	27.6	2•3	¢.		7.1	5.1		2.5	29.5	10-6
DFILE VIDTH V/S)	(16)			404	187 163	239 502			277			213		238	495 477		500 458	307
HI PR(Area 1 (JY-K)	(12)			6.71	11.45 3.89	5.33 9.74			12.87			24•02		3.51	12.38 14.86		14.09 8.53	5.50
NOTES	(14)			7,2,1	7,2 6,3	12,2 18,4			5,2			8,2		2,2,2	18,3 6,2		12,1 11,2	4,1,1
0CITY M.E.	(13)			20	15	15 10			15			10		15	20 10		10 15	25
I AL VEL RADI O (KM/	(12)			5239	2806 2796	4981 4354			2735			2928		5009	5647 5764		4245 5374	4553
ED RAD R EF	(11)	۲⊢	z					2				ΚZ	s			۲H	ш	
BSERV M.E. / S)	(01)	192 86	45					200				43	28			34 69	120	
0 0PTL (km	(6)	5755 6319	5160					5400				2870	5019			8610 8573	5430	
ZWKY Mag	(8)	14.3 14.2	13.1 13.2	13.7 14.2	14.3 13.5	13.6 13.7	14•0 13•9	14.1 14.2	14.5 13.8	13.3 13.0	13.3 14.5	13.9 14.0	12.7 14.2	13.9 14.4	13.1 13.5	14 . 3 14 . 2	12.7 13.0	13•2 12•8
POS ANG (DEG)	(1)	165	160 62	30 150	55	58	32	45 74	170 95	78		160 95	155 150	70	65 150	135 5	113	20 135
DIA Inj	6)	2•00 0•80	2.10 1.70	1.20 1.80	1.60 0.40	1.60 0.60	0.60 1.50	1.70	0.60	1.10 2.40	1.40 2.30	0.35	2.20	0.80	1.40	0.80 1.50	1.40 2.70	0.50 1.00
BLUE	3	2.00 1.20	2.40 3.40	1.90 3.60	2.10 C.45	1.70 2.20	0.90 1.60	2.10 1.40	1.10 2.00	5.00 2.70	1.40 2.30	0.50 3.00	2.80 1.10	2.10 0.60	1.90 3.30	1.50 3.00	3.50 3.50	1.20 2.00
HUB TYP	(5)	шv	50 55	57 52	57 P	57 55	S1	55 S1	٩	E S5	S1 E	Р 57	E S1	S3	S3 S7	\$1 \$5	P 56	s \$
GLACT LAT (DEG)	(4)	-47.2 -47.2	-27.6 -27.6	-16.E -17.3	-21.3 -21.C	-28.5 -28.6	-28.3	-60.2 -59.6	-40.6	-38.9 -38.9	-25.0	-38.8 -38.9	-29.2 -29.3	-33.8 -33.7	-22.6	-44•6 -44•6	-21.7	-22.6 -22.7
		6 13 1 1	7 14 6 35	0 24 0 21	2 56 0 56	138 38	4 536	4 35 6	0 57 7 48	4 58 3 22	7 25 1 45	5 1 2	1 22 4 19	4 28 8 15	2 41 1 11	8 O	2 22	5 48
. 0)		14 3 14 3	34	45 45 45 45	4 0 4 4	33 2 33 1	33 2 33 2	τύ 00	202	21 4	36	21 4	31 I 31	26 L 26 L	37 5 38	14 2 14 3	9 9 9 9 9 9	37 2
A (1950	(3)	44.7 29.2	50.0 31.4	47.6 41.5	4.4 53.1	55.2 7.0	37.0 0.6	25.6 12.7	1.8 30.3	39.3 1.4	37.7 55.3	12.5 22.2	21.2 25.6	40.3 56.0	27.9 44.9	2.0	42.7 7.0	0.6 16.9
œ		1 22 1 24	1 22 1 23	1 26 1 30	1 27 1 27	1 28 1 29	1 32 1 33	1 33 1 36	1 46 1 46	1 46 1 47	1 47	1 48 1 48	1 57 1 57	1 58 1 58	5 0 5 7	2 I 2 I	252	88 17 17
NGC +IC	(2)	1700	529 536	590	573	519 582	6C8 614	622	163	678 680	687	694 167	777 778		108 151	155 196	818 828	834 841
UGCNA	Ξ	986 * 1027 *	995 1013	1068 1109	1070 1078	1089 1094	1135 1140	1143 1169	1265 1276 *	1280 1286	1298 1308	1310 1313 #	1476 1480	15C7 1510	1541 1550	1555 * 1556 *	1 633 1655	1672 1676

щ
\sim
S
<u> </u>
\circ
4
•
•
:
ີ ເ
JS
pJS
ApJS
ApJS
9ApJS
79ApJS
979ApJS
.979ApJS.
1979ApJS

Continued	
1	
TABLE	

SEP (MIN)	(11)	11.68	5.31	9.54	4.53	3.57	19.26	2.01	5.63	10.25	8,75	3.45	43.75	11.39	1-10	38.63	6.40	0.73
HI PROFILE Area WIDTH (JY-KM/S)	(15) (16)	13.11 314 40.07 495	2.33 170				3.57 291		3.44 173		4.58 219		6.56 257				18.58 449	
ITY E. NOTES	3) (14)	0 10,2 5 8,2	5 5,1,1				0 8,2		5 4,3,1		5 4,1,1		0 5,2,1				0 14,2	
IDIAL VELDC Radio M. (Km/S)	(12) (1)	3740 1 3914 2	5159 2				4915 5		4372 2		7089 2		2377 3				4053 1	
OBSERVED RA M.E. REF M/S)	(11) (01)	25 CR 68 C												1 41 E	105 K	10 MR	LO EMR	
6 0PTL 6 (K	(6)	.6 3731 .5 4016	0.2	.8	5.		60	ئ ی	۰. ۲	•2	ۍ 4	\$ O	w 4	•2 6103	.3 3890 .1 3378	•0 4694	-5 -8 4054	.1.
POS ZWH Ang Ma([Deg]	(1) (8)	4 13 140 12	143 13.	13 100 13	48 13	110 14 132 13	140 14	14	154 14 61 14	148 13 15 14	105 14	23 12 50 13	75 14 168 13	14 160 14	13 175 14	80 14 15 14	43 14. 13	101 13 150 14
LUE DIA (Min)	(9)	10 0.35 30 1.80	20 1.20 10 0.50	80 1.70 50 1.20	7C 1.60 00 0.60	70 0.90 80 0.70	50 1.30 50 1.00	40 1.40 10 1.00	20 0.22 30 0.45	50 0.90 10 1.40	40 1.40 50 0.35	80 2.00 50 0.70	50 0.90 80 0.70	50 1.40 50 1.20	80 1.70 50 0.80	50 0.80 70 1.30	40 1.80 80 1.60	50 0.35 40 1.00
НUВ 81 ТҮР	(5)	s7 2.	\$9 1.	S3 1.	S1 1.	S1 1. S3 1.	S3 1.	E 1.	S3 1.	s 55 2.		S1 2.	57 1. 52 2.	E 1.	н. Шо	S5 1.	\$5 2. \$1 1.	S2 1.
GLACT LAT (DEG)	(4)	-43.4 -43.3	-21.7 -21.7	-37.1 -37.1	-25•6 -25•5	-17.8 -17.9	-23.5 -23.2	-16.9 -16.9	-51.2 -51.2	-40 . 1 -40.2	-46. 8 -46. 7	-12.1 -12.1	18.9 19.6	-13.4 -13.3	-30.5 -30.5	-22.2 -21.8	22.7 22.1	19.4 19.4
. 0)		14 19 5 14 19 1	37 50 48 37 47 40	20 6 32 20 3 37	32 12 41 32 17 13	40 42 29 40 39 6	34 12 59 34 24 33	41 25 56 41 27 19	1 20 40 1 17 41	12 48 43 12 38 43	3 9 43 3 14 5	44 42 1 44 45 28	79 56 25 80 36 29	39 11 2 3 39 22 46	0 33 17 0 33 30	4 54 3 5 32 35	71 9 5 71 3 10	59 9 5 59 8 58
R A (1950	(8)	2 14 27.1 2 15 15.3	2 15 2.8 2 15 24.5	2 25 6.1 2 25 44.8	2 31 20.5 2 31 20.5	2 32 9.1 2 32 15.1	2 34 37.7 2 35 52.3	2 35 28.4 2 35 36.2	2 37 11.8 2 37 30.9	2 50 56.9 2 51 6.1	2 55 34.4 2 56 4.8	2 57 53.9 2 57 53.1	3 2 9.8 3 9 6.3	3 31 1.0 3 31 2.2	4 28 5.2 4 28 9.5	4 56 30.0 4 56 41.2	6 9 18.8 6 9 48.8	6 17 8.0 6 17 13.6
NAME UGC NGC *IC	(1) (2)	1759 871 1768 877	1767 1772	1931 930 1947 538	2047 #1815 2048 973	2063 582 2066 980	2105 2133 1002	2123 596 2127 999	2152 *1827 2158 1038	2365 1134 2368 * 267	2439 1153 2446	2474 1161 2475 1160	2519 2583 1184	2783 2784	3063 1587 3064 1588	3223 3224	3422 3426	3445 3446

1—Continued	
TABLE	

L N	(11)	-91	06.	, 5 j	lt.	.92	, . 29	.11	. 67	• 58	.37	.15	. ئ5	.43	• 53	. 93	. 45	. 26
ς Έ 	•	14		17	1¢	17	15	~	~	8	9	13	13	12	•	18	12	- 23
DFILE AIDTH 4/S)	(91)				563	486	165		333		236		457					285 351
HI PR(AREA V	(12)				11.25	22.17	45.34		19.08		21.18		10.08					9.50 11.37
NOTES	(14)				5,2,1	6, 2	3,2,1		5,2		7,2		8,2					17,2 14,2
ЭСІТҮ М.Е. S)	(13)				30	10	10		20		15		10					20 10
IAL VEL RADIO IKM/	(17)				1340	4497	1800		3141		2419		4424					3782 3990
ED RAC Ref	(11)							¥	ER		CR BC		പ					C R
SERVE M.E.	(01)							120	18		28 25		62					27
06 0PTL (KM/	(6)							5766	3150		2369 1958		4521					3798
ZWKY MAG	(8)	14.0 13.2	13.6 14.5	14.4 14.2	13.5 14.5	13.5 13.6	13.1 14.5	13.7 13.8	13.1	13.7 12.6	12.3	14.3 14.5	13.4 13.2	13.4 12.7	13.8 13.3	13.9 14.2	14.0 13.6	12.5 14.2
POS Ang Ideg)	(7)	150	20		ŝ	30 110	50	175 77	76 35		20	13	175	112	120 45	45	150 25	151
014 01	-	2.00 1.50	1.80	0.60	1.00 0.45	1.00	4.00 0.30	1.10	0.20	0.90	2.50	0- 70 0- 40	0.80 1.50	06.00	1.10	0.90	1.10	1.00
BLUE	(6	.30	- 80	.80	. 10	. 40	0.4		00.00	. 90	.20	• 50	.00.	• 00 • 80	•60	-10	20	
HUB TYP	(2)	E 2 S1 2	S H	шv	S1 -1	S1 1 S3 1	S5 4 S3 1	50 I	N S	۹ م ۱	57 2 E 3	-0	S5 2	S1 1 S5 1	S3 1 S3 1	S1 1	ш s	۹.۵
SLACT LAT (DEG)	(4)	25.7 25.8	·13.8 13.8	26.5 27.2	17.7 17.8	25.6 25.8	25.7 25.5	22•E 22•8	27.2 27.3	13.0 13.0	27.7 27.8	19.4 19.6	26.9 26.5	26.9 27.0	28.7 28.7	28 .1 28 . 4	22•2 22•3	24•0 24•2
o) DEC		74 17 22 74 32 9	33 37 19 33 39 13	81 138 81 123	39 49 50 40 3 55	64 5 43 63 55 36	61 40 29 61 52 3	48 41 48 48 42 58	71 55 1 71 49 56	20 40 58 20 43 3	85 50 58 85 48 31	35 11 1 35 22 0	65 0 46 64 47 53	58 9 44 58 4 1	73 44 1 73 48 33	55 35 16 59 43 58	31 30 58 31 23 10	35 21 18 35 43 10
1950.	(3)	7.5	0.0	5.1 4.5	8.2 1.4	9.8 9.8	13.1	1.1	6.3 6	4.2	5.1	9.9 5.3	3.1 6.2	1.5	0.1 1.3	·8.5 1.6	9•0 4•5	19. T 18. T
R A A		6 40 4 6 41 1	0 44 0 44	6 45 3 6 53	6 52 6 52 2	6593 714	7 4 3	7 5 3	7 5 3 7 6 4	7 6 1 7 6 2	7 10 2	7 10 4	7 10 4 7 11 1	7 18 5 7 20 2	7 24 4 7 24 4	7 26 4 7 29	7 30 5 7 31 4	7 33 3 7 34 1
1E NGC *IC	(2)	2256 2258	2274 2275					2329		2341 2342	22 76 2300		*2179 2347				*2196 *2199	2415
NANUGC	(1)	3519 3523	3541 3542	3549 3604	3596 3601	3642 3660	3685 3704	3696 3696	3657 3714	3708 3709	3740 3798	3742 3752	3750 ⁻ 3759	3816 3828	3858 3859	3885 3897	3910 - 3915 -	3930 3937

Δ.
2
01
ìò
<u> </u>
0
4
•
•
•
S
Б
4
RL.
0
<u></u>
σ
-

1-Continued	
TABLE	

SEP	(11)	3.85	13.92	13.13	3.32	27.85	14.83	5.44	10.72	42.28	5.44	61.11	4.72	12.10	60.83	8.02	12.43	
FILE 10th /S)	(16)		225	277		144 174		384	360 368		327			346 342			241 365	
HI PRO Area W (JY-Km	(15)		5 • 83	14.07		9.32 3.83		44.10	9.24 9.33		5.16			11.02 12.55			4.66 3.87	
NOTES	(14)		6,1	4,2		16, 2 16, 2		6,2	12,2 8,2		2,1,2			10,1 6,2			10,1 20,2	
0CITY M.E. S)	(13)		25	15		10 15		10	15 10		15			10 15			1 5 15	
DIAL VEL RADID (KM/	(12)		4365	3943		230 l 228 6		1450	4080 4913		4826			2685 4131			362 6 382 6	
ED RA REF	(11)			KRZ			κz	шæ					B X			J	7	
BSERV M.E. /S)	(01)			33			43	95 50					50 39			43	220	
0 0PTL (KM	(6)			4068			6104	1545 1442					4963 4642			2141	3594	
ZWKY MAG	(8)	14.2 14.5	14•0 13•6	12.7 13.4	14•4 14•1	14.2 13.1	14.3 13.6	14•5 12•5	14.4 14.5	13.4 13.1	14.3 14.0	14.2 14.4	14.0 13.7	13.9 14.0	13.9 13.9	12.4 12.6	13.4 14.3	
POS ANG IDEG)	(2)	167	35 90	10 55			30 3	145 70	51 1 05	135	100	95	3 80	168	60 140	175	155 82	
DI A Ni	~	0.60	1.20	0.90 0.70	0.30	2.00 1.60	0.80 0.50	0.80 2.80	0.35 0.55	0.80 2.20	1.10	0.50	1.00	0.45 1.00	0.90 2.50	1.70 2.00	0.45 1.30	
BL VE (MI	(6	0.60	1.60 2.30	1.10	0.45	2-10	00.1		06-00	2.20	1.90		2.00	1.50	3.00	2.80 2.00	0.10 1.80	
HUB TYP	(2)	E S5	S1 S3	s s S 3	0	57 58 58	шv	s5 S5	٩٩	ы S Ш	S5 S5	S 3	S1 S1	es ES	\$ 83	Sg	55 J	
GLACT LAT (DEG)	(4)	28.5 28.6	28.4 28.4	30.C 30.3	29.8 29.8	29.8 30.3	30.8 30.5	31.3 31.4	31.2	29.0 29.6	25.1 25.2	33 • 5 33 • 7	28.6 28.6	21.4 21.6	23.9 23.4	33•5 33•5	35•3 35•3	
DE C		9 47 10 9 44 0	5 3 16 5 17 11	4 29 0 4 30 59	0 18 27 C 21 45	8 8 45 7 57 26	53730 5508	0 26 13 0 29 1	6 44 38 6 34 18	0 3 46 9 58 5	5 17 48 5 17 8	5 7 13 4 57 12	1 17 27 1 13 40	3 19 45 3 25 43	1 53 41 0 52 52	4 17 0 4 9 6	0 17 40 0 29 8	
950.0	(3)	5 4 4	6 7 8	 	 20	3 7	0 N 0 N	9 9 9 9	ω. ČČ	5 4	5 N 0 0	8°.	-1 -2	~ 4		, T , T	1 1	
R A (1		7 39 51	16 14 1 7 41 49	7 44 44 7 47 59	7 47 32 7 47 34	7 49 5 7 57 17	7 50 11 7 51 6	7 51 58 7 52 35	7 52 3 7 52 32	7 53 22 7 57 1	7 54 55 7 55 18	8 9 2 8 10 4 0	8 17 28 8 17 40	8 18 51 8 19 33	8 33 13 8 33 18	8 42 35 8 42 56	8 44 7 8 45 4	
E NGC *IC	(2)	471 472	469				2456	2209 2460		2 476 2 49 3	2486 2487		2562 2563	2327 503	2618	2633 2634	2650	
NAM JGC	(1)	182 × 185 *	63 194 +	128 157	51	66 51	73	93 *	55 98	50	23	67 80	420	56 * 66 *	91	74	93 03	, I

