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ABSTRACT 
A cool, 1 M0,56Fe white dwarf model is analyzed to determine the effects of a shear-supporting 

crystalline core upon the nonradial oscillation periods in the Cowling approximation. Both 
spheroidal and toroidal modes with / = 1, 2, and 3 have been calculated. Of the spheroidal 
oscillations, only the g-modes are seriously shifted in frequency. The toroidal oscillations, which 
have nonzero frequencies because of the nonzero shear modulus of the solid core, have periods 
intermediate between those of the /?- and g-modes. None of the low-order oscillation modes have 
frequencies comparable to those observed in the ZZ Ceti white dwarfs. 
Subject headings: stars: interiors — stars: pulsation — stars: white dwarfs 

I. INTRODUCTION 

Over the past several years high-speed photometric 
observations have shown that a number of white 
dwarfs exhibit periodic light variations, with periods 
ranging between a few tens of seconds (in the cata- 
clysmic variable systems) and 1000 seconds (in the 
isolated ZZ Ceti white dwarfs; cf. McGraw 1977; 
Nather 1978; Van Horn 1978, and references therein). 
However, theoretical investigations have as yet neither 
identified the precise modes observed nor satisfac- 
torily explained the cause of variability in any of these 
objects. These are important problems because stellar 
oscillations provide built-in probes of the deep interior 
of a star. Thus, it should be possible, in principle, to 
infer something about the internal structure of a white 
dwarf by analyzing oscillation spectra—an approach 
which has been notably powerful and informative in 
geophysical seismology. However, this approach has 
so far not been overly successful in application to 
white dwarfs because the theoretical periods derived 
are too short to match the observations. Attempts to 
address the problems posed by white dwarf oscillation 
have included studies of possible nonlinear coupling of 
presumably unstable high-overtone nonradial modes 
with low-order modes (Dziembowski 1977), nonlinear 
coupling of rotationally split g-mode oscillations 
(Wolff 1977), and the suggested excitation of toroidal 
“r-modes” (Papaloizou and Pringle 1978). None of the 
above attempts has been at all conclusive. 

The purpose of this report is to explore another 
effect that may occur in one class of variable white 
dwarfs, namely, the effects of solid, crystalline cores 
upon nonradial oscillations in white dwarfs. It has 
been pointed out by Van Horn and Savedoff (1976, 

1 Operated jointly by the National Bureau of Standards and 
the University of Colorado. 

hereafter VHS ; see also Van Horn 1978) that the onset 
of core crystallization takes place quite rapidly around 
an effective temperature that in 1 M0, 12C white 
dwarfs is ~ 10,000 K (Lamb and Van Horn 1975). 
This is precisely the region of temperature occupied by 
the ZZ Ceti white dwarf variables (McGraw 1977) 
which display periods ranging from about 100 to 1000 
s. As we show below (see also VHS), the effect of a 
solid core which can support shear stresses is to de- 
crease nonradial oscillation periods; thus the longer 
periods of the ZZ Ceti variables are made even more 
inexplicable. However, the large effect of crystalliza- 
tion on the g-mode periods shows that the solid core 
effects cannot be ignored in future studies of the ZZ 
Ceti oscillations. 

In §11 we review very briefly the dynamic conse- 
quences of a solid core and introduce the necessary 
physics. A complete mathematical description is 
deferred to the Appendix which the reader should 
consult for details. Section III summarizes our results 
and conclusions. 

II. EFFECTS OF AN ELASTIC CORE 

For a fluid star, the types of modes associated with 
small-amplitude, nonradial perturbations are well 
understood (cf. the review by Cox 1976). However, if 
portions of the stellar material can support shear 
strains and stresses, new classes of motion are possible. 
As discussed in the Appendix, these are the toroidal 
modes, which are dominated by transverse motion 
(perpendicular to the radial coordinate). In confor- 
mance with geophysical nomenclature these modes are 
noted by nTu where n is the number of nodes in the 
transverse component of displacement and / is the 
“angular momentum quantum number.” The remain- 
ing modes are spheroidal and have fluid counterparts 
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in the p-yf-, and g-modes of conventional nonradial 
stellar oscillation theory. They are denoted by nSu 
where n is the number of nodes in the radial (r) 
component of displacement. Thus, for example, the 
/-mode, which for simple fluid stars such as homo- 
geneous white dwarfs has no nodes in its radial dis- 
placement eigenfunction, would be denoted by QSi. 
Similarly, /7-modes would have the designations 
2SU etc. Gravity modes, which are not often en- 
countered in solid Earth geophysics, will be designated 
by -xSi, -2Sh where the minus subscript is intended to 
signal a g-mode (or one corresponding to it in the 
case with finite shear).2 