1-Continued
TABLE

SEP MI NJ	(11)	3.34	0.81	7.53	3. 39	7.32	3.55	8.53	1.63	3.74	3.48	1.27	1.23	4.85	6.1 8	7.58	0.53	4.80
ш <u>н</u>	-		1				4 										5.2 7	
KOFIL WIDT (M/S)	(16			340	4 28		4 31					4			34		4 93 93	
HI PI Area (JY-1	(12)			9•0 4•2	9 ° 2		28.2					3.6			22 • 3(81.4	
NOTES	(14)		28,2	8,2 2,1,2	10,1		5,1,1					20,2			7,2 2,1,2		8,1 2,1,3	
DCIT) M.E. S)	(13)			15	10		10					50			20		10 20	
IAL VEL Radio (Km/	(12)			3102 2714	3431		2264					3775			1319		1482 1541	
ED RAD Ref	(11)		B K	s	8 B E				60 ez	шш		шш	ΚZ	8 E X 8	8 Z E		eυ	
SERVI M. E.	(01)	14 15	26 50	20	50 2 4	21 22			75 40	95 18		95 95	43	26 100	41 73		60 32	
00 TL 07 TL	(6)	3669 3757	3875 3537	2627	3450 4236	2060 2216			1708 1737	1663 1686		2976 3620	3661	3181 3370	1310 1613		1476 1534	
ZWKY MAG	(8)	13.6 14.1	12.9 13.7	13.8 13.9	13.7 13.3	13.1 14.2	12.8 12.0	14.0 13.9	12.9 14.4	14•0 13•1	13.8 13.9	13.0 13.5	13.9 14.3	13.6 13.7	12.0	14.3 14.4	12.3 12.6	14•5 14•3
POS ANG	(1)	165	107 30	55 15		40 150	27 145	90	160 125	179 59	50 134	43	145 13	140 15	97 45	125	110 110	
DIA (N)	3	1.40 0.40	1.40 1.20	0.70	1.00	1.00 0.70	0.80 1.80	1.30 1.40	0.90 0.50	0.25 0.35	0.55 0.50	1.70 0.80	0.35	3.00 0.60	1.90	1.10 0.90	1.70 0.90	0.70 0.60
BL VE	3	1.60 1.36	4.00 1.60	1.50 1.40	1.60 1.80	1.40 1.00	1.40 3.90	1.50 1.60	2.80 2.10	1.30	1.90 1.10	1.80 2.40	0.60 1.80	4.00	3.50 2.40	1.40 1.20	5.70 1.50	0.80 1.90
HUB TYP	(2)	s. *	55 51	აა	οw	ъ	s S7	51 S1	s 33	57	s5 S	E S 7	р 57	S3	5 <i>6</i>	51 51	57 S	sa
GLACT LAT (DEG)	(7)	40 • 1 40 • 1	29.2 29.3	38 . 4 39.2	37.4 37.5	43.0 43.1	35.7 35.5	40. 7 40. 7	44 • 3 44 • 3	40 • 2 40 • 3	44 • 8 44 • 8	39 • 4 39 • 4	39.1 39.1	40•6 40•6	49.C 49.1	47.5 48.1	50.3 50.8	50.0 50.1
		51 33	57 3	1 46	38 53	0 57	46 7	30 50	37 15	50 16	4 8	56 31	44 2 E	30 58	35 26	50 18	16 20	41 23
DEC		52 17 52 15	3 6 3 17	22 10 21 38	18 39 18 30	35 14 35 7	74 31 73 58	20 24 20 16	42 12 42 12	54 27 54 28	49 25 49 27	11 38 11 38	58 37 58 38	LO 22 LO 19	32 4 32 9	22 14 22 19	83 39 83 47	44 31 44 33
950.((3)	4 0	e	5.0	9 4	0.4	20	2.9	• • • • •	2.	80.40	5 1	~ 6	- e	4.0	0 10	6 6	m
R A (1		53 6 53 22	54 44 54 59	1 7 5 25	1 49 2 32	9 19 9 39	13 21 13 27	13 59 14 16	14 9 14 18	17 9 17 43	20 39 20 53	23 0 23 5	23 31 23 42	31 5 31 22	39 56 40 14	44 1 44 27	45 37 47 59	47 1 47 26
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80 CQ	<b>0</b> 0	<u>.</u>	<u> </u>	00	00	<b>Ф</b> Ф	00	00	0.0	00	00	00	<u>.</u> .	00	<u>م</u> م
4E NGC *IC	(2)	2692	2713 2716	2738 2764	2744 2749	2778 2780	۲ 529	2864 2809	2798 2799	28 <b>14</b> 2820	2854 2856	2672 2874		2911 2914	2964 2968	2991 2954	3003 3021	3010 3010
NAN	(1)	4671 4675	4691 4692	4752 4794	4757 4763	4840 4843	4883 4888 1	4910 4910	4905 4909	4952 4961	4995 4997	5018 5021	5028 5029	5092 5096	5183 5190	5233 5239	525 <b>1</b> 5280	5264 5273

$\sim$
S
Ö
$\sim$
_
N.
S
JS4
JS4
pJS4
ApJS4
ApJS4
9ApJS4
79ApJS4
79ApJS4
979ApJS4
1979ApJS4
1979ApJS4

ntinued	
<u>1</u>	; ;
TARLE	

SEP (MIN)	(11)	2.83	44. J.L	2.97	26.50	36.12	9.35	0.17	2.33	1.26	18. 39	29.03	32.83	11.81	3.46	13.83	33.64	1.49
FILE IDTH /S)	(16)		23 <b>4</b> 289			291 329			497			186	233	338		368		
HI PRO Area W (JY-KM	(15)		9.57 5.33			15.99			18.10			5.25	7.57	8.91		10.93		
r NOTE S	(14)		7,2 10,2			8, 1 8, 1			8,2			8,2	6,2 24,1	4,1,1		8, 2		
LOCIT M.E. /S)	(13)		10 20			10			25			10	10	15		10		
DIAL VE RADIO (KM	(12)		1492 1561			331 5 3296			1165			1516	1307	2884		6184		
/ED RAC . REF	(11)		8	с п С С					8 EM 8 MR		υ		ъ					C C E R M
085ER\ M:E. 1/S)	(10]		150	26 31					13 14		60		50 75					6 16
	(6)		1568	1963 2050					1356 1152		1743		1302 1333					1625 1680
ZWKY Mag	(8)	14.2 13.5	13.8 13.0	12.9 12.8	13•5 14•3	14•4 14•1	13.9 14.0	14•4 14•5	13.3 12.2	14.3 14.0	12.9 13.5	14.1 14.5	12.9 12.2	14.1 13.7	14•4 14•5	13.3 13.6	14.3 12.8	12.1 12.6
P OS Ang (deg)	(7)	27 70	82 95		148 30	100	80 40	170 15	15 155		20 1 05	30 137	20 52	3 141	4 A 4 5	102 90		50 100
DIA In)	6)	1.00 1.60	0.70 1.70	1.70 1.20	0.80 0.60	1.40 0.90	1.10	1.10	2.20 4.50	0.90 1.00	1.20 1.20	0.60 0.80	1.00	1.•70 0.•50	0.50	0.80 1.10	1.10 2.10	1.00
BLUE	-	1.30 3.20	2.60 2.00	1.80 1.20	1.10	2.20 1.50	1.30	1.40	2.50 6.50	1.70	2.30 1.40	1.50	2.10 3.4C	2.00 1.40	1.60 1.00	1.80 1.40	1.10 2.30	1.80 3.70
HUB TYP	(5)	აა	59 51	s1 S	P S2	57 S	ш¢	<b>S1</b>	с S5	ss	55 S1	s s	59 51	57		\$5 \$7	s S	57 59
GLACT LAT (DEG)	(4)	39.C 39.0	50.3	39 <b>.</b> 4 39.5	5°24 5'25	44 - E 45 - 2	56.3 56.3	36. C 36. O	55.4 55.4	35.2 35.2	46 • 2 46 • 5	59.E 60.2	58.5 59.0	55.3 55.4	57.C 57.C	53.6 53.6	62.1 62.7	63.1 63.2
DEC .0)		0 51 22 0 51 15	28 47 1 29 28 20	72 24 40 72 22 0	10 36 25 10 13 17	65 23 16 65 25 26	25 45 22 25 37 3	78 52 4 78 51 48	20 9 7 20 7 0	80 4 47 80 4 7	65 17 56 65 0 26	35 30 58 35 18 43	21 54 33 22 8 33	12 57 58 12 54 48	48 12 28 48 11 32	7 1 18 6 51 28	35 13 41 34 58 35	33 14 45 33 15 16
A (1950	(3)	7.1 18.4	0.8 14.1	34•6 51•9	40.0 33.1	21.6 8.1	51.1 10.1	17.0 31.9	43.5 47.6	13.2 38.1	6.8 50.3	38 <b>.</b> 9 48.4	4.1 12.1	44.5 31.2	27.4 47.4	36.0 15.2	9.7 36.7	2.3 9.0
œ		6 47 9 47	9 48 9 49	9 57 9 57	10 4 10 5	10 11 10 17	10 17 10 18	10 19 10 19	10 20 10 20	10 23 10 23	10 29 10 29	10 31 10 33	10 32 10 34	10 33 10 34	10 36 10 36	10 41 10 42	10 43 10 45	10 47 10 47
4E NGC +IC	(2)	3C18 3023	3026 3032	3065 3066	3130		3209		3226 3227	3212 3215	3259 3266	12551	3287 3301	3299 3306		3356 3362	3381	3395 3396
NAL	(1)	5265 52 <b>69</b>	5279 5292	5375 5379	5456 5468	5520 5576	5584 5588	5609 5609	5617 5620	5643 5659	5717 5725	5738 5763 1	5742 5767	5761 5774	5791 5798	5852	5870 5909	5931 5935

<del>, ``</del>
ABLE

I

SEP (MIN)	(11)	51.71	8.39	24.47	10.93	34.36	20.58	13.12	33.26	36.17	CE.7	12.45	2.35	7.61	11.74	13.33	1. 5J	1.34
FILE IDTH /S)	(91)	167		298	222	393	248	211						61		328 209		
HI PRO Area W (JY-KM)	(12)	1.91		27 - 20	10.82	6.30	20 - 76	14.23						3•23		19.96 17.68		
Y NOTES	(14)	6,2 12,2	2,1,2	8,1	5,2	4,2 6,1	6,2	12,2						4, 1 8, 1		<b>4,1</b> 10,2		
LOCIT M.E. /S)	(13)	20		10	20	10	10	10						15		10 10		
DIAL VE RADIO (KM	(12)	3303		2719	1353	5158	1102	1036						3251		2394 1385		
ED RAI REF	(11)	Z S	8	s	ΕZ	S EKZ	ш		BCR				s	ш	EKR	¥	աա	шш
8 SERVI M.E. / S)	(10)	220 41	100	48	52	61 34	95		23				40	55	23	<b>4</b> 0	95 95	95 95
06 0PTL (KM)	(6)	1841 3398	1449	2621	1387	5141 2076	1092		2540				5899	3182	215	2768	2761 2339	3573 3556
ZWKY Mag	(8)	13.2 13.2	12.1 14.5	13.6 14.3	13.9 14.0	14.2 13.0	13.1 13.0	14.4 14.5	12.3	13.4 13.9	14•0 14•4	14.4 14.3	13.8 13.7	14.1 13.6	13.9 14.2	12.2 13.8	13.0 13.2	14.4 13.1
POS Ang (deg)	(1)	85 10	75	50	45 35	35 14	80	50 123	55 165	10 70	40 175	125 68	15	145	133 95	90 120	77 178	52
E DIA 41N)	(9)	0.25	2.60 1.00	3.60 0.80	0.70 0.80	1.30 0.90	1.80	0•40 0-80	1.80 1.30	1.60 0.80	0•90 0•80	0.80 1.00	1.50 0.90	1.10 1.20	0.70 0.90	2.50 1.70	1.10	0.50 0.45
n na		C.45 2.10	3.00 1.20	4.00 0.90	0.90	1.90	2.80 1.00	<b>1.50</b> 2.30	2.10 1.70	2.20 0.90	1.40 1.00	1.20 2.20	2.10 1.00	1.20 1.60	1.30 1.40	3.10 2.50	2.20 1.80	6.70 1.90
HUB TYP	(2)	Р 52	51 52	57 5	۶Í	\$5 \$3	S 5	56 58	S1 E	S1	S5	P 50	S 5	57 57	Δw	57 57	s 3	ŝ
GLACT LAT (DEG)	(4)	60.3 60.8	63 • 4 63 • 5	57.2	58.2 58.3	50.6 50.8	61.3 61.5	62.6 62.8	42 • 4 42 • 4	60.5 61.1	<b>68.</b> 6 68.7	72.3 72.4	57.5 57.6	52.5 52.5	63.3 63.5	58.1 58.3	73.7	1.69
DEC		44 50 10 43 58 40	28 14 28 28 22 41	10 24 56 10 48 46	49 55 37 49 59 33	61 33 25 61 47 56	17 33 8 17 53 18	L6 52 33 L7 0 11	72 50 25 73 9 3	5 19 41 9 51 30	23 40 13 23 44 30	28 25 48 28 38 0	1 5 48 1 4 51	62 6 14 62 9 50	49 30 50 49 20 15	56 32 52 56 28 48	32 11 8 32 12 35	15 36 17 15 37 11
A (1950	(3)	23.9	31.8 39.6	26.1 48.6	3.3 6.7	39.6 2.2	51.6 8.8	12.5 57.1	22.6 39.4	3.9 13.7	27.6 53.4	3.7 15.0	39.6 48.2	55 <b>.</b> 0 52 <b>.4</b>	45.5 16.8	40.1 12.1	4.4 6.3	33.4 37.5
Κ.		10 48 10 48	10 48 10 48	10 49 10 49	10 51 10 52	10 51 10 56	10 51 10 52	10 59 10 59	11 3 11 9	11 10 11 11	11 15 11 15	11 29 11 29	11 29 11 29	11 29 11 30	11 30 11 31	11 36 11 38	11 37 11 37	11 37 11 37
ME NGC +IC	(2)	3415	3414 3418	3433 3438		3435 3471	3455 3457		3516 3562	* 676 *2637	3615	3713 3714	3719 3720	3725	* 708	3780 3804	3786 3788	3799 3800
NA	(1)	5953 5969	5959 5963	5981 5988	6013 6029	6025 6064	6028 6030	6104 6112	<b>61</b> 53 <b>6</b> 242	6245 6259	631 <b>3</b> 6327	6511 65 <b>1</b> 6	6523 6523	6528 6542	6541 6549	6615 6640	6621 6623	6630 6634

Continued	
TABLE 1	

SEP (MIN)	(11)	24.27	19.13	1.95	16.93	8.25	3.43	4.42	26.33	1.13	66.71	3.80	14.21	15.32	7.23	15.38	2.67	8. 79
ILE DTH S)	(9)	239			89 337	391 204							243		+22	201		
HI PROF Area Wi (JY-km/)	(15) (	8.04 14.08			12.39 5.65	11.60 22.93							43 • 48 54 • 95		31.04	6•89		
NOTE S	(14)	8, I 4, 2			8,2 12,1	6,1 5,2							4,2 10,2		5	5,2,1 10,2		
DCITY M.E. ( S)	(13)	10 10			10	50							10		10	20		
TAL VEL RADIO	(12)	2702 1431			956 5838	3380 3185							1309 1328		1032	725		
D RAD Ref	(11)		Ð	ш	K E Z	¥	s		ss				s S		¢	8		
SERVE M.E. S)	(01)		15	92	105 32	40	30		41 59	83 152			10 16		64	50	43 62	
0PTL 0PTL (KM.	(6)		<b>31</b> 09	3223	855 5975	3204	713		2001 5961	1603 1180			1323 1283		985	616	6515 6662	
ZWKY Mag	(8)	13.8 13.5	12.9 14.4	12.9	14.2 13.4	13.1 12.2	13.4	14.3 14.4	13•5 13•8	14.4 14.0	13•2 13•9	14.4 14.3	13.0	13.2	12.4 14.4	13.2 12.4	13.8 14.3	13.6 14.4
POS ANG DEG)	(1)	132 130		20 125	20	28	150 43	8 70	95 105		35 18		155 135	22	50 127	142 141	70 3	128
01 A N)	•	0.45 0.45	1.70	1.40 0.90	2.80 1.30	0.55 2.70	2.10 1.50	1.10	2.00 1.60	0.90	0.40	1.20	2.50 4.00	0.50	<b>1 - 6</b> 0 0 - 5.0	0.55	1.00	1.50 1.30
IW) Blue	16	0.80	2.30	2.00	8.00	1.40 2.9C	2.50	2.10 1.90	3.00	1.20	L-20 L-30	1.20	3.80 5.00	1.20	5.50 1.10	1.00	1.30	2.50
HUB TYP	(3)	88	шv	S1 S3	57 3	S3 S5	s S	57 55	с S Л	ч <b>ч</b>	S5 1 S1 1	шш	S.7	s1 1	ss5	S.3	s2 1 S2 1	S1 5 57
GLACT LAT (DEG)	(+)	46.3	69.7 69.9	56.C 56.C	59.7 60.C	57.2 57.1	1.17	78.8 78.5	62.3 62.4	77.2	70.3	77.2	63 • 4 63 • 6	67.5 68.2	68 E 68 5	67.5 68.1	80 <b>. 1</b> 80 <b>. 1</b>	68. C 68. C
DEC .0)		76 0 33 69 39 35	14 2 38 13 59 5	59 41 41 55 42 41	55 37 53 55 21 28	58 38 43 58 46 18	43 0 52 42 0 2	30 7 40 30 8 20	2 15 26 2 10 30	20 30 38 20 30 47	11 8 0 10 52 27	20 37 36 20 41 21	2 58 15 3 9 30	7 19 1 7 28 42	47 22 12 47 18 19	48 24 32 48 9 45	33 47 56 33 50 18	6585 65553
R A (1950	(3)	11 41 42.7 11 44 4.5	11 43 14.1 11 44 31.6	11 46 11.4 11 46 24.7	11 48 0.6 11 48 28.9	11 51 57.5 11 52 22.5	11 55 59.1 11 56 17.3	11 59 28.9 11 59 49.1	12 0 8•2 12 1 52•8	12 1 28.1 12 1 32.9	12 1 37.3 12 2 14.2	12 1 35 <b>.9</b> 12 1 38 <b>.</b> 4	12 5 2.7 12 5 37.5	12 10 28 <b>.9</b> 12 11 16.8	12 13 21.7 12 13 57.7	12 13 17.5 12 13 42.9	12 14 2.9 12 14 8.9	12 14 52.1 12 15 26.4
NGC NGC *IC	(2)	3879	3872	3894 3895	3913 3921	3958 3963	149		4045 4073	4061 4065	4C67 4078	4066 4070	4116 4123	4180 4191	4217 4226	4218 4220	4227 4229	4241
NAMUGC	3	711	738 758	779 785	813 823	880 884	962 * 973 *	012	021 060	044 050	048 066	051 052	111 116	2 <b>19</b> 233	282 2.97	283 290	296 299	319 333 *

Д	
$\sim$	
S	
0	
Ţ	
•	
•	
•	
S	
Б	
õ.	
7	
2	
0,	
<u> </u>	
σ	

1Continued	
TABLE	

SE P (MIN)	(71)	3.44	6.14	5. 69	2. 39	2.80	8.67	5.97	15.24	26.53	3.67	12.74	16.99	27.32	28.28	3.19	1.35	19.12
ILE DTH S)	16)			240 174				361					196 315	209 351	403 362	767		
HI PROF Area Wi (JY-KM/	(15) (			19.67 13.52				4.86					41.79 103.00	6.86 15.18	98.19 74.88	9•03		
YNDTES	(14)		6,2	3,1,2 3,1,2				2,1,2 2,1,2			10,2		8,1 ,4	9,4 11,2	6,2 6,2	4,2		
LDCIT M.E. /S)	(13)			15 15				10					10 10	20 20	10	15		
DIAL VEI RADIO (KM.	(12)			351 228				1012					1529 1129	297 1 2740	1737 1807	381		
ED RA REF	(11)	8	с К В	ას	Σv			B		s	60 60		СR		B R C R	88	с н С н К	ss
BSERV M.E.	(10)	75	43 73	79 61	19 50			50		33	250 40		10		10 10	50 300	2 <b>4</b> 22	46 18
0 0PTL (KM.	(6)	22.02	1785 1685	415 212	1116 1339			714		631	383 1887		1128		1730 1927	350 978	22 <b>47</b> 2199	2020 1870
ZWKY MAG	(8)	12.0 13.9	12.3 13.0	12.6 12.8	12.2 13.4	13 <b>.</b> 8 14 <b>.</b> 4	13.7 14.3	13.5 13.0	13.8 13.5	14.2 13.0	13.3 12.2	13.2 12.d	14•1 12•4	13.0 13.1	12.4 12.3	12.5 13.1	12.5 12.5	12.4 12.6
PDS ANG (DEG)	(1)	160	110 160	155	140 178	32 140	145	133 168		16	6	133	30 83	167 8	67 130	178 70	23 85	135
DI A (N)	2	3.00	1.7C 2.30	1.10	1.70	1.00	1.50	0.70	1.20 3.50	1.10	1-50 1-30	1.70	3.00	0.60 1.60	2.20 2.80	0.90 1.50	2.40 2.50	4.00 3.00
BLUE (M)	7)	3.50 0.80	2.0C 3.10	3.00	3.00 5.10	1.90 1.30	1.90 1.30	2.60 1.00	1.20 4.50	1.10 2.70	1.50 3.60	1.80 3.50	4.70 0.80	2.70 2.90	6.50 7.00	3.30 1.70	5 <b>.10</b> 3 <b>.00</b>	4.50 3.00
HUB TYP	(5)	п SI	E S5	0 89	57 57	53 51	Е S1	s S	SI P	53 58	с SI	E S 7	57 1	52 57	55 56	S.L E	57 57	51 51
GLACT LAT LAT (DEG)	( + )	67.4 67.4	41.6	72.5	75.7	74.1 74.1	58.4 58.4	68 • 8 68 • 5	52.0 52.1	82 <b>.</b> 9 83.3	75.2	78.6 78.8	62.9 62.6	53.1 53.5	65.2 64.7	74.E 74.7	73.7	72.8 72.5
DEC .0)		6 6 15 6 7 30	75 38 59 75 36 6	11 47 18 11 46 53	14 53 3 14 52 43	13 1 3 13 3 51	58 43 16 58 39 43	7 13 58 7 <b>19</b> 56	65 12 38 65 4 36	22 55 3 23 6 1	13 31 10 13 27 43	17 2 5 17 7 46	0 39 56 C 23 32	64 12 51 63 48 10	2 55 45 2 27 50	12 29 48 12 32 27	11 30 45 11 32 1	10 27 1 10 25 50
A (.1950	(3)	49.5 2.4	6.0 33.3	44•8 8•0	0.4	31.4 31.9	38.2 39 <b>.1</b>	5°0 8°0	0.3 3.5	29.1 14.1	25.9 31.1	21.1 8.8	54.2 11.9	33.5 20.3	35.5 53.5	59.3 6.6	3.0 1.1	24.3 41.9
œ		12 16 12 17	12 18 12 19	12 18 12 19	12 19 12 19	12 19 12 19	12 20 12 21	12 21 12 21	12 23 12 25	12 24 12 26	12 26 12 26	12 28 12 29	12 29 12 30	12 30 12 32	12 31 12 31	12 32 12 33	12 34 12 34	12 37 12 38
4E NGC *IC	(2)	4261 4264	4291 4319	4254 4299	4298 4302	4305 4306	4335 4364	434 <b>3</b> 4342	4441 4441	* 791	4458 4461	4489 4498	4517	4521 4545	4527 4536	4550 4551	4568 4567	4596 4608
UGC	(1)	7360 7364	7357 7429	7414 7414	74.12 74.18	74.32 7433	7455 7479	7465 7466	7511 7572	7555 7603	7610 7613	7655 7669	7685 7694	7706 7747	7721 7732	7757 7759	7776 7777	7828 7842

പ
27
<u>،</u>
.0
ŝ
Гd
9A
197

1—Continued
TABLE

SEP	(21)	2.33	8.62	5.54	16.71	18.59	17.51	12.64	2.35	30.17	13.40	8.31	2.41	13.73	36.03	4.02	1.35	
IFILE IDTH	(91)				349					246	205 228			456	143 146			
HI PRO Area W	(15)				6.12					10.46	16.61 41.50			18.28	4 • 63 4 • 04			
NOTES	(14)				4,3,1					5,2	ŭ 4			8,2	10,2			
0CITY M.E.	(13)				25					15	15 10			10	15 15			
DIAL VEL RADIO	(12)				4062					2131	940 965			4037	1000			
ED RA REF	(11)			0400		ss	ں م	٩ç		¥	æ		¥	s			wω	
BSERV M.E.	(01)			42 67		17 23	11 10	70 10		105	10		33	06			95 95	
0071L	(6)			1159 6991		4731 4778	58 <b>6</b> 5 7102	7006 2531		2696	962		5223	4367			6865 6689	
ZWKY Mag	(8)	14.2 13.8	13.8 14.1	12.6	14.3 14.4	12.9 12.7	13.6 13.9	14.2 13.5	13.8 13.7	13.9 13.6	13.7 12.5	13 <b>.</b> 3 14.3	13.9 14.0	12.7 14.3	14.0 13.8	14•0 13•1	13.7 13.8	
POS	(1)	175 125	18	02 I	40	155	23 143	100	137 130	150 153	128 130	10	80	103 25	30	100		
DIA	2 ~	0.90	0.30 1.00	1.40 0.80	0.70 0.80	1.50 2.00	0.80 0.45	0.90 1.10	0.50 0.80	1.20 0.45	0.50 2.80	1.40 0.80	1.10	1.00	0.90 0.80	2.00 1.60	0.80 1.40	
BLUE	9)	1.10	0.60 1.90	1.60 1.00	C-90 1-40	1.60 3.5C	1.30 1.00	1.10	1.20 1.00	1.6C 1.80	1.80 4.00	1.70 1.20	1.50 1.00	3.30 1.50	1.6C 1.10	3.00 2.00	1.80	
HUB TYP	(5)	52 57	٥	P SI	s	с Б	ыv	E S7	55 55	51 S	57	E S I	51 S <b>1</b>	57 51	59 51	s	ss	
GLACT LAT	(4)	87.5 87.6	62.2 62.2	88.6 88.7	81.7 81.8	3.61 19.6	86.4 86.2	86 • 5 86 • 8	54.7	59.3 59.0	77.0 76.8	74.8 74.9	78.3 78.3	76.6 76.5	78.1 78.3	53.8 53.7	61.3 61.2	
DEC		6 19 0 6 20 55	5 7 50 5 10 25	7 23 58 7 20 0	5 37 32 5 36 22	7 34 45 7 35 6	5 23 28 9 19 48	75015 8010	2 32 16 2 34 24	7 48 10 7 54 16	8 48 1 8 59 55	4 14 11 4 21 8	63816 63938	7 18 35 7 4 58	5 <b>41 41</b> 0 15 23	2 57 27 3 1 27	1 5 40 1 5 10	
950.0	(3)	•6 •5 2		8 2	 	••••••••••••••••••••••••••••••••••••••	<b>4</b> <b>6</b> <b>7</b> <b>7</b>	46	• 5 • 8 • 6 •	9 M 0 M	 	-9 -7 1		.3 I .6 1	.8 .1 2	0.0		
R A (1		12 39 3 12 39 9	12 40 35 12 41 33	12 42 45 12 43 7	12 45 0 12 46 22	12 56 48 12 58 22	13 2 35 13 3 54	13 2 48 13 3 23	13 6 50 13 6 58	13 15 8 13 18 55	13 19 9 13 19 41	13 21 41 13 22 0	13 22 35 13 22 45	13 26 53 13 27 0	13 28 33 13 29 28	13 30 24 13 30 27	13 37 19 13 37 24	
NGC E	+11C (2)	4614 4615	4646	4670 4673	4687 3804	4868 4514	4952 4966	1954 1954	·	875 5109	5112	5129 5132	5141 5142	5172 5.180		5216 5218	5257 5258	
NAM	1	151	92 05	33	158 173 <b>*</b>	199 .25	75	78	34	55 <b>*</b> 93	96 03	23	6 9 9	11- 11-	16	28	41	

.527P
•
0
4
1979ApJS.

1Continued	
TABLE	

e (N)	[2]	.35	60.	64	68	.50	.14	86.	.56	. 20	. 4 1	-84	. 50	.39	90.	Cé.	. 70	.78
S T	-	ō	36	12	25.	15.	ŝ	-	ē.	۳.	ø	14	Ŀ,	13.	Š	ů.	N 	4
FILE IDTH /S)	(16)	105	144	287 480						253	215					281		
HI PRO Area W (Jy-km	(12)	8.29	12.00	6.18 18.42						5.51	13.04					5.01		
OTES	14)	5,2,1	4,2	0,2 8,2						6,2	8,1		0,2 8,2			2,1,2		
0CITY 4.E. N 5)	(13) (	25	20	10 1 15						20	10		1			15		
AL VELC ADIO A	(12)	2537	2386	3648 3630						1860	1383					1111		
D RADI Ref R	(11)	s	s		C R	s		SBK	ЕX	шш	8 X X					BC	6 6	
SERVE M. E. S)	(01)	42	23		10	33		21 12	44	95 95	50 19		50 41			68	50 100	
00 0071 (KM/	(6)	2606	2296		142	2064		3410 3542	3954	1791 2102	1985 1314		5137 7472			1518	1716 1528	
ZWKY MAG	(8)	13.7 12.4	13.5 13.3	14.1 13.1	13.8 14.2	12.9 13.2	14.0	13.7 12.6	12.8 14.1	12.6 13.5	12.4 14.0	14.3 14.1	14.5 13.4	14.1 14.2	14.5 14.4	13.7	13.4 12.3	14.3 13.6
POS Ang Ideg)	(7)	110	165 130	164 100	10 18	70 3	25 51	167	90 27	115	170 80	7 23		120	142 23	115 35	63 95	
01 A N)	-	1.70	0.90 1.40	0.60 1.60	0.70	1.10	1.10 0.50	0.60 1.30	2.00 0.70	1.00	2-00 0-90	1.00 0.70	1.00	1.10 0.70	0.40	0.90 2.30	0.80 2.30	1.30 1.80
BLUE	(6	2.20 1.60	1.50	1.40 2.90	0.90 5.00	1.70	1.50	1.903.00	2.50	1.70 1.80	2.70	2.00 1.20	1.00 C.90	1.30 1.50	0-80 0.70	4.00 6.20	1.10	1.30 1.80
НИВ ТҮР	(5)	52 S	51 54	s 55	53 59	54 S 1	51 52	s S5	E S1	S7 E	51 58	53 51	s S	E S1	51 S1	55 53	s <b>1</b>	53 S 1
GLACT LAT (DEG)	(4)	72.5	75.7	73.3	60 • 4 60 • 8	55•8 55•5	63.8 63.8	72.5	72.7	62.4 62.4	58.5 58.8	66. 6 66. 5	68 - 5 68 - 4	61.6 61.4	67.7 67.7	58.6 58.6	57.9 57.9	69.2 69.1
CEC		40 14 0 40 14 1	33 57 15 33 44 16	38 3 43 38 9 36	54 34 33 54 8 58	59 45 11 59 59 16	6 34 51	37 41 51 37 40 5	35 22 18 35 15 53	50 57 54 50 57 49	55 14 21 55 20 25	14 21 28 14 30 56	35 43 58 35 49 15	7 47 35 7 36 22	18 6 18 18 5 5	4 13 18 4 9 42	3 28 3 3 29 55	35 29 55 35 25 58
R A (1950.	(3)	13 46 47.6 13 47 36.6	13 48 23.4 13 51 5.6	13 50 22•0 13 51 18•9	13 52 40.3 13 52 55.2	13 53 37 <b>.6</b> 13 54 29.2	13 55 45.1 13 55 52.2	13 56 25.2 13 56 29.7	14 1 14.8 14 1 21.5	14 4 30.2 14 4 50.5	14 5 27.9 14 5 42.4	14 12 27.5 14 13 14.7	14 14 21.1 14 14 29.1	14 15 40.4 14 16 9.9	14 17 11.4 14 17 18.4	14 17 33.8 14 17 49.4	14 18 24.8 14 18 32.6	14 19 18.2 14 19 31.4
E NGC +IC	(2)	5311 5313	5318 5347	5341 5351	5368	5376 5389	5382 5386	5394 5395	5445 5445	5480 5481	5485 5486	5525	5536 5541	5546 5549	999 1000	5560 5566	5574 5576	5580
NAMUGC	(1)	8735 8744	8751 8805	8792 8809	8834 8837	8852 8866	8885 8890	8989 8900	8974 8976	9026 9029	9033 9036	9117 9124	9136 9139	9156 9156	9168 * 9170 *	9172	9181 9183	6161 9200

д
$\sim$
i.
0
4
•
•
•
Js.
JS.
⊾pJS.
ApJS.
9ApJS.
79ApJS.
979ApJS.
1979ApJS.

l

,	1—Continued
	ABLE
	TAB

D RADIAL VELDCITY REF RADIO M.E. NOTES HI PROFILE (UV-KM/S) (UV-KM/S) (11) (12) (13) (14) (15) (16) (15) (16) (16,96 306 2381 10 8,2 14,88 491 1371 10 0,2 4 39.70 220 2221 10 10,2 4 39.70 220 2221 10 10,2 4 15 3.24 153 1641 25 4,2,1 3.24 153 17,30 117 17 17 17 17 18 16 16 17 16 16 17 16 16 17 17 16 16 16 17 16 17 17 17 17 18 16 17 17 18 16 17 18 16 17 18 10 10 10 17 10 10 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10	10,2 1800 15 6,2 7.97 190 1787 10 18,2 6.61 217
D RADIAL VELOCITY REF RADIO M.E. NOTES HI PRO (KM/S) (11) (12) (13) (14) (15) (15) (11) (12) (13) (14) (15) 2381 10 8,2 1371 10 10,2 2221 10 10,2 1641 25 4,2,1 1641 25 4,1 1641 25 4,1 1641 25 4,2,1 1642 20.91 8 2276 15 4,1 1641 25 20.71 7.30 8 2276 15 6,2 1642 26 7,0 17.30 8 2276 15 6,1 1642 26 7,1 1643 26 7,1 1643 26 20.71 8 2276 15 20.71 8 2276 15 20.71 8 20.91 8 2276 15 20.71 8 20.91 8 20.91 8 2000 12,2 8 17.00 8 15.00 8 10	10,2 1800 15 6,2 7.97 1787 10 18,2 6.61
D RADIAL VELDCITY REF RADIO M.E. NDTES (KW/S) (11) (12) (13) (14) 2381 10 8,2 2381 10 8,2 1371 10 10,2,4 1641 25 4,2,1 1641 25 4,2,1 1641 25 4,1 1641 25 4,1 10,2 12,2 17,2 16,1 16,1 16,1 16,1 16,1 16,1 16,1 16	10,2 1800 15 6,2 1787 10 18,2
D RADIAL VELOCITY REF RADIO M.E. (11) (12) (13) (11) (12) (13) 2381 10 2381 10 2221 10 2221 10 2221 10 1641 25 8 2276 15 8 2276 15 8 1567 10 6 1724 10 6 KR	1800 15 1787 10
D RADIAL VEL REF RADIO (KM) (11) (12) 2381 2381 1371 222.1 1641 1641 8 2276 8 2276 8 2276 8 5 1724 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1800 1787
а с с с с с с с с с с с с с с с с с с с	
	×
BSERV S A . (10) 50 50 50 50 50 50 50 50 50 50	105
0PTL 0FTL (9) (9) (9) (9) (9) (19) 1802 1147 11226 1582 1582	5485
ZWKY ZWKY (8) (8) (8) (8) (4.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6) (14.6	13.7 14.1 13.9 13.5
PDS ANG (066) (7) 162 152 155 155 155 155 155 155 155 155 15	42
DIA N.N.N.N.N.N. DIA D. 80 0.80 0.80 0.90 0.90 0.90 0.90 0.90 0.	1.80 1.00 0.90 0.90
BLUE BLUE C.M. C.M. C.M. C.M. C.M. C.M. C.M. C.M	1.90 1.10 1.40
Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	51 59
CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT CLACT	60.7 60.5 62.5 62.2
ODEC 0000 114 114 114 114 114 114 11	42 45 38 42 42 30 30 26 3 30 10 6
A (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (1950) (19	24.3 24.0 29.1 31.5
R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R	14 52 14 53 14 54 14 55
HE NGC *IC (2) 5591 5591 5591 5591 5603 5649 5669 5669 5669 5669 5669 5669 5669	5784 5787 5789 5798
U CC NAI CC CC	9592 9615 9628

щ
$\sim$
i.
0
4
ŝ
JS.
oJS.
ApJS.
ApJS.
9ApJS.
79ApJS.
979ApJS.
1979ApJS.

1Continued	
TABLE	

SËP (MIN)	(11)	20.97	5.51	2.13	15.25	17-40	13. U6	8.93	18.87	7.48	1.97	19.81	17.03	22.43	4.23	20.03	37.24	1.36
FILE [DTH /S)	(16)	365			472	332 569	387 693	237 632	187 106	555							272	
HI PRO Area W (JY-KM	(12)	9.07			18.64	5.76 16.47	46.78 18.25	43 <b>.</b> 44 36 <b>.</b> 03	7.67 22.59	30.37							6.13 1.72	
NOTES	(14)	18,2			4,2,1	14,2 6,3	4,2 12,2	8,2 10,2	12,1	• 2							8, 2 18, 1	
LDCITY M.E. /S)	(13)	10			20	15 15	10	10 1	10 15	10							15 15	
DIAL VEU RADIO (KM.	(12)	1353			3527	5381 2554	3393 3309	655 3416	1899 1828	2521							2974 2776	
ED RAL	(11)	80 60		BC B		Ð	ss			8 8 8	Z T							шш
SERVE M.E.	(10)	65 65		57 150		50	20 40			28 40	122 58							31 31
OPTL OF (KM)	(6)	1301 1882		4706 4664		2549	3386 3433			2879 2467	9594 9390							2973 3057
ZWKY Mag	(8)	12.5 12.5	14•1 13•8	13.6 13.1	14 • 1 13 • 4	14.1 12.6	13.6 13.5	13.0 13.4	13.3 13.3	12.4 12.0	14.2 13.9	13.8 13.8	<b>13.</b> 4 14.2	13.0 14.2	14.4 13.1	14.1 13.8	14.0 13.8	14•3 14•0
P OS A NG ( D EG )	(7)	170 145	6 85	137 136	145	18	135 154	55 53		110 13	130 140	140	70	25	96 130	1 05	35 130	166 145
E DIA 11 N J	(9)	1.50 2.70	0.25 0.80	0.60	0.40 1.30	1.30 1.20	3.60 1.30	3.00 0.90	1.70 2.80	2.10 3.10	0.80 0.90	1.60 0.80	1.00 0.80	1.40 0.70	0.45 2.20	1.50 1.20	1.10 1.20	0.30
1) BLUI	-	3 <b>.</b> 00 3.40	1-60 1-50	1.30 2.90	0.45 2.60	1.40 2.80	4.70 3.00	4•00 6•00	1.70 2.80	3.00 5.80	1.00 1.20	2.00 C.80	1.90 1.40	1.40 1.10	1.20 2.60	1.60	1.40 2.10	1.00 1.40
нив ТҮР	(5)	s5 E	S3	53 55	P S5	\$5 \$7	55 55	s5 S5	55 55	Б S5	5 55	S1	0 S5	Е 56	s 57	52 51	57 51	s s2
GLACT LAT (DEG)	(4)	50.2 49.8	32.6 32.6	58. C 58. C	54.1 53.5	57.5	51.6 51.5	48°5 48°8	48.7 48.8	46 • 5 46 • 8	52.0 52.0	41.3 41.1	46 • 9 46 • 6	42.6 42.1	35.7 35.7	40.2 39.8	34•5 33•5	36•C 36•C
DEC .01		2 5 20 1 53 57	83 47 26 83 43 18	19 47 27 19 46 25	52 29 8 52 43 8	42 8 40 42 14 1	55 42 6 55 35 37	56 43 31 56 51 8	11 55 0 12 12 51	59 31 3 59 29 35	41 15 0 41 16 33	6 4 40 6 8 30	20 54 28 26 59 25	58 6 11 57 43 56	72 30 6 72 28 16	57 49 21 57 52 43	23 3 37 23 5 1	60 47 37 60 48 55
A (1950.	(3)	28.4 38.9	13.7 27.9	11.1	3.2 43.0	45.5 14.9	2.6 23.0	<b>16.</b> 0 50.1	35.9 0.9	38.5 36.3	36.3 42.8	29.4 47.6	2.9 12.7	14.9 34.6	30.3 21.0	5°5 34•4	2.0 43.8	3.2
ď		14 57 14 58	14 58 15 0	15 5 15 5	15 7 15 7	15 11 15 13	15 14 15 15	15 32 15 32	15 32 15 33	15 37 15 38	15 42 15 42	15 53 15 54	15 57 15 58	16 18 16 18	16 37 16 38	16 38 16 40	16 56 16 58	17 7 17 7
ME NGC *IC	(2)	5806 5813		5857 5859	5875	5853 5899	5905 5908	5563 5565	5956 5557	5982 5985	5552 5593	6014 6017	6027	6127 6130		6211	6267 6278	6306 6307
UGC	(1)	9645 9655	9650 9668	9724 9728	9741 9745	9774 9789	9797 9805	9066 9014	6166 6618	<b>6966</b> 1966	10003	10091 10058	10116 10127	10345 10347	10457 10502	10500 10516	10628 10656	10724 10727