If we assume a Hooke’s law relationship between 
stress and strain, then it can easily be shown that there 
are two characteristic velocities of wave propagation 
(excluding, for now, gravity waves) if the material 
properties of the undisturbed configuration are homo- 
geneous and isotropic. These velocities depend on the 
adiabatic bulk modulus K = and the shear 
modulus, or rigidity, ¡i. Here F1 is the usual adiabatic 
exponent (see Landau and Lifshitz 1970) and p is the 
pressure. For convenience we replace the bulk 
modulus by À, which is one of the Lamé elastic coeffi- 
cients (the other being /x) defined by A = ^ — 2/x/3. 
The two velocities are then 

vP = [{\ + 2¿)lp?i* 

for pressure {P) waves, and 

^ = [Wp]1/2 

for shear (S') waves. Since we assume transverse iso- 
tropy, no distinction need be made between the hori- 
zontal and vertical variants of these waves, unlike the 
more complex situations in geophysical seismology 
(Takeuchi and Saito 1971, and further references in 
the Appendix). 

For nonradial modes the local characteristic fre- 
quencies associated with the P- and 5-wave modes are 

should, in some respects, resemble toroidal modes. 
The latter, from the above discussion, have periods 
some 5 times longer than pressure modes but, for 
white dwarfs, are still shorter than g-mode periods. 
Hence, we expect g-mode periods to shorten when 
shear is included. Conclusions similar to the above 
were reached previously by VHS on the basis of a 
short-wavelength analysis of the equations of motion. 

To permit quantitative calculations of the effects 
mentioned above, we must know when core crystalliza- 
tion occurs, and we must have an approximation for 
the shear modulus of the solid white dwarf core. As a 
result of the extensive Monte Carlo calculations, 
primarily by J.-P. Hansen and his co-workers, it is 
now known that crystallization of a plasma takes place 
when the Coulomb parameter is F > 160 (Pollock and 
Hansen 1973; Lamb and Van Horn 1975). Here F is 
defined by 

r (Ze)2 

F -¿kT’ 

where a is the radius of a sphere containing one single 
ion of charge +Ze. The value of F at the point of 
crystallization is currently known to an accuracy of 
about 15-20%. 

To approximate the shear modulus, we note that the 
shear strength of the lattice must be determined by 
the Coulomb forces that bind it together, while the 
bulk modulus is determined, for white dwarf matter, 
primarily by the compressibility of the degenerate 
electrons. We thus expect 

t ~ (Ze)2¡a 

K -Z^Fermi 

where eFermi is the characteristic energy per electron. 
More sophisticated calculations yield 

2 ^ /(/ + l)(A + 2/z) 

^ ~ "Tv 

and 

In the one model which we have analyzed in detail (see 
later) a typical ratio of>/A in the crystalline core is 
around 0.04, implying that we may expect shear 
oscillation periods to be about 5 times those of pres- 
sure waves. In addition, the P-waves should closely 
resemble, and have periods within a few percent of 
conventional /7-mode stellar oscillations. 

The gravity (g) modes of stellar oscillation, how- 
ever, are significantly affected by the inclusion of 
shear. In a naive picture, the large transverse motions 
characteristic of g-modes should be even more easily 
excited in or near the shear-supporting core and thus 

2 These designations for ^-modes have been suggested to us 
by Dr. Martin Smith of CIRES (Boulder). 

where n = l/(4/3)7ra3 (cf. Fuchs 1936; Mott and Jones 
1958; Kugler 1969; Lamb 1976; Pollock and Hansen 
1973 ; Pollock 1977) is the ion number density. Through 
a programming error, we have actually used a value of 
¡JL twice this great; the difference is unimportant for the 
purpose of this exploratory study. 

III. MODEL RESULTS AND CONCLUSIONS 

Since the present study is exploratory, we have 
chosen to analyze a representative iron white dwarf 
model from the evolutionary sequence of Savedoff, 
Van Horn, and Vila (1969). The pulsational properties 
of this sequence are well understood so that changes in 
these properties due to shear are easily apprehended 
(see Van Horn, Richardson, and Hansen 1972; Osaki 
and Hansen 1973; Hansen, Cox, and Van Horn 1977, 
Hansen, Cox, and Carroll 1978). The major drawback 
to the use of the iron models is that crystallization 
effects were not taken in account in computing the 
evolution, so that the artificial crystalline core is not 
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self-consistent. This should not be important in the 
present context, however. 