д
01
ц,
•
•
0
<u> </u>
1.
•
•
70
Ĕ
2
Q.
⊿.
0
~
1
O)

1-Continued	
TABLE	

SEP (MIN)	(11)	11.16	30.13	2.15	84.53	2.31	4.32	54.26	11.41	9.59	19.49	1.96	10.06	72.93	11.81	18.99	<b>З.</b> 86	
FILE IDTH /S)	(16)		108 160		418			259 341			651				536 147	404		545
HI PRO Area W (JY-Km	(12)		2.47 23.34		28.63			11.89			10.13				14.85 2.85	24.93		14.33
NOTES	(14)		8,3 6,1		8,1			10,2 30,1			5,2,1				10,1	6, 6		20,2
0CITY M.E. S)	(13)		15 10		10			10 20			25				10	20		15
)IAL VEL RADIO (KM/	(12)		1225 1320		3112			2283 2261			6122				462 8 547 8	3128		4219
ED RAI REF	(11)	υ	د،		8			BC					BC				88	æ
BSERVI M.E. /S)	(10)	11	62		60			21					4 9 5				75 75	75
0 0PTL (Km	(6)	6748	1406		3922			2315					4725 2318				4754 4182	4183
ZWKY MAG	(8)	14°4 14°3	14.3 12.4	14•4 14•0	12.8 13.5	13.4 13.4	14.4 13.8	13.2 12.5	14.3 14.4	14.3 13.7	13.9 14.2	13.6 13.9	13.8 12.4	14.2 13.7	13.4 14.4	14.4 14.0	13.7 14.3	13.5
POS ANG IDEG)	(7)	150 175	170	65	70	50	105 90	30 160	155	7	138	1 03	65	119	25	12 120	106 8	75
DIA IN)	6)	1.00 0.80	0.35 2.30	0.80 1.20	1.80 1.90	2.00 1.50	0.80 0.80	1.00	1.10	0.7.0 1.30	0.80 0.40	0.20 0.35	1.50 2.30	0.40 1.80	1.30 1.10	1.50 0.80	0.60 0.50	2.30
BLUE (M.	3	1.30 1.80	1.40 2.30	1.00 1.20	2.10 2.00	2.50	1.00	1.80 1.30	1.20 1.40	1.30 1.30	C.80 0.80	0.60	1.9C 2.30	1.60	2.40 1.10	2.40 1.40	2.20 1.20	3-00
НUВ ТҮР	(2)	57 53	5 57	5 2 D	E S 5	53 52	s 57	5 8 S	шш	s3 S3	νc	٥v	E S1	52 59	\$5 \$7	57 50	\$4 0	<b>S</b> 3
GLACT LAT LAT	(+)	31.6	31.7 31.2	33.8 33.7	22•9 23•4	20.2	17.5	15.2 15.4	17.4	20 <b>.5</b> 20 <b>.</b> 9	18.6 18.3	26.6 26.5	19.8 19.7	22.7 21.5	13.2 13.2	9°4	-17.3	-25.4
DEC )		23 26 23 23 19 45	15 53 33 15 44 26	58 31 32 58 33 22	23 5 0 24 29 38	L8 20 48 L8 22 48	2  4 4   2  1 3	14 4 51 14 58 3	23 38 5 13 41 13	35 40 43 19 49 46	33 54 3 34 1 22	57 6 7 57 4 13	45 39 3 45 25 41	63 51 19 63 52 54	43 2 15 13 13 51	+C 35 31	5 45 30 9 42 25	C 8 13
A (1950.(	(3)	54•0 2 33•1 2	33.2 22.9	31.3	43.6 2	47.3   52.2 ]	45.6 ] 55.2 ]	50.5   34.7 ]	50.5 38.4 2	43.8 0.3 3	45.8 12.9	34.4 ( 39.4 (	30.9 4 51.8 4	14.8	22•1 4 34•2 4	41.7 4 11.1 4	25.0 34.4	45.4
~		17 9 17 10	17 23 17 31	17 26 17 26	17 49 17 49	17 53 17 53	17 54 17 54	18 8 18 9	18 16 18 17	18 27 18 28	18 29 18 31	18 33 18 33	18 45 18 45	19 5 19 16	19 19 19 19	19 35 19 36	20 30 20 30	20 44
ME NGC *IC	(2)	6308 6314	*4660 6412	*1258 *1259	6482 6484	6500 6501		6570 6574	6619 6623	*1288 6646	6657	6677 *4763	<b>67</b> 02 6703	6762 6789	6192		6928 6930	6962
NGC	(1)	747	1848 1897	867 869	010	048 049	055	137 144	200 203	256 258	265 271	288 290	354 356	405 425	429 430	459 460	58 <b>9</b> 590	628

7P
0
ц)
•
-
0
4
•
•
•
S
Ь
Q.
Æ
0
<u> </u>
0
_

1—Continued
TABLE

SëP (MIN)	(11)	22.36	16.54	66.39	16.41	5.15	30.82	8.58	3.01	4.83	34.98	6.19	6.63	4.53	1.39	50.02	37.48	1.96
= 1 LE 1 DT H / S)	(91)			155 292		366		384			469		202 302				262	
HI PROF Area W (JY-KM	(12)			2.69 10.05		9.18		12.54			14.61		8.17 9.02				13.80	
NOTES	(14)			18,2 6,2		8,1 8,1		6,4			18,2		16, 2 41, 2			16,1	8,2	
.0CIT) M.E. 'S)	(13)			20 20		15		15			15		20 20				15	
I AL VEL RADI O (KM/	(12)			1903 2896		1339		6239			4964		340 7 354 4				4929	
D R AD R EF	(11)			ш		BKM	¥	¥		٩٩	υ		K R Z R	нн	۲H	в вс		55
SERVE M. E. S)	(10)			80		11 27	28	105	46 83	150 150	63		12 29	44 33	100 65	65 30		20 62
08 0PTL (KM/	(6)			1817		1191 1276	3296	6245	2602 2393	4987 4806	3806		3409 3542	5205 5170	2802 2875	1802 1622		4880 5083
ZWKY MAG	(8)	13.0 13.7	13.6 13.1	13.6 13.8	13.4 14.5	12.0 13.1	13.9 14.2	14•4 14•3	13.8	13.9 14.1	13.0 13.8	14.2 14.5	12.7 13.9	13.2 14.3	14.3 14.5	12.9 12.5	14.2 14.4	14.3 13.2
P OS A NG D EG J	(2)	75 75	133 157	78 161	10 83	155 93	15	021 001	49 102	80	83 145	152	35	66	95 96	80	90 10	113 50
DIA IN) (	()	1.30 1.00	0°-00	1.30	0.90 1.00	0.90 0.80	0.90 1.00	1.10	0.50 1.10	1.40 0.70	1.60 0.80	0.20	1.10	1.10 0.90	1.00	2.10 1.80	2.20 0.60	0.20 1.80
BLUE	-	1.60 1.40	1.80 1.30	1.90	1.80 1.70	3.60 2.80	1.10	1.70 2.20	2.10 3.40	1.40 2.80	2.10	1.20	1.70	1.70	1.50 1.90	2.50 2.00	2.80 1.10	0.45 3.50
HUB TYP	(2)	50 51	s <b>1</b> S	52 55	54 55	51 56	Е S 5	c S7	55 57	s o	E S 5	S3	s S S	51 S3	53 58	52 51	55 S 7	S 5
GLACT LAT (DEG)	(4)	-12.2	-13.4 -13.5	-34.2 -33.8	-43.4 -43.3	-29.7 -29.7	-50.8	-33.5	-50.7	-38.4 -38.3	-49 • C -49 • 4	-15.E -15.9	-35.4	-53.4	-54 . 8 -54 . 8	-49.5 -48.7	-27.6 -28.2	-31.3
DEC .0)		35 10 26 35 28 8	4C 15 20 40 18 48	15 53 40 16 53 35	5 18 46 5 33 30	23 32 16 23 31 38	1 29 5 1 59 41	22 40 0 22 43 35	4 13 33 4 15 43	18 41 25 18 46 13	6 24 53 6 18 45	43 42 0 43 41 0	23 18 51 23 15 18	<b>3 14 11</b> 3 <b>1</b> 5 28	3 27 43 3 26 50	5 39 25 10 29 25	33 5 26 32 30 21	29 10 57 29 12 22
R A (1950,	(3)	21 33 26.4 21 34 33.4	22 14 43.7 22 <b>16</b> 8.5	22 24 1.6 22 26 0.8	22 <b>31 34.6</b> 22 32 3 <b>.6</b>	22 35 1.2 22 35 23.5	22 58 55 <b>.</b> 0 22 59 9 <b>.6</b>	23 4 31.5 23 5 5.3	23 12 1.9 23 12 10.3	23 12 46.8 23 12 47.5	23 13 25.1 23 15 43.7	23 16 58.4 23 17 32.2	23 25 11.8 23 25 36.2	23 26 12.8 23 26 30.2	23 38 55.7 23 39 0.0	23 41 48.6 23 41 43.1	23 43 41.3 23 44 44.1	23 44 27.0 23 44 33.2
HE NGC #IC	(2)	1392	7248 7250	7280 7290	7311 7312	7332 7339	7458 7460	-5285 7489	1537 7541	7550	7562 7591		7673 7677	7679 7682	7731 7732	7743 7742	15355	7752 7753
NAMUGC	(1)	11772 * 11781	11972 11980	12035 12045	12080 12083	12115 12122	12309 12312	12365 # 12378	12442 12447	12456 12457	12464 12486	125C7 12517	12607 12610	12618 12622	12 <b>737</b> 12738	12759 12760	12776 12781 *	12779 12780

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

1-Continued	
TABLE	

NAI	HE NGC	R A (195	DEC		GLACT LAT LAT (DEG)	нив ТҮР	BLUE	) (N	P OS ANG D EG)	ZWKY MAG	OP TL CP TL	SERVE M.E.	ED RAD REF	I AL VEL RADI O (KM.	0CITY M.E.	NOTES	HI PRO AREA W	=1LE [DTH /S)	SEP (MIN)
(1)	(2)	(3	-		(	(2)	16	-	(1)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(11)
12805 12806	7167 7768	23 48 24•5 23 48 26•2	26 48 26 52	35	-33.5 -33.8	Б г г г	1.10	0.20	142 60	14.2 14.0	7955	120	×						3.54
128C 8 12815	1171 1771	23 48 31.5 23 48 52.3	15 52 19 50	25 8	-40 • 5 -40 • 6	S.3	1.80 2.50	1.80 1.20	68	12.9	4349 4290	74 53	ں ں						5. 4.3
12827 12831	8711 9777	23 50 46.6 23 50 52.6	7 35 7 35	33 51	-52.3	E S 2	1.10 1.40	1.00	10	13.8 13.6									<b>1.</b> 52
12883 1 12889	k 1525	23 56 42.6 23 57 28.4	46 36 46 59	45 46	-15.0	S 5 S 5	1.90 2.30	1.30 1.80	20 165	13.3 14.0				501 8 501 7	10	6,1 10,2	10.99 7.36	345 486	24.31
12906 12919	7803 7810	23 58 46.0 23 59 45.5	12 50 12 41	37	-48 • C -48 • C	52 51	1.00	0.70	85 80	13.8 14.3				5401	25	3,2,1	4.13	205	16.76
12908 12 <b>9</b> 11	7805 7806	23 58 52•7 23 58 56•4	31 9 31 9	5 <b>1</b>	-30.2	s	1.00 1.10	0.70 0.80	20	14.3 14.4									0.92
12914 12915		23 59 4.0 23 59 8.6	23 12 23 12	23 59	-38.C -38.0	s	2.70 1.60	1.30 0.50	160 137	13.2 13.9	4536 4530	5 <b>6</b> 56	шш						1.22
																-		-	

Column (1).—Source number of the galaxy taken from the UGC.

Column (2).—NGC or IC designation.

Column (3).—1950.0 position taken from Dressel and Condon (1976).

Column (4).—Galactic latitude (b), in decimal degrees.

Column (5).—Structural type based on the Hubble system (Hubble 1926) and taken from the UGC: E =elliptical; S = spiral (S0 = E to S0, S1 = S0, S2 = S0 to Sa, S3 = Sa, S4 = Sa to Sb, S5 = Sb, S6 = Sb to Sc, S7 = Sc, S8 = Sc to Irr, S9 = Irr); D = close double; C = compact; P = peculiar; I = integral.

Column (6).—Major and minor blue diameters, in decimal arcminutes, adopted from the UGC.

Column (7).—Position angle, in degrees, defined as the orientation of the major axis and measured from the north eastward (UGC).

Column (8).—Apparent photographic magnitude measured by Zwicky et al. (1960–1968) and adopted from the UGC.

Column (9).—Radial velocity  $(\text{km s}^{-1})$  based on optical measurements and taken from either de Vaucouleurs, de Vaucouleurs, and Corwin (1976), Sandage (1978), or Turner (1976a). The velocity is heliocentric.

Column (10).—Mean error  $(\text{km s}^{-1})$  quoted from the original source and representing a 1 standard deviation uncertainty.

Column (11).—Reference for the optical velocity based on the de Vaucouleurs *et al.* compilation (a weighted average is quoted when more than one reference is listed): B = Mount Wilson, C = Lick, E = McDonald, K = Palomar, L = Mount Stromlo, M = Department of Terrestrial Magnetism, N = Asiago, P = Kitt Peak, Q = Kyoto, R = Radio data included, X = Steward, Z = Russian data, S = Sandage (1978), T = Turner (1976a).

Column (12).—Radial velocity (km s⁻¹) based on 21 cm hydrogen line observations using the optical convention ( $v = c\Delta\lambda/\lambda_0$ ), and defined as the midrange or midpoint of the line profile. The velocity is heliocentric.

Column (13).—Mean error  $(\text{km s}^{-1})$  representing a 1 standard deviation uncertainty in the mid-range determination.

Column (14).—Notes on the quoted radio velocity (see V for further explanation).

The first entry indicates the number of individual observations (each observation equivalent to a scan on one receiver) averaged to produce the composite line profile upon which the various radio parameters are based.

The second entry indicates the order of the baseline removed from the composite profile (1 = linear; 2 = quadratic; 3 = third order).

The third entry references the following notes: (1) The composite spectrum is based on a 96-channel receiver (search mode). (2) The spectrum is based on Arecibo observations (Peterson and Terzian 1979). (3) Both Arecibo and NRAO data are combined to produce the composite spectrum. (4) The radio parameters are based on a profile taken from Shostak (1975). (5) The parameters are based on observations by M. S. Roberts (unpublished data).

If the third entry is blank, then the composite spectrum is based on observations made at the NRAO in a full 192-channel receiver mode.

Column (15).—H I profile area (Jy-km s⁻¹) defined as the area under the entire 21 cm line using a maximum profile width. A mean error of 10% is estimated from the flux calibration (see § V) and the profile width measurement.

Column (16).—H I profile width (km s⁻¹) defined as the observed velocity difference across the hydrogen profile measured at a level of 25% of the mean flux. The definition assumes a steep slope (rapid rise in flux) at the edges of the line but is reasonably independent of the signal-to-noise ratio. The mean error is roughly twice that quoted for the mid-range determination.

Column (17).—Separation of the member galaxies in the pair (decimal arcminutes) determined from 1950.0 positions and hence measured from the galaxy centers. Errors quoted for the listed positions indicate that the standard error in the derived separation is fairly uniform at approximately 0.1.

## b) Table 2

Additional parameters on those galaxies included among the 123 pairs in  $\mathcal{D}_{OB}^{I}$  with redshift information available on each component are compiled in Table 2; the tabulated entries are explained and referenced by column number.

Column (1).—Source number of the galaxy taken from the UGC.

Column (2).-NGC or IC designation.

Column (3).—Structural type based on the Hubble system (Hubble 1926) and taken from the UGC (see Table 1, col. [5]).

Column (4).—Galactic latitude (b), in decimal degrees.

Column (5).—Major blue diameter, in decimal arcminutes (UGC).

Column (6).—Inclination, in decimal degrees, defined as the angle between the plane of the sky and the principal plane of the galaxy. From Roberts (1969),

$$\cos^2(i) = 1.042(b/a)^2 - 0.042, \qquad (11)$$

where b/a is the ratio of minor blue diameter to major blue diameter. The equation is based on the assumption that a galaxy's shape approximates an oblate spheroid with a ratio of small axis to large axis p =0.20 (Holmberg 1958). Only spiral systems (type S; S2-S9) are included in this entry, and any galaxy with b/a < 0.20 is assigned an inclination  $i = 90^{\circ}$ .

Column (7).—Apparent photographic magnitude measured by Zwicky et al. (1960–1968) and adopted from the UGC.