The particular model investigated here in detail is of 
1 M©, logre = 3.826, and logL/L0 = —4.194. (A 
similar model of 0.63 M0 was also examined, but only 
in a cursory way; the results were qualitatively the 
same as for the 1 M© model). The extent and proper- 
ties of the crystalline core were determined by com- 
puting F and [JL. This model is quite cool and thus has 
an extensive core comprising all but about 0.1% of the 
total mass (5% of the radius). In this sense we have 
chosen nearly the most extreme configuration. Less 
evolved models (or those having less total mass) would 
show lesser effects due to crystallization. 

The mathematical and computational details are 
summarized in the Appendix, and our results are given 
in Table 1 for /= 1, 2, and 3. Listed are periods (in 
seconds) for the modes p2, Pi,f, gi, and g2 computed 
under the assumption that the white dwarf is fluid 
throughout; the toroidal modes 0Th and 2^; and 
the spheroidal modes _2Sh .1Sh 0Sh Æ and 2Sz. The 
last set are those which reduce to the fluid case of the 
first set as either p or crystalline core mass approaches 
zero (this last was checked by direct computation). 

As anticipated, the toroidal mode periods are ~4-5 
times longer than those of the corresponding spher- 
oidal modes 2Sh ..0Si (cf. § II). Note that the mode 
oTx does not exist; such a mode can be shown to 
violate angular momentum conservation. None of the 
periods obtained seem relevant to observed white 
dwarfs, nor, if the modes were excited, could they be 
detected at the stellar surface—at least not with the 
physics assumed here. If the envelope were extremely 
viscous, perhaps the shear waves could be transmitted 
to the surface, especially since the transverse displace- 
ments peak strongly near the core boundary. However, 
it can easily be shown that viscosity is important only 
if the product a x viscous coefficient ~p or À. For 
reasonable estimates of the viscous coefficient, this 
would require frequencies many orders of magnitude 
larger than any reported here. A complete treatment of 
viscous effects would entail a full nonadiabatic 
investigation—a noteworthy project in any event. 

By inspection of Table 1 it appears that the only 
spheroidal modes which show any appreciable in- 

Fig. 1.—The radial displacements U/r (see the Appendix 
for further details) are plotted against log (1 — r[R) for 
/ = 2, (fluid) and -1S2 modes. The edge of the crystalline 
core is indicated by an arrow. 

fluence from shear are the g-like modes—especially gx 
where a factor of 2 decrease in period is computed. 
The expectation of § II is also confirmed in that 
transverse (and radial) displacements are enhanced in 
the core when shear is present. This is shown in Figures 
1 and 2. (The eigenfunctions for pressure modes are 
essentially the same as for the fluid case.) Note, 
however, that if our estimate of p were seriously in 
error (say too small by a factor of 10-100), then g± 
would decrease in period until it began to interfere 
with the /- and /?-like modes, producing a very com- 
plicated frequency spectrum. In this regard we should 
point out that the presence of shear introduces 
numerous complexities in the interpretation of what 
modes are seen. In those calculations where p was 
reduced to very low values the eigenfunctions of radial 
(and transverse) displacement displayed many nodes 
in the solid core whereas for the nominal value of p the 
structure was very simple. On the other hand, as p 
approached zero, the eigenfunction structure was very 
oscillatory but the amplitude of those oscillations 
decreased until, in the fluid extreme, their behavior 
was smooth. A good example of this behavior was 
also demonstrated by Denis (1975) for very simple 

TABLE 1 
Periods (in seconds) for 1 M© Model 

A. Fluid Modes 

/ P2 Pl f gl g2 

1   1.044 1.547 ... 193.8 270.3 
2   0.936 1.329 2.313 111.9 156.1 
3   0.863 1.198 2.047 79.1 110.4 

B. Crystalline Modes 

I 2S1 1S1 0Si -1S1 -2S1 2T1 1T1 qTi 

1   1.024 1.513 ... 99.8 193.9 4.73 7.70 
2   0.911 1.293 2.212 53.4 112.0 4.05 6.03 11.67 
3   0.837 1.164 1.932 36.7 79.2 3.61 5.14 8.77 
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Fig. 2.—Plotted are the transverse displacements Vjr for 
the same modes as in Fig. 1. 

homogeneous stellar models. Thus, a cursory examina- 
tion of the eigenfunctions may not easily reveal what 
kind of mode has been obtained. Furthermore, the 
ordering of periods may not be a fail-safe indicator of 
mode type (see again, Denis 1975). The caution is that 
the frequency space of solutions must be searched 
carefully in order that interesting modes not be 
missed. Our calculations used several safeguards in 
this respect, but then again our stellar model was 
rather simple. 

In more realistic models for ZZ Ceti variables there 

would be important ionization zones (not considered 
here) in the envelope which would affect both g-mode 
frequencies and their material displacements. It may 
be possible that some of these, with long periods, 
might be trapped very near the surface (see Hansen 
1979), in which case crystallization effects, occurring 
deep in the core, might not play a significant role in 
changing frequencies. Such models are now under 
study. 

In summary, with our present models (see above) we 
find no way of obtaining such long periods as are 
observed in the ZZ Ceti white dwarfs. However, the 
present study does point out the necessity of including 
solid, crystalline core effects if cool white dwarfs are 
the subject of study. Any interior diagnostics based on 
periods, especially for the g-modes, must account for 
shifts in pulsation frequency when shear is present. 

We are grateful for conversations and correspon- 
dence with Drs. J. P. Cox, J.-P. Hansen, D. Q. Lamb, 
R. Pollock, M. P. Savedoff, an anonymous referee, 
and especially M. Smith of the Cooperative Institute 
for Research in Environmental Sciences (Boulder) 
who directed us to the pertinent literature in geo- 
physics and corrected some of our misconceptions. We 
also thank Mrs. Chela Kunasz for programming 
advice. This work was supported in part by NSF grant 
AST 77-23182 through the University of Colorado, and 
NSF grant AST 76-80203 through the University of 
Rochester. 

APPENDIX 

A procedure for obtaining the linearized pulsation equations for stars which contain a solid region capable of 
supporting shear has been given by VHS, which the reader is advised to consult for details. In addition, the present 
authors have found the review article by Takeuchi and Saito (1971) to be very useful in explaining the details of the 
problem from a geophysical point of view. In what follows we will give only the essentials of the analysis and 
review the computational techniques we have used to obtain the numerical results. 

In the Cowling approximation, the linearized forms of the continuity and momentum equations yield the 
spherical coordinate wave equations; 

P<r2Çr 

pa2£e 

and 

P*2!;* 

dy -p, 
p-fr - riPAa - p + -Tir + 7r + ~ “2 tr ¡¿dr ¡xdr dr dr r2 r2 sin 6 

(sin e£g) + 

pfy 
r 86 + ¡jl dr \r 30 dr -t) 

+ I + V2£ + — — 1 (¿ _i_ 2 cos 0 
r 30 + 9 + r2 3r r2 sin2 0 \ 0 3<j)) 

-P g* _ . 
r sin 0 3<f) P' ixr sin i 

!_JLr2 ^ 1 ^ U\ , 1 
sin 0 3(j) {<3P<X) ¡¿dr \r sin 0 3r 3r r / r sii 

+ V2^ + r2 sin2 6 (2 sm 0 7^ + 2 C0S e~d£ - 

3a 
sin 0 3(f> 

dA 
3cf) 

*\ 

(Al) 

(A2) 

(A3) 

Here, £r, and ^ are the components of the vector Lagrangian radius variation, a is the frequency where a time 
dependence of eiat is assumed, 

Tipa 1 dp 
X = — 

Pdr ^ 
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a = V-Ç is the dilatation, and A, which is one measure of convective stability, is given by 

A — - dp — dP 
p dr Y-lP dr 

In the above, the stress tensor is of the (Cartesian) form 

aaß = ^yy^aß "b 2peaß , 

with eaß being the strain tensor (see, e.g., Landau and Lifshitz 1970) and in our case, the Lamé coefficients À and p 
are functions of r only. 