Column (8).—Zwicky magnitude corrected for Galactic extinction (Holmberg 1958):

$$(m_z)_G = m_z - 0.25 \csc |b|$$
, (12)

1979ApJS...40..527P

				AD	DITIONA	L PARA	METERS	(𝒴 _{OB} ^I , s	ubset wit	n comp	olete redsl	hift dat	a)				
	ME NGC *IC	HUB TYP	GLACT LAT (DEG)	NAJ DIA (MIN)	INCL (DEG)	ZI ^m z	( ^m z) _G	MAG ^{(m} z) _{GI}		^{(m} [#] ) _G	(CALC) ( ^{m#} ) _{GI}	R/ VS	ADIAL V _{LG} (KM	VELOO V _{CF} /S)	CITY M.E.	REF	SEP (MIN)
(1)	(2)	(5)	(4)	(51	(0)		(0)	(9)	(10)	(11)	(12)	1151	(14)	(15)	(10)	(17)	(10)
57 80	1 16	\$5 \$1	-34.1 -34.2	1.80 1.80	49.5	13.4 12.5	12.95 12.06	12.74	13.13 12.40	12.69 11.96	12.48	4548 3110	4780 3341	5 053 3 61 7	10 50	<b>R</b> O	24.09
89 94	23 26	53 55	-36.0 -36.1	2.20 2.00	44.5 58.5	12.5 13.9	12.07 13.48	11.90 13.12	12.33 13.50	11.91 13.08	11.74 12.72	4566 4583	47 92 480 8	5064 5081	15 15	R R	9.11
2 <b>86</b> 292	125 128	\$1 \$1	-59.5 -59.5	1.60 3.00		14.2 13.2	13.91 12.91		13.70 12.67	13.41 12.38		5289 4243	54 30 43 84	5644 4599	50 26	0 0	6.33
356 365	160 169	53 D	-38.8 -38.8	3.00 3.50	59.7	13.7 13.3	13.30 12.90	12.88	13.18 12.77	12.78 12.38	1235	5255 4477	5461 4682	5 <b>76</b> 0 4 982	50 220	0 0	11.10
682 683	380 379	E S1	-30.3 -30.2	1.30 1.50		13.9 14.0	13.40 13.50		13.64 13.69	13.14 13.19		4341 5374	4548 5582	4 900 5 933	150 65	0 0	2.30
686 687	384 385	S1 E	-30.5 -30.4	1.10 1.30		14.3 14.3	13.81 13.81		13.99 13.96	13.50 13.47		4401 4845	4608 5052	4959 5403	100 150	<b>0</b> 0	1.76
688 689	382 383	E Sl	-30.3 -30.3	0.25 2.00		14.2 13.6	13.70 13.10		14.04 13.29	13.55 12.79		5156 4888	5363 5095	5714 5446	50 50	0	0.57
725 728		57 57	-19.6 -19.4	2.20 1.50	<b>79.</b> 1 0.0	14.5 14.2	13.75 13.45	12.72 13.45	14.04 13.90	13.29 13.15	12.26 13.15	5050 4910	5277 5137	5641 5501	10 20	R R	11.23
858 864	470 474	56 51	-58.7 -58.7	3.30 10.00	56.6	12.4 12.9	12.11 12.61	11.85	11.98 12.17	11.69 11.88	11.43	2370 2306	2477 2413	2 756 2 692	10 40	R D	5.31
986 1027	*1700 *1706	E S	-47.2 -47.2	2.00 1.20	49.5	14.3 14.2	13.96 13.86	13.67	13.77 13.82	13.43 13.48	13.28	5755 6319	5899 6461	6227 6791	192 86	0 0	25.82
1070 1078	573	57 P	-21.3 -21.0	2.10 0.45	41-4	14.3 13.5	13.61 12.80	13.52	13.88 13.49	13.19 12.79	13.10	2806 2796	3018 3008	3 3 <b>97</b> 3 388	15 15	R R	19.39
1089 1094	579 582	\$7 \$5	-28.5 -28.6	1.70 2.20	20.2 79.1	13.6 13.7	13.08 13.18	13.06 11.93	13.34 13.34	12.82 12.82	12.80 11.57	4981 4354	5175 4548	5551 4923	15 10	R R	8.85
1310 1313	694 * 167	р 57	-38.8 -38.9	0.50 3.00	57.3	13.9 14.0	13.50 13.60	13.36	13.71 13.41	13.32 13.01	12.77	2870 2928	3018 3076	3 390 3 448	43 10	0 R	5.55
1541 1550	797 801	53 57	-22.6 -22.5	1.90 3.30	43 <b>.6</b> 86.0	13.1 13.5	12.45 12.85	12.29 11.82	12.92 13.03	12.27 12.38	12.11 11.35	5647 5764	5832 5949	6235 6352	20 10	R R	9.14
1555 1556	* 195 * 196	S1 S5	-44.6 -44.6	1.50 3.00	62.1	14.3 14.2	13.94 13.84	13.40	13.85 13.54	13.50 13.18	12.74	8610 8573	8724 8687	9087 9051	34 69	0 0	2.28
1633 1655	818 828	S6 P	-21.7 -21.2	3.50 3.50	69.3	12.7 13.0	12.02 12.31	11.44	12.36 12.60	11.68 11.91	11.09	4245 5374	4428 5557	4835 5965	10 15	R R	29.93
1759 1768	871 877	57	-43.4 -43.3	1.10 2.30	39.5	13.6 12.5	13.24 12.14	12.05	13.34 12.27	12.98 11.90	11.82	3740 3914	3842 4015	4216 4390	10 25	R R	11.68

where b is the Galactic latitude. The corrected magnitude is given a formal accuracy of 2 decimal places.

Column (9).-Zwicky magnitude corrected for both Galactic extinction and internal absorption. The internal absorption correction is taken from Holmberg (1958):

$$(m_z)_{GI} = (m_z)_G - \alpha [\sec(i) - 1] \quad (i < 75^\circ)$$
  
=  $(m_z)_G - (A_I)_{MAX} \qquad (i \ge 75^\circ) \quad (13)$ 

 $(\alpha = 0.43, (A_I)_{MAX} = 1.33$  for S2-S5;  $\alpha = 0.28, (A_I)_{MAX} = 1.03$  for S6-S9), where *i* is the inclination;  $\alpha$  and  $(A_I)_{MAX}$  are given as a function of morphological type. The correction is made only for those galaxies with an inclination estimate available.

Column (10).—Apparent photographic magnitude statistically corrected from a Zwicky magnitude to the Holmberg system (Holmberg 1958):

. . .

.

$$m_{\rm H}^* = 8.11 \times 10^{-1} (m_z) + 4.57 \times 10^{-3} (\delta) - 1.54 \times 10^{-1} (a) + 2.42 \quad (a \le 6.0) = 9.48 \times 10^{-1} (m_z) + 7.79 \times 10^{-3} (\delta) - 7.37 \times 10^{-2} \quad (a > 6.0) , \qquad (14)$$

. ....

10 9(0)

where a is the major blue diameter in arcminutes and  $\delta$  is the declination in degrees. The conversion is an attempt to correct for systematic declination and angular diameter effects present in the Zwicky catalog (see Appendix B).

TABLE 2—Continued

NAME UGC NGC *IC	HUB GLA TYP LA (DE	CT MAJ T DIA G) (MIN)	INCL (DEG)	ZWICKY MAG ^m z ^{(m} z)g ^{(m} z)GI	HOLMBERG MAG (CALC) ^m [*] _H (m [*] _H ) _G (m [*] _H ) _{GI}	RADIAL VELOCITY V _S V _{LG} V _{CF} M.E. REF (KM/S)	SEP (MI.N)
(1) (2)	(3) (4	(5)	(6)	(7) (8) (9)	(10) (11) (12)	(13) (14) (15) (16) (17)	(18)
3063 1587 3064 1588	E -30 C -30	0.5 1.80 0.5 1.50		13.3 12.81 14.1 13.61	12.93 12.44 13.63 13.13	3890 3825 4194 75 0 3378 3313 3682 105 0	1.10
3422 3426	\$5 22 \$1 22	.7 2.40 .7 1.80	42.5	14.5 13.85 13.71 13.8 13.15	14.13 13.49 13.35 13.66 13.01	4053 4219 4569 10 R 4054 4219 4570 10 D	6.40
3740 2276 3798 2300	S7 27 E 27	1.7 2.80 1.8 3.20	27.4	12.3 11.76 11.73 12.2 11.66	12.36 11.82 11.78 12.21 11.68	2369 2579 2858 28 0 1958 2168 2447 25 0	6.37
3930 2415 3937	P 24 S 24	.0 1.00 .2 2.10	82.5	12.5 11.89 14.2 13.59 12.41	12.56 11.95 13.77 13.17 11.99	3782 3762 4104 20 R 3990 3972 4313 10 R	23.26
4066 4151	57 29 58 30	0.8 2.10 ).3 1.70	18.1 20.2	14.2 13.70 13.68 13.1 12.60 12.59	13.97 13.47 13.45 13.14 12.64 12.62	2301 2481 2780 10 R 2286 2465 2762 15 R	27.85
4093 *2209 4097 2460	S 31 S5 31	.3 1.10 .4 4.00	44.5 46.8	14.5 14.02 13.88 12.5 12.02 11.84	14.29 13.80 13.66 12.22 11.74 11.56	1545 1646 1977 95 O 1450 1551 1882 10 R	5.44
4095 4098	P 31 S 31	.2 0.90 .3 C.90	53.9	14.4 13.52 14.5 14.02 13.77	14.26 13.78 14.34 13.86 13.62	4080 4211 4533 15 R 4913 5043 5366 10 R	10.72
4345 2562 4347 2563	S2 28 S1 28	8.6 1.30 8.6 2.00	40.7	14.0 13.48 13.34 13.7 13.18	13.67 13.15 13.01 13.32 12.80	4963 4862 5121 50 0 4642 4541 4799 39 0	4.72
4356 *2327 4366 * 503	S3 21 S3 21		76.8 25.2	13.9 13.21 11.88 14.0 13.32 13.28	13.48 12.79 11.46 13.62 12.94 12.90	2685 2503 2692 10 R 4131 3949 4137 15 R	12.10
4593 4603 2650	D 35 S5 35	6.3 C.70 6.3 1.80	44.9	13.4 12.57 14.3 13.87 13.71	13.50 13.07 14.06 13.63 13.47	3626 3769 4061 15 R 3826 3970 4261 15 R	12.43
4671 4675 2 <b>6</b> 92	S 40 S4 40	).1 1.60 ).1 1.30	29.6 76.2	13.6 13.21 13.16 14.1 13.71 12.38	13.44 13.05 13.00 13.89 13.50 12.17	3669 3724 4006 14 D 3757 3811 4093 15 D	3.34
4691 2713 4692 2716	S5 29 S1 29	0.2 4.00 0.3 1.60	73.0	12.9 12.39 11.44 13.7 13.19	12.28 11.77 10.82 13.30 12.79	3875 3688 3823 26 D 3537 3350 3486 50 D	10.81
4752 2738 4 <b>794</b> 2764	S 38 S 39	3.4 1.50 9.2 1.40	64.5 51.4	13.8 13.40 12.93 13.9 13.50 13.29	13.48 13.08 12.61 13.58 13.18 12.97	3102 3001 3203 15 R 2714 2610 2804 10 R	67.53
4757 2744 4763 2749	D 37 E 37	1.4 1.60 1.5 1.80		13.7 13.29 13.3 12.89	13.37 12.96 13.01 12.60	3431 3313 3501 10 R 4236 4117 4304 24 D	13.39
4840 2778 4843 2780	E 43 S 43	.0 1.40 .1 1.00	46.8	13.1 12.73 14.2 13.83 13.67	12.99 12.62 13.94 13.58 13.41	2060 2025 2257 21 0 2216 2181 2411 22 0	7.32
4905 2798 4909 2799	S3 44 S 44	.3 2.80 .3 2.10	75.2 82.5	12.9 12.54 11.21 14.4 14.04 12.86	12.64 12.28 10.95 13.97 13.61 12.43	1708 1710 1953 75 0 1737 1739 1982 40 0	1.63
4952 2814 4961 2820	S7 40	).2 1.30 ).3 4.40	90.0	14.0 13.61 13.1 12.71 11.68	13.87 13.48 12.66 12.27 11.24	1663 1778 2051 95 0 1686 1801 2074 18 0	3.74

Column (11).—Derived Holmberg magnitude corrected for Galactic extinction (see col. [8]).

Column (12).—Derived Holmberg magnitude corrected for both Galactic extinction and internal absorption (see col. [9]).

Column (13).—Heliocentric radial velocity  $(\text{km s}^{-1})$  based on the radio data when available.

Column (14).—Radial velocity  $(\text{km s}^{-1})$  corrected to the rest frame of the Local Group (de Vaucouleurs et al.):

$$v_{\rm LG} = v_s + 300 \sin(l) \cos(b)$$
. (15)

Column (15).—Radial velocity (km s⁻¹) corrected to the comoving frame (Rubin *et al.* 1976):

$$v_{\rm CF} = v_{\rm LG} + 450\cos(A)$$
, (16)

where A is the angle between the galaxy position and  $l = 163^{\circ}, b = -11^{\circ}$ . Column (16).—Mean error (km s⁻¹) quoted from

Column (16).—Mean error  $(\text{km s}^{-1})$  quoted from the original source and representing a 1 standard deviation uncertainty.

Column (17).—Reference indicating whether the radial velocity is based on optical measurements (O) or radio observations (R).

Column (18).—Separation of the member galaxies in the pair (decimal arcminutes) determined from 1950.0 positions and hence measured from the galaxy centers.

## c) Table 3

The supplementary Table 3 appears in the same format as Table 2, and lists those 34 galaxy pairs in

## No. 3, 1979

## DOUBLE GALAXIES

 TABLE 2—Continued

NA UGC	ME	HUB Typ	GLACT	MAJ DIA	INCL	z ^m z	wicky ( ^m z) _c	MAG	HOLMBEI	RG MAG	(CALC) (m#)	vsR	ADIAL VLG	VELO	ITY M.E.	REF	SEP
(1)	*1C (2)	(3)	(DEG) (4)	(MIN) (5)	(DEG) (6)	(7)	(8)	- GI (9)	(10)	(11)	(12)	(13)	(KM)	(15)	(16)	(17)	(MIN) (18)
5018	2872	E	39.4	1.80		13.0	12.61		12.74	12.34		2976	2825	2 9 5 4	95	0	
5021	2874	S7	39.4	2.40 4.00	74.2	13.5	13.11	12 <b>.36</b>	13.05	12.66	11.91	3620 3181	3469	3598	95 26	0	1.27
5096	2914	\$3	40.6	1.10	58.8	13.7	13.32	2 12.92	13.41	13.02	12.62	3370	3214	3324	100	٥	4.85
5183 5190	2964 2968	S6	49.0 49.1	3.50 2.40	5 <b>9.</b> 0	12.0	11.6	7 11.37	11.76	11.43 12.49	11.13	1319 1613	1269 1564	1451 1746	20 73	R O	6.18
5251 5280	3003 3021	57 5	50.3 50.8	5.70 1.50	77.0 54.7	12.3 12.6	11.98 12.28	3 10.95 3 12.02	11.67 12.56	11.34 12.24	10.31 11.98	1482 1541	1441 1501	1621 1678	10 20	R R	30.53
5279 5292	3026 3032	59 51	50.3 50.7	2.60 2.00	79.4	13.8 13.0	13.40 12.60	3 12.45 3	13.34 12.79	13.02 12.47	11.99	1492 1561	1426 1499	1586 1659	10 20	R R	44.31
5375 5379	3065 3066	\$1 \$	39.4 39.5	1.80 1.20	0 ° 0	12.9 12.8	12.51 12.41	l l 12.41	12.93 12.95	12.54 12.55	12.55	1963 2050	2117 2204	2372 2459	26 31	0 0	2.97
5520 5576		57 5	44•8 45•2	2.20 1.50	51.9 54.7	14.4 14.1	14.09 13.79	5 13.87 5 13.49	14.06 13.92	13.70 13.57	13.53 13.31	3315 3296	3438 3419	3675 3653	10 15	R R	36.12
5617 5620	3226 3227	E S 5	55•4 55•4	2.50 6.50	47.4	13.3 12.2	13.00 11.90	) ) 11.71	12.91 11.64	12.61 11.34	11.15	1356 1165	1254 1063	1331 1139	13 25	D R	2.33
5742 5767	3287 3301	59 51	58.5 59.0	2.10 3.40	63.8	12.9 12.2	12.6) 11.9	12.25	12.66 11.89	12.36 11.60	12.01	1307 1333	12 16 12 44	1284 1309	10 75	R O	32.80
5931 5935	3395 3396	57 59	63.1 63.2	1.80 3.70	58.1 70.9	12.1 12.6	11.82 12.32	2 11.57 2 11.74	12.11	11.83 11.94	11.58 11.36	1625 1680	1595 1650	1691 1746	6 16	0 0	1.49
5953 5969	3415	P S2	60.3 60.8	0.45 2.10	56.9	13.2 13.2	12.9 12.9	l l 12.56	13.26 13.00	12.97 12.72	12.36	1841 3303	1869 3327	2012 3 <b>466</b>	220 20	O R	51.71
6025 6064	3435 3471	S 5 S 3	50.6 50.8	1.90 1.90	48.1 64.0	14.2 13.0	13.80 12.60	B 13.68 B 12.13	13.92 12.95	13.60 12.63	13.41 12.08	5158 2076	5268 2188	5 <b>46</b> 8 2385	10 34	<b>R</b> O	34.36
6528 6542	3725	\$7 \$7	52.9 52.9	1.20 1.60	24 <b>.1</b> 42 <b>.</b> 5	14.1 13.6	13.79 13.29	9 13.76 9 13.19	13.95 13.49	13.64 13.17	13.61 13.07	3251 3182	3372 3303	3545 34 <b>76</b>	15 55	R D	7.61
6615 6640	3780 3804	\$7 \$7	58.1 58.3	3.10 2.50	37.1 48.5	12.2 13.8	11.91 13.51	l 11.83 l 13.36	12.09 13.48	11.80 13.19	11.73 13.05	2394 1385	2492 1483	2636 1626	10 10	R R	13.33
6621 6623	3786 3788	53 5	73.7 73.7	2.20 1.80	62.1 74.2	13.0 13.2	12.74 12.94	4 12.25 4 11.99	12.77 12.99	12.51 12.73	12.02 11.78	2761 2339	2744 2322	2771 2349	95 95	0 0	1.50
6630 6634	3799 3800	s s	69.7 69.7	C.70 1.90	<b>45.6</b> 82.6	14.4 13.1	14.13 12.8	3 13.98 3 11.65	14.06 12.82	13.79 12.56	13.64 11.38	3573 3556	3479 3462	3420 3403	95 95	0 0	1.34
6711 6752	3879	<b>S</b> 8	46.3 46.7	0.80 2.50	90.0	13.8 13.5	13.49 13.14	5 5 12 <b>.</b> 13	13.81 13.30	13.46 12.96	11.93	2702 1431	2858 1586	3 05 5 1 7 8 1	10 10	R R	24.27

Turner's (1976a) sample which satisfy the isolation criteria (eq. [1]) but include component magnitudes *outside* the original selection range (i.e.,  $m_z < 12.5$  or  $m_z > 14.5$ ).

#### v. 21 CENTIMETER H I OBSERVATIONS

The 21 cm observations of galaxies in  $\mathcal{D}_{OB}^{I}$  were performed over a  $1\frac{1}{2}$  year period (1975 January– 1976 June) and required approximately 1200 hours of telescope time on the 91 m (300 foot) transit telescope of the National Radio Astronomy Observatory. The peripheral hardware included a dual-polarization, cryogenic 21 cm parametric amplifier (paramp) with system temperatures of approximately 50 K, and a 384-channel model III autocorrelation receiver. When observing those sources without available redshift data, the autocorrelator was divided into four 10 MHz (96-channel) sections, each section offset by 7 MHz; the search mode provided a radial velocity coverage of 6500 km s⁻¹ and a spectral resolution of 21 km s⁻¹. Sources detected in the search mode or having known optical redshifts were observed with two 10 MHz (192-channel) receivers of opposite polarization, resulting in a spectral resolution of 11 km s⁻¹.