As is well known (Takeuchi and Saito 1971 ; Bolt and Derr 1969), the above equations admit of two physically 
distinct classes of modes. The first, better known to those doing nonradial stellar pulsation studies, are the 
spheroidal modes which, for the case of a fluid, are the usual and /7-modes. These are characterized by the 
vanishing of the radial component of V X Ç (Aizenman and Smeyers 1977, for example). This condition allows 
the simple and well-known separation of variables in spherical harmonics 

- U(r) Yrv, «, - w l rr, ^ | ir, 

where U(r) and V(r) are the vertical and horizontal components of displacement. 
Once the separation is performed, it is convenient to introduce the new variables3 

U v ^ o dU V 
r dr r 

and 

The new variables z2 and z4 are related to the vertical and horizontal tractions. We then obtain the fourth order 
system (in space), corresponding to equations (A1)-(A3), given in a slightly different form by Alterman, Jarosch, 
and Pekeris (1959); 

rz/ = — (1 + 2A8)z1 + Sz2 + A/8z3 , 

rz2' = (-a2pr2 - 4pgr + 47rGp2r2 + 4pßS)z1 — 4pSz2 + (îpgr — 2pß8i)z3 + /z4 , 

rz3' = -z± + Z4.Jp , 

rz± = (gpr - 2pß8)z1 - ASz2 + { — pa2r2 4- 2/x8[A(2/ - 1) + 2p(J — l)]}z3 - 3z4 . 

Here the prime denotes the first radial derivative, S = (A + 2p)~1, ß = 3\ + 2p, /=/(/+ 1), and g is the local 
gravity. 

The fluid case may be obtained by setting p equal to zero in the above. The resulting system is second order 
(as is usual in the fluid case using the Cowling approximation) with z4 = 0 and an algebraic relation 

z3 = (rpa2)-1(gpz1- z2lr) . 

Furthermore, it may be easily shown that the relations between the variables zf in the fluid case and the “Dziem- 
bowski variables” yt (see, for example, Osaki and Hansen 1973 for a complete description) are 

Zi= yi, z3 = ^rr y2 , and z2 = rgpiyi. - y2). 

The boundary conditions for the fluid envelope are given in Osaki and Hansen (1973) and are two in number: 
one relating y1 and y2 at the surface and the other being a normalization (y1 — 1) at the surface. For the central 
solid core the simplest tack is to expand all z* in power series in r from the origin. This last procedure reveals that 
there are four classes of solutions, which vary as rz “ 2’~ a +1)’ “ a + 3) and of which only the first two (regular solutions) 
are of interest. A general (regular) solution is then a linear superposition of these two. Thus, near the origin, we 
write 

zt = af1-2 + cii'r1 ; 

3 Note that these transformations are computationally most convenient for 1=2. For other values of /, the zf should be scaled 
by appropriate factors of r (see Crossley 1975). 
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explicit expressions for ax and a/ are given by Crossley (1975). Out of these eight coefficients, only two are indepen- 
dent (chosen to be ax and here); and these, plus the eigenvalue a2, make a total of three quantities which must 
be determined. They are fixed by requiring continuity of and the tractions z2 and z4 across the fluid-solid inter- 
face. The tangential component of displacement, z3, need not be continuous. These three conditions determine, 
in effect, the three unknowns. 

In the numerical calculations a high-order Runge-Kutta scheme coupled with spline interpolation of physical 
quantities is used to integrate the two independent solutions for the zf (i.e., those going as rz_2 and rl) out to the 
solid-fluid interface with arbitrary values of ^ and aé' and a guessed value for a2. The variables y1 and y2 (and thus 
zl9 z2, and z3) are integrated inward from the surface to the same point with the same choice of the eigenvalue. 
The coefficients and are then determined by requiring that z4 be zero and that z1 be continuous at the interface. 
However, in general, z2 will not be continuous unless cr2 is chosen properly. To do this, a strategy similar to that 
used in the “fitting method” of stellar structure calculations is applied. Convergence is found to be quite rapid. 

The second class of oscillations are the torordial modes which, if there were no shear (or rotation), would all have 
zero frequency. These are characterized by the property that V-Ç, and x vanish; that is, only transverse 
motions are possible. Their separation is 

Defining the new variables 

— 
V dYx

m 

sin 6 dcf) 
and l = - y 

dYr* 
de 

/dV 
\dr 

V 
r )■ 

we find (see again Alterman, Jarosch, and Pekeris 1959) 

rzi' = —Zi + - z2 , and rz2 = [/d7 - 2) - o2pr2]z1 - 4z2 . 

Regular solutions near the origin go as rl 2, and they require the central boundary condition 

(/ - Ozj = - z2 . 

Since the transverse traction (proportional to z2) must vanish just past the solid core-fluid envelope boundary, we 
must have z2 = 0 there and, for normalization, we take z4 = 1 at that point as well. The fluid envelope, since it 
cannot support shear waves, does not partake of the motion. Any number of numerical techniques can be applied 
to this rather simple problem. 
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