A movable feed allowed the tracking of each source for 4 csc  $\delta$  minutes as the galaxy crossed the meridian. A scan of the same duration was made in a source-free field either before or after the galaxy observation, with the off-source scan subtracted from the on-source scan to remove instrumental variations in the spectrum. A galaxy was usually observed on three to eight scans in the two-receiver autocorrelation mode; these scans were then averaged and the two polarizations

NA	ME	нив	GLACT	MAJ.	INCL	Z	WICKY	MAG	HOLMBE	RG_MAG	(CALC)	R	ADI AL	VĘLOO	2.I.T.Y		SEP
UGC	NGC ¥IC	ТҮР	LAT (DEG)	CIA (fin)	(DEG)	^m z	^{(m} z) _G	^{(m} z) _{GI}	^m H	( ^m H) _G	^{(m} [∓] )GI	^v s	^V LG (км/	V _{CF} (S)	M.E.	REF	(MIN)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
6813	3913	57	59.7	3.00	21.5	14.2	13.91	13.89	13.73	13.44	13.42	956	1053	1184	10	R	
6823	3921		60.0	2.20		13.4	. 13.11		13.20	12.91		5838	5934	6063	25	R	16.90
6880 6884	3558 3 <b>56</b> 3	\$3 \$5	57.2 57.1	1.40 2.90	69.8 21.9	13.1 12.2	12.80 11.90	11.99 11.87	13.10	12.80 11.84	11.98	3380 3185	3491 3297	3634 3440	50 20	R R	8.25
7021 7060	4045 4C73	\$ 3 E	62.3 62.4	3. <i>0</i> 0 2.10	49.5	13.5 13.8	13.22 13.52	12.99	12.92 13.30	12.63 13.01	12.40	2001 5961	1862 5823	1706 5 <b>66</b> 4	41 59	0 0	26.59
7044	4061	E	77.2	1.20		14.4	14.14		14.01	13.75		1603	1544	1477	83	0	
7050	4065	E	77.2	1.20		14.0	13.74		13.68	13.43		1180	1121	1 054	152	0	1.13
7111 7116	4116 4123	57	63.4 63.6	3.80 5.00	37.8	13.0 13.1	12.72 12.82	12.75	12.39 12.29	12 <b>.</b> 11 12.01	11.93	1309 1328	1176 1196	1016 1036	10 10	R R	14.21
7283	4218	6.2	67.9	1.00	71 4	13.2	12.93	11 20	13.19	12.92	10.01	725	799	872	20	R	15 20
1290	4220	35	00.1	5.00	/1.0	12.4	12.13	11.20	12.11	11.04	10.91	919	1052	1125	50	U	15.30
7296	4221 4229	52 S	80.1 80.1	1.30	52.8 47.4	13.8	13.55	13.26	13.52	13.72	12.98	6515	6524 6671	6514 6661	43 62	0	2.67
7397 7429	4291 4319	E S 5	41.6 41.7	2.00 3.10	<b>43.</b> 2	12.3 13.0	11.92 12.62	12.48	12.43	12.06	12.31	1785 1685	1968 1868	2173 2072	43 73	0 0	6.14
7407	4294	D	72.9	3.00		12.6	12.34		12.23	11.97		351	263	128	15	R	
7414	4299	59	72.9	1.70	0.0	12.8	12.54	12.54	12.59	12.33	12.33	228	140	5	15	R	5.69
7412 7418	4298 4302	57 57	75.7 75.7	3.00 5.10	57.3 90.0	12.2 13.4	11.94 13.14	11.70	11.92 12.57	11.66 12.31	11.42 11.28	1116 1339	1042 1265	922 1145	19 50	0 0	2.39
7465	4343	S 5	68.8	2.60	79.4	13.5	13.23	11.98	13.00	12.73	11.48	1012	906	745	10	R	5.07
7400	4342		75 0	1.00	07.3	13.0	12.13	12.00	12.07	12.51	11.72	114	009	++0	50	U	5.91
7613	4450	\$1	75.1	3.60		12.2	11.94		11.82	11.56		383 1887	1811	1675	40	0	3.67
7685 7694	4517	\$7	62.9 62.6	4.70 10.80	90.0	14.1 12.4	13.82 12.12	11.09	13.13	12.85	10.37	1529 1129	1403 1002	1198 796	10 10	R R	16.99
7706	4521	S2	53.1	2.70	84.4	13.0	12.69	11.36	12.84	12.53	11.20	2971	3116	3261	20	R	
7747	4545	57	53.5	2.90	58.4	13-1	12.79	12.54	12.89	12.58	12.32	2740	2884	3025	20	R	27.32
7721 7732	4527 4536	55 56	65.2 64.7	6.50 7.00	73.9 69.3	12.4 12.3	12.12	11.11 11.44	11.70	11.42 11.32	10.41 10.74	1737 1807	1621 1689	1 425 1 490	10 10	R R	28.28
7757 7759	4550 4551	S1 E	74.6 74.7	3.30 1.70		12.5	12.24 12.84		12.10	11.85		381 978	305 903	155 753	15 300	R D	3.19
7776 7777	4568 4567	57 57	73.7 73.7	5.10 3.00	64.2 34.4	12.5 12.5	12.24 12.24	11.88 12.18	11.82	11.56 11.89	11.20 11.83	2247 2199	2168 2120	2011 1964	24 22	0 0	1.35

combined in producing a composite spectrum. The line profiles are shown in Figures 5 and 6.

The calibration of the data was accomplished through a comparison with noise tubes switched into the receiver circuits every 10 s. Using drift scans, the noise tubes were then compared with small continuum sources of known flux; fluxes were taken from Bridle *et al.* (1972) and Fomalont and Moffet (1971). A detailed summary of the corrections applied to account for gain variation as a function of hour angle and declination, as well as corrections for the telescope pointing, can be found in Fisher and Tully (1975). Calibration uncertainty is estimated at 6%.

Supplementary observations were made in 1976 March using the 305 m (1000 foot) Arecibo telescope (Peterson and Terzian 1979). The observations employed an uncooled 21 cm paramp with system temperature of approximately 70 K, and a 12 m (40 foot) linear feed illuminating an area 213 m (700 feet) in diameter. The spectral processing was performed over a 10 MHz bandwidth using 252 channels of the 1008channel autocorrelator. In this configuration, the Arecibo telescope has a maximum sensitivity of  $8.5 \text{ K Jy}^{-1}$  and a half-power beamwidth of 3'.2, compared with 1.0 K Jy⁻¹ and 10'.8, respectively, for the 91 m instrument. The Arecibo observations were performed to confirm marginal 91 m detections and to eliminate spatial confusion in those galaxy pairs which were unresolved in the 10'.8 beam.

The H I observations on both the 91 m and 305 m telescopes resulted in a detection ratio of 55%: out of the 271 galaxies observed, 94 galaxies without redshift information and 55 galaxies with optical redshifts were detected at 21 cm. The 149 galaxies may be

## No. 3, 1979

## DOUBLE GALAXIES

TABLE 2—Continued

		r							1								
NA UGC	ME NGC +IC	НИВ Түр	GLACT LAT (DEG)	MAJ CIA (MIN)	INCL (DEG)	ZI ^m z	ICKY I	MAG ^{(m} z)gi	HOLMBEI m [#] H	rg mag ( ^m [#] ) _G	(calc) ( ^m #) _{GI}	v _s F	ADIAL V _{LG}	V ELOO V _{CF} /S )	.ITY M.E.	REF	SEP (MIN)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
7828 7842	4596 4608	\$1 \$1	72.8 72.9	4.50 3.00		12.4 12.6	12.14 12.34		11.83 12.22	11.57 11.96		2020 1870	) 1939 ) 1789	1772 1621	<b>46</b> 18	0 0	19.12
7930 7933	4670 4673	Р 51	88.6 88.7	1.60 1.00		12.6 13.7	12.35 13.45		12.52 13.50	12.27 13.25		1159 6991	) 1155 . 6987	1 076 6 <b>90</b> 7	42 67	0 0	5.54
8099 8125	4868 4914	S3 E	79.7 79.6	1.60 3.50	20.8	12.9 12.7	12.65 12.45	12.62	12.81 12.35	12.55 12.10	12.52	4731 4778	4780 4828	4748 4794	17 23	0 0	18.59
8175 8194	4952 4966	E S	86.4 86.2	1.30 1.00	65.7	13.6 13.9	13.35 13.65	13.14	13.38 13.67	13.13 13.42	12.91	586 9 7102	5882 7120	5794 7030	71 70	0 0	17.51
81 <b>78</b> 8185	4957 4961	E S7	86.9 86.8	1.10 1.60	47.8	14.2 13.5	13.95 13.25	13.11	13.89 13.25	13.64 13.00	12.86	700 <i>6</i> 253 1	5 7017 2543	6919 2445	70 10	0 0	12.64
8355 8393	* 875 5109	51 S	59.3 59.0	1.60 1.80	81.3	13.9 13.6	13.61 13.31	12.13	13.71 13.44	13.42 13.14	11.96	2696 213	2834 2271	2914 2350	105 15	O R	30.77
8396 8403	5107 5112	57	77.0 76.8	1.80 4.00	46.8	13.7 12.5	13.44 12.24	12.11	13.43 12.12	13.17 11.86	11.73	94( 96	0 1007 5 1033	962 989	15 10	R R	13.40
8507 8516		59 57	78.1 78.3	1.60 1.10	57.6 44.5	14.0 13.8	13.74 13.54	13.50 13.43	13.62 13.53	13.36 13.28	13.12 13.17	1000 101	) 994 1008	821 838	15 15	R R	36.03
8641 8645	52 <b>57</b> 5258	s s	61.3 61.2	1.80 1.70	66.1 35.4	13.7 13.8	13.41 13.51	12.89 13.43	13.26 13.35	12.97 13.07	12.45 12.99	686 668	5 6790 9 6614	6 509 6 333	95 95	0 0	1.35
8699 8700	5289 5290	54 56	71.9 71.7	1.90 3.60	80.0 81.3	13.5 13.0	13.24 12.74	11.91 11.63	13.27 12.60	13.00 12.34	11.67 11.23	251¢ 2583	5 2609 3 2677	2 565 2 634	15 15	R R	12.87
8792 8809	5341 5351	S S 5	73.3 73.1	1.40 2.90	67.3 58.4	14.1 13.1	13.84 12.84	13.28 12.49	13.81 12.77	13.55 12.51	12.99 12.16	3648 363 (	3732 3715	3657 3640	10 15	R R	12.64
8898 8900	5394 5395	S S 5	72.5 72.5	1.90 3.00	67.8 66.9	13.7 12.6	13.44 12.34	12.85 11.73	13.41 12.35	13.15 12.09	12.56 11.48	341( 3542	) 3496 2 3628	3415 3547	21 12	0 0	1.98
9026 9029	5480 5481	57 E	62.4 62.4	1.70 1.80	55.6	12.6 13.5	12.32 13.22	12.10	12.61 13.32	12.33 13.04	12.11	179 210	L 1929 2 2240	1935 2246	95 95	0 0	3.20
9033 9036	5485 5486	S1 58	58.9 58.8	2.70 1.50	54.7	12.4 14.0	12.11 13.71	13.50	12.31 13.80	12.02 13.50	13.30	198 138	5 2137 3 1535	2173 1572	50 10	D R	6.41
9136 9139	5536 5541	53 5	68.5 68.4	1.00 6.90	0.0 39.9	14.5 13.4	14.23 13.13	14.23 13.02	14.21 13.33	13.94 13.06	13.94 12.95	513 747	7 5243 2 7578	5164 7500	50 41	0 0	5.50
9172 9175	5560 5566	\$5 \$3	58.6 58.6	4.00 6.20	84.0 71.4	13.7 12.0	13.41 11.71	12.16 10.79	12.93 11.33	12.64 11.04	11.39 10.12	171	L 1682 3 1489	1380 1187	15 68	r O	5.30
9181 9183	5574 5576	S1 E	57.9 57.9	1.10 3.00		13.4 12.3	13.10 12.00		13.13 11.95	12.84 11.65		1710 152	5 1685 3 1497	1379 1191	50 100	0 0	2.70

placed in one of three categories: (1) 44 galaxy pairs with H I data on each member, (2) 29 galaxy pairs with a 21 cm profile on one component and an optical redshift for the other, and (3) 38 systems with a 21 cm profile on one member but no redshift information on its companion (six H I observations have been included from Shostak 1975 and Roberts [unpublished data]).

#### VI. DERIVED GLOBAL PROPERTIES

The optical and radio data compiled on member galaxies in  $\mathcal{D}_{OB}^{I}$  are combined in the derivation of global properties, including hydrogen mass content, luminosity, total indicative mass, and the ratios of these parameters. The integral properties provide the means for a comparison of galaxies in double systems

with individual field galaxies. In addition, the total indicative mass and total mass-to-light ratio based on global H I profiles provide independent measurements to be compared with values obtained from a statistical study of orbital parameters in the observed sample of galaxy pairs.

Table 4 catalogs the integral properties of those galaxies in double systems with radio data available on each member, while the supplementary Table 5 includes the individual components of systems having an observed optical redshift for the companion. A cut-off in the radial velocity difference,  $\Delta v < 750$  km s⁻¹, is incorporated to increase the probability that only physically paired galaxies are included in an analysis of the global properties. Tabulated entries are explained and referenced by column number.

TABLE 2-Continued

NAI UGC	ME NGC +IC	НИВ Түр	GLACT LAT (DEG)	LAM AID (NIM)	INCL (DEG)	r mz	WICKY ^{(m} z) _g	MAG ^{(m} Z ⁾ GI	HOLMBEI ^m H	RG MAG (m [*] ) G	(CALC) (m [*] _H ) _{GI}	v _s ^R	ADIAL V _{LG}	VELDO V _{CF}	CITY M.E.	REF	SEP (MIN)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
9347 9361	5673 *1029	\$7 \$5	60.2 60.1	2.60 2.80	50.0 90.0	14.0 13.7	13.71 13.41	12.68	13.60 13.33	13.31 13.04	12.28 11.79	2082 2381	2231 2530	2220 2518	15 10	R R	9.69
9 <b>3</b> 53 9360	5669 5666	57 C	60.6 60.9	4.50 0.90	43.9	13.2 13.5	12.91 13.21	12.80	12.48 13.28	12.19 12.99	12.08	1371 2221	1376 2229	1 096 1 952	10 10	R R	37.72
9399 9406	5689 5693	\$3 \$7	60.5 60.5	4.00 1.70	78.9 0.0	12.7 14.5	12.41 14.21	11.08 14.21	12.33 14.14	12.04 13.85	10.71 13.85	2205 2276	2353 2424	2330 2400	50 15	0 R	11.69
9493 9499	5740 5746	\$5 \$5	52.9 53.0	3.20 7.40	57.6 90.0	13.2 12.3	12.89 11.99	12.55 10.74	12.64 11.60	12.33 11.29	11.99 10.04	1567 1724	1550 1708	1220 13 <b>79</b>	10 10	R R	18.32
9560 9562		P P	63.2 63.2	0.80 1.10		14.5 14.2	14.22 13.92		14.22 13.93	13.94 13.65		1147 1226	1262 1342	1137 1216	9 24	0 0	4.18
9576 9579	5774 5775	57 57	52.5 52.4	3.40 4.20	35.4 85.6	13.9 13.0	13.58 12.68	13.52 11.65	13.18 12.33	12.87 12.02	12.81 10.99	1589 1582	1587 1580	1261 1254	20 95	0 0	4.30
9615 9628	5789 5 <b>7</b> 98	59	62.5 62.2	1.00 1.40	51.4	13.9 13.5	13.62 13.22	13.05	13.68 13.29	13.40 13.01	12.84	1800 1787	1901 1888	1 735 1 720	15 10	R R	20.88
9645 9655	5806 5813	\$5 E	50.2 49.8	3.00 3.40	62.1	12.9 12.5	12.57 12.17	12.13	12.43 12.04	12.10 11.71	11.66	1301 1882	1298 1879	960 1540	65 65	0	20.97
9724 9728	5857 5859	\$3 \$5	58.0 58.0	1.30 2.90	64.9 82.1	13.6 13.1	13.31 12.81	12.72	13.34 12.69	13.04 12.39	12.46 11.14	4706 4664	4777 4735	4 53 5 4 4 9 3	57 150	0 0	2.13
9774 5789	5893 5899	\$5 \$7	57.5 57.2	1.40 2.80	22.3 67.3	14.1 12.6	13.80 12.30	13.77	13.83 12.40	13.53 12.10	13.50 11.66	5381 2554	5532 2706	5444 2619	15 15	R R	17.40
9 <b>79</b> 7 9805	5905 5908	S 5 S 5	51.6 51.5	4.70 3.00	41.0 66.9	13.6 13.5	13.28 13.18	13.15	12.98 13.16	12.66 12.84	12.53 12.23	3393 3309	3579 3496	3595 3510	10 10	R R	13.06
9906 9914	5963 5 <b>965</b>	S S 5	48.9 48.8	4.00 6.00	42.5 90.0	13.0 13.4	12.67	12.54 11.82	12.60 12.62	12.27 12.29	12.15 11.04	655 3416	852 <b>361</b> 4	872 3635	10 10	R R	8.93
9908 9915	5956 5957	57 55	48.7 48.8	1.70 2.80	0.0	13.3 13.3	12.97 12.97	12.97 12.97	13.00 12.83	12.67 12.50	12.67 12.50	1899 1828	1964 1895	1665 1597	10 15	R R	18.87
9 <b>96</b> 1 9969	5982 5985	Е 55	46.9 46.8	3.00 5.80	59.6	12.4 12.0	12.06	11.28	12.28 11.53	11.94 11.19	10.80	2879 2521	3084 2726	3125 2767	28 10	O R	7.48
10003 1 <b>0007</b>	5 992 5 993	S S 5	52.0 52.0	1.00 1.20	37.8 42.5	14.2 13.9	13.88 13.58	13.79 13.44	13.97 13.70	13.65 13.38	13.56 13.24	9594 9390	9762 9559	9661 9457	122 58	0 0	1.97
10628 10656	626 <b>7</b> 6278	57 51	34.5 33.9	1.40 2.10	39.2	14.0 13.8	13.56 13.35	13.48	13.66 13.39	13.22 12.94	13.14	2974 2776	3144 2948	2 91 5 2 72 0	15 15	<b>R</b> R	37.24
10724 10727	6306 6307	s 52	36.0 36.0	1.00 1.40	76.8 39.2	14.3 14.0	13.87 13.57	12.69 13.45	14.14	13.72 13.41	12.54 13.29	2973 3057	3216 3300	3270 3354	28 31	0	1.36

Column (1).—Source number of the galaxy taken from the UGC.

Column (2).—Structural type based on the Hubble system (Hubble 1926) and taken from the UGC (see Table 1, col. [5]).

Column(3).—Major diameter, in decimal arcminutes, statistically corrected from the UGC blue diameter to the Holmberg system (Holmberg 1958):

$$\theta_{\rm H}^* = 2.0(a)^{0.75} (b/a)^{0.2} , \qquad (17)$$

where a is the major blue diameter in arcminutes and b/a is the ratio of minor blue diameter to major blue diameter. The primary conversion is based on a least-squares analysis of the 206 galaxies in the Holmberg catalog with  $a \le 15'$ . The axial ratio dependence is taken from Shostak (1975) and corrects for the ob-

served dependence of measured photometric diameter on inclination (Heidmann, Heidmann, and de Vaucouleurs 1972).

Column (4).—H I profile area (Jy-km s⁻¹) corrected to account for the effects of a finite source size on the observed flux (the correction assumes a Gaussian shape for both the distribution of neutral hydrogen in the source and the telescope beam pattern; the major diameter determines a scale size for each galaxy, with the assumption that 70% of the hydrogen is confined within that dimension):

$$S = S_{OB}(1 + \beta^2)^{1/2} [1 + \beta^2 \cos^2(i)]^{1/2}, \quad (18)$$

where  $S_{\text{OB}}$  is the observed profile area and  $\beta = 0.76 \,\theta_{\text{H}}^*/\theta_{\text{HPBW}}$ . The half-power beamwidth of the 91 m telescope  $\theta_{\text{HPBW}} = 10.8$  at 21 cm, while  $\theta_{\text{HPBW}} = 3.2$  for the Arecibo observations. Although this is only

TABLE 2-Continued

NA UGC	ME	HUB Typ	GLACT LAT	MAJ Di a	INCL	ZWI( m, (m.	CKY M.	AG m 7 )	HOLMBE	RG MAG	(CALC) (m [*] )	v _s R/			ITY M.E.	REF	SEP
	+IC		(DEG)	(MIN)	(DEG)		G'G	² 'GI	, n	' <b>п</b> ′ _G	' GI		(KM/	'S )			(MIN)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
10848 10897	*4660 6412	s 57	31.7 31.2	1.40 2.30	81.3 0.0	14.3 1 12.4 1	3.82 1.92	12.64 11.92	14.15 12.47	13.67 11.98	12.49 11.98	1225 1320	1468 1565	1636 1733	15 10	R R	30.18
11009 11010	6482 6484	Е \$5	22.9 23.4	2.10 2.00	18.6	12.8 1 13.5 1	2.16 2.87	12.85	12.58 13.17	11.94 12.54	12.52	392 2 31 1 2	4128 3321	3 923 3 1 2 6	60 10	D R	84.63
11137 11144	6570 6574	58 S	15.2 15.4	1.80 1.30	58.1 47.4	13.2 12 12.5 1	2.25 1.56	12.00 11.39	12.91 12.42	11.96 11.48	11.71 11.31	2283 2261	2474 2455	2227 2214	10 20	R R	54.26
11354 11356	6702 6703	E S 1	19.8 19.7	1.90 2.30		13.8 1 12.4 1	3.06 1.66		13.53 12.33	12.79 11.59		4725 2318	4998 2591	4 983 2 576	43 35	0 0	10.06
11429 11430	6792	\$5 \$7	13.2 13.2	2.40 1.10	59.1 0.0	13.4 1 14.4 1	2.31 3.31	11.94 13.31	13.11 14.13	12.02 13.03	11.65 13.03	4628 5478	4910 5760	4 905 5 756	10 10	R R	11.81
11589 11590	6928 6930	S4 D	-17.3 -17.3	2.20 1.20	79.1	13.7 1 14.3 1	2.86 3.46	11.53	13.24 13.88	12.39 13.04	11.06	4754 4182	4986 4414	4876 4303	75 75	0 0	3.86
11628 11629	6962 6964	S3 E	-25.4 -25.4	3.00 1.60	40.9	13.5 1 14.2 1	2.92 3.62	12.78	12.91 13.69	12.32 13.11	12.18	4219 3832	4419 4031	4283 3896	15 100	R O	1.75
12035 12045	7280 7290	S2 S5	-34.2 -33.8	1.90 1.70	48.1 55.6	13.6 1 13.8 1	3.16 3.35	12.94 13.05	13.23 13.43	12.78 12.98	12.57 12.68	1903 2896	2147 3142	2237 3239	20 20	R R	66.39
12115 12122	7332 7339	S1 56	-29.7 -29.7	3.60 2.80	78.0	12.0 1 13.1 1	1.50 2.60	11.49	11.70 12.72	11.20 12.21	11.10	1191 1339	1451 1599	1589 1738	11 15	i) R	5.15
12365 12378	*5285 7 <b>4</b> 89	C S7	-33.9 -33.9	1.70 2.20	62.1	14.4 1 14.3 1	3.95 3.85	13.53	13.94 13.78	13.49 13.33	13.01	6245 6239	6493 6487	6671 6666	105 15	i) R	8.58
12442 12447	7537 7541	\$5 \$7	-50.7 -50.7	2.10 3.40	82.5 75.0	13.8 1 12.7 1	3.48 2.38	12.23 11.58	13.31 12.21	12.98 11.89	11.73 11.09	2602 2393	2791 2582	2905 2 <b>69</b> 6	<b>46</b> 83	0 0	3.01
12456 12457	7550 7549	50 S	-38.4 -38.3	1.40 2.80	81.3	13.9 1 14.1 1	3.50 3.70	12.52	13.56 13.51	13.16 13.10	11.92	4987 4806	5222 5041	53 <b>96</b> 5216	150 150	0 0	4.80
12464 12486	7562 7591	E S5	-49.0 -49.4	2.10 1.90	67.8	13.0 1 13.8 1	2.67 3.47	12.83	12.67 13.35	12.34 13.02	12.38	3806 496 <b>4</b>	4002 5159	4128 5287	63 15	0 R	34.98
126C7 12610	7673 7677	C S5	-35.4 -35.5	1.70 1.70	51.1	12.7 1 13.9 1	2.27 3.47	13.24	12.56 13.54	12.13 13.11	12.87	3407 3544	3648 3785	3 857 3 994	20 20	R R	6.63
12618 12622	7679 7682	\$1 \$3	-53.4 -53.5	1.70 1.10	35.9	13.2 1 14.3 1	2.89 3.99	13.89	12.88 13.86	12.57 13.55	13.45	5205 5170	5383 5348	5515 5480	44 33	0 0	4.53
12737 12738	7731 7732	\$3 \$8	-54.8 -54.8	1.50 1.90	<b>49.</b> 5 71.6	14.3 1 14.5 1	3.99 4.19	13.76 13.59	13.80 13.90	13.50 13.60	13.26 12.99	2802 2875	2975 3048	3126 3199	100 65	0 0	1.39
12759 12760	7743 7742	S2 S1	-49.5 -48.7	2.50 2.00	33.6	12.9 1 12.5 1	2.57 2.17	12.48	12.54 12.30	12.21 11.96	12.12	1802 1622	1995 1818	2177 2003	65 30	0 0	50.02

the first approximation of a complicated geometry, it should be stressed that even a rather rough correction is justified because the errors are systematic. The average 91 m correction applied is 5% and in no case exceeds 18%; the several Arecibo corrections are somewhat larger.

Column (5).—H I profile width  $(\text{km s}^{-1})$  corrected to the plane of the galaxy:

$$\Delta v_{\rm TR} = \Delta v / \sin(i) , \qquad (19)$$

where i is the inclination. A minimum inclination of  $i = 15^{\circ}$  is adopted in this correction, and a dagger (†) denotes those  $\Delta v_{\text{TR}}$  based on  $i \leq 20^{\circ}$ . Column (6).—Distance to the galaxy pair, in Mpc,

based on the radial velocity of the center of mass,

assuming a constant mass-to-light ratio for the double system:

$$hD = \hat{v}_{LG}/100 ,$$
  

$$\hat{v}_{LG} = [v_1 \det(-0.4m_1) + v_2 \det(-0.4m_2)] \times [\det(-0.4m_1) + \det(-0.4m_2)]^{-1} , (20)$$

where the Hubble constant  $H_0 = h \times 10^2 \,\mathrm{km \, s^{-1}}$ Mpc⁻¹ and the velocities are corrected to the rest frame of the Local Group (eq. [15]).

Column (7).—Neutral hydrogen mass, in solar units, determined from the relation

$$h^2 M_{\rm H\,I} / M_{\odot} = 2.36 \times 10^5 (hD)^2 S$$
, (21)

TABLE 2—Continued

NAME UGC N	IGC IC	HUB Typ	GLACT LAT (DEG)	MAJ DIA (MIN)	INCL (DEG)	Z1 ^m z	IICKY ^{(m} z) _g	MAG ^{(m} z)G1	HOLMBE ^m	RG MAG ( ^m [#] ) _G	(CALC) ( ^m [*] _H ) _{GI}	v _s R/	NDIAL V _{LG}	VELOC V _{CF}	CITY M.E.	REF	SEP (MIN)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
12779 77 12780 77	752 153	\$5	-31.3 -31.3	0.45 3.50	61.1	14.3 13.2	13.82 12.72	12.30	14.08 12.72	13.60 12.24	11.82	4880 5083	5126 5329	5 <b>379</b> 5582	20 62	0 0	1.95
12808 77 12815 77	769 771	54 53	-40.5 -40.6	1.80 2.50	0.0 63.6	12.9 13.1	12.52 12.72	12.52 12.18	12.69 12.75	12.31 12.36	12.31 11.83	4349 4290	4570 4511	4800 4741	74 53	0 0	5.40
12883 *1 12889	525	\$5 \$5	-15.0 -14.7	1.90 2.30	48.1 39.5	13.3 14.0	12.33 13.01	12.14 12.90	13.13 13.63	12.16 12.65	11.97 12.53	5018 5017	5283 5282	5584 5584	10 10	R R	24.31
12914 12915		s	-38.0 -38.0	2.70 1.60	63.5	13.2 13.9	12 <b>.79</b> 13.49	12.35	12.81 13.55	12.41 13.15	11.97	4536 4530	4760 4754	5015 5009	56 56	0 0	1.22

 TABLE 3

 Additional Parameters (Turner 1976a supplement)

NAME UGC NGC *IC	HUB G Typ (	LACT LAT DEG) (	MAJ DIA MIN)	INCL (DEG)	Zwi ^m z (	IICKY I	MAG ^{(m} z) _{gi}	HOLMBEF ^m H	RG MAG ^{(m} [#] )G	(CALC) ( ^m [*] _H ) _{GI}	₽/ V _S	NDIAL V _{lg} (KM/	VELOO V _{CF} VS)	M.E.	REF	SEP (MIN)
(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
34 7824 36	S4 S3 -	54.2 54.3	1.90 1.70	48.1 64.2	14.5 14.7	14.19 14.39	13.98 13.83	13.92 14.11	13.61 15.80	13.39 13.24	3126 3071	3297 3242	3495 3440	86 56	0 0	9.20
312	е – S –	54.1 54.1	1.70	64.2	15.0 14.6	14.69 14.29	13.83	14.47 14.04	14.16 ز 13.7	13.26	4761 4349	4921 4509	5162 4750	184 34	0 0	1.40
983 *1698 986 *1700	S1 - E -	47.2	1.70 2.00		14.9 14.3	14.56 13.96		14.31 13.77	13.97 13.43		5376 5758	5520 5902	5848 6230	110 192	0 0	1.70
1153 631 1157 632	E - S1 -	55.3 55.2	1.70 1.70		15.0 13.5	14 <b>.7</b> 0 13.20		14.35 13.13	14.04 12.83		4021 3321	4124 3424	4431 3731	52 36	0 0	8.10
1266 * 162 1267	s - s1 -	49.9 49.9	1.00 1.70	46.8	14.2 14.8	13.87 14.47	13.71	13.83 14.21	13.50 13.88	13.34	5031 4823	5141 4933	5478 5270	83 40	0 0	2.50
1325 1326	E E	51.8 51.7	1.80 1.10		14.2 15.0	13.88 14.68		13.69 14.45	13.38 14.13		515 8 500 4	5258 5104	5589 5435	105 82	0 0	2•90
1463 770 1466 772	s – \$5 –	41.1 41.0	1.10 8.00	44.5 52.8	14.2 11.3	13.82 10.92	13.68 10.66	13.85 10.78	13.47 10.40	13.33 10.14	2489 247 C	2621 2602	2993 2974	124 87	0 0	3.60
1678 * 211 1680 851	57 - 51 -	·53.5 ·53.6	2.60 1.30	37.0	14.5 14.7	14.19 14.39	14.12	13.79 14.16	13.48 13.85	13.41	3088 3211	3155 3278	3485 3608	115 84	0 0	4.50
2142 1024 2149 1029	\$5 - \$2 -	43.9 43.9	4.80 1.60	72.7 75.9	13.8 14.9	13.44 14.54	12.52 13.21	12.92 1.4.30	12.56 13.94	11.64 12.61	3587 3527	3656 3596	4034 3974	81 103	0 0	7.00
4986 2852 4987 2853	C 53	45.4 45.4	1.10 1.90	64.0	14.0 14.6	13.65 14.25	13.70	13.79 14.15	13.44 13.80	13.25	1896 1808	1888 1800	2120 2032	40 39	0 0	2.30
5134 2939 2940	56 50	41.2 41.2	2.60	73.3	13.5 14.8	13.12 14.42	12.33	13.01 14.31	12.63 13.93	11.84	3372 2987	3214 2829	3315 2930	66 65	0 0	5.80
5536 3168 5542	E E	47.8 47.8	1.00 1.00		14.6 14.9	14.26 14.56		14.38 14.63	14.04 14.29		9288 9024	9387 9123	9613 9349	37 43	0 0	4.80
* 601 5561 * 602	58 59	48.5 48.5	0.90	53.9	15.0 13.4	14.67 13.07	12.87	14.46 13.18	14.13 12.85	12.65	3644 3810	3482 3648	3509 3675	36 31	0 0	1.30
3286 5752 3288	E S 5	50.8 50.8	1.10	51.9	14.6 15.0	14.28 14.68	14.43	14.37 14.68	14.05 14.36	14.12	7588 7592	1683 7687	7889 7893	61 52	0 0	4.00
6204 6207	s s	67.0 67.0	1.00 1.50	62.1 90.0	14.5 14.6	14.23 14.33	13.82 13.15	14.14 14.14	13.87 13.87	13.46 12.69	6173 6149	6107 6083	6136 6112	61 46	0 0	0.76
6310 3609 6321 3612	54 58	69.2 69.3	1.20 1.00	34•4 37•8	14.1 15.0	13.83 14.73	13.74 14.66	13.79 14.55	13.52 14.29	13.43 14.21	56 <b>73</b> 5521	5622 5470	5651 5499	90 150	0	5.40
6938 3990 6946 3998	51 51	60.1 60.1	1.40 3.00		13.6 11.2	13.31 10.91		13.49 11.29	13.20 11.01		720 1138	820 1238	945 1363	43 16	0 0	3.00

#### DOUBLE GALAXIES

TABLE 3—Continued

NA UGC	ME NGC	HUB Typ	GLACT	MAJ DIA	INCL	m _z (	wicky	MAG ^{(m} z)GI	HOLMBE	RG MAG	(CALC) (m [*] _H ) _{CI}	V _S R	ADIAL VLG	VELO VCF	CITY M.E.	REF	SEP
	+1C		(DEG)	1.01.01	(DEG)		Ŭ	01		0	01		( KM	/31			CHENT
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
		6	74 4			14.4	14 24	4	14 19	12.02		2507	3430	2245	150	0	
7032		S2	74.6	0.60	34.4	14.0	13.7	4 13.65	13.76	13.50	13.41	3907	3830	3745	19	0	2.20
	± 26 80	c	62 2			14.8	14 53	2	14 28	14 00		585.8	5719	5550	104	0	
7063	4077	So	62.3	1.00		14.5	14.22	2	14.03	13.75		6916	6777	6617	140	0	1.30
7073		67	75 0	1 10	44 5	14.1	13.84	6 13 73	13 77	13 51	13 40	4488	4419	4338	56	n	
7074		s	75.9	1.00	81.3	14.6	14.34	4 13.16	14.19	13.93	12.75	4695	4626	4545	68	0	2.10
		58	68.9			15-0	14.7	3	14.47	14-20		6325	6217	6090	47	0	
7085		s	68.9	1.90	75.6	14.8	14.5	3 13.35	14.17	13.90	12.72	6161	6053	5926	54	õ	1.50
7166	4151	<b>S</b> 4	75.1	7.00	31.7	11.2	10.94	4 10.87	10.85	10.59	10.51	873	906	936	61	O	
7173	4156	\$5	75.0	1.40	22.3	14.3	14.04	4 14.01	13.98	13.72	13.69	724	757	787	63	Ō	5.20
7508	4382	SI	79.2	7.40		10.2	9.9	5	9.74	9-48		773	717	612	30	0	
7523	4394	\$5	79.3	3.60	19.6	11.9	11.65	5 11.62	11.60	11.34	11.32	772	716	611	150	Ō	7.80
7648	4485	59	74.8	3.00	34.4	12.4	12.14	4 12.08	12.20	11.95	11.89	765	817	839	95	0	
7851	4490	S	74.9	7.00	62.1	10.1	9.84	4 9.44	9.82	9.56	9.16	577	629	651	5	0	4.00
7896	4647	57	74.4	2.90	35.0	12.5	12.24	4 12.18	12.16	11.90	11.84	1358	1285	1121	64	0	
7898	4649	E	74.3	7.00		10.3	10.04	4	9.78	9.52		1200	1127	963	26	0	2.80
83 <b>7</b> 5	* 881	S3	76.9	1.70	87.3	14.8	14.54	4 13.21	14.23	13.98	12.65	6835	6807	6624	34	0	
	* 882	S2	76.9			15.0	14.74	4	14.50	14.25		6774	6746	6563	47	0	3.80
8493	5194	S7	68.6	9.00	34.4	8.8	8.5	3 8.47	8.63	8.37	8.31	460	566	572	4	O	
8494	5195	S9	68.5	7.00	45.6	10.6	10.33	3 10.21	10.34	10.07	9.95	552	658	664	16	0	4.60
8675	52 <b>73</b>	S1	76.3	2.80		12.7	12.4	4	12.45	12.19		1014	1083	1002	22	D	
8680	5276	\$3	76.2	1.10	51.9	14.6	14.34	4 14.07	14.25	14.00	13.73	5271	5340	5259	44	0	3.30
	5296	S	69.9			15.0	14.73	3	14.63	14.37		2216	2319	2290	107	0	
8709	5297	57	69.9	5.80	90.0	12.3	12.03	3 11.00	11.70	11.44	10.41	2576	2679	2650	44	0	1.50
		S2	48.0			15.0	14.6	6	14.62	14.28		2030	2213	2111	25	0	
10200		S2	48.0	C• 80	42.5	13.6	13.2	6 13.11	13.52	13.18	13.03	1938	2121	2019	43	0	1.60
12422	7518	S3	-49.0	1.50	21.5	14.5	14.1	7 14.14	13.98	13.64	13.61	645	841	961	190	Ð	
12423		\$7	-48.9	3.60	90.0	14.8	14.4	7 13.44	13.89	13.56	12.53	888	1084	1204	78	D	6.70
	7557	SO	-49.1			15.0	14.6	7	14.46	14.13		3615	3811	3937	55	D	
12464	7562	E	-49.1	2.10		13.0	12.6	7	12.67	12.34		3525	3721	3847	51	0	4.70
12602	7671	S1	-45.5	1.40		14.3	13.95	5	13.86	13.51		4222	4432	4599	94	0	
	7672	S	-45.5			14.8	14.4	5	14.32	13.97		4398	4608	4775	93	0	6.00
	7681	S2	-41.3			15.0	14.6	2	14.51	14.13		7485	7709	7897	47	0	
12620		S1	-41.3	1.40		14.2	13.8	2	13.80	13.42		6997	7221	7409	68	0	6.30
		L				1			- I			L					I

where hD is the distance in Mpc and S is the corrected profile area in Jy-km s⁻¹. The equation is derived under the assumption that the H I is optically thin, and no optical depth corrections have been applied at high inclinations.

Column (8).—Total indicative mass, in solar units, estimated from the hydrogen line profile using

$$hM_T/M_{\odot} = K_o(hD)\theta_{\rm H}^* (\Delta v_{\rm TR})^2 ,$$
  
 $K_o = 4.25 \times 10^3 ,$  (22)

with hD in Mpc,  $\theta_{\rm H}^*$  in arcminutes, and  $\Delta v_{\rm TR}$  in km s⁻¹. A dagger (†) denotes  $hM_T/M_{\odot}$  based on  $i \leq 20^{\circ}$  and indicates that the entry is not included in the subsequent analysis. The derivation of  $hM_T/M_{\odot}$  is discussed in detail by Roberts (1968), and is based

on the Brandt (1960) formulation assuming a shape parameter n = 3 and turnover radius  $0.17 \theta_{\rm H}^*$  for the rotation curve. Any change in the shape or scaling parameter will rescale the mass estimate while preserving the functional form. Rogstad and Shostak (1972) have found rotation curves in late-type galaxies with n = 1 and turnover radius  $0.30 \theta_{\rm H}^*$ . These systems are characterized by a large turnover radius with flat rotation in the outer regions; the derived mass constant  $K = 1.72 \times 10^4$ , and the total mass estimates are thus 4 times those listed in column (8).

Column (9).—Luminosity, in solar units, based on derived Homberg magnitudes corrected for Galactic extinction (Table 2, col. [11]):

$$h^{2}L/L_{\odot} = 10^{10}(hD)^{2} \operatorname{dex} (0.4M_{\odot}) \\ \times \operatorname{dex} [-0.4(m_{\rm H}^{*})_{G}], \qquad (23)$$



 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System





 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

 $\odot$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_38_Figure_1.jpeg)

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_41_Figure_1.jpeg)

568

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

![](_page_42_Figure_1.jpeg)

569

© American Astronomical Society • Provided by the NASA Astrophysics Data System

TABLE 4GLOBAL PROPERTIES ( $\mathcal{D}_{OB}^{I}$ , subset with complete H I data)

UGC NAME	HUB TYP	HOLMBERG DIA (CALC) (MIN)	CORRECTED HI AREA (JY-KM/S)	CORRECTED HI WIDTH (KM/S)	DISTANCE hD (MPC)	HI MASS h ² M _{HI} (10 ⁹ M ₀ )	TOTAL MASS hM _T (10 ⁹ M _o )	LUMINOSITY h ² L (10 ⁹ L _a )	M _{HI} /L (10 ⁻¹ Mg/Lg)	hM _{HI} /M _T (10 ⁻² )	M _T /hL (M _a /L _a )
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
89	53	3.39	9.30	519.5	47.96	5.05	186.	55.7	.907	2.72	3.34
94	55	2.98	12.4	415.2	47.96	6.72	105.	19.0	3.54		5.53
725	57	2.78	8.41	366.6	52.02	5.37	82.6	18.4	2.92	6.50	4.49
728	57	2.69	9.40	1167. [†]	52.02	6.00	810. ⁺	20.9	2.87	.741	38.8
1070	57	3.31	11.9	282.8	30.12	2.55	33.9	6.76	3.77	7.52	5.01
1078	P	1.07	3.91	348.6	30.12	.837	16.6	9.77	.857	5.04	1.70
1089	57	2 <b>.94</b>	5.54	692.9 [†]	48.62	3.09	292. [†]	24.8	1.25	1.06	11.8
1094	55	2 <b>.</b> 78	9.93	511.2	48.62	5.54	150.	24.8	2.23	3.69	
1541	53	3.05	12.8	717.3	58.88	10.5	393.	60.2	1.74	2.67	6.53
1550	57	3.59	15.3	478.2	58.88	12.5	205.	54.4	2.30	6.10	3.77
1759	\$7	1.71	13.2	324.5	39.68	4.91	30.4	14.2	3.46	16.2	2.14
1760		3.56	42.1	779.0	39.68	15.6	364.	38.5	4.05	4.29	9.45
3930	Р	1.99	9.68	1101. [†]	38.14	3.32	391. [†]	33.9	.979	.849	11.5
3937	S	2.62	11.6	354.0	38.14	3.97	53.2	11.0	3.61	7.46	4.84
4066	57	3.46	9.84	462.7 [†]	24.70	1.42	77.8 ⁺	3.51	4.05	1.83	22.2
4151	58	2.94	3.98	504.4 [†]	24.70	.573	78.5 ⁺	7.54	.760	.730	10.4
4593	D	1.40	4.69	308.2	38.44	1.64	21.7	12.3	1.33	7.56	1.76
4603	S 5	2.91	3.99	517.0	38.44	1.39	127.	7.34	1.89	1.09	17.3
4752	S	2.33	9.22	340.0	28.14	1.72	32.2	6.53	2.63	5.34	4.93
4794	S	2.35	5.10	434.8	28.14	.953	53.1	5.95	1.60	1.80	8.92
5251	57	5.79	88.3	323.3	14.59	4.43	37.5	8.71	5.09	11.8	<b>4.31</b>
5380	5	2.45	14.6	406.6	14.59	.733	25.1	2.56	2.86	2.92	9.80
5279	59	3.15	9.81	238.0	14.72	•502	11.2	1.89	2.66	4.48	5.93
5292	51	3.25	5.57	537.4	14.72	•285	58.7	3.13	.911	.486	18.8
5520	57	3.30	16.6	369.6	34.28	4.60	65.7	5.47	8.41	7.00	12.0
5576	5	2.45	4.44	402.9	34.28	1.23	57.9	6.17	1.99	2.12	9.38
6880	53	2.13	11.7	416.5	33.54	3.12	52.7	12.0	2.60	5.92	4.39
6884	55	4.38	24.9	547.6	33.54	6.62	187.	29.0	2.28	3.54	6.45
7111 7116	57	5.00 6.40	47.2 63.9	316.1 391.9	11.86	1.57 2.12	25.2 49.5	2.83 3.11	5.55 6.82	6.23 4.28	8.90 15.9
7407 7414	D 59	3.73 2.96	27.2 19.9	252.7 672.3 ⁺	2.12 2.12	.029	2•15 ₊ 12•1	• 103 • 074	2.82 2.84	1.35	20.9 163.
7685 7694	S7	5.83 8.65	46.6 121.	249.4 315.0	10.86	1.30 3.35	16.7 39.6	1.20 4.57	10.8 7.33	7.78 8.46	13.9 8.67
7706	52	3.12	7.02	210.0	30.03	1.49	17.6	12.3	1.21	8.47	1.43
7747	57	3.94	15.9	412.3	30.03	3.39	85.5	11.8	2.87	3.96	7.25
7/21	55	6.55	109.	419.6	16.57	7.06	81.2	10.4	6.79	8.69	7.81
7732	56	7.17	85.1	386.9	16.57	5.52	75.6	11.4	4.84	7.30	6.63
8396	S7	2.41	16.9	209.1	10.27	.420	4.60	.800	5.25	9.13	5.75
8403		5.27	45.6	312.8	10.27	1.14	22.5	2.67	4.27	5.07	8.43
8507	59	2.5 <del>4</del>	<b>4.72</b>	169.4	10.01	.112	3.10	.638	1.76	3.61	4.86
8516	57	2.02	<b>4.10</b>	208.4	10.01	.097	3.73	.687	1.41	2.60	5.43
8699	54	2.48	8.98	406-2	26.53	1.49	46.1	6.24	2.39	3.23	7.39
8700	56	3.96	10.6	504-9	26.53	1.77	114.	11.5	1.54	1.55	9.91
8792	S	2.17	6.26	311.2	37.20	2.04	33.2	7.40	2.76	6.14	4.49
8809	S5	3.94	19.3	563.8	37.20	6.31	198.	19.3	3.27	3.19	10.3
9347	57	2.97	17.3	306.0	23.99	2.35	28•4	3.84	6.12	8.27	7.40
9361	55	3.14	15.2	491.0	23.99	2.07	77•2	4.92	4.21	2.68	15.7
9493	\$5	4.27	32.7	451.4	16.64	2.14	61.5	4.55	4.70	3.48	13.5
9499	\$5	6.51	29.4	678.0	16.64	1.92	212.	11.9	1.61	.906	17.8
9615	59	1.96	8.11	427.0	18.93	•686	28.8	2.20	3.12	2.38	13.1
9628		2.35	6.73	277.5	18.93	•569	14.6	3.15	1.81	3.90	4.63
9797	\$5	6.05	53.4	589.7	35.41	15.8	317.	15.2	10.4	4.98	20.9
9805	\$5	3.86	19.0	753.3	35.41	5.63	330.	12.9	4.36	1.71	25.6
9908	57	2.96	7.99	722.5 [†]	19.27	.700	127. †	<b>4.46</b>	1.57	.551	28.5
9915	55	4.30	24.6	409.6 [†]	19.27	2.15	59.1 †	5.22	4.12	3.64	11.3
10628	57	2.45	6.27	430.8	30.33	1.36	58.6	6.66	2.04	2.32	8.80
10656	51	3.12	1.77	206.5	30.33	.384	17.1	8.62		2.26	1.97
10848	5	1.95	2.49	109.3	15.48	.141	1.53 _†	1.15	1.23	9.22	1.33
10897	57	3.72	24.9	618.2 [†]	15.48	1.41	93.5	5.44	2.59	1.51	17.2
11137	58	2.76	12.2	305.2	24.62	1.74	26.9	14.0	1.24	6.47	1.92
11144	S	2.26	4.86	462.9	24.62		50.7	21.8	.319	1.37	2.33
12607	C	2.94	8.50	585.6	36.88	2.73	158.	26.9	1.01	1.73	5.87
12610	S5	2.73	9.25	388.0	36.88	2.97	64.4	10.9	2.72	4.61	5.91
12883	\$5	3.00	11.3	463.4	52.83	7.47	145.	53.7	1.39	5.15	2.70
12889	\$5	3.56	7.73	764.8	52.83	5.09	468.	34.2	1.49	1.09	13.7

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

GLOBAL PROPERTIES ( $\mathscr{D}_{OB}^{I}$ , subset with complete redshift data and H I data on one component)

UGL NAME	НИВ Түр	HOLMBERG DIA (CALC) (MIN)	CORRECTED HI AREA (JY-KM/S)	CORRECTED HI WIDTH (KM/S)	DISTANCE hD (MPC)	HI MASS h ² M _{HI} (10 ⁹ M ₀ )	TOTAL MASS hm _t (10 ⁹ M _o )	LUMINOSITY h ² L (10 ⁹ L ₀ )	M _{HI} /L (10 ⁻¹ M ₀ /L ₀ )	hM _{HI} /M _T (10 ⁻² )	M _T /hl (M₀/L₀)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
858	<b>\$6</b>	4.39	15.3	490.0	24.48	2.16	110.	17.8	1.21	1.96	6.18
1313	S7	4.07	25.3	253.2	30.51	5.55	33.8	8.18	6.78	16.4	4.13
3422	S5	3.64	19.5	665.0	42.19	8.20	289.	10.1	8.12	2.84	28.6
3740	57	4.23	22.9	513.4	23.60	3.00	112.	14.6	2.05	2.68	7.67
4097	\$5	5.27	48.5	526.8	15.63	2.80	97.2	6.92	4.05	2.89	14.1
5021	S7	3.10	3.73	452.0	31.00	.846	83.4	11.7	.723	1.01	7.13
5183	S6	4.53	23.7	403.6	13.50	1.02	42.3	6.87	1.48	2.41	6.16
5620	S5	7.56	21.8	674.7	11.08	.631	162.	5.02	1.26	.390	32.3
5742	59	3.01	7.77	259.6	12.35	.280	10.6	2.44	1.15	2.64	4.34
6528	š7	2.25	3.30	193.6	33.30	.864	11.9	5.46	1.58	7.26	2.18
7283		1.77	6.96	235.8	9.84	.159	4.12	.925	1.72	3.86	4.45
7405	\$5	3.15	6.12	367.2	7.47	.081	13.5	.635	1.28	.600	21.3
7757	S1	3.78	9.35	296.3	5.07	.057	7.15	.658	.866	.797	10.9
8393	s	2.36	10.6	248.9	25.16	1.59	15.6	4.94	3.22	10.2	3.16
9026	57	2.68	5.64	306.5	20.35	.551	21.8	6.81	.809	2.53	3.20
9036	SB	2.45	13.3	203.3	20.14	1.27	14.5	2.27	5.59	8.76	6.39
9172	\$5	4.20	7.11	282.5	15.25	. 390	21.7	2.87	1.36	1.80	7.56
9406	57	2.96	7.60	452.1+	23.64	1.00	60.8+	2.27	4.41	1.64	26.8
9645	S5	3.97	s.50	412.9	16.40	. 603	47.2	5.47	1.10	1.29	8.63
9969	S 5	6.59	34.4	643.3	28.46	6.57	330.	38.1	1.72	1.99	8.66
11628	S3	4.32	15.4	831.6	42.93	6.68	545.	30.6	2.18	1.23	17.8
12122	56	3.37	9.44	374.1	14.93	.497	29.9	4.09	1.22	1.66	7.31
12378	S7	3.14	12.9	434.4	64.90	12.8	163.	27.6	4.64	7.85	5.91
	1					1					

assuming  $(M_{\odot})_{pg} = 5.37$  (Stebbins and Kron 1957). Given a Holmberg diameter corrected for observed axial ratio effects, the resulting surface brightness is independent of inclination.

Column (10).—Hydrogen mass-to-light ratio  $M_{\rm HI}/L$ , in solar units. Note that this parameter is independent of distance.

Column (11).—Ratio of hydrogen mass to total mass  $hM_{\rm HI}/M_{\rm T}$ .

Column (12).—Total mass-to-light ratio  $M_T/hL$ , in solar units.

#### VII. SUMMARY

Average mass and mass-to-light ratios which are based on an analysis of the orbital parameters in binary systems require a well-defined statistical sample of binary galaxies. The 279 galaxy pairs selected from the UGC are restricted to positive declinations and an apparent magnitude range between 12.0 and 14.5. These galaxy pairs are required to satisfy isolation criteria (eq. [1]) incorporating both apparent magnitude and angular separation parameters. The criteria are adopted in the attempt to ensure a fair representation of widely separated physical doubles.

The actual distribution of angular separations for

the binary galaxies is reconstructed through an appropriate convolution of the observed distribution and the two probability functions based on a statistical analysis of the selection criteria (eq. [8]). A power-law regression on this distribution yields a slope of -0.5and is supported by a  $\chi^2$  goodness of fit (eq. [10]). Additionally, the evidence suggests that the number of spurious pairs can be reasonably predicted and that a given spurious system can be eliminated on the basis of radial velocity measurements.

Neutral-hydrogen observations of the binary galaxies produce 21 cm profiles on 149 member galaxies (94 without observed optical redshifts), resulting in 44 galaxy pairs with H I data on both components.

Both optical and radio data are compiled on member galaxies (Tables 1, 2, and 3). Global properties based on the H I data, including total indicative mass and a mass-to-light ratio, are presented (Tables 4 and 5); these provide independent measurements to be compared with the results from a statistical study of the orbital parameters (Paper II).

It is not possible to include a comprehensive list of all those individuals who have made significant contributions to this project, if only because the memory is

frail; it is equally difficult to express the depth of my gratitude. I especially thank my thesis adviser, Dr Yervant Terzian, for his guidance, encouragement, and support when those resources were most needed. In addition, Drs. Morton Roberts, Seth Shostak, Ed Salpeter, Jim Condon, Martin Harwit, and Dick Sramek provided me with many excellent discussions, and from them I have learned a great deal. My graduate studies were supported by a Danforth Fellowship and assistance from NRAO and NAIC. The National Astronomy and Ionosphere Center is operated by Cornell University under contract with the National Science Foundation.

## APPENDIX A

Given a prospective binary galaxy with apparent magnitudes  $m_1$  and  $m_2$ , the parameter  $m_0(m_1, m_2)$  is an upper limit defining the magnitude range of those galaxies to be included in the requirements for isolation based on angular proximity. Assume for the moment that apparent magnitudes are reliable distance indicators (i.e., that all galaxies have the same luminosity), and let  $\Delta D_0$  represent the radial distance out to which prospective doubles are isolated:

$$\Delta D_o = D(m_o) - D(m_f), \text{ with } D(m_o)/D(m_f) = \text{dex } [(m_o - m_f)/5], \tag{A1}$$

where  $D(m_o)$  is the expected distance to galaxies with magnitude  $m_o(m_1, m_2)$  and  $D(m_f)$  is the expected distance to the faint member of the pair. Solving for  $m_o(m_1, m_2)$ , one obtains

$$m_o(m_1, m_2) = 5 \log \left\{ \det(m_f/5) [1 + \Delta D_o/D(m_f)] \right\}.$$
(A2)

Now, assign  $\Delta D_o$  the fixed value  $\Delta D_o = D(15.0) - D(14.5)$ , so that a prospective pair with a faint component magnitude  $m_f = 14.5$  will be isolated with respect to those galaxies with  $m \le 15.0$ . In order that this radial isolation parameter remain constant for all prospective pairs,

$$m_o(m_1, m_2) = 5 \log \left[ [dex(m_f/5) \{ 1 + [D(15.0) - D(14.5)]/D(m_f) \} \right] \\ \sim 5 \log \left[ dex(m_f/5) + 2.06 \times 10^2 \right],$$
(A3)

where  $m_f$  is the fainter of the two magnitudes.

#### APPENDIX B

The conversion of Zwicky magnitudes (Zwicky *et al.* 1960–1968) to the Holmberg system (Holmberg 1958) is based on a least-squares analysis of the 268 galaxies common to both studies. The series of regressions allows for systematic declination and angular diameter effects observed in the Zwicky data, with the declination effect apparently originating in the compilation of the Zwicky catalog along declination strips and the angular diameter effect arising out of the methods used in estimating magnitudes. The Holmberg photometric magnitudes are assumed to be free of error, and the individual coefficients are obtained in an order of decreasing importance.

The series of least-squares regressions for galaxies with angular diameter  $a \le 6.0$  is displayed in Figure 7. Similarly, Figure 8 shows the series of least-squares regressions for galaxies with angular diameter a > 6.0. In this case, the angular diameter effect is well within the scatter of the data and has not been removed.

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_1.jpeg)

## **DOUBLE GALAXIES**

#### REFERENCES

- Ambartsumian, V. A. 1958, Izv. Akad. Nauk Arm. SSR,

- Brandt, J. C. 1960, Ap. J., 131, 293.
  Bridle, A. H., Davis, M. M., Fomalont, E. B., and Lequeux, J. 1972, A.J., 77, 405.
  Burbidge, E. M., and Burbidge, G. R. 1975, in *Galaxies and the Universe*, ed. A. Sandage, M. Sandage, and J. Kristian (Chicago Press), p. 81.
- (Chicago: University of Chicago Press), p. 81. de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G., Jr. 1976, Second Reference Catalogue of Bright Galaxies (Austin: University of Texas Press). Dressel, L. L., and Condon, J. J. 1976, Ap. J. Suppl., 31, 187.
- Faber, S. M., and Gallagher, J. S., Ann. Rev. Astr. Ap., 17, in press.
- Fisher, J. R., and Tully, R. B. 1975, *Astr. Ap.*, **44**, 151. Fomalont, E. B., and Moffet, A. T. 1971, *A.J.*, **76**, 5. Heidmann, J., Heidmann, N., and de Vaucouleurs, G. 1972,
- Heidmann, J., Heidmann, N., and de Vaucouleurs, G. 1972, Mem. R.A.S., 75, 85.
  Holmberg, E. 1954, Medd. Lunds Astr. Obs., Ser. I, 186, 1.
  ——. 1958, Medd. Lunds Astr. Obs., Ser. II, 136, 1.
  Hubble, E. 1926, Ap. J., 64, 321.
  Karachentsev, I. D. 1966, Astrofizika, 2, 81.
  ——. 1974, Soob. Sp. Astr. Obs. Acad. Nauk., 11, 51.
  Neyman, J., Page, T., and Scott, E. 1961, A.J., 66, 533.
  Nilson, P. 1973, Uppsala General Catalogue of Galaxies (Uppsala Astr. Obs. Ann., Vol. 6) (UGC).
  Page, T. 1952, Ap. J., 116, 63.

- Page, T. 1952, Ap. J., 116, 63.

- Page, T. 1961, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman (Berkeley: University of California Press), p. 277.
- . 1966, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. ed. L. LeCam, J. Neyman, and E. Scott (Berkeley: University of California
- M. Sandage, and J. Kristian (Chicago: Universe, ed. A. Sandage, M. Sandage, and J. Kristian (Chicago: University of Chicago Press), p. 541.
  Peebles, P. J. E. 1971, *Physical Cosmology* (Princeton: Princeton University Press), p. 64.
  Peterson, S. D., and Terzian, Y. 1979, A.J., in press.
  Roberts, M. S. 1968, A.J., 73, 945.
  1969, A.J., 74, 859.
  Rogstad, D. H., and Shostak, G. S. 1972, An. J., 176, 315.

STEVEN D. PETERSON: Building 50, Room 230, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720